WO2012139951A1 - Hair care composition - Google Patents

Hair care composition Download PDF

Info

Publication number
WO2012139951A1
WO2012139951A1 PCT/EP2012/056168 EP2012056168W WO2012139951A1 WO 2012139951 A1 WO2012139951 A1 WO 2012139951A1 EP 2012056168 W EP2012056168 W EP 2012056168W WO 2012139951 A1 WO2012139951 A1 WO 2012139951A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
organic acid
kit
metal ion
acid
Prior art date
Application number
PCT/EP2012/056168
Other languages
French (fr)
Inventor
Nicholas John Ainger
Stephen Norman Batchelor
Neil Stephen Burnham
Robert George Riley
Original Assignee
Unilever Plc
Unilever N.V.
Hindustan Unilever Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Plc, Unilever N.V., Hindustan Unilever Limited filed Critical Unilever Plc
Publication of WO2012139951A1 publication Critical patent/WO2012139951A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/365Hydroxycarboxylic acids; Ketocarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/368Carboxylic acids; Salts or anhydrides thereof with carboxyl groups directly bound to carbon atoms of aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/463Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfuric acid derivatives, e.g. sodium lauryl sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • A61Q5/065Preparations for temporary colouring the hair, e.g. direct dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/58Metal complex; Coordination compounds

Definitions

  • the present invention relates to kits and methods for colouring hair. Background
  • EP0327345 discloses a hair colouring shampoo containing an Fe(ll) salt and a second component is applied which contains a metal ligand including ortho substituted phenols.
  • kits for colouring hair comprising: i) an aqueous shampoo composition comprising
  • X is selected from OH or NH 2
  • Ri is a C1 -C10 alkyl group optionally substituted by groups selected from OH and terminated by groups selected from a CH 3 , CH 2 OH or COOH group;
  • organic acid in which the organic acid is present in the mole ratio of organic acid: metal ion of 1 : 1 to 4: 1 with the metal ion;
  • a second aqueous second composition comprising from 0.05 wt% to 10 wt% of the total second composition of a polyphenol.
  • Shampoo Composition are generally aqueous, i.e. they have water or an aqueous solution or a lyotropic liquid crystalline phase as their major component.
  • the composition will comprise from 50 % to 98%, preferably from 60 % to 90% water by weight based on the total weight of the composition.
  • Shampoo compositions of the invention comprise from 0.01 wt% to 10 wt% of the total shampoo composition of at least one metal ion in which the metal is selected from iron, copper, zinc or manganese.
  • the level of metal ion is from 0.01 wt% to 5 wt% of the total shampoo composition, more preferably from 0.3 wt% to 3 wt%.
  • the level of metal ion in the formulation may be determined by quantitative elemental analysis.
  • the metal ion is Fe(ll), Fe(lll) or Cu(ll), more preferably the metal ion is selected from Fe(ll), Fe(lll), most preferably Fe(ll).
  • compositions of the invention comprise an organic acid or a metal complex formed from an organic acid.
  • the basic formula organic acid or metal complex formed from it is:
  • X is selected from OH or NH 2 , preferably OH.
  • Ri is a C1 -C10 alkyl group optionally substituted by groups selected from OH and terminated by groups selected from a CH 3 , CH 2 OH or COOH group.
  • the organic acid is present in the mole ratio of organic acid: metal ion from 1 : 1 to 4: 1 with the metal ion, preferably from 1.5 to 2.5: 1 .
  • the metal ion is present as a complex with the organic acid, such that the organic acid can be called a ligand.
  • a ligand is a molecule that contains more than one group, preferably 2 to 4 groups, most preferably 2 groups that co-ordinate with the metal ion.
  • Groups for co-ordinating with the metal ion are COO " , OH, ketones, esters, primary amines, secondary amines, tertiary amines and, more preferably COO " , tertiary amines and OH, most preferably COO " and OH.
  • Polyphenols are not permitted as multidentate ligands.
  • the ligand-metal complex may be pre-formed before addition to the shampoo for example Iron (II) Gluconate, iron (II) Glutamate.
  • the ligand metal complex may be formed in the composition by the addition of an iron salt and the ligand, for example FeC and sodium lactate.
  • the mole ratio of iron ion to ligand is from 1 : 1 to 4: 1 , more preferably 1.5: 1 to 2.5: 1 , as described above.
  • the level of organic acid in the shampoo composition is preferably from 0.01 wt% to 20 wt%.
  • the metal ion is in the form of a complex that is soluble in aqueous solution at the pH of the formulation.
  • the metal ion in the form of a salt and/or complex has a solubility in demineralised water at the pH of the formulation of greater than 0.1 g/L.
  • the organic are selected from gluconic, tartaric, ascorbic, citric and lactic acid. Particularly preferred are gluconic, lactic or ascorbic.
  • Preferred metal combinations compriseiron (II) gluconate and iron(ll) lactate, most preferably iron (II) gluconate.
  • the ability of a ligand to complex with a metal ion, M n+ may be defined by its ⁇ ⁇ value, wherein and the ligand concentration is 10 "5 mol/L and the total metal ion concentration is 10 "6 mol/L and [M n+ ]f re e is the molar concentration of uncomplexed metal ions.
  • the ligand used has a lower pM n+ , than gallic acid.
  • the pM" + are greater than 8 more preferably greater than 10.
  • Polyamino carboxylic acids are preferably present at weight % levels of less than 1 /30th of the main ligand, preferably they are absent from the shampoo.
  • a polyamino carboxylic acid is a compound containing two or more amines
  • 2,2',2",2"'-(Ethane-1 ,2-diyldinitrilo)tetraacetic acid is a polyamino carboxylic acid.
  • Diethylene triamine pentaacetic acid is a polyamino carboxylic acid.
  • Ethylenediamine-/V,/V'-disuccinic acid is a polyamino carboxylic acid.
  • Shampoo compositions of the invention comprise anionic surfactant.
  • suitable anionic cleansing surfactants other are the alkyl sulphates, alkyl ether sulphates, alkaryl sulphonates, alkanoyl isethionates, alkyl succinates, alkyl sulphosuccinates, alkyl ether sulphosuccinates, N-alkyl sarcosinates, alkyl phosphates, alkyl ether phosphates, and alkyl ether carboxylic acids and salts thereof, especially their sodium, magnesium, ammonium and mono-, di- and triethanolamine salts.
  • the alkyl and acyl groups generally contain from 8 to 18, preferably from 10 to 16 carbon atoms and may be unsaturated.
  • the alkyl ether sulphates, alkyl ether sulphosuccinates, alkyl ether phosphates and alkyl ether carboxylic acids and salts thereof may contain from 1 to 20 ethylene oxide or propylene oxide units per molecule.
  • Typical anionic cleansing surfactants for use in shampoo compositions of the invention include sodium oleyl succinate, ammonium lauryl sulphosuccinate, sodium lauryl sulphate, sodium lauryl ether sulphate, sodium lauryl ether sulphosuccinate, ammonium lauryl sulphate, ammonium lauryl ether sulphate, sodium dodecylbenzene sulphonate, triethanolamine dodecylbenzene sulphonate, sodium cocoyl isethionate, sodium lauryl isethionate, lauryl ether carboxylic acid and sodium N-lauryl sarcosinate.
  • Preferred anionic surfactants are the alkyl sulfates and alkyl ether sulfates. These materials have the respective formulae R 2 OSO 3 M and R-iO (C2H4O) X SO3M, wherein R 2 is alkyl or alkenyl of from 8 to 18 carbon atoms, x is an integer having a value of from about 1 to about 10, and M is a cation such as ammonium, alkanolamines, such as triethanolamine, monovalent metals, such as sodium and potassium, and polyvalent metal cations, such as magnesium, and calcium. Most preferably R 2 has 12 to 14 carbon atoms, in a linear rather than branched chain.
  • the level of alkyl ether sulphate is from 0.5 wt% to 25 wt% of the total shampoo composition, more preferably from 3 wt% to 18 wt%, most preferably from 6 wt% to 15 wt% of the total shampoo composition.
  • the fraction of anionic surfactant (f an ) may be defined as
  • the anionic surfactant is the major surfactant component and f an > 0.5, More preferably f an > 0.8, most preferably f an > 0.95.
  • the AES surfactant is the major surfactant component and f AE s > 0.5, More preferably f AE s > 0.8.
  • the total amount of anionic cleansing surfactant in shampoo compositions of the invention generally ranges from 0.5 wt% to 45 wt%, more preferably from 1 .5 wt% to 20 wt%.
  • Shampoo compositions of the invention may contain non-ionic surfactant. Most preferably non-ionic surfactants are present in the range 0 to 5wt%.
  • Nonionic surfactants that can be included in shampoo compositions of the invention include condensation products of aliphatic (Cs - C-is) primary or secondary linear or branched chain alcohols or phenols with alkylene oxides, usually ethylene oxide and generally having from 6 to 30 ethylene oxide groups.
  • Alkyl ethoxylates are particularly preferred. Most preferred are alkyl ethoxylates having the formula R-(OCH 2 CH2)nOI-l, where R is an alkyl chain of C12 to C15, and n is 5 to 9.
  • Other suitable nonionic surfactants include mono- or di-alkyl alkanolamides. Examples include coco mono- or di-ethanolamide and coco mono- isopropanolamide.
  • APG alkyl polyglycosides
  • APG is one which comprises an alkyl group connected (optionally via a bridging group) to a block of one or more glycosyl groups.
  • Preferred APGs are defined by the following formula: RO - (G)n wherein R is a branched or straight chain alkyl group which may be saturated or unsaturated and G is a saccharide group. R may represent a mean alkyl chain length of from about C5 to about C2o-
  • R represents a mean alkyl chain length of from about Cs to about C12. Most preferably the value of R lies between about 9.5 and about 10.5.
  • G may be selected from C5 or Ce monosaccharide residues, and is preferably a glucoside. G may be selected from the group comprising glucose, xylose, lactose, fructose, mannose and derivatives thereof. Preferably G is glucose.
  • the degree of polymerisation, n may have a value of from about 1 to about 10 or more.
  • the value of n lies from about 1 .1 to about 2.
  • Most preferably the value of n lies from about 1 .3 to about 1 .5.
  • Suitable alkyl polyglycosides for use in the invention are commercially available and include for example those materials identified as: Oramix NS10 ex Seppic; Plantaren 1200 and Plantaren 2000 ex Henkel.
  • Other sugar-derived nonionic surfactants which can be included in compositions of the invention include the C10-C18 N-alkyl ( ⁇ - ⁇ ) polyhydroxy fatty acid amides, such as the C12-C18 N-methyl glucamides, as described for example in
  • Amphoteric or zwitterionic surfactant can be included in an amount ranging from 0.5 wt% to about 8 wt%, preferably from 1 wt% to 4 wt% of the total shampoo composition.
  • amphoteric or zwitterionic surfactants include alkyl amine oxides, alkyl betaines, alkyl amidopropyl betaines, alkyl sulphobetaines (sultaines), alkyl glycinates, alkyl carboxyglycinates, alkyl amphoacetates, alkyl amphopropionates, alkylamphoglycinates, alkyl amidopropyl hydroxysultaines, acyl taurates and acyl glutamates, wherein the alkyl and acyl groups have from 8 to 19 carbon atoms.
  • Typical amphoteric and zwitterionic surfactants for use in shampoos of the invention include lauryl amine oxide, cocodimethyl sulphopropyl betaine, lauryl betaine, cocamidopropyl betaine and sodium cocoamphoacetate.
  • a particularly preferred amphoteric or zwitterionic surfactant is cocamidopropyl betaine.
  • amphoteric or zwitterionic surfactants may also be suitable.
  • Preferred mixtures are those of cocamidopropyl betaine with further amphoteric or zwitterionic surfactants as described above.
  • a preferred further amphoteric or zwitterionic surfactant is sodium cocoamphoacetate.
  • the total amount of surfactant (including any co-surfactant, and/or any emulsifier) in a shampoo composition of the invention is generally from 1 wt% to 50 wt%, preferably from 2 wt% to 40 wt%, more preferably from 10 wt% to 25 wt% by total weight surfactant based on the total weight of the composition.
  • Cationic Polymers are preferred ingredients in a shampoo composition of the invention for enhancing performance.
  • Suitable cationic polymers may be homopolymers which are cationically
  • the weight average (M w ) molecular weight of the polymers will generally be between 100 000 and 2 million daltons.
  • the polymers will have cationic nitrogen containing groups such as quaternary ammonium or protonated amino groups, or a mixture thereof. If the molecular weight of the polymer is too low, then the conditioning effect is poor. If too high, then there may be problems of high extensional viscosity leading to stringiness of the composition when it is poured.
  • the cationic nitrogen-containing group will generally be present as a substituent on a fraction of the total monomer units of the cationic polymer.
  • the polymer is not a homopolymer it can contain spacer non-cationic monomer units.
  • Such polymers are described in the CTFA Cosmetic Ingredient Directory, 3rd edition.
  • the ratio of the cationic to non-cationic monomer units is selected to give polymers having a cationic charge density in the required range, which is generally from 0.2 to 3.0 meq/gm.
  • the cationic charge density of the polymer is suitably determined via the Kjeldahl method as described in the US
  • Suitable cationic polymers include, for example, copolymers of vinyl monomers having cationic amine or quaternary ammonium functionalities with water soluble spacer monomers such as (meth)acrylamide, alkyi and dialkyi (meth)acrylamides, alkyi (meth)acrylate, vinyl caprolactone and vinyl pyrrolidine.
  • the alkyi and dialkyi substituted monomers preferably have C1 -C7 alkyl groups, more preferably C1 -3 alkyl groups.
  • Other suitable spacers include vinyl esters, vinyl alcohol, maleic anhydride, propylene glycol and ethylene glycol.
  • the cationic amines can be primary, secondary or tertiary amines, depending upon the particular species and the pH of the composition. In general secondary and tertiary amines, especially tertiary, are preferred.
  • Amine substituted vinyl monomers and amines can be polymerized in the amine form and then converted to ammonium by quaternization.
  • the cationic polymers can comprise mixtures of monomer units derived from amine- and/or quaternary ammonium-substituted monomer and/or compatible spacer monomers.
  • Suitable cationic polymers include, for example: cationic diallyl quaternary ammonium-containing polymers including, for example, dimethyldiallylammonium chloride homopolymer and copolymers of acrylamide and dimethyldiallylammonium chloride, referred to in the industry (CTFA) as Polyquaternium 6 and Polyquaternium 7, respectively; mineral acid salts of amino-alkyl esters of homo-and co-polymers of unsaturated carboxylic acids having from 3 to 5 carbon atoms, (as described in U.S. Patent 4,009,256); cationic polyacrylamides(as described in WO95/2231 1 ).
  • cationic polymers that can be used include cationic polysaccharide polymers, such as cationic cellulose derivatives, cationic starch derivatives, and cationic guar gum derivatives.
  • Cationic polysaccharide polymers suitable for use in compositions of the invention include monomers of the formula:
  • A is an anhydroglucose residual group, such as a starch or cellulose anhydroglucose residual.
  • R is an alkylene, oxyalkylene, polyoxyalkylene, or hydroxyalkylene group, or combination thereof.
  • R 1 , R 2 and R 3 independently represent alkyl, aryl, alkylaryl, arylalkyl, alkoxyalkyl, or alkoxyaryl groups, each group containing up to about 18 carbon atoms.
  • the total number of carbon atoms for each cationic moiety i.e., the sum of carbon atoms in R 1 , R 2 and R 3
  • X is an anionic counterion.
  • cationic cellulose includes the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide, referred to in the industry (CTFA) as Polyquaternium 24. These materials are available from the Amerchol Corporation, for instance under the tradename Polymer LM-200.
  • Suitable cationic polysaccharide polymers include quaternary nitrogen- containing cellulose ethers (e.g. as described in U.S. Patent 3,962,418), and copolymers of etherified cellulose and starch (e.g. as described in U.S. Patent 3,958,581 ).
  • a particularly suitable type of cationic polysaccharide polymer that can be used is a cationic guar gum derivative, such as guar hydroxypropyltrimethylammonium chloride (commercially available from Rhodia in their JAGUAR trademark series).
  • a cationic guar gum derivative such as guar hydroxypropyltrimethylammonium chloride (commercially available from Rhodia in their JAGUAR trademark series).
  • examples of such materials are JAGUAR C13S, JAGUAR C14, JAGUAR C15, JAGUAR C17 and JAGUAR C16 Jaguar CHT and JAGUAR C162. Mixtures of any of the above cationic polymers may be used.
  • Cationic polymer will generally be present in a shampoo composition of the invention at levels of from 0.01 to 5%, preferably from 0.05 to 1 %, more preferably from 0.08 to 0.5% by total weight of cationic polymer based on the total weight of the composition.
  • an aqueous shampoo composition of the invention further comprises a suspending agent.
  • Suitable suspending agents are selected from polyacrylic acids, cross-linked polymers of acrylic acid, copolymers of acrylic acid with a hydrophobic monomer, copolymers of carboxylic acid-containing monomers and acrylic esters, cross-linked copolymers of acrylic acid and acrylate esters, heteropolysaccharide gums and crystalline long chain acyl derivatives.
  • the long chain acyl derivative is desirably selected from ethylene glycol stearate, alkanolamides of fatty acids having from 16 to 22 carbon atoms and mixtures thereof. Ethylene glycol distearate and polyethylene glycol 3 distearate are preferred long chain acyl derivatives, since these impart pearlescence to the composition.
  • Polyacrylic acid is available commercially as Carbopol 420,
  • Carbopol 488 or Carbopol 493 Polymers of acrylic acid cross-linked with a polyfunctional agent may also be used; they are available commercially as Carbopol 910, Carbopol 934, Carbopol 941 and Carbopol 980.
  • An example of a suitable copolymer of a carboxylic acid containing monomer and acrylic acid esters is Carbopol 1342. All Carbopol (trademark) materials are available from Goodrich.
  • Suitable cross-linked polymers of acrylic acid and acrylate esters are Pemulen TR1 or Pemulen TR2.
  • a suitable heteropolysacchande gum is xanthan gum, for example that available as Kelzan mu. Mixtures of any of the above suspending agents may be used.
  • Preferred is a mixture of cross-linked polymer of acrylic acid and crystalline long chain acyl derivative.
  • Suspending agent will generally be present in a shampoo composition of the invention at levels of from 0.1 % to 10%, preferably from 0.5 % to 6 %, more preferably from 0.9 % to 4 % by total weight of suspending agent based on the total weight of the composition.
  • the shampoo composition has a pH of 2 to 8 measured using a calibrated pH meter, more preferably 3 to 6.5.
  • the shampoo is stored in an air tight container such as a bottle closed with an air tight cap.
  • the polyphenol containing composition is preferably an aqueous polyphenol solution.
  • the polyphenol composition preferably comprises from 0.05 wt% to 10.0 wt% of the total polyphenol composition, more preferably from 0.1 wt% to 5.0 wt %, most preferably 0.3 wt% to 3.0 wt% of polyphenol.
  • the polyphenol of the invention comprises at least one benzene ring substituted with a first OH group and a second OH or OCH 3 group, preferably OH.
  • the first OH is ortho to the second OH group.
  • the aqueous polyphenol solution has a pH preferably of 2 to 7 measured using a calibrated pH meter, more preferably 3 to 6.
  • Polyphenols may be found in the classes of phenolic acid, anthocyanin, anthocyanidin, flavanols, flavanones and gallates.
  • phenolic acid anthocyanin, anthocyanidin
  • flavanols flavanones and gallates.
  • flavan-3-ols flavan-4-ols
  • flavan-3,4-ols flavan-3,4-ols.
  • Gallic Acid flavanols and flavanones are preferred.
  • a preferred polyphenol contains a benzene ring substituted in the:
  • X is a carbon containing organic group, preferably selected from an ester group, COOH, chromenes and 3,4 dihydro- chromenes.
  • the polyphenol is an ortho-dihydroxybenzene derivative.
  • the polyphenol has a molecular weight of less than 1 ,000, more preferably less than 500, most preferably less than 310.
  • Polyphenols may be suitably found in the wood and bark of trees and in the fruit, seeds and nuts of plants.
  • Preferred compounds include gallic acid, methyl gallate, propyl gallate, ethyl gallate, caffeic acid, chlorogenic acid, caftaric acid, ellagic acid, ferulic acid, 4-0- galloylgallic acid, nordihydroguaiaretuc acid, rosemarinic acid, catechin, epicatechin, catechin gallate, epicatechin gallate, gallocatechin, epigallocatechin, epigallocatechin gallate, curcumin, alizarin, quercetin, quercicitron, myricetin, alizarin, purpurin, morindone, isorhamnetin, pachypodol, rhamnazin, hesperetin, homoeriodictyol, logwood, natural black 1 , natural black 2, natural red 24,
  • Fisetinidol Robinetinidol, Mesguitol. More preferably haematein, haematoxylin, brazilin, methyl gallate, ethyl gallate, propyl gallate, gallic acid, epigallocatechin, epigallocatechin gallate and gallocatechin, most preferably from gallic acid, methyl gallate, ethyl gallate, propyl gallate or mixtures thereof.
  • the polyphenols are extracted from a natural source. Preferably they do not contain any active oxidase enzymes and have been heat treated to destroy any enzyme activity. To avoid oxidation of the polyphenols by air it is preferred that the composition is stored in an airtight container, preferably a bottle closed with an air tight cap.
  • the aqueous polyphenol solution contains water, preferably as the dominate ingredient.
  • Auxiliary ingredients may be present for example to increase the viscosity, perfume and help solubilise the polyphenol.
  • Solubilising ingredients include organic solvents and surfactants.
  • the polyphenol containing composition is a conditioning
  • composition more preferably a rinse off conditioning composition.
  • a composition that is applied after shampooing.
  • the polyphenol is preferably present at a higher molar concentration than the protonating organic acid.
  • the protonating organic acid does not include a polyphenol.
  • the water used to formulate all compositions has a French hardness of from 0 to 36 degrees, more preferably 0 to 24 degrees, most preferably from 0 to 2.
  • the water used to formulate all compositions contains less than 1 ppm of chlorine based bleaching agents such as chlorine dioxide or hypochlorite. Most preferably less than 50ppb
  • compositions of the invention can contain, emulsified droplets of a silicone conditioning agent, for enhancing conditioning performance.
  • Silicone conditioning agents may be present in the shampoo or conditioner.
  • Suitable silicones include polydiorganosiloxanes, in particular
  • compositions of the invention which have the CTFA designation dimethicone.
  • compositions of the invention are polydimethyl siloxanes having hydroxyl end groups, which have the CTFA designation dimethiconol.
  • silicone gums having a slight degree of cross-linking as are described for example in WO 96/31 188.
  • the viscosity of the emulsified silicone itself (not the emulsion or the final hair conditioning composition) is typically at least 10,000 est at 25 °C the viscosity of the silicone itself is preferably at least 60,000 est, most preferably at least 500,000 est, ideally at least 1 ,000,000 est. Preferably the viscosity does not exceed 10 9 est for ease of formulation.
  • Emulsified silicones for use in the shampoo compositions of the invention will typically have an average silicone droplet size in the composition of less than 30, preferably less than 20, more preferably less than 10 ⁇ , ideally from 0.01 to 1 ⁇ . Silicone emulsions having an average silicone droplet size of ⁇ 0.15 ⁇ are generally termed microemulsions.
  • Emulsified silicones for use in the conditioner compositions of the invention will typically have an size in the composition of less than 30, preferably less than 20, more preferably less than 15.
  • the average silicone droplet is greater than 0.5 ⁇ , more preferably greater than 1 ⁇ , ideally from 2 to 8 ⁇ .
  • Silicone particle size may be measured by means of a laser light scattering technique, for example using a 2600D Particle Sizer from Malvern Instruments.
  • Suitable pre-formed emulsions include Xiameter MEM 1785 and microemulsion DC2-1865 available from Dow Corning. These are emulsions
  • Cross-linked silicone gums are also available in a pre-emulsified form, which is advantageous for ease of formulation.
  • a further preferred class of silicones for inclusion in shampoos and conditioners of the invention are amino functional silicones.
  • amino functional silicone is meant a silicone containing at least one primary, secondary or tertiary amine group, or a quaternary ammonium group.
  • suitable amino functional silicones include: polysiloxanes having the CTFA designation "amodimethicone", Specific examples of amino functional silicones suitable for use in the invention are the aminosilicone oils DC2-8220, DC2-8166 and DC2-8566 (all ex Dow Corning).
  • Suitable quaternary silicone polymers are described in EP-A-0 530 974.
  • a preferred quaternary silicone polymer is K3474, ex Goldschmidt.
  • emulsions of amino functional silicone oils with non ionic and/or cationic surfactant are also suitable.
  • Pre-formed emulsions of amino functional silicone are also available from suppliers of silicone oils such as Dow Corning and General Electric. Specific examples include DC939 Cationic Emulsion and the non-ionic emulsions DC2- 7224, DC2-8467, DC2-8177 and DC2-8154 (all ex Dow Corning).
  • the total amount of silicone is preferably from 0.01 wt% to 10 %wt of the total composition more preferably from 0.1 wt% to 5 wt%, most preferably 0.5 wt% to 3 wt% is a suitable level, especially for a shampoo composition.
  • Non-silicone Oily Conditioning Components may also comprise a dispersed, non-volatile, water-insoluble oily conditioning agent.
  • a dispersed, non-volatile, water-insoluble oily conditioning agent Preferably such non-silicone conditioning oily conditioning agents are present in conditioner compositions.
  • oily or fatty materials are selected from hydrocarbon oils, fatty esters and mixtures thereof. Straight chain hydrocarbon oils will preferably contain from about 12 to about 30 carbon atoms. Also suitable are polymeric hydrocarbons of alkenyl monomers, such as C2-C6 alkenyl monomers.
  • hydrocarbon oils include paraffin oil, mineral oil, saturated and unsaturated dodecane, saturated and unsaturated tridecane, saturated and unsaturated tetradecane, saturated and unsaturated pentadecane, saturated and unsaturated hexadecane, and mixtures thereof.
  • Branched-chain isomers of these compounds, as well as of higher chain length hydrocarbons, can also be used.
  • Suitable fatty esters are characterised by having at least 10 carbon atoms, and include esters with hydrocarbyl chains derived from fatty acids or alcohols, Monocarboxylic acid esters include esters of alcohols and/or acids of the formula R'COOR in which R' and R independently denote alkyl or alkenyl radicals and the sum of carbon atoms in R' and R is at least 10, preferably at least 20. Di- and trialkyl and alkenyl esters of carboxylic acids can also be used. Particularly preferred fatty esters are mono-, di- and triglycerides, more
  • the oily or fatty material is suitably present at a level of from 0.05 wt% to 10 wt%, preferably from 0.2 wt% to 5 wt%, more preferably from about 0.5 wt% to 3 wt%.
  • Such conditioner compositions will typically comprise one or more conditioning surfactants which are cosmetically acceptable and suitable for topical application to the hair.
  • conditioning surfactants which are cosmetically acceptable and suitable for topical application to the hair.
  • Suitable conditioning surfactants include those selected from cationic surfactants, used singly or in admixture.
  • the cationic surfactants have the formula N + R 1 R 2 R 3 R 4 wherein R 1 , R 2 , R 3 and R 4 are independently (Ci to C 30 ) alkyl or benzyl.
  • R 1 , R 2 , R 3 and R 4 are independently (C 4 to C30) alkyl and the other R 1 , R 2 , R 3 and R 4 group or groups are ( ⁇ - ⁇ - ⁇ ) alkyl or benzyl.
  • R 1 , R 2 , R 3 and R 4 are independently (Ce to C30) alkyl and the other R 1 , R 2 , R 3 and R 4 groups are ( ⁇ - ⁇ - ⁇ ) alkyl or benzyl groups.
  • the alkyl groups may comprise one or more ester (-OCO- or - COO-) and/or ether (-O-) linkages within the alkyl chain.
  • Alkyl groups may optionally be substituted with one or more hydroxyl groups.
  • Alkyl groups may be straight chain or branched and, for alkyl groups having 3 or more carbon atoms, cyclic.
  • the alkyl groups may be saturated or may contain one or more carbon- carbon double bonds (eg, oleyl).
  • Alkyl groups are optionally ethoxylated on the alkyl chain with one or more ethyleneoxy groups.
  • Suitable cationic surfactants for use in conditioner compositions according to the invention include cetyltrimethylammonium chloride, behenyltrimethylammonium chloride, cetylpyridinium chloride, tetramethylammonium chloride,
  • dodecyltrimethylammonium chloride hexadecyltrimethylammonium chloride, octyldimethylbenzylammonium chloride, decyldimethylbenzylammonium chloride, stearyldimethylbenzylammonium chloride, didodecyldimethylammonium chloride, dioctadecyldimethylammonium chloride, tallowtrimethylammonium chloride, dihydrogenated tallow dimethyl ammonium chloride (eg, Arquad 2HT/75 from Akzo Nobel), cocotrimethylammonium chloride, PEG-2-oleammonium chloride and the corresponding hydroxides thereof.
  • dodecyltrimethylammonium chloride hexadecyltrimethylammonium chloride, octyldimethylbenzylammonium chloride, decyldimethylbenzylammonium chloride, stearyldimethylbenz
  • cationic surfactants include those materials having the CTFA designations Quaternium-5, Quaternium- 31 and Quaternium-18. Mixtures of any of the foregoing materials may also be suitable.
  • a particularly useful cationic surfactant for use in conditioners according to the invention is cetyltrimethylammonium chloride, available commercially, for example as GENAMIN CTAC, ex Hoechst Celanese.
  • Another particularly useful cationic surfactant for use in conditioners according to the invention is
  • behenyltrimethylammonium chloride available commercially, for example as GENAMIN KDMP, ex Clariant.
  • Another example of a class of suitable cationic surfactants for use in the invention, either alone or together with one or more other cationic surfactants, is a
  • R is a hydrocarbyl chain having 10 or more carbon atoms
  • R 2 and R 3 are independently selected from hydrocarbyl chains of from 1 to
  • hydrocarbyl chain means an alkyl or alkenyl chain.
  • Preferred amidoamine compounds are those corresponding to formula (I) in which
  • R 1 is a hydrocarbyl residue having from about 1 1 to about 24 carbon atoms
  • R 2 and R 3 are each independently hydrocarbyl residues, preferably alkyl groups, having from 1 to about 4 carbon atoms
  • m is an integer from 1 to about 4.
  • R 2 and R 3 are methyl or ethyl groups.
  • m is 2 or 3, i.e. an ethylene or propylene group.
  • Preferred amidoamines useful herein include stearamido-propyldimethylamine, stearamidopropyldiethylamine, stearamidoethyldiethylamine,
  • arachidamidopropyldiethylamine arachid-amidoethyldiethylamine
  • amidoamines useful herein are arachidamidoethyldimethylamine, and mixtures thereof.
  • Particularly preferred amidoamines useful herein are
  • stearamidopropyldimethylamine stearamidoethyldiethylamine, and mixtures thereof.
  • amidoamines useful herein include:
  • stearamidopropyldimethylamine with tradenames LEXAMINE S-13 available from Inolex (Philadelphia Pennsylvania, USA) and AMIDOAMINE MSP available from Nikko (Tokyo, Japan), stearamidoethyldiethylamine with a tradename
  • AMIDOAMINE S available from Nikko, behenamidopropyldimethylamine with a tradename INCROMINE BB available from Croda (North Humberside, England), and various amidoamines with tradenames SCHERCODINE series available from Scher (Clifton New Jersey, USA).
  • a protonating acid may be present.
  • Acid may be any organic or mineral acid which is capable of protonating the amidoamine in the conditioner composition.
  • Suitable acids useful herein include hydrochloric acid, acetic acid, tartaric acid, fumaric acid, lactic acid, malic acid, succinic acid, and mixtures thereof.
  • the acid is selected from the group consisting of acetic acid, tartaric acid, hydrochloric acid, fumaric acid, lactic acid and mixtures thereof.
  • the primary role of the acid is to protonate the amidoamine in the hair treatment composition thus forming a tertiary amine salt (TAS) in situ in the hair treatment composition.
  • TAS tertiary amine salt
  • the TAS in effect is a non-permanent quaternary ammonium or pseudo-quaternary ammonium cationic surfactant.
  • the acid is included in a sufficient amount to protonate more than 95 mole% (293 K) of the amidoamine present.
  • the level of cationic surfactant will generally range from 0.01 % to 10%, more preferably 0.05 % to 7.5%, most preferably 0.1 % to 5% by weight of the composition.
  • Conditioners of the invention will typically also incorporate a fatty alcohol.
  • fatty alcohols and cationic surfactants in conditioning
  • compositions is believed to be especially advantageous, because this leads to the formation of a lamellar phase, in which the cationic surfactant is dispersed.
  • Representative fatty alcohols comprise from 8 to 22 carbon atoms, more preferably 16 to 22.
  • Fatty alcohols are typically compounds containing straight chain alkyl groups. Examples of suitable fatty alcohols include cetyl alcohol, stearyl alcohol and mixtures thereof. The use of these materials is also
  • compositions of the invention are advantageous in that they contribute to the overall conditioning properties of compositions of the invention.
  • the level of fatty alcohol in conditioners of the invention will generally range from 0.01 to 10%, preferably from 0.1 % to 8%, more preferably from 0.2 % to 7 %, most preferably from 0.3 % to 6 % by weight of the composition.
  • the weight ratio of cationic surfactant to fatty alcohol is suitably from 1 : 1 to 1 : 10, preferably from 1 : 1.5 to 1 :8, optimally from 1 :2 to 1 :5. If the weight ratio of cationic surfactant to fatty alcohol is too high, this can lead to eye irritancy from the composition. If it is too low, it can make the hair feel squeaky for some consumers.
  • compositions of the present invention may also contain adjuncts suitable for hair care.
  • Such ingredients are included individually at a level of up to 2 wt%, preferably up to 1 wt% of the total composition.
  • Suitable hair care adjuncts include amino acids, sugars and ceramides and viscosity modifiers.
  • the method of colouring hair comprising the steps of applying to hair sequentially in any order:
  • a second composition which comprises from 0.05 to 10wt% of the total second composition of a polyphenol.
  • compositions of the invention are applied to wet hair, necessitating the step of wetting the hair before application of the compositions of the invention.
  • a method preferably comprises the step of rinsing hair between application of the shampoo composition (i)and the second composition (ii). It is highly preferred if the hair is rinsed after application of both compositions of the invention. Further conditioning and/or styling products may be applied as part of the colouring process.
  • the level of each composition applied to the head of hair is preferably from 5g to 100g.
  • each composition remains on the hair for 5 to 600 seconds, more preferably 10 to 300 seconds.
  • the water used to wet and rinse the hair has a French hardness of from 0 to 36 degrees, more preferably 0 to 24 degrees, most preferably from 0 to 2 degrees.
  • the water used to wet and rinse the hair contains less than 1 ppm of chlorine based bleaching agents such as chlorine dioxide or hypochlorite. Most preferably less than 50ppb.
  • the solution was split in two and to one half 0.5g/L sodium lauryl ether sulphate EO with 1 ethoxy group (SLES(1 EO)) was added. After 5 minutes of mixing the UV-VIS absorption spectrum was measured in a 1 cm and the absorption at 400nm recorded for both solutions. The experiment was repeated using a solution containing 0.00352 mol/L of Fe(ll)gluconate.
  • % change 100 * [absorption(with surfactant)- absorption(without surfactant)]/ absorption(without surfactant).
  • % change 100 * [absorption(with surfactant)- absorption(without surfactant)]/ absorption(without surfactant).
  • the Example according to the invention comprising a complex of gluconate, has no precipitation and less colour change than the comparative example excluding the complex

Abstract

A kit for colouring hair, comprising: i) an aqueous shampoo composition comprising c) from 0.01 to 10 wt% of the total shampoo composition of at least one metal ion in which the metal is selected from iron, copper, zinc, manganese or mixtures thereof; d) from 1 to 40 wt% of the total shampoo composition of an anionic surfactant,; c) an organic acid or metal complex formed from an organic acid, the organic acid having formula: wherein X is selected from OH or NH2 R1 is a C1-C10 alkyl group optionally substituted by groups selected from OH and terminated by groups selected from a CH3, CH2OH or COOH group, where the organic acid is present in the mole ratio of organic acid: metal ion from 1:1 to 4:1 with the metal ion; and ii) a second aqueous second composition comprising from 0.05wt% to 0wt of the total second composition of a polyphenol.

Description

Hair Care Composition
The present invention relates to kits and methods for colouring hair. Background
There is a desire for a simple route to colour hair with compounds of natural origin. Since antiquity polyphenol compound mordanted with metal ions have been used to dye human hair and the fur of mammals. An overview of these methods is given in Hair-Dyes and Hair-Dyeing Chemistry and Technique by H. Stanley Redgrove (William Heinemann 1939. The method used requires a separate time-consuming procedure separate from routine shampoo and conditioning of hair. It would be desireable to have an effective method of colouring hair that can be incorporated into the routine shampoo and conditioning of hair.
EP0327345 (Beecham) discloses a hair colouring shampoo containing an Fe(ll) salt and a second component is applied which contains a metal ligand including ortho substituted phenols.
Two part colouring systems in which in one part comprises a metal salt are disclosed in WO2010/135237 (Advance Cosmetic Technologies);
WO/2007/130777, WO 2000/29036 (Henkel).
Addition of metal ions to shampoo's containing anionic surfactant is found to produce unwanted colour changes and precipitation. The present invention has found a way of mitigating this problem while maintaining the ability to colour hair. Description of the Invention
Accordingly the present invention provides a kit for colouring hair comprising: i) an aqueous shampoo composition comprising
a) from 0.01 wt% to 10 wt% of the total shampoo composition of at least one metal ion in which the metal is selected from iron, copper, zinc manganese or mixtures thereof;
b) from 1 wt% to 40 wt% of the total shampoo composition of an anionic surfactant;
c) an organic acid or metal complex formed from an organic acid, the organic acid having formula:
R -COOH
wherein X is selected from OH or NH2
Ri is a C1 -C10 alkyl group optionally substituted by groups selected from OH and terminated by groups selected from a CH3, CH2OH or COOH group;
in which the organic acid is present in the mole ratio of organic acid: metal ion of 1 : 1 to 4: 1 with the metal ion; and
a second aqueous second composition comprising from 0.05 wt% to 10 wt% of the total second composition of a polyphenol.
Also described is a method of colouring hair comprising the steps of applying to hair sequentially in any order the composition described above. Detailed Description of the Invention
Shampoo Composition Shampoo compositions of the invention are generally aqueous, i.e. they have water or an aqueous solution or a lyotropic liquid crystalline phase as their major component. Suitably, the composition will comprise from 50 % to 98%, preferably from 60 % to 90% water by weight based on the total weight of the composition. Metal Complex
Shampoo compositions of the invention comprise from 0.01 wt% to 10 wt% of the total shampoo composition of at least one metal ion in which the metal is selected from iron, copper, zinc or manganese. Preferably, the level of metal ion is from 0.01 wt% to 5 wt% of the total shampoo composition, more preferably from 0.3 wt% to 3 wt%.
The level of metal ion in the formulation may be determined by quantitative elemental analysis.
For the avoidance of doubt, if the formulation contains 2 wt% of the complex
Figure imgf000004_0001
With molecular weight of 446.14, then it will contain 55.84/446.14*2 = 0.25wt% of Fe(ll) (2 decimal places) Preferably, the metal ion is Fe(ll), Fe(lll) or Cu(ll), more preferably the metal ion is selected from Fe(ll), Fe(lll), most preferably Fe(ll).
Organic acid
Compositions of the invention comprise an organic acid or a metal complex formed from an organic acid.
The basic formula organic acid or metal complex formed from it is:
H
R-i C COOH
wherein X is selected from OH or NH2, preferably OH.
Ri is a C1 -C10 alkyl group optionally substituted by groups selected from OH and terminated by groups selected from a CH3, CH2OH or COOH group.
The organic acid is present in the mole ratio of organic acid: metal ion from 1 : 1 to 4: 1 with the metal ion, preferably from 1.5 to 2.5: 1 . Preferably, the metal ion is present as a complex with the organic acid, such that the organic acid can be called a ligand. In the context of this invention a ligand is a molecule that contains more than one group, preferably 2 to 4 groups, most preferably 2 groups that co-ordinate with the metal ion. Groups for co-ordinating with the metal ion are COO", OH, ketones, esters, primary amines, secondary amines, tertiary amines and, more preferably COO", tertiary amines and OH, most preferably COO" and OH. Polyphenols are not permitted as multidentate ligands. The ligand-metal complex may be pre-formed before addition to the shampoo for example Iron (II) Gluconate, iron (II) Glutamate. The ligand metal complex may be formed in the composition by the addition of an iron salt and the ligand, for example FeC and sodium lactate. Preferably the mole ratio of iron ion to ligand is from 1 : 1 to 4: 1 , more preferably 1.5: 1 to 2.5: 1 , as described above.
The level of organic acid in the shampoo composition is preferably from 0.01 wt% to 20 wt%.
Preferably, the metal ion is in the form of a complex that is soluble in aqueous solution at the pH of the formulation. Most preferably the metal ion in the form of a salt and/or complex has a solubility in demineralised water at the pH of the formulation of greater than 0.1 g/L.
Most preferably the organic are selected from gluconic, tartaric, ascorbic, citric and lactic acid. Particularly preferred are gluconic, lactic or ascorbic. Preferred metal combinations compriseiron (II) gluconate and iron(ll) lactate, most preferably iron (II) gluconate.
The ability of a ligand to complex with a metal ion, Mn+, may be defined by its ρΜηΛ value, wherein
Figure imgf000006_0001
and the ligand concentration is 10"5 mol/L and the total metal ion concentration is 10"6 mol/L and [Mn+]free is the molar concentration of uncomplexed metal ions. Preferably, the ligand used has a lower pMn+, than gallic acid. Preferably the pM"+are greater than 8 more preferably greater than 10. pMn+ values are most preferably measured at pH=4 in de-mineralised water, with the chloride salt of the metal ion, most preferably ferric chloride. Polyamino carboxylic acids are preferably present at weight % levels of less than 1 /30th of the main ligand, preferably they are absent from the shampoo. A polyamino carboxylic acid is a compound containing two or more amines
connected through carbon atoms to two or more carboxylic acid groups.
2,2',2",2"'-(Ethane-1 ,2-diyldinitrilo)tetraacetic acid is a polyamino carboxylic acid. Diethylene triamine pentaacetic acid is a polyamino carboxylic acid.
Ethylenediamine-/V,/V'-disuccinic acid is a polyamino carboxylic acid.
Surfactant Mix
Anionic Surfactant
Shampoo compositions of the invention comprise anionic surfactant. Examples of suitable anionic cleansing surfactants other are the alkyl sulphates, alkyl ether sulphates, alkaryl sulphonates, alkanoyl isethionates, alkyl succinates, alkyl sulphosuccinates, alkyl ether sulphosuccinates, N-alkyl sarcosinates, alkyl phosphates, alkyl ether phosphates, and alkyl ether carboxylic acids and salts thereof, especially their sodium, magnesium, ammonium and mono-, di- and triethanolamine salts. The alkyl and acyl groups generally contain from 8 to 18, preferably from 10 to 16 carbon atoms and may be unsaturated. The alkyl ether sulphates, alkyl ether sulphosuccinates, alkyl ether phosphates and alkyl ether carboxylic acids and salts thereof may contain from 1 to 20 ethylene oxide or propylene oxide units per molecule.
Typical anionic cleansing surfactants for use in shampoo compositions of the invention include sodium oleyl succinate, ammonium lauryl sulphosuccinate, sodium lauryl sulphate, sodium lauryl ether sulphate, sodium lauryl ether sulphosuccinate, ammonium lauryl sulphate, ammonium lauryl ether sulphate, sodium dodecylbenzene sulphonate, triethanolamine dodecylbenzene sulphonate, sodium cocoyl isethionate, sodium lauryl isethionate, lauryl ether carboxylic acid and sodium N-lauryl sarcosinate.
Preferred anionic surfactants are the alkyl sulfates and alkyl ether sulfates. These materials have the respective formulae R2OSO3M and R-iO (C2H4O) XSO3M, wherein R2 is alkyl or alkenyl of from 8 to 18 carbon atoms, x is an integer having a value of from about 1 to about 10, and M is a cation such as ammonium, alkanolamines, such as triethanolamine, monovalent metals, such as sodium and potassium, and polyvalent metal cations, such as magnesium, and calcium. Most preferably R2 has 12 to 14 carbon atoms, in a linear rather than branched chain.
Preferred anionic cleansing surfactants are selected from sodium lauryl sulphate and , sodium lauryl ether sulphate(n)EO, (where n is from 1 to 3); more preferably sodium lauryl ether sulphate(n)EO, (where n is from 1 to 3); most preferably sodium lauryl ether sulphate(n)EO where n=1 .
Preferably, the level of alkyl ether sulphate is from 0.5 wt% to 25 wt% of the total shampoo composition, more preferably from 3 wt% to 18 wt%, most preferably from 6 wt% to 15 wt% of the total shampoo composition.
Mixtures of any of the foregoing anionic cleansing surfactants may also be suitable.
The fraction of anionic surfactant (fan) may be defined as
fan = (Wt% anionic surfactant) / (total wt% of all surfactants).
Preferably, the anionic surfactant is the major surfactant component and fan > 0.5, More preferably fan > 0.8, most preferably fan > 0.95. The fraction of AES surfactant in the surfactant mix (†AES) may be defined as FAES = (Wt% AES surfactant) / (total wt% of all surfactants).
Preferably, the AES surfactant is the major surfactant component and fAEs > 0.5, More preferably fAEs > 0.8.
Mixtures of any of the foregoing anionic cleansing surfactants may also be suitable.
The total amount of anionic cleansing surfactant in shampoo compositions of the invention generally ranges from 0.5 wt% to 45 wt%, more preferably from 1 .5 wt% to 20 wt%.
Nonionic surfactant
Shampoo compositions of the invention may contain non-ionic surfactant. Most preferably non-ionic surfactants are present in the range 0 to 5wt%.
Nonionic surfactants that can be included in shampoo compositions of the invention include condensation products of aliphatic (Cs - C-is) primary or secondary linear or branched chain alcohols or phenols with alkylene oxides, usually ethylene oxide and generally having from 6 to 30 ethylene oxide groups. Alkyl ethoxylates are particularly preferred. Most preferred are alkyl ethoxylates having the formula R-(OCH2CH2)nOI-l, where R is an alkyl chain of C12 to C15, and n is 5 to 9. Other suitable nonionic surfactants include mono- or di-alkyl alkanolamides. Examples include coco mono- or di-ethanolamide and coco mono- isopropanolamide.
Further nonionic surfactants which can be included in shampoo compositions of the invention are the alkyl polyglycosides (APGs). Typically, APG is one which comprises an alkyl group connected (optionally via a bridging group) to a block of one or more glycosyl groups. Preferred APGs are defined by the following formula: RO - (G)n wherein R is a branched or straight chain alkyl group which may be saturated or unsaturated and G is a saccharide group. R may represent a mean alkyl chain length of from about C5 to about C2o-
Preferably R represents a mean alkyl chain length of from about Cs to about C12. Most preferably the value of R lies between about 9.5 and about 10.5. G may be selected from C5 or Ce monosaccharide residues, and is preferably a glucoside. G may be selected from the group comprising glucose, xylose, lactose, fructose, mannose and derivatives thereof. Preferably G is glucose.
The degree of polymerisation, n, may have a value of from about 1 to about 10 or more. Preferably, the value of n lies from about 1 .1 to about 2. Most preferably the value of n lies from about 1 .3 to about 1 .5.
Suitable alkyl polyglycosides for use in the invention are commercially available and include for example those materials identified as: Oramix NS10 ex Seppic; Plantaren 1200 and Plantaren 2000 ex Henkel. Other sugar-derived nonionic surfactants which can be included in compositions of the invention include the C10-C18 N-alkyl (Οι-Οβ) polyhydroxy fatty acid amides, such as the C12-C18 N-methyl glucamides, as described for example in
WO 92 06154 and US 5 194 639, and the N-alkoxy polyhydroxy fatty acid amides, such as C10-C18 N-(3-methoxypropyl) glucamide. Amphoteric/zwitterionic Surfactant
Amphoteric or zwitterionic surfactant can be included in an amount ranging from 0.5 wt% to about 8 wt%, preferably from 1 wt% to 4 wt% of the total shampoo composition.
Examples of amphoteric or zwitterionic surfactants include alkyl amine oxides, alkyl betaines, alkyl amidopropyl betaines, alkyl sulphobetaines (sultaines), alkyl glycinates, alkyl carboxyglycinates, alkyl amphoacetates, alkyl amphopropionates, alkylamphoglycinates, alkyl amidopropyl hydroxysultaines, acyl taurates and acyl glutamates, wherein the alkyl and acyl groups have from 8 to 19 carbon atoms. Typical amphoteric and zwitterionic surfactants for use in shampoos of the invention include lauryl amine oxide, cocodimethyl sulphopropyl betaine, lauryl betaine, cocamidopropyl betaine and sodium cocoamphoacetate.
A particularly preferred amphoteric or zwitterionic surfactant is cocamidopropyl betaine.
Mixtures of any of the foregoing amphoteric or zwitterionic surfactants may also be suitable. Preferred mixtures are those of cocamidopropyl betaine with further amphoteric or zwitterionic surfactants as described above. A preferred further amphoteric or zwitterionic surfactant is sodium cocoamphoacetate.
The total amount of surfactant (including any co-surfactant, and/or any emulsifier) in a shampoo composition of the invention is generally from 1 wt% to 50 wt%, preferably from 2 wt% to 40 wt%, more preferably from 10 wt% to 25 wt% by total weight surfactant based on the total weight of the composition. Further Ingredients
Cationic Polymers Cationic polymers are preferred ingredients in a shampoo composition of the invention for enhancing performance.
Suitable cationic polymers may be homopolymers which are cationically
substituted or may be formed from two or more types of monomers. The weight average (Mw) molecular weight of the polymers will generally be between 100 000 and 2 million daltons. The polymers will have cationic nitrogen containing groups such as quaternary ammonium or protonated amino groups, or a mixture thereof. If the molecular weight of the polymer is too low, then the conditioning effect is poor. If too high, then there may be problems of high extensional viscosity leading to stringiness of the composition when it is poured.
The cationic nitrogen-containing group will generally be present as a substituent on a fraction of the total monomer units of the cationic polymer. Thus when the polymer is not a homopolymer it can contain spacer non-cationic monomer units. Such polymers are described in the CTFA Cosmetic Ingredient Directory, 3rd edition. The ratio of the cationic to non-cationic monomer units is selected to give polymers having a cationic charge density in the required range, which is generally from 0.2 to 3.0 meq/gm. The cationic charge density of the polymer is suitably determined via the Kjeldahl method as described in the US
Pharmacopoeia under chemical tests for nitrogen determination.
Suitable cationic polymers include, for example, copolymers of vinyl monomers having cationic amine or quaternary ammonium functionalities with water soluble spacer monomers such as (meth)acrylamide, alkyi and dialkyi (meth)acrylamides, alkyi (meth)acrylate, vinyl caprolactone and vinyl pyrrolidine. The alkyi and dialkyi substituted monomers preferably have C1 -C7 alkyl groups, more preferably C1 -3 alkyl groups. Other suitable spacers include vinyl esters, vinyl alcohol, maleic anhydride, propylene glycol and ethylene glycol. The cationic amines can be primary, secondary or tertiary amines, depending upon the particular species and the pH of the composition. In general secondary and tertiary amines, especially tertiary, are preferred.
Amine substituted vinyl monomers and amines can be polymerized in the amine form and then converted to ammonium by quaternization.
The cationic polymers can comprise mixtures of monomer units derived from amine- and/or quaternary ammonium-substituted monomer and/or compatible spacer monomers.
Suitable cationic polymers include, for example: cationic diallyl quaternary ammonium-containing polymers including, for example, dimethyldiallylammonium chloride homopolymer and copolymers of acrylamide and dimethyldiallylammonium chloride, referred to in the industry (CTFA) as Polyquaternium 6 and Polyquaternium 7, respectively; mineral acid salts of amino-alkyl esters of homo-and co-polymers of unsaturated carboxylic acids having from 3 to 5 carbon atoms, (as described in U.S. Patent 4,009,256); cationic polyacrylamides(as described in WO95/2231 1 ). Other cationic polymers that can be used include cationic polysaccharide polymers, such as cationic cellulose derivatives, cationic starch derivatives, and cationic guar gum derivatives. Cationic polysaccharide polymers suitable for use in compositions of the invention include monomers of the formula:
A-0-[R-N+(R1)(R2)(R3)X"], wherein: A is an anhydroglucose residual group, such as a starch or cellulose anhydroglucose residual. R is an alkylene, oxyalkylene, polyoxyalkylene, or hydroxyalkylene group, or combination thereof. R1, R2 and R3 independently represent alkyl, aryl, alkylaryl, arylalkyl, alkoxyalkyl, or alkoxyaryl groups, each group containing up to about 18 carbon atoms. The total number of carbon atoms for each cationic moiety (i.e., the sum of carbon atoms in R1, R2 and R3) is preferably about 20 or less, and X is an anionic counterion.
Another type of cationic cellulose includes the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide, referred to in the industry (CTFA) as Polyquaternium 24. These materials are available from the Amerchol Corporation, for instance under the tradename Polymer LM-200.
Other suitable cationic polysaccharide polymers include quaternary nitrogen- containing cellulose ethers (e.g. as described in U.S. Patent 3,962,418), and copolymers of etherified cellulose and starch (e.g. as described in U.S. Patent 3,958,581 ).
A particularly suitable type of cationic polysaccharide polymer that can be used is a cationic guar gum derivative, such as guar hydroxypropyltrimethylammonium chloride (commercially available from Rhodia in their JAGUAR trademark series). Examples of such materials are JAGUAR C13S, JAGUAR C14, JAGUAR C15, JAGUAR C17 and JAGUAR C16 Jaguar CHT and JAGUAR C162. Mixtures of any of the above cationic polymers may be used.
Cationic polymer will generally be present in a shampoo composition of the invention at levels of from 0.01 to 5%, preferably from 0.05 to 1 %, more preferably from 0.08 to 0.5% by total weight of cationic polymer based on the total weight of the composition.
Suspending Agent
Preferably, an aqueous shampoo composition of the invention further comprises a suspending agent. Suitable suspending agents are selected from polyacrylic acids, cross-linked polymers of acrylic acid, copolymers of acrylic acid with a hydrophobic monomer, copolymers of carboxylic acid-containing monomers and acrylic esters, cross-linked copolymers of acrylic acid and acrylate esters, heteropolysaccharide gums and crystalline long chain acyl derivatives. The long chain acyl derivative is desirably selected from ethylene glycol stearate, alkanolamides of fatty acids having from 16 to 22 carbon atoms and mixtures thereof. Ethylene glycol distearate and polyethylene glycol 3 distearate are preferred long chain acyl derivatives, since these impart pearlescence to the composition. Polyacrylic acid is available commercially as Carbopol 420,
Carbopol 488 or Carbopol 493. Polymers of acrylic acid cross-linked with a polyfunctional agent may also be used; they are available commercially as Carbopol 910, Carbopol 934, Carbopol 941 and Carbopol 980. An example of a suitable copolymer of a carboxylic acid containing monomer and acrylic acid esters is Carbopol 1342. All Carbopol (trademark) materials are available from Goodrich. Suitable cross-linked polymers of acrylic acid and acrylate esters are Pemulen TR1 or Pemulen TR2. A suitable heteropolysacchande gum is xanthan gum, for example that available as Kelzan mu. Mixtures of any of the above suspending agents may be used. Preferred is a mixture of cross-linked polymer of acrylic acid and crystalline long chain acyl derivative.
Suspending agent will generally be present in a shampoo composition of the invention at levels of from 0.1 % to 10%, preferably from 0.5 % to 6 %, more preferably from 0.9 % to 4 % by total weight of suspending agent based on the total weight of the composition.
Preferably, the shampoo composition has a pH of 2 to 8 measured using a calibrated pH meter, more preferably 3 to 6.5.
Product form
To avoid oxidation of the metal by air it is preferred that the shampoo is stored in an air tight container such as a bottle closed with an air tight cap.
Polyphenol containing composition
The polyphenol containing composition is preferably an aqueous polyphenol solution. The polyphenol composition preferably comprises from 0.05 wt% to 10.0 wt% of the total polyphenol composition, more preferably from 0.1 wt% to 5.0 wt %, most preferably 0.3 wt% to 3.0 wt% of polyphenol. The polyphenol of the invention comprises at least one benzene ring substituted with a first OH group and a second OH or OCH3 group, preferably OH. Preferably the first OH is ortho to the second OH group. Wherein the aqueous polyphenol solution has a pH preferably of 2 to 7 measured using a calibrated pH meter, more preferably 3 to 6.
Polyphenols may be found in the classes of phenolic acid, anthocyanin, anthocyanidin, flavanols, flavanones and gallates. For example flavan-3-ols, flavan-4-ols, flavan-3,4-ols. Gallic Acid, flavanols and flavanones are preferred.
A preferred polyphenol contains a benzene ring substituted in the:
1 position by an X group, wherein X is a carbon containing organic group, preferably selected from an ester group, COOH, chromenes and 3,4 dihydro- chromenes.
3 position by a H, OH or OCH3 group, preferably an OH group.
4 position by an OH group.
5 position by an OH or OCH3 group, preferably an OH group. Most preferably the 2 and 6 positions are substituted by H.
Preferably, the polyphenol is an ortho-dihydroxybenzene derivative.
Preferably, the polyphenol has a molecular weight of less than 1 ,000, more preferably less than 500, most preferably less than 310.
Polyphenols may be suitably found in the wood and bark of trees and in the fruit, seeds and nuts of plants. For example the leaves of Camilla senesis; the wood of Haematoxylum campechianum; the bark of Quercus velutina; the fruit of Vitis vinifer; the fruit of Olea europaea; the roots of Curcuma demoestica; the trunk and bark of Quercus velutina and Quercus lusitanica; the trunk and bark of trees of the genus Pseudotsuga; the trunk and bark of Acacia catechu.
Preferred compounds include gallic acid, methyl gallate, propyl gallate, ethyl gallate, caffeic acid, chlorogenic acid, caftaric acid, ellagic acid, ferulic acid, 4-0- galloylgallic acid, nordihydroguaiaretuc acid, rosemarinic acid, catechin, epicatechin, catechin gallate, epicatechin gallate, gallocatechin, epigallocatechin, epigallocatechin gallate, curcumin, alizarin, quercetin, quercicitron, myricetin, alizarin, purpurin, morindone, isorhamnetin, pachypodol, rhamnazin, hesperetin, homoeriodictyol, logwood, natural black 1 , natural black 2, natural red 24,
Fisetinidol, Robinetinidol, Mesguitol. More preferably haematein, haematoxylin, brazilin, methyl gallate, ethyl gallate, propyl gallate, gallic acid, epigallocatechin, epigallocatechin gallate and gallocatechin, most preferably from gallic acid, methyl gallate, ethyl gallate, propyl gallate or mixtures thereof.
Preferably, the polyphenols are extracted from a natural source. Preferably they do not contain any active oxidase enzymes and have been heat treated to destroy any enzyme activity. To avoid oxidation of the polyphenols by air it is preferred that the composition is stored in an airtight container, preferably a bottle closed with an air tight cap.
The aqueous polyphenol solution contains water, preferably as the dominate ingredient. Auxiliary ingredients may be present for example to increase the viscosity, perfume and help solubilise the polyphenol. Solubilising ingredients include organic solvents and surfactants.
It is preferable if the polyphenol containing composition is a conditioning
composition, more preferably a rinse off conditioning composition. Particularly preferred is a composition that is applied after shampooing. If present in a conditioner composition comprising a protonating organic acid, the polyphenol is preferably present at a higher molar concentration than the protonating organic acid. In this case the protonating organic acid does not include a polyphenol.
Preferably, the water used to formulate all compositions has a French hardness of from 0 to 36 degrees, more preferably 0 to 24 degrees, most preferably from 0 to 2. Preferably, the water used to formulate all compositions contains less than 1 ppm of chlorine based bleaching agents such as chlorine dioxide or hypochlorite. Most preferably less than 50ppb
Conditioning Agents
i) Silicone Conditioning Agents
The compositions of the invention can contain, emulsified droplets of a silicone conditioning agent, for enhancing conditioning performance. Silicone conditioning agents may be present in the shampoo or conditioner.
Suitable silicones include polydiorganosiloxanes, in particular
polydimethylsiloxanes which have the CTFA designation dimethicone. Also suitable for use compositions of the invention (particularly shampoos and conditioners) are polydimethyl siloxanes having hydroxyl end groups, which have the CTFA designation dimethiconol. Also suitable for use in compositions of the invention are silicone gums having a slight degree of cross-linking, as are described for example in WO 96/31 188.
The viscosity of the emulsified silicone itself (not the emulsion or the final hair conditioning composition) is typically at least 10,000 est at 25 °C the viscosity of the silicone itself is preferably at least 60,000 est, most preferably at least 500,000 est, ideally at least 1 ,000,000 est. Preferably the viscosity does not exceed 109 est for ease of formulation. Emulsified silicones for use in the shampoo compositions of the invention will typically have an average silicone droplet size in the composition of less than 30, preferably less than 20, more preferably less than 10 μηι , ideally from 0.01 to 1 μπΊ . Silicone emulsions having an average silicone droplet size of < 0.15 μηι are generally termed microemulsions.
Emulsified silicones for use in the conditioner compositions of the invention will typically have an size in the composition of less than 30, preferably less than 20, more preferably less than 15. Preferably the average silicone droplet is greater than 0.5 μηι , more preferably greater than 1 μηι , ideally from 2 to 8 μηι.
Silicone particle size may be measured by means of a laser light scattering technique, for example using a 2600D Particle Sizer from Malvern Instruments.
Examples of suitable pre-formed emulsions include Xiameter MEM 1785 and microemulsion DC2-1865 available from Dow Corning. These are emulsions
/microemulsions of dimethiconol. Cross-linked silicone gums are also available in a pre-emulsified form, which is advantageous for ease of formulation.
A further preferred class of silicones for inclusion in shampoos and conditioners of the invention are amino functional silicones. By "amino functional silicone" is meant a silicone containing at least one primary, secondary or tertiary amine group, or a quaternary ammonium group. Examples of suitable amino functional silicones include: polysiloxanes having the CTFA designation "amodimethicone", Specific examples of amino functional silicones suitable for use in the invention are the aminosilicone oils DC2-8220, DC2-8166 and DC2-8566 (all ex Dow Corning). Suitable quaternary silicone polymers are described in EP-A-0 530 974. A preferred quaternary silicone polymer is K3474, ex Goldschmidt.
Also suitable are emulsions of amino functional silicone oils with non ionic and/or cationic surfactant.
Pre-formed emulsions of amino functional silicone are also available from suppliers of silicone oils such as Dow Corning and General Electric. Specific examples include DC939 Cationic Emulsion and the non-ionic emulsions DC2- 7224, DC2-8467, DC2-8177 and DC2-8154 (all ex Dow Corning).
With some shampoos it is preferred to use a combination of amino and non amino functional silicones
The total amount of silicone is preferably from 0.01 wt% to 10 %wt of the total composition more preferably from 0.1 wt% to 5 wt%, most preferably 0.5 wt% to 3 wt% is a suitable level, especially for a shampoo composition.
(ii) Non-silicone Oily Conditioning Components Compositions according to the present invention may also comprise a dispersed, non-volatile, water-insoluble oily conditioning agent. Preferably such non-silicone conditioning oily conditioning agents are present in conditioner compositions.
By "insoluble" is meant that the material is not soluble in water (distilled or equivalent) at a concentration of 0.1 % (w/w), at 25°C. Suitable oily or fatty materials are selected from hydrocarbon oils, fatty esters and mixtures thereof. Straight chain hydrocarbon oils will preferably contain from about 12 to about 30 carbon atoms. Also suitable are polymeric hydrocarbons of alkenyl monomers, such as C2-C6 alkenyl monomers.
Specific examples of suitable hydrocarbon oils include paraffin oil, mineral oil, saturated and unsaturated dodecane, saturated and unsaturated tridecane, saturated and unsaturated tetradecane, saturated and unsaturated pentadecane, saturated and unsaturated hexadecane, and mixtures thereof. Branched-chain isomers of these compounds, as well as of higher chain length hydrocarbons, can also be used.
Suitable fatty esters are characterised by having at least 10 carbon atoms, and include esters with hydrocarbyl chains derived from fatty acids or alcohols, Monocarboxylic acid esters include esters of alcohols and/or acids of the formula R'COOR in which R' and R independently denote alkyl or alkenyl radicals and the sum of carbon atoms in R' and R is at least 10, preferably at least 20. Di- and trialkyl and alkenyl esters of carboxylic acids can also be used. Particularly preferred fatty esters are mono-, di- and triglycerides, more
specifically the mono-, di-, and tri-esters of glycerol and long chain carboxylic acids such as C1-C22 carboxylic acids. Preferred materials include cocoa butter, palm stearin, sunflower oil, soyabean oil and coconut oil. The oily or fatty material is suitably present at a level of from 0.05 wt% to 10 wt%, preferably from 0.2 wt% to 5 wt%, more preferably from about 0.5 wt% to 3 wt%.
Such conditioner compositions will typically comprise one or more conditioning surfactants which are cosmetically acceptable and suitable for topical application to the hair. Cationic conditioning compositions
Suitable conditioning surfactants include those selected from cationic surfactants, used singly or in admixture. Preferably, the cationic surfactants have the formula N+R1 R2R3R4 wherein R1 , R2, R3 and R4 are independently (Ci to C30) alkyl or benzyl. Preferably, one, two or three of R1 , R2, R3 and R4 are independently (C4 to C30) alkyl and the other R1 , R2, R3 and R4 group or groups are (Ο-ι-Οβ) alkyl or benzyl. More preferably, one or two of R1 , R2, R3 and R4 are independently (Ce to C30) alkyl and the other R1 , R2, R3 and R4 groups are (Ο-ι-Οβ) alkyl or benzyl groups. Optionally, the alkyl groups may comprise one or more ester (-OCO- or - COO-) and/or ether (-O-) linkages within the alkyl chain. Alkyl groups may optionally be substituted with one or more hydroxyl groups. Alkyl groups may be straight chain or branched and, for alkyl groups having 3 or more carbon atoms, cyclic. The alkyl groups may be saturated or may contain one or more carbon- carbon double bonds (eg, oleyl). Alkyl groups are optionally ethoxylated on the alkyl chain with one or more ethyleneoxy groups.
Suitable cationic surfactants for use in conditioner compositions according to the invention include cetyltrimethylammonium chloride, behenyltrimethylammonium chloride, cetylpyridinium chloride, tetramethylammonium chloride,
tetraethylammonium chloride, octyltrimethylammonium chloride,
dodecyltrimethylammonium chloride, hexadecyltrimethylammonium chloride, octyldimethylbenzylammonium chloride, decyldimethylbenzylammonium chloride, stearyldimethylbenzylammonium chloride, didodecyldimethylammonium chloride, dioctadecyldimethylammonium chloride, tallowtrimethylammonium chloride, dihydrogenated tallow dimethyl ammonium chloride (eg, Arquad 2HT/75 from Akzo Nobel), cocotrimethylammonium chloride, PEG-2-oleammonium chloride and the corresponding hydroxides thereof. Further suitable cationic surfactants include those materials having the CTFA designations Quaternium-5, Quaternium- 31 and Quaternium-18. Mixtures of any of the foregoing materials may also be suitable. A particularly useful cationic surfactant for use in conditioners according to the invention is cetyltrimethylammonium chloride, available commercially, for example as GENAMIN CTAC, ex Hoechst Celanese. Another particularly useful cationic surfactant for use in conditioners according to the invention is
behenyltrimethylammonium chloride, available commercially, for example as GENAMIN KDMP, ex Clariant.
Another example of a class of suitable cationic surfactants for use in the invention, either alone or together with one or more other cationic surfactants, is a
combination of (i) and (ii) below:
(i) an amidoamine corresponding to the general formula (I):
Figure imgf000024_0001
in which R is a hydrocarbyl chain having 10 or more carbon atoms,
R2 and R3 are independently selected from hydrocarbyl chains of from 1 to
10 carbon atoms, and m is an integer from 1 to about 10; and
(ii) an acid.
As used herein, the term hydrocarbyl chain means an alkyl or alkenyl chain. Preferred amidoamine compounds are those corresponding to formula (I) in which
R1 is a hydrocarbyl residue having from about 1 1 to about 24 carbon atoms, R2 and R3 are each independently hydrocarbyl residues, preferably alkyl groups, having from 1 to about 4 carbon atoms, and m is an integer from 1 to about 4. Preferably, R2 and R3 are methyl or ethyl groups.
Preferably, m is 2 or 3, i.e. an ethylene or propylene group. Preferred amidoamines useful herein include stearamido-propyldimethylamine, stearamidopropyldiethylamine, stearamidoethyldiethylamine,
stearamidoethyldimethylamine, palmitamidopropyldimethylamine,
palmitamidopropyl-diethylamine, palmitamidoethyldiethylamine,
palmitamidoethyldimethylamine, behenamidopropyldimethyl-amine,
behenamidopropyldiethylmine, behenamidoethyldiethyl-amine,
behenamidoethyldimethylamine, arachidamidopropyl-dimethylamine,
arachidamidopropyldiethylamine, arachid-amidoethyldiethylamine,
arachidamidoethyldimethylamine, and mixtures thereof. Particularly preferred amidoamines useful herein are
stearamidopropyldimethylamine, stearamidoethyldiethylamine, and mixtures thereof.
Commercially available amidoamines useful herein include:
stearamidopropyldimethylamine with tradenames LEXAMINE S-13 available from Inolex (Philadelphia Pennsylvania, USA) and AMIDOAMINE MSP available from Nikko (Tokyo, Japan), stearamidoethyldiethylamine with a tradename
AMIDOAMINE S available from Nikko, behenamidopropyldimethylamine with a tradename INCROMINE BB available from Croda (North Humberside, England), and various amidoamines with tradenames SCHERCODINE series available from Scher (Clifton New Jersey, USA).
A protonating acid may be present. Acid may be any organic or mineral acid which is capable of protonating the amidoamine in the conditioner composition. Suitable acids useful herein include hydrochloric acid, acetic acid, tartaric acid, fumaric acid, lactic acid, malic acid, succinic acid, and mixtures thereof.
Preferably, the acid is selected from the group consisting of acetic acid, tartaric acid, hydrochloric acid, fumaric acid, lactic acid and mixtures thereof. The primary role of the acid is to protonate the amidoamine in the hair treatment composition thus forming a tertiary amine salt (TAS) in situ in the hair treatment composition. The TAS in effect is a non-permanent quaternary ammonium or pseudo-quaternary ammonium cationic surfactant. Suitably, the acid is included in a sufficient amount to protonate more than 95 mole% (293 K) of the amidoamine present.
In conditioners of the invention, the level of cationic surfactant will generally range from 0.01 % to 10%, more preferably 0.05 % to 7.5%, most preferably 0.1 % to 5% by weight of the composition.
Conditioners of the invention will typically also incorporate a fatty alcohol. The combined use of fatty alcohols and cationic surfactants in conditioning
compositions is believed to be especially advantageous, because this leads to the formation of a lamellar phase, in which the cationic surfactant is dispersed.
Representative fatty alcohols comprise from 8 to 22 carbon atoms, more preferably 16 to 22. Fatty alcohols are typically compounds containing straight chain alkyl groups. Examples of suitable fatty alcohols include cetyl alcohol, stearyl alcohol and mixtures thereof. The use of these materials is also
advantageous in that they contribute to the overall conditioning properties of compositions of the invention.
The level of fatty alcohol in conditioners of the invention will generally range from 0.01 to 10%, preferably from 0.1 % to 8%, more preferably from 0.2 % to 7 %, most preferably from 0.3 % to 6 % by weight of the composition. The weight ratio of cationic surfactant to fatty alcohol is suitably from 1 : 1 to 1 : 10, preferably from 1 : 1.5 to 1 :8, optimally from 1 :2 to 1 :5. If the weight ratio of cationic surfactant to fatty alcohol is too high, this can lead to eye irritancy from the composition. If it is too low, it can make the hair feel squeaky for some consumers.
Adjuncts
The compositions of the present invention may also contain adjuncts suitable for hair care. Generally such ingredients are included individually at a level of up to 2 wt%, preferably up to 1 wt% of the total composition.
Suitable hair care adjuncts, include amino acids, sugars and ceramides and viscosity modifiers.
Method of use
The method of colouring hair comprising the steps of applying to hair sequentially in any order:
(i) a shampoo composition described above followed by
(ii) a second composition, which comprises from 0.05 to 10wt% of the total second composition of a polyphenol.
Preferably, the compositions of the invention are applied to wet hair, necessitating the step of wetting the hair before application of the compositions of the invention.
A method preferably comprises the step of rinsing hair between application of the shampoo composition (i)and the second composition (ii). It is highly preferred if the hair is rinsed after application of both compositions of the invention. Further conditioning and/or styling products may be applied as part of the colouring process.
The level of each composition applied to the head of hair is preferably from 5g to 100g.
Preferably, each composition remains on the hair for 5 to 600 seconds, more preferably 10 to 300 seconds. Preferably, the water used to wet and rinse the hair has a French hardness of from 0 to 36 degrees, more preferably 0 to 24 degrees, most preferably from 0 to 2 degrees.
Preferably, the water used to wet and rinse the hair contains less than 1 ppm of chlorine based bleaching agents such as chlorine dioxide or hypochlorite. Most preferably less than 50ppb.
The invention will now be illustrated by the following non-limiting examples: Examples Example 1
1wt% of Iron ammonium sulphate and 0.1 wt% ascorbic acid was dissolved in demineralised water at 293K. The solution contains 0.00352 mol/L of Fe(ll).
The solution was split in two and to one half 0.5g/L sodium lauryl ether sulphate EO with 1 ethoxy group (SLES(1 EO)) was added. After 5 minutes of mixing the UV-VIS absorption spectrum was measured in a 1 cm and the absorption at 400nm recorded for both solutions. The experiment was repeated using a solution containing 0.00352 mol/L of Fe(ll)gluconate.
The % change in the absorption at 400nm on addition of the SLES(1 EO) was calculated as the modulus of
% change = 100* [absorption(with surfactant)- absorption(without surfactant)]/ absorption(without surfactant).
The results are given in the table below
Figure imgf000029_0001
On surfactant addition a huge change is observed in the absorption and hence colour of Iron ammonium sulphate and ascorbic acid of 1400%. This is not found with iron gluconate, where a small drop of 7% is found.
Example 2
0.25wt% of FeSO4 was dissolved in demineralised water at 293K. Once dissolved the solution was divided into 2 aliquots, and to the first was added 2wt% of sodium gluconate. The solution were then further divided and the following surfactants added at 5wt%:
(i) sodium dodecyl sulfate
(ii) sodium lauryl ether sulphate with 3 ethoxy groups (EO)
(iii) sodium lauryl ether sulphate EO with 1 ethoxy group. The % change in the absorption at 400nm on addition of surfactant was calculated as the modulus of
% change = 100* [absorption(with surfactant)- absorption(without surfactant)]/ absorption(without surfactant).
The results are given in the table below
Figure imgf000030_0001
The Example according to the invention comprising a complex of gluconate, has no precipitation and less colour change than the comparative example excluding the complex

Claims

A kit for colouring hair, comprising:
i) an aqueous shampoo composition comprising
a) from 0.01 to 10 wt% of the total shampoo composition of at least one metal ion in which the metal is selected from iron, copper, zinc, manganese or mixtures thereof;
b) from 1 to 40 wt% of the total shampoo composition of an anionic
surfactant,;
c) an organic acid or metal complex formed from an organic acid, the organic acid having formula:
Figure imgf000031_0001
wherein X is selected from OH or NH2
R1 is a C1 -C10 alkyl group optionally substituted by groups selected from OH and terminated by groups selected from a CH3, CH2OH or COOH group, where the organic acid is present in the mole ratio of organic acid: metal ion from 1 : 1 to 4: 1 with the metal ion; and ii) a second aqueous second composition comprising from 0.05 to 10 wt% of the total second composition of a polyphenol.
A kit according to claim 1 in which the metal ion a) is present as a complex with organic acid c).
A kit according to claim 1 or claim 2 in which the organic acid is present in the mole ratio of organic acid :metal ion from 1 .5 to 2.5: 1 ;
4. A kit as claimed in any preceding claim in which the metal complex is iron (II) gluconate.
5. A kit according to any preceding claim in which X of the organic
acid/complex is OH.
6. A kit according to any preceding claim in which the organic acid /complex is selected from gluconic acid, lactic acid ascorbic or complexes thereof. 7. A kit as claimed in any preceding claim in which the metal ion is Fe(ll), Fe(lll) or Cu(ll).
8. A kit as claimed in any preceding claim in which the metal ion is Fe (II). 9. A composition as claimed in any preceding claim in which the polyphenol is an ortho-dihydroxybenzene derivative.
10. A composition according to any preceding claim in which the polyphenol is selected from gallic acid, methyl gallate, ethyl gallate , propyl gallate or mixtures thereof.
1 1 . A kit according to any preceding claim in which the surfactant comprises alkyl sulphate and/or alkyl ether sulphates. 12. A kit according to any preceding claim in which the level of alkyl ether
sulphates within the total shampoo composition is from 6.0 to 15 wt%.
13. A kit according to any preceding claim in which the surfactant is sodium
lauryl ether sulfate (SLES) having from 1 to 3 ethoxy groups.
14. A kit according to any preceding claim in which the level of metal ion is from 0.1 wt% to 5.0 wt% of the total shampoo composition.
15. A kit according to any preceding claim in which the level of organic acid is from 0.01 to 20 wt% of the shampoo composition.
16. A kit according to any preceding claim in which the level of polyphenol is from 0.2 to 2wt% of the total second composition, 17. A kit for colouring hair according to any preceding claim in which the
polyphenol is present in a conditioning composition.
18. A kit for colouring hair according to any preceding claim in which the
polyphenol comprising composition further comprises a cationic surfactant
19. A method of colouring hair comprising the steps of applying to hair
sequentially in any order the compositions of the kit described above.
20. A method according to claim 18 which further comprises the step of rinsing the hair between applications of the compositions of the kit.
PCT/EP2012/056168 2011-04-13 2012-04-04 Hair care composition WO2012139951A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11162210 2011-04-13
EP11162210.6 2011-04-13

Publications (1)

Publication Number Publication Date
WO2012139951A1 true WO2012139951A1 (en) 2012-10-18

Family

ID=44774232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/056168 WO2012139951A1 (en) 2011-04-13 2012-04-04 Hair care composition

Country Status (2)

Country Link
AR (1) AR086001A1 (en)
WO (1) WO2012139951A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114514011A (en) * 2019-10-18 2022-05-17 联合利华知识产权控股有限公司 Hair treatment method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958581A (en) 1972-05-17 1976-05-25 L'oreal Cosmetic composition containing a cationic polymer and divalent metal salt for strengthening the hair
US3962418A (en) 1972-12-11 1976-06-08 The Procter & Gamble Company Mild thickened shampoo compositions with conditioning properties
US4009256A (en) 1973-11-19 1977-02-22 National Starch And Chemical Corporation Novel shampoo composition containing a water-soluble cationic polymer
EP0327345A2 (en) 1988-02-04 1989-08-09 Wella Aktiengesellschaft Hair darkening compositions
WO1992006154A1 (en) 1990-09-28 1992-04-16 The Procter & Gamble Company Polyhydroxy fatty acid amide surfactants to enhance enzyme performance
EP0530974A1 (en) 1991-08-05 1993-03-10 Unilever Plc Hair care composition
US5194639A (en) 1990-09-28 1993-03-16 The Procter & Gamble Company Preparation of polyhydroxy fatty acid amides in the presence of solvents
WO1995022311A1 (en) 1994-02-18 1995-08-24 Unilever Plc Personal washing compositions
WO1996031188A1 (en) 1995-04-06 1996-10-10 Unilever Plc Hair treatment compositions
WO2000029036A2 (en) 1998-11-17 2000-05-25 Henkel Kommanditgesellschaft Auf Aktien Colorants with transition metal complexes
WO2007130777A2 (en) 2006-05-01 2007-11-15 Advanced Cosmetic Technologies Llc Composition for dyeing keratin fibers and a method of dyeing hair using same
EP2196183A2 (en) * 2008-12-12 2010-06-16 L'oreal Dyeing method based on ortho-diphenol and comprising a wiping, drying or non rinsing stage
WO2010094207A1 (en) * 2009-02-20 2010-08-26 浙江养生堂天然药物研究所有限公司 A mordant and a hair dyeing composition comprising the said mordant
WO2010135237A1 (en) 2009-05-18 2010-11-25 Advanced Cosmetic Technologies, Llc Composition for dyeing keratin fibers and a method of dyeing hair using same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958581A (en) 1972-05-17 1976-05-25 L'oreal Cosmetic composition containing a cationic polymer and divalent metal salt for strengthening the hair
US3962418A (en) 1972-12-11 1976-06-08 The Procter & Gamble Company Mild thickened shampoo compositions with conditioning properties
US4009256A (en) 1973-11-19 1977-02-22 National Starch And Chemical Corporation Novel shampoo composition containing a water-soluble cationic polymer
EP0327345A2 (en) 1988-02-04 1989-08-09 Wella Aktiengesellschaft Hair darkening compositions
US5194639A (en) 1990-09-28 1993-03-16 The Procter & Gamble Company Preparation of polyhydroxy fatty acid amides in the presence of solvents
WO1992006154A1 (en) 1990-09-28 1992-04-16 The Procter & Gamble Company Polyhydroxy fatty acid amide surfactants to enhance enzyme performance
EP0530974A1 (en) 1991-08-05 1993-03-10 Unilever Plc Hair care composition
WO1995022311A1 (en) 1994-02-18 1995-08-24 Unilever Plc Personal washing compositions
WO1996031188A1 (en) 1995-04-06 1996-10-10 Unilever Plc Hair treatment compositions
WO2000029036A2 (en) 1998-11-17 2000-05-25 Henkel Kommanditgesellschaft Auf Aktien Colorants with transition metal complexes
WO2007130777A2 (en) 2006-05-01 2007-11-15 Advanced Cosmetic Technologies Llc Composition for dyeing keratin fibers and a method of dyeing hair using same
EP2196183A2 (en) * 2008-12-12 2010-06-16 L'oreal Dyeing method based on ortho-diphenol and comprising a wiping, drying or non rinsing stage
WO2010094207A1 (en) * 2009-02-20 2010-08-26 浙江养生堂天然药物研究所有限公司 A mordant and a hair dyeing composition comprising the said mordant
WO2010135237A1 (en) 2009-05-18 2010-11-25 Advanced Cosmetic Technologies, Llc Composition for dyeing keratin fibers and a method of dyeing hair using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. STANLEY REDGROVE; WILLIAM HEINEMANN, HAIR-DYES AND HAIR-DYEING CHEMISTRY AND TECHNIQUE, 1939

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114514011A (en) * 2019-10-18 2022-05-17 联合利华知识产权控股有限公司 Hair treatment method

Also Published As

Publication number Publication date
AR086001A1 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
WO2014106604A1 (en) Hair care composition
EP2190405B2 (en) Hair treatment compositions
WO2017157993A1 (en) Hair treatment compositions
WO2019030034A1 (en) Hair compositions for damage treatment
EP2683353A2 (en) Composition
CA2633822A1 (en) Hair treatment compositions
WO2012139948A2 (en) Hair care composition
EP2873412A1 (en) A hair colour composition and method of colouring hair
WO2013131756A2 (en) Hair care composition
WO2012159919A1 (en) Hair colouring product comprising metal ions and a component from the fruit of the redcurrant or blackcurrant
WO2013107771A1 (en) Hair care composition
EP2683446A2 (en) Hair care composition comprising pyrithione and a pearliser system based on bismuth oxychloride
WO2012139951A1 (en) Hair care composition
WO2014177315A1 (en) Hair colouring composition
EP2636402A1 (en) Hair colouring composition
EP2705772A1 (en) Hair care composition
WO2013007606A2 (en) Hair care composition
WO2014122132A1 (en) Topical colouring composition
WO2012139947A2 (en) Hair care composition
WO2012139943A2 (en) Hair care composition
WO2012139944A2 (en) Hair care composition
WO2012156177A1 (en) Hair treatment compositions
EP4041183A1 (en) Hair treatment compositions
WO2012159918A1 (en) Hair colouring product comprising metal ions and a component from vaccinium berries
EP2705771A1 (en) Hair care composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12711675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12711675

Country of ref document: EP

Kind code of ref document: A1