WO2011092368A1 - Photoprotective composition against uv/vis/ir radiation with silicon microspheres as an active compound - Google Patents

Photoprotective composition against uv/vis/ir radiation with silicon microspheres as an active compound Download PDF

Info

Publication number
WO2011092368A1
WO2011092368A1 PCT/ES2011/070063 ES2011070063W WO2011092368A1 WO 2011092368 A1 WO2011092368 A1 WO 2011092368A1 ES 2011070063 W ES2011070063 W ES 2011070063W WO 2011092368 A1 WO2011092368 A1 WO 2011092368A1
Authority
WO
WIPO (PCT)
Prior art keywords
microspheres
silicon microspheres
silicon
composition according
pharmaceutical composition
Prior art date
Application number
PCT/ES2011/070063
Other languages
Spanish (es)
French (fr)
Inventor
Roberto Fenollosa Esteve
Francisco Javier Meseguer Rico
Alberto Gonzalo PÉREZ-ROLDÁN TACUMI
Marie-Isabelle RODRÍGUEZ
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universidad Politécnica De Valencia (Upv)
Ona Investigación, S. L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universidad Politécnica De Valencia (Upv), Ona Investigación, S. L. filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2011092368A1 publication Critical patent/WO2011092368A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/025Explicitly spheroidal or spherical shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations

Definitions

  • the present invention relates to the use of silicon microspheres as a sunscreen of UVA, UVB absorption and IR reflection radiation.
  • the invention also relates to pharmaceutical and cosmetic compositions comprising said silicon microspheres and their methods of production. STATE OF THE PREVIOUS TECHNIQUE
  • UV ultraviolet
  • VIS visible
  • IR Infrared
  • UV solar radiation is divided into 3 zones called:
  • UVA corresponding to wavelengths between 320 and 400 nm, which are responsible for premature skin aging processes, and to promote cancers and numerous phototoxic and photoallergic reactions.
  • sunscreen agents are usually organic chromophores compounds (chemical filters) that absorb UVB very well and to a lesser extent UVA, or particulate inorganic compounds (physical filters) which are very effective for blocking UVAs by reflection and light scattering.
  • chemical filters organic chromophores compounds
  • physical filters particulate inorganic compounds
  • the physical filters are usually metal oxides and compared to the organic molecules of the filters cause few irritations and are physiologically inert, which are present in most sunscreen formulations.
  • the most common are particles of ⁇ 2 (titanium dioxide) or ZnO (zinc oxide) whose size depends on the radiation they block, interacting strongly with wavelengths of approximately twice the diameter of the particle.
  • ⁇ 2 titanium dioxide
  • ZnO zinc oxide
  • VIS visible radiation
  • metal oxide particles of adequate size for the reflection of this type of light such as ZnO and TiO 2 (Hombitec®, Sachotec®, ...), they have been proposed from dyes that absorb light of different wavelengths (blue, red, yellow %) and that used alone or in mixture give the skin a natural color, to flavonoids.
  • IR radiation which is also divided by convention between IR-A (760 - 1400 nm), IR-B (1400 - 3000 nm) and IR-C (3000 nm -1 mm)
  • IR radiation would enhance the harmful effects of UV acting in synergy.
  • infrared radiation causes the redness and heating of the skin that characterize the thermal erythema: they penetrate the epidermis, reach the vascular network activating the microcirculation and produce immediate vasodilation.
  • thermal radiation causes the redness and heating of the skin that characterize the thermal erythema: they penetrate the epidermis, reach the vascular network activating the microcirculation and produce immediate vasodilation.
  • Some filters claim protection against infrared radiation.
  • infrared reflective particles such as so-called pearl luster pigments have been used in patents ES2089356 and US6187298. These are particles with layers or flakes structure generally made of mica as a support material coated with ⁇ 2 or SnÜ2 of different thicknesses and which can be doped with iron or cerium.
  • the T1O2 in its rutile-like structure has a high protective power against IR radiation given its reflective property for those wavelengths (this property is absent when its crystalline structure is anatase). This gives the sunscreens that contain it greater anti-erythema properties (L. Violin, et al, International Journal of Cosmetic Science, 16, 1, 13-120, 1994).
  • IR radiation filters there are still few developments of IR radiation filters. From all of the above, the absence of a single compound capable of covering a wide range of protection from UV radiation to thermal radiation (IR) and which is totally harmless stands out. DESCRIPTION OF THE INVENTION
  • the present invention provides a new use of silicon microspheres (whose description and synthesis procedure is detailed in patent application ES2331824 and in the publication: Fenollosa R., et al., Adv. Mater., 20, 95-98 , 2008), as protective compositions of sunlight, effective against broad-spectrum radiation (UVA + UVB), as well as IR radiation.
  • These compositions have as an active component or principle silicon microspheres of a size between 0.2 ⁇ and 50 ⁇ , capable of absorbing UV radiation and reflecting IR thermal radiation conferring a thermoregulatory effect.
  • the invention provides the use of silicon microspheres as a sunscreen of UVA, UVB by absorption and IR radiation by reflection, while providing pharmaceutical and cosmetic compositions comprising said silicon microspheres and their methods of obtaining.
  • These compositions can act as sunscreens in a wide range of electromagnetic radiation and as thermoregulators. That is, they offer protection against the harmful effects of the sun, both in the UV zone and in the area of longer wavelengths (VIS and IR) of the solar spectrum and in turn allow, by reflection of the infrared radiation, to maintain a constant temperature on the skin or other surfaces where the preparations of the present invention are applied.
  • a first aspect of the present invention relates to the use of silicon microspheres with a diameter between 0.2 and 50 ⁇ as a solar filter and / or as a thermoregulator, with the capacity to filter electromagnetic radiation of wavelength between 280 nm and 180 ⁇ .
  • these radiations belong to the wavelength range of UVA, UVB, VIS and IR, and more preferably UVA, UVB and IR.
  • “sunscreen” in the present invention is meant a substance that reflects or absorbs solar radiation preventing it from entering the surface to be protected and / or acting by reflecting or absorbing solar radiation and transforming it into another type of energy that is not harmful for that surface.
  • thermocontroller means substances that keep the temperature constant on a surface where it is applied, by means of the reflection of the infrared radiation.
  • the silicon microspheres used in the present invention are spherical microparticles with a very regular and smooth surface. These microspheres may have undergone surface modification treatments, for example an increase in hydrophilic character.
  • a preferred embodiment of the present invention comprises silicon microspheres for use as a pharmaceutical composition. More preferably, silicon microspheres are used as a pharmaceutical composition for the prevention of sunburn or damage. Even more preferably when sunburn or damage occurs on skin and / or hair.
  • this pharmaceutical composition is in the form suitable for topical administration.
  • Such compositions and / or their formulations can be administered to an animal, including a mammal and, therefore, to man, by solutions, hydroalcoholic solutions, emulsions, lotions, ointments, gels, creams that can be lipophilic or hydrophilic, pastes or any other. suitable form known to any expert in the field.
  • it is a lotion or a cream, which can be lipophilic or hydrophilic.
  • “Lotion” in the present invention is understood as a preparation made with an aqueous or low-alcohol vehicle containing dissolved or suspended substances.
  • cream in the present invention a multiphase preparation consisting of a lipophilic phase and an aqueous phase. Creams are classified in turn into:
  • Hydrophilic creams the continuous phase is aqueous, these emulsions are known O / W (oil in water)
  • O / W oil in water
  • the dosage to obtain a therapeutically effective amount depends on a variety of factors, such as age, skin type, tolerance, etc. ..
  • the term "therapeutically effective amount” refers to the amount of the composition of the invention that produces the desired effect and, in general, will be determined, inter alia, by the characteristics of said composition and the therapeutic effect to be achieved.
  • the compositions of the present invention may be pharmaceutical compositions, which comprise a therapeutically effective amount of the silicon microspheres, together with, a therapeutically effective amount of a pharmaceutical carrier.
  • composition in the present invention a compound that contains at least one high purity chemical used in the prevention of a disease, or to prevent the appearance of an unwanted physiological process.
  • the silicon microspheres are used for the preparation of a cosmetic composition.
  • the cosmetic composition is used for the prevention of spots and premature aging of the skin / or hair and other adverse effects, on the skin and / or hair, of solar radiation.
  • the cosmetic composition is in the form suitable for topical administration.
  • cosmetic composition in the present invention a product used for body hygiene or for the purpose of improving beauty, especially of the face, body, lips, etc.
  • silicon microspheres are for the manufacture of a protective composition of all types of materials. These materials being protected selected from natural, synthetic or any combination thereof.
  • the materials may be wood, plastics, metals or alloys, etc., their combinations, or any other type of material known to any person skilled in the art.
  • These compositions act as a protective barrier against aging and deterioration of these materials, due to the electromagnetic radiation that could be affecting them.
  • microspheres are as an active component, since it acts as a sunscreen and other electromagnetic radiation, absorbing, above all, UVA, UVB radiation and reflecting IR radiation.
  • being microspheres a physical filter they have the advantage of not causing irritation and of being physiologically inert. And being Small particles of micrometer size will also have the additional advantage of preventing the composition from looking whitish when applied. In turn, being micrometric they do not cause allergies such as the nanometric particles of ⁇ 2 or ZnO.
  • a second aspect of the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising silicon microspheres with diameters between 0.2 and 50 ⁇ , in addition to a pharmaceutically effective vehicle.
  • the silicon microspheres have diameters between 0.2 and 5 ⁇ .
  • the percentage by weight of the silicon microspheres is preferably between 0.5 and 5%, more preferably between 0.8 and 2% with respect to the weight of the final composition.
  • compositions of the present invention may be pharmaceutical compositions, which comprise a therapeutically effective amount of the silicon microspheres, together with, a therapeutically effective amount of a pharmaceutical carrier.
  • the pharmaceutical composition in a preferred embodiment is characterized by further comprising at least one other component selected from thickener, emulsifier, moisturizer, colorant or any combination thereof.
  • This pharmaceutical composition in a preferred embodiment is in a form suitable for topical administration, as described above. Being in another more preferred embodiment characterized by being a lotion, or a lipophilic or hydrophilic cream.
  • a third aspect of the present invention refers to a cosmetic composition
  • a cosmetic composition comprising silicon microspheres with diameters between 0.2 and 50 ⁇ .
  • the silicon microspheres have diameters between 0.5 and 5 ⁇ .
  • the percentage by weight of the silicon microspheres is preferably between 0.5 and 5%. And more preferably between 0.8 and 2% with respect to the final cosmetic composition.
  • the cosmetic composition of the present invention may further comprise at least one additive that is selected from thickeners, emulsifiers, moisturizers, dyes or any combination thereof.
  • the cosmetic composition is preferably in a form suitable for topical administration, as defined above. More preferably said form suitable for topical administration is a lotion, or a lipophilic or hydrophilic cream.
  • These pharmaceutical and cosmetic compositions may contain only silicon microspheres as active component against solar radiation or also contain other protective ingredients such as chemical UV filters and / or known physical filters. It is understood by chemical filters, chromophore compounds that absorb light of a certain wavelength, and physical filters, inorganic compounds that reflect and scatter the light. These cosmetic compositions, like pharmaceuticals, can also be used as thermoregulatory creams.
  • the silicon microspheres used for the elaboration of the different pharmaceutical or cosmetic compositions can be subjected to surface modification treatments, such as an increase in the hydrophilic character.
  • a fourth aspect of the present invention relates to a process for the manufacture of a pharmaceutical or cosmetic composition as described above, where silicon microspheres are pretreated by grinding.
  • silicon microspheres are added over an aqueous solution.
  • a lotion or a hydrophilic cream, to which an oil will be added later.
  • the silicon microspheres are added to the aqueous phase at a concentration between 0.5 and 5% by weight.
  • the silicon microspheres can preferably be added on an aqueous solution to subsequently form an emulsion with oil, thereby achieving a lipophilic cream.
  • Figure 1 Diameter distribution of silicon colloids used in the development of sunscreen creams. The distribution is centered around 1, 8 microns and has a width ( ⁇ ) of 0.5 microns.
  • Figure 2 Effective Wed scattering section averaged according to the distribution of colloid diameters in Figure 1.
  • Figure 3 Optical transmission spectra obtained, in the IR range, of the samples prepared in the form of an O / W emulsion, with silicon microspheres (0.8% by weight and with the size distribution of Figure 1) object of the present invention (solid line), and of the samples prepared according to the same procedure with 0.8% by weight of ⁇ 2 particles (P-25 Degussa) (broken line), with different amounts on the glass substrates (1 1 mg / cm 2 ) and PMMA-HD6® (2 mg / cm 2 ).
  • Figure 4 Optical transmission spectra obtained, in the UV range, of the samples prepared in the form of O / W emulsions, with silicon microspheres (0.8% by weight and with the size distribution of Figure 1) object of the present invention, and with the samples prepared according to the same procedure with ⁇ 2 particles (P-25 Degussa), with the substrates PMMA-HD6® (solid line) and PMMA-HD2® (dashed line). With quantities on substrates of 2mg / cm 2 .
  • Figure 5 Distribution of diameters ( ⁇ ) of silicon colloids used to calculate the average effective section of Figure 6. The distribution is centered around 2.5 microns and has a width (or) of 0.75 microns.
  • Figure 6 Emitting power of the human body (curve below) as a function of the wavelength calculated from Planck's law, considering that it is a black body that is at a temperature of 37 ° C. Top curve It corresponds to a calculation of the effective Wed scattering section averaged according to the distribution of colloid diameters in Figure 5. In both curves the maximum is centered around 9.3 microns.
  • Optical transmittance measurements have been performed both in the Infrared, by Fourier transform Infrared Spectroscopy (FTIR), and in the ultraviolet range. (UV)
  • FTIR Fourier transform Infrared Spectroscopy
  • UV ultraviolet range
  • the optical measurements presented in this document have been made on thin layers of the different sunscreen preparations, of the same thickness on glass substrates and PMMA substrates (Helioplate® HD6 (roughness of 6 microns), Helioplate HD2 (roughness 2 microns) - Helioscreen), which simulate the skin.
  • the amounts of preparation applied on the substrates vary between 2 mg / cm 2 (on PMMA) and 1 1 mg / cm 2 (on glass).
  • the silicon microspheres with size distribution according to the curve of Figure 1 were synthesized according to the procedure detailed in patent application ES2331824 and in the publication: "Fenollosa R., et al., Adv. Mater. 20, 95 -98,2008 ", and they were subjected to a grinding in order to obtain microparticles as loose as possible and without the presence of aggregates. These microspheres give rise to an average Wed scattering section in the Near infrared illustrated in Figure 2. This scattering is responsible for shielding solar infrared radiation.
  • This example describes the preparation of an oil-in-water (O / W) emulsion with silicon microparticles as an active compound and its optical properties in the Infrared range between 850 nm and 2.2 microns and the UV of 280nm at 450 nm.
  • O / W oil-in-water
  • methylcellulose 0.3% by weight of methylcellulose is dissolved in water at 70 ° C, with stirring. Once a homogeneous solution is obtained, 4% self-emulsifiable glyceride monostearate is added while stirring.
  • the silicon microparticles are added to the aqueous solution (between 0.8 and 1% by weight with respect to the total weight of the emulsion) under strong mechanical agitation (3000 rpm).
  • mineral oil is added gradually (between 20-30% by weight with respect to the total weight) while stirring vigorously for another 10-15 minutes.
  • the preparation obtained has a creamy and smooth touch due to the regular geometry of the silicon microspheres.
  • optical transmission values are obtained between 5% (1 ⁇ ) and 10% (2.2 ⁇ ).
  • FIG. 3 the results of optical transmission in the IR range are compared with emulsions of the present invention prepared with silicon microparticles (example 1) and with emulsions prepared with ⁇ 2 particles (P25 Degussa) with the same weight percentage than that of silicon microspheres, on glass substrates and PMMA-HD6® by varying the amounts of emulsion distributed by area (1 1 mg / cm2 and 2mg / cm2 respectively).
  • Figure 4 compares the results of optical transmission in the UV range, with integrating sphere, obtained with 2mg / cm2 of the preparations containing the silicon microparticles of the present invention and of the preparations containing the Ti0 2 particles (P25 Degussa ) with the same weight percentage as silicon microparticles, on PMMA-HD6® substrates (6 ⁇ roughness) (continuous line) and PMMA-HD2 (2 ⁇ roughness) (dashed line).
  • This example describes the preparation of an aqueous base cream with silicon microparticles as an active compound, and its optical properties in the range of Infrared between 850 nm and 2.2 microns and UV 280nm at 450 nm.
  • the results of the optical transmissions with different quantities (1 1 mg / cm 2 and 2 mg / cm 2 ) distributed on glass and PMMA-HD® plates are shown respectively
  • methylcellulose 0.3% by weight of methylcellulose is dissolved in water at 70 ° C, with stirring (2000 rpm). Once a homogeneous solution is obtained, 4% of self-emulsifiable glyceride monostearate is added while stirring.
  • the silicon microparticles are added to the aqueous solution (between 0.8 and 1% by weight with respect to the total weight) under strong mechanical agitation (3000 rpm).
  • Samples prepared in the form of an aqueous cream, containing silicon microspheres and object of the present invention were analyzed optically by infrared spectroscopy in the range between 0.85 ⁇ and 2.2 ⁇ considering the substrates (glass or PMMA-HD) as a reference, and varying the amounts of cream spread by area (11 mg / cm 2 and 2 mg / cm 2 respectively).
  • the sample containing 0.8% by weight of silicon microspheres and with amounts of cream of 1 1 mg / cm 2 (on glass) optical transmission values are obtained between 33% (1 ⁇ ) and 27% (2.2 ⁇ ).
  • the prepared samples object of the present invention were optically analyzed by UV spectroscopy, with integrating sphere, in the range between 280 nm and 450 nm considering air as reference. Preparation amounts of 2mg / cm 2 were used .
  • Table 1 summarizes and compares the results of optical transmission in the IR range obtained with the creams prepared with silicon microparticles of the present invention and Ti02 particles (P25 Degussa), on glass substrates and PMMA-HD6® varying the amounts of emulsion distributed by area (1 1 mg / cm 2 and 2 mg / cm 2 respectively).
  • Table 2 summarizes and compares the results of optical transmission in the UV range, with integrating sphere, obtained with 2 mg / cm 2 of the preparations containing the silicon microparticles of the present invention and 2mg / cm 2 of the preparations containing Ti0 2 particles (P25 Degussa) on PMMA-HD6® substrates (6 ⁇ roughness) and PMMA-HD2 (2 ⁇ roughness).
  • This example describes the preparation of an oil with silicon microparticles as an active compound and the optical properties of this same preparation in the range of Infrared between 850 nm and 2.2 microns and UV 280nm at 450 nm. The results of the optical transmissions of the preparations with different quantities per area on glass plates and roughness PMMA of 6 microns are shown.
  • the oil samples prepared with silicon microspheres and object of the present invention were analyzed optically by infrared spectroscopy in the range between 0.85 ⁇ and 2.2 ⁇ considering the substrate (glass or PMMA-HD) as a reference. With the oil sample containing 0.8% by weight of silicon microspheres and prepared with 1 1 mg / cm2 on glass, optical transmission values of 78-79% are obtained.
  • the oil samples prepared with silicon microspheres and object of the present invention were analyzed optically by UV spectroscopy, with integrating sphere, in the range between 280 nm and 450 nm considering the Air as a reference.
  • Two types of substrates with roughness of 6 (HD6) and 2 microns (HD2), and preparation amounts of 2 mg / cm 2 were used .
  • optical transmission values are obtained between 48% (280 nm) and 76% (450nm) .
  • Example of a cream to maintain body heat Examples of sunscreen creams made above are based on a distribution of colloid diameters centered around 1.8 microns and with a size dispersion of 30% (see figure 1). This size distribution shields infrared light from solar radiation with near-infrared wavelengths. If a different size distribution is chosen, for example a distribution like that of Figure 5, with an average size of about 2.5 microns and with a 30% dispersion, a cream developed from these colloids would resemble infrared radiation with a wavelength of 9.5 microns, which is precisely the radiation emitted by the human body. Therefore this cream can be used to maintain body heat.
  • Figure 6 illustrates these reasonings: the curve below shows the radiation of the human body (at 37 ° C) calculated from Planck's law assuming it is a black body and the curve above shows the effective scattering section Average Wed which gives rise to the size distribution of Figure 5. It is observed that the radiation and scattering maximums respectively coincide and are located around 9.5 microns.

Abstract

The invention relates to the use of silicon microspheres having diameters of between 0.2 and 50 µm as a filter and/or thermoregulator of electromagnetic radiation with a wavelength of between 280 nm and 180 µm, specifically UVA, UVB by absorption and IR by reflection. The invention also relates to compositions, which may be pharmaceutical or cosmetic, that include said silicon microspheres and to the methods for obtaining same.

Description

COMPOSICIÓN FOTOPROTECTORA DE RADIACIONES UV/VIS/IR CON MICROESFERAS DE SILICIO COMO COMPUESTO ACTIVO  UV / VIS / IR RADIATION PHOTOPROTECTOR COMPOSITION WITH SILICON MICROSPHERAS AS ACTIVE COMPOUND
La presente invención se refiere al uso de unas microesferas de silicio como filtro solar de radiaciones UVA, UVB por absorción e IR por reflexión. La invención se refiere también a unas composiciones farmacéuticas y cosméticas que comprenden dichas microesferas de silicio y a sus procedimientos de obtención. ESTADO DE LA TÉCNICA ANTERIOR The present invention relates to the use of silicon microspheres as a sunscreen of UVA, UVB absorption and IR reflection radiation. The invention also relates to pharmaceutical and cosmetic compositions comprising said silicon microspheres and their methods of production. STATE OF THE PREVIOUS TECHNIQUE
Hoy en día es bien conocido que la piel es sensible a la luz solar, la cual puede causar distintas alteraciones en función de la radiación que recibe. El espectro electromagnético de la radiación solar se descompone en 3 tipos de luz: el ultravioleta (UV), el visible (VIS) y el Infrarrojo (IR). Nowadays it is well known that the skin is sensitive to sunlight, which can cause different alterations depending on the radiation it receives. The electromagnetic spectrum of solar radiation is broken down into 3 types of light: ultraviolet (UV), visible (VIS) and Infrared (IR).
Por convención, la radiación solar UV se divide en 3 zonas denominadas: By convention, UV solar radiation is divided into 3 zones called:
- UVC, correspondiente a rayos con longitudes de onda inferiores a 290 nm, los cuales son absorbidos por el ozono de la capa atmosférica sin llegar a la corteza terrestre.  - UVC, corresponding to rays with wavelengths lower than 290 nm, which are absorbed by the ozone of the atmospheric layer without reaching the earth's crust.
- UVB, correspondiente a longitudes de onda entre 290 y 320 nm, que ocasionan eritemas, y quemaduras de distintos grados en la piel.  - UVB, corresponding to wavelengths between 290 and 320 nm, causing erythema, and burns of varying degrees on the skin.
- UVA, correspondiente a longitudes de onda entre 320 y 400 nm, que son responsables de procesos de envejecimiento prematuro de la piel, y de propiciar cánceres y numerosas reacciones fototóxicas y fotoalérgicas.  - UVA, corresponding to wavelengths between 320 and 400 nm, which are responsible for premature skin aging processes, and to promote cancers and numerous phototoxic and photoallergic reactions.
Desde que aparecieron las primeras cremas solares al final de los años 60, el campo de la protección solar ha ido evolucionando hacia productos capaces no solo de apantallar los rayos UVB sino también los UVA. Típicamente los agentes de protección solar suelen ser compuestos orgánicos cromóforos (filtros químicos) que absorben muy bien los UVB y en menor medida los UVA, o compuestos inorgánicos particulados (filtros físicos) los cuales son muy eficaces para el bloqueo de los UVA por reflexión y dispersión de la luz. Con lo cual, una formulación híbrida del protector solar con filtros químicos y físicos puede ser idónea para el apantallamiento de una zona amplia de la radiación del espectro solar. Since the first sun creams appeared at the end of the 60s, the field of sun protection has evolved towards products capable of not only shielding UVB rays but also UVA. Typically sunscreen agents are usually organic chromophores compounds (chemical filters) that absorb UVB very well and to a lesser extent UVA, or particulate inorganic compounds (physical filters) which are very effective for blocking UVAs by reflection and light scattering. Thus, a hybrid formulation of the sunscreen with chemical and physical filters may be suitable for shielding a wide area of solar spectrum radiation.
Los filtros físicos suelen ser óxidos metálicos y comparados con las moléculas orgánicas de los filtros provocan pocas irritaciones y son fisiológicamente inertes, con lo cual están presentes en la mayoría de las formulaciones de cremas solares. Los más comunes son partículas de ΤΊΟ2 (dióxido de titanio) o ZnO (óxido de cinc) de cuyo tamaño depende las radiaciones que bloquean, interactuando fuertemente con longitudes de onda de valor aproximadamente el doble del diámetro de la partícula. El gran inconveniente, desde el punto de vista estético, es el efecto blanquecino que producen sobre la piel las preparaciones a base de partículas de tamaño grande (las más efectivas contra la luz visible) debido a que el ΤΊΟ2, y en menor medida el ZnO, tienen un fuerte efecto difusor de la luz visible. Ese inconveniente se ha ido solucionando con el uso cada vez mas generalizado de partículas nanométricas que confieren al producto transparencia (10-100 nm para T1O2 y 30-200 nm para ZnO) y desplaza su actividad a la zona del UV. Sin embargo, debido al tamaño de estas partículas, algunos informes alertan de su posible penetración en el organismo. Otros estudios, por el contrario, minimizan este efecto sobre todo cuando se compara con la toxicidad de algunos compuestos orgánicos presentes en protectores solares (A. Nel et al. Critical reviews in toxicology, 37, 521 -277, 2007; X. Deng et al. Nanotechnoloqy, 20, 1 15101 , 2009). The physical filters are usually metal oxides and compared to the organic molecules of the filters cause few irritations and are physiologically inert, which are present in most sunscreen formulations. The most common are particles of ΤΊΟ2 (titanium dioxide) or ZnO (zinc oxide) whose size depends on the radiation they block, interacting strongly with wavelengths of approximately twice the diameter of the particle. The great drawback, from the aesthetic point of view, is the whitish effect produced by large-sized particle preparations (the most effective against visible light) on the skin due to the fact that ,2, and to a lesser extent ZnO , have a strong diffusing effect of visible light. This problem has been solved with the increasingly widespread use of nanometric particles that give the product transparency (10-100 nm for T1O2 and 30-200 nm for ZnO) and shifts its activity to the UV zone. However, due to the size of these particles, some reports warn of their possible penetration into the body. Other studies, on the other hand, minimize this effect especially when compared to the toxicity of some organic compounds present in sunscreens (A. Nel et al. Critical reviews in toxicology, 37, 521-277, 2007; X. Deng et al. Nanotechnoloqy, 20, 1 15101, 2009).
Además, en ciertos estudios se ha comprobado que las nanopartículas de óxidos metálicos producen reacciones alérgicas en ciertos individuos y su naturaleza fotocatalítica es bien conocida por los químicos, en particular las de ΤΊΟ2 que podrían generar radicales libres mediante la luz UV. Para minimizar este problema, varios estudios se han centrado en recubrir la capa externa de las partículas con otro material como por ejemplo polímeros o dióxido de manganeso (Mn02) (Eusolex T-PRO®, Merck Chemicals) activo con secuestrante de radicales libres. Otras partículas de ΤΊΟ2 han sido revestidas con capas de S1O2 o AI2O3, los cuales forman óxidos hidratados que pueden capturar radicales de hidroxilo, y reducir por lo tanto las reacciones en la superficie. Sin embargo algunas preparaciones de ΤΊΟ2/ΑΙ2Ο3 y TÍO2/S1O2 han mostrado un aumento de actividad fotocatalítica. In addition, certain studies have shown that metal oxide nanoparticles produce allergic reactions in certain individuals and their photocatalytic nature is well known to chemists, particularly those of ΤΊΟ2 that could generate free radicals by UV light. To minimize this problem, several studies have focused on coating the outer layer of particles with another material such as polymers or manganese dioxide (Mn0 2 ) (Eusolex T-PRO®, Merck Chemicals) active with free radical sequestrant. Other ΤΊΟ2 particles have been coated with layers of S1O2 or AI2O3, which form hydrated oxides that can capture hydroxyl radicals, and therefore reduce surface reactions. However, some preparations of ΤΊΟ2 / ΑΙ2Ο3 and TIO2 / S1O2 have shown an increase in photocatalytic activity.
En ese sentido, recientes investigaciones de A.O. Rybaltovskii et al, Optics and Spectroscopy, 101 ,590-596, 2006; y en US2007/0102282, proponen el empleo de nanoclústeres de partículas de silicio como protector UV, subrayando su respeto por el medioambiente debido a su capacidad de obstaculizar la formación de compuesto biológicos nocivos durante la degradación inducida por la radiación UV de componentes de cremas solares. In that sense, recent research by A.O. Rybaltovskii et al, Optics and Spectroscopy, 101, 590-596, 2006; and in US2007 / 0102282, they propose the use of nanoclusters of silicon particles as a UV protector, underlining their respect for the environment due to their ability to hinder the formation of harmful biological compounds during the UV-induced degradation of sunscreen components .
Aunque las investigaciones en el campo de los protectores solares se hayan centrado principalmente en el desarrollo de productos de protección contra las radiaciones UVB y UVA, hay que tener en cuenta que los rayos con longitudes de onda situadas en la zona entre 400 y 800 nm (zona VIS) y por encima (IR) también pueden penetrar la piel y una exposición crónica puede causar daños y contribuir a los procesos de envejecimiento de la piel o propiciar melanomas (H.M. Bassel et al. Photochemistrv and Photobioloqy, 84, 450-462, 2008; P. Schroederet al. en Skin Aqinq, Eds B. Gilchrest, J. Krutmann. Springer, Berlín, 45-53, 2006). Although research in the field of sunscreens has mainly focused on the development of UVB and UVA radiation protection products, it should be borne in mind that rays with wavelengths located in the area between 400 and 800 nm ( VIS zone) and above (IR) can also penetrate the skin and chronic exposure can cause damage and contribute to skin aging processes or lead to melanomas (HM Bassel et al. Photochemistrv and Photobioloqy, 84, 450-462, 2008; P. Schroederet al. In Skin Aqinq, Eds B. Gilchrest, J. Krutmann, Springer, Berlin, 45-53, 2006).
En el rango de la radiación visible (VIS), aparte de las partículas de óxidos metálicos de tamaño adecuado para la reflexión de ese tipo de luz, como ZnO y TiO2 (Hombitec®, Sachotec®, ...), se han propuesto desde colorantes que absorben luz de diferente longitud de onda (azules, rojos, amarillos...) y que utilizados solos o en mezcla confieren a la piel un color natural, hasta flavonoides. Los efectos biológicos de la radiación IR (que también se divide por convención entre IR-A (760 - 1400 nm), IR-B (1400 - 3000 nm) e IR-C (3000 nm -1 mm)) en realidad son aún poco conocidos y los resultados de las investigaciones al respecto están llenas de controversias. La radiación IR potenciaría los efectos nocivos de los UV actuando en sinergia. Sin embargo, otros estudios apuntan hacia un efecto protector de la radiación IR contra los daños de la radiación UV. No obstante, cabe señalar que la luz con longitud de onda en la zona del infrarrojo es la radiación térmica, la cual provoca el enrojecimiento y calentamiento de la piel que caracterizan el eritema térmico: penetran la epidermis, alcanzan la red vascular activando la microcirculación y producen una inmediata vasodilatación. Por esas razones, existe gran interés en investigar los efectos de la radiación IR sobre la piel y desarrollar productos capaces de apantanarla y actuar como termorreguladores. Algunos filtros reivindican una protección contra la radiación infrarroja. Por ejemplo, se han empleado partículas reflectantes de infrarrojo como los llamados pigmentos de brillo perlado en las patentes ES2089356 y US6187298. Se trata de partículas con estructura de capas u hojuelas hechas generalmente de mica como material soporte recubierto de ΤΊΟ2 o de SnÜ2 de distintos espesores y que pueden ser dopados con hierro o cerio. In the range of visible radiation (VIS), apart from metal oxide particles of adequate size for the reflection of this type of light, such as ZnO and TiO 2 (Hombitec®, Sachotec®, ...), they have been proposed from dyes that absorb light of different wavelengths (blue, red, yellow ...) and that used alone or in mixture give the skin a natural color, to flavonoids. The biological effects of IR radiation (which is also divided by convention between IR-A (760 - 1400 nm), IR-B (1400 - 3000 nm) and IR-C (3000 nm -1 mm)) are actually still little known and the results of investigations in this regard are full of controversies. IR radiation would enhance the harmful effects of UV acting in synergy. However, other studies point to a protective effect of IR radiation against damage from UV radiation. However, it should be noted that the light with wavelength in the infrared zone is thermal radiation, which causes the redness and heating of the skin that characterize the thermal erythema: they penetrate the epidermis, reach the vascular network activating the microcirculation and produce immediate vasodilation. For these reasons, there is great interest in investigating the effects of IR radiation on the skin and developing products capable of screening it and acting as thermoregulators. Some filters claim protection against infrared radiation. For example, infrared reflective particles such as so-called pearl luster pigments have been used in patents ES2089356 and US6187298. These are particles with layers or flakes structure generally made of mica as a support material coated with ΤΊΟ2 or SnÜ2 of different thicknesses and which can be doped with iron or cerium.
El T1O2 en su estructura tipo rutilo tiene un alto poder protector de la radiación IR dada su propiedad reflectante para esas longitudes de ondas (esta propiedad está ausente cuando su estructura cristalina es anatasa). Esto confiere a los protectores solares que lo contienen, propiedades anti-eritema mayores (L. Violin, et al, International Journal of Cosmetic Science, 16, 1 13- 120, 1994). No obstante, son todavía pocos los desarrollos de filtros de la radiación IR. De todo lo descrito anteriormente, se destaca la ausencia de un compuesto único capaz de abarcar un amplio rango de protección desde la radiación UV hasta la radiación térmica (IR) y que sea totalmente inocuo. DESCRIPCIÓN DE LA INVENCIÓN The T1O2 in its rutile-like structure has a high protective power against IR radiation given its reflective property for those wavelengths (this property is absent when its crystalline structure is anatase). This gives the sunscreens that contain it greater anti-erythema properties (L. Violin, et al, International Journal of Cosmetic Science, 16, 1, 13-120, 1994). However, there are still few developments of IR radiation filters. From all of the above, the absence of a single compound capable of covering a wide range of protection from UV radiation to thermal radiation (IR) and which is totally harmless stands out. DESCRIPTION OF THE INVENTION
La presente invención proporciona un nuevo uso de unas microesferas de silicio (cuya descripción y procedimiento de síntesis se detalla en la solicitud de patente ES2331824 y en la publicación: Fenollosa R., et al., Adv. Mater., 20, 95-98,2008), como composiciones protectoras de la luz solar, eficaces contra la radiación de amplio espectro (UVA+UVB), así como de la radiación IR. Estas composiciones tienen como componente o principio activo microesferas de silicio de un tamaño comprendido entre 0,2 μηι y 50 μηπ, capaces de absorber la radiación UV y reflejar la radiación térmica IR confiriendo un efecto termorregulador. The present invention provides a new use of silicon microspheres (whose description and synthesis procedure is detailed in patent application ES2331824 and in the publication: Fenollosa R., et al., Adv. Mater., 20, 95-98 , 2008), as protective compositions of sunlight, effective against broad-spectrum radiation (UVA + UVB), as well as IR radiation. These compositions have as an active component or principle silicon microspheres of a size between 0.2 μηι and 50 μηπ, capable of absorbing UV radiation and reflecting IR thermal radiation conferring a thermoregulatory effect.
De esta forma, la invención proporciona el uso de microesferas de silicio como filtro solar de radiaciones UVA, UVB por absorción e IR por reflexión, proporcionando a su vez unas composiciones farmacéuticas y cosméticas que comprenden dichas microesferas de silicio y sus procedimientos de obtención. Estas composiciones pueden actuar como protectores solares en un amplio rango de la radiación electromagnética y como termorreguladores. Es decir, que ofrecen una protección contra los efectos nocivos del sol, tanto en la zona UV como en la zona de mayores longitudes de onda (VIS e IR) del espectro solar y a su vez permiten, por reflexión de la radicación infrarroja, mantener una temperatura constante en la piel u otras superficies donde se apliquen las preparaciones de la presente invención. Por tanto, un primer aspecto de la presente invención se refiere al uso de microesferas de silicio con diámetro de entre 0,2 y 50 μηι como filtro solar y/o como termorregulador, con capacidad para filtrar radiación electromagnética de longitud de onda comprendida entre 280 nm y 180 μηπ. Preferiblemente estas radiaciones pertenecen al rango de longitudes de onda del UVA, UVB, VIS e IR, y más preferiblemente UVA, UVB e IR. Por "filtro solar" en la presente invención se entiende una sustancia que refleja o absorbe la radiación solar impidiendo que ésta penetre en la superficie a proteger y/o actúa reflejando o absorbiendo la radiación solar y transformándola en otro tipo de energía que no resulte nociva para dicha superficie. In this way, the invention provides the use of silicon microspheres as a sunscreen of UVA, UVB by absorption and IR radiation by reflection, while providing pharmaceutical and cosmetic compositions comprising said silicon microspheres and their methods of obtaining. These compositions can act as sunscreens in a wide range of electromagnetic radiation and as thermoregulators. That is, they offer protection against the harmful effects of the sun, both in the UV zone and in the area of longer wavelengths (VIS and IR) of the solar spectrum and in turn allow, by reflection of the infrared radiation, to maintain a constant temperature on the skin or other surfaces where the preparations of the present invention are applied. Therefore, a first aspect of the present invention relates to the use of silicon microspheres with a diameter between 0.2 and 50 μηι as a solar filter and / or as a thermoregulator, with the capacity to filter electromagnetic radiation of wavelength between 280 nm and 180 μηπ. Preferably these radiations belong to the wavelength range of UVA, UVB, VIS and IR, and more preferably UVA, UVB and IR. By "sunscreen" in the present invention is meant a substance that reflects or absorbs solar radiation preventing it from entering the surface to be protected and / or acting by reflecting or absorbing solar radiation and transforming it into another type of energy that is not harmful for that surface.
Por "termorregulador" se entiende sustancias que permiten mantener la temperatura constante en una superficie donde se aplique, mediante la reflexión de la radicación infrarroja. The term "thermoregulator" means substances that keep the temperature constant on a surface where it is applied, by means of the reflection of the infrared radiation.
Las microesferas de silicio utilizadas en la presente invención son micropartículas de forma esférica con una superficie muy regular y lisa. Estas microesferas pueden haber sido sometidas a tratamientos de modificación de la superficie, por ejemplo un aumento del carácter hidrofílico. The silicon microspheres used in the present invention are spherical microparticles with a very regular and smooth surface. These microspheres may have undergone surface modification treatments, for example an increase in hydrophilic character.
Una realización preferida de la presente invención, comprende las microesferas de silicio para su uso como una composición farmacéutica. Más preferiblemente, las microesferas de silicio se utilizan como una composición farmacéutica para la prevención de quemaduras o daños solares. Aún más preferiblemente cuando las quemaduras o daños solares se producen sobre piel y/o cabello. A preferred embodiment of the present invention comprises silicon microspheres for use as a pharmaceutical composition. More preferably, silicon microspheres are used as a pharmaceutical composition for the prevention of sunburn or damage. Even more preferably when sunburn or damage occurs on skin and / or hair.
Por "daños solares" se refiere a patologías provocadas por la exposición al sol, por ejemplo se pueden seleccionar entre queratosis actínica o cáncer de piel. Pueden producirse diferentes tipos de cáncer de piel, por ejemplo carcinoma basocelular (también llamado Epitelioma basocelular), carcinoma espinocelular (también llamado Epitelioma espinocelular) o melanoma. En una realización preferida, esta composición farmacéutica se encuentra en la forma adecuada para su administración tópica. Tales composiciones y/o sus formulaciones pueden administrarse a un animal, incluyendo un mamífero y, por tanto, al hombre, mediante soluciones, soluciones hidroalcohólicas, emulsiones, lociones, pomadas, geles, cremas que pueden ser lipofílicas o hidrofílicas, pastas o cualquier otra forma adecuada conocida por cualquier experto en la materia. Preferiblemente es una loción o una crema, que puede ser lipofílica o hidrofílica. By "sun damage" refers to pathologies caused by exposure to the sun, for example they can be selected from actinic keratosis or skin cancer. Different types of skin cancer can occur, for example basal cell carcinoma (also called basal cell epithelioma), squamous cell carcinoma (also called spinocellular epithelioma) or melanoma. In a preferred embodiment, this pharmaceutical composition is in the form suitable for topical administration. Such compositions and / or their formulations can be administered to an animal, including a mammal and, therefore, to man, by solutions, hydroalcoholic solutions, emulsions, lotions, ointments, gels, creams that can be lipophilic or hydrophilic, pastes or any other. suitable form known to any expert in the field. Preferably it is a lotion or a cream, which can be lipophilic or hydrophilic.
Se entiende por "loción" en la presente invención a un preparado elaborado con un vehículo acuoso o de bajo contenido en alcohol que contiene sustancias disueltas o en forma de suspensión. "Lotion" in the present invention is understood as a preparation made with an aqueous or low-alcohol vehicle containing dissolved or suspended substances.
Por "crema" se entiende en la presente invención a una preparación multifase constituida por una fase lipofílica y una fase acuosa. Las cremas se clasifican a su vez en: By "cream" is meant in the present invention a multiphase preparation consisting of a lipophilic phase and an aqueous phase. Creams are classified in turn into:
- Cremas lipofílicas: la fase continua es la lipofílica, estas emulsiones son conocidas por W/O (agua en aceite)  - Lipophilic creams: the continuous phase is lipophilic, these emulsions are known by W / O (water in oil)
Cremas hidrofílicas: la fase continua es acuosa, estas emulsiones son conocidas O/W ( aceite en agua) La dosificación para obtener una cantidad terapéuticamente efectiva depende de una variedad de factores, como por ejemplo, la edad, tipo de piel, tolerancia, etc.. En el sentido utilizado en esta descripción, la expresión "cantidad terapéuticamente efectiva" se refiere a la cantidad de la composición de la invención que produzca el efecto deseado y, en general, vendrá determinada, entre otras cosas, por las características propias de dicha composición y el efecto terapéutico a conseguir. Se contempla que las composiciones de la presente invención puedan ser composiciones farmacéuticas, que comprenden una cantidad terapéuticamente efectiva de las microesferas de silicio, junto con, una cantidad terapéuticamente efectiva de un vehículo farmacéutico.  Hydrophilic creams: the continuous phase is aqueous, these emulsions are known O / W (oil in water) The dosage to obtain a therapeutically effective amount depends on a variety of factors, such as age, skin type, tolerance, etc. .. In the sense used in this description, the term "therapeutically effective amount" refers to the amount of the composition of the invention that produces the desired effect and, in general, will be determined, inter alia, by the characteristics of said composition and the therapeutic effect to be achieved. It is contemplated that the compositions of the present invention may be pharmaceutical compositions, which comprise a therapeutically effective amount of the silicon microspheres, together with, a therapeutically effective amount of a pharmaceutical carrier.
Por "composición farmacéutica" se entiende en la presente invención por un compuesto que contenga al menos una sustancia química de alta pureza utilizada en la prevención de una enfermedad, o para evitar la aparición de un proceso fisiológico no deseado. By "pharmaceutical composition" is meant in the present invention a compound that contains at least one high purity chemical used in the prevention of a disease, or to prevent the appearance of an unwanted physiological process.
En otra realización preferida, las microesferas de silicio se emplean para la elaboración de una composición cosmética. En una realización más preferida la composición cosmética se usa para la prevención de manchas y envejecimiento prematuro de la piel/o cabello y otros efectos adversos, sobre la piel y/o el cabello, de las radiaciones solares. Al igual que la composición farmacéutica, la composición cosmética se encuentra en la forma adecuada para su administración tópica. In another preferred embodiment, the silicon microspheres are used for the preparation of a cosmetic composition. In a more preferred embodiment the cosmetic composition is used for the prevention of spots and premature aging of the skin / or hair and other adverse effects, on the skin and / or hair, of solar radiation. Like the pharmaceutical composition, the cosmetic composition is in the form suitable for topical administration.
Por "composición cosmética" se entiende en la presente invención un producto utilizado para la higiene corporal o con la finalidad de mejorar la belleza, especialmente del rostro, cuerpo, labios, etc. By "cosmetic composition" is meant in the present invention a product used for body hygiene or for the purpose of improving beauty, especially of the face, body, lips, etc.
Otro uso preferido de las microesferas de silicio es para la fabricación de una composición protectora de todo tipo de materiales. Siendo dichos materiales a proteger seleccionados entre naturales, sintéticos o cualquiera de sus combinaciones. Los materiales pueden ser maderas, plásticos, metales o aleaciones, etc., sus combinaciones, o cualquier otro tipo de material conocido por cualquier experto en la materia. Estas composiciones actúan como barrera de protección contra el envejecimiento y el deterioro, de estos materiales, debido a las radiaciones electromagnéticas que pudieran estar incidiendo sobre ellos. Another preferred use of silicon microspheres is for the manufacture of a protective composition of all types of materials. These materials being protected selected from natural, synthetic or any combination thereof. The materials may be wood, plastics, metals or alloys, etc., their combinations, or any other type of material known to any person skilled in the art. These compositions act as a protective barrier against aging and deterioration of these materials, due to the electromagnetic radiation that could be affecting them.
En los usos mencionados anteriormente el empleo de estas microesferas es como componente activo, ya que actúa como filtro solar y de otras radicaciones electromagnéticas, absorbiendo, sobre todo, las radiaciones UVA, UVB y reflejando las radiaciones IR. In the above-mentioned uses, the use of these microspheres is as an active component, since it acts as a sunscreen and other electromagnetic radiation, absorbing, above all, UVA, UVB radiation and reflecting IR radiation.
En la presente invención, al ser las microesferas un filtro físico, presentan la ventaja de no provocar irritaciones y de ser fisiológicamente inertes. Y al ser partículas pequeñas de tamaño micrométrico además van a tener la ventaja adicional de evitar que la composición quede con aspecto blanquecino al aplicarse. A su vez, al ser micrométricas no llegan a provocar alergias como es el caso de las partículas nanométricas de ΤΊΟ2 o ZnO. In the present invention, being microspheres a physical filter, they have the advantage of not causing irritation and of being physiologically inert. And being Small particles of micrometer size will also have the additional advantage of preventing the composition from looking whitish when applied. In turn, being micrometric they do not cause allergies such as the nanometric particles of ΤΊΟ2 or ZnO.
Un segundo aspecto de la presente invención se refiere a una composición farmacéutica que comprende microesferas de silicio con diámetros entre 0,2 y 50 μηπ, además de un vehículo farmacéuticamente efectivo. En una realización más preferida las microesferas de silicio tienen diámetros entre 0,2 y 5 μηπ. A second aspect of the present invention relates to a pharmaceutical composition comprising silicon microspheres with diameters between 0.2 and 50 μηπ, in addition to a pharmaceutically effective vehicle. In a more preferred embodiment the silicon microspheres have diameters between 0.2 and 5 μηπ.
El porcentaje en peso de las microesferas de silicio preferiblemente es de entre el 0,5 y el 5%, más preferiblemente de entre el 0,8 y el 2% con respecto al peso de la composición final. The percentage by weight of the silicon microspheres is preferably between 0.5 and 5%, more preferably between 0.8 and 2% with respect to the weight of the final composition.
La dosificación para obtener una cantidad terapéuticamente efectiva depende de una variedad de factores, como por ejemplo, la edad, tipo de piel, tolerancia, etc.. En el sentido utilizado en esta descripción, la expresión "cantidad terapéuticamente efectiva" se refiere a la cantidad de la composición de la invención que produzca el efecto deseado y, en general, vendrá determinada, entre otras cosas, por las características propias de dicha composición y el efecto terapéutico a conseguir. Se contempla que las composiciones de la presente invención puedan ser composiciones farmacéuticas, que comprenden una cantidad terapéuticamente efectiva de las microesferas de silicio, junto con, una cantidad terapéuticamente efectiva de un vehículo farmacéutico. The dosage to obtain a therapeutically effective amount depends on a variety of factors, such as age, skin type, tolerance, etc. In the sense used in this description, the expression "therapeutically effective amount" refers to the amount of the composition of the invention that produces the desired effect and, in general, will be determined, among other things, by the characteristics of said composition and the therapeutic effect to be achieved. It is contemplated that the compositions of the present invention may be pharmaceutical compositions, which comprise a therapeutically effective amount of the silicon microspheres, together with, a therapeutically effective amount of a pharmaceutical carrier.
La composición farmacéutica en una realización preferida está caracterizada por comprender además al menos otro componente seleccionado de entre espesante, emulsificante, hidratante, colorante o cualquiera de sus combinaciones. Esta composición farmacéutica en una realización preferida está en forma adecuada para su administración tópica, como se ha descrito anteriormente. Siendo en otra realización más preferida caracterizado por ser una loción, o una crema lipofílica o hidrofílica. The pharmaceutical composition in a preferred embodiment is characterized by further comprising at least one other component selected from thickener, emulsifier, moisturizer, colorant or any combination thereof. This pharmaceutical composition in a preferred embodiment is in a form suitable for topical administration, as described above. Being in another more preferred embodiment characterized by being a lotion, or a lipophilic or hydrophilic cream.
Un tercer aspecto de la presente invención hace referencia a una composición cosmética que comprende microesferas de silicio con diámetros entre 0,2 y 50 μηπ. En una realización preferida las microesferas de silicio tienen diámetros entre 0,5 y 5 μηπ. A third aspect of the present invention refers to a cosmetic composition comprising silicon microspheres with diameters between 0.2 and 50 μηπ. In a preferred embodiment the silicon microspheres have diameters between 0.5 and 5 μηπ.
El porcentaje en peso de las microesferas de silicio es preferiblemente de entre el 0,5 y el 5%. Y más preferiblemente de entre el 0,8 y el 2% con respecto a la composición cosmética final. The percentage by weight of the silicon microspheres is preferably between 0.5 and 5%. And more preferably between 0.8 and 2% with respect to the final cosmetic composition.
La composición cosmética de la presente invención puede comprender además al menos un aditivo que se selecciona entre espesantes, emulsificantes, hidratantes, colorantes o cualquiera de sus combinaciones. The cosmetic composition of the present invention may further comprise at least one additive that is selected from thickeners, emulsifiers, moisturizers, dyes or any combination thereof.
La composición cosmética preferiblemente se encuentra en forma adecuada para su administración tópica, como se ha definido anteriormente. Más preferiblemente dicha forma adecuada para su administración tópica es una loción, o una crema lipofílica o hidrofílica. The cosmetic composition is preferably in a form suitable for topical administration, as defined above. More preferably said form suitable for topical administration is a lotion, or a lipophilic or hydrophilic cream.
Estas composiciones tanto farmacéuticas como cosméticas pueden contener como componente activo frente a la radiación solar únicamente microesferas de silicio o además contener otros ingredientes protectores como filtros UV químicos y/o filtros físicos conocidos. Se entiende por filtros químicos, compuestos cromoforos que absorben la luz de una longitud de onda determinada, y por filtros físicos, compuestos inorgánicos que reflejan y dispersan la luz. Estas composiciones cosméticas, al igual que las farmacéuticas, se pueden también usar como cremas termorreguladoras. These pharmaceutical and cosmetic compositions may contain only silicon microspheres as active component against solar radiation or also contain other protective ingredients such as chemical UV filters and / or known physical filters. It is understood by chemical filters, chromophore compounds that absorb light of a certain wavelength, and physical filters, inorganic compounds that reflect and scatter the light. These cosmetic compositions, like pharmaceuticals, can also be used as thermoregulatory creams.
Las microesferas de silicio utilizadas para la elaboración de las distintas composiciones farmacéuticas o cosméticas se las puede someter a tratamientos de modificación de la superficie, como por ejemplo un aumento del carácter hidrílico. The silicon microspheres used for the elaboration of the different pharmaceutical or cosmetic compositions can be subjected to surface modification treatments, such as an increase in the hydrophilic character.
Así, pues, un cuarto aspecto de la presente invención se refiere a un procedimiento para la fabricación de una composición farmacéutica o cosmética según se ha descrito anteriormente, donde a las microesferas de silicio se les realiza un pretratamiento de molienda. Thus, a fourth aspect of the present invention relates to a process for the manufacture of a pharmaceutical or cosmetic composition as described above, where silicon microspheres are pretreated by grinding.
En una realización preferida del procedimiento de la presente invención, las microesferas de silicio se adicionan sobre una solución acuosa. En este caso se conseguiría elaborar una loción, o una crema hidrofilica, a la que posteriormente se le adicionará un aceite. In a preferred embodiment of the process of the present invention, silicon microspheres are added over an aqueous solution. In this case it would be possible to make a lotion, or a hydrophilic cream, to which an oil will be added later.
En una realización preferida las microesferas de silicio se añaden a la fase acuosa a una concentración entre 0,5 y 5% en peso. In a preferred embodiment the silicon microspheres are added to the aqueous phase at a concentration between 0.5 and 5% by weight.
También las microesferas de silicio se pueden adicionar preferiblemente sobre una solución acuosa para formar posteriormente una emulsión con aceite, consiguiéndose de esta forma una crema lipofílica. Also the silicon microspheres can preferably be added on an aqueous solution to subsequently form an emulsion with oil, thereby achieving a lipophilic cream.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. DESCRIPCIÓN DE LAS FIGURAS Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention. DESCRIPTION OF THE FIGURES
Figura 1 : Distribución de diámetro de los coloides de silicio utilizados en el desarrollo de las cremas de protección solar. La distribución está centrada alrededor de 1 ,8 mieras y tiene una anchura (σ) de 0,5 mieras. Figure 1: Diameter distribution of silicon colloids used in the development of sunscreen creams. The distribution is centered around 1, 8 microns and has a width (σ) of 0.5 microns.
Figura 2: Sección eficaz de scattering Mié promediada de acuerdo a la distribución de diámetros de coloides de la figura 1 . Figura 3: Espectros ópticos de transmisión obtenidos, en el rango IR, de las muestras preparadas en forma de emulsión O/W, con microesferas de Silicio (0,8 % en peso y con la distribución de tamaños de la figura 1 ) objeto de la presente invención (línea continua), y de las muestras preparadas según el mismo procedimiento con 0,8% en peso de partículas de ΤΊΟ2 (P-25 Degussa) (línea discontinua), con diferentes cantidades sobre los substratos de vidrio (1 1 mg/cm2) y de PMMA-HD6® (2 mg/cm2). Figure 2: Effective Wed scattering section averaged according to the distribution of colloid diameters in Figure 1. Figure 3: Optical transmission spectra obtained, in the IR range, of the samples prepared in the form of an O / W emulsion, with silicon microspheres (0.8% by weight and with the size distribution of Figure 1) object of the present invention (solid line), and of the samples prepared according to the same procedure with 0.8% by weight of ΤΊΟ2 particles (P-25 Degussa) (broken line), with different amounts on the glass substrates (1 1 mg / cm 2 ) and PMMA-HD6® (2 mg / cm 2 ).
Figura 4: Espectros ópticos de transmissión obtenidos, en el rango UV, de las muestras preparadas en forma de emulsiones O/W, con microesferas de Silicio (0,8 % en peso y con la distribución de tamaños de la figura 1 ) objeto de la presente invención, y con las muestras preparadas según el mismo procedimiento con partículas de ΤΊΟ2 (P-25 Degussa), con los substratos PMMA-HD6® (línea continua) y PMMA-HD2® (línea discontinua). Con candidades sobre los substratos de 2mg/cm2. Figure 4: Optical transmission spectra obtained, in the UV range, of the samples prepared in the form of O / W emulsions, with silicon microspheres (0.8% by weight and with the size distribution of Figure 1) object of the present invention, and with the samples prepared according to the same procedure with ΤΊΟ2 particles (P-25 Degussa), with the substrates PMMA-HD6® (solid line) and PMMA-HD2® (dashed line). With quantities on substrates of 2mg / cm 2 .
Figura 5: Distribución de diámetros (Φ) de coloides de silicio utilizados para el cálculo de la sección eficaz promedio de la figura 6. La distribución está centrada alrededor de 2,5 mieras y tiene una anchura (o) de 0,75 mieras. Figura 6: Poder emisivo del cuerpo humano (curva de abajo) en función de la longitud de onda calculado a partir de la ley de Planck, considerando que es un cuerpo negro que está a una temperatura de 37 °C. La curva de arriba corresponde a un cálculo de la sección eficaz de scattering Mié promediada de acuerdo a la distribución de diámetros de coloides de la figura 5. En ambas curvas el máximo está centrado alrededor de 9,3 mieras. EJEMPLOS Figure 5: Distribution of diameters (Φ) of silicon colloids used to calculate the average effective section of Figure 6. The distribution is centered around 2.5 microns and has a width (or) of 0.75 microns. Figure 6: Emitting power of the human body (curve below) as a function of the wavelength calculated from Planck's law, considering that it is a black body that is at a temperature of 37 ° C. Top curve It corresponds to a calculation of the effective Wed scattering section averaged according to the distribution of colloid diameters in Figure 5. In both curves the maximum is centered around 9.3 microns. EXAMPLES
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la especificidad y efectividad de las microesferas de silicio como filtro solar, y las medidas ópticas correspondientes. A modo comparativo, también se presentan los resultados obtenidos con el mismo tipo de preparación pero substituyendo las micropartículas de Silicio por ΤΊΟ2 (P25 Degussa). The invention will now be illustrated by tests carried out by the inventors, which shows the specificity and effectiveness of silicon microspheres as a sunscreen, and the corresponding optical measurements. By way of comparison, the results obtained with the same type of preparation are also presented but replacing the Silicon microparticles with ΤΊΟ2 (P25 Degussa).
A través de los siguientes ejemplos se presentan las propiedades ópticas de varias preparaciones protectoras solares objeto de la presente invención, Se han realizado medidas de transmitancia óptica tanto en el Infrarrojo, mediante espectroscopia Infrarroja con transformada de Fourier (FTIR), como en el rango ultravioleta (UV). Las medidas ópticas presentadas en este documento se han realizado sobre capas finas de las distintas preparaciones de protección solar, de idéntico espesor sobre substratos de vidrio y substratos de PMMA (Helioplate® HD6 (rugosidad de 6 mieras), Helioplate HD2 (rugosidad 2 mieras)- Helioscreen), los cuales simulan la piel. Las cantidades de preparación aplicadas sobre los substratos varían entre 2 mg/cm2 (sobre PMMA) y 1 1 mg/cm2 (sobre vidrio). Through the following examples, the optical properties of various sunscreen preparations object of the present invention are presented. Optical transmittance measurements have been performed both in the Infrared, by Fourier transform Infrared Spectroscopy (FTIR), and in the ultraviolet range. (UV) The optical measurements presented in this document have been made on thin layers of the different sunscreen preparations, of the same thickness on glass substrates and PMMA substrates (Helioplate® HD6 (roughness of 6 microns), Helioplate HD2 (roughness 2 microns) - Helioscreen), which simulate the skin. The amounts of preparation applied on the substrates vary between 2 mg / cm 2 (on PMMA) and 1 1 mg / cm 2 (on glass).
Las microesferas de silicio, con distribución de tamaños según la curva de la figura 1 fueron sintetizadas según el procedimiento detallado en la solicitud de patente ES2331824 y en la publicación: "Fenollosa R., et al., Adv. Mater.. 20, 95-98,2008", y se sometieron a una molienda con el fin de obtener micropartículas lo mas sueltas posible y sin la presencia de agregados. Estas microesferas dan lugar a una sección de scattering Mié promedio en el infrarrojo cercano que se ilustra en la figura 2. Este scattering es el responsable de apantallar la radiación infrarroja solar. The silicon microspheres, with size distribution according to the curve of Figure 1 were synthesized according to the procedure detailed in patent application ES2331824 and in the publication: "Fenollosa R., et al., Adv. Mater. 20, 95 -98,2008 ", and they were subjected to a grinding in order to obtain microparticles as loose as possible and without the presence of aggregates. These microspheres give rise to an average Wed scattering section in the Near infrared illustrated in Figure 2. This scattering is responsible for shielding solar infrared radiation.
Ejemplo 1 Example 1
En este ejemplo se describe la preparación de una emulsión de aceite en agua (O/W) con micropartículas de Silicio como compuesto activo y las propiedades ópticas de esta misma en el rango del Infrarrojo entre 850 nm y 2,2 mieras y del UV de 280nm a 450 nm. Se muestran los resultados de las transmisiones ópticas de las preparaciones en placas de vidrio y en placas de PMMA de rugosidad de 6 y 2 mieras. This example describes the preparation of an oil-in-water (O / W) emulsion with silicon microparticles as an active compound and its optical properties in the Infrared range between 850 nm and 2.2 microns and the UV of 280nm at 450 nm. The results of the optical transmissions of the preparations in glass plates and in roughness 6 and 2 micron PMMA plates are shown.
Preparación de una emulsión aceite en agua (O/W): Preparation of an oil-in-water emulsion (O / W):
Se disuelve 0,3% en peso de metilcelulosa en agua a 70°C, bajo agitación. Una vez obtenida una disolución homogénea, se añade 4 % de monoestearato de glicérido autoemulsionable manteniendo la agitación.  0.3% by weight of methylcellulose is dissolved in water at 70 ° C, with stirring. Once a homogeneous solution is obtained, 4% self-emulsifiable glyceride monostearate is added while stirring.
Antes de su uso, las micropartículas de silicio sintetizadas según el método descrito en la solicitud de patente ES2331824 y en la publicación: "Fenollosa R., et al., Adv. Mater.. 20, 95-98,2008", con distribución de tamaños según la curva de la figura 1 , se sometieron a una molienda para obtener microesferas individuales y evitar agregados de varias partículas. Before use, the silicon microparticles synthesized according to the method described in patent application ES2331824 and in the publication: "Fenollosa R., et al., Adv. Mater. 20, 95-98,2008", with distribution of sizes according to the curve of Figure 1, they were subjected to grinding to obtain individual microspheres and avoid aggregates of several particles.
Las micropartículas de silicio se añaden a la disolución acuosa (entre 0,8 y 1 % en peso respecto al peso total de la emulsión) bajo fuerte agitación mecánica (3000 rpm). The silicon microparticles are added to the aqueous solution (between 0.8 and 1% by weight with respect to the total weight of the emulsion) under strong mechanical agitation (3000 rpm).
Al cabo de 10-15 minutos se añade poco a poco aceite mineral (entre 20-30% en peso respecto al peso total) mientras se sigue agitando enérgicamente durante 10-15 minutos más. After 10-15 minutes, mineral oil is added gradually (between 20-30% by weight with respect to the total weight) while stirring vigorously for another 10-15 minutes.
La preparación obtenida tiene un tacto cremoso y suave debido a la geometría regular de las microesferas de Silicio. Preparación de la muestra para las medidas ópticas. The preparation obtained has a creamy and smooth touch due to the regular geometry of the silicon microspheres. Sample preparation for optical measurements.
Se extiende uniformemente 1 1 mg/cm2 y 2mg/cm2 de preparación sobre respectivamente un porta-objetos de vidrio y placas de PMMA (Helioplate®. HD) comercializadas por la empresa Helioscreen. Las placas de PMMA son internacionalmente aceptadas como substrato de medida de las preparaciones solares. Se utilizaron placas de PMMA de 6 μηι de rugosidad (HD6) y de 2 μηι de rugosidad (HD2) Evenly, 1 1 mg / cm 2 and 2 mg / cm 2 of preparation are spread on a glass object holder and PMMA plates (Helioplate®. HD) respectively marketed by Helioscreen. PMMA plates are internationally accepted as a measuring substrate for solar preparations. PMMA plates of 6 μηι roughness (HD6) and 2 μηι roughness (HD2) were used
Medidas ópticas Optical measurements
Medidas en el rango Infrarrojo  Measurements in the Infrared range
Se analizaron ópticamente las muestras preparadas en forma de emulsión (O/W), conteniendo microesferas de silicio de la presente invención, por espectroscopia de Infrarrojos en el rango comprendido entre 0,85μηι y 2,2 μηι considerando los substratos (vidrio o PMMA-HD) como referencia, y variando los cantidades de emulsión repartidas por área (1 1 mg/cm2 y 2mg/cm2 respectivamente). Samples prepared in the form of emulsion (O / W), containing silicon microspheres of the present invention, were analyzed optically by infrared spectroscopy in the range between 0.85μηι and 2.2 μηι considering the substrates (glass or PMMA- HD) as a reference, and varying the amounts of emulsion distributed by area (1 1 mg / cm 2 and 2 mg / cm 2 respectively).
Con la muestra conteniendo 0,8 % en peso de microesferas de silicio y preparada con cantidades de emulsión de 11 mg/cm2 (sobre vidrio) se obtiene valores de transmisión óptica entre 5% (1 μηπ) y 10 % (2,2 μηπ). With the sample containing 0.8% by weight of silicon microspheres and prepared with emulsion amounts of 11 mg / cm 2 (on glass), optical transmission values are obtained between 5% (1 μηπ) and 10% (2.2 μηπ).
Con la muestra conteniendo 0,8 % en peso de microesferas de silicio y preparada con cantidades de emulsión de 2mg/cm2 (sobre HD6) se obtiene valores de transmisión óptica entre 48% (1 μηπ) y 65 % (2,2 μηπ). With the sample containing 0.8% by weight of silicon microspheres and prepared with emulsion quantities of 2mg / cm 2 (on HD6), optical transmission values between 48% (1 μηπ) and 65% (2.2 μηπ) are obtained ).
Medidas en el rango Ultravioleta Measures in the UV range
Se analizaron ópticamente las muestras preparadas en forma de emulsión (O/W), conteniendo microesferas de silicio y objeto de la presente invención, por espectroscopia UV, con esfera integradora, en el rango comprendido entre 280 nm y 450 nm considerando el aire como referencia, y sobre 2 substratos de PMMA-HD de diferente rugosidad (6μηι (HD6) y 2μηι (HD2)). Se emplearon cantidades de emulsión de 2mg/cm2. Con la muestra conteniendo 1 % en peso de microesferas de silicio y preparada sobre un substrato de PMMA-HD® (HD6) de rugosidad 6μηι se obtienen valores de transmisión óptica entre 41 % (280 nm) y 65%(450nm) Con la muestra conteniendo 1 % en peso de microesferas de silicio y preparada sobre un substrato de PMMA-HD® (HD2) de rugosidad 2μηι se obtienen valores de transmisión óptica entre 40% (280 nm) y 64%(450nm). Samples prepared in the form of emulsion (O / W), containing silicon microspheres and object of the present invention, were analyzed optically by UV spectroscopy, with integrating sphere, in the range between 280 nm and 450 nm considering air as reference , and on 2 PMMA-HD substrates of different roughness (6μηι (HD6) and 2μηι (HD2)). Emulsion amounts of 2mg / cm 2 were used . With the sample containing 1% by weight of silicon microspheres and prepared on a substrate of PMMA-HD® (HD6) of roughness 6μηι, optical transmission values between 41% (280 nm) and 65% (450nm) are obtained With the sample containing 1% by weight of silicon microspheres and prepared on a substrate of PMMA-HD® (HD2) of roughness 2μηι, optical transmission values between 40% (280 nm) and 64% (450nm) are obtained.
A título comparativo se preparó una muestra según el mismo procedimiento de preparación y de caracterización que el detallado en el ejemplo 1 , pero substituyendo las microesferas de Silicio por micropartículas de Titania (P25- Degussa), es decir con el mismo porcentaje en peso que el de las microsesferas de silicio. En las figuras 3 y 4 se muestran los resultados experimentales de transmisión óptica obtenidos. En la Figura 3 se comparan los resultados de transmisión óptica en el rango IR con emulsiones de la presente invención preparadas con las micropartículas de silicio (ejemplo 1 ) y con emulsiones preparadas con partículas de ΤΊΟ2 (P25 Degussa) con el mismo porcentaje en peso que el de las microesferas de silicio, sobre substratos de vidrio y PMMA-HD6® variando los cantidades de emulsión repartidas por área (1 1 mg/cm2 y 2mg/cm2 respectivamente). Se observa como las emulsiones con microesferas de silicio producen una mayor atenuación de la radiación infrarroja que las emulsiones con micropartículas de Titania. En la Figura 4 se comparan los resultados de transmisión óptica en el rango UV, con esfera integradora, obtenidos con 2mg/cm2 de las preparaciones conteniendo las micropartículas de silicio de la presente invención y de las preparaciones conteniendo las partículas de Ti02 (P25 Degussa) con el mismo porcentaje en peso que el de las micropartículas de silicio, sobre substratos PMMA-HD6® (6 μΐη de rugosidad) (línea continua) y PMMA-HD2 (2 μΐη de rugosidad) (línea discontinua). Se observan valores de transmisión parecidos para ambos tipos de emulsión, la de titania y la de silicio, sin embargo en el rango de longitudes de onda de 350 nm a 440 nm la emulsión con micropartículas de silicio produce un 10% de apantallamiento más que la emulsión con micropartículas de titania. Ejemplo 2 For comparison, a sample was prepared according to the same preparation and characterization procedure as detailed in example 1, but replacing the silicon microspheres with Titania microparticles (P25-Degussa), that is to say with the same weight percentage as the of silicon microspheres. Figures 3 and 4 show the experimental results of optical transmission obtained. In Figure 3 the results of optical transmission in the IR range are compared with emulsions of the present invention prepared with silicon microparticles (example 1) and with emulsions prepared with ΤΊΟ 2 particles (P25 Degussa) with the same weight percentage than that of silicon microspheres, on glass substrates and PMMA-HD6® by varying the amounts of emulsion distributed by area (1 1 mg / cm2 and 2mg / cm2 respectively). It is observed how emulsions with silicon microspheres produce a greater attenuation of infrared radiation than emulsions with microparticles of Titania. Figure 4 compares the results of optical transmission in the UV range, with integrating sphere, obtained with 2mg / cm2 of the preparations containing the silicon microparticles of the present invention and of the preparations containing the Ti0 2 particles (P25 Degussa ) with the same weight percentage as silicon microparticles, on PMMA-HD6® substrates (6 μΐη roughness) (continuous line) and PMMA-HD2 (2 μΐη roughness) (dashed line). Similar transmission values are observed for both types of emulsion, titania and silicon, however in the wavelength range from 350 nm to 440 nm the emulsion with silicon microparticles produces 10% more screening than the emulsion with titania microparticles. Example 2
En este ejemplo se describe la preparación de una crema base acuosa con micropartículas de Silicio como compuesto activo, y las propiedades ópticas de esta misma en el rango del Infrarrojo entre 850 nm y 2,2 mieras y del UV de 280nm a 450 nm. Se muestran los resultados de las transmisiones ópticas con diferentes cantidades (1 1 mg/cm2 y 2mg/cm2) repartidas sobre placas de vidrio y de PMMA-HD® respectivamente This example describes the preparation of an aqueous base cream with silicon microparticles as an active compound, and its optical properties in the range of Infrared between 850 nm and 2.2 microns and UV 280nm at 450 nm. The results of the optical transmissions with different quantities (1 1 mg / cm 2 and 2 mg / cm 2 ) distributed on glass and PMMA-HD® plates are shown respectively
Preparación de una crema: Preparation of a cream:
Se disuelve 0,3% en peso de metilcelulosa en agua a 70°C, bajo agitación (2000 rpm). Una vez obtenido una disolución homogénea, se añade 4 % de monoestearato de glicérido auto-emulsionable manteniendo la agitación.  0.3% by weight of methylcellulose is dissolved in water at 70 ° C, with stirring (2000 rpm). Once a homogeneous solution is obtained, 4% of self-emulsifiable glyceride monostearate is added while stirring.
Antes de su uso, las micropartículas de silicio sintetizadas según el método descrito en la solicitud de patente ES2331824 y en la publicación: "Fenollosa R., et al., Adv. Mater.. 20, 95-98,2008", con distribución de tamaños según la curva de la figura 1 , se sometieron a una molienda para obtener microesferas individuales y evitar agregados de varias partículas. Before use, the silicon microparticles synthesized according to the method described in patent application ES2331824 and in the publication: "Fenollosa R., et al., Adv. Mater. 20, 95-98,2008", with distribution of sizes according to the curve of Figure 1, they were subjected to grinding to obtain individual microspheres and avoid aggregates of several particles.
Las micropartículas de silicio se añaden a la disolución acuosa (entre 0,8 y 1 % en peso respecto al peso total) bajo fuerte agitación mecánica (3000 rpm). The silicon microparticles are added to the aqueous solution (between 0.8 and 1% by weight with respect to the total weight) under strong mechanical agitation (3000 rpm).
Preparación de la muestra para las medidas ópticas. Sample preparation for optical measurements.
Se extiende uniformemente 1 1 mg/cm2 y 2mg/cm2 de preparación sobre respectivamente un porta-objetos de vidrio y placas de PMMA (Helioplate®.HD comercializadas por la empresa Helioscreen) Medidas ópticas Evenly, 1 1 mg / cm 2 and 2 mg / cm 2 of preparation are spread on a glass object holder and PMMA plates respectively (Helioplate®.HD marketed by Helioscreen) Optical measurements
Medidas en el rango Infrarrojos  Infrared range measurements
Se analizaron ópticamente las muestras preparadas en forma de crema acuosa, conteniendo microesferas de silicio y objeto de la presente invención, por espectroscopia de Infrarrojos en el rango comprendido entre 0,85μηι y 2,2 μηι considerando los substratos (vidrio o PMMA-HD) como referencia, y variando los cantidades de crema repartidas por área (11 mg/cm2 y 2mg/cm2 respectivamente). Con la muestra conteniendo 0,8 % en peso de microesferas de silicio y con cantidades de crema de 1 1 mg/cm2 (sobre vidrio) se obtienen valores de transmisión óptica entre 33% (1 μηπ) y 27 % (2,2 μηπ). Samples prepared in the form of an aqueous cream, containing silicon microspheres and object of the present invention, were analyzed optically by infrared spectroscopy in the range between 0.85μηι and 2.2 μηι considering the substrates (glass or PMMA-HD) as a reference, and varying the amounts of cream spread by area (11 mg / cm 2 and 2 mg / cm 2 respectively). With the sample containing 0.8% by weight of silicon microspheres and with amounts of cream of 1 1 mg / cm 2 (on glass), optical transmission values are obtained between 33% (1 μηπ) and 27% (2.2 μηπ).
Con la muestra conteniendo 0,8 % en peso de microesferas de silicio y con cantidades de crema de 2mg/cm2 (sobre PMMA-HD® (HD6) de rugosidad 6 μηπ) se obtiene valores de transmisión óptica entre 79% (1 μηπ) y 84%(2,2 μηπ) With the sample containing 0.8% by weight of silicon microspheres and with cream amounts of 2mg / cm 2 (over PMMA-HD® (HD6) roughness 6 μηπ), optical transmission values between 79% (1 μηπ) are obtained ) and 84% (2.2 μηπ)
Medidas en el rango Ultravioleta Measures in the UV range
Se analizaron ópticamente las muestras preparadas objeto de la presente invención por espectroscopia UV, con esfera integradora, en el rango comprendido entre 280nm y 450nm considerando el aire como referencia. Se emplearon cantidades de preparación de 2mg/cm2. The prepared samples object of the present invention were optically analyzed by UV spectroscopy, with integrating sphere, in the range between 280 nm and 450 nm considering air as reference. Preparation amounts of 2mg / cm 2 were used .
Con la muestra conteniendo 1 % en peso de microesferas de silicio y preparada sobre un substrato de PMMA-HD6® (HD6) de rugosidad 6 μηι se obtienen valores de transmisión óptica entre 41 % (280 nm) y 67% (450nm). With the sample containing 1% by weight of silicon microspheres and prepared on a substrate of PMMA-HD6® (HD6) of roughness 6 μηι, optical transmission values between 41% (280 nm) and 67% (450 nm) are obtained.
Con la muestra conteniendo 1 % en peso de microesferas de silicio y preparada sobre un substrato de PMMA-HD® (HD2) de rugosidad 2 μηι se obtienen valores de transmisión óptica entre 46% (280 nm) y 79% (450nm). A título comparativo se preparó una muestra según el mismo procedimiento de preparación y de caracterización que en el detallado en el ejemplo 2 (crema base acuosa), pero substituyendo las microesferas de de Silicio por micropartículas de Titania (P25- Degussa), es decir con el mismo porcentaje en peso que el de las microsesferas de silicio. With the sample containing 1% by weight of silicon microspheres and prepared on a substrate of PMMA-HD® (HD2) of roughness 2 μηι, optical transmission values between 46% (280 nm) and 79% (450 nm) are obtained. For comparison, a sample was prepared according to the same preparation and characterization procedure as detailed in example 2 (aqueous base cream), but replacing the silicon microspheres with Titania microparticles (P25-Degussa), that is, with the same weight percentage as that of silicon microspheres.
Medidas en el rango Infrarrojo Measurements in the Infrared range
En la tabla 1 se resumen y comparan los resultados de transmisión óptica en el rango IR obtenidos con las cremas preparadas con micropartículas de silicio de la presente invención y las partículas de Ti02 (P25 Degussa), sobre substratos de vidrio y PMMA-HD6® variando los cantidades de emulsión repartidas por área (1 1 mg/cm2 y 2 mg/cm2 respectivamente). Table 1 summarizes and compares the results of optical transmission in the IR range obtained with the creams prepared with silicon microparticles of the present invention and Ti02 particles (P25 Degussa), on glass substrates and PMMA-HD6® varying the amounts of emulsion distributed by area (1 1 mg / cm 2 and 2 mg / cm 2 respectively).
TABLA 1 : resultados de transmisión óptica en el rango IR Medidas en el rango Ultravioleta TABLE 1: Optical transmission results in the IR range Measures in the UV range
En la tabla 2 se resumen y comparan los resultados de transmisión óptica en el rango UV, con esfera integradora, obtenidos con 2 mg/cm2 de las preparaciones conteniendo las micropartículas de silicio de la presente invención y 2mg/cm2 de las preparaciones conteniendo las partículas de Ti02 (P25 Degussa) sobre substratos PMMA-HD6® (6 μηι de rugosidad) y PMMA- HD2 (2 μηι de rugosidad). Table 2 summarizes and compares the results of optical transmission in the UV range, with integrating sphere, obtained with 2 mg / cm 2 of the preparations containing the silicon microparticles of the present invention and 2mg / cm 2 of the preparations containing Ti0 2 particles (P25 Degussa) on PMMA-HD6® substrates (6 μηι roughness) and PMMA-HD2 (2 μηι roughness).
Figure imgf000021_0001
Figure imgf000021_0001
TABLA 2: Resultado de transmisión óptica en el rango IR  TABLE 2: Optical transmission result in the IR range
Ejemplo 3 Example 3
En este ejemplo se describe la preparación de un aceite con micropartículas de Silicio como compuesto activo y las propiedades ópticas de esta misma preparación en el rango del Infrarrojo entre 850 nm y 2,2 mieras y del UV de 280nm a 450 nm. Se muestran los resultados de las transmisiones ópticas de las preparaciones con diferentes cantidades por área sobre placas de vidrio y de PMMA de rugosidad de 6 mieras.  This example describes the preparation of an oil with silicon microparticles as an active compound and the optical properties of this same preparation in the range of Infrared between 850 nm and 2.2 microns and UV 280nm at 450 nm. The results of the optical transmissions of the preparations with different quantities per area on glass plates and roughness PMMA of 6 microns are shown.
Preparación del aceite. Oil preparation
Antes de su uso, las micropartículas de silicio sintetizadas según el método descrito en la solicitud de patente ES2331824 y en la publicación: "Fenollosa R., et al., Adv. Mater., 20, 95-98,2008", con distribución de tamaños según la curva de la figura 1 , se sometieron a una molienda para obtener microesferas individuales y evitar agregados de varias partículas. Las micropartículas de silicio se añaden a un aceite mineral (entre 0,8% y 1 % en peso respecto al peso total) bajo fuerte agitación mecánica (3000 rpm). Before use, silicon microparticles synthesized according to the method described in patent application ES2331824 and in the publication: "Phenolose R., et al., Adv. Mater., 20, 95-98,2008 ", with size distribution according to the curve of Figure 1, were subjected to grinding to obtain individual microspheres and avoid aggregates of several particles. Silicon microparticles are added to a mineral oil (between 0.8% and 1% by weight with respect to the total weight) under strong mechanical agitation (3000 rpm).
Preparación de la muestra para las medidas ópticas. Sample preparation for optical measurements.
Se extiende uniformemente 1 1 mg/cm2 y 2mg/cm2 de preparación sobre respectivamente un porta-objetos de vidrio y placas de PMMA (Helioplate®. HD6). Evenly, 1 1 mg / cm 2 and 2 mg / cm 2 of preparation are spread on a glass object holder and PMMA plates respectively (Helioplate®. HD6).
Medidas ópticas Optical measurements
Medidas en el rango Infrarrojo  Measurements in the Infrared range
Se analizaron ópticamente las muestras de aceite preparadas con microesferas de silicio y objeto de la presente invención por espectroscopia de infrarrojos en el rango comprendido entre 0,85 μηι y 2,2 μηι considerando el substrato (vidrio o PMMA-HD) como referencia. Con la muestra de aceite conteniendo 0,8 % en peso de microesferas de silicio y preparada con 1 1 mg/cm2 sobre vidrio se obtiene valores de transmisión óptica de 78-79%. The oil samples prepared with silicon microspheres and object of the present invention were analyzed optically by infrared spectroscopy in the range between 0.85 μηι and 2.2 μηι considering the substrate (glass or PMMA-HD) as a reference. With the oil sample containing 0.8% by weight of silicon microspheres and prepared with 1 1 mg / cm2 on glass, optical transmission values of 78-79% are obtained.
Con la muestra de aceite conteniendo 0,8 % en peso de microesferas de silicio y preparada con 2mg/cm2 sobre HD6 se obtiene valores de transmisión óptica de 47-50%. With the oil sample containing 0.8% by weight of silicon microspheres and prepared with 2mg / cm 2 on HD6, optical transmission values of 47-50% are obtained.
Medidas en el rango Ultravioleta Measures in the UV range
Se analizaron ópticamente las muestras de aceite preparadas con microesferas de silicio y objeto de la presente invención por espectroscopia UV, con esfera integradora, en el rango comprendido entre 280nm y 450 nm considerando el aire como referencia. Se utilizaron dos tipos de substratos con rugosidad de 6 (HD6) y 2 mieras (HD2), y cantidades de preparación de 2 mg/cm2. The oil samples prepared with silicon microspheres and object of the present invention were analyzed optically by UV spectroscopy, with integrating sphere, in the range between 280 nm and 450 nm considering the Air as a reference. Two types of substrates with roughness of 6 (HD6) and 2 microns (HD2), and preparation amounts of 2 mg / cm 2 were used .
Con la muestra de aceite conteniendo 1 % en peso de microesferas de silicio y preparada sobre un substrato de PMMA-HD® (HD6) de rugosidad 6μ(η se obtienen valores de transmisión óptica entre 43% (280 nm) y 76%(450nm) With the oil sample containing 1% by weight of silicon microspheres and prepared on a substrate of PMMA-HD® (HD6) of roughness 6μ (η, optical transmission values are obtained between 43% (280 nm) and 76% (450nm )
Con la muestra de aceite conteniendo 1 % en peso de microesferas de silicio y preparada sobre un substrato de PMMA-HD® (HD2) de rugosidad 2 μηι se obtienen valores de transmisión óptica entre 48% (280 nm) y 76%(450nm). With the oil sample containing 1% by weight of silicon microspheres and prepared on a substrate of PMMA-HD® (HD2) of roughness 2 μηι, optical transmission values are obtained between 48% (280 nm) and 76% (450nm) .
Ejemplo 4 Example 4
Ejemplo de una crema para mantener el calor corporal. Los ejemplos de la cremas protectoras solares realizadas anteriormente se basan en una distribución de diámetros de los coloides centrada alrededor de 1.8 mieras y con una dispersión de tamaños del 30% (ver figura 1 ). Esta distribución de tamaños apantalla la luz infrarroja proveniente de la radiación solar con longitudes de onda en el infrarrojo cercano. Si se elige una distribución de tamaños diferente, por ejemplo una distribución como la de la figura 5, con un tamaño medio de alrededor de 2,5 mieras y con un 30% de dispersión, una crema desarrollada a partir de estos coloides apantanaría radiación infrarroja con longitud de onda de 9,5 mieras, que es justamente la radiación que emite el cuerpo humano. Por tanto esta crema puede ser utilizada para mantener el calor corporal. La figura 6 ilustra estos razonamientos: la curva de abajo muestra la radiación del cuerpo humano (a 37 °C) calculada a partir de la ley de Planck suponiendo que es un cuerpo negro y la curva de arriba muestra la sección eficaz de scattering Mié promedio a la que da lugar la distribución de tamaños de la figura 5. Se observa que los máximos en radiación y scattering respectivamente coinciden y están situados alrededor de 9,5 mieras.  Example of a cream to maintain body heat. Examples of sunscreen creams made above are based on a distribution of colloid diameters centered around 1.8 microns and with a size dispersion of 30% (see figure 1). This size distribution shields infrared light from solar radiation with near-infrared wavelengths. If a different size distribution is chosen, for example a distribution like that of Figure 5, with an average size of about 2.5 microns and with a 30% dispersion, a cream developed from these colloids would resemble infrared radiation with a wavelength of 9.5 microns, which is precisely the radiation emitted by the human body. Therefore this cream can be used to maintain body heat. Figure 6 illustrates these reasonings: the curve below shows the radiation of the human body (at 37 ° C) calculated from Planck's law assuming it is a black body and the curve above shows the effective scattering section Average Wed which gives rise to the size distribution of Figure 5. It is observed that the radiation and scattering maximums respectively coincide and are located around 9.5 microns.

Claims

REIVINDICACIONES
1. Uso de microesferas de silicio con diámetros entre 0,2 y 50 μηι como filtro y/o termorregulador de radiación electromagnética de longitud de onda comprendida entre 280nm y 180 μηπ. 1. Use of silicon microspheres with diameters between 0.2 and 50 μηι as a filter and / or thermoregulator of electromagnetic radiation of wavelength between 280nm and 180 μηπ.
2. Uso según la reivindicación 1 , donde las radiaciones son UVA, UVB e IR. 2. Use according to claim 1, wherein the radiations are UVA, UVB and IR.
3. Uso de las microesferas según cualquiera de las reivindicaciones 1 o 2, para la elaboración de una composición farmacéutica. 3. Use of the microspheres according to any of claims 1 or 2, for the preparation of a pharmaceutical composition.
4. Uso según la reivindicación 3, para la prevención de quemaduras o daños solares. 4. Use according to claim 3, for the prevention of sunburn or damage.
5. Uso según la reivindicación 4, donde las quemaduras o daños solares se producen sobre piel y/o cabello. 5. Use according to claim 4, wherein sunburn or damage occurs on skin and / or hair.
6. Uso según cualquiera de las reivindicaciones 3 ó 4, donde la composición farmacéutica se encuentra en la forma adecuada para su administración tópica. 6. Use according to any of claims 3 or 4, wherein the pharmaceutical composition is in the form suitable for topical administration.
7. Uso según las reivindicaciones 4 a 6 donde los daños solares se pueden seleccionar de entre queratosis actínica o cáncer de piel. 7. Use according to claims 4 to 6 wherein the sun damage can be selected from actinic keratosis or skin cancer.
8. Uso de las microesferas según cualquiera de las reivindicaciones 1 o 2, para la elaboración de una composición cosmética. 8. Use of the microspheres according to any of claims 1 or 2, for the preparation of a cosmetic composition.
9. Uso según la reivindicación 8, para la prevención de manchas y envejecimiento prematuro de la piel/o cabello. 9. Use according to claim 8, for the prevention of spots and premature aging of the skin / or hair.
10. Uso según cualquiera de las reivindicaciones 8 o 9, donde la composición cosmética se encuentra en la forma adecuada para su administración tópica. 10. Use according to any of claims 8 or 9, wherein the cosmetic composition is in the form suitable for topical administration.
1 1 . Uso según cualquiera de las reivindicaciones 1 o 2, para la fabricación de una composición protectora de materiales. eleven . Use according to any of claims 1 or 2, for the manufacture of a protective composition of materials.
12. Uso según la reivindicación 1 1 , donde los materiales a proteger se seleccionan de entre naturales, sintéticos o cualquiera de sus combinaciones. 12. Use according to claim 1, wherein the materials to be protected are selected from natural, synthetic or any combination thereof.
13. Composición farmacéutica que comprende microesferas de silicio con diámetros entre 0,2 y 50 μηι y un vehículo farmacéuticamente aceptable. 13. Pharmaceutical composition comprising silicon microspheres with diameters between 0.2 and 50 μηι and a pharmaceutically acceptable carrier.
14. Composición farmacéutica según la reivindicación 13, donde las microesferas de silicio tienen diámetros entre 0,2 y 5 μηπ. 14. Pharmaceutical composition according to claim 13, wherein the silicon microspheres have diameters between 0.2 and 5 μηπ.
15. Composición farmacéutica según cualquiera de las reivindicaciones 13 o 14, donde el porcentaje en peso de las microesferas de silicio es de entre el 0,5 y el 5% con respecto a la composición final. 15. Pharmaceutical composition according to any of claims 13 or 14, wherein the percentage by weight of the silicon microspheres is between 0.5 and 5% with respect to the final composition.
16. Composición farmacéutica según cualquiera de las reivindicación 13 a 15, donde el porcentaje en peso de las microesferas de silicio es de entre el 0,8 y el 2% con respecto a la composición final. 16. Pharmaceutical composition according to any of claims 13 to 15, wherein the percentage by weight of the silicon microspheres is between 0.8 and 2% with respect to the final composition.
17. Composición farmacéutica según cualquiera de las reivindicaciones 13 a 16, que además comprende al menos un componente que se selecciona de la lista que comprende espesante, emulsificante, hidratante, colorante o cualquiera de sus combinaciones. 17. Pharmaceutical composition according to any of claims 13 to 16, further comprising at least one component that is selected from the list comprising thickener, emulsifier, moisturizer, colorant or any combination thereof.
18. Composición farmacéutica según cualquiera de las reivindicaciones 13 a 17, en forma adecuada para su administración tópica. 18. Pharmaceutical composition according to any of claims 13 to 17, in a form suitable for topical administration.
19. Composición farmacéutica según cualquiera de las reivindicaciones 13 a 18, caracterizado por ser una loción, una crema lipofílica o hidrofílica. 19. Pharmaceutical composition according to any of claims 13 to 18, characterized in that it is a lotion, a lipophilic or hydrophilic cream.
20. Composición cosmética que comprende microesferas de silicio con diámetros entre 0,2 y 50 μηπ. 20. Cosmetic composition comprising silicon microspheres with diameters between 0.2 and 50 μηπ.
21 . Composición cosmética según la reivindicación 20, donde las microesferas de silicio tienen diámetros entre 0,5 y 5 μηπ. twenty-one . Cosmetic composition according to claim 20, wherein the silicon microspheres have diameters between 0.5 and 5 μηπ.
22. Composición cosmética según cualquiera de las reivindicaciones 20 o 21 , donde el porcentaje en peso de las microesferas de silicio es de entre el 0,5 y el 5%. 22. Cosmetic composition according to any of claims 20 or 21, wherein the percentage by weight of the silicon microspheres is between 0.5 and 5%.
23. Composición cosmética según cualquiera de las reivindicación 20 a 22, donde el porcentaje en peso de las microesferas de silicio es de entre el 0,8 y el 2%. 23. Cosmetic composition according to any of claims 20 to 22, wherein the percentage by weight of the silicon microspheres is between 0.8 and 2%.
24. Composición cosmética según cualquiera de las reivindicaciones 20 a 23, que además comprende al menos un aditivo que se selecciona de entre espesantes, emulsificantes, hidratantes, colorantes o cualquiera de sus combinaciones. 24. Cosmetic composition according to any of claims 20 to 23, further comprising at least one additive that is selected from thickeners, emulsifiers, moisturizers, colorants or any combination thereof.
25. Composición cosmética según cualquiera de las reivindicaciones 20 a 24, en forma adecuada para su administración tópica. 25. Cosmetic composition according to any of claims 20 to 24, in a form suitable for topical administration.
26. Composición cosmética según la reivindicación 25, donde la forma adecuada para su administración tópica es una loción, una crema lipofílica o hidrofílica. 26. Cosmetic composition according to claim 25, wherein the suitable form for topical administration is a lotion, a lipophilic or hydrophilic cream.
27. Procedimiento para la fabricación de una composición farmacéutica según cualquiera de las reivindicaciones 13 a 19 o una composición cosmética según cualquiera de las reivindicaciones 20 a 26, donde a las microesferas de silicio se les realiza un pretratamiento de molienda. 27. Process for the manufacture of a pharmaceutical composition according to any of claims 13 to 19 or a cosmetic composition according to any of claims 20 to 26, wherein the silicon microspheres are pretreated by grinding.
28. Procedimiento según la reivindicación 27, donde las microesferas de silicio se adicionan sobre una solución acuosa. 28. A method according to claim 27, wherein the silicon microspheres are added over an aqueous solution.
29. Procedimiento según cualquiera de las reivindicaciones 27 o 28, donde las microesferas de silicio se adicionan sobre una solución acuosa para formar posteriormente una emulsión con aceite. 29. Method according to any of claims 27 or 28, wherein the silicon microspheres are added onto an aqueous solution to subsequently form an oil emulsion.
PCT/ES2011/070063 2010-02-01 2011-02-01 Photoprotective composition against uv/vis/ir radiation with silicon microspheres as an active compound WO2011092368A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201030129A ES2363678B1 (en) 2010-02-01 2010-02-01 UV / VIS / IR RADIATION PHOTOPROTECTOR COMPOSITION WITH SILICON MICROSPHERAS AS ACTIVE COMPOUND.
ESP201030129 2010-02-01

Publications (1)

Publication Number Publication Date
WO2011092368A1 true WO2011092368A1 (en) 2011-08-04

Family

ID=44312381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070063 WO2011092368A1 (en) 2010-02-01 2011-02-01 Photoprotective composition against uv/vis/ir radiation with silicon microspheres as an active compound

Country Status (2)

Country Link
ES (1) ES2363678B1 (en)
WO (1) WO2011092368A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101306A1 (en) * 2011-01-25 2012-08-02 Consejo Superior De Investigaciones Científicas (Csic) Formulation comprising silicon microparticles, as a pigment that can absorb visible uv radiation and reflect ir radiation
US11576853B2 (en) 2015-04-29 2023-02-14 CSI: Create.Solve. Innovate. LLC Antioxidant compositions and methods of protecting skin, hair and nails against high energy blue-violet light

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187298B1 (en) * 1997-08-09 2001-02-13 Merck Patent Gesellschaft Mit Beschrankter Haftung Sunscreens having ultraspectral protection
WO2001024762A2 (en) * 1999-10-01 2001-04-12 L'oreal Method for improving uv radiation stability of photosensitive sunscreen filters
GB2416524A (en) * 2004-07-24 2006-02-01 Dow Corning Microcapsules with siloxane walls formed in situ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187298B1 (en) * 1997-08-09 2001-02-13 Merck Patent Gesellschaft Mit Beschrankter Haftung Sunscreens having ultraspectral protection
WO2001024762A2 (en) * 1999-10-01 2001-04-12 L'oreal Method for improving uv radiation stability of photosensitive sunscreen filters
GB2416524A (en) * 2004-07-24 2006-02-01 Dow Corning Microcapsules with siloxane walls formed in situ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101306A1 (en) * 2011-01-25 2012-08-02 Consejo Superior De Investigaciones Científicas (Csic) Formulation comprising silicon microparticles, as a pigment that can absorb visible uv radiation and reflect ir radiation
US11576853B2 (en) 2015-04-29 2023-02-14 CSI: Create.Solve. Innovate. LLC Antioxidant compositions and methods of protecting skin, hair and nails against high energy blue-violet light

Also Published As

Publication number Publication date
ES2363678A1 (en) 2011-08-11
ES2363678B1 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
Manaia et al. Inorganic UV filters
JP5973169B2 (en) Composite powder for simultaneous blocking of infrared and ultraviolet rays and cosmetic composition using the same
Lyons et al. Photoprotection beyond ultraviolet radiation: a review of tinted sunscreens
JP6272692B2 (en) Microspheres and photoprotective personal care compositions containing the same
Cozzi et al. Comparative behavior between sunscreens based on free or encapsulated UV filters in term of skin penetration, retention and photo-stability
Lacatusu et al. Design of soft lipid nanocarriers based on bioactive vegetable oils with multiple health benefits
JP6438409B2 (en) Cosmetic photoprotective composition
JP5990317B2 (en) Cerium oxide composite particles
Hayden et al. Biobased nanoparticles for broadband UV protection with photostabilized UV filters
Niculae et al. Lipid nanoparticles based on butyl-methoxydibenzoylmethane: in vitro UVA blocking effect
US20140341956A1 (en) Anti-uv composition for protecting scalp
KR20150113469A (en) Coreshell inorganic material having the structure
Qiao et al. A versatile sunscreen with minimal ROS damage and low permeability
US20130177616A1 (en) Nanostructured sun protection agent and process
WO2014030754A1 (en) Composition for skin comprising hollow polymer particles
CA2710958A1 (en) Visibly transparent uv photoprotective compositions
ES2363678B1 (en) UV / VIS / IR RADIATION PHOTOPROTECTOR COMPOSITION WITH SILICON MICROSPHERAS AS ACTIVE COMPOUND.
Gubitosa et al. Nanomaterials in sun-care products
JP2022509077A (en) A sunscreen composition containing cerium oxide particles on which surface defects are formed, and a method for producing the same.
US20150079138A1 (en) UV Protection Agent Based on Bismuth Oxychloride
KR20200016974A (en) Cosmetic composition using titanium dioxide particles for IR protection
KR20120050951A (en) Pulverulent composite for protecting uv and ir ray and cosmetic composition using the same
JP4160477B2 (en) Hydrophobic composite powder and cosmetics containing the same
Babarus et al. The dynamic duo: titanium dioxide and zinc oxide in uv-protective cosmetic
Couteau et al. Mineral filters in sunscreen products–comparison of the efficacy of zinc oxide and titanium dioxide by in vitro method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736665

Country of ref document: EP

Kind code of ref document: A1