Skip to main content
Log in

On the apodized integrated Bragg grating as a binary generator in SI-MZI circuits comprising double closed-loop interferometer

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The spectral response of four Mach–Zehnder Interferometers (MZIs)-based silicon photonic circuits integrated with/without apodized corrugated waveguide gratings comprising common feature of two serially connected closed-loop interferometers (CLIs) was investigated theoretically and experimentally. These CLIs with serial connection naturally alter the phase of signal in nonlinear manner and effectively produce a noisy signal. The apodized corrugated waveguide design was optimized to ensure side-lobe suppression, and used as a part of CLI arm in photonic circuits. The interferometers with balanced and/or unbalanced arms were examined to control phase modulation in a constructive manner. Analyses revealed that positioning four apodized corrugated waveguides in balanced arms of two closed-loop MZIs critically governs phase modulation constructively to produce spectra with sine waves over the wavelength range of ~ 1540–1550 nm. This region with discriminating frequency and obvious sine shape property is unique, and can be interpreted as the symbol “1” and the rest of the spectrum with noisy feature can present the symbol ‘0’ in a binary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. M. Hochberg, N.C. Harris, R. Ding et al., Silicon photonics: the next fabless semiconductor industry. IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013)

    Article  Google Scholar 

  2. D. Pérez, I. Gasulla, L. Crudgington, D.J. Thomson et al., Multipurpose silicon photonics signal processor core. Nat. Commun. 8(1), 636 (2017)

    Article  ADS  Google Scholar 

  3. L. Vivien, L. Pavesi (eds.), Handbook of silicon photonics. (CRC Press, Boca Raton, USA, 2013)

    Google Scholar 

  4. J. Wu, J. Peng, B. Liu et al., Passive silicon photonic devices for microwave photonic signal processing. Opt. Commun. 373, 44–52 (2016)

    Article  ADS  Google Scholar 

  5. M. Burla, L.R. Cortés, M. Li, X. Wang, L. Chrostowski, J. Azaña, Integrated waveguide Bragg gratings for microwave photonics signal processing. Opt. Express 21(21), 25120–25147 (2013)

    Article  ADS  Google Scholar 

  6. M. Teng, A. Honardoost, Y. Alahmadi et al., Miniaturized silicon photonics devices for integrated optical signal processors. J. Lightwave Technol. 38(1), 6–17 (2020)

    Article  ADS  Google Scholar 

  7. T.J. Seok, N. Quack, S. Han, R.S. Muller, M.C. Wu, Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica 3(1), 64–70 (2016)

    Article  ADS  Google Scholar 

  8. C. Huang, V.J. Sorger, M. Miscuglio, M. Al-Qadasi, A. Mukherjee, L. Lampe, M. Nichols, A.N. Tait, T. Ferreira de Lima, B.A. Marquez, J. Wang, Prospects and applications of photonic neural networks. Adv. Phys. X 7(1), 1981155 (2022)

    Google Scholar 

  9. M. Ghasemi, S.M. Hamidi, A. Dehzangi, P.K. Choudhury, Double-stadium Si-MZI racetrack microring resonator circuits: way to generate optical digital patterns. J. Opt. Soc. Am. B 37(5), 1434–1446 (2020)

    Article  ADS  Google Scholar 

  10. S.T. Fard, S.M. Grist, V. Donzella et al., Label-free silicon photonic biosensors for use in clinical diagnostics. Proc. SPIE 8629, 862909 (2013)

    Article  Google Scholar 

  11. E. Luan, H. Yun, M. Ma, D.M. Ratner, K.C. Cheung, L. Chrostowski, Label-free biosensing with a multi-box sub-wavelength phase-shifted Bragg grating waveguide. Biomed. Opt. Express 10(9), 4825–4838 (2019)

    Article  Google Scholar 

  12. E. Luan, H. Shoman, D.M. Ratner, K.C. Cheung, L. Chrostowski, Silicon photonic biosensors using label-free detection. Sensors 18(10), 3519 (2018)

    Article  ADS  Google Scholar 

  13. G. Singh, J.D.B. Bradley, N. Li et al., Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities. Opt. Lett. 41(6), 1189–1192 (2016)

    Article  ADS  Google Scholar 

  14. S. Arafin, G.B. Morrison, M.L. Mashanovitch, L.A. Johansson, L.A. Coldren, Compact low-power consumption single-mode coupled cavity lasers. IEEE J. Sel. Top. Quantum Electron. 23(6), 6000309 (2017)

    Article  Google Scholar 

  15. J.W. Silverstone, D. Bonneau, J.L. O’Brien, M.G. Thompson, Silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron. 22(6), 390–402 (2016)

    Article  ADS  Google Scholar 

  16. T. Erdogan, Fiber grating spectra. J. Jightwave Technol. 15(8), 1277–1294 (1997)

    Article  ADS  Google Scholar 

  17. M.J. Strain, M. Sorel, Integrated III–V Bragg gratings for arbitrary control over chirp and coupling coefficient. IEEE Photon. Technol. Lett. 20(22), 1863–1865 (2008)

    Article  ADS  Google Scholar 

  18. M. Ma, Z. Chen, H. Yun et al., Apodized spiral Bragg grating waveguides in silicon-on-insulator. IEEE Photon. Technol. Lett. 30(1), 111–114 (2017)

    Article  ADS  Google Scholar 

  19. X. Wang, Y. Wang, J. Flueckiger et al., Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings. Opt. Lett. 39(19), 5519–5522 (2014)

    Article  ADS  Google Scholar 

  20. D. Wiesmann, C. David, R. Germann, D. Emi, G.L. Bona, Apodized surface-corrugated gratings with varying duty cycles. IEEE Photon. Technol. Lett. 12(6), 639–641 (2000)

    Article  ADS  Google Scholar 

  21. D.T.H. Tan, K. Ikeda, Y. Fainman, Cladding-modulated Bragg gratings in silicon waveguides. Opt. Lett. 34(9), 1357–1359 (2009)

    Article  ADS  Google Scholar 

  22. Y.J. Hung, K.H. Lin, C.J. Wu, C.Y. Wang, Y.J. Chen, Narrowband reflection from weakly coupled cladding-modulated Bragg gratings. IEEE J. Sel. Top. Quantum Electron. 22(6), 218–224 (2015)

    Article  ADS  Google Scholar 

  23. R. Cheng, H. Yun, S. Lin, Y. Han, L. Chrostowski, Apodization profile amplification of silicon integrated Bragg gratings through lateral phase delays. Opt. Lett. 44(2), 435–438 (2019)

    Article  ADS  Google Scholar 

  24. H.P. Bazargani, M. Burla, L. Chrostowski, J. Azaña, Photonic Hilbert transformers based on laterally apodized integrated waveguide Bragg gratings on a SOI wafer. Opt. Lett. 41(21), 5039–5042 (2016)

    Article  ADS  Google Scholar 

  25. H. Sakata, Sidelobe suppression in grating-assisted wavelength-selective couplers. Opt. Lett. 17(7), 463–465 (1992)

    Article  ADS  Google Scholar 

  26. A.D. Simard, N. Belhadj, Y. Painchaud, S. LaRochelle, Apodized silicon-on-insulator Bragg gratings. IEEE Photon. Technol. Lett. 24(12), 1033–1035 (2012)

    Article  ADS  Google Scholar 

  27. R. Cheng, L. Chrostowski, Multichannel photonic Hilbert transformers based on complex modulated integrated Bragg gratings. Opt. Lett. 43(5), 1031–1034 (2018)

    Article  ADS  Google Scholar 

  28. D. Patel, V. Veerasubramanian, S. Ghosh, A. Samani, Q. Zhong, D.V. Plant, High-speed compact silicon photonic Michelson interferometric modulator. Opt. Express 22(22), 26788–26802 (2014)

    Article  ADS  Google Scholar 

  29. B. Culshaw, The optical fibre Sagnac interferometer: an overview of its principles and applications. Meas. Sci. Technol. 17(1), R1 (2005)

    Article  Google Scholar 

  30. G. Fisher, M.R. Seacrist, R.W. Standley, Silicon crystal growth and wafer technologies. Proc. IEEE 100, 1454–1474 (2012)

    Article  Google Scholar 

  31. B. Jalali, S. Fathpour, Silicon photonics. J. Lightwave Technol. 24(12), 4600–4615 (2006)

    Article  ADS  Google Scholar 

  32. Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, D.V. Plant, Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces. Opt. Express 22(15), 18224–18231 (2014)

    Article  ADS  Google Scholar 

  33. M. Tilli, M. Paulasto-Kröckel, M. Petzold et al. (eds.), Handbook of Silicon Based MEMS Materials and Technologies. (Elsevier, USA, 2020)

    Google Scholar 

  34. L. Chrostowski, M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University Press, UK, 2015)

    Book  Google Scholar 

  35. D. Taillaert, H. Chong, P.I. Borel, L.H. Frandsen, R.M. De La Rue, R. Baets, A compact two-dimensional grating coupler used as a polarization splitter. IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003)

    Article  ADS  Google Scholar 

  36. A. Mekis, S. Abdalla, D. Foltz, S. Gloeckner, S. Hovey, S. Jackson, Y. Liang, M. Mack, G. Masini, M. Peterson and T. Pinguet, in A CMOS photonics platform for high-speed optical interconnects. IEEE Photonics Conference 2012 (IEEE, 2012), pp. 356–357

  37. W.S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, J. Burghartz, Bridging the gap between optical fibers and silicon photonic integrated circuits. Opt. Express 22(2), 1277–1286 (2014)

    Article  ADS  Google Scholar 

  38. R.J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, Y. Aida, Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 29(6), 06F309 (2011)

    Google Scholar 

  39. Y. Zhang, S. Yang, A.E.J. Lim, G.Q. Lo, C. Galland, T. Baehr-Jones, M. Hochberg, A compact and low loss Y-junction for submicron silicon waveguide. Opt. Express 21(1), 1310–1316 (2013)

    Article  ADS  Google Scholar 

  40. K. Ogusu, Simple apodization technique for surface-corrugated waveguide gratings. Opt. Commun. 427, 180–183 (2018)

    Article  ADS  Google Scholar 

  41. J. Jiang, H. Qiu, G. Wang et al., Silicon lateral-apodized add–drop filter for on-chip optical interconnection. Appl. Opt. 56(30), 8425–8429 (2017)

    Article  ADS  Google Scholar 

  42. W. Streifer, D. Scifres, R. Burnham, Coupling coefficients for distributed feedback single-and double-heterostructure diode lasers. IEEE J. Quantum Electron. 11(11), 867–873 (1975)

    Article  ADS  Google Scholar 

  43. W.J. Lai, P. Shum, L.N. Binh, Bidirectional optical bistability in a dual-pumped erbium doped fiber ring laser. Opt. Express 12(23), 5640–5645 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the photonics, laser, advanced materials and manufacturing technologies development council of Iran for their valuable supporting. They also extend their acknowledgement to Prof. Lukas Chrostowski of the University of British Colombia (Canada) for organizing the silicon photonics online course, which greatly helped in conducting the present research. M. Ghasemi acknowledges the basic science research grant BSRF-phys-339-15 for support.

Funding

Shahid Beheshti University, BSRF-phys-399-15, Masih Ghasemi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghasemi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, M., Hamidi, S.M., Mohseni, M. et al. On the apodized integrated Bragg grating as a binary generator in SI-MZI circuits comprising double closed-loop interferometer. Eur. Phys. J. Plus 138, 344 (2023). https://doi.org/10.1140/epjp/s13360-023-03971-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03971-w

Navigation