USRE39831E1 - Method and apparatus for providing positional information on a disk - Google Patents

Method and apparatus for providing positional information on a disk Download PDF

Info

Publication number
USRE39831E1
USRE39831E1 US10/096,662 US9666202A USRE39831E US RE39831 E1 USRE39831 E1 US RE39831E1 US 9666202 A US9666202 A US 9666202A US RE39831 E USRE39831 E US RE39831E
Authority
US
United States
Prior art keywords
sectors
track
field
servo
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/096,662
Inventor
Me Van Le
William E. Wevers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to US10/096,662 priority Critical patent/USRE39831E1/en
Application granted granted Critical
Publication of USRE39831E1 publication Critical patent/USRE39831E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/596Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks
    • G11B5/59633Servo formatting
    • G11B5/59655Sector, sample or burst servo format

Definitions

  • the present invention relates in general to disk storage systems and more particularly, to a method and apparatus for providing positional information on a disk in a hard drive assembly.
  • Disk drives are magnetic recording devices used for the storage of information.
  • the information is typically recorded on concentric tracks on either surface of one or more magnetic recording disks.
  • disks are typically organized in blocks called sectors. These sectors are located on the disk by a set of unique specifiers called cylinder (or track), head (or side) and sector number.
  • the disks are rotatably mounted to a spin motor and information is accessed by means of read/write heads that are mounted to actuator arms which are rotated by a voice coil motor.
  • the voice coil motor is excited with a current to rotate the actuator and move the heads.
  • the movement of the actuator is controlled by a servo system, utilizing servo information recorded on one or more of the magnetic recording disks. By reading this servo information, the actual radial positions of the heads can be determined, and after comparison with the desired head radial positions, control signals can be sent to move the actuator accordingly.
  • Servo information is typically stored on a disk in one of two ways. In the first, a dedicated servo system, a set of several tracks on the disk or the entire disk surface, is reserved exclusively for storing information associated with the characteristic of the particular drive. Such information includes servo parameters and read/write channel parameters. A servo head reads this information to provide a continuous signal indicating the position of the servo head with respect to the servo disk.
  • the embedded servo system sectors of servo information are interspersed with sectors of data on each disk surface.
  • a read head follows the data track around, it regularly reads a fresh sample of servo information from each servo sector with which to control its position.
  • FIG. 1 illustrates a typical sector on a disk of a hard disk drive.
  • a typical sector 10 has a preamble field 20 which includes automatic gain control (AGC) information and synchronization information, a servo address mark 22 which signifies the beginning of a sector, an index field 24 which indicates the beginning of the first sector of the track, an identification field 26 which includes identification bits, a head identification field 28 for identification of head location, a gray code field 30 that identifies the particular cylinder (tracks) of the sector, a servo bit field 32 which includes a number of servo bits A, B, C, D, and a data field 34 which contains the data.
  • AGC automatic gain control
  • the servo bits A, B, C and D are used to maintain the read/write head on the ceterline CL of a corresponding track.
  • the identification field 26 typically includes an index bit and 7 bits of angular position information; the head identification field 28 typically includes 3 bits of data for identifying the head (or side) position of the disk pack and the gray code field 30 typically includes 13 bits of data for providing track identification.
  • absolute positional information is stored in graycode in the gray code field 30 of a particular sector 10 . Due to power consumption, cost and throughput concerns, reduction of media space used in providing the servo information is highly desirable. However, most of the segments of the sector 10 are head and/or media dependent and reduction of these segments is difficult.
  • the present invention is a method and apparatus for providing positional information of a disk.
  • the disk has at least one side with a plurality of tracks, each having a first burst in a first servo field and a second burst in a second servo field.
  • the first burst provides a first portion of track position information while the second burst provides a second portion of track position information.
  • the first and second portions provide a position of a corresponding track.
  • Each track further includes a third and a fourth burst that provides a first portion and a second portion of disk side position information.
  • the first and second portions of disk side position information provide the disk side position of the disk.
  • Each track also includes a burst that provides the quadrant position of the disk.
  • the first and second bursts are located on consecutive sectors, and each track includes a servo sector sequence burst with a sector sequence number that identifies the sequence position of the consecutive sectors.
  • the first portion, the second portion and their corresponding sector sequence number in combination provide a position of a corresponding track.
  • FIG. 1 illustrates a typical data sector of a disk in a disk drive assembly of the prior art.
  • FIG. 2 is a top view of a hard disk drive assembly which utilizes the apparatus and method of the present invention.
  • FIG. 3A illustrates exemplary sectors on heads H 0 -H 3 (sides 1 - 4 ) of the disk pack 100 of FIG. 2 .
  • FIG. 3B illustrates an enlarged view of a typical sector of on one side of the disk pack 100 of FIG. 3A as provided in accordance with the teachings of the present invention.
  • FIG. 4A illustrates a plurality of consecutive sectors on one side of the disk pack 100 , in accordance with the teachings of the present invention.
  • FIG. 4B illustrates four bits of head position information as provided by the SDAT fields of sector 2 and 3 in FIG. 4A respectively.
  • FIG. 4C illustrates the thirteen bits of track position information, of which bits 8 - 13 are provided by the SDAT fields of sectors 4 - 6 of FIG. 4 A and of which bits 0 - 7 are provided by the Graycode field from each sector of FIG. 4 A.
  • FIG. 2 illustrates a hard disk drive 50 which utilizes the method of the present invention.
  • the disk drive 50 includes a disk pack 100 with a plurality of disks 102 that are collectively rotated by a spin motor 104 .
  • the spin motor 104 is mounted to a base plate 106 .
  • Also mounted to the base plate 106 is an actuator arm assembly 108 .
  • the actuator arm assembly 108 includes a number of read/write (R/W) heads 110 a-d mounted to corresponding flexure arms 112 .
  • the flexure arms 112 are attached to an actuator arm 114 that can rotate about a bearing assembly 116 .
  • the assembly 108 also contains a voice coil motor 118 which moves the heads 110 a-d collectively relative to the disks 102 .
  • the spin motor 104 , voice coil motor 118 and the R/W heads 110 a-d are coupled to a number of electronic circuits 120 mounted to a printed circuit board 122 .
  • the electronic circuits 120 typically include a read channel chip, a microprocessor-based controller and a random access memory (RAM) device.
  • RAM random access memory
  • data is typically stored within sectors 140 1 , 140 2 and 140 3 of radially concentric tracks located across any one of the disk heads H 0 -H 3 of the disk pack 100 .
  • any one of the sectors 140 1 , 140 2 and 140 3 will be referred to as sector 140 .
  • FIG. 3A In one embodiment, as shown in FIG.
  • each sector 140 has a preamble field 150 which includes automatic gain control (AGC) information and synchronization information, an address mark 152 which signifies the beginning of the sector 140 , an index field 154 which indicates the beginning of the first sector of the track, a servo sector sequence number (SSN) field 156 that identifies the sector sequence location number of sector 140 as identified among a plurality of consecutive sectors, a servo multiplex data (SDAT) field 158 that provides the higher order bit information related to positional information of the particular cylinder (track) of the sector 140 , a gray code field 160 that provides the lower order bit information related to positional information of the particular cylinder (track) of the sector 140 , a synchronization field 162 , a servo bit field 164 which includes a number of servo bits A, B, C, D, and a data field 166 which contains the data.
  • AGC automatic gain control
  • SSN servo sector sequence number
  • SDAT servo multiplex data
  • SDAT servo
  • fields 150 - 164 will be referred to as the servo field while field 166 will be referred to as the data field.
  • the electronic circuits 120 (see FIG. 2 ) utilize the servo bits A, B, C and D to maintain the heads 110 a-d on the centerline CL of a corresponding track.
  • the heads 110 a-d can magnetize and sense the magnetic field of the disk heads H 0 -H 3 to as to provide the information located on the above-described fields 150 - 166 .
  • positional information is provided by reading the SSN field 156 , the SDAT field 158 and the graycode field 160 of six consecutive bursts of servo data.
  • Table 1 illustrates an example of positional information that is provided in the SSN field 156 , the SDAT field 158 and the graycode field 160 , and the interrelationship between the fields.
  • the information located in the SSN field 156 , the SDAT field 158 and the graycode field 160 provide a matrix of positional information for identifying the quadrant, the head and track position of the disk pack 100 .
  • the 72 servo sectors are divided into groups each having six consecutive sectors. Each of the six consecutive sectors can be identified by an SSN of 0 - 7 , since a minimum of 3 bits are required, as provided in the SSN field 156 of each sector 140 (see FIG. 3 B).
  • the (SDAT) field 158 provides the higher order bit information related to positional information of the particular cylinder (track) of the sector 140
  • the gray code field 160 provides the lower order bit information related to positional information of the particular cylinder (track) of the sector 140 .
  • index information is provided in field 156 0 of sector 0 as 7 (binary 111). In one alternate embodiment, index information is provided in both sectors 0 and 1 . In this case, the index information is provided in SSN field 156 0 as 7 (binary 111) and in SSN field 156 1 , as 6 (binary 110).
  • the remaining 8 bits of graycode information is located in the graycode field 160 located in each sector 140 .
  • FIG. 4 A illustrates an example of how the present invention may be implemented utilizing six consecutive sectors on a typical track.
  • the six sectors, SECTORS 0 - 5 each has an SSN field 156 0 - 156 5 , an SDAT field 158 0 - 158 5 and a graycode field 160 0 - 160 5 .
  • Each SSN field 156 0 - 156 5 provides 3 bits of information related to the sector sequence position of each sector SECTORS 0 - 5 among the 6 sectors, while each SDAT field 158 0 - 158 5 provides 2 bits of information which provides any of the following information when used in combination with the SSN number: (1) identifies the quadrant position of a disk in the disk pack 100 ; (2) identifies the head (or side) of the disk pack 100 or (3) provides 2 of six upper bits of information related to the track position information; and each graycode field 160 0 - 160 5 provides the 8 lower bits of information related to track position information.
  • FIG. 4B illustrates the 4 bits of information that may be obtained from two of the six sectors, SECTORS 1 and 2 , which together identifies head (or side) position of a disk pack 100 .
  • SECTORS 1 and 2 which together identifies head (or side) position of a disk pack 100 .
  • the SSN field 156 preceding an SDAT field 158 indicates that the SSN is 1 (binary 001)
  • the following SDAT field 158 will provide the upper 2 bits of head positional information.
  • the SSN field 156 preceding an SDAT field 158 indicates that the SSN is 2 (binary 010)
  • the following SDAT field 158 will provide the lower 2 bits of head positional information.
  • FIG. 4C illustrates the 14 bits of information that may be obtained from three of six sectors, SECTORS 3 - 5 , which together identifies the track (or cylinder) position of a disk pack 100 .
  • each graycode field 160 0 - 160 5 provides the 8 lower bits of information related to track position information.
  • the information from the 8 lower bits is sufficient to identify the position of the head.
  • additional information is required to identify its location.
  • the SSN field 156 preceding an SDAT field 158 indicates that the SSN is 3 (binary 011)
  • the following SDAT field will provide the two uppermost bits (bits 13 and 12 ) of the 14 bits of data required to provide track position.
  • the SSN field 158 indicates that the SSN is 4 (binary 100)
  • the following SDAT field 158 will provide the following two uppermost bits (bits 11 and 10 ) of the 14 bits of data required to provide track information.
  • the SSN field 156 indicates that the SSN is 5 (binary 101 )
  • the following SDAT field 158 will provide the last of the uppermost bits (bits 9 and 8 ) of the 14 bits of data required to provide track position.
  • servo information on a disk in a hard drive assembly may be provided while reducing the media space required for the provision of such information. As a result, more media space may be utilized for the storage of data.

Abstract

The present invention is a method and apparatus for providing positional information of a disk. The disk has at least one side with a plurality of tracks, each having a first burst in a first servo field and a second burst in a second servo field. The first burst provides a first portion of track position information while the second burst provides a second portion of track position information. When combined, the first and second portions provide a position of a corresponding track. Each track further includes a third and a fourth burst that provides a first portion and a second portion of disk side position information. When combined, the first and second portions of disk side position information provide the disk side position of the disk. Each track also includes a burst that provides the quadrant position of the disk. In one embodiment, the first and second bursts are located on consecutive sectors, and each track includes a servo sector sequence burst with a sector sequence number that identifies the sequence position of the consecutive sectors. The first portion, the second portion and their corresponding sector sequence number in combination provide a position of a corresponding track.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates in general to disk storage systems and more particularly, to a method and apparatus for providing positional information on a disk in a hard drive assembly.
2. Description of the Related Art
Disk drives are magnetic recording devices used for the storage of information. The information is typically recorded on concentric tracks on either surface of one or more magnetic recording disks. To facilitate the storage and retrieval of data in an orderly manner, disks are typically organized in blocks called sectors. These sectors are located on the disk by a set of unique specifiers called cylinder (or track), head (or side) and sector number. The disks are rotatably mounted to a spin motor and information is accessed by means of read/write heads that are mounted to actuator arms which are rotated by a voice coil motor. The voice coil motor is excited with a current to rotate the actuator and move the heads.
The movement of the actuator is controlled by a servo system, utilizing servo information recorded on one or more of the magnetic recording disks. By reading this servo information, the actual radial positions of the heads can be determined, and after comparison with the desired head radial positions, control signals can be sent to move the actuator accordingly. Servo information is typically stored on a disk in one of two ways. In the first, a dedicated servo system, a set of several tracks on the disk or the entire disk surface, is reserved exclusively for storing information associated with the characteristic of the particular drive. Such information includes servo parameters and read/write channel parameters. A servo head reads this information to provide a continuous signal indicating the position of the servo head with respect to the servo disk. In the second type of servo system, the embedded servo system, sectors of servo information are interspersed with sectors of data on each disk surface. As a read head follows the data track around, it regularly reads a fresh sample of servo information from each servo sector with which to control its position.
FIG. 1 illustrates a typical sector on a disk of a hard disk drive. As shown, a typical sector 10 has a preamble field 20 which includes automatic gain control (AGC) information and synchronization information, a servo address mark 22 which signifies the beginning of a sector, an index field 24 which indicates the beginning of the first sector of the track, an identification field 26 which includes identification bits, a head identification field 28 for identification of head location, a gray code field 30 that identifies the particular cylinder (tracks) of the sector, a servo bit field 32 which includes a number of servo bits A, B, C, D, and a data field 34 which contains the data. The servo bits A, B, C and D are used to maintain the read/write head on the ceterline CL of a corresponding track. The identification field 26 typically includes an index bit and 7 bits of angular position information; the head identification field 28 typically includes 3 bits of data for identifying the head (or side) position of the disk pack and the gray code field 30 typically includes 13 bits of data for providing track identification. In conventional disk drives, absolute positional information is stored in graycode in the gray code field 30 of a particular sector 10. Due to power consumption, cost and throughput concerns, reduction of media space used in providing the servo information is highly desirable. However, most of the segments of the sector 10 are head and/or media dependent and reduction of these segments is difficult.
Accordingly, there is a need in the technology for a method and apparatus for providing servo information on a disk in a hard drive assembly while reducing the media space required for the provision of such information.
BRIEF SUMMARY OF THE INVENTION
The present invention is a method and apparatus for providing positional information of a disk. The disk has at least one side with a plurality of tracks, each having a first burst in a first servo field and a second burst in a second servo field. The first burst provides a first portion of track position information while the second burst provides a second portion of track position information. When combined, the first and second portions provide a position of a corresponding track. Each track further includes a third and a fourth burst that provides a first portion and a second portion of disk side position information. When combined, the first and second portions of disk side position information provide the disk side position of the disk. Each track also includes a burst that provides the quadrant position of the disk. In one embodiment, the first and second bursts are located on consecutive sectors, and each track includes a servo sector sequence burst with a sector sequence number that identifies the sequence position of the consecutive sectors. The first portion, the second portion and their corresponding sector sequence number in combination provide a position of a corresponding track.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a typical data sector of a disk in a disk drive assembly of the prior art.
FIG. 2 is a top view of a hard disk drive assembly which utilizes the apparatus and method of the present invention.
FIG. 3A illustrates exemplary sectors on heads H0-H3 (sides 1-4) of the disk pack 100 of FIG. 2.
FIG. 3B illustrates an enlarged view of a typical sector of on one side of the disk pack 100 of FIG. 3A as provided in accordance with the teachings of the present invention.
FIG. 4A illustrates a plurality of consecutive sectors on one side of the disk pack 100, in accordance with the teachings of the present invention.
FIG. 4B illustrates four bits of head position information as provided by the SDAT fields of sector 2 and 3 in FIG. 4A respectively.
FIG. 4C illustrates the thirteen bits of track position information, of which bits 8-13 are provided by the SDAT fields of sectors 4-6 of FIG. 4A and of which bits 0-7 are provided by the Graycode field from each sector of FIG. 4A.
DETAILED DESCRIPTION OF THE INVENTION
Referring to the drawings more particularly by reference numbers, FIG. 2 illustrates a hard disk drive 50 which utilizes the method of the present invention. The disk drive 50 includes a disk pack 100 with a plurality of disks 102 that are collectively rotated by a spin motor 104. The spin motor 104 is mounted to a base plate 106. Also mounted to the base plate 106 is an actuator arm assembly 108. The actuator arm assembly 108 includes a number of read/write (R/W) heads 110a-d mounted to corresponding flexure arms 112. The flexure arms 112 are attached to an actuator arm 114 that can rotate about a bearing assembly 116. The assembly 108 also contains a voice coil motor 118 which moves the heads 110a-d collectively relative to the disks 102. There is typically a single head 110a, 110b, 110c, or 110d for disk head side H0, H1, H2 or H3 (not shown), respectively, of the disk pack 100. The spin motor 104, voice coil motor 118 and the R/W heads 110a-d are coupled to a number of electronic circuits 120 mounted to a printed circuit board 122. The electronic circuits 120 typically include a read channel chip, a microprocessor-based controller and a random access memory (RAM) device.
As shown in FIG. 3A, data is typically stored within sectors 140 1, 140 2 and 140 3 of radially concentric tracks located across any one of the disk heads H0-H3 of the disk pack 100. For discussion purposes, any one of the sectors 140 1, 140 2 and 140 3 will be referred to as sector 140. In one embodiment, as shown in FIG. 3B, each sector 140 has a preamble field 150 which includes automatic gain control (AGC) information and synchronization information, an address mark 152 which signifies the beginning of the sector 140, an index field 154 which indicates the beginning of the first sector of the track, a servo sector sequence number (SSN) field 156 that identifies the sector sequence location number of sector 140 as identified among a plurality of consecutive sectors, a servo multiplex data (SDAT) field 158 that provides the higher order bit information related to positional information of the particular cylinder (track) of the sector 140, a gray code field 160 that provides the lower order bit information related to positional information of the particular cylinder (track) of the sector 140, a synchronization field 162, a servo bit field 164 which includes a number of servo bits A, B, C, D, and a data field 166 which contains the data. For present purposes, fields 150-164 will be referred to as the servo field while field 166 will be referred to as the data field. The electronic circuits 120 (see FIG. 2) utilize the servo bits A, B, C and D to maintain the heads 110a-d on the centerline CL of a corresponding track. The heads 110a-d can magnetize and sense the magnetic field of the disk heads H0-H3 to as to provide the information located on the above-described fields 150-166.
In one embodiment, positional information is provided by reading the SSN field 156, the SDAT field 158 and the graycode field 160 of six consecutive bursts of servo data. Table 1 illustrates an example of positional information that is provided in the SSN field 156, the SDAT field 158 and the graycode field 160, and the interrelationship between the fields. Together, the information located in the SSN field 156, the SDAT field 158 and the graycode field 160 provide a matrix of positional information for identifying the quadrant, the head and track position of the disk pack 100.
As shown in Table 1, there are 72 servo sectors on an exemplary head, head 4 (H3) of the disk pack 100, each labeled from 0-71. The 72 servo sectors are divided into groups each having six consecutive sectors. Each of the six consecutive sectors can be identified by an SSN of 0-7, since a minimum of 3 bits are required, as provided in the SSN field 156 of each sector 140 (see FIG. 3B). As discussed earlier, the (SDAT) field 158 provides the higher order bit information related to positional information of the particular cylinder (track) of the sector 140, while the gray code field 160 provides the lower order bit information related to positional information of the particular cylinder (track) of the sector 140.
In one embodiment, index information is provided in field 156 0 of sector 0 as 7 (binary 111). In one alternate embodiment, index information is provided in both sectors 0 and 1. In this case, the index information is provided in SSN field 156 0 as 7 (binary 111) and in SSN field 156 1, as 6 (binary 110).
TABLE 1
Example of data in servo pattern at Cylinder 24CDH, Heads 4.
Binary CDH = Graycode CDH
Binary 24H = Graycode 26H
Servo SDAT OFFSET
Sector SSN <1:0> <7:0> COMMENTS
 0 7 1,1 CDH Index position, SSN = 7
SDAT = 00 for 1st ¼ rev.
 1 1 1,0 CDH SDAT = Hd <3:02>
 2 2 0,1 CDH SDAT = Hd <1:0>
 3 3 1,0 CDH SDAT = Cyl <13:12>
 4 4 0,1 CDH SDAT = Cyl <11:10>
 5 5 1,0 CDH SDAT = Cyl <9:8>
 6 0 0,0 CDH SSN = 0 so SDAT = 0
 7 1 1,0 CDH SDAT = Hd <3:2>
 8 2 0,1 CDH SDAT = Hd <1:0>
 9 3 1,0 CDH SDAT = Cyl <13:12>
10 4 0,1 CDH SDAT = Cyl <11:10>
11 5 1,0 CDH SDAT = Cyl <9:8>
12 0 0,0 CDH .
13 1 1,0 CDH .
. . . . . . . . . . . . .
18 0 0,1 CDH SDAT = 01 for 2nd ¼rev.
. . . . . . . . . . . .
36 0 1,0 CDH SDAT = 10 for 3rd ¼rev.
. . . . . . . . . . . .
54 0 1,1 CDH SDAT = 11 for 4th ¼rev.
. . . . . . . . . .
68 2 0,1 CDH .
69 3 0,0 CDH .
70 4 0,1 CDH
71 5 0,1 CDH
In the present example, the combination of SSN=0 and an SDAT number identifies the quadrant position on a disk in the disk pack 100. For example, the combination of SSN=0 and SDAT=00 identifies a particular position as the fist quadrant of a disk; while the combination of SSN=0 and SDAT=01 identifies a particular position as the second quadrant of the disk. Similarly, the combination of SSN=0 and SDAT=10 identifies a particular position as the third quadrant of the disk; while the combination of SSN=0 and SDAT=11 identifies a particular position as the further quadrant of the disk. However, where SSN=7 and SDAT=00, it indicates that a particular position is the first sector in the first quadrant of the disk.
In addition, the combination of SSN=1 or SSN=2 with an SDAT number identifies a particular position as the head (or side position) of the disk pack 100. With reference to Table 1, the combination of SSN=1 and SDAT=10 identifies a particular position as head 4 or H3 of the disk pack 100, while the combination of SSN=1 and SDAT=01 identifies a particular position as head 3 or H2 of the disk pack 100. Similarly, the combination of SSN=2 and SDAT=01 identifies a particular position as head 2 or H1 of the disk pack, while the combination of SSN=2 and SDAT=10 identifies a particular position as head 1 or H0 of the disk pack 100.
Finally, the combination of SSN=3, 4 or 5 and an SDAT number provides the higher order bit information related to positional information of the particular cylinder (track) of a disk in the disk pack 100. For example, the combination of SSN=3 and SDAT=10 or 01 provides the position information of bits 13 and 12, where the bit positions are identified from 0-13 (the 14th and 13th bits among 14 bits) of graycode information required to completely identify the cylinder or track on a disk. Similarly, the combination of SSN=4 and SDAT=01 or 10 provides position information of bits 11 and 10 (the 12th and 11th bits among 14 bits) of the graycode information required to completely identify the cylinder, while the combination of SSN=5 and SDAT=10 or 01 provides positional information for bits 9 and 8 (the 10th and 9th bits among 14 bits) of graycode information required to completely identify the cylinder. The remaining 8 bits of graycode information is located in the graycode field 160 located in each sector 140.
FIG. 4 A illustrates an example of how the present invention may be implemented utilizing six consecutive sectors on a typical track. The six sectors, SECTORS 0-5, each has an SSN field 156 0-156 5, an SDAT field 158 0-158 5 and a graycode field 160 0-160 5. Each SSN field 156 0-156 5 provides 3 bits of information related to the sector sequence position of each sector SECTORS 0-5 among the 6 sectors, while each SDAT field 158 0-158 5 provides 2 bits of information which provides any of the following information when used in combination with the SSN number: (1) identifies the quadrant position of a disk in the disk pack 100; (2) identifies the head (or side) of the disk pack 100 or (3) provides 2 of six upper bits of information related to the track position information; and each graycode field 160 0-160 5 provides the 8 lower bits of information related to track position information.
As discussed earlier, the combination of SSN=0 and an SDAT number identifies the quadrant position on a disk in the disk pack 100. In addition, the combination of SSN=1 or SSN=2 with an SDAT number identifies a particular position as the head (or side position) or the disk pack 100. Finally, the combination of SSN=3, 4 or 5 and an SDAT number provides the higher order bit information related to positional information of the particular cylinder (track) of a disk in the disk pack 100.
FIG. 4B illustrates the 4 bits of information that may be obtained from two of the six sectors, SECTORS 1 and 2, which together identifies head (or side) position of a disk pack 100. As shown, when the SSN field 156 preceding an SDAT field 158 indicates that the SSN is 1 (binary 001), the following SDAT field 158 will provide the upper 2 bits of head positional information. When the SSN field 156 preceding an SDAT field 158 indicates that the SSN is 2 (binary 010), the following SDAT field 158 will provide the lower 2 bits of head positional information. After reading the SSN fields 156 1 and 156 2 of the sectors SECTORS 1 and 2, one will obtain the head position information of a particular location of the disk pack 100.
FIG. 4C illustrates the 14 bits of information that may be obtained from three of six sectors, SECTORS 3-5, which together identifies the track (or cylinder) position of a disk pack 100. As shown, each graycode field 160 0-160 5 provides the 8 lower bits of information related to track position information. When one of the R/W heads 100 a-d is reading from a track within a particular band of tracks, where there are 256 tracks in one band, the information from the 8 lower bits is sufficient to identify the position of the head. However, when any of the R/W heads 100a-d is moving from one band to another, additional information is required to identify its location. As shown, when the SSN field 156 preceding an SDAT field 158 indicates that the SSN is 3 (binary 011), the following SDAT field will provide the two uppermost bits (bits 13 and 12 ) of the 14 bits of data required to provide track position. When the SSN field 158 indicates that the SSN is 4 (binary 100), the following SDAT field 158 will provide the following two uppermost bits (bits 11 and 10) of the 14 bits of data required to provide track information. Finally, when the SSN field 156 indicates that the SSN is 5 (binary 101), the following SDAT field 158 will provide the last of the uppermost bits (bits 9 and 8 ) of the 14 bits of data required to provide track position. Thus, by scanning the SSN field 156, the SDAT field 158 and the graycode field 160 of at least 6 consecutive sectors as provided by the present invention, complete positional information of a particular location on the disk pack 100 may be obtained.
Through the implementation of the technique of the present invention, servo information on a disk in a hard drive assembly may be provided while reducing the media space required for the provision of such information. As a result, more media space may be utilized for the storage of data.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.

Claims (45)

1. A disk for a hard disk drive, comprising:
a disk including at least one side having a plurality of tracks, each track including a group having first and second sectors, each of the first and second sectors within said group includes first and second servo fields, the first servo field in each of the first and second sectors providing a portion of higher order bits of a track position information, the second servo field in each of the first and second sectors providing lower order bits of the track position information, the first servo fields of the first and second sectors and the second servo field in one of the first and second sectors, in combination, providing the track position information.
2. The disk as recited in claim 1, wherein the group includes a third sector having first and second servo fields, the first servo field in the third sector providing a portion of higher order bits of the track position information, and the second servo field in the third sector providing lower order bits of the track position information, the first servo fields of the first, second, and third sectors and the second servo field in one of the first, second, and third sectors, in combination, providing the track position information.
3. The disk as recited in claim 2, wherein the group includes a fourth sector having a first servo field, the first servo field in the fourth sector of the group providing a disk side position of the disk.
4. The disk as recited in claim 3, wherein the group includes a fifth sector having a first servo field, the first servo field in the fourth and fifth sectors, in combination, providing the disk side position of the disk.
5. The disk as recited in claim 4, wherein the group includes a sixth sector having a first servo field, the first servo field in the sixth sector providing a quadrant of the disk.
6. The disk as recited in claim 5, wherein each track includes a plurality of groups each having six sectors, wherein complete disk positional information is obtained by reading one of the plurality of groups of six sectors.
7. The disk as recited in claim 1, wherein the first servo field of the first and second sectors each includes a sector sequence number field and a servo multiplex data field, a sequence number in the sector sequence number field identifies a value in the corresponding servo multiplex data field as the portion of the track position information.
8. The disk as recited in claim 5, wherein the first servo field in each of the first through six sectors of the group includes a sector sequence number field and a servo multiplex data field, a sequence number in the sector sequence number field identifies a value in the corresponding servo multiplex data field.
9. The disk as recited in claim 8 wherein when the sequence number is at a first number, the value in the corresponding servo multiplex data field represents the portion of the higher order bits of the track position information, where when the sequence number is at a second number, the value in the corresponding servo multiplex data field represents a portion of the disk side portion of the disk, and wherein when the sequence number is at a third number, the value in the corresponding servo multiplex data field represents the quadrant of the disk.
10. A hard disk drive, comprising:
a housing;
a spin motor mounted to said housing;
an actuator arm mounted to said spin motor;
a disk attached to said spin motor, said disk having at least one side with a plurality of tracks, each track including a group having first and second sectors, each of the first and second sectors within said group includes first and second servo fields, the first servo field in each of the first and second sectors providing a portion of higher order bits of a track position information, the second servo field in each of the first and second sectors providing lower order bits of the track position information, the first servo fields of the first and second sectors and the second servo field in one of the first and second sectors, in combination, providing the track position information; and
a read/write head mounted to said actuator arm for reading said at least one side of said disk.
11. The hard disk drive as recited in claim 10, wherein the group includes a third sector having first and second servo fields, the first servo field in the third sector providing a portion of higher order bits of the track position information, and the second servo field in the third sector providing lower order bits of the track position information, the first servo fields of the first, second, and third sectors and the second servo field in one of the first, second, and third sectors, in combination, providing the track position information.
12. The hard disk drive as recited in claim 11, wherein the group includes a fourth sector having a first servo field, the first servo field in the fourth sector of the group providing a disk side position of the disk.
13. The hard disk drive as recited in claim 12, wherein the group includes a fifth sector having a first servo field, the first servo field in the fourth and fifth sectors, in combination, providing the disk side position of the disk.
14. The hard disk drive as recited in claim 13, wherein the group includes a sixth sector having a first servo field, the first servo field in the sixth sector providing a quadrant of the disk.
15. The hard disk drive as recited in claim 14, wherein the first servo field in each of the first through six sectors of the group includes a sector sequence number field and a servo multiplex data field, a sequence number in the sector sequence number field identifies a value in the corresponding servo multiplex data field.
16. The hard disk drive as recited in claim 15 wherein when the sequence number is at a first number, the value in the corresponding servo multiplex data field represents the portion of the higher order bits of the track position information, where when the sequence number is at a second number, the value in the corresponding servo multiplex data field represents a portion of the disk side position of the disk, and wherein when the sequence number is at a third number, the value in the corresponding servo multiplex data field represents the quadrant of the disk.
17. A method for providing servo information on a disk in a hard disk drive, comprising:
a) providing a disk having at least one side with a plurality of tracks, each track including a group having first and second sectors, each of the first and second sectors within said group includes first and second servo fields, the first servo field in each of the first and second sectors providing a portion of higher order bits of a track position information, the second servo field in each of the first and second sectors providing lower order bits of the track position information;
b) reading the first servo fields of the first and second sectors and the second servo field in one of the first and second sectors; and
c) determining track position information of the disk in response to reading the first servo fields of the first and second sectors and the second servo field in one of the first and second sectors.
18. The method as recited in claim 17, wherein the group includes a third sector having a first servo field providing a disk side position of the disk, and wherein reading comprises reading the first servo fields of the first through third sectors and the second servo field in one of the first and second sectors, and wherein determining comprises determining track position information and disk side position of the disk.
19. The method as recited in claim 18 wherein the group includes a fourth sector having a first servo field providing a quadrant of the disk, and wherein reading comprises reading the first servo fields of the first through fourth sectors and the second servo field in one of the first and second sectors, and wherein determining comprises determining track position information, disk side position, and quadrant of the disk.
20. The method as recited in clam 17, wherein each track includes a plurality of groups.
21. A data storage medium having N number of tracks, comprising:
a plurality of sectors, at least one of said plurality of sectors including a first track identification information for identifying a corresponding particular track to which said at least one of said plurality of sectors belong, said first track identification information consisting of M number of bits, said M being an integer less than log 2 N.
22. The data storage medium according to claim 21, wherein:
at least a portion of said first track identification information is encoded in graycode encoding.
23. The data storage medium according to claim 21, further comprising:
one or more consecutive sectors adjacent to said at least one of said plurality of sectors, said one or more consecutive sectors each including a remainder track identification information, said first track identification information and said remainder track information from each of said one or more consecutive sectors being combined together to identify said corresponding particular track to which said at least one of said plurality of sectors belong.
24. A data storage device, comprising:
a data storage medium having N number of tracks and a plurality of sectors, at least one of said plurality of sectors including a first track identification information for identifying a corresponding particular track to which said at least one of said plurality of sectors belong, said first track identification information consisting of M number of bits, said M being less than log 2 N.
25. The data storage device according to claim 24, wherein:
at least a portion of said first track identification information is encoded in graycode encoding.
26. The data storage device according to claim 24, wherein:
said data storage medium further comprises one or more consecutive sectors adjacent to said at least one of said plurality of sectors, said one or more consecutive sectors each including a remainder track identification information, said first track identification information and said remainder track information from said one or more consecutive sectors being combined together to identify said corresponding particular track to which said at least one of said plurality of sectors belong.
27. A method of recording track information on a data storage medium having N number of tracks, each including a plurality of sectors, comprising:
recording in at least one of said plurality of sectors a first track identification information for identifying a corresponding particular track to which said at least one of said plurality of sectors belong, said first track identification information consisting of M number of bits, said M being less than log 2 N.
28. The method of recording track information in accordance with claim 27, wherein:
at least a portion of said first track identification information is encoded in graycode encoding.
29. The method of recording track information in accordance with claim 27, further comprising:
recording in one or more consecutive sectors adjacent to said at least one of said plurality of sectors a remainder track identification information, said first track identification information and said remainder track information from each of said one or more consecutive sectors being combined together to identify said corresponding particular track to which said at least one of said plurality of sectors belong.
30. A data storage device, comprising:
one or more data storage media collectively having N number of tracks and a plurality of sectors, at least one of said plurality of sectors including a first track identification information for identifying a corresponding particular track to which said at least one of said plurality of sectors belong, said first track identification information consisting of M number of bits, said M being less than log 2 N.
31. The data storage device according to claim 30, wherein:
at least a portion of said first track identification information is encoded in graycode encoding.
32. The data storage device according to claim 30, wherein:
said one or more data storage media further comprises one or more consecutive sectors adjacent to said at least one of said plurality of sectors, said one or more consecutive sectors each including a remainder track identification information, said first track identification information and said remainder track information from said one or more consecutive sectors being combined together to identify said corresponding particular track to which said at least one of said plurality of sectors belong.
33. A method of recording track information in a data storage device having one or more data storage media collectively having N number of tracks and a plurality of sectors, comprising:
recording in at least one of said plurality of sectors a first track identification information for identifying a corresponding particular track to which said at least one of said plurality of sectors belong, said first track identification information consisting of M number of bits, said M being less than log 2 N.
34. The method of recording track information in accordance with claim 33, wherein:
at least a portion of said first track identification information is encoded in graycode encoding.
35. The method of recording track information in accordance with claim 33, further comprising:
recording in one or more consecutive sectors adjacent to said at least one of said plurality of sectors a remainder track identification information, said first track identification information and said remainder track information from each of said one or more consecutive sectors being combined together to identify said corresponding particular track to which said at least one of said plurality of sectors belong.
36. A data storage medium having a plurality of tracks, comprising:
a first sector including a first track identification field, said first identification field consisting of a number of bits, which is less than a total number of bits required to individually address all of said plurality of tracks on said data storage medium; and
one or more consecutive sectors adjacent to said first sectors, said first sector and said one or more consecutive sectors being on an identical one of said plurality of tracks;
wherein said one or more consecutive sectors each includes a remainder track identification field, said first identification field and said remainder track identification field from said one or more consecutive sectors combined together completely identify said identical one of said plurality of tracks.
37. The data storage medium according to claim 36, wherein:
at least a portion of said first track identification field and said remainder track identification field is encoded in graycode encoding.
38. A data storage device, comprising:
a data storage medium including a plurality of tracks, said data storage medium having a first sector including a first track identification field, said first identification field consisting of a number of bits, which is less than a total number of bits required to individually address all of said plurality of tracks on said data storage medium, said data storage medium further including one or more consecutive sectors adjacent to said first sector, said first sector and said one or more consecutive sectors being on an identical one of said plurality of tracks, said one or more consecutive sectors each including a remainder track identification field, wherein said first identification field and said remainder track identification field from said one or more consecutive sectors combined together completely identify said identical one of said plurality of tracks.
39. The data storage device according to claim 38, wherein:
at least a portion of said first track identification field and said remainder track identification field is encoded in graycode encoding.
40. A data storage device, comprising:
one or more data storage media collectively including a plurality of tracks, said data storage media having a first sector including a first track identification field, said first identification field consisting of a number of bits, which is less than a total number of bits required to individually address all of said plurality of tracks on said one or more data storage media, said one or more data storage media further including one or more consecutive sectors adjacent to said first sector, said first sector and said one or more consecutive sectors being on an identical one of said plurality of tracks, said one or more consecutive sectors each including a remainder track identification field, said first identification field and said remainder track identification field from said one or more consecutive sectors combined together completely identify said identical one of said plurality of tracks.
41. The data storage device according to claim 40, wherein:
at least a portion of said first track identification field and said remainder track identification field is encoded in graycode encoding.
42. A method of recording track number information in a data storage device employing a data storage medium having a plurality of tracks, comprising:
writing in a first sector of said data storage medium a first track identification, said first identification consisting of a number of bits, which is less than a total number of bits required to individually address all of said plurality of tracks on said data storage medium; and
writing in each of one or more consecutive sectors adjacent to said first sector a remainder track identification, said first sector and said one or more consecutive sectors being on an identical one of said plurality of tracks, said first identification and said remainder track identification from said one or more consecutive sectors combined together completely identify said identical one of said plurality of tracks.
43. The method of recording track number information in accordance with claim 42, wherein said writing of said first identification and said remainder track identification further comprises:
encoding at least a portion of said first track identification and said remainder track identification in graycode encoding.
44. A method of recording track number information in a data storage device employing one or more data storage media collectively having a plurality of tracks, comprising:
writing in a first sector of said one or more data storage media a first track identification; said first track identification consisting of a number of bits, which is less than a total number of bits required to individually address all of said plurality of tracks on said one or more data storage media; and
writing in each of one or more consecutive sectors adjacent to said first sector a remainder track identification, said first sector and said one or more consecutive sectors being on an identical one of said plurality of tracks, said first track identification and said remainder track identification from said one or more consecutive sectors combined together completely identify said identical one of said plurality of tracks.
45. The method of recording track number information in accordance with claim 44, wherein said writing of said first identification and said remainder track identification further comprises:
encoding at least a portion of said first track identification and said remainder track identification in graycode encoding.
US10/096,662 1997-02-28 2002-03-14 Method and apparatus for providing positional information on a disk Expired - Lifetime USRE39831E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/096,662 USRE39831E1 (en) 1997-02-28 2002-03-14 Method and apparatus for providing positional information on a disk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/807,232 US6038097A (en) 1997-02-28 1997-02-28 Method and apparatus for providing positional information on a disk
US10/096,662 USRE39831E1 (en) 1997-02-28 2002-03-14 Method and apparatus for providing positional information on a disk

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/807,232 Reissue US6038097A (en) 1997-02-28 1997-02-28 Method and apparatus for providing positional information on a disk

Publications (1)

Publication Number Publication Date
USRE39831E1 true USRE39831E1 (en) 2007-09-11

Family

ID=25195878

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/807,232 Ceased US6038097A (en) 1997-02-28 1997-02-28 Method and apparatus for providing positional information on a disk
US10/096,662 Expired - Lifetime USRE39831E1 (en) 1997-02-28 2002-03-14 Method and apparatus for providing positional information on a disk

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/807,232 Ceased US6038097A (en) 1997-02-28 1997-02-28 Method and apparatus for providing positional information on a disk

Country Status (1)

Country Link
US (2) US6038097A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090059777A1 (en) * 2007-08-28 2009-03-05 Seagate Technology Llc Angular and radial location determination in a control system
US8804274B1 (en) 2013-04-18 2014-08-12 Kabushiki Kaisha Toshiba Disk storage apparatus and servo control method
US8902540B2 (en) 2012-11-30 2014-12-02 Kabushiki Kaisha Toshiba Disk storage apparatus and method for servo controlling
US9947351B1 (en) 2017-03-16 2018-04-17 Kabushiki Kaisha Toshiba Position detecting device for detecting position in accordance with periodically arranged information, position control device, disk storage device, and position detecting method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6404582B1 (en) * 1998-09-14 2002-06-11 Seagate Technology Llc Robust index reference position detection using a sequence of successively disposed index fields
JP4475614B2 (en) * 2000-04-28 2010-06-09 大正製薬株式会社 Job assignment method and parallel processing method in parallel processing method
US7839594B2 (en) * 2001-06-28 2010-11-23 Stmicroelectronics, Inc. Data-storage disk having few or no spin-up wedges and method for writing servo wedges onto the disk
US7830630B2 (en) * 2001-06-28 2010-11-09 Stmicroelectronics, Inc. Circuit and method for detecting the phase of a servo signal
US6950270B2 (en) 2002-04-18 2005-09-27 Seagate Technology Llc Adaptive index reference position qualification
US20030214747A1 (en) * 2002-05-14 2003-11-20 Debasis Baral Servo writing method for hard disk drives
US7511912B2 (en) * 2002-11-22 2009-03-31 Seagate Technology Llc Writing multiple servo sector patterns to improve servo sector alignment on multiple surfaces
JP2006147096A (en) * 2004-11-22 2006-06-08 Hitachi Global Storage Technologies Netherlands Bv Magnetic disk medium, magnetic disk apparatus, and rotation position detecting method of magnetic disk medium

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823212A (en) * 1986-11-26 1989-04-18 Hewlett-Packard Company Sampled servo code format and system for a disc drive
GB2285165A (en) * 1993-12-17 1995-06-28 Ibm A disk sector format which eliminates the need for sector identifiers
WO1995024035A1 (en) * 1994-03-03 1995-09-08 Cirrus Logic, Inc. A table driven method and apparatus for automatic split field processing
US5523902A (en) * 1993-10-25 1996-06-04 Syquest Technology, Inc. Servo burst pattern for removing offset caused by magnetic distortion and method associated therewith
EP0718827A2 (en) * 1994-12-22 1996-06-26 International Business Machines Corporation System and method for target track determination in a data storage disk drive
WO1996023305A1 (en) * 1995-01-27 1996-08-01 Seagate Technology, Inc. Dual identification for data fields of a disk drive
US5600506A (en) * 1995-05-10 1997-02-04 Conner Peripherals, Inc. Apparatus and method for determining the position of a transducer relative to a disk surface in a disk drive system
GB2307089A (en) * 1995-11-08 1997-05-14 Samsung Electronics Co Ltd Hard disk drive with reduced servo field
US5631783A (en) * 1994-12-21 1997-05-20 Samsung Electronics Co., Ltd. Magnetic disc apparatus employing constant-density recording and driver access method where a wedge ID field and a pseudo ID field are recorded
GB2308488A (en) * 1995-12-19 1997-06-25 Samsung Electronics Co Ltd Hard disk drive having extended data region
US5666238A (en) * 1993-12-28 1997-09-09 Kabushiki Kaisha Toshiba Data sector control apparatus and method for disk storage system
US6075667A (en) * 1994-09-29 2000-06-13 International Business Machines Corporation Method and apparatus for determining head positioning in a magnetic disk drive system using first and second gray codes

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823212A (en) * 1986-11-26 1989-04-18 Hewlett-Packard Company Sampled servo code format and system for a disc drive
US5523902A (en) * 1993-10-25 1996-06-04 Syquest Technology, Inc. Servo burst pattern for removing offset caused by magnetic distortion and method associated therewith
GB2285165A (en) * 1993-12-17 1995-06-28 Ibm A disk sector format which eliminates the need for sector identifiers
US5666238A (en) * 1993-12-28 1997-09-09 Kabushiki Kaisha Toshiba Data sector control apparatus and method for disk storage system
WO1995024035A1 (en) * 1994-03-03 1995-09-08 Cirrus Logic, Inc. A table driven method and apparatus for automatic split field processing
US6075667A (en) * 1994-09-29 2000-06-13 International Business Machines Corporation Method and apparatus for determining head positioning in a magnetic disk drive system using first and second gray codes
US5631783A (en) * 1994-12-21 1997-05-20 Samsung Electronics Co., Ltd. Magnetic disc apparatus employing constant-density recording and driver access method where a wedge ID field and a pseudo ID field are recorded
EP0718827A2 (en) * 1994-12-22 1996-06-26 International Business Machines Corporation System and method for target track determination in a data storage disk drive
WO1996023305A1 (en) * 1995-01-27 1996-08-01 Seagate Technology, Inc. Dual identification for data fields of a disk drive
US5600506A (en) * 1995-05-10 1997-02-04 Conner Peripherals, Inc. Apparatus and method for determining the position of a transducer relative to a disk surface in a disk drive system
GB2307089A (en) * 1995-11-08 1997-05-14 Samsung Electronics Co Ltd Hard disk drive with reduced servo field
GB2308488A (en) * 1995-12-19 1997-06-25 Samsung Electronics Co Ltd Hard disk drive having extended data region

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090059777A1 (en) * 2007-08-28 2009-03-05 Seagate Technology Llc Angular and radial location determination in a control system
US7768735B2 (en) * 2007-08-28 2010-08-03 Seagate Technology Llc Angular and radial location determination in a control system
US8902540B2 (en) 2012-11-30 2014-12-02 Kabushiki Kaisha Toshiba Disk storage apparatus and method for servo controlling
US8804274B1 (en) 2013-04-18 2014-08-12 Kabushiki Kaisha Toshiba Disk storage apparatus and servo control method
US9947351B1 (en) 2017-03-16 2018-04-17 Kabushiki Kaisha Toshiba Position detecting device for detecting position in accordance with periodically arranged information, position control device, disk storage device, and position detecting method

Also Published As

Publication number Publication date
US6038097A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
US6462896B1 (en) Method for minimizing adjacent track data loss during a write operation in a disk drive
US6927930B1 (en) Adaptive data format method integrating spare sectors
KR100228795B1 (en) Method for improving the function of read/write of track
US8559125B2 (en) Seamless and untrimmed primary servo burst with multiple secondary servo bursts
USRE39831E1 (en) Method and apparatus for providing positional information on a disk
US5771126A (en) Hard disk drive with reduced sized servo sectors and driving method therefor
KR100515719B1 (en) Process Control Method Using Servo Track Writer
US6259576B1 (en) Method and apparatus for hard disk drive with self-servowriting capability
KR100468777B1 (en) Method of interleaving servo information fields for track following and seeking and a recording medium including interleaved servo information fields
US6262859B1 (en) Method and apparatus for providing servo information on a disk in a hard drive assembly
CN1230799C (en) Flexible drive, method for formatting disc, and recording/reproducing method
KR19980020110A (en) Data address mark structure and processing method of hard disk drive
KR0182979B1 (en) Servo information forming method and servo control method
US5999352A (en) Variable bits per inch recording
KR100574941B1 (en) Servo writing method for hard disk drives
US7190545B2 (en) Use of offline servo track writer together with single pass servo writing process
US7511912B2 (en) Writing multiple servo sector patterns to improve servo sector alignment on multiple surfaces
KR100195020B1 (en) Port Number Recording of Servo Track Writer
JP3078224B2 (en) Magnetic disk drive and head positioning control system applied thereto
US6128154A (en) Servo control method for a high capacity hard disk drive
US6034830A (en) Information recording medium having divided cylinder address storage
KR100281759B1 (en) METHOD AND APPARATUS FOR PROVIDING POSITION INFORMATION ON DISK
GB2340290A (en) A system and method for identifying track information on a hard disk drive
US7154688B2 (en) Disk device having a function to confirm that a selected head is proper for a disk surface
US20090147397A1 (en) Patterned magnetic recording medium and method of recording track information onto the same

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 12