SlideShare una empresa de Scribd logo
1 de 32
LOS PRINCIPIOS DE LA
TERMODINÁMICA
TEMA 8
Félix. Profesor de Tecnología Industrial 2
Bibliografía: Tecnología Industrial 2. Everest y McGrawhill y
Grandes ideas de la física (Alan Lightman) también de McGrawhill
Introducción
• El funcionamiento de las máquinas térmicas y frigoríficas se basan en
los dos principios de la termodinámica.
• Las máquinas térmicas son capaces de producir trabajo mecánico sin
recurrir a fuente alguna de energía, o bien extrayendo energía de una
sola fuente.
• Como curiosidad señalar que la máquina de vapor fue construida con
anterioridad al establecimiento de la termodinámica. En este caso la
aplicación práctica (TÉCNICA) surgió antes que el descubrimiento
teórico (CIENCIA),en otras ocasiones es la tecnología quien desarrolla
y busca aplicaciones prácticas a un descubrimiento teórico.
CIENCIA+TÉCNICA=TECNOLOGÍA
Calor y temperatura
• El calor es la energía que se transmite de un cuerpo a otro, es una
energía en tránsito, por eso no tiene sentido hablar de calor almacenado
en un cuerpo.
● La temperatura es una magnitud física que depende de la velocidad media
de las partículas que constituyen el cuerpo (moléculas).Cuanto mayor sea la
velocidad de las partículas mayor será su energía interna y por tanto su
temperatura.
TERMODINÁMICA
SISTEMA TERMODINÁMICO
La termodinámica estudia las propiedades que se conocen como
variables termodinámicas (composición y concentración de los
componentes, presión, volumen, temperatura), que se refieren al
comportamiento global de un número muy elevado de partículas y
que definen el llamado estado del sistema.
Cuando estas variables tienen un valor definido para cada estado del
sistema sin depender de los procesos que este haya experimentado
reciben el nombre de funciones de estado.
El trabajo y el calor no son funciones de estado
TRANSFORMACIONES DE UN SISTEMA TERMODINÁMICO
Las transformaciones
de un sistema
termodinámico desde
un estado inicial a otro
final pueden tener lugar
de distintas formas que
se representan
gráficamente en un
diagrama P-V.
γ es el coeficiente
adiabático y se calcula:
CP/CV
Primer principio de la termodinámica
En el ejemplo, al calentar el agua el tapón sale lanzado. El calor transmitido al
agua se transforma en:
-Lanzar el tapón (trabajo mecánico)
-Aumentar la energía interna de las moléculas de agua
CALOR MOLAR (ESPECÍFICO) A PRESIÓN Y VOLUMEN CONSTANTE
Cálculo del trabajo de expansión, calor
intercambiado y variación de energía interna en
algunas transformaciones de gases ideales.
La variación de energía interna es independiente de las variaciones de
presión y volumen. La energía interna sólo depende de la temperatura
ejemplo página 153).
Q=Wexp
2º Principio de la Termodinámica
hay muchos enunciados equivalentes de la segunda ley de la termodinámica:
(1) Un sistema aislado evoluciona de forma natural hacia las configuraciones más probables.
(2) Un sistema aislado evoluciona de forma natural hacia la redistribución de la energía disponible
equitativamente entre sus partes.
(3) En los sistemas aislados, el calor fluye de los cuerpos calientes a los fríos.
(4) La capacidad de un sistema aislado de convertir calor en trabajo decrece constantemente.
(el trabajo en calor si puede transformarse íntegramente)
(5) Aunque la energía se conserva, la energía disponible en cualquier sistema aislado siempre disminuye.
(6) Los sistemas aislados evolucionan en el sentido en el que incrementan su entropía (disminuyen su
orden).
Segundo principio de la termodinámica
Hay que darse cuenta de que la energía calorífica puede utilizarse para elevar una
masa y realizar trabajo, sólo porque había una diferencia de temperaturas entre los
dos gases.
Si inicialmente los gases hubieran estado a la misma temperatura, entonces el
sistema habría estado en equilibrio y no habría habido flujo de calor.
Podría existir una gran cantidad de energía calorífica presente en ambos gases, en
forma de movimientos moleculares, pero la energía no podría utilizarse para realizar
trabajo. Si el calor no fluye, el peso no se puede elevar.
NO EXISTE UNA MÁQUINA CAPAZ DE CONVERTIR EL CALOR
EN TRABAJO A EXPENSAS DE UNA SOLA FUENTE
CONSECUENCIAS A NIVEL GLOBAL
Ya que el calor fluye continuamente de los cuerpos calientes a los fríos en todos
los lugares del universo, como dice la segunda ley de la termodinámica, el
universo pierde gradualmente su capacidad de realizar trabajo.
La cantidad total de energía disponible disminuye constantemente. No sólo es que
todas las máquinas del universo se estén descargando, sino que además la
capacidad de reconvertir el calor resultante en trabajo se reduce con el tiempo.
No hay forma de eludir la unidireccionalidad de la segunda ley de la termodinámica.
Esta implicación sorprendente de la segunda ley, que ha intrigado y alarmado a la
gente desde mediados del siglo xIx, se ha denominado la «muerte térmica» del
universo.
Aún se debate entre los físicos de qué manera se aplica la segunda ley de la
termodinámica al universo como un todo.
Máquinas térmicas
El deseo de construir máquinas tan eficientes como fuera
posible fue el motivo de gran parte de la comprensión de la
segunda ley.
La primera de estas investigaciones la realizó el científico, físico
e ingeniero francés Sadi Carnot (memoria clásica «Reflections
on the Motive Power of Fire(*)» (1824) )una vez que la
revolución industrial estaba a pleno ritmo.
En particular, Carnot quería saber la eficiencia teórica máxima
de una máquina térmica (dispositivo que puede realizar trabajo
movido por calor, llamado motor térmico.)
(*)Reflexiones sobre la potencia motriz del fuego y sobre las máquinas adecuadas
para desarrollar esta potencia
Ciclo de CARNOT
Muchas máquinas térmicas
funcionan según el ciclo de
Carnot, recibiendo calor de un
foco de alta temperatura y
expulsándolo a otro de menor
temperatura, a expensas de
realizar un trabajo
Se define ciclo de Carnot como un proceso cíclico reversible que utiliza
un gas perfecto, y que consta de dos transformaciones isotérmicas y
dos adiabáticas, tal como se muestra en la figura.
La representación gráfica del ciclo de Carnot en un
diagrama p-V es el siguiente
• Tramo A-B Expansión isoterma a
la temperatura T1
• Tramo B-C Expansión adiabática
• Tramo C-D Compresión isoterma a
la temperatura T2
• Tramo D-A Compresión adiabática
En cualquier ciclo, tenemos que obtener a partir de los datos iniciales:
-La presión, volumen de cada uno de los vértices.
-El trabajo, el calor y la variación de energía interna en cada una de los
procesos.
-El trabajo total, el calor absorbido, el calor cedido, y el rendimiento del ciclo.
Los datos iniciales son los que figuran en la tabla adjunta.
A partir de estos datos, hemos de rellenar los huecos de la tabla.
Las etapas del ciclo
Transformación A->B (isoterma)
Transformación B->C (adiabática)
Transformación C->D (isoterma)
Transformación D->A (adiabática)
La entropía es una magnitud que determina el grado
de desorden de un sistema. ΔS=Q/T
La tendencia en la naturaleza es a evolucionar a estados de mayor desorden
En el próximo tema veremos las aplicaciones del ciclo
de Carnot: Máquina térmica y máquina frigorífica
Ver animación
Máquina térmica
Un motor de Carnot es un dispositivo ideal
que describe un ciclo de Carnot. Trabaja
entre dos focos, tomando calor Q1 del foco
caliente a la temperatura T1, produciendo
un trabajo W, y cediendo un calor Q2 al foco
frío a la temperatura T2. En un motor real, el
foco caliente está representado por la
caldera de vapor que suministra el calor, el
sistema cilindro-émbolo produce el trabajo y
se cede calor al foco frío que es la
atmósfera.
Máquina de vapor
Máquina frigorífica
La máquina de Carnot también puede
funcionar en sentido inverso,
denominándose entonces frigorífico. Se
extraería calor Q2 del foco frío
aplicando un trabajo W, y cedería Q1 al
foco caliente. En un frigorífico real, el
motor conectado a la red eléctrica
produce un trabajo que se emplea en
extraer un calor del foco frío (la cavidad
del frigorífico) y se cede calor al foco
caliente, que es la atmósfera.

Más contenido relacionado

La actualidad más candente

Calor especifico laboratorio 5 UNI
Calor especifico laboratorio 5 UNICalor especifico laboratorio 5 UNI
Calor especifico laboratorio 5 UNIhenderzon natividad
 
Ejemplos de la 2da ley de termodamica y entropia
Ejemplos de la 2da ley de termodamica y entropiaEjemplos de la 2da ley de termodamica y entropia
Ejemplos de la 2da ley de termodamica y entropiaAlexander Casio Cristaldo
 
Maquinas termicasss
Maquinas termicasssMaquinas termicasss
Maquinas termicassselizitaGC
 
Curvas de calentamiento
Curvas de calentamientoCurvas de calentamiento
Curvas de calentamientolucia2793
 
Introducción a la termodinámica clase nº2
Introducción a la termodinámica clase nº2Introducción a la termodinámica clase nº2
Introducción a la termodinámica clase nº2laboratoriodeciencias
 
Preguntas de mecanismos de transferencia
Preguntas de mecanismos de transferenciaPreguntas de mecanismos de transferencia
Preguntas de mecanismos de transferenciaAlanArmentaEspinoza93
 
Segunda ley de la termodinamica
Segunda ley de la termodinamicaSegunda ley de la termodinamica
Segunda ley de la termodinamicaRamon Lop-Mi
 
Problemas Holman Cengel
Problemas Holman CengelProblemas Holman Cengel
Problemas Holman Cengelmartha314
 
Termoquímica (energia, leyes termodinámicas, entalpia, ecuaciones químicas y ...
Termoquímica (energia, leyes termodinámicas, entalpia, ecuaciones químicas y ...Termoquímica (energia, leyes termodinámicas, entalpia, ecuaciones químicas y ...
Termoquímica (energia, leyes termodinámicas, entalpia, ecuaciones químicas y ...Angel Castillo
 
propiedades de transporte
propiedades de transporte propiedades de transporte
propiedades de transporte AnitaFerritto1
 
Práctica de transferencia de calor por coductividad, convección y transferenc...
Práctica de transferencia de calor por coductividad, convección y transferenc...Práctica de transferencia de calor por coductividad, convección y transferenc...
Práctica de transferencia de calor por coductividad, convección y transferenc...Mauricio Huhn
 

La actualidad más candente (20)

Ciclos termodinamicos-recopilación
Ciclos termodinamicos-recopilaciónCiclos termodinamicos-recopilación
Ciclos termodinamicos-recopilación
 
Calor especifico laboratorio 5 UNI
Calor especifico laboratorio 5 UNICalor especifico laboratorio 5 UNI
Calor especifico laboratorio 5 UNI
 
Unidad 3 proc ind
Unidad 3 proc indUnidad 3 proc ind
Unidad 3 proc ind
 
Ejemplos de la 2da ley de termodamica y entropia
Ejemplos de la 2da ley de termodamica y entropiaEjemplos de la 2da ley de termodamica y entropia
Ejemplos de la 2da ley de termodamica y entropia
 
Maquinas termicasss
Maquinas termicasssMaquinas termicasss
Maquinas termicasss
 
Curvas de calentamiento
Curvas de calentamientoCurvas de calentamiento
Curvas de calentamiento
 
Energia 2017
Energia 2017Energia 2017
Energia 2017
 
Calor especifico del agua
Calor especifico del aguaCalor especifico del agua
Calor especifico del agua
 
Introducción a la termodinámica clase nº2
Introducción a la termodinámica clase nº2Introducción a la termodinámica clase nº2
Introducción a la termodinámica clase nº2
 
Entropía
EntropíaEntropía
Entropía
 
Unidades y-dimensiones 2
Unidades y-dimensiones 2Unidades y-dimensiones 2
Unidades y-dimensiones 2
 
Preguntas de mecanismos de transferencia
Preguntas de mecanismos de transferenciaPreguntas de mecanismos de transferencia
Preguntas de mecanismos de transferencia
 
Segunda ley de la termodinamica
Segunda ley de la termodinamicaSegunda ley de la termodinamica
Segunda ley de la termodinamica
 
Problemas Holman Cengel
Problemas Holman CengelProblemas Holman Cengel
Problemas Holman Cengel
 
Termoquímica (energia, leyes termodinámicas, entalpia, ecuaciones químicas y ...
Termoquímica (energia, leyes termodinámicas, entalpia, ecuaciones químicas y ...Termoquímica (energia, leyes termodinámicas, entalpia, ecuaciones químicas y ...
Termoquímica (energia, leyes termodinámicas, entalpia, ecuaciones químicas y ...
 
Eg051 lmtd
Eg051 lmtdEg051 lmtd
Eg051 lmtd
 
propiedades de transporte
propiedades de transporte propiedades de transporte
propiedades de transporte
 
Balances de energía
Balances de energíaBalances de energía
Balances de energía
 
1 gases ideales y reales
1 gases ideales y reales1 gases ideales y reales
1 gases ideales y reales
 
Práctica de transferencia de calor por coductividad, convección y transferenc...
Práctica de transferencia de calor por coductividad, convección y transferenc...Práctica de transferencia de calor por coductividad, convección y transferenc...
Práctica de transferencia de calor por coductividad, convección y transferenc...
 

Similar a Los principios de la termodinámica

Los Principios De La TermodináMica
Los Principios De La TermodináMicaLos Principios De La TermodináMica
Los Principios De La TermodináMicagueste99c45e
 
Principios de-la-termodinamica
Principios de-la-termodinamicaPrincipios de-la-termodinamica
Principios de-la-termodinamicaGrover Quintanilla
 
Los Principios De La TermodináMica Tema 8
Los Principios De La TermodináMica Tema 8Los Principios De La TermodináMica Tema 8
Los Principios De La TermodináMica Tema 8gueste99c45e
 
Ernesto sandoval 18.054.539saia b2 (1)
Ernesto sandoval 18.054.539saia b2 (1)Ernesto sandoval 18.054.539saia b2 (1)
Ernesto sandoval 18.054.539saia b2 (1)UFTsaia
 
GUIA_Tema 5_2da_ley.pdf
GUIA_Tema 5_2da_ley.pdfGUIA_Tema 5_2da_ley.pdf
GUIA_Tema 5_2da_ley.pdfOsman Castro
 
Tema iii-segunda-ley-de-la-termodinamica
Tema iii-segunda-ley-de-la-termodinamicaTema iii-segunda-ley-de-la-termodinamica
Tema iii-segunda-ley-de-la-termodinamicajose manuel lopez vidal
 
104926585 segunda-ley-de-la-termodinamica-completo
104926585 segunda-ley-de-la-termodinamica-completo104926585 segunda-ley-de-la-termodinamica-completo
104926585 segunda-ley-de-la-termodinamica-completoMiguel Tocto Ayala
 
segunda ley. Clase 4.ppt
segunda ley. Clase 4.pptsegunda ley. Clase 4.ppt
segunda ley. Clase 4.pptJuanUgas2
 
Cuadernillo v termodinamica
Cuadernillo v termodinamicaCuadernillo v termodinamica
Cuadernillo v termodinamicaivan_antrax
 
Exposición Capitulo 6- Equipo 5- Termo.pptx
Exposición Capitulo 6- Equipo 5- Termo.pptxExposición Capitulo 6- Equipo 5- Termo.pptx
Exposición Capitulo 6- Equipo 5- Termo.pptxFelipeHernndez86
 
segunda ley de la termodinámica
segunda ley de la termodinámicasegunda ley de la termodinámica
segunda ley de la termodinámicakily25
 
Leyes de la Termodinámica.pptx
Leyes de la Termodinámica.pptxLeyes de la Termodinámica.pptx
Leyes de la Termodinámica.pptxJoel6751
 
Practica1: demostracion de refrigeracion 2015
Practica1: demostracion de refrigeracion 2015Practica1: demostracion de refrigeracion 2015
Practica1: demostracion de refrigeracion 2015fercanove
 
Segunda Ley de Termodinamica
Segunda Ley de TermodinamicaSegunda Ley de Termodinamica
Segunda Ley de TermodinamicaM A Hector Baruc
 

Similar a Los principios de la termodinámica (20)

Los Principios De La TermodináMica
Los Principios De La TermodináMicaLos Principios De La TermodináMica
Los Principios De La TermodináMica
 
Principios de-la-termodinamica
Principios de-la-termodinamicaPrincipios de-la-termodinamica
Principios de-la-termodinamica
 
Los Principios De La TermodináMica Tema 8
Los Principios De La TermodináMica Tema 8Los Principios De La TermodináMica Tema 8
Los Principios De La TermodináMica Tema 8
 
Ernesto sandoval 18.054.539saia b2 (1)
Ernesto sandoval 18.054.539saia b2 (1)Ernesto sandoval 18.054.539saia b2 (1)
Ernesto sandoval 18.054.539saia b2 (1)
 
GUIA_Tema 5_2da_ley.pdf
GUIA_Tema 5_2da_ley.pdfGUIA_Tema 5_2da_ley.pdf
GUIA_Tema 5_2da_ley.pdf
 
Tema iii-segunda-ley-de-la-termodinamica
Tema iii-segunda-ley-de-la-termodinamicaTema iii-segunda-ley-de-la-termodinamica
Tema iii-segunda-ley-de-la-termodinamica
 
104926585 segunda-ley-de-la-termodinamica-completo
104926585 segunda-ley-de-la-termodinamica-completo104926585 segunda-ley-de-la-termodinamica-completo
104926585 segunda-ley-de-la-termodinamica-completo
 
Entropia (Fisica-Termodinamica)
Entropia (Fisica-Termodinamica)Entropia (Fisica-Termodinamica)
Entropia (Fisica-Termodinamica)
 
segunda ley. Clase 4.ppt
segunda ley. Clase 4.pptsegunda ley. Clase 4.ppt
segunda ley. Clase 4.ppt
 
Cuadernillo v termodinamica
Cuadernillo v termodinamicaCuadernillo v termodinamica
Cuadernillo v termodinamica
 
Motores termicos
Motores termicosMotores termicos
Motores termicos
 
Exposición Capitulo 6- Equipo 5- Termo.pptx
Exposición Capitulo 6- Equipo 5- Termo.pptxExposición Capitulo 6- Equipo 5- Termo.pptx
Exposición Capitulo 6- Equipo 5- Termo.pptx
 
segunda ley de la termodinámica
segunda ley de la termodinámicasegunda ley de la termodinámica
segunda ley de la termodinámica
 
Maquinas termicas
Maquinas termicasMaquinas termicas
Maquinas termicas
 
Física termodinámica
Física termodinámicaFísica termodinámica
Física termodinámica
 
Física termodinámica
Física termodinámicaFísica termodinámica
Física termodinámica
 
Leyes de la Termodinámica.pptx
Leyes de la Termodinámica.pptxLeyes de la Termodinámica.pptx
Leyes de la Termodinámica.pptx
 
Termodinamica
TermodinamicaTermodinamica
Termodinamica
 
Practica1: demostracion de refrigeracion 2015
Practica1: demostracion de refrigeracion 2015Practica1: demostracion de refrigeracion 2015
Practica1: demostracion de refrigeracion 2015
 
Segunda Ley de Termodinamica
Segunda Ley de TermodinamicaSegunda Ley de Termodinamica
Segunda Ley de Termodinamica
 

Más de Aldo Perdomo

Los principios de la termodinmica
Los principios de la termodinmicaLos principios de la termodinmica
Los principios de la termodinmicaAldo Perdomo
 
Leyes de la termodinámica
Leyes de la termodinámica Leyes de la termodinámica
Leyes de la termodinámica Aldo Perdomo
 
Estatica de fluidos
Estatica de fluidos Estatica de fluidos
Estatica de fluidos Aldo Perdomo
 
Movimiento circular
Movimiento circularMovimiento circular
Movimiento circularAldo Perdomo
 
Centro de masa (2)
Centro de masa (2)Centro de masa (2)
Centro de masa (2)Aldo Perdomo
 
Primera ley de la Termodinamica
Primera ley  de la TermodinamicaPrimera ley  de la Termodinamica
Primera ley de la TermodinamicaAldo Perdomo
 

Más de Aldo Perdomo (7)

Los principios de la termodinmica
Los principios de la termodinmicaLos principios de la termodinmica
Los principios de la termodinmica
 
Leyes de la termodinámica
Leyes de la termodinámica Leyes de la termodinámica
Leyes de la termodinámica
 
Estatica de fluidos
Estatica de fluidos Estatica de fluidos
Estatica de fluidos
 
Movimiento circular
Movimiento circularMovimiento circular
Movimiento circular
 
Centro de masa
Centro de masaCentro de masa
Centro de masa
 
Centro de masa (2)
Centro de masa (2)Centro de masa (2)
Centro de masa (2)
 
Primera ley de la Termodinamica
Primera ley  de la TermodinamicaPrimera ley  de la Termodinamica
Primera ley de la Termodinamica
 

Último

Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPELaura Chacón
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
Movimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en VenezuelaMovimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en Venezuelacocuyelquemao
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadAlejandrino Halire Ccahuana
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...JAVIER SOLIS NOYOLA
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFlor Idalia Espinoza Ortega
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdfgimenanahuel
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.DaluiMonasterio
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinavergarakarina022
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxAna Fernandez
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdfBaker Publishing Company
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 

Último (20)

Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPE
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
Movimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en VenezuelaMovimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en Venezuela
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdad
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
 
Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.
 
Unidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDIUnidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDI
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamica
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karina
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docx
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 

Los principios de la termodinámica

  • 1. LOS PRINCIPIOS DE LA TERMODINÁMICA TEMA 8 Félix. Profesor de Tecnología Industrial 2 Bibliografía: Tecnología Industrial 2. Everest y McGrawhill y Grandes ideas de la física (Alan Lightman) también de McGrawhill
  • 2. Introducción • El funcionamiento de las máquinas térmicas y frigoríficas se basan en los dos principios de la termodinámica. • Las máquinas térmicas son capaces de producir trabajo mecánico sin recurrir a fuente alguna de energía, o bien extrayendo energía de una sola fuente. • Como curiosidad señalar que la máquina de vapor fue construida con anterioridad al establecimiento de la termodinámica. En este caso la aplicación práctica (TÉCNICA) surgió antes que el descubrimiento teórico (CIENCIA),en otras ocasiones es la tecnología quien desarrolla y busca aplicaciones prácticas a un descubrimiento teórico. CIENCIA+TÉCNICA=TECNOLOGÍA
  • 3. Calor y temperatura • El calor es la energía que se transmite de un cuerpo a otro, es una energía en tránsito, por eso no tiene sentido hablar de calor almacenado en un cuerpo. ● La temperatura es una magnitud física que depende de la velocidad media de las partículas que constituyen el cuerpo (moléculas).Cuanto mayor sea la velocidad de las partículas mayor será su energía interna y por tanto su temperatura.
  • 6. La termodinámica estudia las propiedades que se conocen como variables termodinámicas (composición y concentración de los componentes, presión, volumen, temperatura), que se refieren al comportamiento global de un número muy elevado de partículas y que definen el llamado estado del sistema. Cuando estas variables tienen un valor definido para cada estado del sistema sin depender de los procesos que este haya experimentado reciben el nombre de funciones de estado. El trabajo y el calor no son funciones de estado
  • 7.
  • 8. TRANSFORMACIONES DE UN SISTEMA TERMODINÁMICO Las transformaciones de un sistema termodinámico desde un estado inicial a otro final pueden tener lugar de distintas formas que se representan gráficamente en un diagrama P-V. γ es el coeficiente adiabático y se calcula: CP/CV
  • 9. Primer principio de la termodinámica En el ejemplo, al calentar el agua el tapón sale lanzado. El calor transmitido al agua se transforma en: -Lanzar el tapón (trabajo mecánico) -Aumentar la energía interna de las moléculas de agua
  • 10.
  • 11. CALOR MOLAR (ESPECÍFICO) A PRESIÓN Y VOLUMEN CONSTANTE
  • 12. Cálculo del trabajo de expansión, calor intercambiado y variación de energía interna en algunas transformaciones de gases ideales.
  • 13. La variación de energía interna es independiente de las variaciones de presión y volumen. La energía interna sólo depende de la temperatura ejemplo página 153).
  • 15.
  • 16. 2º Principio de la Termodinámica hay muchos enunciados equivalentes de la segunda ley de la termodinámica: (1) Un sistema aislado evoluciona de forma natural hacia las configuraciones más probables. (2) Un sistema aislado evoluciona de forma natural hacia la redistribución de la energía disponible equitativamente entre sus partes. (3) En los sistemas aislados, el calor fluye de los cuerpos calientes a los fríos. (4) La capacidad de un sistema aislado de convertir calor en trabajo decrece constantemente. (el trabajo en calor si puede transformarse íntegramente) (5) Aunque la energía se conserva, la energía disponible en cualquier sistema aislado siempre disminuye. (6) Los sistemas aislados evolucionan en el sentido en el que incrementan su entropía (disminuyen su orden).
  • 17. Segundo principio de la termodinámica
  • 18. Hay que darse cuenta de que la energía calorífica puede utilizarse para elevar una masa y realizar trabajo, sólo porque había una diferencia de temperaturas entre los dos gases. Si inicialmente los gases hubieran estado a la misma temperatura, entonces el sistema habría estado en equilibrio y no habría habido flujo de calor. Podría existir una gran cantidad de energía calorífica presente en ambos gases, en forma de movimientos moleculares, pero la energía no podría utilizarse para realizar trabajo. Si el calor no fluye, el peso no se puede elevar. NO EXISTE UNA MÁQUINA CAPAZ DE CONVERTIR EL CALOR EN TRABAJO A EXPENSAS DE UNA SOLA FUENTE
  • 19. CONSECUENCIAS A NIVEL GLOBAL Ya que el calor fluye continuamente de los cuerpos calientes a los fríos en todos los lugares del universo, como dice la segunda ley de la termodinámica, el universo pierde gradualmente su capacidad de realizar trabajo. La cantidad total de energía disponible disminuye constantemente. No sólo es que todas las máquinas del universo se estén descargando, sino que además la capacidad de reconvertir el calor resultante en trabajo se reduce con el tiempo. No hay forma de eludir la unidireccionalidad de la segunda ley de la termodinámica. Esta implicación sorprendente de la segunda ley, que ha intrigado y alarmado a la gente desde mediados del siglo xIx, se ha denominado la «muerte térmica» del universo. Aún se debate entre los físicos de qué manera se aplica la segunda ley de la termodinámica al universo como un todo.
  • 20. Máquinas térmicas El deseo de construir máquinas tan eficientes como fuera posible fue el motivo de gran parte de la comprensión de la segunda ley. La primera de estas investigaciones la realizó el científico, físico e ingeniero francés Sadi Carnot (memoria clásica «Reflections on the Motive Power of Fire(*)» (1824) )una vez que la revolución industrial estaba a pleno ritmo. En particular, Carnot quería saber la eficiencia teórica máxima de una máquina térmica (dispositivo que puede realizar trabajo movido por calor, llamado motor térmico.) (*)Reflexiones sobre la potencia motriz del fuego y sobre las máquinas adecuadas para desarrollar esta potencia
  • 21. Ciclo de CARNOT Muchas máquinas térmicas funcionan según el ciclo de Carnot, recibiendo calor de un foco de alta temperatura y expulsándolo a otro de menor temperatura, a expensas de realizar un trabajo
  • 22. Se define ciclo de Carnot como un proceso cíclico reversible que utiliza un gas perfecto, y que consta de dos transformaciones isotérmicas y dos adiabáticas, tal como se muestra en la figura.
  • 23. La representación gráfica del ciclo de Carnot en un diagrama p-V es el siguiente • Tramo A-B Expansión isoterma a la temperatura T1 • Tramo B-C Expansión adiabática • Tramo C-D Compresión isoterma a la temperatura T2 • Tramo D-A Compresión adiabática
  • 24. En cualquier ciclo, tenemos que obtener a partir de los datos iniciales: -La presión, volumen de cada uno de los vértices. -El trabajo, el calor y la variación de energía interna en cada una de los procesos. -El trabajo total, el calor absorbido, el calor cedido, y el rendimiento del ciclo. Los datos iniciales son los que figuran en la tabla adjunta. A partir de estos datos, hemos de rellenar los huecos de la tabla.
  • 25. Las etapas del ciclo Transformación A->B (isoterma) Transformación B->C (adiabática)
  • 27.
  • 28. La entropía es una magnitud que determina el grado de desorden de un sistema. ΔS=Q/T La tendencia en la naturaleza es a evolucionar a estados de mayor desorden
  • 29. En el próximo tema veremos las aplicaciones del ciclo de Carnot: Máquina térmica y máquina frigorífica Ver animación
  • 30. Máquina térmica Un motor de Carnot es un dispositivo ideal que describe un ciclo de Carnot. Trabaja entre dos focos, tomando calor Q1 del foco caliente a la temperatura T1, produciendo un trabajo W, y cediendo un calor Q2 al foco frío a la temperatura T2. En un motor real, el foco caliente está representado por la caldera de vapor que suministra el calor, el sistema cilindro-émbolo produce el trabajo y se cede calor al foco frío que es la atmósfera.
  • 32. Máquina frigorífica La máquina de Carnot también puede funcionar en sentido inverso, denominándose entonces frigorífico. Se extraería calor Q2 del foco frío aplicando un trabajo W, y cedería Q1 al foco caliente. En un frigorífico real, el motor conectado a la red eléctrica produce un trabajo que se emplea en extraer un calor del foco frío (la cavidad del frigorífico) y se cede calor al foco caliente, que es la atmósfera.