WO2004097804A1 - Non-linearity measuring method, non-linearity measuring device, magnetic recording/reproducing device, amd magnetic recording/reproducing lsi - Google Patents

Non-linearity measuring method, non-linearity measuring device, magnetic recording/reproducing device, amd magnetic recording/reproducing lsi Download PDF

Info

Publication number
WO2004097804A1
WO2004097804A1 PCT/JP2003/005347 JP0305347W WO2004097804A1 WO 2004097804 A1 WO2004097804 A1 WO 2004097804A1 JP 0305347 W JP0305347 W JP 0305347W WO 2004097804 A1 WO2004097804 A1 WO 2004097804A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit
magnetization reversal
measured
nlts
pattern
Prior art date
Application number
PCT/JP2003/005347
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Ueno
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/005347 priority Critical patent/WO2004097804A1/en
Priority to JP2004571287A priority patent/JP3906226B2/en
Publication of WO2004097804A1 publication Critical patent/WO2004097804A1/en
Priority to US11/120,114 priority patent/US7248424B2/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/36Monitoring, i.e. supervising the progress of recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • G11B5/09Digital recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers

Definitions

  • Nonlinearity measuring method Nonlinearity measuring device, Magnetic recording / reproducing device and For magnetic recording / reproducing
  • the present invention relates to a method for determining the nonlinearity of a magnetic field, and in particular, records and reproduces digital data on a recording medium such as a magnetic tape, a magnetic card, a flexible disk, a magnetic disk, a magneto-optical disk, and a magnetic drum as a change in magnetization polarity.
  • the present invention relates to a magnetic recording / reproducing device and an LSI for magnetic recording / reproducing, and further relates to a method and a device for measuring nonlinearity in the magnetic recording / reproducing.
  • NLTS non-linear transition shift
  • Non-Patent Document 1 As a conventional NLTS measurement method, in 1994, IEEE Transactions on Magnetics, Vol. 30, No. 6, p. 4236, X. Che, MJ Peek and J. Fitzpai'tick's "AG eneralized frequency domain nonlinearity measurement method" (Non-Patent Document 1) is known. This paper describes a method for measuring the NLT S that occurs when a series of magnetization reversals is magnetically recorded on a medium with a bit string pattern signal containing two bits (Dibit).
  • This NLT S measurement method will be described below. This NLT S measurement method consists of the following three steps.
  • step 1 the pulse width of one bit is T, and the polarity is inverted every 15 bits (at 15 T).
  • Record the data on a medium and measure the fifth harmonic signal (hereinafter referred to as the fifth-order component) of the reproduced signal.
  • This fifth-order component is defined as V5ref.
  • the above-mentioned reference signal is shown below by NRZ notation, in which the recording code of data recorded on the medium is indicated by a level, and NRZI notation, in which the recording code is indicated by inversion of the level.
  • step 2 data is recorded on the medium using the signal to be measured that repeats the 3OT bit string pattern including the Dibit pattern, and the fifth-order component V5pat of the reproduced signal is measured.
  • the signals to be measured are shown below in NRZ notation and NRZ I notation.
  • step 3 the ratio Vab2 V5pat / V5ref is calculated from V5ref and V5ref for the fifth-order component measured in step 1 and step 2.
  • NLTS (Dibit) generated by Dibit is calculated from the following equation.
  • 1 ⁇ 1 ⁇ 3 is a value normalized by one, that is, a value in which the pulse width of 1T is 1 (100%).
  • Non-Patent Document 2 It is stated that if MR (magnetoresistive) type is used, a large error will occur in the NLTS measurement value unless the nonlinearity of the reproduction head is removed.
  • one of the NLT S is a transition shift (HTS: Hard Transition Shift or O / W (Over Write) NLTS) by pre-recorded data.
  • HTS Hard Transition Shift or O / W (Over Write) NLTS
  • fZ2 A method of calculating the NLTS from the signal under test
  • Non-linear transition shifts caused by tribits with three consecutive magnetization reversals and signals repeating a 2T bit string pattern are troublesome.
  • various types of NLTS can be used without changing the measurement method.
  • a non-linearity measurement method for the purpose of easily measuring is also known.
  • the present invention has been made in view of such a problem, and a non-linearity measuring method, a non-linearity measuring apparatus, and a magnetic recording / reproducing method capable of measuring NLTS with higher accuracy in consideration of the state of magnetization reversal of a preceding bit string. It is intended to provide a device and an LSI for magnetic recording and reproduction.
  • Patent Document 1
  • the nonlinearity measuring method of the present invention can A non-linearity measurement method for calculating a nonlinear transition shift (NLTS), comprising a reference signal recording step of recording a reference signal on a medium, and a method of recording a plurality of types of signals to be measured on the medium.
  • a measurement signal recording step a first measurement step of measuring a first predetermined harmonic component from a reproduction signal of a reference signal magnetically recorded on the medium, and a plurality of types of signals to be measured magnetically recorded on the medium.
  • Each of the plurality of types of signals to be measured is provided with a magnetization reversal pattern sequence P1 prior to the measurement target bit of the NLTS.
  • the first predetermined harmonic component and the second predetermined harmonic component are the M-th harmonic components of order M, respectively, and the reference signal and the plurality of types of signals under test are all represented as a bit string having a bit period N.
  • the signal to be measured is an NLT S measurement pattern sequence composed of the magnetization reversal pattern P1 and the non-linearity measurement bit; 2 ⁇ bits from the last bit of P (where ⁇ is the previous bit on the medium) (Length negligible to the effect of NLTS from the following)
  • the bit sequence P2 excluding the last bit of the NLT S measurement pattern P is arranged starting from the subsequent position of the NLT S measurement pattern P, and the subsequent position at least ⁇ bits away from the last bit of the magnetization reversal pattern P1 and the signal under test
  • the signal to be measured is a subsequent position at least ⁇ bits away from the last bit of the NLTS measurement pattern sequence P, and the bit sequence ⁇ 2
  • the bit to be inverted is represented by 1, and the signal to be measured is a 60-bit string of 0110110000 0000000 0011010000000000001000000000000000000000000 where the magnetization inversion position is in the first, second, fourth, fifth, fifth, ninth, twentieth, and thirty-fifth bits.
  • bit for magnetization reversal is represented by 1, and the signal to be measured is changed to the 0, 2, 4, 5, 6, 12, 12, 18, 20, 22, 23, 36, and 42 bits for the magnetization reversal position.
  • the reference signal includes a first magnetization reversal bit R 1 at a head position, and a second magnetization reversal bit R 2 at a subsequent position at least ⁇ bits away from the first magnetization reversal bit R 1,
  • the third magnetization is located at a subsequent position at least ⁇ bits away from the second magnetization reversal bit R 2 and at the ⁇ 4 XRth (where ⁇ 4 is a natural number) subsequent position from the first magnetization reversal bit R 1.
  • An inversion bit R 3 and a subsequent position that is at least ⁇ bits away from the third magnetization inversion bit R 3, a preceding position that is at least ⁇ bits away from the last bit of the reference signal, and A fourth magnetization reversal bit R 4 may be provided at a position subsequent to the R-th (where ⁇ 5 is a natural number) from the magnetization reversal bit R 2 ( ⁇ 5 +0.5).
  • the NLTS may be calculated based on a ratio between the first predetermined harmonic component and the second predetermined harmonic component, and the NLTS is created by inverting the magnetization polarity of the signal under measurement.
  • the inverted signal under measurement may be used as the signal under measurement.
  • a change step capable of changing the recording position of the measurement target bit of the non-linearity in the signal-under-measurement, and in the second measurement step, based on the signal-under-measurement after moving the recording position.
  • the second predetermined harmonic component may be measured.
  • a correction step is provided for correcting the second predetermined harmonic component based on the minimum value VpatMin of the second predetermined harmonic component measured based on the signal under measurement after moving the recording position.
  • the second predetermined harmonic component Vpat measured based on the measured signal before moving the recording position and the second predetermined harmonic component Vpat measured based on the measured signal after moving the recording position may be used.
  • V a ' s q r t (V at t "2-Vp a tM i n" 2)
  • the non-linearity measuring device of the present invention is a non-linearity measuring device for calculating a non-linear transition shift (NLTS) in magnetic recording / reproducing on a medium, wherein the reference signal magnetically recorded on the medium is
  • a first measuring unit for measuring a first predetermined harmonic component from the reproduced signal of the first type, and measuring a second predetermined harmonic component from the reproduced signal for each of a plurality of types of signals to be measured magnetically recorded on a medium.
  • a second measuring unit, and a calculating unit that calculates the NLTS from the first predetermined harmonic component and the second predetermined harmonic component corresponding to each of the signals under test.
  • Each of them is characterized by having a magnetization reversal pattern sequence P1 preceding the measurement target bit of NLTS.
  • the magnetic recording / reproducing apparatus of the present invention comprises: a first measuring section for measuring a first predetermined harmonic component from a reproduced signal of a reference signal magnetically recorded on the medium; and a plurality of types of devices to be measured magnetically recorded on the medium.
  • a second measuring unit for measuring a second predetermined harmonic component from the reproduced signal for each of the signals; and a second predetermined harmonic component corresponding to each of the signals under measurement, and a second predetermined harmonic component corresponding to each of the signals to be measured.
  • a calculation unit that calculates a non-linear transition shift (NLTS) in magnetic recording / reproducing on a medium, and a plurality of types of signals to be measured are each switched in magnetization before a bit to be measured in NLTS. It is characterized by having a pattern sequence P1.
  • the magnetic recording / reproducing LSI of the present invention comprises a first measuring unit for measuring a first predetermined harmonic component from a reproduction signal of a reference signal magnetically recorded on a medium, and a plurality of types of magnetic recording magnetically recorded on the medium. For each of the measured signals, a second predetermined harmonic component is measured from the reproduced signal. From the second measuring section to be determined, the first predetermined harmonic component and the second predetermined harmonic component corresponding to each signal under measurement, a nonlinear transition shift (NLTS) in magnetic recording / reproducing on a medium is obtained. ) Is calculated, and a plurality of types of signals to be measured are each provided with a magnetization reversal pattern sequence P1 prior to the measurement target bit of the NLTS.
  • NLTS nonlinear transition shift
  • the non-linearity measuring device According to the non-linearity measuring method, the non-linearity measuring device, the magnetic recording / reproducing device and the magnetic recording / reproducing LSI of the present invention, the following effects and advantages are obtained.
  • NLTS that depends on the magnetization reversal pattern sequence P 1 is calculated by calculating the NLTS based on the predetermined harmonic component of the signal under measurement that includes the magnetization reversal pattern sequence P 1 prior to the NLTS measurement target bit. It can be easily and quantitatively measured, and is highly effective in the development of magnetic recording / reproducing devices (magnetic heads, transmission systems, etc.) and media.
  • FIG. 1 is a diagram schematically showing a functional configuration of a nonlinearity measuring section (nonlinearity measuring device) provided in a magnetic disk device (magnetic recording / reproducing device) as one embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a reference pattern and a pattern to be measured used in the non-linearity measuring section of the magnetic disk device as one embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing a hardware configuration of a magnetic disk device as one embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing a configuration example of a pattern generation circuit used in a magnetic disk device as one embodiment of the present invention.
  • FIGS. 5 (a), 5 (b), 5 (c), 6 (a), 6 (b), and 6 (c) are magnetic disk drives as one embodiment of the present invention.
  • FIG. 6 is a diagram showing an example of a measurement error due to simulation of NLT S for a plurality of types of NLT S patterns to be measured in FIG.
  • FIG. 9 is a diagram showing an example of a measurement error by a simulation of the NLT S after correcting the NLT S pattern.
  • FIG. 3 is a diagram showing an actual measurement example of NLTS for a plurality of types of NLTS patterns to be measured in the magnetic disk device as one embodiment of the present invention.
  • FIG. 13 is a diagram showing an example of another reference pattern and a pattern to be measured used in the non-linearity measuring section of the magnetic disk device as one embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing a functional configuration of a nonlinearity measuring unit (nonlinearity measuring device) provided in a magnetic disk device (magnetic recording / reproducing device) as one embodiment of the present invention.
  • the magnetic disk device (magnetic recording / reproducing device) 100 is used, for example, as a storage device in a computer system or the like, has a plurality of magnetic disks 2, and uses these magnetic disks 2 with a magnetic head 3 to transfer data.
  • a non-linearity measuring unit 1 (see Fig. 1) that calculates the non-linear transition shift (NLTS) of magnetic recording / reproducing on the magnetic disk (medium) 2 (see Fig. 3). It is configured with.
  • the non-linearity measuring section 1 of the magnetic disk device 100 includes a pattern generating section 51, a pattern recording section 52, a pattern reproducing section 54, a first measuring section 55, a second measuring section 56, and a calculating section. 57, a change unit 58 and a correction unit 59.
  • the pattern generating section 51 generates a reference pattern (reference signal) and a pattern to be measured (signal to be measured), and passes the reference pattern and the pattern to be measured to the pattern recording section 52.
  • FIG. 2 shows a non-linearity measuring unit of the magnetic disk drive 100 as one embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a reference pattern and a pattern to be measured used in 1.
  • the reference pattern and the pattern to be measured are both bit string patterns representing the states of magnetization and non-magnetization for magnetically recording data on the magnetic disk 2, and the pattern generation section 51 has a pattern as shown in FIG. A reference pattern and a pattern to be measured are generated.
  • each column the items in each column are shown in the upper row.
  • the first column shows the type of NLTS measurement
  • the second column shows the NLTS pattern to be measured
  • the third column shows the bit position (Bit position).
  • bit position the above-mentioned reference pattern and the pattern to be measured are indicated by NRZI notation. Data selected from these patterns is supplied from the pattern generation section 51 as recording data.
  • each of the reference pattern and the pattern to be measured is assigned a number from 0 to 59 as a bit position in order from the first to the last bit constituting each pattern, and The magnetization reversal position in the NLTS pattern to be measured is specified.
  • the reference pattern is formed as a pattern of a bit string in which the magnetization reversal positions are in the 0th, 18th, 24th, and 48th bits.
  • two types of patterns to be measured are provided as NLTS types, a dibit pattern and a tribit pattern, and eight types of measured patterns are further provided as dibit patterns. It has an NLTS pattern and eight types of measured NLTS patterns as tribit patterns.
  • the dibit pattern is a pattern (Di'001 fan 00) that includes two diversions in which two magnetization reversals are continuous
  • the tribit pattern consists of three Patterns containing tribits with consecutive magnetization reversals (--- 0 0111000 ).
  • each dibit pattern shown in FIG. 2 has a continuous magnetization reversal position (dibit) of two bits at the fourth and fifth bits from the beginning, and a 0 bit preceding each dibit.
  • the 4th to 3rd bits each have a 4-bit magnetization reversal pattern sequence (preceding pattern) P1.
  • NLTS measurement pattern sequence P NLTS measurement pattern sequence of the 0th to 5th bits including the preceding pattern P1 and the dibit in each dibit pattern.
  • the measured NLTS pattern shall be identified, for example, such as a measured NLT S pattern 0000 11 1, a measured NLT S pattern 00101 1, and a measured NLT S pattern 0100 11 1.
  • the magnetization reversal position is at the fourth, fifth, 22 and 35th bits
  • the magnetization reversal position is the first, In 2, 4, 5, 19, 20, 22, and 35 bits
  • the magnetization reversal position is 0, 2, 4, 5, 18, 18, 20, 22, In 35 bits
  • the measured reversal position is the 0th, 1st, 2nd, 4th, 5th, 12th, 18th, 19th, 20th, 22nd, 35th, and 42nd bits in the NLTS pattern 1 1 10 11 It is in.
  • the dibit position is the bit to be measured.
  • each of the tribit patterns shown in FIG. 2 has a continuous magnetization reversal position (tribit) of three bits at the fourth to sixth bits from the beginning, and each tribit has The preceding 0th to 3rd bits have a 4-bit magnetization reversal pattern sequence (preceding pattern) P1, which is different from each other.
  • each measured NLTS pattern is identified using a 7-bit portion of the 0th to 6th bits consisting of the preceding pattern P1 and the tribit in each tribit pattern.
  • measured NLTS pattern 00 101 1 measured NLTS pattern 01 001 1 1
  • the magnetization reversal position is at the fourth, fifth, sixth, twelve, 22, 23, 36, and 42 bits, and the NLT S pattern to be measured 01 10 1 In 1 1, the magnetization reversal position is in bits 1, 2, 4, 5, 6, 12, 2, 19, 20, 22, 23, 36, and 42.
  • the NLTS pattern 1010 11 1 1 Indicates that the magnetization reversal position is at bits 0, 2, 4, 5, 6, 12, 18, 18, 20, 22, 23, 36, and 42.
  • the pattern recording section (reference signal recording section, measured signal recording section) 52 is for recording the reference pattern and the pattern to be measured generated by the pattern generating section 51 on the magnetic disk 2, and the pattern reproducing section 54 is for the magnetic disk 2. It reads and reproduces the reference pattern and the measured pattern recorded in 2.
  • the first measuring section 55 measures the first predetermined harmonic component (M-order component) from the reproduced signal of the reference signal magnetically recorded on the magnetic disk 2, and the reference pattern reproduced by the pattern reproducing section 54.
  • the fifth harmonic component (hereinafter sometimes referred to as the fifth-order component) Vref is measured.
  • the second measuring section 56 measures a second predetermined harmonic component (M-order component) from a reproduced signal of each of a plurality of types of signals to be measured magnetically recorded on the magnetic disk 2, and performs pattern reproduction.
  • the fifth harmonic component Vpat is measured based on the pattern to be measured (NLTS pattern to be measured) reproduced by the unit 54.
  • the reference pattern (reference signal) generated by the pattern generating section 51 is recorded on the magnetic disk 2 via the pattern recording section 52, and the data recorded on the magnetic disk 2 is transmitted via the pattern reproducing section 54.
  • Input to the first measuring unit 55 Similarly, the pattern to be measured (signal to be measured) generated by the pattern generating section 51 is recorded on the magnetic disk 2 via the pattern recording section 52, and the data recorded on the magnetic disk 2 is transferred to the pattern reproducing section 54. Is input to the second measuring section 52 via the.
  • the calculating unit 57 calculates the NLT from the first predetermined harmonic component measured by the first measuring unit 55 and the second predetermined harmonic component corresponding to each signal under measurement measured by the second measuring unit 56. This is to calculate S.
  • the calculating unit 57 first calculates Vab according to the following equation (1), and then calculates NLTS according to the following equation (2).
  • Va b V p a t / V r e f (1)
  • Vpat is the Mth-order component of the measured pattern
  • Vref is the Mth-order component of the reference pattern
  • NLTS is a value standardized by 1 ⁇ , that is, a value in which the pulse width of 1T is 1 (100%).
  • NLTS calculation formula of the above formula (3) will be described using a measured NLTS pattern 10 10 11 1 1 (pattern A) involving a tribit with a bit period (pattern period) of 60T.
  • the magnetization reversal positions of pattern A are the 0, 2, 4, 5, 6, 12, 18, 18, 20, 22, 23, 36, and 42 bits.
  • the NLTS of one bit before is normalized by the bit period T, tnl
  • the NLTS of two bits before magnetization reversal is normalized by the bit period T, tn2
  • the NLTS of three bits previous magnetization reversal is the pit period.
  • tow be the normalized value of NLTS based on the previous history.
  • the previous history is the information immediately below before overwriting.
  • Va (f) H (£) [exp (0) -exp (-; j oT (2 + tow-tn2))
  • Va (5fO) H (5fO) [l-exp (-j 7t / 6 (2 + tow-tn2))
  • Va (5fO) H (5fO) [l_exp (_j 7t / 6 (2 + tow-tn2))
  • the magnetization reversal positions of pattern B are the 0th, 18th, 24th, and 48th bits.
  • Vb (5fO) H (5fO) [l-exp (-j t / 6 (l8 + tow))
  • Vab Va (5fO) / Vb (5fO) is calculated.
  • Va (5f0) and Vb (5f0) are measured by a spectrum analyzer or the like, only absolute values are measured. Therefore, Vab is given by the above equations (4) and (5).
  • Vab
  • Vab sqrt [(1 -Re) A 2 + Im A 2] / 2
  • the NLTS calculation formula is the same for other measured NLTS patterns.
  • the changing unit 58 arbitrarily changes (moves) the recording position of at least a part of the bits when the measured NLTS pattern (measured pattern) is recorded on the magnetic disk 2 by the pattern recording unit 52. This makes it possible to simulate the value of the NLTS by changing the dibit position and the trip position, and to simulate the value of the M-order component Vpat of the pattern to be measured.
  • the correction unit 59 corrects the value of the M-order component Vpat of the pattern to be measured, and uses the minimum value VpatMin of the value of Vpat based on the result of the simulation performed by the changing unit 58.
  • the value of the M-order component Vpat of the measurement pattern is corrected.
  • the correction unit 59 calculates and corrects the value Vpat ′ of the corrected Vpat based on the following equation (7), for example.
  • V a t ' s q r t (V p a t "2-V p a t M in" 2)
  • FIG. 3 is a diagram schematically showing a hardware configuration of the magnetic disk device 100 as one embodiment of the present invention. As shown in FIG.
  • the magnetic disk device 100 includes a magnetic disk (medium) 2, a magnetic head, a turn recording unit, and a pattern reproducing unit) 3, an actuator 4, a head IC 5, a control circuit 6, an encoder 7 , A recording correction circuit 8, an AGC circuit 9, a signal detection circuit 10, a decoder 11, a servo demodulation circuit 12, a servo control circuit 13, a drive circuit 14, an FFT 15, and a pattern generation circuit 20.
  • the magnetic disk (medium) 2 uses a magnetic film with high coercive force to track onto a disk-shaped medium.
  • the head is rotated by a spindle motor (not shown), and the magnetic head 3 can read information recorded on the surface or write information. It is like that.
  • the magnetic head (pattern recording unit, pattern reproducing unit) 3 reads various data recorded on the magnetic disk 2 and writes various information on the magnetic disk 3. Specifically, the magnetic head 3 is arranged to face the magnetic disk 2 and generates a magnetic field by supplying a recording current, and magnetizes the magnetic disk 2 in the track traveling direction. Thus, various data (a reference pattern, a pattern to be measured; details will be described later) are recorded on the magnetic disk 2.
  • the magnetic head 3 functions as a pattern recording unit (reference signal recording unit, measured signal recording unit) 52 that writes the above-described reference pattern and pattern to be measured on the magnetic disk 2, and is recorded on the magnetic disk 2. It functions as a pattern reproducing section 54 that reads and reproduces the reference pattern and the pattern to be measured.
  • the actuator 4 is for moving the magnetic head 3 in the radial direction of the magnetic disk 2 and includes, for example, a VCM (Voice Coil Motor) (not shown) used for positioning the magnetic head 3. .
  • the actuator 4 is driven in accordance with a drive signal from the drive circuit 14 to move the magnetic head 3 to a predetermined position.
  • the head IC 5 controls reading / writing of data from / to the magnetic disk 2 by the magnetic head 3, and the encoder 7 generates the recording data supplied from the control circuit 6 and the data generated by the pattern generation circuit 20.
  • the reference pattern and the pattern to be measured are converted into NRZ (Non-Return to Zero) data for recording on the magnetic disk 2 and output.
  • NRZ is a so-called non-return-to-zero recording method, and is a recording method in which recording is performed with a pulse waveform in which a unit code interval length and a pulse length are the same in a binary signal pulse train.
  • the output signal of the encoder 7 is supplied to the recording correction circuit 8.
  • the write correction circuit (WPC: Write Precompensation Circuit) 8 detects the bit arrangement of the output recording signal of the encoder 7 and performs correction according to the bit arrangement.
  • the recording signal corrected by the recording correction circuit 8 is supplied to the head IC 5.
  • the recording correction circuit 8 compensates for a recording signal in accordance with the calculation result of NLTS calculated by the control circuit 6, and supplies the recording signal to the head IC5.
  • the head IC 5 supplies a recording current corresponding to the recording data supplied from the recording correction circuit 8 to the magnetic head 3.
  • the head IC 5 amplifies the signal reproduced by the magnetic head 3 and supplies the amplified signal to the AGC circuit 9.
  • the AGC (Automatic Gain Control) circuit 9 is for controlling the amplitude of the signal supplied from the head IC 5 to be constant, and the control signal is transmitted to the FFT 15, the signal detection circuit 10, and the servo demodulation circuit 1 2 Output.
  • the signal detection circuit 10 detects the reproduced data from the output signal of the AGC circuit 9, and the decoder 11 decodes the signal detected by the signal detection circuit 10. The decoded signal is supplied to the control circuit 6.
  • the servo demodulation circuit 12 is for demodulating a servo signal from the signal supplied from the AGC circuit 9, and the demodulated signal is supplied to the servo control circuit 13.
  • the servo control circuit 13 determines the current position of the magnetic head 3 and the position where recording or reproduction is to be performed according to the servo signal supplied from the servo demodulation circuit 12 and the control signal supplied from the control circuit 6. Then, a drive control signal corresponding to the difference is generated and supplied to the drive circuit 14.
  • the drive circuit 14 generates a drive signal for driving the actuator 4 in accordance with the drive control signal supplied from the servo control circuit 13, and supplies the drive signal to the actuator 4. .
  • An FFT (Fast Fourier Transformer) 15 is provided downstream of the AGC circuit 9 to detect (measure) the 5th harmonic component from the reproduced signal output from the AGC circuit 9 and control it.
  • the 5th harmonic component is output to the control circuit 6 etc. That is, the FFT 15 functions as the first measurement unit 55 and the second measurement unit 56 described above.
  • the control circuit 6 controls various processes in the magnetic disk drive 100, and controls the switching of the magnetic head 3, the positioning control of the magnetic head 3 with respect to the magnetic disk 2, the magnetic head 3 Data write / read is controlled by an external device, and the above-described recording data is received from the outside and supplied to the encoder 7.
  • the control circuit 6 When measuring the NLTS in the magnetic disk device 100, the control circuit 6 issues a command to select, for example, a reference pattern to be supplied to the encoder 7 or recording data of a bit string pattern forming a pattern to be measured. Is received from the outside and supplied to the pattern generation circuit 20, whereby the pattern generation circuit 20 generates a reference pattern and a pattern to be measured.
  • control circuit 6 calculates the NLTS based on the fifth-order component Vpat of the measured pattern measured by the FFT 15 and the Mth-order component fifth-order harmonic component Vref of the reference pattern and the like. ing. That is, the control circuit 6 includes a first predetermined harmonic component measured by the first measurement unit 55 and a second predetermined harmonic component corresponding to each signal to be measured measured by the second measurement unit 56. It functions as a calculation unit 57 that calculates the NLTS from the wave components. Further, the control circuit 6 supplies the calculated NLTS to the recording correction circuit 8.
  • control circuit 6 supplies the calculation result of the NLTS by the fifth harmonic method described above to the recording correction circuit 8, and the recording correction circuit 8 compensates according to the supplied NLTS calculation result.
  • the recording signal is supplied to the head IC 5.
  • the pattern generation circuit 20 generates a reference pattern (reference signal) and a pattern to be measured (signal to be measured) based on the control of the control circuit 6, and supplies the reference pattern and the pattern to be measured to the encoder 7. And functions as the above-described pattern generation unit 51.
  • FIG. 4 shows a pattern used in the magnetic disk drive 100 as one embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating a configuration example of a power generation circuit 20.
  • This pattern generation circuit 20 responds to a command supplied from the control circuit 6 and generates a reference pattern (reference signal (60 bits) stored in a non-volatile memory (not shown) in the selection circuit 30 as a reference signal composed of 60 bits each.
  • One record data (pattern) is selected from a plurality of types of patterns under test (NLTS patterns under test) as the signal under test, and the 60-bit record data is stored in the shift register 31. Supply.
  • the shift register 31 is a 60-bit parallel input serial output shift register that writes 60-bit parallel recording data when the S / L mode is 0 and arbitrary data written when the S / L mode is 1.
  • the bit is serially shifted one bit at a time, and supplied to the encoder 7.
  • the pattern generation circuit 20 can be configured as a magnetic recording / reproducing LSI (Large Scale Integration).
  • This NLTS measurement method consists of the following three steps.
  • a reference signal (reference pattern; see FIG. 2) is recorded on the magnetic disk 2 using the magnetic head 3, the reproduced signal is detected from the output of the AGC circuit 9, and the fifth harmonic is obtained by the FFT 15.
  • Measure the wave signal hereinafter referred to as 5th order component (Step 1).
  • this 5th-order component be Vref.
  • the pattern to be measured (see Fig. 2) is selected, recorded on the magnetic disk 2 as in step 1, and the fifth-order component Vpat of the reproduced signal is measured by the FFT 15 (step 2). ).
  • FIGS. 5 (a), (b), (c) and FIGS. 6 (a), (b), (c) each show a plurality of types of measured objects in the magnetic disk device 100 according to an embodiment of the present invention.
  • Measurement error by NLTS simulation for N LT S pattern NLT S pattern to be measured 10101 1 1, NLT S pattern to be measured 1 1 101 11 1, NLTS pattern to be measured 01 101 1 1 and NLTS pattern to be measured 00001 1
  • NLT S pattern to be measured 1 1 101 11 1 NLTS pattern to be measured 01 101 1 1
  • NLTS pattern to be measured 00001 1 It is a figure showing the example of.
  • the figure shows the simulation result in the case of (a)
  • (b) is the figure showing the simulation result when the vertical asymmetry ratio of the reproduced signal is 10%
  • (c) is the figure in which the vertical
  • FIGS. 7 (a), (b), (c) and FIGS. 8 (a), (b), (c) each show a plurality of types of magnetic disk drives 100 according to an embodiment of the present invention.
  • the corrected NLT S for the measured N LTS pattern (measured NLT S pattern 10101 11 1, measured NLTS pattern 1 1 101 11 1, measured NLTS pattern 01 101 1 1 and measured NLTS pattern 00001 1 1)
  • FIG. 9 is a diagram showing an example of a measurement error by the simulation of FIG. The simulations in Figs. 7 (a) to (c) and Figs.
  • FIGS. 7A to 7C are diagrams showing the relationship between the NLTS amount and the NLTS value at the tribit position, and FIG. 7A shows that the upper and lower asymmetry ratio of the reproduced signal is 0% (A sym
  • Figures 8 (a) to 8 (c) show the NLTS amount and NLT at the dibit position, respectively.
  • FIG. 7A is a diagram showing a relationship with an LTS value.
  • 5 is a diagram showing an example of actual measurement of NLT S relating to a plurality of types of NLT S patterns to be measured in FIG. More specifically, FIGS. 9A and 9B are diagrams showing an example in which the NLTS is measured without performing the nonlinear correction on the magnetic head 3 having a poor error rate, and FIG. (B) shows the measurement results for the measured NLTS pattern 10101 1 1, the measured NLTS pattern 00001 111, the measured NLTS pattern 01 101 11 1, and the measured NLTS pattern 1 1 101 1 1).
  • FIG. 9 is a diagram showing measurement results of a plurality of dibits (measured NLT S pattern 10101 1, measured NLT S pattern 00001 1, measured NLTS pattern 01 101 1, and measured NLTS pattern 1 101 1).
  • FIGS. 10 (a) and 10 (b) are diagrams showing an example in which NLTS is measured without performing non-linear correction on a normal magnetic head 3, and FIG. 10 (a) shows a plurality of tribits (NLTS pattern 10101 to be measured).
  • (b) shows multiple dibits (NLTS pattern to be measured 1 0 10 1 1, NLT to be measured)
  • FIG. 9 is a diagram illustrating measurement results of an S pattern 0000 1 1, a measured NLTS pattern 0 1 10 11 1 and a measured NLTS pattern 1 1 01 1).
  • FIGS. 11 (a) and 11 (b) are diagrams showing an example in which NLTS is measured by performing non-linear correction on a magnetic head 3 having a poor error rate.
  • FIG. 11 (a) shows a plurality of tribits (measured NLT S Figure 10b shows the measurement results for pattern 1010 1 1 1, NLT S pattern to be measured 0000 1 1 1, N LTS pattern to be measured 01 101 1 1 and N LTS pattern to be measured 1 1 1 0 1 1 1). Shows the measurement results for multiple dibits (measured N LTS pattern 10 10 1 1, measured NLTS pattern 0000 11 1, measured N LTS pattern 0 1 101 1, and measured NLT S pattern 1 1 10 1 1) FIG.
  • FIGS. 12 (a) and 12 (b) are diagrams showing an example of a case where the NLTS is measured by performing a non-linear correction on a normal magnetic head 3, and FIG. Figure showing measurement results for 1 0 1 1 1, NL TS pattern to be measured 00001 11 1, NLTS pattern to be measured 0 1 10 1 1 1 1 and N LT S pattern to be measured 1 1 1 0 1 1 1), (b) Indicates the measurement results for multiple dibits (the NLTS pattern to be measured 101 01 1, the NLTS pattern to be measured 000011, the NLTS pattern to be measured 01 1 01 1 and the NLT S pattern to be measured 1 1 101 1)
  • the NLT S depends on the preceding pattern P1 and is caused by the magnetic head 3.
  • the present invention is not limited to this. It is easy to guess that NLTS can occur in 2 and the recording transmission path (not shown).
  • an algorithm for generating a reference pattern (reference signal) and a pattern to be measured (signal to be measured) used in the non-linearity measuring section 1 of the magnetic disk device 100 will be described.
  • the reference pattern and the pattern to be measured used in the non-linearity measuring section 1 of the magnetic disk device 100 are not limited to those shown in FIG. 2, but other reference patterns and the pattern to be measured satisfying the following conditions. You can use. However, the bit length ⁇ is such that the influence from the previous bit can be ignored.
  • the first magnetization reversal bit R1 is provided at the head position
  • the second magnetization reversal bit R2 is provided at a subsequent position at least ⁇ bits away from the first magnetization reversal bit R1.
  • a third position is located at a subsequent position at least ⁇ bits away from the second magnetization reversal bit R2 and n4XRth (where n4 is a natural number) subsequent to the first magnetization reversal bit R1.
  • n4XRth where n4 is a natural number
  • the fourth magnetization reversal bit R 4 is located at the preceding position separated from the second magnetization reversal bit R 2 and at a position subsequent to the ( ⁇ 5 +0.5) Rth (where ⁇ 5 is a natural number) from the second magnetization reversal bit R 2. It is provided.
  • NLTS measurement pattern sequence composed of the preceding pattern ⁇ 1 and the non-linearity measurement bit in the pattern to be measured: 2 ⁇ bits from the last bit of ⁇ (where ⁇ is the previous bit on the medium) At the succeeding position that is at least distant from the first bit of the NLT S measurement pattern sequence ⁇ ( ⁇ 1 + 0.5) Rth (where ⁇ 1 Is a natural number), and a bit string ⁇ 2 excluding the last bit of the NLT S measurement pattern ⁇ ⁇ ⁇ A subsequent position that is at least ⁇ bits away from the last bit of pattern P1 and is a preceding position that is at least 2 ⁇ bits away from the last bit ((th bit) of the pattern under test, and the NLTS measurement pattern
  • the first magnetization reversal bit C 1 is provided at the position following the ( ⁇ 2 + 0.5) Rth (where ⁇ 2 is a natural number) from the last bit of column ⁇ .
  • the third magnetization reversal bit C3 is provided at a position subsequent to.
  • the nonlinearity measurement unit 1 of the magnetic disk device 100 may measure the NLTS using any reference pattern or pattern to be measured that satisfies the above conditions (1) to (4).
  • FIG. 13 is a diagram showing an example of another reference pattern and a pattern to be measured used in the non-linearity measuring section 1 of the magnetic disk device 100 as one embodiment of the present invention.
  • the predetermined harmonic of the pattern to be measured having the preceding pattern ⁇ 1 preceding the bit to be measured of the NLTS.
  • correction can be easily performed so that NLTS is minimized.
  • WPC write compensation circuit
  • the present invention is not limited to the above-described embodiment, and can be variously modified and implemented without departing from the gist of the present invention.
  • the pattern generating section 51 may output an inverted reference signal created by inverting the magnetization polarity of the above-described reference pattern (reference signal) as a reference signal, or may output the magnetization of the pattern to be measured (non-measurement signal).
  • the inverted signal under test created by inverting the polarity may be output as the signal under test.
  • the predetermined harmonic component is measured as described above, and the NLTS By calculating the NLTS polarity difference in the same preceding pattern can also be measured.
  • two polarities are output alternately depending on the direction of magnetization reversal.
  • the first bit has a positive polarity and the second bit has a negative polarity, and the first bit has a negative polarity and the second bit has a positive polarity.
  • the measured pattern used in the non-linearity measuring section 1 of the magnetic disk drive 100 has an even number of magnetization reversal information, the measured pattern generated by reversing the magnetization polarity of the measured pattern is used. , It is possible to generate two polarities.
  • the magnetization polarity of the reference pattern and the measured pattern generated from the pattern generator 51 is inverted. It is also possible to provide a reversing section and reverse the magnetization polarity by the reversing section.
  • the pattern of the reference signal or the signal to be measured (the reference pattern or the pattern to be measured) is generated by the pattern generating circuit 20 (pattern generating unit 51).
  • the control circuit 6 receives a reference signal or a pattern signal of the signal under measurement from the outside, and converts the received pattern signal through the recording correction circuit 8 to the head IC 5. It can also be configured to be supplied to, recorded, and played back.
  • the FFT 15 is provided downstream of the AGC circuit 9; however, the configuration is not limited thereto.
  • An FFT 15 may be provided at a position upstream of the circuit 9.
  • the control circuit 6 corresponds to the first predetermined harmonic component measured by the first measurement unit 55 and each signal to be measured measured by the second measurement unit 56. NLTS is calculated from the second predetermined harmonic component to be calculated, but the present invention is not limited to this. It may be provided separately.
  • the first predetermined harmonic component measured based on the reproduced signal of the reference pattern and the second predetermined harmonic component measured based on the reproduced signal of the pattern under test are different from each other.
  • the M-th harmonic component has the same order M
  • the invention is not limited to this, and the first predetermined harmonic component and the second predetermined harmonic component have different orders. It may be a harmonic component.
  • the nonlinearity measuring method, nonlinearity measuring apparatus, magnetic recording / reproducing apparatus, and magnetic recording / reproducing LSI of the present invention are useful for measuring the nonlinear transition shift in magnetic recording / reproducing on a medium.
  • it is suitable for more accurate NLTS measurement considering the magnetization reversal state of the bit string preceding the pattern to be measured.

Abstract

A non-linearity measuring method capable of measuring NLTS with a high accuracy considering the magnetic inversion state of a preceding bit string. The NLTS depending on the magnetic inversion pattern string P1 can easily and quantitatively measured by constituting a device including a first measurement section (55) for measuring a first predetermined higher harmonic component from a reproduction signal of a reference signal magnetically recorded on a medium (2), a second measurement section (56) for measuring a second predetermined higher harmonic component from the reproduction signal for each of the signals of a plurality of types magnetically recorded on the medium (2) and to be measured, and a calculation section (57) for calculating the NLTS from the first predetermined higher harmonic component and the second predetermined higher harmonic component corresponding to the respective signals to be measured, wherein the signals of the plurality of types to be measured respectively have a magnetic inversion pattern string P1 preceding the bit to be subjected to the NLTS measurement.

Description

非線形性測定方法, 非線形性測定装置, 磁気記録再生装置および磁気記録再生用Nonlinearity measuring method, Nonlinearity measuring device, Magnetic recording / reproducing device and For magnetic recording / reproducing
L S I 技術分野 L S I Technical Field
本発明は非線形性の Ml定方法に関し、 特に、 磁気テープ、 磁気カード、 フレキ シブルディスク、 磁気ディスク、 光磁気デイスクおよび磁気ドラム等の記録媒体 にデジタルデータを磁化極性の変化明として記録し再生する磁気記録再生装置およ ぴ磁気記録再生用 LS Iに関し、 更に、 上記磁気記録再生における非線形性測定 方法および非線形性測定装置に関する。  The present invention relates to a method for determining the nonlinearity of a magnetic field, and in particular, records and reproduces digital data on a recording medium such as a magnetic tape, a magnetic card, a flexible disk, a magnetic disk, a magneto-optical disk, and a magnetic drum as a change in magnetization polarity. The present invention relates to a magnetic recording / reproducing device and an LSI for magnetic recording / reproducing, and further relates to a method and a device for measuring nonlinearity in the magnetic recording / reproducing.
書 背景技術  Background art
近年、 磁気記録再生装置の高密度化、 高速データ転送化に伴い、 磁気へッド、 記録媒体および記録再生伝送系等において生じる非線形遷移シフト (NLTS : Non-Linear Transition Shift)を把握するため N L T Sの測定が必須となってき ている。 この NLTSは、 記録データがその直前または直後の記録データの影響 を受けないように、 遷移シフト (T S) を考慮して、 記録媒体を磁気記録し記録 データを正確に再生するために必要なデータである。  In recent years, as the density of magnetic recording / reproducing devices has increased and the data transfer speed has increased, NLTS has been developed to understand the non-linear transition shift (NLTS) that occurs in magnetic heads, recording media, and recording / reproducing transmission systems. Measurement is becoming essential. This NLTS is the data required to magnetically record the recording medium and accurately reproduce the recorded data, taking into account the transition shift (TS) so that the recorded data is not affected by the immediately preceding or succeeding recorded data. It is.
従来の NLTS測定手法として、 1994年、 IEEE Transactions on Magnetic s, Vol.30, No.6, p.4236に X. Che、 M. J. Peekおよび J. Fitzpai'tickの "A G eneralized frequency domain nonlinearity measurement method" と題する 論文 (非特許文献 1) が知られている。 この論文には、 磁化反転の連続が 2ビッ ト (Dibit) を含むビット列パターンの信号を媒体に磁気記録して生じる NLT S 測定方法が記載されている。  As a conventional NLTS measurement method, in 1994, IEEE Transactions on Magnetics, Vol. 30, No. 6, p. 4236, X. Che, MJ Peek and J. Fitzpai'tick's "AG eneralized frequency domain nonlinearity measurement method" (Non-Patent Document 1) is known. This paper describes a method for measuring the NLT S that occurs when a series of magnetization reversals is magnetically recorded on a medium with a bit string pattern signal containing two bits (Dibit).
この NLT S測定方法について以下に説明する。 この NLT S測定方法は以下 の 3つのステップから構成される。  This NLT S measurement method will be described below. This NLT S measurement method consists of the following three steps.
ステップ 1においては、 1ビットのパルス幅を Tとして 1 5ビット毎に (1 5 Tで) 極性が反転する 30 Tのビット列パターンを繰り返す基準信号によりデー タを媒体上に記録し、 その再生信号の第 5高調波信号 (以下、 5次成分と記す)を 測定する。 この 5次成分を V5ref とする。 上記基準信号を、 媒体上に記録するデ 一タの記録符号をレベルで表示する N R Z表記およぴ記録符号をレベルの反転で 表示する NRZ I表記によって以下に示す。 In step 1, the pulse width of one bit is T, and the polarity is inverted every 15 bits (at 15 T). Record the data on a medium, and measure the fifth harmonic signal (hereinafter referred to as the fifth-order component) of the reproduced signal. This fifth-order component is defined as V5ref. The above-mentioned reference signal is shown below by NRZ notation, in which the recording code of data recorded on the medium is indicated by a level, and NRZI notation, in which the recording code is indicated by inversion of the level.
NRZ表記 : 111111111111111 000000000000000  NRZ notation: 111111111111111 000000000000000
NRZ I表記 : 100000000000000 100000000000000  NRZ I notation: 100000000000000 100000000000000
ステップ 2においては、 Dibitパターンを含む 3 OTのビット列パターンを繰 り返す被測定信号によりデータを媒体上に記録し、 その再生信号の 5次成分 V5p atを測定する。 上記被測定信号を、 NRZ表記および NRZ I表記により以下に 示す。  In step 2, data is recorded on the medium using the signal to be measured that repeats the 3OT bit string pattern including the Dibit pattern, and the fifth-order component V5pat of the reproduced signal is measured. The signals to be measured are shown below in NRZ notation and NRZ I notation.
NRZ表記 : 100000001111111 011111110000000  NRZ notation: 100000001111111 011111110000000
NRZI表記: 110000001000000 110000001000000  NRZI notation: 110000001000000 110000001000000
ステップ 3においては、 ステップ 1およびステップ 2で測定した 5次成分を V 5refおよび V5refから比率 Vab二 V5pat/V5refを算出する。 次いで、 Dibitで生じ る NLTS (Dibit) を下式 ) から算出する。 ここで、 1^1^丁3は1丁で規格 化した値、 すなわち 1 Tのパルス幅を 1 (1 00%) とした値である。  In step 3, the ratio Vab2 V5pat / V5ref is calculated from V5ref and V5ref for the fifth-order component measured in step 1 and step 2. Next, NLTS (Dibit) generated by Dibit is calculated from the following equation. Here, 1 ^ 1 ^ 3 is a value normalized by one, that is, a value in which the pulse width of 1T is 1 (100%).
NLTS (Dibit) =acos 〔(2.Vab2)/2〕 *3/π … (a)  NLTS (Dibit) = acos [(2.Vab2) / 2] * 3 / π… (a)
上式 (a) は、 下式 (b) により近似できる。 The above equation (a) can be approximated by the following equation (b).
NLTS (Dibit) =Vab*3/ ··· (b)  NLTS (Dibit) = Vab * 3 / (b)
また、 上記論文には、 磁化反転がさらに連続した場合の NLT S測定方法も記 載されているが、 同論文の著者 J. Fitzpatrick に加えて、 A. Taratorin、 S. X. Wang, B. Wilson力 後の 1996年 1月に、 IEEE Transactions on Magnetics, Vol.33,No.l, P956-961に発表した" Non-Linear Interactions in a Series of Transitions" と題する論文 (非特許文献 2 ) では、 再生ヘッドに MR (磁気抵抗 効果)型のものが使用された場合、再生へッドの非線形性を取除かなければ NLT S測定値に大きな誤差が生じることが記載されている。  The above paper also describes the NLT S measurement method when the magnetization reversal is further continuous.In addition to the author's author J. Fitzpatrick, A. Taratorin, SX Wang, B. Wilson In a paper entitled "Non-Linear Interactions in a Series of Transitions" published in IEEE Transactions on Magnetics, Vol. 33, No. 1, P956-961 in January 1996 (Non-Patent Document 2), It is stated that if MR (magnetoresistive) type is used, a large error will occur in the NLTS measurement value unless the nonlinearity of the reproduction head is removed.
さらに、 NLT Sの一つとして前記録データによる遷移シフト (HT S: Hard Transition Shiftまたは O/W (Over Write) NLTS) があり、 その測定方法 として、 単一ビット列パターンを繰り返す基準信号 (f ) とその 1Z2周波数の 被測定信号 (fZ2) とから NLTSを算出する方法が知られている。 In addition, one of the NLT S is a transition shift (HTS: Hard Transition Shift or O / W (Over Write) NLTS) by pre-recorded data. As a measurement method, a reference signal (f) that repeats a single bit string pattern And its 1Z2 frequency A method of calculating the NLTS from the signal under test (fZ2) is known.
また、 2つの磁化反転が連続するダイビット (Dibit) 以外に、 3つの磁化反転 が連続するトリビット (Tribit)や 2Tのビット列パターンを繰り返す信号で生じ る非線形遷移シフト (NLTS) を、 手間がかからずに、 電磁誘導型再生ヘッド のみならず MR (磁気抵抗効果)型再生へッドに起因する非線形性に対する測定誤 差をも少なくし、 測定方法の変更をせずに様々な種類の NLTSを容易に測定で きるようにすることを目的とする非線形性の測定手法 (特許文献 1参照) も知ら れている。  In addition to dibits with two consecutive magnetization reversals, non-linear transition shifts (NLTS) caused by tribits with three consecutive magnetization reversals and signals repeating a 2T bit string pattern are troublesome. In addition to reducing the measurement error due to nonlinearities caused by MR (magnetoresistive) read heads as well as electromagnetic induction read heads, various types of NLTS can be used without changing the measurement method. A non-linearity measurement method for the purpose of easily measuring (see Patent Document 1) is also known.
しかしながら、 これらの従来の NLTS測定手法においては、 NLTS被測定 パターン (ビット列パターン) に先行して存在するビット列の磁化反転状況につ いては何ら考慮されておらず、 実際に即した NLTSを測定するものではないと いう課題がある。  However, in these conventional NLTS measurement methods, no consideration is given to the state of magnetization reversal of the bit string that precedes the NLTS measured pattern (bit string pattern), and the actual NLTS is measured. There is a problem that it is not a thing.
本発明は、 このような課題に鑑み創案されたもので、 先行するビット列の磁化 反転状況を考慮した、 より精度の高い NLT Sを測定可能な非線形性測定方法, 非線形性測定装置, 磁気記録再生装置および磁気記録再生用 L S Iを提供するこ とを目的とする。  The present invention has been made in view of such a problem, and a non-linearity measuring method, a non-linearity measuring apparatus, and a magnetic recording / reproducing method capable of measuring NLTS with higher accuracy in consideration of the state of magnetization reversal of a preceding bit string. It is intended to provide a device and an LSI for magnetic recording and reproduction.
特許文献 1 Patent Document 1
特開 2002— 230709号公報  JP 2002-230709 A
非特許文献 1 Non-patent document 1
X. Che, M. J. Peekお び J. Fitzpartick A Generalized frequency do main nonlinearity measurement method 1994年、 IEEE Transactions on Magnetics, Vol.30, No.6, p.4236  X. Che, M. J. Peek and J. Fitzpartick A Generalized frequency do main nonlinearity measurement method 1994, IEEE Transactions on Magnetics, Vol. 30, No. 6, p. 4236
非特許文献 2 Non-patent document 2
J. Fitzpatrick, A. Taratorin, S. X.Wangおよび B. Wilson著 "Non-Linear Interactions in a Series of Transitions" 1996年 1月、 IEEE Transactions on Magnetics, Vol.33,No.l, P956-961 発明の開示  J. Fitzpatrick, A. Taratorin, SXWang and B. Wilson, "Non-Linear Interactions in a Series of Transitions", January 1996, IEEE Transactions on Magnetics, Vol. 33, No. 1, P956-961.
このため、 本発明の非線形性測定方法は、 媒体における磁気記録再生における 非線形遷移シフト (NLTS: Non Linear Transition Shift) を算出する非線 形性測定方法であって、 媒体に基準信号を記録する基準信号記録ステップと、 媒 体に複数種類の被測定信号を記録する被測定信号記録ステップと、 媒体に磁気記 録された基準信号の再生信号から第 1の所定高調波成分を測定する第 1測定ステ ップと、 媒体に磁気記録された複数種類の被測定信号の各々に、 その再生信号か ら第 2の所定高調波成分を測定する第 2測定ステップと、 第 1の所定高調波成分 と各々の被測定信号に対応する第 2の所定高調波成分とから N L T Sを算出する 算出ステップとをそなえ、 複数種類の被測定信号が、 それぞれ、 NLTSの測定 対象ビットに先行して磁化反転パタ一ン列 P 1をそなえることを特徴としている。 なお、 第 1の所定高調波成分および第 2の所定高調波成分がそれぞれ次数 Mの 第 M高調波成分であり、 基準信号および複数種類の被測定信号が、 いずれもビッ ト周期 Nのビット列として構成され、 ビット周期 Nが所定高調波成分の次数 Mの 倍数であるとともに、 高調波次数 Mに対するビット周期 Nの比 R (R = N/M) が 2の倍数であってもよレ、。 For this reason, the nonlinearity measuring method of the present invention can A non-linearity measurement method for calculating a nonlinear transition shift (NLTS), comprising a reference signal recording step of recording a reference signal on a medium, and a method of recording a plurality of types of signals to be measured on the medium. A measurement signal recording step, a first measurement step of measuring a first predetermined harmonic component from a reproduction signal of a reference signal magnetically recorded on the medium, and a plurality of types of signals to be measured magnetically recorded on the medium. A second measurement step of measuring a second predetermined harmonic component from the reproduced signal; and an NLTS from the first predetermined harmonic component and the second predetermined harmonic component corresponding to each signal under test. And a calculation step for calculating the NLTS. Each of the plurality of types of signals to be measured is provided with a magnetization reversal pattern sequence P1 prior to the measurement target bit of the NLTS. Note that the first predetermined harmonic component and the second predetermined harmonic component are the M-th harmonic components of order M, respectively, and the reference signal and the plurality of types of signals under test are all represented as a bit string having a bit period N. The bit period N may be a multiple of the order M of the predetermined harmonic component, and the ratio R (R = N / M) of the bit period N to the harmonic order M may be a multiple of two.
また、 被測定信号が、 磁化反転パターン P 1と非線形性の測定対象ビットとを そなえて構成された NLT S測定パターン列; Pの最終ビットカ ら 2δビット (た だし、 δは媒体上における前ビットからの NLT Sの影響を無視し得るビット長) 以上離れた後続位置で、 且つ、 NLTS測定パタ一ン列 Pの先頭ビットから ( n 1 + 0. 5) R番目 (ただし、 n lは自然数) の後続位置を始点として、 NLT S測定パターン Pの最終ビットを除いたビット列 P 2を配置し、 磁化反転パター ン P 1の最終ビットから δビット以上離れた後続位置であって、 その被測定信号 の最終ビットから 2 δビット以上離れた先行位置であり、 且つ、 NLTS測定パ ターン列 Pの最終ビットから (n 2 + 0. 5) R番目 (ただし、 n 2は自然数) の後続位置に第 1の磁化反転ビット C 1をそなえてもよい。 '  In addition, the signal to be measured is an NLT S measurement pattern sequence composed of the magnetization reversal pattern P1 and the non-linearity measurement bit; 2δ bits from the last bit of P (where δ is the previous bit on the medium) (Length negligible to the effect of NLTS from the following) At a subsequent position that is at least distant from the first bit of the NLTS measurement pattern sequence P (n1 + 0.5) Rth (where nl is a natural number) The bit sequence P2 excluding the last bit of the NLT S measurement pattern P is arranged starting from the subsequent position of the NLT S measurement pattern P, and the subsequent position at least δ bits away from the last bit of the magnetization reversal pattern P1 and the signal under test At the position preceding the last bit of the NLTS measurement pattern sequence P by more than 2δ bits, and at the (n2 + 0.5) Rth (where n2 is a natural number) succeeding position from the last bit of the NLTS measurement pattern sequence P. May have 1 magnetization reversal bit C 1 . '
さらに、 磁化反転するビットを 1で表記して、 被測定信号が、 磁化反転位置が 第 4, 5, 22, 35ビットにある 000011000000000000000010000000000001 000000000000000000000000 の 60ビッ卜歹 1J (ビット周期 N= 60) のパター ンであってもよく、 又、 磁化反転するビットを 1で表記して、 被測定信号が、 磁 化反転位置が第 4, 5, 6, 12, 22, 23, 36, 42ビットにある 00001 11000001000000000110000000000001000001000000000糊 00000 の 60ビッ ト列 (ビット周期 N= 60) のパターンであってもよい。 Furthermore, the bit to be magnetized is represented by 1, and the signal to be measured is a 60-bit pattern 1J (bit period N = 60) of 000011000000000000000010000000000001 000000000000000000000000 where the magnetization reversal position is in the 4th, 5th, 22nd and 35th bits. The bit to be magnetized is represented by 1 and the signal to be measured has a magnetized reversal position at bits 4, 5, 6, 12, 22, 23, 36, and 42. 11000001000000000110000000000001000001000000000 A pattern of a 60-bit string of glue 00000 (bit period N = 60) may be used.
また、 被測定信号が、 N L T S測定パタ一ン列 Pにおける磁化反転ビットの数 が奇数の場合に、 N L T S測定パターン列 Pの最終ビットから δビット以上離れ た後続位置であり、 且つ、 ビット列 Ρ 2パターンの先頭ビットから δ以上離れた 先行位置に第 2の磁化反転ビット C 2と、 第 1の磁化反転ビット C 1から δビッ ト以上離れた後続位置であって、 その被測定信号の最終ビットから δビット以上 離れた先行位置であり、 且つ、 第 2の磁化反転ビット C 2から ( η 3 + 0. 5) R番目 (ただし、 η 3は自然数) の後続位置に第 3の磁化反転ビット C 3をそな えてもよレヽ。  When the number of magnetization reversal bits in the NLTS measurement pattern sequence P is an odd number, the signal to be measured is a subsequent position at least δ bits away from the last bit of the NLTS measurement pattern sequence P, and the bit sequence Ρ 2 A second magnetization reversal bit C2 at a preceding position δ or more away from the first bit of the pattern, and a subsequent position at least δ bits away from the first magnetization reversal bit C1 and the last bit of the signal under measurement. At least δ bits from the second magnetization reversal bit, and a third magnetization reversal bit at the (R 3 (0.5), where η 3 is a natural number) succeeding position from the second magnetization reversal bit C 2 It may have C3.
さらに、 磁化反転するビットを 1で表記して、 被測定信号が、 磁化反転位置が 第 1, 2, 4, 5, 19, 20, 22, 35ビットにある 0110110000 0000000 0011010000000000001000000000000000000000000の 60ビット列 (ビット周 期 Ν=60) のパターンであってもよく、 又、 磁化反転するビットを 1で表記し て、 被測定信号が、 磁化反転位置が第 0, 2, 4, 5, 18, 20, 22, 35 ビットにある 1010110000 0000000010101000000000000100000000000000000 0000000の 60ビット歹 IJ (ビット周期 Ν= 60) のパターンであってもよい。 またさらに、 磁化反転するビットを 1で表記して、 被測定信号が、 磁化反転位 置が第 0, 1, 2, 4, 5, 12, 18, 19, 20, 22, 35, 42ビット にある 11101100000010000011101000000000000100000010000000 00000000 00の 60ビット列 (ビット周期 Ν=60) のパターンであってもよく、 又、 磁化 反転するビットを 1で表記して、 被測定信号が、 磁化反転位置が第 1, 2, 4, 5, 6, 12, 19, 20, 22, 23, 36, 42ビットにある 01101110000 0100000011011000000画 000100000100000000000000000の 60ビット歹 (ビ ット周期 N= 60) のパターンであってもよい。  Further, the bit to be inverted is represented by 1, and the signal to be measured is a 60-bit string of 0110110000 0000000 0011010000000000001000000000000000000000000 where the magnetization inversion position is in the first, second, fourth, fifth, fifth, fifth, ninth, twentieth, and thirty-fifth bits. The period of the magnetization reversal may be represented by 1 and the signal to be measured has the magnetization reversal position of 0, 2, 4, 5, 18, 20, 22, It may be a pattern of 35 bits, 1010110000 0000000010101000000000000100000000000000000 0000000, a 60-bit pattern IJ (bit period Ν = 60). Further, the bit to be magnetized is represented by 1 and the signal to be measured is represented by the magnetization reversal position at the 0th, 1, 2, 4, 5, 12, 18, 19, 20, 22, 35, and 42 bits. It may be a pattern of a 60-bit string (bit period Ν = 60) of 11101100000010000011101000000000000100000010000000 00000000 00, and the bit to be magnetized is represented by 1 so that the signal to be measured has the magnetization reversal position of the first, second, and fourth. , 5,6,12,19,20,22,23,36,42 bits may be a pattern of 01101110000 0100000011011000000 000100000100000000000000000 60-bit pattern (bit period N = 60).
さらにまた、 磁化反転するビットを 1で表記して、 被測定信号が、 磁化反転位 置が第 0, 2, 4, 5, 6, 12, 18, 20, 22, 23, 36, 42ビット にある 10101110000010000010101100000000000010000010000000000000000 0の 60ビット列 (ビット周期 N= 60) のパターンであってもよく、 又、 磁化 反転するビットを 1で表記して、 被測定信号が、 磁化反転位置が第 0, 1, 2, 4, 5, 6 , 1 8, 1 9, 20, 22, 23, 36ビットにある 1110111000000 00000111011000000000000100000000000000000000000の 60ビッ卜列 (ビッ ト周期 N= 60) のパターンであってもよい。 Furthermore, the bit for magnetization reversal is represented by 1, and the signal to be measured is changed to the 0, 2, 4, 5, 6, 12, 12, 18, 20, 22, 23, 36, and 42 bits for the magnetization reversal position. There may be a pattern of a 60-bit string (bit period N = 60) of 10101110000010000010101100000000000010000010000000000000000 0, and magnetization The bit to be inverted is represented by 1, and the signal to be measured has the magnetization reversal position at the 0th, 1, 2, 4, 5, 6, 18, 18, 19, 20, 22, 23, and 36th bits 1110111000000 0000011101100000000000010000000000000000000000000000 May be a pattern of a 60-bit string (bit period N = 60).
また、基準信号が、先頭位置に第 1の磁化反転ビット R 1をそなえるとともに、 第 1の磁化反転ビット R 1から δビット以上離れた後続位置に第 2の磁化反転ビ ット R 2と、 第 2の磁化反転ビット R 2から δビット以上離れた後続位置であつ て、 且つ第 1の磁化反転ビット R 1から η 4 XR番目 (ただし、 η 4は自然数) の後続位置に第 3の磁化反転ビット R 3と、 第 3の磁化反転ビット R 3から δビ ット以上離れた後続位置であって、 その基準信号の最終ビットから δビット以上 離れた先行位置であり、 且つ、 第 2の磁化反転ビット R 2から (η 5 + 0. 5) R番目 (ただし、 η 5は自然数) の後続位置に第 4の磁化反転ビット R 4とをそ なえてもよレヽ。  In addition, the reference signal includes a first magnetization reversal bit R 1 at a head position, and a second magnetization reversal bit R 2 at a subsequent position at least δ bits away from the first magnetization reversal bit R 1, The third magnetization is located at a subsequent position at least δ bits away from the second magnetization reversal bit R 2 and at the η 4 XRth (where η 4 is a natural number) subsequent position from the first magnetization reversal bit R 1. An inversion bit R 3 and a subsequent position that is at least δ bits away from the third magnetization inversion bit R 3, a preceding position that is at least δ bits away from the last bit of the reference signal, and A fourth magnetization reversal bit R 4 may be provided at a position subsequent to the R-th (where η 5 is a natural number) from the magnetization reversal bit R 2 (η 5 +0.5).
さらに、 磁化反転するビットを 1で表記して、 基準信号が、 磁化反転位置が第 0、 1 8、 24、 48ビットにある 100000000000000000100000100000000000 000000000000100000000000 の 60ビッ卜列 (ビッ卜周期 Ν= 60) のノ ター ンであってもよい。  Further, the bit for magnetization reversal is represented by 1, and the reference signal is the reference signal of the 60-bit string (bit cycle Ν = 60) of 100000000000000000100000100000000000 000000000000100000000000 where the magnetization reversal position is in the 0th, 18th, 24th, and 48th bits. It may be a turn.
また、 算出ステップにおいて、 第 1の所定高調波成分と第 2の所定高調波成分 との比率に基づいて、 NLTSを算出してもよく、 又、 被測定信号の磁化極性を 反転させて作成した反転被測定信号を被測定信号として用いてもよい。  In the calculation step, the NLTS may be calculated based on a ratio between the first predetermined harmonic component and the second predetermined harmonic component, and the NLTS is created by inverting the magnetization polarity of the signal under measurement. The inverted signal under measurement may be used as the signal under measurement.
さらに、 被測定信号記録ステップにおいて、 被測定信号における非線形性の測 定対象ビットの記録位置を変更可能な変更ステップをそなえ、 第 2測定ステップ において、 記録位置を移動後の被測定信号に基づいて第 2の所定高調波成分を測 定してもよい。  Further, in the signal-under-measurement step, there is provided a change step capable of changing the recording position of the measurement target bit of the non-linearity in the signal-under-measurement, and in the second measurement step, based on the signal-under-measurement after moving the recording position. The second predetermined harmonic component may be measured.
また、 記録位置を移動後の被測定信号基づいて測定された第 2の所定高調波成 分の最小値 Vp a tMi nに基づいて、 第 2の所定高調波成分を補正する補正ス テツプをそなえてもよく、 又、 この補正ステップにおいて、 記録位置を移動前の 被測定信号基づいて測定された第 2の所定高調波成分 Vp a t、 記録位置を移動 後の被測定信号基づいて測定された第 2の所定高調波成分 V p a t ' とした場合 に、 In addition, a correction step is provided for correcting the second predetermined harmonic component based on the minimum value VpatMin of the second predetermined harmonic component measured based on the signal under measurement after moving the recording position. In this correction step, the second predetermined harmonic component Vpat measured based on the measured signal before moving the recording position and the second predetermined harmonic component Vpat measured based on the measured signal after moving the recording position may be used. When the predetermined harmonic component V pat 'of 2 To
V a ' = s q r t (V a t " 2-Vp a tM i n " 2)  V a '= s q r t (V at t "2-Vp a tM i n" 2)
となるように補正を行なってもよレ、。 It may be corrected so that
さらに、基準信号および複数種類の被測定信号が、いずれもビット周期 60 (N = 60 ) のビット列であり、 第 1の所定高調波成分および第 2の所定高調波成分 がそれぞれ次数 5 (M= 5) の第 5高調波成分であってもよく、 又、 基準信号お よび複数種類の被測定信号が、 いずれもビット周期 50 (N= 50) のビット列 であり、第 1の所定高調波成分および第 2の所定高調波成分がそれぞれ次数 5 (M = 5) の第 5高調波成分であってもよい。  Further, each of the reference signal and the plurality of types of signals under test is a bit string having a bit period of 60 (N = 60), and the first predetermined harmonic component and the second predetermined harmonic component are of order 5 (M = 5), and the reference signal and the plurality of types of signals to be measured are each a bit string having a bit period of 50 (N = 50), and the first predetermined harmonic component. And the second predetermined harmonic component may be a fifth harmonic component of order 5 (M = 5).
また、 本発明の非線形性測定装置は、 媒体における磁気記録再生における非線 形遷移シフト (NLT S : Non Linear Transition Shift) を算出する非線形性 測定装置であって、 媒体に磁気記録された基準信号の再生信号から第 1の所定高 調波成分を測定する第 1測定部と、 媒体に磁気記録された複数種類の被測定信号 の各々に、 その再生信号から第 2の所定高調波成分を測定する第 2測定部と、 第 1の所定高調波成分と各々の被測定信号に対応する第 2の所定高調波成分とから NLTSを算出する算出部とをそなえ、 複数種類の被測定信号が、 それぞれ、 N LTSの測定対象ビットに先行して磁化反転パターン列 P 1をそなえることを特 徴としている。  The non-linearity measuring device of the present invention is a non-linearity measuring device for calculating a non-linear transition shift (NLTS) in magnetic recording / reproducing on a medium, wherein the reference signal magnetically recorded on the medium is A first measuring unit for measuring a first predetermined harmonic component from the reproduced signal of the first type, and measuring a second predetermined harmonic component from the reproduced signal for each of a plurality of types of signals to be measured magnetically recorded on a medium. A second measuring unit, and a calculating unit that calculates the NLTS from the first predetermined harmonic component and the second predetermined harmonic component corresponding to each of the signals under test. Each of them is characterized by having a magnetization reversal pattern sequence P1 preceding the measurement target bit of NLTS.
さらに、 本発明の磁気記録再生装置は、 媒体に磁気記録された基準信号の再生 信号から第 1の所定高調波成分を測定する第 1測定部と、 媒体に磁気記録された 複数種類の被測定信号の各々に、 その再生信号から第 2の所定高調波成分を測定 する第 2測定部と、 第 1の所定高調波成分と各々の被測定信号に対応する第 2の 所定高調波成分とから、媒体における磁気記録再生における非線形遷移シフト( N LTS : Non Linear Transition Shift) を算出する算出部とをそなえ、 複数種 類の被測定信号が、 それぞれ、 N L T Sの測定対象ビットに先行して磁化反転パ ターン列 P 1をそなえることを特徴としている。  Further, the magnetic recording / reproducing apparatus of the present invention comprises: a first measuring section for measuring a first predetermined harmonic component from a reproduced signal of a reference signal magnetically recorded on the medium; and a plurality of types of devices to be measured magnetically recorded on the medium. A second measuring unit for measuring a second predetermined harmonic component from the reproduced signal for each of the signals; and a second predetermined harmonic component corresponding to each of the signals under measurement, and a second predetermined harmonic component corresponding to each of the signals to be measured. And a calculation unit that calculates a non-linear transition shift (NLTS) in magnetic recording / reproducing on a medium, and a plurality of types of signals to be measured are each switched in magnetization before a bit to be measured in NLTS. It is characterized by having a pattern sequence P1.
また、 本発明の磁気記録再生用 LS Iは、 媒体に磁気記録された基準信号の再 生信号から第 1の所定高調波成分を測定する第 1測定部と、 媒体に磁気記録され た複数種類の被測定信号の各々に、 その再生信号から第 2の所定高調波成分を測 定する第 2測定部と、 第 1の所定高調波成分と各々の被測定信号に対応する第 2 の所定高調波成分とから、 媒体における磁気記録再生における非線形遷移シフト (NLTS : Non Linear Transition Shift) を算出する算出部とをそなえ、 複 数種類の被測定信号が、 それぞれ、 NLTSの測定対象ビットに先行して磁化反 転パターン列 P 1をそなえることを特徴としている。 Also, the magnetic recording / reproducing LSI of the present invention comprises a first measuring unit for measuring a first predetermined harmonic component from a reproduction signal of a reference signal magnetically recorded on a medium, and a plurality of types of magnetic recording magnetically recorded on the medium. For each of the measured signals, a second predetermined harmonic component is measured from the reproduced signal. From the second measuring section to be determined, the first predetermined harmonic component and the second predetermined harmonic component corresponding to each signal under measurement, a nonlinear transition shift (NLTS) in magnetic recording / reproducing on a medium is obtained. ) Is calculated, and a plurality of types of signals to be measured are each provided with a magnetization reversal pattern sequence P1 prior to the measurement target bit of the NLTS.
本発明の非線形性測定方法, 非線形性測定装置, 磁気記録再生装置および磁気 記録再生用 L S Iによれば、 以下の効果ないし利点がある。  According to the non-linearity measuring method, the non-linearity measuring device, the magnetic recording / reproducing device and the magnetic recording / reproducing LSI of the present invention, the following effects and advantages are obtained.
(1) NLTSの測定対象ビットに先行して磁化反転パターン列 P 1をそなえ る被測定信号の所定高調波成分に基づいて N L T Sを算出することにより、 磁化 反転パターン列 P 1に依存する NLTSを容易に定量的に測定することができ、 磁気記録再生装置 (磁気ヘッド, 電送系等) や媒体の開発におおいに効果を発揮 するものである。  (1) NLTS that depends on the magnetization reversal pattern sequence P 1 is calculated by calculating the NLTS based on the predetermined harmonic component of the signal under measurement that includes the magnetization reversal pattern sequence P 1 prior to the NLTS measurement target bit. It can be easily and quantitatively measured, and is highly effective in the development of magnetic recording / reproducing devices (magnetic heads, transmission systems, etc.) and media.
(2) NLTSが最小になるように容易に補正を行なうことができる。 図面の簡単な説明  (2) Correction can be easily made so that NLTS is minimized. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の一実施形態としての磁気ディスク装置 (磁気記録再生装置) に そなえられた非線形性測定部 (非線形性測定装置) の機能構成を模式的に示す図 である。  FIG. 1 is a diagram schematically showing a functional configuration of a nonlinearity measuring section (nonlinearity measuring device) provided in a magnetic disk device (magnetic recording / reproducing device) as one embodiment of the present invention.
図 2は本発明の一実施形態としての磁気ディスク装置の非線形性測定部におい て用いられる基準パターンおよぴ被測定パターンの例を示す図である。  FIG. 2 is a diagram showing an example of a reference pattern and a pattern to be measured used in the non-linearity measuring section of the magnetic disk device as one embodiment of the present invention.
図 3は本発明の一実施形態としての磁気ディスク装置のハードウエア構成を模 式的に示す図である。  FIG. 3 is a diagram schematically showing a hardware configuration of a magnetic disk device as one embodiment of the present invention.
図 4は本発明の一実施形態としての磁気デイスク装置に用いられるパターン発 生回路の構成例を模式的に示す図である。  FIG. 4 is a diagram schematically showing a configuration example of a pattern generation circuit used in a magnetic disk device as one embodiment of the present invention.
図 5 (a), 図 5 (b), 図 5 (c), 図 6 (a), 図 6 (b), 図 6 (c) はそれ ぞれ本発明の一実施形態としての磁気ディスク装置における、 複数種類の被測定 NLT Sパターンに関する NLT Sのシミュレ一シヨンによる測定誤差の例を示 す図である。  FIGS. 5 (a), 5 (b), 5 (c), 6 (a), 6 (b), and 6 (c) are magnetic disk drives as one embodiment of the present invention. FIG. 6 is a diagram showing an example of a measurement error due to simulation of NLT S for a plurality of types of NLT S patterns to be measured in FIG.
図 7 (a), 図 7 (b), 図 7 (c), 図 8 (a), 図 8 (b), 図 8 (c) はそれ ぞれ本発明の一実施形態としての磁気ディスク装置における、 複数種類の被測定Figures 7 (a), 7 (b), 7 (c), 8 (a), 8 (b), and 8 (c) In the magnetic disk device as one embodiment of the present invention, a plurality of types of
NLT Sパターンに関する補正後の NLT Sのシミュレーションによる測定誤差 の例を示す図である。 FIG. 9 is a diagram showing an example of a measurement error by a simulation of the NLT S after correcting the NLT S pattern.
図 9 (a), 図 9 (b), 図 10 (a), 図 10 (b), 図 1 1 (a), 図 1 1 (b), 図 12 (a), 図 12 (b) はそれぞれ本発明の一実施形態としての磁気ディスク 装置における複数種類の被測定 N L T Sパターンに関する N L T Sの実測例を示 す図である。  Figures 9 (a), 9 (b), 10 (a), 10 (b), 11 (a), 11 (b), 12 (a) and 12 (b) FIG. 3 is a diagram showing an actual measurement example of NLTS for a plurality of types of NLTS patterns to be measured in the magnetic disk device as one embodiment of the present invention.
図 13は本発明の一実施形態としての磁気ディスク装置の非線形性測定部にお いて用いられる他の基準パターンおよび被測定パターンの例を示す図である。 発明を実施するための最良の形態  FIG. 13 is a diagram showing an example of another reference pattern and a pattern to be measured used in the non-linearity measuring section of the magnetic disk device as one embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、 本発明の一実施形態としての磁気ディスク装置 (磁気記録再生装置) にそなえられた非線形性測定部 (非線形性測定装置) の機能構成を模式的に示す 図である。  FIG. 1 is a diagram schematically showing a functional configuration of a nonlinearity measuring unit (nonlinearity measuring device) provided in a magnetic disk device (magnetic recording / reproducing device) as one embodiment of the present invention.
本磁気ディスク装置 (磁気記録再生装置) 100は、 例えばコンピュータシス テム等における記憶装置として用いられ、 複数の磁気ディスク 2をそなえ、 これ らの磁気ディスク 2に磁気へッド 3を用いてデータの記録 Z読み取りを行なうも のであり、 磁気ディスク (媒体) 2 (図 3参照) における磁気記録再生の非線形 遷移シフト (NLTS : Non Linear Transition Shift) を算出する非線形性測 定部 1 (図 1参照) をそなえて構成されている。  The magnetic disk device (magnetic recording / reproducing device) 100 is used, for example, as a storage device in a computer system or the like, has a plurality of magnetic disks 2, and uses these magnetic disks 2 with a magnetic head 3 to transfer data. A non-linearity measuring unit 1 (see Fig. 1) that calculates the non-linear transition shift (NLTS) of magnetic recording / reproducing on the magnetic disk (medium) 2 (see Fig. 3). It is configured with.
本磁気ディスク装置 100における非線形性測定部 1は、 図 1に示すように、 パターン発生部 51, パターン記録部 52, パターン再生部 54, 第 1測定部 5 5, 第 2測定部 56, 算出部 57, 変更部 58および補正部 59をそなえて構成 されている。  As shown in FIG. 1, the non-linearity measuring section 1 of the magnetic disk device 100 includes a pattern generating section 51, a pattern recording section 52, a pattern reproducing section 54, a first measuring section 55, a second measuring section 56, and a calculating section. 57, a change unit 58 and a correction unit 59.
パターン発生部 51は、 基準パターン (基準信号) および被測定パターン (被 測定信号) を発生させて、 これらの基準パターンおよび被測定パターンをパター ン記録部 52に渡すようになっている。  The pattern generating section 51 generates a reference pattern (reference signal) and a pattern to be measured (signal to be measured), and passes the reference pattern and the pattern to be measured to the pattern recording section 52.
図 2は本発明の一実施形態としての磁気ディスク装置 100の非線形性測定部 1において用いられる基準パターンおよび被測定パターンの例を示す図である。 基準パターンおよび被測定パターンは、 ともに磁気ディスク 2にデータを磁気記 録するための磁化と非磁化との状態を表わすビット列パターンであって、 パター ン発生部 5 1は、 図 2に示すような基準パターンや被測定パターンを発生させる ようになっている。 FIG. 2 shows a non-linearity measuring unit of the magnetic disk drive 100 as one embodiment of the present invention. FIG. 3 is a diagram showing an example of a reference pattern and a pattern to be measured used in 1. The reference pattern and the pattern to be measured are both bit string patterns representing the states of magnetization and non-magnetization for magnetically recording data on the magnetic disk 2, and the pattern generation section 51 has a pattern as shown in FIG. A reference pattern and a pattern to be measured are generated.
なお、 図 2中においては上段に各列の項目を示している。 各項目は、 左から順 に第 1列目は N L T Sの測定種類、 第 2列目は被測定 N L T Sパターン、 3列目 はそのビット位置 (B i t位置) を示している。 このビット位置としては、 上記 基準パターンおよび被測定パターンが N R Z I表記で示されている。 これらのパ ターンから選択されたデータが、 パターン発生部 5 1から記録データとして供給 されるようになっている。  In FIG. 2, the items in each column are shown in the upper row. In each item from the left, the first column shows the type of NLTS measurement, the second column shows the NLTS pattern to be measured, and the third column shows the bit position (Bit position). As the bit position, the above-mentioned reference pattern and the pattern to be measured are indicated by NRZI notation. Data selected from these patterns is supplied from the pattern generation section 51 as recording data.
なお、 本実施形態においては、 図 2に示すように、 基準パターンと被測定パタ ーンとのいずれも、 ビット周期 Nが 6 0ビット (6 0 T ; N = 6 0 ) の 0と 1と からなるビット列であり、磁化反転位置を 1で表わすものとして構成されている。 そして、 図 2中においては、 基準パターンと被測定パターンとのそれぞれに、 各パターンを構成する先頭から最後の各ビットに 0〜5 9までの番号をビット位 置として順番に付して、 各被測定 N L T Sパターンにおける磁化反転位置を特定 するものとする。 又、 この図 2に示す各パターンは、 前ビットからの影響を無視 し得るビット長 δ = 4丁とした場合のものである。  In this embodiment, as shown in FIG. 2, the bit period N of each of the reference pattern and the pattern to be measured is 0 and 1 of 60 bits (60T; N = 60). , And is configured so that the magnetization reversal position is represented by 1. In FIG. 2, each of the reference pattern and the pattern to be measured is assigned a number from 0 to 59 as a bit position in order from the first to the last bit constituting each pattern, and The magnetization reversal position in the NLTS pattern to be measured is specified. Each pattern shown in FIG. 2 is for a case where the bit length δ = 4, where the influence from the previous bit can be ignored.
本実施形態においては、 基準パターンは、 図 2に示すように、 磁化反転位置が 第 0, 1 8, 2 4 , 4 8ビットにあるビット列のパターンとして形成されている。 また、 図 2に示す例においては、 被測定パターンは、 N L T S種類としてダイ ビット (Dibit) パターンとトリビット (Tribit) パターンとの 2種類用意されて おり、 更に、 ダイビットパターンとして 8種類の被測定 N L T Sパターンをそな えるとともに、 トリビットパターンとして 8種類の被測定 N L T Sパターンをそ なえている。  In the present embodiment, as shown in FIG. 2, the reference pattern is formed as a pattern of a bit string in which the magnetization reversal positions are in the 0th, 18th, 24th, and 48th bits. In the example shown in FIG. 2, two types of patterns to be measured are provided as NLTS types, a dibit pattern and a tribit pattern, and eight types of measured patterns are further provided as dibit patterns. It has an NLTS pattern and eight types of measured NLTS patterns as tribit patterns.
ここで、 ダイビット (Dibit) パターンは、 2つの磁化反転が連続するダイビッ ト (Dibit) を含むパターン (·'·001扇 00···) であって、 トリビット (Tribit) パ ターンは、 3つの磁化反転が連続するトリビット (Tribit) を含むパターン (---0 0111000···) である。 Here, the dibit pattern is a pattern (Di'001 fan 00) that includes two diversions in which two magnetization reversals are continuous, and the tribit pattern consists of three Patterns containing tribits with consecutive magnetization reversals (--- 0 0111000 ...).
また、 図 2に示す各ダイビットパターンは、 いずれも、 各先頭から 4ビット目 および 5ビット目に 2ビットの連続する磁化反転位置 (ダイビット) をそなえて おり、 又、 各ダイビットに先行する 0ビット目〜 3ビット目に、 それぞれ 4ビッ トの磁化反転パターン列 (先行パターン) P 1をそなえている。  In addition, each dibit pattern shown in FIG. 2 has a continuous magnetization reversal position (dibit) of two bits at the fourth and fifth bits from the beginning, and a 0 bit preceding each dibit. The 4th to 3rd bits each have a 4-bit magnetization reversal pattern sequence (preceding pattern) P1.
本実施形態においては、 便宜上、 各ダイビットパターンにおける、 先行パター ン P 1とダイビットとからなる 0〜 5ビット目の 6ビットの部分 (NLT S測定 パターン列 P )を用!/、て各被測定 N L T Sパターンを識別するものとし、例えば、 被測定 NLT Sパターン 0000 1 1 , 被測定 NLT Sパターン 00101 1, 被測定 NLT Sパターン 0100 1 1のように示すものとする。  In the present embodiment, for convenience, a 6-bit portion (NLTS measurement pattern sequence P) of the 0th to 5th bits including the preceding pattern P1 and the dibit in each dibit pattern is used! The measured NLTS pattern shall be identified, for example, such as a measured NLT S pattern 0000 11 1, a measured NLT S pattern 00101 1, and a measured NLT S pattern 0100 11 1.
そして、 例えば、 被測定 NLT Sパターン 0000 1 1においては、 磁化反転 位置が第 4, 5, 22, 35ビットにあり、 被測定 NLT Sパターン 01 10 1 1においては、 磁化反転位置が第 1, 2, 4, 5, 1 9, 20, 22, 35ビッ トにあり、 被測定 NLTSパターン 101 0 1 1においては、 磁化反転位置が第 0, 2 , 4, 5, 1 8, 20, 22, 35ビットにあり、 被測定 N L T Sパター ン 1 1 10 1 1においては、磁化反転位置が第 0, 1, 2, 4, 5, 1 2, 1 8, 1 9, 20, 22, 35, 42ビットにある。  For example, in the measured NLT S pattern 0000 11 1, the magnetization reversal position is at the fourth, fifth, 22 and 35th bits, and in the measured NLT S pattern 01 10 11 1, the magnetization reversal position is the first, In 2, 4, 5, 19, 20, 22, and 35 bits, in the NLTS pattern 101 0 11 to be measured, the magnetization reversal position is 0, 2, 4, 5, 18, 18, 20, 22, In 35 bits, the measured reversal position is the 0th, 1st, 2nd, 4th, 5th, 12th, 18th, 19th, 20th, 22nd, 35th, and 42nd bits in the NLTS pattern 1 1 10 11 It is in.
また、 本実施形態においては、 各被測定 NLT Sパターンにおけるダイビット 位置 (ダイビットを構成する連続する 2つの磁化反転ビットの 2ビット目) につ いての NLT Sを測定するものとする。 すなわち、 このダイビット位置が測定対 象ビットである。  In the present embodiment, it is assumed that the NLTS at the dibit position (the second bit of two consecutive magnetization reversal bits forming the dibit) in each measured NLTS pattern is measured. That is, the dibit position is the bit to be measured.
同様に、 '図 2に示す各トリビットパターンは、 いずれも、 各先頭から 4ビット 目〜 6ビット目に 3ビットの連続する磁化反転位置 (トリビット) をそなえてお り、 又、 各トリビットに先行する 0ビット目〜 3ビット目に、 それぞれ互いに異 なる 4ビットの磁化反転パタ一ン列 (先行パターン) P 1をそなえている。 本実施形態においては、 便宜上、 各トリビットパターンにおける、 先行パター ン P 1とトリビットとからなる 0〜 6ビット目の 7ビットの部分を用いて各被測 定 NLTSパターンを識別するものとし、 例えば、 被測定 NLT Sパターン 00 00 1 1 1, 被測定 NLTSパターン 00 101 1 1, 被測定 NLTSパターン 01 001 1 1のように示すものとする。 Similarly, each of the tribit patterns shown in FIG. 2 has a continuous magnetization reversal position (tribit) of three bits at the fourth to sixth bits from the beginning, and each tribit has The preceding 0th to 3rd bits have a 4-bit magnetization reversal pattern sequence (preceding pattern) P1, which is different from each other. In the present embodiment, for the sake of convenience, it is assumed that each measured NLTS pattern is identified using a 7-bit portion of the 0th to 6th bits consisting of the preceding pattern P1 and the tribit in each tribit pattern. , Measured NLT S pattern 00 00 1 1 1, measured NLTS pattern 00 101 1 1, measured NLTS pattern 01 001 1 1
そして、 例えば、 被測定 NLT Sパターン 00001 1 1においては、 磁化反 転位置が第 4, 5, 6, 1 2, 22, 23, 36, 42ビットにあり、 被測定 N LT Sパターン 01 10 1 1 1においては、 磁化反転位置が第 1, 2, 4, 5, 6, 1 2, 1 9, 20, 22, 23, 36, 42ビットにあり、 被測定 N LT S パターン 1010 1 1 1においては、 磁化反転位置が第 0, 2, 4, 5, 6, 1 2, 18 , 20, 22, 23, 36 , 42ビットにあり、 被測定 N L T Sパター ン 1 1 101 1 1においては、磁化反転位置が第 0, 1, 2, 4, 5, 6, 18, 1 9 , 20, 22, 23, 36ビットにある。  For example, in the NLT S pattern to be measured 00001 11 1, the magnetization reversal position is at the fourth, fifth, sixth, twelve, 22, 23, 36, and 42 bits, and the NLT S pattern to be measured 01 10 1 In 1 1, the magnetization reversal position is in bits 1, 2, 4, 5, 6, 12, 2, 19, 20, 22, 23, 36, and 42. In the NLTS pattern 1010 11 1 1 Indicates that the magnetization reversal position is at bits 0, 2, 4, 5, 6, 12, 18, 18, 20, 22, 23, 36, and 42. In the NLTS pattern to be measured 1 1 101 11 1 The position is at bits 0, 1, 2, 4, 5, 6, 18, 19, 20, 22, 23, and 36.
また、 本実施形態においては、 各被測定 NLT Sパターンにおけるトリビット 位置 (トリビットを構成する連続する 3つの磁化反転ビットの 3ビット目) につ いての NLTSを測定するものとする。 すなわち、 このトリビット位置が測定対 象ビットである。  Also, in the present embodiment, it is assumed that the NLTS at the tribit position (the third bit of three consecutive magnetization reversal bits forming the tribit) in each measured NLTS pattern is measured. That is, this tribit position is the bit to be measured.
パターン記録部 (基準信号記録部, 被測定信号記録部) 52はパターン発生部 5 1によって発生された基準パターンおよび被測定パターンを磁気ディスク 2に 記録するものであり、 パターン再生部 54は磁気ディスク 2に記録された基準パ ターンおよぴ被測定パターンを読み取り再生するものである。  The pattern recording section (reference signal recording section, measured signal recording section) 52 is for recording the reference pattern and the pattern to be measured generated by the pattern generating section 51 on the magnetic disk 2, and the pattern reproducing section 54 is for the magnetic disk 2. It reads and reproduces the reference pattern and the measured pattern recorded in 2.
第 1測定部 55は、 磁気ディスク 2に磁気記録された基準信号の再生信号から 第 1の所定高調波成分 (M次成分) を測定するものであり、 パターン再生部 54 によって再生された基準パターンに基づいて、 その第 5高調波成分 (以下、 5次 成分という場合もある) V r e f を測定するようになっている。  The first measuring section 55 measures the first predetermined harmonic component (M-order component) from the reproduced signal of the reference signal magnetically recorded on the magnetic disk 2, and the reference pattern reproduced by the pattern reproducing section 54. , The fifth harmonic component (hereinafter sometimes referred to as the fifth-order component) Vref is measured.
第 2測定部 5 6は磁気ディスク 2に磁気記録された複数種類の被測定信号の 各々に、 その再生信号から第 2の所定高調波成分 (M次成分) を測定するもので あり、 パターン再生部 54によって再生された被測定パターン (被測定 NLTS パターン) に基づいて、 その第 5高調波成分 Vp a tを測定するようになってい る。  The second measuring section 56 measures a second predetermined harmonic component (M-order component) from a reproduced signal of each of a plurality of types of signals to be measured magnetically recorded on the magnetic disk 2, and performs pattern reproduction. The fifth harmonic component Vpat is measured based on the pattern to be measured (NLTS pattern to be measured) reproduced by the unit 54.
そして、パターン発生部 51によって発生された基準パターン (基準信号)は、 パターン記録部 52を介して磁気ディスク 2に記録され、 この磁気ディスク 2に 記録されたデータは、 パターン再生部 54を介して第 1測定部 55に入力され、 同じく、 パターン発生部 5 1によって発生された被測定パターン (被測定信号) は、 パターン記録部 52を介して磁気ディスク 2に記録され、 この磁気ディスク 2に記録されたデータが、 パターン再生部 54を介して第 2測定部 52に入力さ れるようになっている。 Then, the reference pattern (reference signal) generated by the pattern generating section 51 is recorded on the magnetic disk 2 via the pattern recording section 52, and the data recorded on the magnetic disk 2 is transmitted via the pattern reproducing section 54. Input to the first measuring unit 55, Similarly, the pattern to be measured (signal to be measured) generated by the pattern generating section 51 is recorded on the magnetic disk 2 via the pattern recording section 52, and the data recorded on the magnetic disk 2 is transferred to the pattern reproducing section 54. Is input to the second measuring section 52 via the.
なお、 以下、 本実施形態においては、 第 1測定部 55によって測定される第 1 の所定高調波成分も第 2測定部 56によって測定される第 2の所定高調波成分も、 次数 5 (M= 5) の第 5高調波成分の場合について説明するものとする。  Hereinafter, in the present embodiment, both the first predetermined harmonic component measured by the first measuring unit 55 and the second predetermined harmonic component measured by the second measuring unit 56 are of order 5 (M = The case of the fifth harmonic component of 5) will be described.
算出部 57は、 第 1測定部 55によって測定された第 1の所定高調波成分と、 第 2測定部 56によって測定された各々の被測定信号に対応する第 2の所定高調 波成分とから NLT Sを算出するものである。  The calculating unit 57 calculates the NLT from the first predetermined harmonic component measured by the first measuring unit 55 and the second predetermined harmonic component corresponding to each signal under measurement measured by the second measuring unit 56. This is to calculate S.
具体的には、 算出部 57は、 先ず、 下記の式 (1) により Va bを算出した後 に、 下記の式 (2) により、 NLT Sを算出するようになっている。  Specifically, the calculating unit 57 first calculates Vab according to the following equation (1), and then calculates NLTS according to the following equation (2).
Va b =V p a t /V r e f · · · ( 1 )  Va b = V p a t / V r e f (1)
ただし、 Vp a tは被測定パターンの M次成分、 V r e f は基準パターンの M次 成分である。 Here, Vpat is the Mth-order component of the measured pattern, and Vref is the Mth-order component of the reference pattern.
NLTS a cos([- Vab2) · · · (2) NLTS a cos ([- Vab 2 ) · · · (2)
π  π
なお、 Rは高調波次数 Μに対するビット周期 Νの比 (R = NZM) であり、 例 えば、 ビット周期 Nが 60ビット (6 OT ; N=60) であり、 所定高調波成分 が次数 5 (M= 5) である場合には、 R= (60/5) = 12である。 すなわち、 NLTSは、 下記の式 (3) によって算出することができる。  Note that R is the ratio of the bit period Μ to the harmonic order ((R = NZM). For example, the bit period N is 60 bits (6 OT; N = 60), and the predetermined harmonic component is the order 5 ( If M = 5) then R = (60/5) = 12. That is, NLTS can be calculated by the following equation (3).
NLTS = -acos[l-Vab2) . . ' (3) NLTS = -acos [l-Vab 2 ).. '(3)
π  π
ここで、 NLTSは 1 Τで規格化した値、 すなわち 1 Tのパルス幅を 1 (1 0 0%) とした値である。  Here, NLTS is a value standardized by 1 、, that is, a value in which the pulse width of 1T is 1 (100%).
次に、 上記式 (3) の NLTS算出式について、 ビット周期 (パターン周期) が 60Tのトリビットにかかる被測定 NLT Sパターン 10 10 1 1 1 (パター ン A) を用いて説明する。  Next, the NLTS calculation formula of the above formula (3) will be described using a measured NLTS pattern 10 10 11 1 1 (pattern A) involving a tribit with a bit period (pattern period) of 60T.
(1) パターン Aの第 5次成分の算出 パターン Aの磁化反転位置は、 0, 2, 4, 5, 6, 1 2, 1 8, 20, 22, 23, 36, 42ビット目である。 ここで、 1ビット前による NLTSをビット 周期 Tで正規化したものを tnl、 2ビット前磁化反転による NLTSをビット周 期 Tで正規化したものを tn2、 3ビット前磁化反転による NLTSをピット周期 Tで正規化したものを tn3 (=tnl-tn2)、 前歴による N L T Sを正規化したものを towとする。 なお、 前歴とは、 上書きする前の直下の情報をいう。 (1) Calculation of 5th order component of pattern A The magnetization reversal positions of pattern A are the 0, 2, 4, 5, 6, 12, 18, 18, 20, 22, 23, 36, and 42 bits. Here, the NLTS of one bit before is normalized by the bit period T, tnl, the NLTS of two bits before magnetization reversal is normalized by the bit period T, tn2, and the NLTS of three bits previous magnetization reversal is the pit period. Let tn3 (= tnl-tn2) be the normalized value of T, and tow be the normalized value of NLTS based on the previous history. The previous history is the information immediately below before overwriting.
Va(t)= (t)-h(t-2T-tow+tn2)  Va (t) = (t) -h (t-2T-tow + tn2)
+h(t-4T-tn2)-h(t-5T-tow+tnl)  + h (t-4T-tn2) -h (t-5T-tow + tnl)
+ (t-6T+tn3)" (t-12T-tow)  + (t-6T + tn3) "(t-12T-tow)
+ (t-18T)-h(t-20T-tow)  + (t-18T) -h (t-20T-tow)
+h(t"22T+tn2)-h(t-23T-tow+tnl)  + h (t "22T + tn2) -h (t-23T-tow + tnl)
+h(t-36T)-h(t-42T-tow)  + h (t-36T) -h (t-42T-tow)
Va(f)=H(£)[ exp(0)-exp (-; j oT(2+tow-tn2))  Va (f) = H (£) [exp (0) -exp (-; j oT (2 + tow-tn2))
+exp(-joT(4-tii2))-exp(-joT(5+towtnl))  + exp (-joT (4-tii2))-exp (-joT (5 + towtnl))
+exp(-joT(6-tn3))-exp(-joT(l2+tow))  + exp (-joT (6-tn3))-exp (-joT (l2 + tow))
+exp(-jG)T(18))-exp(-jG)T(20+tow-tn2))  + exp (-jG) T (18))-exp (-jG) T (20 + tow-tn2))
+exp(-jQT(22-tn2))-exp(-joT(23+tow-tnl))  + exp (-jQT (22-tn2))-exp (-joT (23 + tow-tnl))
+exp(-j^T(36))-exp(-joT(42+tow))]  + exp (-j ^ T (36))-exp (-joT (42 + tow))]
第 5次成分は 5f0=5/T0=5/(60T)=l/(12T)であるので、 ωΤ=2ττίΓ=2π5ίΟΤ=π/6。 ここで f0は繰り返し基準周波数を表わす。 Since the 5th order component is 5f0 = 5 / T0 = 5 / (60T) = l / (12T), ωΤ = 2ττίΓ = 2π5ίΟΤ = π / 6. Here, f0 represents the repetition reference frequency.
従って、 Va(f)の第 5次成分 Va(5f0)は以下の式によって表わすことができる。 Therefore, the fifth order component Va (5f0) of Va (f) can be expressed by the following equation.
Va(5fO)=H(5fO)[ l-exp(-j 7t/6(2+tow-tn2))  Va (5fO) = H (5fO) [l-exp (-j 7t / 6 (2 + tow-tn2))
+exp(-j 7T/6(4-tn2))-exp(-j 7t/6(5+towtnl)) 7 + exp (-j 7T / 6 (4-tn2))-exp (-j 7t / 6 (5 + towtnl)) 7
+exp(-j 7t/6(6-tn3))-exp(-j 7T/6(12+tow)) + exp (-j 7t / 6 (6-tn3))-exp (-j 7T / 6 (12 + tow))
+exp("j 7C/6(l8))-exp(-j 7C/6(20+tow-tn2))  + exp ("j 7C / 6 (l8))-exp (-j 7C / 6 (20 + tow-tn2))
+exp(-j 7t/6(22-tn2))-exp(-j 7t/6(23+tow-tnl))  + exp (-j 7t / 6 (22-tn2))-exp (-j 7t / 6 (23 + tow-tnl))
+exp(-j 7t/6(36))-exp(-j 7T/6(42+tow))]  + exp (-j 7t / 6 (36))-exp (-j 7T / 6 (42 + tow))]
Va(5fO)=H(5fO)[ l_exp(_j 7t/6(2+tow-tn2))  Va (5fO) = H (5fO) [l_exp (_j 7t / 6 (2 + tow-tn2))
+exp("j 7T/6(4-tn2))-exp(-j 7t/6(5+towtnl)) -exp(-j 7T/6(-tn3))-exp(-j 7T/6(tow)) + exp ("j 7T / 6 (4-tn2))-exp (-j 7t / 6 (5 + towtnl)) -exp (-j 7T / 6 (-tn3))-exp (-j 7T / 6 (tow))
-l+exp(-j 7T/6(2+tow-tn2))  -l + exp (-j 7T / 6 (2 + tow-tn2))
-exp(-j 7C /6(4-tn2))+exp(-j 7r/6(5+towtnl))  -exp (-j 7C / 6 (4-tn2)) + exp (-j 7r / 6 (5 + towtnl))
+l+exp(-j 7T/6(tow))]  + l + exp (-j 7T / 6 (tow))]
Va(5fO)=H(5fO)[l-exp j7r/6(tn3))] · · · (4)  Va (5fO) = H (5fO) [l-exp j7r / 6 (tn3))]
(2) 基準パターン (パターン B) の第 5次成分の算出 '  (2) Calculation of the fifth order component of the reference pattern (pattern B) ''
同様に基本パターンの第 5次成分 Vb(5f0)を求める。 Similarly, the fifth order component Vb (5f0) of the basic pattern is obtained.
パターン Bの磁化反転位置は、 0, 1 8, 24, 48ビット目である。  The magnetization reversal positions of pattern B are the 0th, 18th, 24th, and 48th bits.
Vb(5fO)=H(5fO)[l-exp(-j t/6(l8+tow))  Vb (5fO) = H (5fO) [l-exp (-j t / 6 (l8 + tow))
+exp(-j 7T/6(24))-exp(-j 7T/6(48+tow))]  + exp (-j 7T / 6 (24))-exp (-j 7T / 6 (48 + tow))]
=H(5fO)2 · · - (5)  = H (5fO) 2
(3) NLTS算出式の導出  (3) Derivation of NLTS calculation formula
まず、 Vab=Va(5fO)/Vb(5fO)を算出する。 ここで、 Va(5f0)及び Vb(5f0)はスぺク トラムアナライザ等で測定するため絶対値のみが測定されている。 従って、 Vab は上記式 (4), (5) より、  First, Vab = Va (5fO) / Vb (5fO) is calculated. Here, since Va (5f0) and Vb (5f0) are measured by a spectrum analyzer or the like, only absolute values are measured. Therefore, Vab is given by the above equations (4) and (5).
Vab=|Va(5fO)|/|Vb(5fO)|  Vab = | Va (5fO) | / | Vb (5fO) |
= |l-exp(j'7r/6(tn3))|/|2|  = | l-exp (j'7r / 6 (tn3)) | / | 2 |
ここで、 exp(j'7r/6*tn3)の実数部を Re、 虚数部を Imとすると、 Here, if the real part of exp (j'7r / 6 * tn3) is Re and the imaginary part is Im,
Vab=sqrt [(1 -Re) A 2+Im A 2]/2 Vab = sqrt [(1 -Re) A 2 + Im A 2] / 2
=sqrt(2-2Re)/2 h  = sqrt (2-2Re) / 2 h
実数部 Reは、 The real part Re is
Re = l-2VabA2 Re = l-2Vab A 2
よって位相角 (Mま、 Therefore, the phase angle (M,
Φ =acos(Re)=acos(l-2VabA2) Φ = acos (Re) = acos (l-2Vab A 2)
fOの 5次成分で見た場合の Τは π/6であるので、 1 Τに対する N L T S量は以下 の式 (6) によって算出される。 Since の is π / 6 when viewed from the fifth-order component of fO, the amount of N LTS for 1 Τ is calculated by the following equation (6).
NLTS=6/7C acos(l-2VabA2) · · · (6) NLTS = 6 / 7C acos (l-2Vab A 2)
なお、 他の被測定 NLTSパ夕一ンについても、 NLTSの算出式は同様であ る。 変更部 58は、 パターン記録部 52により磁気ディスク 2に被測定 NLTSパ ターン (被測定パターン) を記録する際に、 少なくとも一部のビットの記録位置 を任意に変化 (移動) させるものであり、 これにより、 ダイビット位置やトリピ ット位置を変化させて NLTSの値をシミュレートしたり、 又、 被測定パターン の M次成分 Vp a tの値をシミュレ一トしたりすることができるのである。 The NLTS calculation formula is the same for other measured NLTS patterns. The changing unit 58 arbitrarily changes (moves) the recording position of at least a part of the bits when the measured NLTS pattern (measured pattern) is recorded on the magnetic disk 2 by the pattern recording unit 52. This makes it possible to simulate the value of the NLTS by changing the dibit position and the trip position, and to simulate the value of the M-order component Vpat of the pattern to be measured.
補正部 59は、 被測定パターンの M次成分 Vp a tの値を補正するものであつ て、 変更部 58によるシミュレーションの結果に基づいて、 Vp a tの値の最小 値 Vp a tM i nを用いて被測定パターンの M次成分 Vp a tの値を補正するよ うになつている。 本実施形態においては、 補正部 59は、 例えば、 以下の式 (7) に基づいて補正後の Vp a tの値 Vp a t ' を算出して補正するようになってい る。
Figure imgf000018_0001
The correction unit 59 corrects the value of the M-order component Vpat of the pattern to be measured, and uses the minimum value VpatMin of the value of Vpat based on the result of the simulation performed by the changing unit 58. The value of the M-order component Vpat of the measurement pattern is corrected. In the present embodiment, the correction unit 59 calculates and corrects the value Vpat ′ of the corrected Vpat based on the following equation (7), for example.
Figure imgf000018_0001
なお、 上記式 (7) は、 Note that the above equation (7) is
V a t ' = s q r t (V p a t " 2 - V p a t M i n " 2 )  V a t '= s q r t (V p a t "2-V p a t M in" 2)
として表わすこともできる。 It can also be expressed as
本磁気ディスク装置 100の非線形性測定部 1による NLTSの測定手法は、 磁化遷移点の非線形シフトを測定するものであるが、 磁気記録の場合には、 磁気 ヘッド (再生ヘッド) 3の非線形性や p— Hカーブ非線形性等による再生振幅の 非線形性も含まれる。 この再生振幅の非線形性は本手法にかかる NLTSの測定 誤差を生じるおそれがあるので、 その補正を行なうことが望ましいのである。 図 3は本発明の一実施形態としての磁気ディスク装置 100のハードウェア構 成を模式的に示す図である。 本磁気ディスク装置 100は、 図 3に示すように、 磁気ディスク (媒体) 2, 磁気ヘッド ひ°ターン記録部, パターン再生部) 3, ァクチユエ一夕 4, ヘッド I C 5, 制御回路 6, エンコーダ 7,記録補正回路 8, AGC回路 9, 信号検出回路 10, デコーダ 1 1, サーポ復調回路 12, サーポ 制御回路 13, ドライブ回路 14, F FT 15およびパターン発生回路 20をそ なえて構成されている。  The NLTS measurement method by the non-linearity measurement unit 1 of the magnetic disk drive 100 measures the non-linear shift of the magnetization transition point. However, in the case of magnetic recording, the non-linearity of the magnetic head (reproducing head) 3 p- Includes nonlinearity of playback amplitude due to H-curve nonlinearity. This non-linearity of the reproduction amplitude may cause a measurement error of the NLTS according to the present method, so it is desirable to correct it. FIG. 3 is a diagram schematically showing a hardware configuration of the magnetic disk device 100 as one embodiment of the present invention. As shown in FIG. 3, the magnetic disk device 100 includes a magnetic disk (medium) 2, a magnetic head, a turn recording unit, and a pattern reproducing unit) 3, an actuator 4, a head IC 5, a control circuit 6, an encoder 7 , A recording correction circuit 8, an AGC circuit 9, a signal detection circuit 10, a decoder 11, a servo demodulation circuit 12, a servo control circuit 13, a drive circuit 14, an FFT 15, and a pattern generation circuit 20.
磁気ディスク (媒体) 2は、 高保持力の磁性膜を用い円板状の媒体上にトラッ クが形成されたものであり、 スピンドルモータ (図示省略) によって回転される ようになつていて、 磁気ヘッド 3によって、 その表面に記録された情報を読み取 られたり、 又、 情報を書き込まれたりするようになつている。 The magnetic disk (medium) 2 uses a magnetic film with high coercive force to track onto a disk-shaped medium. The head is rotated by a spindle motor (not shown), and the magnetic head 3 can read information recorded on the surface or write information. It is like that.
磁気ヘッド (パターン記録部, パターン再生部) 3は、 磁気ディスク 2に記録 された種々のデータを読み取ったり、 磁気ディスク 3に種々の情報を書き込んだ りするものである。 具体的には、 磁気ヘッド 3は、 磁気ディスク 2に対向して配 置され、 記録電流が供給されることにより磁界を発生させるようになつており、 磁気ディスク 2をトラック進行方向に磁化することによつて磁気デイスク 2に 種々のデータ (基準パターン, 被測定パターン ;詳細は後述) を記録するように なっている。  The magnetic head (pattern recording unit, pattern reproducing unit) 3 reads various data recorded on the magnetic disk 2 and writes various information on the magnetic disk 3. Specifically, the magnetic head 3 is arranged to face the magnetic disk 2 and generates a magnetic field by supplying a recording current, and magnetizes the magnetic disk 2 in the track traveling direction. Thus, various data (a reference pattern, a pattern to be measured; details will be described later) are recorded on the magnetic disk 2.
すなわち、 磁気ヘッド 3は、 上述した基準パターンや被測定パターンを磁気デ イスク 2に書き込むパターン記録部 (基準信号記録部, 被測定信号記録部) 5 2 として機能するとともに、 磁気ディスク 2に記録された基準パターンおよび被測 定パターンを読み取り再生するパターン再生部 5 4として機能するものである。 ァクチユエータ 4は、 磁気ヘッド 3を磁気ディスク 2の半径方向に移動させる ものであり、 例えば、 磁気ヘッド 3の位置決めに用いる V CM(Voice Coil Moto r) (図示省略) 等をそなえて構成されている。 このァクチユエータ 4は、 ドライ プ回路 1 4からのドライブ信号に応じて駆動され、 磁気へッド 3を所定の位置に 移動させるようになっている。  That is, the magnetic head 3 functions as a pattern recording unit (reference signal recording unit, measured signal recording unit) 52 that writes the above-described reference pattern and pattern to be measured on the magnetic disk 2, and is recorded on the magnetic disk 2. It functions as a pattern reproducing section 54 that reads and reproduces the reference pattern and the pattern to be measured. The actuator 4 is for moving the magnetic head 3 in the radial direction of the magnetic disk 2 and includes, for example, a VCM (Voice Coil Motor) (not shown) used for positioning the magnetic head 3. . The actuator 4 is driven in accordance with a drive signal from the drive circuit 14 to move the magnetic head 3 to a predetermined position.
ヘッド I C 5は、 磁気ヘッド 3による磁気ディスク 2へのデータの読み出し/ 書き込みを制御するものであり、 エンコーダ 7は、 制御回路 6から供給された記 録データや、 パターン発生回路 2 0によって発生された基準パターンや被測定パ ターンを、磁気ディスク 2に記録するために N R Z (Non-Return to Zero) のデ ータに変換して出力するものである。 なお、 N R Zとは、 非ゼロ復帰記録方式と 呼ばれるもので、 2値信号パルス列において、 単位符号間隔の長さとパルスの長 さとが同じになるパルス波形で記録を行なう記録方式である。 エンコーダ 7の出 力信号は、 記録補正回路 8に供給されるようになっている。  The head IC 5 controls reading / writing of data from / to the magnetic disk 2 by the magnetic head 3, and the encoder 7 generates the recording data supplied from the control circuit 6 and the data generated by the pattern generation circuit 20. The reference pattern and the pattern to be measured are converted into NRZ (Non-Return to Zero) data for recording on the magnetic disk 2 and output. Incidentally, NRZ is a so-called non-return-to-zero recording method, and is a recording method in which recording is performed with a pulse waveform in which a unit code interval length and a pulse length are the same in a binary signal pulse train. The output signal of the encoder 7 is supplied to the recording correction circuit 8.
記録補正回路(ライト補償回路(WPC : Write Precompensation Circuit) ) 8は、 エンコーダ 7の出力記録信号のビット配列を検出してビット配列に応じた補正を 行なうものであり、 この記録補正回路 8で補正された記録信号がへッド I C 5に 供給されるようになっている。 The write correction circuit (WPC: Write Precompensation Circuit) 8 detects the bit arrangement of the output recording signal of the encoder 7 and performs correction according to the bit arrangement. The recording signal corrected by the recording correction circuit 8 is supplied to the head IC 5.
また、 記録補正回路 8は、 制御回路 6において算出された N L T Sの算出結果 に応じて記録信号を捕償し、 その記録信号をへッド I C 5に供給するようになつ ている。 この記録捕正回路 8は、 前述した比率 Vab = 1に等しいか、 あるいはで きるだけ Vab= 1に近づくように補償量を修正して、 最適化するようになってい る。  Further, the recording correction circuit 8 compensates for a recording signal in accordance with the calculation result of NLTS calculated by the control circuit 6, and supplies the recording signal to the head IC5. The recording and correction circuit 8 optimizes the compensation amount by correcting the compensation amount so as to be equal to the above-described ratio Vab = 1 or as close as possible to Vab = 1.
ヘッド I C 5は、 記録補正回路 8から供給された記録データに応じた記録電流 を磁気へッド 3に供給するものである。 又、 ヘッド I C 5は、 磁気へッド 3によ つて再生された信号を増幅して、 A G C回路 9に供給するようになっている。  The head IC 5 supplies a recording current corresponding to the recording data supplied from the recording correction circuit 8 to the magnetic head 3. The head IC 5 amplifies the signal reproduced by the magnetic head 3 and supplies the amplified signal to the AGC circuit 9.
A G C (Automatic Gain Control) 回路 9は、 へッド I C 5から供給された 信号の振幅を一定に制御するものであり、 その制御信号を F F T 1 5や信号検出 回路 1 0, サーボ復調回路 1 2に出力するようになっている。  The AGC (Automatic Gain Control) circuit 9 is for controlling the amplitude of the signal supplied from the head IC 5 to be constant, and the control signal is transmitted to the FFT 15, the signal detection circuit 10, and the servo demodulation circuit 1 2 Output.
信号検出回路 1 0は、 A G C回路 9の出力信号から再生データを検出するもの であり、 デコーダ 1 1は、 信号検出回路 1 0によって検出された信号をデコード するものである。 このデコードされた信号は制御回路 6に供給されるようになつ ている。  The signal detection circuit 10 detects the reproduced data from the output signal of the AGC circuit 9, and the decoder 11 decodes the signal detected by the signal detection circuit 10. The decoded signal is supplied to the control circuit 6.
サーボ復調回路 1 2は、 A G C回路 9から供給された信号からサーボ信号を復 調するものであり、 この復調された信号はサーボ制御回路 1 3に供給されるよう になっている。  The servo demodulation circuit 12 is for demodulating a servo signal from the signal supplied from the AGC circuit 9, and the demodulated signal is supplied to the servo control circuit 13.
サーボ制御回路 1 3は、 サーボ復調回路 1 2から供給されるサーボ信号と制御 回路 6から供給される制御信号とに応じて磁気へッド 3の現在の位置と記録また は再生を行なうべき位置との差に応じたドライプ制御信号を生成して、 ドライブ 回路 1 4に供給するようになっている。  The servo control circuit 13 determines the current position of the magnetic head 3 and the position where recording or reproduction is to be performed according to the servo signal supplied from the servo demodulation circuit 12 and the control signal supplied from the control circuit 6. Then, a drive control signal corresponding to the difference is generated and supplied to the drive circuit 14.
ドライブ回路 1 4は、 サーボ制御回路 1 3から供給されたドライブ制御信号に 応じてァクチユエータ 4を駆動するドライブ信号を生成するものであり、 そのド ライブ信号をァクチユエータ 4に供給するようになっている。  The drive circuit 14 generates a drive signal for driving the actuator 4 in accordance with the drive control signal supplied from the servo control circuit 13, and supplies the drive signal to the actuator 4. .
F F T (高速フーリエ変換器) 1 5は、 A G C回路 9の下流側にそなえられ、 A G C回路 9から出力される再生信号から 5次高調波成分を検出 (測定) し、 制 御回路 6等に 5次高調波成分を出力するようになっている。 すなわち、 この F F T 1 5が、 上述した第 1測定部 5 5および第 2測定部 5 6として機能するように なっている。 An FFT (Fast Fourier Transformer) 15 is provided downstream of the AGC circuit 9 to detect (measure) the 5th harmonic component from the reproduced signal output from the AGC circuit 9 and control it. The 5th harmonic component is output to the control circuit 6 etc. That is, the FFT 15 functions as the first measurement unit 55 and the second measurement unit 56 described above.
制御回路 6は、 本磁気ディスク装置 1 0 0における種々の処理を制御するもの であって、 磁気へッド 3の切り換え制御や、 磁気ディスク 2に対する磁気ヘッド 3の位置決め制御、 磁気へッド 3によるデータの書き込み/読み取りの制御等を 行なうようになっていて、 外部から上述した記録データを受信して、 エンコーダ 7に供給するようになっている。  The control circuit 6 controls various processes in the magnetic disk drive 100, and controls the switching of the magnetic head 3, the positioning control of the magnetic head 3 with respect to the magnetic disk 2, the magnetic head 3 Data write / read is controlled by an external device, and the above-described recording data is received from the outside and supplied to the encoder 7.
また、本磁気デイスク装置 1 0 0において、 N L T Sの測定を行なう場合には、 制御回路 6は、 例えばェンコーダ 7に供給する基準パターンまたは被測定パタ一 ンをなすビット列パターンの記録データを選択する指令を外部から受け、 パター ン発生回路 2 0に供給するようになっており、 これにより、 パターン発生回路 2 0に対して基準パタ一ンゃ被測定パターンを発生させるようになつている。  When measuring the NLTS in the magnetic disk device 100, the control circuit 6 issues a command to select, for example, a reference pattern to be supplied to the encoder 7 or recording data of a bit string pattern forming a pattern to be measured. Is received from the outside and supplied to the pattern generation circuit 20, whereby the pattern generation circuit 20 generates a reference pattern and a pattern to be measured.
さらに、 制御回路 6は、 F F T 1 5によって測定された被測定パターンの 5次 成分 V p a tや、基準パターンの M次成分 5次高調波成分 V r e f 等に基づいて、 N L T Sを算出するようになっている。 すなわち、 この制御回路 6力 第 1測定 部 5 5によって測定された第 1の所定高調波成分と、 第 2測定部 5 6によって測 定された各々の被測定信号に対応する第 2の所定高調波成分とから N L T Sを算 出する算出部 5 7として機能するようになっている。 又、 制御回路 6は算出した N L T Sを記録補正回路 8に供給するようになっている。  Further, the control circuit 6 calculates the NLTS based on the fifth-order component Vpat of the measured pattern measured by the FFT 15 and the Mth-order component fifth-order harmonic component Vref of the reference pattern and the like. ing. That is, the control circuit 6 includes a first predetermined harmonic component measured by the first measurement unit 55 and a second predetermined harmonic component corresponding to each signal to be measured measured by the second measurement unit 56. It functions as a calculation unit 57 that calculates the NLTS from the wave components. Further, the control circuit 6 supplies the calculated NLTS to the recording correction circuit 8.
また、 制御回路 6は、 上述した 5次高調波法による N L T Sの算出結果を記録 補正回路 8に供給するようになつており、 記録補正回路 8は供給された N L T S の算出結果に応じて補償した記録信号をへッド I C 5に供給するようになってい る。  Further, the control circuit 6 supplies the calculation result of the NLTS by the fifth harmonic method described above to the recording correction circuit 8, and the recording correction circuit 8 compensates according to the supplied NLTS calculation result. The recording signal is supplied to the head IC 5.
パターン発生回路 2 0は、 制御回路 6の制御に基づいて、 基準パターン (基準 信号) および被測定パターン (被測定信号) を発生させ、 これらの基準パターン および被測定パターンをエンコーダ 7に供給するようになっており、 上述したパ ターン発生部 5 1として機能するようになっている。  The pattern generation circuit 20 generates a reference pattern (reference signal) and a pattern to be measured (signal to be measured) based on the control of the control circuit 6, and supplies the reference pattern and the pattern to be measured to the encoder 7. And functions as the above-described pattern generation unit 51.
図 4は本発明の一実施形態としての磁気ディスク装置 1 0 0に用いられるパタ ーン発生回路 20の構成例を模式的に示す図である。 このパターン発生回路 20 は、 制御回路 6から供給される指令に応じて、 予め選択回路 30内の不揮発性メ モリ(図示せず)に格納したそれぞれ 60ビットからなる基準信号としての基準パ ターン (図 2参照) および被測定信号としての複数種類の被測定パターン (被測 定 NLTSパターン) の中から一つの記録データ (パターン) を選択し、 その 6 0ビットの記録データをシフトレジスタ 3 1に供給するようになっている。 FIG. 4 shows a pattern used in the magnetic disk drive 100 as one embodiment of the present invention. FIG. 3 is a diagram schematically illustrating a configuration example of a power generation circuit 20. This pattern generation circuit 20 responds to a command supplied from the control circuit 6 and generates a reference pattern (reference signal (60 bits) stored in a non-volatile memory (not shown) in the selection circuit 30 as a reference signal composed of 60 bits each. One record data (pattern) is selected from a plurality of types of patterns under test (NLTS patterns under test) as the signal under test, and the 60-bit record data is stored in the shift register 31. Supply.
シフトレジスタ 3 1は、 60ビット並列入力直列出力シフトレジスタであり、 S/Lモードが 0のとき 60ビットの並列記録データを書き込み、 S/Lモ一ド が 1のとき書き込まれたデータを任意のビットから 1ビットづっサイクリックに 直列シフトしてエンコーダ 7に供給するようになつている。  The shift register 31 is a 60-bit parallel input serial output shift register that writes 60-bit parallel recording data when the S / L mode is 0 and arbitrary data written when the S / L mode is 1. The bit is serially shifted one bit at a time, and supplied to the encoder 7.
そして、 上述したエンコーダ 7, AGC回路 9, 信号検出回路 10, デコーダ 1 1, サーボ復調回路 1 2, サーボ制御回路 1 3, ドライブ回路 14, FFT 1 5, 制御回路 6, 記録; ϋ正回路 8およびパターン発生回路 20の少なくとも一部 を、 磁気記録再生用 L S I (Large Scale Integration;大規模集積回路) として 構成することができる。  Then, the encoder 7, the AGC circuit 9, the signal detection circuit 10, the decoder 11, the servo demodulation circuit 12, the servo control circuit 13, the drive circuit 14, the FFT 15, the control circuit 6, and the recording; In addition, at least a part of the pattern generation circuit 20 can be configured as a magnetic recording / reproducing LSI (Large Scale Integration).
上述の如く構成された本発明の一実施形態としての磁気ディスク装置 100に おける 5次高調波法による NLT Sの測定手法を説明する。 この NLT S測定方 法は下記の 3つのステップから構成される。  A method of measuring NLTS by the fifth harmonic method in the magnetic disk device 100 according to an embodiment of the present invention configured as described above will be described. This NLTS measurement method consists of the following three steps.
まず、 基準信号 (基準パターン;図 2参照) を磁気ヘッド 3を用いて磁気ディ スク 2上に記録し、 その再生信号を AGC回路 9の出力から検出し、 FFT 1 5 により、 その第 5高調波信号 (以下、 5次成分と記す)を測定する (ステップ 1)。 なお、 この 5次成分を V r e f とする。  First, a reference signal (reference pattern; see FIG. 2) is recorded on the magnetic disk 2 using the magnetic head 3, the reproduced signal is detected from the output of the AGC circuit 9, and the fifth harmonic is obtained by the FFT 15. Measure the wave signal (hereinafter referred to as 5th order component) (Step 1). In addition, let this 5th-order component be Vref.
次に、 被測定パターン (図 2参照) を選択して、 ステップ 1と同様に磁気ディ スク 2上に記録し、 その再生信号の 5次成分 Vp a tを FFT 1 5により測定す る (ステップ 2)。  Next, the pattern to be measured (see Fig. 2) is selected, recorded on the magnetic disk 2 as in step 1, and the fifth-order component Vpat of the reproduced signal is measured by the FFT 15 (step 2). ).
そして、 ステップ 1およびステップ 2において測定した 5次成分 V r e f およ ぴ Vp a tに基づいて、 比率 Va b =Vp a t/V r e f を算出した後、 前述し た式 (2) から NLTSを算出する (ステップ 3)。  Then, after calculating the ratio Va b = Vp at / V ref based on the fifth-order components V ref and ぴ Vpat measured in steps 1 and 2, the NLTS is calculated from the above equation (2). (Step 3).
そして、 上述のステップ 1〜ステップ 3の処理を被測定パターンを逐次変更し て複数行ない、 複数の NLTSを測定する。 Then, the above steps 1 to 3 are sequentially changed for the pattern to be measured. Multiple NLTSs and measure multiple NLTSs.
図 5 (a), (b), (c) およぴ図 6 (a), (b), (c) はそれぞれ本発明の一 実施形態としての磁気ディスク装置 100における、 複数種類の被測定 N LT S パターン (被測定 NLT Sパターン 10101 1 1, 被測定 NLT Sパターン 1 1 101 1 1, 被測定 NLTSパターン 01 101 1 1および被測定 NLTSパ ターン 00001 1 1) に関する NLTSのシミュレーションによる測定誤差の 例を示す図である。 なお、 図 5 (a) 〜 (c) および図 6 (a) 〜 (c) にかか るシミュレーションは、 ビッ ト周期 Nが 60ビッ ト (60 T; N= 60)、所定高 調波成分の次数 5 (M= 5)、前ビットからの影響を無視し得るビット長 δ = 4T、 R = N/M= 12、 GMR p—Hカーブありの場合に関するものである。  FIGS. 5 (a), (b), (c) and FIGS. 6 (a), (b), (c) each show a plurality of types of measured objects in the magnetic disk device 100 according to an embodiment of the present invention. Measurement error by NLTS simulation for N LT S pattern (NLT S pattern to be measured 10101 1 1, NLT S pattern to be measured 1 1 101 11 1, NLTS pattern to be measured 01 101 1 1 and NLTS pattern to be measured 00001 1 1) It is a figure showing the example of. The simulations for Figs. 5 (a) to (c) and Figs. 6 (a) to (c) show that the bit period N is 60 bits (60T; N = 60) and the predetermined harmonic component 5 (M = 5), a bit length δ = 4T, R = N / M = 12, and a GMR p-H curve with negligible effects from the previous bit.
図 5 (a) 〜 (c) はトリビット位置における NLT S量と NLT S値との関 係を示す図であり、 ( a ) は再生信号の上下非対称比が 0 % (A s y m= 0 %) の 場合におけるシミュレーション結果を示す図、 (b)は再生信号の上下非対称比が 10%(A s y m= 10 %)の場合におけるシミュレーション結果を示す図、 (c) は再生信号の上下非対称比が一 10% (A s ym=- 10 %) の場合におけるシ ミュレーション結果を示す図である。  Figs. 5 (a) to 5 (c) are diagrams showing the relationship between the NLTS amount and the NLTS value at the tribit position, and (a) shows the vertical asymmetry ratio of the reproduced signal being 0% (A sym = 0%). The figure shows the simulation result in the case of (a), (b) is the figure showing the simulation result when the vertical asymmetry ratio of the reproduced signal is 10% (A sym = 10%), and (c) is the figure in which the vertical FIG. 9 is a diagram showing a simulation result in the case of 10% (A sym = -10%).
詳細には、 図 6 (a) 〜 (c) はそれぞれダイビット位置における NLT Si と NLTS値との関係を示す図であり、 (a) は再生信号の上下非対称比が 0% (A s ym= 0%)の場合におけるシミュレ一ション結果を示す図、 (b)は再生 信号の上下非対称比が 10 % (A s y m= 10 %) の場合におけるシミュレーシ ョン結果を示す図、 (c)は再生信号の上下非対称比が一 10% (A s ym=— 1 0%) の場合におけるシミュレーション結果を示す図である。  More specifically, FIGS. 6 (a) to 6 (c) are diagrams showing the relationship between the NLT Si and the NLTS value at the dibit position, respectively, and FIG. 6 (a) shows that the vertical asymmetry ratio of the reproduced signal is 0% (A sym = (B) is a diagram showing the simulation results when the vertical asymmetry ratio of the reproduced signal is 10% (A sym = 10%), and (c) is a diagram showing the simulation results when the vertical asymmetry ratio of the reproduced signal is 10% (A sym = 10%). FIG. 9 is a diagram illustrating a simulation result in a case where the up-down asymmetry ratio of a reproduced signal is 1 10% (A sym = —10%).
また、 図 7 (a), (b), (c) および図 8 (a), (b), (c) はそれぞれ本発 明の一実施形態としての磁気ディスク装置 100における、 複数種類の被測定 N LTSパターン (被測定 NLT Sパターン 10101 1 1, 被測定 NLTSパタ ーン 1 1 101 1 1, 被測定 NLTSパターン 01 101 1 1および被測定 NL T Sパターン 00001 1 1) に関する補正後の NLT Sのシミュレーションに よる測定誤差の例を示す図である。 なお、 図 7 (a) 〜 (c) および図 8 (a) 〜 (c) にかかるシミュレーションは、 ビッ ト周期 Nが 60ビッ ト ( 60 T; N = 60)、 所定高調波成分の次数 5 (M-5)、 前ビットからの影響を無視し得る ビット長 δ =4Τ、 R = N/M= 12、 GMR p— Hカーブありの場合に関す るものである。 FIGS. 7 (a), (b), (c) and FIGS. 8 (a), (b), (c) each show a plurality of types of magnetic disk drives 100 according to an embodiment of the present invention. The corrected NLT S for the measured N LTS pattern (measured NLT S pattern 10101 11 1, measured NLTS pattern 1 1 101 11 1, measured NLTS pattern 01 101 1 1 and measured NLTS pattern 00001 1 1) FIG. 9 is a diagram showing an example of a measurement error by the simulation of FIG. The simulations in Figs. 7 (a) to (c) and Figs. 8 (a) to (c) show that the bit period N is 60 bits (60T; N = 60), order of the specified harmonic component 5 (M-5), negligible influence from the previous bit Bit length δ = 4Τ, R = N / M = 12, GMR p—with H curve Things.
詳細には、 図 7 (a) 〜 (c) はトリビット位置における NLT S量と NLT S値との関係を示す図であり、 (a) は再生信号の上下非対称比が 0 % (A s ym More specifically, FIGS. 7A to 7C are diagrams showing the relationship between the NLTS amount and the NLTS value at the tribit position, and FIG. 7A shows that the upper and lower asymmetry ratio of the reproduced signal is 0% (A sym
= 0 %)の場合におけるシミュレーション結果を示す図、 (b)は再生信号の上下 非対称比が 10% (A s y m= 10 %) の場合におけるシミュレーション結果を 示す図、 (c) は再生信号の上下非対称比が一 10% (A s ym =— 10%) の場 合におけるシミュレーション結果を示す図である。 = 0%), (b) shows the simulation result when the vertical asymmetry ratio of the reproduced signal is 10% (A sym = 10%), and (c) shows the vertical direction of the reproduced signal. FIG. 11 is a diagram showing simulation results when the asymmetry ratio is 1 10% (A sym = —10%).
また、 図 8 (a) 〜 (c) はそれぞれダイビッ ト位置における NLT S量と N Figures 8 (a) to 8 (c) show the NLTS amount and NLT at the dibit position, respectively.
L T S値との関係を示す図であり、 ( a )は再生信号の上下非対称比が 0 % (A s ym=0%)の場合におけるシミュレーション結果を示す図、 (b)は再生信号の 上下非対称比が 10 % (A s ym= 10 %) の場合におけるシミュレーション結 果を示す図、 (c) は再生信号の上下非対称比が一 10% (A s ym = - 10 %) の場合におけるシミュレーシヨン結果を示す図である。 FIG. 7A is a diagram showing a relationship with an LTS value. FIG. 7A is a diagram showing a simulation result when a vertical asymmetry ratio of a reproduced signal is 0% (A sym = 0%), and FIG. The figure shows the simulation results when the ratio is 10% (A sym = 10%), and (c) shows the simulation when the upper and lower asymmetry ratio of the reproduced signal is 1 10% (A sym =-10%). It is a figure showing a result.
図 9 (a), (1)), 図10 ), (1 , 図1 1 ), (b)および図 12 (a), (b)はそれぞれ本発明の一実施形態としての磁気ディスク装置 100における、 複数種類の被測定 NLT Sパターンに関する NLT Sの実測例を示す図である。 詳細には、 図 9 (a), (b) はエラーレート不良の磁気ヘッド 3について非線 形補正を行なわずに NLTSを測定した場合の例を示す図であり、 (a)は複数の トリビッ ト (被測定 NLTSパターン 10101 1 1, 被測定 NLTSパターン 00001 1 1, 被測定 NLTSパターン 01 101 1 1およぴ被測定 NLTS パターン 1 1 101 1 1) に関する測定結果を示す図、 (b)は複数のダイビット (被測定 NLT Sパターン 10101 1 ,被測定 NLT Sパターン 00001 1, 被測定 NLTSパターン 01 101 1および被測定 NL T Sパターン 1 1 101 1) にかかる測定結果を示す図である。  9 (a), (1)), FIG. 10), (1, FIG. 11), (b) and FIGS. 12 (a), (b) each show a magnetic disk drive 100 according to an embodiment of the present invention. 5 is a diagram showing an example of actual measurement of NLT S relating to a plurality of types of NLT S patterns to be measured in FIG. More specifically, FIGS. 9A and 9B are diagrams showing an example in which the NLTS is measured without performing the nonlinear correction on the magnetic head 3 having a poor error rate, and FIG. (B) shows the measurement results for the measured NLTS pattern 10101 1 1, the measured NLTS pattern 00001 111, the measured NLTS pattern 01 101 11 1, and the measured NLTS pattern 1 1 101 1 1). FIG. 9 is a diagram showing measurement results of a plurality of dibits (measured NLT S pattern 10101 1, measured NLT S pattern 00001 1, measured NLTS pattern 01 101 1, and measured NLTS pattern 1 1 101 1).
また、 図 10 (a), (b) は正常な磁気ヘッド 3について非線形補正を行なわ ずに NLTSを測定した場合の例を示す図であり、 (a)は複数のトリビット (被 測定 NLTSパターン 10101 1 1 ,被測定 NLT Sパターン 00001 1 1, 被測定 NLTSパターン 0 1 101 1 1および被測定 NLTSパターン 1 1 1 0 1 1 1) に関する測定結果を示す図、 (b) は複数のダイビット (被測定 NLTS パターン 1 0 10 1 1, 被測定 NLT Sパターン 0000 1 1, 被測定 N L T S パターン 0 1 10 1 1およぴ被測定 N L T Sパターン 1 1 1 01 1) にかかる測 定結果を示す図である。 FIGS. 10 (a) and 10 (b) are diagrams showing an example in which NLTS is measured without performing non-linear correction on a normal magnetic head 3, and FIG. 10 (a) shows a plurality of tribits (NLTS pattern 10101 to be measured). 1 1, NLT S pattern to be measured 00001 1 1, Figure showing the measurement results for the NLTS pattern to be measured 0 1 101 1 1 and the NLTS pattern to be measured 1 1 1 0 1 1 1), and (b) shows multiple dibits (NLTS pattern to be measured 1 0 10 1 1, NLT to be measured) FIG. 9 is a diagram illustrating measurement results of an S pattern 0000 1 1, a measured NLTS pattern 0 1 10 11 1 and a measured NLTS pattern 1 1 1 01 1).
図 1 1 (a), (b) はエラーレート不良の磁気ヘッド 3について非線形捕正を 行なって N L T Sを測定した場合の例を示す図であり、 (a)は複数のトリビット (被測定 NLT Sパターン 1010 1 1 1, 被測定 NLT Sパターン 0000 1 1 1 , 被測定 N LTSパターン 01 101 1 1および被測定 N LTSパターン 1 1 1 0 1 1 1) に関する測定結果を示す図、 (b) は複数のダイビット (被測定 N LTSパターン 10 10 1 1, 被測定 NLTSパターン 0000 1 1, 被測定 N LTSパターン 0 1 101 1および被測定 NLT Sパターン 1 1 10 1 1) にか かる測定結果を示す図である。  FIGS. 11 (a) and 11 (b) are diagrams showing an example in which NLTS is measured by performing non-linear correction on a magnetic head 3 having a poor error rate. FIG. 11 (a) shows a plurality of tribits (measured NLT S Figure 10b shows the measurement results for pattern 1010 1 1 1, NLT S pattern to be measured 0000 1 1 1, N LTS pattern to be measured 01 101 1 1 and N LTS pattern to be measured 1 1 1 0 1 1 1). Shows the measurement results for multiple dibits (measured N LTS pattern 10 10 1 1, measured NLTS pattern 0000 11 1, measured N LTS pattern 0 1 101 1, and measured NLT S pattern 1 1 10 1 1) FIG.
図 1 2 (a), (b) は正常な磁気ヘッド 3について非線形補正を行なって NL TSを測定した場合の例を示す図であり、 (a )は複数のトリビット (被測定 NL T Sパターン 10 1 0 1 1 1, 被測定 NL T Sパターン 00001 1 1, 被測定 NLTSパターン 0 1 10 1 1 1および被測定 N LT Sパターン 1 1 1 0 1 1 1) に関する測定結果を示す図、 (b) は複数のダイビット (被測定 NLTSパタ —ン 101 01 1, 被測定 NLTSパターン 00001 1, 被測定 NLTSパタ —ン 01 1 01 1および被測定 NLT Sパターン 1 1 101 1) にかかる測定結 果を示す図である。  FIGS. 12 (a) and 12 (b) are diagrams showing an example of a case where the NLTS is measured by performing a non-linear correction on a normal magnetic head 3, and FIG. Figure showing measurement results for 1 0 1 1 1, NL TS pattern to be measured 00001 11 1, NLTS pattern to be measured 0 1 10 1 1 1 and N LT S pattern to be measured 1 1 1 0 1 1 1), (b) Indicates the measurement results for multiple dibits (the NLTS pattern to be measured 101 01 1, the NLTS pattern to be measured 000011, the NLTS pattern to be measured 01 1 01 1 and the NLT S pattern to be measured 1 1 101 1) FIG.
これらの図 9 (a), (b), 図 10 (a), (b), 図 1 1 (a), (b) および図 1 2 (a), (b) により、 正常な磁気ヘッド 3における先行パターン P 1に依存 する NLT S量の差は 2%程度であるが、 不良な磁気ヘッド 3においては、 先行 パターン P 1に依存する NLT S量の差は約 20%であることがわかる。  9 (a), (b), 10 (a), (b), 11 (a), (b) and 12 (a), (b) show that the normal magnetic head 3 The difference in the amount of NLTS depending on the preceding pattern P1 is about 2%, but in the defective magnetic head 3, the difference in the amount of NLTS depending on the preceding pattern P1 is about 20%. .
なお、上記実測例においては、先行パターン P 1に依存する NLT Sであって、 磁気へッド 3に起因する例について示しているが、 これに限定されるものではな く、 磁気ディスク (媒体) 2や記録伝送路 (図示省略) においても NLTSが発 生し得ることは容易に推測できる。 次に、 本磁気ディスク装置 100の非線形性測定部 1において用いられる基準 パターン (基準信号) および被測定パターン (被測定信号) の生成アルゴリズム について説明する。 In the actual measurement example, an example is shown in which the NLT S depends on the preceding pattern P1 and is caused by the magnetic head 3. However, the present invention is not limited to this. It is easy to guess that NLTS can occur in 2 and the recording transmission path (not shown). Next, an algorithm for generating a reference pattern (reference signal) and a pattern to be measured (signal to be measured) used in the non-linearity measuring section 1 of the magnetic disk device 100 will be described.
本磁気デイスク装置 100の非線形性測定部 1において用いられる基準パター ンおよび被測定パターンは、 図 2に示したものに限定されるものではなく、 以下 の条件を満たす他の基準パターンおよび被測定パターンを用いてもょレ、。ただし、 前ビットからの影響を無視し得るビット長 δとする。  The reference pattern and the pattern to be measured used in the non-linearity measuring section 1 of the magnetic disk device 100 are not limited to those shown in FIG. 2, but other reference patterns and the pattern to be measured satisfying the following conditions. You can use. However, the bit length δ is such that the influence from the previous bit can be ignored.
(1) 磁気ディスク 2に磁気記録された基準パターンの再生信号と、 同じく磁 気ディスク 2に磁気記録された被測定パタ一ンの再生信号とから、 それぞれ次数 Μの第 Μ高調波成分を取得するものであり、 基準パターンおよび被測定パターン がいずれもビット周期 Νのビット列として構成されている場合に、 ビット周期 Ν が高調波成分の次数 Μの倍数であるとともに、 高調波次数 Μに対するビット周期 Νの比 R (R = N/M) 力 S 2の倍数とする。  (1) From the reproduction signal of the reference pattern magnetically recorded on the magnetic disk 2 and the reproduction signal of the pattern to be measured also magnetically recorded on the magnetic disk 2, obtain the Μ harmonic components of the order そ れ ぞ れ, respectively. When both the reference pattern and the pattern under test are configured as a bit sequence with a bit period Ν, the bit period Ν is a multiple of the harmonic component order 、 and the bit period for the harmonic order Μ Ratio of Ν R (R = N / M) Force S multiple of S2.
(2) 基準パターンにおいて、 その先頭位置に第 1の磁化反転ビット R 1をそ なえるとともに、 第 1の磁化反転ビット R 1から δビット以上離れた後続位置に 第 2の磁化反転ビッ ト R 2 、 又、 この第 2の磁化反転ビット R 2から δビット 以上離れた後続位置であって、 且つ第 1の磁化反転ビット R 1から n4XR番目 (ただし、 n 4は自然数) の後続位置に第 3の磁化反転ビット R 3をそなえ、 更 に、 この第 3の磁化反転ビット R 3から δビット以上離れた後続位置であって、 この基準パターンの最終ビット (先頭から Ν番目のビット) から δビット以上離 れた先行位置であり、 且つ、 第 2の磁化反転ビット R 2から (η 5 + 0. 5) R 番目 (ただし、 η 5は自然数) の後続位置に第 4の磁化反転ビット R 4とをそな える。  (2) In the reference pattern, the first magnetization reversal bit R1 is provided at the head position, and the second magnetization reversal bit R2 is provided at a subsequent position at least δ bits away from the first magnetization reversal bit R1. In addition, a third position is located at a subsequent position at least δ bits away from the second magnetization reversal bit R2 and n4XRth (where n4 is a natural number) subsequent to the first magnetization reversal bit R1. And a δ bit from the last bit (Νth bit from the head) of the reference pattern at a subsequent position at least δ bits away from the third magnetization reversal bit R 3. The fourth magnetization reversal bit R 4 is located at the preceding position separated from the second magnetization reversal bit R 2 and at a position subsequent to the (η 5 +0.5) Rth (where η 5 is a natural number) from the second magnetization reversal bit R 2. It is provided.
(3) 被測定パターンにおいて、 先行パターン Ρ 1と非線形性の測定対象ビッ トとをそなえて構成された NLTS測定パターン列: Ρの最終ビットカ ら 2δビッ ト (ただし、 δは媒体上における前ビットからの NLTSの影響を無視し得るビ Vト長) 以上離れた後続位置で、 且つ、 NLT S測定パタ一ン列 Ρの先頭ビット から (η 1 + 0. 5) R番目 (ただし、 η 1は自然数) の後続位置を始点として、 NLT S測定パターン Ρの最終ビットを除いたビット列 Ρ 2を配置し、 磁化反転 パターン P 1の最終ビットから δビット以上離れた後続位置であって、 その被測 定パターンの最終ビット ( Ν番目のビット) から 2 δビット以上離れた先行位置 であり、 且つ、 NLT S測定パターン列 Ρの最終ビットから (η 2 + 0. 5) R 番目 (ただし、 η 2は自然数) の後続位置に第 1の磁化反転ビット C 1をそなえ る。 (3) NLTS measurement pattern sequence composed of the preceding pattern Ρ1 and the non-linearity measurement bit in the pattern to be measured: 2δ bits from the last bit of カ (where δ is the previous bit on the medium) At the succeeding position that is at least distant from the first bit of the NLT S measurement pattern sequence Ρ (η 1 + 0.5) Rth (where η 1 Is a natural number), and a bit string Ρ2 excluding the last bit of the NLT S measurement pattern と し て A subsequent position that is at least δ bits away from the last bit of pattern P1 and is a preceding position that is at least 2δ bits away from the last bit ((th bit) of the pattern under test, and the NLTS measurement pattern The first magnetization reversal bit C 1 is provided at the position following the (η 2 + 0.5) Rth (where η 2 is a natural number) from the last bit of column Ρ.
(4) 被測定パターンにおいて、 NLT S測定パタ一ン列 Ρにおける磁化反転 ビットの数が奇数の場合には、 更に、 NLT S測定パターン列 Ρの最終ビットか ら δビット以上離れた後続位置であり、 且つ、 ビット列 Ρ 2パターンの先頭ビッ トカ ら δ以上離れた先行位置に第 2の磁化反転ビット C 2を、 又、 第 1の磁化反 転ビット c 1から δビット以上離れた後続位置であって、 その被測定パターンの 最終ビットから δビット以上離れた先行位置であり、 且つ、 第 2の磁化反転ビッ ト C2から (η 3 + 0. 5) R番目 (ただし、 η 3は自然数) の後続位置に第 3 の磁化反転ビット C 3をそなえる。  (4) If the number of magnetization reversal bits in the NLT S measurement pattern sequence Ρ is odd in the pattern to be measured, furthermore, at a subsequent position at least δ bits away from the last bit of the NLT S measurement pattern sequence Ρ And the second magnetization reversal bit C 2 at a preceding position at least δ away from the first bit card of the bit string Ρ2 pattern, and at a subsequent position at least δ bits away from the first magnetization inversion bit c 1. It is a preceding position that is at least δ bits away from the last bit of the pattern to be measured, and is (η 3 +0.5) Rth (where η 3 is a natural number) from the second magnetization reversal bit C2 The third magnetization reversal bit C3 is provided at a position subsequent to.
そして、本磁気ディスク装置 100の非線形性測定部 1においては、 上記( 1 ) 〜 (4) の条件を満たすいずれの基準パターンや被測定パターンを用いて NLT Sの測定を行なってもよい。  The nonlinearity measurement unit 1 of the magnetic disk device 100 may measure the NLTS using any reference pattern or pattern to be measured that satisfies the above conditions (1) to (4).
図 1 3は本発明の一実施形態としての磁気ディスク装置 100の非線形性測定 部 1において用いられる他の基準パターンおよび被測定パターンの例を示す図で ある。 この図 1 3に示す基準パターンおよび被測定パターンは、 上記の条件(1) 〜 (4) を満たすものであり、 基準パターンと被測定パターンとのいずれも、 ビ ット周期 Νが 50ビット (50Τ ; Ν=50) の 0と 1とからなるビット列であ り、 磁化反転位置を 1で表わすものとして構成されている。  FIG. 13 is a diagram showing an example of another reference pattern and a pattern to be measured used in the non-linearity measuring section 1 of the magnetic disk device 100 as one embodiment of the present invention. The reference pattern and the pattern to be measured shown in FIG. 13 satisfy the above conditions (1) to (4), and both the reference pattern and the pattern to be measured have a bit period 50 of 50 bits ( 50Τ; Ν = 50) is a bit string composed of 0s and 1s, and is configured to represent the magnetization reversal position by 1.
このように本発明の一実施形態としての磁気ディスク装置 100 (非線形性測 定部 1) によれば、 NLTSの測定対象ビットに先行して先行パターン Ρ 1をそ なえた被測定パターンの所定高調波成分 (5次成分) に基づいて NLTSを算出 することにより、 先行パターン Ρ 1に依存する NLTSを容易に定量的に測定す ることができ、 磁気ディスク装置 (磁気ヘッド, 電送系等) や媒体の開発におお いに効果を発揮するものである。  As described above, according to the magnetic disk drive 100 (nonlinearity measuring unit 1) as one embodiment of the present invention, the predetermined harmonic of the pattern to be measured having the preceding pattern Ρ1 preceding the bit to be measured of the NLTS. By calculating the NLTS based on the wave component (fifth-order component), the NLTS that depends on the preceding pattern Ρ1 can be easily and quantitatively measured, and the magnetic disk device (magnetic head, transmission system, etc.) It is very effective in media development.
また、 NLTSが最小になるように容易に補正を行なうことができ、 又、 ライ ト補償回路 (WPC:Write Precompensation Circuit) の最適化に、 N L T Sを算 出式で計算するまでも無く、基準信号と被測定信号との 5次成分の比率 Vabの値 を使用することができ、 容易に補正を行なうことができる。 In addition, correction can be easily performed so that NLTS is minimized. In order to optimize the write compensation circuit (WPC), it is possible to use the value of the ratio Vab of the fifth-order component between the reference signal and the signal under test without needing to calculate NLTS using a calculation formula. Correction can be easily performed.
さらに、 本発明によれば、 磁気ディスク装置 1 0 0単独で N L T Sの測定が可 能である。  Further, according to the present invention, it is possible to measure NLTS by using the magnetic disk device 100 alone.
そして、 本発明は上述した実施形態に限定されるものではなく、 本発明の趣旨 を逸脱しなレ、範囲で種々変形して実施することができる。  The present invention is not limited to the above-described embodiment, and can be variously modified and implemented without departing from the gist of the present invention.
例えば、 上述した実施形態においては、 第 1測定部 5 5によって測定される第 1の所定高調波成分と第 2測定部 5 6によって測定される第 2の所定高調波成分 とが、 次数 5 (M= 5 ) の第 5高調波成分の場合について説明しているが、 これ らの所定高調波成分が第 5高調波成分に限定されるものではなく、 次数 5以外の 高調波成分であってもよい。 又、 第 1の所定高調波成分と第 2の所定高調波成分 とが違いに異なる次数の高調波成分であってもよく、 本発明の趣旨を逸脱しない 範囲で種々変形して実施することができる。  For example, in the above-described embodiment, the first predetermined harmonic component measured by the first measurement unit 55 and the second predetermined harmonic component measured by the second measurement unit 56 are of order 5 ( (M = 5) is described, but these predetermined harmonic components are not limited to the fifth harmonic component, but are harmonic components other than the fifth harmonic component. Is also good. Further, the first predetermined harmonic component and the second predetermined harmonic component may be harmonic components of different orders, and may be variously modified without departing from the spirit of the present invention. it can.
また、 パターン発生部 5 1は上述した基準パターン (基準信号) の磁化極性を 反転させて作成した反転基準信号を基準信号として出力してもよく、 又、 被測定 パターン (非測定信号) の磁化極性をそれぞれ反転させて作成した反転被測定信 号を被測定信号として出力してもよく、 これらの反転基準信号および反転被測定 信号に基づいて、 上述の如く所定高調波成分を測定して N L T Sを算出すること により、 同一の先行パターンでの N L T S極性差を測定することもできる。 磁気記録再生においては、 磁化反転の方向により 2極性が交番で出力される。 例えばダイビットパターンの再生信号においては、 1ビット目が +極性であり 2 ビット目がー極性である振幅の場合と、 1ビット目がー極性であり 2ビット目が +極性である振幅の場合とが考えられる。 本磁気ディスク装置 1 0 0の非線形性 測定部 1において用いられる被測定パターンは、 偶数個の磁化反転情報を有して いるので、 当該被測定パターンの磁化極性を反転させて生成した被測定パターン においても、 2極性を生成することができるのである。  In addition, the pattern generating section 51 may output an inverted reference signal created by inverting the magnetization polarity of the above-described reference pattern (reference signal) as a reference signal, or may output the magnetization of the pattern to be measured (non-measurement signal). The inverted signal under test created by inverting the polarity may be output as the signal under test.Based on the inverted reference signal and the signal under test, the predetermined harmonic component is measured as described above, and the NLTS By calculating the NLTS polarity difference in the same preceding pattern can also be measured. In magnetic recording and reproduction, two polarities are output alternately depending on the direction of magnetization reversal. For example, in the reproduction signal of the dibit pattern, the first bit has a positive polarity and the second bit has a negative polarity, and the first bit has a negative polarity and the second bit has a positive polarity. You could think so. Since the measured pattern used in the non-linearity measuring section 1 of the magnetic disk drive 100 has an even number of magnetization reversal information, the measured pattern generated by reversing the magnetization polarity of the measured pattern is used. , It is possible to generate two polarities.
そして、 これら反転基準信号や反転被測定信号の生成については、 パターン発 生部 5 1から発生された基準パターンや被測定パターンの磁化極性を反転させる 反転部をそなえ、 この反転部によって磁化極性を反転させてもよい。 For the generation of the inverted reference signal and the inverted measured signal, the magnetization polarity of the reference pattern and the measured pattern generated from the pattern generator 51 is inverted. It is also possible to provide a reversing section and reverse the magnetization polarity by the reversing section.
また、 上述した実施形態においては、 パターン発生回路 2 0 (パターン発生部 5 1 ) によって基準信号や被測定信号のパターン (基準パターン, 被測定パター ン) を生成しているが、 これに限定されるものではなく、例えば、制御回路 6が、 外部から基準信号や被測定信号のパタ―ン信号を受信し、 これらの受信したパタ ーン信号を記録補正回路 8を介してへッド I C 5に供給して記録し、 再生するよ う構成してもよレ、。  In the above-described embodiment, the pattern of the reference signal or the signal to be measured (the reference pattern or the pattern to be measured) is generated by the pattern generating circuit 20 (pattern generating unit 51). However, the present invention is not limited to this. For example, the control circuit 6 receives a reference signal or a pattern signal of the signal under measurement from the outside, and converts the received pattern signal through the recording correction circuit 8 to the head IC 5. It can also be configured to be supplied to, recorded, and played back.
さらに、 上述した実施形態においては、 A G C回路 9の下流側に F F T 1 5を そなえて構成しているが、 これに限定されるものではなく、 例えばへッド I C 5 の下流側であって A G C回路 9の上流側の位置に F F T 1 5をそなえてもよい。 また、 上述した実施形態においては、 制御回路 6が、 第 1測定部 5 5によって 測定された第 1の所定高調波成分と、 第 2測定部 5 6によって測定された各々の 被測定信号に対応する第 2の所定高調波成分とから N L T Sを算出する算出部 5 7として機能するようになっているが、 これに限定されるものではなく、 算出部 5 7として機能する回路等を制御回路 6とは別にそなえてもよい。  Furthermore, in the above-described embodiment, the FFT 15 is provided downstream of the AGC circuit 9; however, the configuration is not limited thereto. An FFT 15 may be provided at a position upstream of the circuit 9. Further, in the above-described embodiment, the control circuit 6 corresponds to the first predetermined harmonic component measured by the first measurement unit 55 and each signal to be measured measured by the second measurement unit 56. NLTS is calculated from the second predetermined harmonic component to be calculated, but the present invention is not limited to this. It may be provided separately.
さらに、 上述した実施形態においては、 基準パターンの再生信号に基づいて測 定される第 1の所定高調波成分と、 被測定パターンの再生信号に基づいて測定さ れる第 2の所定高調波成分が同じ次数 Mの第 M高調波成分である場合について説 明しているが、 これに限定されるものではなく、 第 1の所定高調波成分と第 2の 所定高調波成分とが互いに異なる次数の高調波成分であってもよい。  Further, in the above-described embodiment, the first predetermined harmonic component measured based on the reproduced signal of the reference pattern and the second predetermined harmonic component measured based on the reproduced signal of the pattern under test are different from each other. Although the case where the M-th harmonic component has the same order M is described, the invention is not limited to this, and the first predetermined harmonic component and the second predetermined harmonic component have different orders. It may be a harmonic component.
なお、 本発明の各実施形態が開示されていれば、 当業者によって製造すること が可能である。 産業上の利用可能性  If each embodiment of the present invention is disclosed, it can be manufactured by those skilled in the art. Industrial applicability
以上のように、 本発明の非線形性測定方法, 非線形性測定装置, 磁気記録再生 装置おょぴ磁気記録再生用 L S Iは、 媒体における磁気記録再生における非線形 遷移シフトの測定を行なうのに有用であり、 特に被測定パターンに先行するビッ ト列の磁化反転状況を考慮したより精度の高い N L T Sの測定に適している。  As described above, the nonlinearity measuring method, nonlinearity measuring apparatus, magnetic recording / reproducing apparatus, and magnetic recording / reproducing LSI of the present invention are useful for measuring the nonlinear transition shift in magnetic recording / reproducing on a medium. In particular, it is suitable for more accurate NLTS measurement considering the magnetization reversal state of the bit string preceding the pattern to be measured.

Claims

請 求 の 範 囲 The scope of the claims
1. 媒体における磁気記録再生における非線形遷移シフト (NLTS : Non Lin ear Transition Shift) を算出する非線形性測定方法であって、  1. A non-linearity measurement method for calculating a non-linear transition shift (NLTS) in magnetic recording and reproduction on a medium,
該媒体に基準信号を記録する基準信号記録ステツプと、  A reference signal recording step for recording a reference signal on the medium;
該媒体に複数種類の被測定信号を記録する被測定信号記録ステツプと、 前記媒体に磁気記録された基準信号の再生信号から第 1の所定高調波成分を測 定する第 1測定ステップと、  A measured signal recording step of recording a plurality of types of measured signals on the medium; a first measuring step of measuring a first predetermined harmonic component from a reproduction signal of a reference signal magnetically recorded on the medium;
前記媒体に磁気記録された複数種類の被測定信号の各々に、 その再生信号から 第 2の所定高調波成分を測定する第 2測定ステツプと、  A second measurement step of measuring a second predetermined harmonic component from a reproduced signal of each of a plurality of types of signals to be measured magnetically recorded on the medium;
前記第 1の所定高調波成分と各々の被測定信号に対応する前記第 2の所定高調 波成分とから該 NLTSを算出する算出ステップとをそなえ、  A calculating step of calculating the NLTS from the first predetermined harmonic component and the second predetermined harmonic component corresponding to each signal under test;
前記複数種類の被測定信号が、 それぞれ、 前記 NLTSの測定対象ビットに先 行して磁化反転パターン列 P 1をそなえることを特徴とする、非線形性測定方法。  A non-linearity measurement method, wherein each of the plurality of types of signals to be measured includes a magnetization reversal pattern sequence P1 prior to the measurement target bit of the NLTS.
2. 該第 1の所定高調波成分および該第 2の所定高調波成分がそれぞれ次数 Mの 第 M高調波成分であり、 2. the first predetermined harmonic component and the second predetermined harmonic component are M-th harmonic components of order M, respectively;
該基準信号および前記複数種類の被測定信号が、 いずれもビット周期 Nのビッ ト列として構成され、 該ビット周期 Nが前記所定高調波成分の次数 Mの倍数であ るとともに、 該高調波次数 Mに対する該ビット周期 Nの比 R (R = N/M) が 2 の倍数であることを特徴とする、 請求の範囲第 1項に記載の非線形性測定方法。  The reference signal and the plurality of types of signals to be measured are each configured as a bit string having a bit period N, and the bit period N is a multiple of the order M of the predetermined harmonic component, and the harmonic order 2. The nonlinearity measuring method according to claim 1, wherein a ratio R (R = N / M) of the bit period N to M is a multiple of 2.
3. 該被測定信号が、 3. The measured signal is
該磁化反転パターン P 1と前記非線形性の測定対象ビットとをそなえて構成さ れた N L T S測定パタ一ン列 Pの最終ビットから 2 δビット (ただし、 δは該媒 体上における前ビットからの NLT Sの影響を無視し得るビット長) 以上離れた 後続位置で、 且つ、 NLT S測定パターン列 Ρの先頭ビットから (n l +0. 5) R番目 (ただし、 n lは自然数) の後続位置を始点として、 該 NLTS測定パタ ーン Pの最終ビットを除いたビット列 P 2を配置し、  2 δ bits from the last bit of the NLTS measurement pattern sequence P composed of the magnetization reversal pattern P 1 and the non-linearity measurement target bit (where δ is the number of bits from the previous bit on the medium) The subsequent position that is at least the bit length that can ignore the effect of NLT S) and the (nl + 0.5) Rth (where nl is a natural number) subsequent position from the first bit of the NLT S measurement pattern sequence Ρ As a starting point, a bit string P2 excluding the last bit of the NLTS measurement pattern P is arranged,
該磁化反転パターン P 1の最終ビットから δビット以上離れた後続位置であつ て、 当該被測定信号の最終ビットから 2 δビット以上離れた先行位置であり、 且 つ、 該 N L T S測定パターン列 Ρの最終ビットから (η 2 + 0 · 5 ) R番目 (た だし、 η 2は自然数) の後続位置に第 1の磁化反転ビット C 1をそなえることを 特徴とする、 請求の範囲第 2項に記載の非線形性測定方法。 At a subsequent position at least δ bits away from the last bit of the magnetization reversal pattern P1 The preceding position is at least 2δ bits away from the last bit of the signal under measurement, and (η 2 + 0 · 5) Rth (where η 2) from the last bit of the NLTS measurement pattern sequence Ρ. 3. The non-linearity measuring method according to claim 2, wherein a first magnetization reversal bit C1 is provided at a position subsequent to a natural number.
4 . 該被測定信号が、 4. The measured signal is
該 N L T S測定パタ一ン列 Ρにおける磁化反転ビットの数が奇数の場合に、 該 N L T S測定パターン列 Ρの最終ビットから δビット以上離れた後続位置で あり、 且つ、 該ビット列 Ρ 2パターンの先頭ビットから δ以上離れた先行位置に 第 2の磁化反転ビット C 2と、  When the number of magnetization reversal bits in the NLTS measurement pattern sequence Ρ is an odd number, it is a subsequent position at least δ bits away from the last bit of the NLTS measurement pattern sequence Ρ, and the bit sequence 先頭 the first bit of the two patterns A second magnetization reversal bit C 2 at a preceding position at least δ away from
該第 1の磁化反転ビット C 1から δビット以上離れた後続位置であって、 当該 被測定信号の最終ビットから δビット以上離れた先行位置であり、 且つ、 該第2 の磁化反転ビット C 2から (η 3 + 0 . 5 ) R番目 (ただし、 η 3は自然数) の 後続位置に第 3の磁化反転ビット C 3をそなえることを特徵とする、 請求の範囲 第 3項に記載の非線形性測定方法。 A subsequent position at least δ bits away from the first magnetization reversal bit C 1, a preceding position at least δ bits away from the last bit of the signal under measurement, and the second magnetization reversal bit C 2 4. The non-linearity according to claim 3, wherein a third magnetization reversal bit C 3 is provided at a position subsequent to the (η 3 +0.5) Rth (where η 3 is a natural number). Measuring method.
5 . 該基準信号が、 5. The reference signal is
先頭位置に第 1の磁化反転ビット R 1をそなえるとともに、  A first magnetization reversal bit R 1 is provided at the head position,
該第 1の磁化反転ビット R 1から δビット以上離れた後続位置に第 2の磁化反 転ビット R 2と、  A second magnetization reversal bit R 2 is provided at a subsequent position at least δ bits away from the first magnetization reversal bit R 1,
該第 2の磁化反転ビット R 2から δビット以上離れた後続位置であって、 且つ 該第 1の磁化反転ビット R 1から η 4 X R番目 (ただし、 η 4は自然数) の後続 位置に第 3の磁化反転ビット R 3と、  A third position is located at a position subsequent to the second magnetization reversal bit R2 by δ bits or more and at a position subsequent to the first magnetization reversal bit R1 at the η 4 XRth position (where η 4 is a natural number). The magnetization reversal bit R 3 of
該第 3の磁化反転ビット R 3から δビ Vト以上離れた後続位置であって、 当該 基準信号の最終ビットから δビット以上離れた先行位置であり、 且つ、 該第 2の 磁化反転ビット R 2から (η 5 + 0 . 5 ) R番目 (ただし、 η 5は自然数) の後 続位置に第 4の磁化反転ビット R 4とをそなえることを特徴とする、 請求の範囲 第 2項〜第 4項のいずれか 1項に記載の非線形性測定方法。 A preceding position that is at least δ bits away from the third magnetization reversal bit R 3, a preceding position that is at least δ bits away from the last bit of the reference signal, and the second magnetization reversal bit R The second to (η 5 +0.5) R-th (where η 5 is a natural number) and a fourth magnetization reversal bit R 4 at a position subsequent to the R-th bit. The method for measuring nonlinearity according to any one of items 4.
6 . 該算出ステップにおいて、 前記第 1の所定高調波成分と前記第 2の所定高調 波成分との比率に基づいて、 該 N L T Sを算出することを特¾¾とする、 請求の範 囲第 1項〜第 5項のいずれか 1項に記載の非線形性測定方法。 6. The method according to claim 1, wherein in the calculating step, the NLTS is calculated based on a ratio between the first predetermined harmonic component and the second predetermined harmonic component. 6. The method for measuring nonlinearity according to any one of items 5 to 5.
7 . 該被測定信号の磁化極性を反転させて作成した反転被測定信号を該被測定信 号として用いることを特徴とする、 請求の範囲第 1項〜第 6項のいずれか 1項に 記載の被線形性測定方法。 7. The signal according to any one of claims 1 to 6, wherein an inverted signal under measurement created by inverting the magnetization polarity of the signal under measurement is used as the signal under measurement. Linearity measurement method.
8 . 該被測定信号記録ステップにおいて、 該被測定信号における前記非線形性の 測定対象ビットの記録位置を変更可能な変更ステップをそなえ、 8. In the measured signal recording step, a change step capable of changing a recording position of the measurement target bit of the non-linearity in the measured signal is provided,
該第 2測定ステップにおいて、 前記記録位置を移動後の該被測定信号に基づい て前記第 2の所定高調波成分を測定するごとを特徴とする、 請求の範囲第 1項〜 第 7項のいずれか 1項に記載の非線形性測定方法。  8. The method according to claim 1, wherein in the second measuring step, the second predetermined harmonic component is measured based on the signal under measurement after moving the recording position. Or the method for measuring nonlinearity according to item 1.
9 .該基準信号および前記複数種類の被測定信号が、いずれもビット周期 6 0 (N9.The reference signal and the plurality of types of signals under test have a bit period of 60 (N
= 6 0 ) のビット列であり、 該第 1の所定高調波成分および該第 2の所定高調波 成分がそれぞれ次数 5 (M= 5 ) の第 5高調波成分であることを特徴とする、 請 求の範囲第 1項〜第 8項のいずれか 1項に記載の非線形性測定方法。 = 60), wherein the first predetermined harmonic component and the second predetermined harmonic component are fifth harmonic components of order 5 (M = 5), respectively. 9. The method for measuring nonlinearity according to any one of items 1 to 8.
1 0 . 該基準信号および前記複数種類の被測定信号が、 いずれもビット周期 5 0 (N = 5 0 ) のビット列であり、 該第 1の所定高調波成分および該第 2の所定高 調波成分がそれぞれ次数 5 (M= 5 )の第 5高調波成分であることを特徴とする、 請求の範囲第 1項〜第 8項のいずれか 1項に記載の非線形性測定方法。 10. The reference signal and the plurality of types of signals to be measured are all bit strings having a bit period of 50 (N = 50), and the first predetermined harmonic component and the second predetermined harmonic 9. The method for measuring nonlinearity according to claim 1, wherein the components are fifth harmonic components of order 5 (M = 5).
1 1 . 媒体における磁気記録再生における非線形遷移シフト (N L T S : Non L inear Transition Shift) を算出する非線形性測定装置であって、 1 1. A non-linearity measuring device for calculating a non-linear transition shift (NLTS) in magnetic recording and reproduction on a medium,
該媒体に磁気記録された基準信号の再生信号から第 1の所定高調波成分を測定 する第 1測定部 (5 5 ) と、  A first measuring unit (55) for measuring a first predetermined harmonic component from a reproduction signal of a reference signal magnetically recorded on the medium;
該媒体に磁気記録された複数種類の被測定信号の各々に、 その再生信号から第 2の所定高調波成分を測定する第 2測定部 (5 6 ) と、 Each of a plurality of types of signals to be measured magnetically recorded on the medium, A second measuring section (5 6) for measuring a predetermined harmonic component of 2,
前記第 1の所定高調波成分と各々の被測定信号に対応する前記第 2の所定高調 波成分とから該 N L T Sを算出する算出部 (5 7 ) とをそなえ、  A calculating unit (57) for calculating the N LTS from the first predetermined harmonic component and the second predetermined harmonic component corresponding to each signal under measurement;
前記複数種類の被測定信号が、 それぞれ、 前記 N L T Sの測定対象ビットに先 行して磁化反転パタ一ン列 P 1をそなえることを特徴とする、非線形性測定装置。  A nonlinearity measuring apparatus, wherein the plurality of types of signals to be measured each include a magnetization reversal pattern sequence P1 prior to the measurement target bit of the NLTS.
1 2 . 該第 1の所定高調波成分および該第 2の所定高調波成分がそれぞれ次数 M の第 M高調波成分であり、 1 2. The first predetermined harmonic component and the second predetermined harmonic component are M-th harmonic components of order M, respectively.
該基準信号および前記複数種類の被測定信号が、 いずれもビット周期 Nのビッ ト列として構成され、 該ビット周期 Nが前記所定高調波成分の次数 Mの倍数であ るとともに、 該高調波次数 Mに対する該ビット周期 Nの比 R (R = N/M) が 2 の倍数であることを特徴とする、請求の範囲第 1 1項に記載の非線形性測定装置。  The reference signal and the plurality of types of signals to be measured are each configured as a bit string having a bit period N, and the bit period N is a multiple of the order M of the predetermined harmonic component, and the harmonic order 11. The nonlinearity measuring apparatus according to claim 11, wherein a ratio R (R = N / M) of the bit period N to M is a multiple of two.
1 3 . 媒体に磁気記録された基準信号の再生信号から第 1の所定高調波成分を測 定する第 1測定部 (5 5 ) と、 13. A first measuring section (55) for measuring a first predetermined harmonic component from a reproduced signal of a reference signal magnetically recorded on a medium;
該媒体に磁気記録された複数種類の被測定信号の各々に、 その再生信号から第 2の所定高調波成分を測定する第 2測定部 (5 6 ) と、  A second measuring unit (56) for measuring a second predetermined harmonic component from a reproduced signal of each of a plurality of types of signals to be measured magnetically recorded on the medium;
前記第 1の所定高調波成分と各々の被測定信号に対応する前記第 2の所定高調 波成分とから、 該媒体における磁気記録再生における非線形遷移シフト (N L T S : Non Linear Transition Shift) を算出する算出部 (5 7 ) とをそなえ、 前記複数種類の被測定信号が、 それぞれ、 前記 N L T Sの測定対象ビットに先 行して磁化反転パターン列 P 1をそなえることを特徴とする、磁気記録再生装置。  Calculation for calculating a non-linear transition shift (NLTS) in magnetic recording / reproducing on the medium from the first predetermined harmonic component and the second predetermined harmonic component corresponding to each signal to be measured. A magnetic recording / reproducing apparatus, comprising: a section (57), wherein the plurality of types of signals to be measured each include a magnetization reversal pattern sequence P1 prior to the measurement target bit of the NLTS.
1 4 . 該第 1の所定高調波成分およぴ該第 2の所定高調波成分がそれぞれ次数 M の第 M高調波成分であり、 14. The first predetermined harmonic component and the second predetermined harmonic component are M-th harmonic components of order M, respectively.
該基準信号および前記複数種類の被測定信号が、 いずれもビット周期 Nのビッ ト列として構成され、 該ビット周期 Nが前記所定高調波成分の次数 Mの倍数であ るとともに、 該高調波次数 Mに対する該ビット周期 Nの比 R (R = N/M) が 2 の倍数であることを特徴とする、請求の範囲第 1 3項に記載の磁気記録再生装置。 The reference signal and the plurality of types of signals to be measured are each configured as a bit string having a bit period N, and the bit period N is a multiple of the order M of the predetermined harmonic component, and the harmonic order 14. The magnetic recording / reproducing apparatus according to claim 13, wherein a ratio R (R = N / M) of the bit period N to M is a multiple of two.
15. 該被測定信号が、 15. The measured signal is
該磁化反転パターン P 1と前記非線形性の測定対象ビットとをそなえて構成さ れた N L T S測定パタ一ン列 Pの最終ビットから 2 δビット (ただし、 δは該媒 体上における前ビットからの NLTSの影響を無視し得るビット長) 以上離れた 後続位置で、 且つ、 NLTS測定パタ一ン列 Pの先頭ビットから (n 1 + 0. 5) R番目 (ただし、 n lは自然数) の後続位置を始点として、 該 NLTS測定パタ ーン Pの最終ビットを除いたビット列 P 2を配置し、  2 δ bits from the last bit of the NLTS measurement pattern sequence P composed of the magnetization reversal pattern P 1 and the non-linearity measurement target bit (where δ is the number of bits from the previous bit on the medium) Subsequent position that is at least distant from the first bit of the NLTS measurement pattern sequence P and that is the (n1 + 0.5) Rth (nl is a natural number) subsequent position , The bit string P2 excluding the last bit of the NLTS measurement pattern P is arranged,
該磁化反転パターン P 1の最終ビットから δビット以上離れた後続位置であつ て、 当該被測定信号の最終ビットから 2 δビット以上離れた先行位置であり、 且 つ、 該 NLT S測定パターン列 Ρの最終ビットから (ιι 2 + 0. 5) R番目 (た だし、 η 2は自然数) の後続位置に第 1の磁化反転ビット C 1をそなえることを 特徴とする、 請求の範囲第 14項に記載の磁気記録再生装置。  A subsequent position that is at least δ bits away from the last bit of the magnetization reversal pattern P1, a preceding position that is at least 2δ bits away from the last bit of the signal under measurement, and the NLTS measurement pattern sequence The first magnetization reversal bit C 1 is provided at a position following the (ιι 2 +0.5) Rth (where η 2 is a natural number) from the last bit of the first magnetization reversal bit. The magnetic recording and reproducing apparatus according to claim 1.
16. 該基準信号が、 16. The reference signal is
先頭位置に第 1の磁化反転ビット R 1をそなえるとともに、 .  A first magnetization reversal bit R 1 is provided at the head position, and.
該第 1の磁化反転ビット R 1から δビット以上離れた後続位置に第 2の磁化反 転ビット R 2と、  A second magnetization reversal bit R 2 is provided at a subsequent position at least δ bits away from the first magnetization reversal bit R 1,
該第 2の磁化反転ビット R 2から δビット以上離れた後続位置であって、 且つ 該第 1の磁化反転ビット R 1から η 4 XR番目 (ただし、 η 4は自然数) の後続 位置に第 3の磁化反転ビット R 3と、  A third position is located at a position subsequent to the second magnetization reversal bit R2 by δ bits or more and at a position subsequent to the first magnetization reversal bit R1 at the η 4 XRth position (where η 4 is a natural number). The magnetization reversal bit R 3 of
該第 3の磁化反転ビット R 3から δビット以上離れた後続位置であって、 当該 基準信号の最終ビットから δビット以上離れた先行位置であり、 且つ、 該第 2の 磁化反転ビット R 2から (η 5 + 0. 5) R番目 (ただし、 η 5は自然数) の後 続位置に第 4の磁化反転ビット R 4とをそなえることを特徴とする、 請求の範囲 第 14項又は第 1 5項に記載の磁気記録再生装置。  A subsequent position at least δ bits away from the third magnetization reversal bit R 3, a preceding position at least δ bits away from the last bit of the reference signal, and from the second magnetization reversal bit R 2 Claim 14 or Claim 15 wherein a fourth magnetization reversal bit R4 is provided at the position following the (η5 + 0.5) Rth (where η5 is a natural number). Item 6. A magnetic recording / reproducing apparatus according to Item 1.
1 7. 媒体に磁気記録された基準信号の再生信号から第 1の所定高調波成分を測 定する第 1測定部 (55) と、 該媒体に磁気記録された複数種類の被測定信号の各々に、 その再生信号から第1 7. A first measuring section (55) for measuring a first predetermined harmonic component from a reproduced signal of a reference signal magnetically recorded on a medium; Each of a plurality of types of signals to be measured magnetically recorded on the medium,
2の所定高調波成分を測定する第 2測定部 (56) と、 A second measuring unit (56) for measuring a predetermined harmonic component of 2,
前記第 1の所定高調波成分と各々の被測定信号に対応する前記第 2の所定高調 波成分とから、 該媒体における磁気記録再生における非線形遷移シフト ( N L T S : Non Linear Transition Shift) を算出する算出部 (57) とをそなえ、 前記複数種類の被測定信号が、 それぞれ、 前記 NLTSの測定対象ビットに先 行して.磁ィヒ反転パタ一ン列 P 1をそなえることを特徴とする、 磁気記録再生用 L S I。  Calculation for calculating a non-linear transition shift (NLTS) in magnetic recording / reproducing on the medium from the first predetermined harmonic component and the second predetermined harmonic component corresponding to each signal to be measured. (57), wherein each of the plurality of types of signals to be measured has a magnetic inverted pattern sequence P1 prior to the measurement target bit of the NLTS. Recording and playback LSI.
1 8. 該第 1の所定高調波成分およぴ該第 2の所定高調波成分がそれぞれ次数 M の第 M高調波成分であり、 1 8. The first predetermined harmonic component and the second predetermined harmonic component are M-th harmonic components of order M, respectively.
該基準信号および前記複数種類の被測定信号が、 いずれもビット周期 Nのビッ ト列として構成され、 該ビット周期 Nが前記所定高調波成分の次数 Mの倍数であ るとともに、 該高調波次数 Mに対する該ビット周期 Nの比 R (R = N/M) が 2 の倍数であることを特徴とする、 請求の範囲第 1 7項に記載の磁気記録再生用 L The reference signal and the plurality of types of signals to be measured are each configured as a bit string having a bit period N, and the bit period N is a multiple of the order M of the predetermined harmonic component, and the harmonic order 18. The magnetic recording / reproducing L according to claim 17, wherein a ratio R (R = N / M) of the bit period N to M is a multiple of 2.
S I。 S I.
1 9. 該被測定信号が、 1 9. If the signal under measurement is
該磁化反転パターン P 1と前記非線形性の測定対象ビットとをそなえて構成さ れた NLT S測定パターン列 Pの最終ビットから 2δビット (ただし、 δは該媒 体上における前ビットからの NLTSの影響を無視し得るビット長) 以上離れた 後続位置で、 且つ、 NLT S測定パターン列 Pの先頭ビットから (n l + 0. 5) R番目 (ただし、 n lは自然数) の後続位置を始点として、 該 NLTS測定パタ ーン Pの最終ビットを除いたビット列 P 2を配置し、  2δ bits from the last bit of the NLTS measurement pattern sequence P composed of the magnetization reversal pattern P1 and the non-linearity measurement target bit (where δ is the NLTS from the previous bit on the medium) Starting from the subsequent position that is at least the following position away from the first bit of the NLT S measurement pattern sequence P and that is the (nl + 0.5) Rth (where nl is a natural number) A bit string P2 excluding the last bit of the NLTS measurement pattern P is arranged, and
該磁化反転パターン P 1の最終ビットから δビット以上離れた後続位置であつ て、 当該被測定信号の最終ビットから 2 δビット以上離れた先行位置であり、 且 つ、 該 NLT S測定パターン列 Ρの最終ビットから (η 2 + 0. 5) R番目 (た だし、 η 2は自然数) の後続位置に第 1の磁化反転ビット C 1をそなえることを 特徴とする、 請求の範囲第 18項に記載の磁気記録再生用 LS I。 A subsequent position that is at least δ bits away from the last bit of the magnetization reversal pattern P1, a preceding position that is at least 2δ bits away from the last bit of the signal under measurement, and the NLTS measurement pattern sequence The first magnetization reversal bit C 1 is provided at a position following the (η 2 +0.5) Rth (where η 2 is a natural number) from the last bit of the first magnetization reversal bit. Magnetic recording / reproducing LSI as described.
2 0 . 該基準信号が、 20. The reference signal is
先頭位置に第 1の磁化反転ビット R 1をそなえるとともに、  A first magnetization reversal bit R 1 is provided at the head position,
該第 1の磁化反転ビット R 1から δビット以上離れた後続位置に第 2の磁化反 転ビット R 2と、  A second magnetization reversal bit R 2 at a subsequent position at least δ bits away from the first magnetization reversal bit R 1;
該第 2の磁化反転ビット R 2から δビット以上離れた後続位置であって、 且つ 該第 1の磁化反転ビット R 1から η 4 X R番目 (ただし、 η 4は自然数) の後続 位置に第 3の磁化反転ビット R 3と、  A third position at a subsequent position at least δ bits away from the second magnetization reversal bit R 2 and at a position subsequent to the η 4 XRth (where η 4 is a natural number) from the first magnetization reversal bit R 1 Magnetization reversal bit R 3
該第 3の磁化反転ビット R 3から δビット以上離れた後続位置であって、 当該 基準信号の最終ビットから δビット以上離れた先行位置であり、 且つ、 該第 2の 磁化反転ビット R 2から (η 5 + 0 . 5 ) R番目 (ただし、 η 5は自然数) の後 続位置に第 4の磁化反転ビット R 4とをそなえることを特徴とする、 請求の範囲 第 1 8項又は第 1 9項に記載の磁気記録再生用 L S I。  A subsequent position at least δ bits away from the third magnetization reversal bit R 3, a preceding position at least δ bits away from the last bit of the reference signal, and from the second magnetization reversal bit R 2 18. The method according to claim 18, wherein a fourth magnetization reversal bit R 4 is provided at a position following the (η 5 +0.5) Rth (where η 5 is a natural number). 10. The magnetic recording / reproducing LSI according to item 9.
PCT/JP2003/005347 2003-04-25 2003-04-25 Non-linearity measuring method, non-linearity measuring device, magnetic recording/reproducing device, amd magnetic recording/reproducing lsi WO2004097804A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2003/005347 WO2004097804A1 (en) 2003-04-25 2003-04-25 Non-linearity measuring method, non-linearity measuring device, magnetic recording/reproducing device, amd magnetic recording/reproducing lsi
JP2004571287A JP3906226B2 (en) 2003-04-25 2003-04-25 Nonlinearity measuring method, nonlinearity measuring apparatus, magnetic recording / reproducing apparatus, and magnetic recording / reproducing LSI
US11/120,114 US7248424B2 (en) 2003-04-25 2005-05-02 Nonlinearity measuring method, nonlinearity measuring unit, magnetic recording/regenerating unit and LSI for magnetic recording/regenerating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/005347 WO2004097804A1 (en) 2003-04-25 2003-04-25 Non-linearity measuring method, non-linearity measuring device, magnetic recording/reproducing device, amd magnetic recording/reproducing lsi

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/120,114 Continuation US7248424B2 (en) 2003-04-25 2005-05-02 Nonlinearity measuring method, nonlinearity measuring unit, magnetic recording/regenerating unit and LSI for magnetic recording/regenerating

Publications (1)

Publication Number Publication Date
WO2004097804A1 true WO2004097804A1 (en) 2004-11-11

Family

ID=33398113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005347 WO2004097804A1 (en) 2003-04-25 2003-04-25 Non-linearity measuring method, non-linearity measuring device, magnetic recording/reproducing device, amd magnetic recording/reproducing lsi

Country Status (2)

Country Link
JP (1) JP3906226B2 (en)
WO (1) WO2004097804A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068754A (en) * 1989-11-22 1991-11-26 Seagate Technology, Inc. Method and apparatus for measuring bit shift
US5262904A (en) * 1991-01-22 1993-11-16 International Business Machines Corporation Method and apparatus for measuring and compensating nonlinear bitshift
US5583705A (en) * 1994-10-04 1996-12-10 Quantum Corporation Write precompensation optimization in a PRML channel using a selected PRML signal level
JPH10172105A (en) * 1996-12-09 1998-06-26 Hitachi Ltd Magnetic recording and reproducing device
US5781358A (en) * 1995-07-31 1998-07-14 Nec Corporation Magnetic recording apparatus with non-linear bit shift measurement
JP2975323B2 (en) * 1997-03-27 1999-11-10 秋田県 Non-linear distortion measurement method
JP2002230709A (en) * 2000-11-30 2002-08-16 Fujitsu Ltd Method for measuring nonlinearlity in magnetic recording/reproducing, magnetic recording/reproducing device, and lsi for magnetic recording/reproducing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068754A (en) * 1989-11-22 1991-11-26 Seagate Technology, Inc. Method and apparatus for measuring bit shift
US5262904A (en) * 1991-01-22 1993-11-16 International Business Machines Corporation Method and apparatus for measuring and compensating nonlinear bitshift
US5583705A (en) * 1994-10-04 1996-12-10 Quantum Corporation Write precompensation optimization in a PRML channel using a selected PRML signal level
US5781358A (en) * 1995-07-31 1998-07-14 Nec Corporation Magnetic recording apparatus with non-linear bit shift measurement
JPH10172105A (en) * 1996-12-09 1998-06-26 Hitachi Ltd Magnetic recording and reproducing device
JP2975323B2 (en) * 1997-03-27 1999-11-10 秋田県 Non-linear distortion measurement method
JP2002230709A (en) * 2000-11-30 2002-08-16 Fujitsu Ltd Method for measuring nonlinearlity in magnetic recording/reproducing, magnetic recording/reproducing device, and lsi for magnetic recording/reproducing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tang, Y. et al., "A technique for measuring nonlinear bit shift", IEEE Transactions on Magnetics, Vol. 27, No. 6, November 1991, pages 5316 - 5318 *

Also Published As

Publication number Publication date
JP3906226B2 (en) 2007-04-18
JPWO2004097804A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
US7248424B2 (en) Nonlinearity measuring method, nonlinearity measuring unit, magnetic recording/regenerating unit and LSI for magnetic recording/regenerating
JP3870333B2 (en) Magnetic recording / reproducing apparatus and LSI for magnetic recording / reproducing
JP3677141B2 (en) Recording equalizer and magnetic recording / reproducing apparatus using the same
US7242545B1 (en) Asymmetric compensation circuit
JP2003157634A (en) Servo signal writing system
US10192580B1 (en) Write current switching in a data storage device using an effective footprint of a write pole
WO2004097804A1 (en) Non-linearity measuring method, non-linearity measuring device, magnetic recording/reproducing device, amd magnetic recording/reproducing lsi
US7821729B2 (en) Storage apparatus and method for processing recording compensation
US20110317301A1 (en) Nonlinearity measurement apparatus, nonlinearity measurement method, and magnetic recording and reproduction apparatus
JP2872207B1 (en) Magnetic recording method and magnetic recording / reproducing device
US6674591B1 (en) Method and apparatus for identifying a track of a rotating disk using EPR4 data equalization and detection techniques
JPWO2008136083A1 (en) Magnetic recording apparatus, recording head, and magnetic recording method
JPS6057582A (en) Magnetic recorder and reproducing device
JPH11503855A (en) Branch metric compensation for digital sequence detection
JPH11203608A (en) Recording equalizer and magnetic recording and reproducing device using the same
JPS6126922A (en) Magnetic disk device
JPH01134704A (en) Perpendicular magnetic recording and reproducing device
JP2008192306A (en) Vertical magnetism recording medium and magnetic disk device
JPH02168403A (en) Recording and reproducing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2004571287

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11120114

Country of ref document: US