SEGUNDO PRINCIPIO DE LA TERMODINÁMICA

motor_real

Es una de las leyes más importantes de la física; aún pudiéndose formular de muchas maneras todas llevan a la explicación del concepto de irreversibilidad y al de entropía. Este último concepto, cuando es tratado por otras ramas de la física, sobre todo por la mecánica estadística y la teoría de la información, queda ligado al grado de desorden de la materia y la energía de un sistema. La termodinámica, por su parte, no ofrece una explicación física de la entropía, que queda asociada a la cantidad de energía no utilizable de un sistema.

El segundo principio de la termodinámica dictamina que si bien la materia y la energía no se pueden crear ni destruir, sino que se transforman, y establece el sentido en el que se produce dicha transformación. Sin embargo, el punto capital del segundo principio es que, como ocurre con toda la teoría termodinámica, se refiere única y exclusivamente a estados de equilibrio. Toda definición, corolario o concepto que de él se extraiga sólo podrá aplicarse a estados de equilibrio, por lo que, formalmente, parámetros tales como la temperatura o la propia entropía quedarán definidos únicamente para estados de equilibrio. Así, según el segundo principio, cuando se tiene un sistema que pasa de un estado de equilibrio A a otro B, la cantidad de entropía en el estado de equilibrio B será la máxima posible, e inevitablemente mayor a la del estado de equilibrio A. Evidentemente, el sistema sólo hará trabajo cuando esté en el tránsito del estado de equilibrio A al B y no cuando se encuentre en uno de estos estados.

La definición formal del segundo principio de la termodinámica establece que:

En un estado de equilibrio, los valores que toman los parámetros característicos de un sistema termodinámico cerrado son tales que maximizan el valor de una cierta magnitud que está en función de dichos parámetros, llamada entropía.

El segundo principio de la termodinámica establece que dicha entropía sólo puede definirse para estados de equilibrio termodinámico, y que de entre todos los estados de equilibrio posibles –que vendrán definido por los parámetros característicos–, sólo se puede dar el que, de entre todos ellos, maximiza la entropía.

Las consecuencias de este enunciado son sutiles: al considerar un sistema cerrado tendente al equilibrio, los estados de equilibrio posibles incluyen todos aquellos que sean compatibles con los límites o contornos del sistema. Entre ellos se encuentra, evidentemente, el estado de equilibrio de partida. Si el sistema varía su estado de equilibrio desde el de partida a otro, ello es debido a que la entropía del nuevo estado es mayor que la del estado inicial; si el sistema cambia de estado de equilibrio, su entropía sólo puede aumentar. Por tanto, la entropía de un sistema aislado termodinámicamente sólo puede incrementarse. Suponiendo que el universo partió de un estado de equilibrio, que en todo instante de tiempo el universo no se aleja demasiado del equilibrio termodinámico y que el universo es un sistema aislado.

Visualmente, el segundo principio se puede expresar imaginando una caldera de un barco de vapor. Ésta no podría producir trabajo si no fuese porque el vapor se encuentra a temperaturas y presión elevadas comparados con el medio que la rodea.

Matemáticamente, se expresa así:

\frac{dS}{dt}\geq 0 \qquad \mbox{(1)}

donde S es la entropía y el símbolo de igualdad sólo existe cuando la entropía se encuentra en su valor máximo (en equilibrio).

Interpretación microcanónica de la entropía con base en el segundo principio de la termodinámica.

La ecuación fundamental de un sistema cerrado termodinámico en equilibrio puede expresarse como

Donde S representa la entropía del sistema –desde un punto de vista termodinámico–, U la energía interna del sistema, y N1, N2, etc el número de moles de cada componente del sistema. Todas estas magnitudes son macroscópicas, en el sentido de que son expresadas y pueden ser medidas y calculadas sin entrar a considerar la naturaleza microscópica (esto es, de los átomos, moléculas, etc), que componen el sistema termodinámico.

Intuitivamente, puede parecer razonable suponer que si el sistema está en equilibrio, entonces sus componentes más fundamentales, sus átomos y moléculas, también lo estén. Sin embargo, un resultado fundamental de la mecánica cuántica afirma que si el sistema es macroscópico, entonces pueden existir multitud de estados cuánticos discretos para sus átomos y moléculas que, globalmente, sean compatibles con los valores de U, V y N1,N2,… del sistema macroscópico. En principio, no obstante, aunque exista esa potencial capacidad de los componentes microscópicos del sistema para pasar de un estado cuántico a otro, como el sistema es cerrado y está en equilibrio podría razonarse que tales transiciones no se van a dar.

La mecánica estadística considera que un sistema macroscópico realiza transiciones enormemente rápidas y totalmente aleatorias entre los distintos estados cuánticos que sean posibles, de manera que las medidas macroscópicas de parámetros tales como la temperatura, la energía, incluso el volumen,… son en realidad la media de las miríadas de estados cuánticos o microscópicos. Y como dichas transiciones están producidas por procesos esencialmente aleatorios, se acepta como principio que un sistema macroscópico visita todos los estados microscópicos permisibles con igual probabilidad. A dichos estados microscópicos permisibles se les llama microestados.

Para cada estado macroscópico de equilibrio, el número de microestados permitidos es uno determinado por las leyes de la Física. Por ejemplo, si un sistema macroscópico tiene por energía 1000 julios, es absurdo suponer que un microestado de dicho sistema pueda tener más de 1000 julios de energía.

Interpretación canónica

La interpretación microcanónica de la entropía concibe un sistema termodinámico aislado, esto es, un sistema termodinámico que no intercambia ni materia ni energía ni volumen con el exterior: la composición del sistema, dada por N1,N2, … , su energía interna U y su volumen V no cambian en ella. El sistema por antonomasia que cumple dichas condiciones es el propio universo. Sin embargo, en muchas ocasiones se contemplan sistemas que sí intercambian energía, masa o volumen con su entorno.

Para esos casos, es necesario extender las interpretaciones estadísticas de la entropía, si bien globalmente es la interpretación microcanónica la que perdura. En efecto, si consideramos un sistema que por ejemplo intercambia materia con su entorno, podemos concebir un sistema mayor que incluya al sistema inicial y a su entorno de manera que el sistema global se amolde a la interpretación microcanónica; en el límite, dicho sistema será el propio universo. Y es precisamente la entropía del sistema microcanónico la que queda sujeta al segundo principio de la termodinámica, esto es, aquella que debe aumentar al variarse el equilibrio global del sistema.

La interpretación canónica, a veces llamada formalismo canónico o de Helmholtz, considera un sistema termodinámico capaz de intercambiar energía con un reservorio térmico o termostato. Según esto, al disponer de una fuente infinita de energía, todo estado energético, desde el de menor energía hasta el de mayor, será concebible para el sistema. Sin embargo, en oposición al sistema microcanónico, la probabilidad de cada uno de esos estados no será la misma: el sistema no estará la misma fracción de tiempo en cada uno de esos estados. El punto central del formalismo canónico es determinar la distribución de probabilidad de los microestados. Y dicho problema se resuelve teniendo en cuenta que el sistema global formado por el termostato y el sistema en cuestión es un sistema cerrado, esto es, cumple el formalismo microcanónico de que la probabilidad de cada microestado global es la misma.

Si la energía total del sistema global es Etot, y la de un microestado del sistema local es Ej, al estar el sistema local en un estado de energía Ej el termostato quedará reducido inevitablemente a uno de energía Etot – Ej. La probabilidad de que el sistema global esté en un microestado tal que el termostato tenga energía Etot – Ej y el sistema local Ej será entonces:

P_j = \frac{ \Omega_\mathrm{term} (E_\mathrm{tot} - E_j)}{\Omega_\mathrm{tot} E_\mathrm{tot} }

Violaciones del Segundo Principio de la Termodinámica

El segundo principio de la termodinámica es No obstante, existen circunstancias en las que el segundo principio no es aplicable o, dicho de otra manera, se pueden dar condiciones en sistemas concretos en los que el segundo principio de la termodinámica no es cierto. Por regla general, este es el caso de sistemas de tamaño atomísticos, sometidos a fluctuaciones cuánticas o fenómenos sobre escalas temporales muy breves (del orden de femptosegundos o picosegundos).

El teorema de fluctuación

El teorema de fluctuación, enunciado en el contexto de la mecánica estadística, trata la probabilidad relativa de que la entropía de un sistema que no se encuentra en equilibrio termodinámico (esto es, un sistema tal que su entropía no es máxima) aumente o disminuya en un período de tiempo determinado. El segundo principio de la termodinámica predice que la entropía de todo sistema aislado tiende a incrementarse hasta que el sistema alcanza el equilibrio termodinámico. Sin embargo, en mecánica estadística, la entropía es una variable aleatoria, lo que sugiere que debería existir una probabilidad no nula de que la entropía de un sistema aislado decrezca espontáneamente  El teorema de fluctuación cuantifica de manera exacta dicha probabilidad.

A grosso modo, el teorema de fluctuación trata sobre la distribución de probabilidad de la tasa media de producción de entropía irreversible sobre un período de tiempo, denotada como \overline{\Sigma}_t. El teorema establece que, en sistemas alejados del equilibrio termodinámico durante un período de tiempo t, la razón entre la probabilidad de que \overline{\Sigma}_t tome un valor A, y la probabilidad de que tome el valor opuesto, −A, sigue una proporción exponencial en At. Dicho de otro modo, para un sistema finito que no está en equilibrio, durante un período de tiempo finito, el teorema de fluctuación establece de manera precisa la probabilidad de que la entropía del sistema fluya en sentido opuesto al dictado por el segundo principio de la termodinámica.

Matemáticamente, queda expresado como:

 \frac{\Pr(\overline{\Sigma}_{t}=A)}{\Pr(\overline{\Sigma}_{t}=-A)}=e^{At}.

Deja un comentario