US9044055B2 - Garment with a retroreflective and electroluminescent article - Google Patents

Garment with a retroreflective and electroluminescent article Download PDF

Info

Publication number
US9044055B2
US9044055B2 US13/202,839 US201013202839A US9044055B2 US 9044055 B2 US9044055 B2 US 9044055B2 US 201013202839 A US201013202839 A US 201013202839A US 9044055 B2 US9044055 B2 US 9044055B2
Authority
US
United States
Prior art keywords
electroluminescent
retroreflective
garment
article
discontinuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US13/202,839
Other versions
US20110305006A1 (en
Inventor
Rodney K. Hehenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US13/202,839 priority Critical patent/US9044055B2/en
Assigned to 3M INNOVATIVE PROPERTIES COMPANY reassignment 3M INNOVATIVE PROPERTIES COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEHENBERGER, RODNEY K.
Publication of US20110305006A1 publication Critical patent/US20110305006A1/en
Application granted granted Critical
Publication of US9044055B2 publication Critical patent/US9044055B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • A41D31/0094
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/01Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches with reflective or luminous safety means
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/32Retroreflective
    • A41D31/325Retroreflective using layered materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • F21V33/0004Personal or domestic articles
    • F21V33/0008Clothing or clothing accessories, e.g. scarfs, gloves or belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/006
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/20Electroluminescent [EL] light sources

Definitions

  • the present disclosure pertains to a garment including a support and at least two electroluminescent structures used in combination with one or more retroreflective structures disposed on the support.
  • Electroluminescent lighting is commonly used in applications requiring light weight and low power illumination, such as conspicuity garments. Electroluminescent lamps are typically made of a layer of phosphor disposed between two layers of electrodes where one electrode layer is transparent or translucent, allowing light to shine through it when the lamp is powered. When electroluminescent lamps are used for garments, they can provide a good source of light in dark environments to increase the visibility of individuals wearing the garments.
  • Retroreflective materials are also commonly used on a variety of garments, including vests, hats, shirts, jackets, footwear, and other garments. Retroreflective materials can be created in a variety of ways, including using a layer of glass beads, a reflective agent disposed under the beads and a binder. When incident light enters the bead, the bead focuses the light on the reflective agent. The reflective agent forces the light back through the bead so that it exits in a generally opposite direction of the incident light at about the same angle. This process of reflecting light back in the general direction of its source is commonly referred to as retroreflection. Retroreflective lighting is an excellent source of conspicuity in the dark when headlights or other incident light is reflected off of the retroreflective materials disposed on a garment.
  • Electroluminescent lighting and retroreflective materials can be disposed on or attached to garments through a variety of methods. There remains a need for garments that provide increased and/or improved conspicuity to their wearers under a variety of conditions and that can be easily and efficiently manufactured.
  • the present disclosure is directed to a garment including a support and an electroluminescent and retroreflective article disposed on the support.
  • the article includes at least two electroluminescent structures and a retroreflective structure.
  • At least two electroluminescent structures include an electrode layer, a phosphor layer disposed over the electrode layer and a transparent electrode layer disposed over the phosphor layer.
  • the retroreflective structure is disposed over the electroluminescent structure and at least partially in a path of light capable of being emitted by the electroluminescent structure.
  • At least one connector electrically connects at least two of the electroluminescent structures, and at least two of the electroluminescent structures are discontinuous.
  • the present disclosure includes a garment including a support and an electroluminescent and retroreflective article disposed on the support.
  • the article includes at least two electroluminescent structures and a retroreflective structure.
  • At least two electroluminescent structures include an electrode layer, a phosphor layer disposed over the electrode layer and a transparent electrode layer disposed over the phosphor layer.
  • the retroreflective structure is disposed over the electroluminescent structure and at least partially in a path of light capable of being emitted by the electroluminescent structure.
  • At least one connector including conductive adhesive electrically connects at least two of the electroluminescent structures.
  • the present disclosure includes a method for making a garment.
  • the method includes providing an electroluminescent and retroreflective article, which includes an electroluminescent structure, a retroreflective structure disposed over the electroluminescent structure, and a removable carrier film disposed over the retroreflective structure.
  • the electroluminescent structure includes an electrode layer, a phosphor layer disposed over the electrode layer and a transparent electrode layer disposed over the phosphor layer.
  • the method further includes disposing the electroluminescent article on a support; and removing the carrier film from the article.
  • FIG. 1 shows an exploded cross-sectional view of an exemplary laminate reflective and electroluminescent article disposed on a support.
  • FIG. 2 shows a schematic diagram of an exemplary reflective and electroluminescent article connected to a power source.
  • FIG. 3 shows an exemplary reflective and electroluminescent article disposed on a shirt.
  • FIG. 4 shows an exemplary reflective and electroluminescent article disposed on a vest.
  • FIG. 5 shows an exemplary pattern of discontinuous retroreflective structures.
  • FIG. 5A shows an exemplary pattern of discontinuous retroreflective structures defining retroreflective and non-retroreflective regions.
  • FIG. 6A shows an exemplary configuration of discontinuous electroluminescent structures and discontinuous retroreflective structures configured in a two-dimensional array.
  • FIG. 6B shows an exemplary configuration of a continuous electroluminescent structure and discontinuous retroreflective structures configured in a two-dimensional array.
  • FIG. 7A shows an example of a continuous electroluminescent structure with discontinuous retroreflective structures.
  • FIG. 7B shows an example of discontinuous electroluminescent structures with a continuous retroreflective structure.
  • the present disclosure provides a garment with an electroluminescent article disposed on it that can result in improved conspicuity for the wearer in a variety of lighting conditions, including dawn, dusk and dark.
  • a garment consistent with the present disclosure can have increased flexibility and stretchability. This can result in increased comfort for the wearer.
  • An electroluminescent article consistent with the present disclosure can be disposed on a greater variety of garments and supports, e.g., light weight flexible materials such as those used in tee shirts.
  • a garment may also have improved durability for wear and washing.
  • FIG. 1 shows an exploded cross sectional view of an exemplary laminate reflective and electroluminescent article 10 disposed on a support 11 .
  • laminate shall mean that the structure is composed of layers of firmly attached materials and shall not be indicative of the process by which the structure is made or the layers are attached.
  • the article 10 can be disposed on a variety of supports 11 including, but not limited to, cloth, plastic and other porous or nonporous materials.
  • a support 11 can be the material used to make a garment (not shown) or can be an additional layer of material attached to a surface or other portion of a garment.
  • Adhesive 12 can be used to secure the adjacent components of the electroluminescent article 10 , such as one or more of conductors 14 a , 14 b , electroluminescent structure 16 and protective layer 17 , to the support 11 .
  • the electroluminescent article 10 can be printed, or disposed on a support 11 by other appropriate methods.
  • An optional protective layer 17 can be included between support 11 and electroluminescent structure 16 .
  • Conductors 14 a , 14 b can be disposed between adhesive 12 and protective layer 17 .
  • Protective layer 17 can have openings 17 a and 17 b , which allow leads 162 a and 168 a of first electrode layer 162 and second electrode layer 168 , respectively, to come into electrical contact with conductors 14 a and 14 b .
  • conductors 14 a , 14 b can be disposed in any appropriate location, and other methods known to those of skill in the art can be used to electrically connect conductors 14 a and 14 b with electrode layers 162 and 168 .
  • one or more conductive structures such as one or more conductors 14 a , 14 b can electrically connect one or more electroluminescent structures to a power supply, in series or independently. Additionally, conductors 14 a , 14 b may electrically connect one or more electroluminescent structure to an inverter.
  • Conductors 14 a , 14 b can include conductive adhesive.
  • Conductive adhesive can be made of materials such as polymeric materials, including polyester fibers (such as polyester terephthalate), or natural fibers, coated with conductive materials (such as one or more of copper, nickel and carbon). The fibers can be coated with a doped adhesive, such as acrylate adhesive, to provide conductive attachments.
  • Conductors 18 a , 18 b can be made of commercially available conductive adhesives such as 3MTM CN 3190 Cu/Ni fabric tape, available from 3M Company. 3MTM CN 3190 Cu/Ni fabric tape includes anti-corrosion treated copper-nickel coated conductive polyester fabric and electrically conductive pressure-sensitive acrylic adhesive. Conductive adhesives can offer benefits such as flexibility and conformability, light weight and strength.
  • conductors 14 a , 14 b can include wires, conductive yarns, strips of conductive material such as copper, a bus bar, printed circuit conductors or other suitable conductors. While both conductors 14 a , 14 b are shown as disposed underneath electroluminescent structure 16 in FIG. 1 , they can be disposed in other appropriate locations. One conductor ( 14 a ) must be electrically connected to electrode 162 and another conductor ( 14 b ) must be electrically connected to electrode 168 . In embodiments including multiple electroluminescent structures 16 , two or more conductors can be used to electrically connect the electroluminescent structures 16 to each other and to a power source. If conductors 14 a and 14 b are not insulated, additional insulation (not shown) may be provided as needed. The additional insulation may be in the form of one or more layers.
  • an exemplary electroluminescent structure 16 can include a first electrode layer 162 , a dielectric layer 164 , a phosphor layer 166 and a second electrode layer 168 . Additional layers can be added or dielectric layer 164 can be removed.
  • An exemplary electroluminescent structure can be made using a suitable unitary carrier, preferably capable of being deployed in gel form, such as a vinyl resin carrier, a urethane resin carrier (e.g., urethane acrylate) and other suitable materials. Exemplary materials suitable for use in the present disclosure are listed in U.S. Pat. Nos. 5,856,029, 5,856,030, 6,696,786, and 6,717,361.
  • the carrier can be UV curable and may include a catalyst. At least some layers or each layer can include the unitary carrier and some or all layers can also be doped with various additives.
  • a carrier can be disposed on a wide variety of supports, including metals, plastics, and cloth fabrics. Alternately, any other appropriate carrier could be used.
  • Layers 162 , 164 , 166 , 168 can be deposited by coating, printing, stacking or any other appropriate method.
  • the electroluminescent article can be at least partially, and, preferably, entirely monolithic.
  • a monolithic structure can be created by suspending layers of the electroluminescent structure in a unitary common carrier.
  • the layers can be disposed, for example, by printing them one on top of another. When all layers are disposed, the structure can be solidified, e.g., by curing, and the layers will become strata in a monolithic mass.
  • FIG. 1 the constituent components are shown as discrete layers and elements, all of the layers of the electroluminescent structure 16 , such as the first electrode layer 162 , dielectric layer 164 , phosphor layer 166 and second electrode layer 168 can be part of a monolithic structure. In other exemplary embodiments, any two, three, four, or more adjacent layers could form a monolithic structure consistent with the present disclosure.
  • protective layers 17 and 18 can also be part of a monolithic structure.
  • Doping the various layers of the monolithic structure can be achieved by mixing appropriate amounts of dopants with any suitable carrier, as described above. Dopants and amounts can be, for example, similar to those discussed in U.S. Pat. Nos. 5,856,029, 5,856,030, 6,696,786, and 6,717,361, or can be determined by using other suitable methods.
  • First electrode layer 162 can include the unitary carrier doped with an ingredient to make the suspension electrically conductive. For example, silver or carbon in particulate form can be used as a dopant. Alternatively, gold, zinc, aluminum, graphite, copper, any combination thereof or any other appropriate ingredient may be used. The thickness of first electrode layer 162 can be, for example, about 8 to 12 microns or any other serviceable thickness.
  • Dielectric layer 164 can include the unitary carrier doped with a dielectric such as barium-titanate powder or any other appropriate dielectric in particulate form. Dielectric layer 164 can be deposited in multiple layers to prevent the possibility of any pinholes in the layer 164 . Dielectric layer 164 can have a thickness of about 15 to 35 microns, for example, or any other serviceable thickness.
  • Phosphor layer 166 can include the unitary carrier, such as vinyl gel resin, doped with electroluminescent grade encapsulated phosphor.
  • An appropriate thickness for phosphor layer 166 can be 25 to 35 microns, or any other serviceable thickness.
  • the color of light emitted by phosphor layer 166 is dependent on the choice of phosphor used in layer 166 .
  • a variety of colored dyes can be added to phosphor layer 166 to achieve a desired color of light, for example, blue, white, safety yellow or safety orange but those knowledgeable in the art will also note that adding colored pigments or dyes in other layers, e.g., protective layer 18 , could also achieve a similar effect.
  • rhodamine can be added to phosphor layer 166 to achieve the appearance of white light when the electroluminescent structure 16 is energized. Additional admixtures can be combined with phosphor layer 166 to improve the performance of phosphor layer 166 .
  • Dielectric layer 164 preferably overlaps electrode layer 162 to prevent electrical contact between first electrode layer 162 and second electrode layer 168 .
  • Second electrode layer 168 can include the unitary carrier doped with a suitable translucent or transparent electrical conductor to allow light to be emitted through second electrode layer 168 .
  • the dopant for second electrode layer 168 can include indium-tin-oxide (ITO) in powder form or any other appropriate dopant.
  • Second electrode layer 168 can have a thickness of about 5 microns or any other serviceable thickness.
  • An electroluminescent structure as illustrated in FIG. 1 is not limited solely to the four layers depicted. Any number of layers resulting in a functional electroluminescent structure can be used. For example, other layers can be disposed in electroluminescent structures 16 for aesthetic or protective purposes. Electroluminescent structures 16 can also be a variety of shapes depending on intended use and/or other considerations.
  • Layers 162 , 164 , 166 , 168 can be disposed using a variety of methods including coating or printing, e.g., silk-screen printing. When layers are screen printed, they can be printed in a series of intermediate layers to achieve a desired overall combined thickness. Layers can be cured, e.g., by exposure to ionizing radiation, such as heat or UV light or by any other appropriate method known to those skilled in the art.
  • ionizing radiation such as heat or UV light
  • layers 162 , 164 , 166 , 168 can be distinct. Layers 162 , 164 , 166 , 168 can be deposited by coating, printing, stacking or any other appropriate method.
  • a transparent protective layer 18 can be deposited, for example, printed, coated or laminated, over the electroluminescent structure 16 to protect and/or seal the structure.
  • An additional protective layer 17 can be deposited between electrode layer 162 and adhesive 12 .
  • Protective layer 17 can alternatively be disposed between conductors 14 a , 14 b and adhesive 12 .
  • Protective layers 17 and 18 can be larger than other layers so as to seal the electroluminescent structure 16 creating an envelope.
  • Protective layers 17 , 18 can provide insulation for the electrodes 162 , 168 , and can be made of any material reasonably resistant to environmental conditions and can provide protection to electroluminescent structure 16 from moisture, abrasion, etc. Protective layers 17 , 18 can also provide, for example, electrically insulating and/or environmentally protective capabilities. Protective layers 17 , 18 can be made of any suitable materials, such as polymeric materials, including a vinyl resin carrier, a urethane resin carrier (e.g., urethane acrylate) and other suitable materials, e.g., those listed in U.S. Pat. Nos. 5,856,029, 5,856,030, 6,696,786 and other suitable materials known to those of ordinary skill in the art.
  • a vinyl resin carrier e.g., urethane acrylate
  • Electroluminescent structures 16 can be disposed so that they are discontinuous.
  • discontinuous electroluminescent structures may not have any components that connect one electroluminescent structure to an adjacent electroluminescent structure with the exception of conductors 14 a , 14 b .
  • discontinuous electroluminescent structures can allow a surface of the support to be exposed in a gap between at least two discontinuous electroluminescent structures 16 .
  • Retroreflective structure 19 can be continuous or it can be discontinuous (including two or more disconnected retroreflective segments, which can be arranged in a variety of patterns). Retroreflective structures 19 can be deposited over the protective layer 18 or over the electroluminescent structure 16 or over any additional or alternative intervening layers by any suitable method. The retroreflective structure 19 is arranged such that a light-emitting side of the electroluminescent structures 16 faces toward the retroreflective structure 19 , while a reflective side of the retroreflective structure 19 faces away from the electroluminescent structures 16 .
  • Retroreflective structures 19 can be made from a variety of materials by any suitable method.
  • retroreflective structure 19 can be purchased, for example, in the form of a transfer film, and attached to the electroluminescent structures 16 , with a light-emitting side of the electroluminescent structures 16 facing the retroreflective structure 19 and the reflective side of the retroreflective structure 19 facing away from the electroluminescent structures 16 .
  • Retroreflective structure 19 and electroluminescent structures 16 can be attached to each other using, for example, adhesive, such as a heat activatable adhesive, pressure sensitive adhesive, or any other suitable commercially available adhesives.
  • transfer films with discontinuous retroreflective segments removably disposed on a liner which are available from 3M Company, St. Paul, Minn., under the ScotchliteTM brand. More particularly, 3M ScotchliteTM Reflective Materials, 5500 series Comfort Trim products may be used (e.g., 5510 and 5530 Segmented Trims).
  • the retroreflective structures in such products typically include a layer of beads embedded in a binder and often also include heat activatable adhesive.
  • Such transfer films trim can be heat laminated to electroluminescent structure 16 through heat press lamination methods and the liner can be removed to expose the discontinuous retroreflective structures 19 .
  • retroreflective structure 19 can be printed, coated, sewn or otherwise disposed on or attached to the electroluminescent structure 16 .
  • retroreflective structures can be made by methods such as those described in WO 94/25666.
  • Glass beads can be embedded into a temporary carrier (bead carrier).
  • Specularly reflective materials such as aluminum, silver, or cryolite can then be selectively vapor coated, screen printed, or otherwise disposed onto the exposed surface of the beads.
  • a binder can be coated or otherwise disposed on the vapor coated reflective layer, and a heat activatable adhesive or another adhesion promoter can be provided.
  • one may include a release liner that can be adhered to the adhesive side to prevent adhesion during manufacturing or shipping or a fabric for alternative application for sewing the retroreflective segments on a garment. Prior to use on a garment, the bead carrier will be removed to expose the beads and allow retroreflection.
  • Retroreflective segments 19 can also be made by plotter cutting a desired image or shape into a commercially available retroreflective tape, such as 3MTM ScotchliteTM reflective transfer film, series 8700, or 3MTM ScotchliteTM reflective material 5807 series.
  • a commercially available retroreflective tape such as 3MTM ScotchliteTM reflective transfer film, series 8700, or 3MTM ScotchliteTM reflective material 5807 series.
  • Retroreflective structures 19 can be disposed relative to electroluminescent structures 16 at least partially in the light path of electroluminescent structures 16 , covering an area of an electroluminescent structure that otherwise would be illuminated.
  • one or more retroreflective segments can be arranged as stripes across the electroluminescent structures as shown in FIGS. 2 , 3 and 4 .
  • One or more retroreflective structures 19 can overlap or intersect with electroluminescent structures 16 in any appropriate configuration so as to be at least partially in the light path of the structures as illustrated in FIG. 1 .
  • retroreflective structure 19 are at least partially in a path of light 15 a capable of being emitted by the electroluminescent structure 16 .
  • phosphor layer 166 emits light 15 a , 15 b .
  • retroreflective segments of the retroreflective structure 19 are disposed in the light path of the electroluminescent article, emitted light 15 a is blocked while emitted light 15 b passes between the retroreflective structures and can be visible to a viewer when the article is attached to a power supply.
  • Retroreflective structure 19 can be of a variety of shapes and can be disposed in a variety of patterns.
  • retroreflective structures 12 can be continuous as shown in FIG. 7B or can be discontinuous as shown in FIGS. 5 , 6 A, 6 B and 7 A.
  • retroreflective structures 19 can include rectangular, parallelograms, square or any other shape segments.
  • Retroreflective structures 19 can be arranged in any configuration including, but not limited to, linear arrays, such as a sequence of parallel stripes shown in FIGS. 2 , 3 , 4 , 5 and 5 A, a two dimensional array of generally diamond shapes, as shown in FIGS. 6A and 6B , or parallel bars as shown in FIG. 7A .
  • Electroluminescent structures 16 can also be a variety of shapes depending on intended use and/or other considerations. These shapes and configurations listed above are only examples of the myriad of shapes and arrangements that can be used consistent with the present disclosure. Other shapes and configurations can easily be envisioned by those skilled in the art.
  • exemplary garments including laminate reflective and electroluminescent articles 10 that are flexible and, in some cases, at least somewhat stretchable. This is most often the case for at least partially monolithic constructions and constructions including an elastomeric material.
  • exemplary laminate reflective and electroluminescent articles 10 can be capable of being flexed or bent by a user under ordinary usage conditions.
  • a laminate electroluminescent and reflective article can be characterized by a drape of no more than 400 g, preferably, no more than 300 g, more preferably, no more than 200 g, even more preferably no more than 100 g, and, most preferably, no more than 85 g.
  • Drape may be measured as described in the Examples section below.
  • the stretchability of an embodiment could be measured in terms of percent elongation prior to break by an InstronTM tensile tester. The InstronTM tensile tester has clamps to hold two ends of a sample, and will exert tensile force, pulling the ends of the sample farther apart until the sample breaks.
  • a laminate reflective and electroluminescent article can be characterized by a percent elongation of 50 percent or more, more preferably 60 percent or more, even more preferably 70 percent or more, and most preferably, 90 percent or more.
  • FIG. 2 shows a schematic diagram of an exemplary electroluminescent and retroreflective article 20 that can be disposed on a support on a garment (not shown).
  • conductors 29 a , 29 b can electrically connect a plurality of electroluminescent structures 26 to each other.
  • Conductors 29 a , 29 b can also connect electroluminescent structures 26 to a power source 21 .
  • conductors 29 a , 29 b can also connect the electroluminescent structures 26 to any other component, such as an inverter 22 .
  • the inverter 22 can convert DC power from the power source 21 to AC power for the electroluminescent structures 26 lamps 26 a .
  • an AC power source can be used to provide power to the electroluminescent lamps.
  • Additional suitable circuitry and conductors can be included, e.g., to cause the lamps to flash at different rates, provide safety shutoffs for short circuits, or allow for optimized power usage.
  • the inverter 22 , where used, and/or power source 21 can be disconnected from the electroluminescent and retroreflective article 20 for battery replacement, washing, or other reasons.
  • the inverter can be disposed in the same case as the power source.
  • electroluminescent structures 26 can be discontinuous from each other so that first gaps 27 a are formed between adjacent electroluminescent structures 26 .
  • electroluminescent structures 26 are still connected by at least two discrete conductors, such as 29 a , 29 b , or a bus bar.
  • the conductors 29 a and 29 b may be spaced apart from each other to provide second gaps 27 b .
  • Retroreflective segments 23 can be disposed over and at least partially in the light path of light capable of being emitted by the electroluminescent structures 26 .
  • the retroreflective structures do not completely cover the gaps 27 a between electroluminescent structures 26 and/or the gaps 27 b between the conductors 29 a and 29 b .
  • the gaps 27 a,b comprise an exposed surface of the support. Having such gaps can be very advantageous, especially if the support is porous, stretchable and/or flexible, because the presence of gaps is believed to improve vapor permeability, stretchability and/or flexibility of the combined laminate article 20 and the support (not shown), as compared to a similar construction without such gaps.
  • Gaps can allow for increased moisture release, which increases perceived comfort of a laminate reflective and electroluminescent article 20 when disposed on a garment. Additionally, gaps can provide more locations for stress relief during wear and wash of a product, thereby increasing product durability and wash resistance.
  • FIG. 3 shows an exemplary electroluminescent and retroreflective article 35 disposed on a support 33 , which forms a part of a garment shell of an as a part of an exemplary garment (here, a shirt).
  • a shirt 30 is only one example of the numerous garments and other articles that an electroluminescent and retroreflective article of the present disclosure could be disposed on or included in.
  • an electroluminescent and retroreflective article could be disposed on a vest, a jacket, pants, gloves, shoes, hats, or any other type of garment.
  • a support can be made of any suitable material, including one or more or fabric, woven material, nonwoven material, rubber, plastic, leather or any other appropriate material.
  • a garment can optionally include a pocket 32 or other means for supporting the power source 31 and/or inverter.
  • a means for supporting power source 31 can be at any suitable location.
  • An exemplary electroluminescent and retroreflective article 35 disposed on a support 33 can include conductors 34 connecting electroluminescent structures 36 to each other and to a power source 31 .
  • Retroreflective structures 39 can be of various shapes and can be configured in any appropriate layout. In the exemplary embodiment illustrated, retroreflective structures 39 , such as discontinuous retroreflective segments, are disposed on one or more of front left, front right, back left and back right sides of the garment 30 . In one exemplary embodiment, retroreflective structures 39 form right and left sections. The sections may be configured in the form of one or more vertical sections that run up the front and/or down the back of the shirt.
  • one or more horizontal sections of a retroreflective structure 39 can be disposed about the torso of the garment 30 , preferably about a user's waist area.
  • retroreflective structures are disposed on at least left and right sides of the garment, extending from the front side to the back side of the garment.
  • discontinuous retroreflective segments 39 can be configured in any suitable or desirable way, for example, to meet the American National Standard for High-Visibility Safety Apparel (“the ANSI Standard”) and other similar safety standards as described below.
  • Electroluminescent structures may follow the same general pattern as the pattern of retroreflective structures on a garment or a different pattern.
  • one or more electroluminescent structures 36 may be disposed on one or more of front left, front right, back left and back right sides of the garment 30 .
  • electroluminescent structures 36 are disposed generally vertically, for example, extending generally from the waist area toward a shoulder area of the wearer.
  • electroluminescent structures 36 are disposed on the right and left side of the shirt 30 at least on one of the front and the back sides of the garment 30 . Fewer or more electroluminescent structures 36 can be used on a garment consistent with the present disclosure.
  • the garment 30 may, additionally or alternatively, include one or more electroluminescent structures 36 disposed generally horizontally on the left and right sides of the garment (extending generally around the torso of a wearer from the front side of the garment to the back side of the garment, in some cases curving about the wearer's body, such as to improve conspicuity of the garment when a wearer's side is turned to an observer).
  • electroluminescent structures 36 disposed generally horizontally on the left and right sides of the garment (extending generally around the torso of a wearer from the front side of the garment to the back side of the garment, in some cases curving about the wearer's body, such as to improve conspicuity of the garment when a wearer's side is turned to an observer).
  • retroreflective structures and/or electroluminescent structures may be arranged on a garment in any other suitable or desirable configuration.
  • Some examples include a generally X-shaped pattern and a generally chevron-shaped pattern (which resembles a V or an inverted V), which may be disposed on the back and/or on the front of a garment.
  • An electroluminescent article can be secured to a garment 30 by any appropriate means including, but not limited to, sewing the assembly to the garment, or securing the assembly to the garment with adhesive, such as pressure sensitive adhesive or heat activatable adhesive, or by any other appropriate method.
  • FIG. 4 shows a vest 40 with an electroluminescent and retroreflective article 45 according to the present disclosure disposed on it.
  • the electroluminescent and retroreflective article includes conductors 44 a , 44 b , electroluminescent structures 46 a - f and a retroreflective structure including retroreflective segments 49 .
  • Conductors 44 a , 44 b , electroluminescent structures 46 a - f and retroreflective segments 49 can be made of any material and by any method consistent with the present disclosure or known to individuals of skill in the art.
  • the article 45 can be secured to the vest 40 by any method described above or by any other appropriate method.
  • electroluminescent structures 46 a and 46 b can be disposed on the front portion of the vest 40 , right and left sides, respectively. Each of the electroluminescent structures 46 a and 46 b can extend from the direction of the waist portion of the vest 40 toward its shoulder portion. Electroluminescent structures 46 c and 46 d can be disposed on the back portion of the vest 40 , right and left sides, respectively. Each of the electroluminescent structures 46 c and 46 d can extend from the direction of the waist portion of the vest 40 toward its shoulder portion. The electroluminescent structures 46 a and 46 b can be electrically connected to 46 a and 46 b.
  • the exemplary vest 40 may further include one or more electroluminescent structures 46 e and 46 f disposed generally horizontally (extending generally around the torso of a wearer from the front side of the garment to the back side of the garment, in some cases curving about the wearer's body, when the vest 40 is worn). Including such one or more horizontally disposed electroluminescent structures may improve conspicuity of the garment when a wearer's side is turned to an observer. Electroluminescent structures 46 e and 46 f can be conveniently provided in or on a waist band/belt.
  • FIGS. 5 and 5A show an example of a pattern 50 of discontinuous retroreflective structures defining retroreflective 52 and non-retroreflective regions 54 , which may be included in an exemplary retroreflective structure according to the present disclosure.
  • the entire area of the non-reflective regions 54 or a portion of the area of the non-reflective regions 54 may be electroluminescent (i.e., emitting light due to electroluminescence of an underlying electroluminescent structure).
  • at least portions of at least some of the non-reflective regions 54 comprise gaps in the laminate structure, as explained above.
  • retroreflective regions 52 are arranged for safety garments, they can be designed to meet various safety standards.
  • the ANSI Standard dictates performance requirements for high visibility safety apparel, capable of signaling a user's presence in a conspicuously visible manner under any light conditions by day (this can be accomplished by use of fluorescent color) and under illumination by vehicle headlights in the dark (this can be accomplished by use of retroreflective materials).
  • EN 471 is an example of a similar European standard, and many countries such as Australia, New Zealand, and Canada also have their own standards.
  • Retroreflective regions 52 can be configured to meet minimum reflectivity requirements. This can be achieved by ensuring that a minimum percentage of the total surface area defined by a pattern 50 (also shown in FIG. 5A ) of discontinuous retroreflective segments, here, retroreflective regions 52 , sufficient to achieve the appropriate coefficient of retroreflectivity based on the reflective properties of the retroreflective segments. For example, if non-retroreflective regions 54 account for 50 percent of the surface area of a pattern 50 of discontinuous retroreflective segments, the brightness would be approximately 50 percent less than it would be if retroreflective materials were applied in a continuous pattern. In the stripe-like pattern 50 shown in FIG.
  • the retroreflective regions 52 occupy approximately 66 percent of the surface area of pattern 50 and non-retroreflective regions occupy approximately 33 percent of pattern 50 .
  • retroreflective regions 52 can occupy at least 50 percent, 75 percent, 85 percent or any other appropriate percentage of a pattern 50 of discontinuous retroreflective segments.
  • the general principle of designing the retroreflective pattern 50 is to maximize the total retroreflectivity of the retroreflective regions 52 while maintaining and maximizing the visibility of light from electroluminescent structures below the discontinuous retroreflective segments that is visible through the non-retroreflective regions 54 .
  • Patterns 50 of discontinuous retroreflective segments consistent with the present disclosure can be designed to meet the ANSI Standard.
  • Table 5 of the ISEA document American National Standard for High-Visibility Safety Apparel (ANSI/ISEA 107-2004) shows a head-on initial minimum required value of 330 R a (measured in units of candelas per lux per square meter) and a head-on operable minimum required value of 100 R a .
  • the electroluminescent and retroreflective article can be characterized by an initial head-on R a of 330 or more and an operable R a of 100 or more.
  • FIGS. 6A and 6B show examples of discontinuous generally diamond-shaped retroreflective structures 62 , which may be included in an exemplary retroreflective structure according to the present disclosure.
  • the discontinuous retroreflective segments 62 are configured in a two-dimensional array, i.e., two or more discontinuous retroreflective segments are disposed along a first direction X and two or more discontinuous retroreflective segments are disposed along a second direction Y, which is different from the first direction.
  • the first and second directions may be generally orthogonal to each other.
  • Electroluminescent structures 64 can be continuous as shown in FIG. 6B or discontinuous as shown in FIG. 6A .
  • the retroreflective segments 62 do not completely cover the gaps 67 a between electroluminescent structures 64 and/or the gaps 67 b between the conductors 69 a and 69 b . Due to the two-dimensional nature of the array of the retroreflective segments 62 , in some exemplary embodiments, two or more gaps, 67 a , 67 b or a combination thereof, may be disposed along a first direction X. Additionally or alternatively, two or more gaps, 67 a , 67 b or a combination thereof, may be disposed along a second direction Y.
  • FIGS. 7A and 7B show examples of a continuous electroluminescent structure 74 with discontinuous retroreflective structures 72 ( FIG. 7A ) and discontinuous electroluminescent structures 74 with a continuous retroreflective structure 72 , 73 ( FIG. 7B ).
  • FIG. 7A illustrates a linear array of retroreflective segments 72 , in which only one retroreflective segment 72 is disposed along a first direction X, while two or more retroreflective structures are disposed along a second direction Y.
  • FIG. 7B illustrates a continuous retroreflective structure, in which first retroreflective segments 72 are connected by second retroreflective segments 73 .
  • this exemplary embodiment includes discontinuous electroluminescent structures 74 which must be electrically connected (e.g., by conductors 79 a and 79 b ), the second retroreflective segments 73 may be advantageously disposed over and cover one or more conductors 79 a , 79 b . In such exemplary embodiments, the second retroreflective segments 73 may be used to provide insulation for the conductors and/or protect the conductors from damage.
  • FIGS. 5-7B are only a few examples of the numerous configurations of electroluminescent structures and retroreflective structures consistent with the present disclosure and are not intended to be limiting in any manner.
  • Electroluminescent lamps have required a stiff, multi-layered construction of electrodes and phosphors along with bulky and stiff crimps and bus bars. When such an assembly is applied to a garment, the garment is somewhat stiff and can be uncomfortable.
  • One way of characterizing comfort and flexibility of a fabric is to measure its drape.
  • the drape of Traditional Construction was measured using ASTM D6828 test methods. This procedure uses a piece of equipment commonly known as a ‘handle-o-meter’ to measure the amount of force that is required to bend the sample under test. A stiffer material will require a higher force and a more flexible material (better drape) will require less force. Drape was measured in grams.
  • Electroluminescent lamps were made as a monolithic construction such as one disclosed in U.S. Pat. Nos. 5,856,029, 5,856,030, 6,696,786, and 6,717,361.
  • a retroreflective segment pattern similar to that shown in FIG. 6A was formed from ScotchliteTM 8725 series Silver Transfer Film to produce retroreflective segments, which were attached to of the electroluminescent lamps, such that the reflective sides of the retroreflective segments faced away from the electroluminescent lamps. strips cut from 3MTM CN 3190 Cu/Ni fabric tape were used to electrically connect electroluminescent lamps to each other and to a power source. The assembly was disposed on a fabric substrate and its drape was tested.
  • a traditional way of measuring the stretchability of a fabric or article is to use an InstronTM tensile tester to exert tensile force on the article until it breaks.
  • An article that stretches further per amount of force applied has a lower modulus of elasticity and is generally more stretchable.
  • a 0.5 inch sample of the Embodiment of the Present Disclosure as described above was tested using an InstronTM tensile tester to determine the percent elongation of each sample prior to breaking
  • Positional terms used throughout the disclosure are intended to provide relative positional information; however, they are not intended to require adjacent disposition or to be limiting in any other manner. For example, when a layers or structure is said to be “disposed over” another layer or structure, this phrase is not intended to be limiting on the order in which the layers or structures are assembled but simply indicates the relative spatial relationship of the layers or structures being referred to. Furthermore, all numerical limitations shall be deemed to be modified by the term “about.”

Abstract

A garment (30) with a retroreflective and electroluminescent article (35) includes one or more electroluminescent structures (36), which may in some embodiments be discontinuous from each other. In some embodiments, the electroluminescent structures can be electrically connected with conductors (34) including conductive adhesive. The article further includes one or more retroreflective structures (39) disposed at least partially in the light path capable of being emitted by one or more of the electroluminescent structures. The article can be disposed on a support (33), such as a garment shell. The present disclosure also includes methods for making such garments.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This is a national stage filing under 35 U.S.C. §371 of PCT Application No. PCT/US2010/025994, filed Mar. 3, 2010, which claims priority to U.S. Provisional Application No. 61/159,553, filed Mar. 12, 2009, the disclosure of which is incorporated herein by reference in its entirety.
FIELD OF DISCLOSURE
The present disclosure pertains to a garment including a support and at least two electroluminescent structures used in combination with one or more retroreflective structures disposed on the support.
BACKGROUND
Electroluminescent lighting is commonly used in applications requiring light weight and low power illumination, such as conspicuity garments. Electroluminescent lamps are typically made of a layer of phosphor disposed between two layers of electrodes where one electrode layer is transparent or translucent, allowing light to shine through it when the lamp is powered. When electroluminescent lamps are used for garments, they can provide a good source of light in dark environments to increase the visibility of individuals wearing the garments.
Retroreflective materials are also commonly used on a variety of garments, including vests, hats, shirts, jackets, footwear, and other garments. Retroreflective materials can be created in a variety of ways, including using a layer of glass beads, a reflective agent disposed under the beads and a binder. When incident light enters the bead, the bead focuses the light on the reflective agent. The reflective agent forces the light back through the bead so that it exits in a generally opposite direction of the incident light at about the same angle. This process of reflecting light back in the general direction of its source is commonly referred to as retroreflection. Retroreflective lighting is an excellent source of conspicuity in the dark when headlights or other incident light is reflected off of the retroreflective materials disposed on a garment.
Electroluminescent lighting and retroreflective materials can be disposed on or attached to garments through a variety of methods. There remains a need for garments that provide increased and/or improved conspicuity to their wearers under a variety of conditions and that can be easily and efficiently manufactured.
SUMMARY
In one aspect, the present disclosure is directed to a garment including a support and an electroluminescent and retroreflective article disposed on the support. The article includes at least two electroluminescent structures and a retroreflective structure. At least two electroluminescent structures include an electrode layer, a phosphor layer disposed over the electrode layer and a transparent electrode layer disposed over the phosphor layer. The retroreflective structure is disposed over the electroluminescent structure and at least partially in a path of light capable of being emitted by the electroluminescent structure. At least one connector electrically connects at least two of the electroluminescent structures, and at least two of the electroluminescent structures are discontinuous.
In another aspect, the present disclosure includes a garment including a support and an electroluminescent and retroreflective article disposed on the support. The article includes at least two electroluminescent structures and a retroreflective structure. At least two electroluminescent structures include an electrode layer, a phosphor layer disposed over the electrode layer and a transparent electrode layer disposed over the phosphor layer. The retroreflective structure is disposed over the electroluminescent structure and at least partially in a path of light capable of being emitted by the electroluminescent structure. At least one connector including conductive adhesive electrically connects at least two of the electroluminescent structures.
In a third aspect, the present disclosure includes a method for making a garment. The method includes providing an electroluminescent and retroreflective article, which includes an electroluminescent structure, a retroreflective structure disposed over the electroluminescent structure, and a removable carrier film disposed over the retroreflective structure. The electroluminescent structure includes an electrode layer, a phosphor layer disposed over the electrode layer and a transparent electrode layer disposed over the phosphor layer. The method further includes disposing the electroluminescent article on a support; and removing the carrier film from the article.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawing, in which:
FIG. 1 shows an exploded cross-sectional view of an exemplary laminate reflective and electroluminescent article disposed on a support.
FIG. 2 shows a schematic diagram of an exemplary reflective and electroluminescent article connected to a power source.
FIG. 3 shows an exemplary reflective and electroluminescent article disposed on a shirt.
FIG. 4 shows an exemplary reflective and electroluminescent article disposed on a vest.
FIG. 5 shows an exemplary pattern of discontinuous retroreflective structures.
FIG. 5A shows an exemplary pattern of discontinuous retroreflective structures defining retroreflective and non-retroreflective regions.
FIG. 6A shows an exemplary configuration of discontinuous electroluminescent structures and discontinuous retroreflective structures configured in a two-dimensional array.
FIG. 6B shows an exemplary configuration of a continuous electroluminescent structure and discontinuous retroreflective structures configured in a two-dimensional array.
FIG. 7A shows an example of a continuous electroluminescent structure with discontinuous retroreflective structures.
FIG. 7B shows an example of discontinuous electroluminescent structures with a continuous retroreflective structure.
The figures are not necessarily to scale. Like numbers used in the figures refer to like components. However, it will be understood that the use of a number to refer to a component in a given figure is not intended to limit the component in another figure labeled with the same number.
DETAILED DESCRIPTION
The present disclosure provides a garment with an electroluminescent article disposed on it that can result in improved conspicuity for the wearer in a variety of lighting conditions, including dawn, dusk and dark. In addition to the advantage of conspicuity, a garment consistent with the present disclosure can have increased flexibility and stretchability. This can result in increased comfort for the wearer. An electroluminescent article consistent with the present disclosure can be disposed on a greater variety of garments and supports, e.g., light weight flexible materials such as those used in tee shirts. A garment may also have improved durability for wear and washing.
FIG. 1 shows an exploded cross sectional view of an exemplary laminate reflective and electroluminescent article 10 disposed on a support 11. For the purposes of the present disclosure, the term “laminate” shall mean that the structure is composed of layers of firmly attached materials and shall not be indicative of the process by which the structure is made or the layers are attached. The article 10 can be disposed on a variety of supports 11 including, but not limited to, cloth, plastic and other porous or nonporous materials. A support 11 can be the material used to make a garment (not shown) or can be an additional layer of material attached to a surface or other portion of a garment. Adhesive 12 can be used to secure the adjacent components of the electroluminescent article 10, such as one or more of conductors 14 a, 14 b, electroluminescent structure 16 and protective layer 17, to the support 11. Alternatively, the electroluminescent article 10 can be printed, or disposed on a support 11 by other appropriate methods. An optional protective layer 17 can be included between support 11 and electroluminescent structure 16.
Conductors 14 a, 14 b can be disposed between adhesive 12 and protective layer 17. Protective layer 17 can have openings 17 a and 17 b, which allow leads 162 a and 168 a of first electrode layer 162 and second electrode layer 168, respectively, to come into electrical contact with conductors 14 a and 14 b. Alternatively, conductors 14 a, 14 b can be disposed in any appropriate location, and other methods known to those of skill in the art can be used to electrically connect conductors 14 a and 14 b with electrode layers 162 and 168. If multiple electroluminescent structures are used, one or more conductive structures, such as one or more conductors 14 a, 14 b can electrically connect one or more electroluminescent structures to a power supply, in series or independently. Additionally, conductors 14 a, 14 b may electrically connect one or more electroluminescent structure to an inverter.
Conductors 14 a, 14 b can include conductive adhesive. Conductive adhesive can be made of materials such as polymeric materials, including polyester fibers (such as polyester terephthalate), or natural fibers, coated with conductive materials (such as one or more of copper, nickel and carbon). The fibers can be coated with a doped adhesive, such as acrylate adhesive, to provide conductive attachments. Conductors 18 a, 18 b can be made of commercially available conductive adhesives such as 3M™ CN 3190 Cu/Ni fabric tape, available from 3M Company. 3M™ CN 3190 Cu/Ni fabric tape includes anti-corrosion treated copper-nickel coated conductive polyester fabric and electrically conductive pressure-sensitive acrylic adhesive. Conductive adhesives can offer benefits such as flexibility and conformability, light weight and strength.
Alternatively, conductors 14 a, 14 b can include wires, conductive yarns, strips of conductive material such as copper, a bus bar, printed circuit conductors or other suitable conductors. While both conductors 14 a, 14 b are shown as disposed underneath electroluminescent structure 16 in FIG. 1, they can be disposed in other appropriate locations. One conductor (14 a) must be electrically connected to electrode 162 and another conductor (14 b) must be electrically connected to electrode 168. In embodiments including multiple electroluminescent structures 16, two or more conductors can be used to electrically connect the electroluminescent structures 16 to each other and to a power source. If conductors 14 a and 14 b are not insulated, additional insulation (not shown) may be provided as needed. The additional insulation may be in the form of one or more layers.
Referring further to FIG. 1, an exemplary electroluminescent structure 16 can include a first electrode layer 162, a dielectric layer 164, a phosphor layer 166 and a second electrode layer 168. Additional layers can be added or dielectric layer 164 can be removed. An exemplary electroluminescent structure can be made using a suitable unitary carrier, preferably capable of being deployed in gel form, such as a vinyl resin carrier, a urethane resin carrier (e.g., urethane acrylate) and other suitable materials. Exemplary materials suitable for use in the present disclosure are listed in U.S. Pat. Nos. 5,856,029, 5,856,030, 6,696,786, and 6,717,361. In some embodiments, the carrier can be UV curable and may include a catalyst. At least some layers or each layer can include the unitary carrier and some or all layers can also be doped with various additives. Such a carrier can be disposed on a wide variety of supports, including metals, plastics, and cloth fabrics. Alternately, any other appropriate carrier could be used. Layers 162, 164, 166, 168 can be deposited by coating, printing, stacking or any other appropriate method.
In one embodiment, the electroluminescent article can be at least partially, and, preferably, entirely monolithic. A monolithic structure can be created by suspending layers of the electroluminescent structure in a unitary common carrier. The layers can be disposed, for example, by printing them one on top of another. When all layers are disposed, the structure can be solidified, e.g., by curing, and the layers will become strata in a monolithic mass. Although in FIG. 1 the constituent components are shown as discrete layers and elements, all of the layers of the electroluminescent structure 16, such as the first electrode layer 162, dielectric layer 164, phosphor layer 166 and second electrode layer 168 can be part of a monolithic structure. In other exemplary embodiments, any two, three, four, or more adjacent layers could form a monolithic structure consistent with the present disclosure. Additionally, protective layers 17 and 18 can also be part of a monolithic structure.
Doping the various layers of the monolithic structure can be achieved by mixing appropriate amounts of dopants with any suitable carrier, as described above. Dopants and amounts can be, for example, similar to those discussed in U.S. Pat. Nos. 5,856,029, 5,856,030, 6,696,786, and 6,717,361, or can be determined by using other suitable methods. First electrode layer 162 can include the unitary carrier doped with an ingredient to make the suspension electrically conductive. For example, silver or carbon in particulate form can be used as a dopant. Alternatively, gold, zinc, aluminum, graphite, copper, any combination thereof or any other appropriate ingredient may be used. The thickness of first electrode layer 162 can be, for example, about 8 to 12 microns or any other serviceable thickness.
Dielectric layer 164 can include the unitary carrier doped with a dielectric such as barium-titanate powder or any other appropriate dielectric in particulate form. Dielectric layer 164 can be deposited in multiple layers to prevent the possibility of any pinholes in the layer 164. Dielectric layer 164 can have a thickness of about 15 to 35 microns, for example, or any other serviceable thickness.
Phosphor layer 166 can include the unitary carrier, such as vinyl gel resin, doped with electroluminescent grade encapsulated phosphor. An appropriate thickness for phosphor layer 166 can be 25 to 35 microns, or any other serviceable thickness. The color of light emitted by phosphor layer 166 is dependent on the choice of phosphor used in layer 166. A variety of colored dyes can be added to phosphor layer 166 to achieve a desired color of light, for example, blue, white, safety yellow or safety orange but those knowledgeable in the art will also note that adding colored pigments or dyes in other layers, e.g., protective layer 18, could also achieve a similar effect. For example, rhodamine can be added to phosphor layer 166 to achieve the appearance of white light when the electroluminescent structure 16 is energized. Additional admixtures can be combined with phosphor layer 166 to improve the performance of phosphor layer 166. Dielectric layer 164 preferably overlaps electrode layer 162 to prevent electrical contact between first electrode layer 162 and second electrode layer 168.
Second electrode layer 168 can include the unitary carrier doped with a suitable translucent or transparent electrical conductor to allow light to be emitted through second electrode layer 168. For example, the dopant for second electrode layer 168 can include indium-tin-oxide (ITO) in powder form or any other appropriate dopant. Second electrode layer 168 can have a thickness of about 5 microns or any other serviceable thickness.
Exemplary weights of dopants and methods for mixing each respective layer consistent with the present disclosure are described, for example, in U.S. Pat. No. 6,551,726.
An electroluminescent structure as illustrated in FIG. 1 is not limited solely to the four layers depicted. Any number of layers resulting in a functional electroluminescent structure can be used. For example, other layers can be disposed in electroluminescent structures 16 for aesthetic or protective purposes. Electroluminescent structures 16 can also be a variety of shapes depending on intended use and/or other considerations.
Layers 162, 164, 166, 168 can be disposed using a variety of methods including coating or printing, e.g., silk-screen printing. When layers are screen printed, they can be printed in a series of intermediate layers to achieve a desired overall combined thickness. Layers can be cured, e.g., by exposure to ionizing radiation, such as heat or UV light or by any other appropriate method known to those skilled in the art.
Alternatively, layers 162, 164, 166, 168 can be distinct. Layers 162, 164, 166, 168 can be deposited by coating, printing, stacking or any other appropriate method. A transparent protective layer 18 can be deposited, for example, printed, coated or laminated, over the electroluminescent structure 16 to protect and/or seal the structure. An additional protective layer 17 can be deposited between electrode layer 162 and adhesive 12. Protective layer 17 can alternatively be disposed between conductors 14 a, 14 b and adhesive 12. Protective layers 17 and 18 can be larger than other layers so as to seal the electroluminescent structure 16 creating an envelope. Protective layers 17, 18 can provide insulation for the electrodes 162, 168, and can be made of any material reasonably resistant to environmental conditions and can provide protection to electroluminescent structure 16 from moisture, abrasion, etc. Protective layers 17, 18 can also provide, for example, electrically insulating and/or environmentally protective capabilities. Protective layers 17, 18 can be made of any suitable materials, such as polymeric materials, including a vinyl resin carrier, a urethane resin carrier (e.g., urethane acrylate) and other suitable materials, e.g., those listed in U.S. Pat. Nos. 5,856,029, 5,856,030, 6,696,786 and other suitable materials known to those of ordinary skill in the art.
Electroluminescent structures 16 can be disposed so that they are discontinuous. For example, discontinuous electroluminescent structures may not have any components that connect one electroluminescent structure to an adjacent electroluminescent structure with the exception of conductors 14 a, 14 b. Additionally, discontinuous electroluminescent structures can allow a surface of the support to be exposed in a gap between at least two discontinuous electroluminescent structures 16.
Retroreflective structure 19 can be continuous or it can be discontinuous (including two or more disconnected retroreflective segments, which can be arranged in a variety of patterns). Retroreflective structures 19 can be deposited over the protective layer 18 or over the electroluminescent structure 16 or over any additional or alternative intervening layers by any suitable method. The retroreflective structure 19 is arranged such that a light-emitting side of the electroluminescent structures 16 faces toward the retroreflective structure 19, while a reflective side of the retroreflective structure 19 faces away from the electroluminescent structures 16.
Retroreflective structures 19 can be made from a variety of materials by any suitable method. In one embodiment, retroreflective structure 19 can be purchased, for example, in the form of a transfer film, and attached to the electroluminescent structures 16, with a light-emitting side of the electroluminescent structures 16 facing the retroreflective structure 19 and the reflective side of the retroreflective structure 19 facing away from the electroluminescent structures 16. Retroreflective structure 19 and electroluminescent structures 16 can be attached to each other using, for example, adhesive, such as a heat activatable adhesive, pressure sensitive adhesive, or any other suitable commercially available adhesives. Commercially available products that are particularly suitable for use in embodiments of the present disclosure include transfer films with discontinuous retroreflective segments removably disposed on a liner, which are available from 3M Company, St. Paul, Minn., under the Scotchlite™ brand. More particularly, 3M Scotchlite™ Reflective Materials, 5500 series Comfort Trim products may be used (e.g., 5510 and 5530 Segmented Trims). The retroreflective structures in such products typically include a layer of beads embedded in a binder and often also include heat activatable adhesive. Such transfer films trim can be heat laminated to electroluminescent structure 16 through heat press lamination methods and the liner can be removed to expose the discontinuous retroreflective structures 19. Alternatively, retroreflective structure 19 can be printed, coated, sewn or otherwise disposed on or attached to the electroluminescent structure 16.
In other embodiments, retroreflective structures can be made by methods such as those described in WO 94/25666. Glass beads can be embedded into a temporary carrier (bead carrier). Specularly reflective materials such as aluminum, silver, or cryolite can then be selectively vapor coated, screen printed, or otherwise disposed onto the exposed surface of the beads. A binder can be coated or otherwise disposed on the vapor coated reflective layer, and a heat activatable adhesive or another adhesion promoter can be provided. Optionally, one may include a release liner that can be adhered to the adhesive side to prevent adhesion during manufacturing or shipping or a fabric for alternative application for sewing the retroreflective segments on a garment. Prior to use on a garment, the bead carrier will be removed to expose the beads and allow retroreflection.
Retroreflective segments 19 can also be made by plotter cutting a desired image or shape into a commercially available retroreflective tape, such as 3M™ Scotchlite™ reflective transfer film, series 8700, or 3M™ Scotchlite™ reflective material 5807 series.
Retroreflective structures 19 can be disposed relative to electroluminescent structures 16 at least partially in the light path of electroluminescent structures 16, covering an area of an electroluminescent structure that otherwise would be illuminated. For example, one or more retroreflective segments can be arranged as stripes across the electroluminescent structures as shown in FIGS. 2, 3 and 4. One or more retroreflective structures 19 can overlap or intersect with electroluminescent structures 16 in any appropriate configuration so as to be at least partially in the light path of the structures as illustrated in FIG. 1.
Referring further to FIG. 1, retroreflective structure 19 are at least partially in a path of light 15 a capable of being emitted by the electroluminescent structure 16. For example phosphor layer 166 emits light 15 a, 15 b. Because retroreflective segments of the retroreflective structure 19 are disposed in the light path of the electroluminescent article, emitted light 15 a is blocked while emitted light 15 b passes between the retroreflective structures and can be visible to a viewer when the article is attached to a power supply.
Retroreflective structure 19 can be of a variety of shapes and can be disposed in a variety of patterns. For example, retroreflective structures 12 can be continuous as shown in FIG. 7B or can be discontinuous as shown in FIGS. 5, 6A, 6B and 7A. In some exemplary embodiments, retroreflective structures 19 can include rectangular, parallelograms, square or any other shape segments. Retroreflective structures 19 can be arranged in any configuration including, but not limited to, linear arrays, such as a sequence of parallel stripes shown in FIGS. 2, 3, 4, 5 and 5A, a two dimensional array of generally diamond shapes, as shown in FIGS. 6A and 6B, or parallel bars as shown in FIG. 7A. Electroluminescent structures 16 can also be a variety of shapes depending on intended use and/or other considerations. These shapes and configurations listed above are only examples of the myriad of shapes and arrangements that can be used consistent with the present disclosure. Other shapes and configurations can easily be envisioned by those skilled in the art.
The present disclosure allows to make exemplary garments including laminate reflective and electroluminescent articles 10 that are flexible and, in some cases, at least somewhat stretchable. This is most often the case for at least partially monolithic constructions and constructions including an elastomeric material. For example, exemplary laminate reflective and electroluminescent articles 10 can be capable of being flexed or bent by a user under ordinary usage conditions.
In some embodiments, a laminate electroluminescent and reflective article can be characterized by a drape of no more than 400 g, preferably, no more than 300 g, more preferably, no more than 200 g, even more preferably no more than 100 g, and, most preferably, no more than 85 g. Drape may be measured as described in the Examples section below. The stretchability of an embodiment could be measured in terms of percent elongation prior to break by an Instron™ tensile tester. The Instron™ tensile tester has clamps to hold two ends of a sample, and will exert tensile force, pulling the ends of the sample farther apart until the sample breaks. An article that stretches further per amount of force applied has a lower modulus of elasticity and is generally more stretchable. In some embodiments, a laminate reflective and electroluminescent article can be characterized by a percent elongation of 50 percent or more, more preferably 60 percent or more, even more preferably 70 percent or more, and most preferably, 90 percent or more.
FIG. 2 shows a schematic diagram of an exemplary electroluminescent and retroreflective article 20 that can be disposed on a support on a garment (not shown). As illustrated in FIG. 2, conductors 29 a, 29 b can electrically connect a plurality of electroluminescent structures 26 to each other. Conductors 29 a, 29 b can also connect electroluminescent structures 26 to a power source 21. Optionally, conductors 29 a, 29 b can also connect the electroluminescent structures 26 to any other component, such as an inverter 22. The inverter 22 can convert DC power from the power source 21 to AC power for the electroluminescent structures 26 lamps 26 a. Alternatively, an AC power source can be used to provide power to the electroluminescent lamps. Additional suitable circuitry and conductors (not pictured) can be included, e.g., to cause the lamps to flash at different rates, provide safety shutoffs for short circuits, or allow for optimized power usage. The inverter 22, where used, and/or power source 21 can be disconnected from the electroluminescent and retroreflective article 20 for battery replacement, washing, or other reasons. In some exemplary embodiments, the inverter can be disposed in the same case as the power source.
In the illustrated embodiment, electroluminescent structures 26 can be discontinuous from each other so that first gaps 27 a are formed between adjacent electroluminescent structures 26. However, even in this embodiment, electroluminescent structures 26 are still connected by at least two discrete conductors, such as 29 a, 29 b, or a bus bar. The conductors 29 a and 29 b may be spaced apart from each other to provide second gaps 27 b. Retroreflective segments 23 can be disposed over and at least partially in the light path of light capable of being emitted by the electroluminescent structures 26. Nonetheless, in the exemplified embodiment, the retroreflective structures do not completely cover the gaps 27 a between electroluminescent structures 26 and/or the gaps 27 b between the conductors 29 a and 29 b. Thus, when such exemplary laminate articles 20 are disposed on a support (not shown), the gaps 27 a,b comprise an exposed surface of the support. Having such gaps can be very advantageous, especially if the support is porous, stretchable and/or flexible, because the presence of gaps is believed to improve vapor permeability, stretchability and/or flexibility of the combined laminate article 20 and the support (not shown), as compared to a similar construction without such gaps. Gaps can allow for increased moisture release, which increases perceived comfort of a laminate reflective and electroluminescent article 20 when disposed on a garment. Additionally, gaps can provide more locations for stress relief during wear and wash of a product, thereby increasing product durability and wash resistance.
FIG. 3 shows an exemplary electroluminescent and retroreflective article 35 disposed on a support 33, which forms a part of a garment shell of an as a part of an exemplary garment (here, a shirt). A shirt 30 is only one example of the numerous garments and other articles that an electroluminescent and retroreflective article of the present disclosure could be disposed on or included in. For example, an electroluminescent and retroreflective article could be disposed on a vest, a jacket, pants, gloves, shoes, hats, or any other type of garment. A support can be made of any suitable material, including one or more or fabric, woven material, nonwoven material, rubber, plastic, leather or any other appropriate material. A garment can optionally include a pocket 32 or other means for supporting the power source 31 and/or inverter. A means for supporting power source 31 can be at any suitable location.
An exemplary electroluminescent and retroreflective article 35 disposed on a support 33 can include conductors 34 connecting electroluminescent structures 36 to each other and to a power source 31. Retroreflective structures 39 can be of various shapes and can be configured in any appropriate layout. In the exemplary embodiment illustrated, retroreflective structures 39, such as discontinuous retroreflective segments, are disposed on one or more of front left, front right, back left and back right sides of the garment 30. In one exemplary embodiment, retroreflective structures 39 form right and left sections. The sections may be configured in the form of one or more vertical sections that run up the front and/or down the back of the shirt. Additionally or alternatively, one or more horizontal sections of a retroreflective structure 39, such as discontinuous retroreflective segments, can be disposed about the torso of the garment 30, preferably about a user's waist area. In one exemplary embodiment, retroreflective structures are disposed on at least left and right sides of the garment, extending from the front side to the back side of the garment. As discussed below, discontinuous retroreflective segments 39 can be configured in any suitable or desirable way, for example, to meet the American National Standard for High-Visibility Safety Apparel (“the ANSI Standard”) and other similar safety standards as described below.
Electroluminescent structures may follow the same general pattern as the pattern of retroreflective structures on a garment or a different pattern. Referring further to FIG. 3, one or more electroluminescent structures 36 may be disposed on one or more of front left, front right, back left and back right sides of the garment 30. In one exemplary embodiment, electroluminescent structures 36 are disposed generally vertically, for example, extending generally from the waist area toward a shoulder area of the wearer. In some embodiments, electroluminescent structures 36 are disposed on the right and left side of the shirt 30 at least on one of the front and the back sides of the garment 30. Fewer or more electroluminescent structures 36 can be used on a garment consistent with the present disclosure. In some exemplary embodiments, the garment 30 may, additionally or alternatively, include one or more electroluminescent structures 36 disposed generally horizontally on the left and right sides of the garment (extending generally around the torso of a wearer from the front side of the garment to the back side of the garment, in some cases curving about the wearer's body, such as to improve conspicuity of the garment when a wearer's side is turned to an observer).
In other exemplary garments, retroreflective structures and/or electroluminescent structures may be arranged on a garment in any other suitable or desirable configuration. Some examples include a generally X-shaped pattern and a generally chevron-shaped pattern (which resembles a V or an inverted V), which may be disposed on the back and/or on the front of a garment.
An electroluminescent article can be secured to a garment 30 by any appropriate means including, but not limited to, sewing the assembly to the garment, or securing the assembly to the garment with adhesive, such as pressure sensitive adhesive or heat activatable adhesive, or by any other appropriate method.
FIG. 4 shows a vest 40 with an electroluminescent and retroreflective article 45 according to the present disclosure disposed on it. The electroluminescent and retroreflective article includes conductors 44 a, 44 b, electroluminescent structures 46 a-f and a retroreflective structure including retroreflective segments 49. Conductors 44 a, 44 b, electroluminescent structures 46 a-f and retroreflective segments 49 can be made of any material and by any method consistent with the present disclosure or known to individuals of skill in the art. Additionally, the article 45 can be secured to the vest 40 by any method described above or by any other appropriate method. In this exemplary embodiment, electroluminescent structures 46 a and 46 b can be disposed on the front portion of the vest 40, right and left sides, respectively. Each of the electroluminescent structures 46 a and 46 b can extend from the direction of the waist portion of the vest 40 toward its shoulder portion. Electroluminescent structures 46 c and 46 d can be disposed on the back portion of the vest 40, right and left sides, respectively. Each of the electroluminescent structures 46 c and 46 d can extend from the direction of the waist portion of the vest 40 toward its shoulder portion. The electroluminescent structures 46 a and 46 b can be electrically connected to 46 a and 46 b.
The exemplary vest 40 may further include one or more electroluminescent structures 46 e and 46 f disposed generally horizontally (extending generally around the torso of a wearer from the front side of the garment to the back side of the garment, in some cases curving about the wearer's body, when the vest 40 is worn). Including such one or more horizontally disposed electroluminescent structures may improve conspicuity of the garment when a wearer's side is turned to an observer. Electroluminescent structures 46 e and 46 f can be conveniently provided in or on a waist band/belt.
FIGS. 5 and 5A show an example of a pattern 50 of discontinuous retroreflective structures defining retroreflective 52 and non-retroreflective regions 54, which may be included in an exemplary retroreflective structure according to the present disclosure. In accordance with the present disclosure, the entire area of the non-reflective regions 54 or a portion of the area of the non-reflective regions 54 may be electroluminescent (i.e., emitting light due to electroluminescence of an underlying electroluminescent structure). In some exemplary embodiments, at least portions of at least some of the non-reflective regions 54 comprise gaps in the laminate structure, as explained above. When retroreflective regions 52 are arranged for safety garments, they can be designed to meet various safety standards. One such prominent standard is the ANSI Standard. The ANSI Standard dictates performance requirements for high visibility safety apparel, capable of signaling a user's presence in a conspicuously visible manner under any light conditions by day (this can be accomplished by use of fluorescent color) and under illumination by vehicle headlights in the dark (this can be accomplished by use of retroreflective materials). EN 471 is an example of a similar European standard, and many countries such as Australia, New Zealand, and Canada also have their own standards.
Retroreflective regions 52 can be configured to meet minimum reflectivity requirements. This can be achieved by ensuring that a minimum percentage of the total surface area defined by a pattern 50 (also shown in FIG. 5A) of discontinuous retroreflective segments, here, retroreflective regions 52, sufficient to achieve the appropriate coefficient of retroreflectivity based on the reflective properties of the retroreflective segments. For example, if non-retroreflective regions 54 account for 50 percent of the surface area of a pattern 50 of discontinuous retroreflective segments, the brightness would be approximately 50 percent less than it would be if retroreflective materials were applied in a continuous pattern. In the stripe-like pattern 50 shown in FIG. 5, the retroreflective regions 52 occupy approximately 66 percent of the surface area of pattern 50 and non-retroreflective regions occupy approximately 33 percent of pattern 50. Alternatively, retroreflective regions 52 can occupy at least 50 percent, 75 percent, 85 percent or any other appropriate percentage of a pattern 50 of discontinuous retroreflective segments. The general principle of designing the retroreflective pattern 50 is to maximize the total retroreflectivity of the retroreflective regions 52 while maintaining and maximizing the visibility of light from electroluminescent structures below the discontinuous retroreflective segments that is visible through the non-retroreflective regions 54.
Patterns 50 of discontinuous retroreflective segments consistent with the present disclosure can be designed to meet the ANSI Standard. For example, Table 5 of the ISEA document American National Standard for High-Visibility Safety Apparel (ANSI/ISEA 107-2004) shows a head-on initial minimum required value of 330 Ra (measured in units of candelas per lux per square meter) and a head-on operable minimum required value of 100 Ra. In some exemplary embodiments, the electroluminescent and retroreflective article can be characterized by an initial head-on Ra of 330 or more and an operable Ra of 100 or more.
FIGS. 6A and 6B show examples of discontinuous generally diamond-shaped retroreflective structures 62, which may be included in an exemplary retroreflective structure according to the present disclosure. In such exemplary embodiments, the discontinuous retroreflective segments 62 are configured in a two-dimensional array, i.e., two or more discontinuous retroreflective segments are disposed along a first direction X and two or more discontinuous retroreflective segments are disposed along a second direction Y, which is different from the first direction. The first and second directions may be generally orthogonal to each other. Although generally diamond-shaped structures are illustrated, two-dimensional arrays may be formed from retroreflective segments having other shapes and sizes. Electroluminescent structures 64 can be continuous as shown in FIG. 6B or discontinuous as shown in FIG. 6A.
In the embodiment exemplified in FIG. 6A, the retroreflective segments 62 do not completely cover the gaps 67 a between electroluminescent structures 64 and/or the gaps 67 b between the conductors 69 a and 69 b. Due to the two-dimensional nature of the array of the retroreflective segments 62, in some exemplary embodiments, two or more gaps, 67 a, 67 b or a combination thereof, may be disposed along a first direction X. Additionally or alternatively, two or more gaps, 67 a, 67 b or a combination thereof, may be disposed along a second direction Y. Some advantages of a laminate article comprising gaps are explained above in connection with FIG. 2. Further advantages to having such gaps in an electroluminescent and retroreflective article including a two-dimensional array of discontinuous retroreflective segments include potential further improvements in vapor permeability, stretchability and/or flexibility of the combined laminate article when it is disposed on a support, such as a thin breathable garment.
FIGS. 7A and 7B show examples of a continuous electroluminescent structure 74 with discontinuous retroreflective structures 72 (FIG. 7A) and discontinuous electroluminescent structures 74 with a continuous retroreflective structure 72, 73 (FIG. 7B). FIG. 7A illustrates a linear array of retroreflective segments 72, in which only one retroreflective segment 72 is disposed along a first direction X, while two or more retroreflective structures are disposed along a second direction Y. FIG. 7B illustrates a continuous retroreflective structure, in which first retroreflective segments 72 are connected by second retroreflective segments 73. Because this exemplary embodiment includes discontinuous electroluminescent structures 74 which must be electrically connected (e.g., by conductors 79 a and 79 b), the second retroreflective segments 73 may be advantageously disposed over and cover one or more conductors 79 a, 79 b. In such exemplary embodiments, the second retroreflective segments 73 may be used to provide insulation for the conductors and/or protect the conductors from damage.
FIGS. 5-7B are only a few examples of the numerous configurations of electroluminescent structures and retroreflective structures consistent with the present disclosure and are not intended to be limiting in any manner.
EXAMPLES
Historically, the use of electroluminescent lamps has required a stiff, multi-layered construction of electrodes and phosphors along with bulky and stiff crimps and bus bars. When such an assembly is applied to a garment, the garment is somewhat stiff and can be uncomfortable. BeaconWear™ vests made by SAFE LITES™, LLC of Eden Prairie, Minn., (“Traditional Construction”) used for comparison with exemplary embodiments of the present disclosure, included traditional electroluminescent lamps extending vertically on the right and left sides of the front and back of the vest. Additionally, traditional electroluminescent lamps extended horizontally around the sides of the vest. A strip of retroreflective materials was attached to the vest to run parallel to each electroluminescent lamp, on each side of the lamp.
One way of characterizing comfort and flexibility of a fabric is to measure its drape. The drape of Traditional Construction was measured using ASTM D6828 test methods. This procedure uses a piece of equipment commonly known as a ‘handle-o-meter’ to measure the amount of force that is required to bend the sample under test. A stiffer material will require a higher force and a more flexible material (better drape) will require less force. Drape was measured in grams.
Three samples of Traditional Construction were cut from each of two constructions of the lamp and underlying assembly, namely, the vertical and horizontal lamp arrangements. The composition and measured drape of each respective construction is shown in Table 1 below.
Drape for an exemplary embodiment of the current disclosure was also measured. Electroluminescent lamps were made as a monolithic construction such as one disclosed in U.S. Pat. Nos. 5,856,029, 5,856,030, 6,696,786, and 6,717,361. A retroreflective segment pattern similar to that shown in FIG. 6A was formed from Scotchlite™ 8725 series Silver Transfer Film to produce retroreflective segments, which were attached to of the electroluminescent lamps, such that the reflective sides of the retroreflective segments faced away from the electroluminescent lamps. Strips cut from 3M™ CN 3190 Cu/Ni fabric tape were used to electrically connect electroluminescent lamps to each other and to a power source. The assembly was disposed on a fabric substrate and its drape was tested.
TABLE 1
Comparison of Drape
Traditional Traditional
Construction in Construction in Embodiment of Present
vertical assembly horizontal assembly Disclosure
Construction 1. Typical 1. Typical 1. Monolithic lamp
Components electroluminescent lamp electroluminescent lamp 2. 3M ™ CN 3190
2. Bus bar 2. Bus bar Cu/Ni fabric tape
3. Ribbon carrier 3. Fabric substrate 3. 8725 Silver Transfer
4. Fabric substrate Film
4. Fabric substrate
Sample a 970 g 747 g 87 g
Sample b 970 g 780 g 83 g
Sample c 922 g 812 g 83 g
Average 954 g 780 g 85 g
One can see that the embodiments of the present disclosure all possessed considerably better drape when compared to either the vertical or horizontal assembly of the Traditional Construction.
A traditional way of measuring the stretchability of a fabric or article is to use an Instron™ tensile tester to exert tensile force on the article until it breaks. An article that stretches further per amount of force applied has a lower modulus of elasticity and is generally more stretchable. A 0.5 inch sample of the Embodiment of the Present Disclosure as described above was tested using an Instron™ tensile tester to determine the percent elongation of each sample prior to breaking
TABLE 2
Stretchability Measurements
Embodiment of Present Disclosure
Construction 1. Monolithic lamp
Components 2. 3M ™ CN 3190 Cu/Ni fabric tape
3. 8725 Silver Transfer Film
4. Fabric substrate
Sample a 59.71%
Sample b 93.87%
Sample c 58.43%
Average 70.67%
One can see that embodiments consistent with the present disclosure can have an appreciable elongation indicating stretchability of the exemplary articles.
Positional terms used throughout the disclosure, e.g., over, under, above, etc., are intended to provide relative positional information; however, they are not intended to require adjacent disposition or to be limiting in any other manner. For example, when a layers or structure is said to be “disposed over” another layer or structure, this phrase is not intended to be limiting on the order in which the layers or structures are assembled but simply indicates the relative spatial relationship of the layers or structures being referred to. Furthermore, all numerical limitations shall be deemed to be modified by the term “about.”
Although the present disclosure has been described with reference to preferred embodiments, those of skill in the art will recognize that changes made be made in form and detail without departing from the spirit and scope of the present disclosure.

Claims (22)

What is claimed is:
1. A garment comprising:
a support and an electroluminescent and retroreflective article disposed on the support
wherein the article comprises
an electroluminescent structure comprising an electrode layer, a phosphor layer disposed over the electrode layer and a transparent electrode layer disposed over the phosphor layer;
a retroreflective structure disposed over the electroluminescent structure and at least partially in a path of light capable of being emitted by the electroluminescent structure, the retroreflective structure including a plurality of beads and a reflective agent disposed under the beads, the retroreflective structure comprising a plurality of discontinuous retroreflective segments;
wherein a light-emitting side of the electroluminescent structure faces toward the retroreflective structure, and a reflective side of the retroreflective structure faces away from the electroluminescent structure;
wherein at least a portion of the electroluminescent structure is discontinuous, such that at least a portion of the retroreflective structure is disposed over discontinuous segments of the electroluminescent structure;
the article having a head-on initial brightness of at least 330 candela per lux per square meter.
2. The garment of claim 1, wherein a surface of the support is exposed in a gap between at least two discontinuous segments of the electroluminescent structure.
3. The garment of claim 1, wherein at least a portion of the electroluminescent article has a unitary construction.
4. The garment of claim 1, the plurality of discontinuous retroreflective segments are disposed in a linear array.
5. The garment of claim 1, wherein the plurality of discontinuous retroreflective segments is disposed in a two-dimensional array.
6. The article of claim 1, wherein each of the plurality of discontinuous retroreflective segments includes a first pair of generally parallel sides and a second pair of generally parallel sides.
7. The garment of claim 1, wherein the electroluminescent and retroreflective article is stretchable.
8. The garment of claim 1, wherein the electroluminescent and retroreflective article is flexible.
9. The garment of claim 1, wherein the electroluminescent structure comprises an elastomeric material.
10. The garment of claim 1, wherein the plurality of beads is at least partially embedded in a binder layer.
11. The garment of claim 1, further comprising a power source connected to the electroluminescent structure.
12. The garment of claim 1, wherein the support comprises a pocket configured to retain a power source.
13. The garment of claim 1, wherein the electroluminescent and retroreflective article comprises conductive adhesive.
14. The garment of claim 1, wherein the electroluminescent structure and the retroreflective structure form a laminate.
15. The garment of claim 1, wherein the discontinuous segments of the electroluminescent structure are electrically connected in series.
16. The garment of claim 1, further comprising at least one connector that electrically connects at least two of the discontinuous segments of the electroluminescent structure.
17. The garment of claim 1, wherein the retroreflective structure is disposed over the electroluminescent structure and is positioned to block light emitted by the electroluminescent structure.
18. The garment of claim 1, wherein the electroluminescent and retroreflective article has a percent elongation of at least 50%.
19. A garment comprising:
a support and
an electroluminescent and retroreflective article disposed on the support
wherein the article comprises
a plurality of discontinuous electroluminescent structures, each structure comprising an electrode layer, a phosphor layer disposed over the electrode layer and a transparent electrode layer disposed over the phosphor layer;
a retroreflective structure having at least a portion disposed over the plurality of discontinuous electroluminescent structures and at least partially in a path of light capable of being emitted by the plurality of discontinuous electroluminescent structures, the retroreflective structure including a plurality of beads and a reflective agent disposed under the beads, the retroreflective structure comprising a plurality of discontinuous retroreflective segments;
at least one connector, comprising conductive adhesive, wherein the connector electrically connects at least two of the discontinuous electroluminescent structures;
wherein a light-emitting side of the plurality of discontinuous electroluminescent structures faces toward the retroreflective structure, and a reflective side of the retroreflective structure faces away from the plurality of discontinuous electroluminescent structures;
the article having a head-on initial brightness of at least 330 candela per lux per square meter.
20. A method for making a garment comprising:
providing a garment support;
providing a laminate electroluminescent and retroreflective article, the article comprising:
an electroluminescent structure, the electroluminescent structure comprising an electrode layer, a phosphor layer disposed over the electrode layer and a transparent electrode layer disposed over the phosphor layer,
a retroreflective structure disposed over the transparent electrode layer, the retroreflective structure including a plurality of beads and a reflective agent disposed under the beads, the retroreflective structure comprising a plurality of discontinuous retroreflective segments, wherein a light-emitting side of the electroluminescent structure faces toward the retroreflective structure and a reflective side of the retroreflective structure faces away from the electroluminescent structure, wherein at least a portion of the electroluminescent structure is discontinuous, such that at least a portion of the retroreflective structure is disposed over discontinuous segments of the electroluminescent structure,
and a removable carrier film disposed over the retroreflective structure;
disposing the electroluminescent and retroreflective article on the support such that the removable carrier film faces away from the support; and
removing the carrier film from the article, the article having a head-on initial brightness of at least 330 candela per lux per square meter.
21. The method of claim 20, wherein the article further comprises a heat activatable adhesive disposed on a side of the article opposite to the removable carrier film, and the step of disposing comprises heating the article.
22. The method of claim 20, further comprising connecting a power source to the electroluminescent structure.
US13/202,839 2009-03-12 2010-03-03 Garment with a retroreflective and electroluminescent article Expired - Fee Related US9044055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/202,839 US9044055B2 (en) 2009-03-12 2010-03-03 Garment with a retroreflective and electroluminescent article

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15955309P 2009-03-12 2009-03-12
PCT/US2010/025994 WO2010104706A2 (en) 2009-03-12 2010-03-03 Garment with a retroreflective and electroluminescent article
US13/202,839 US9044055B2 (en) 2009-03-12 2010-03-03 Garment with a retroreflective and electroluminescent article

Publications (2)

Publication Number Publication Date
US20110305006A1 US20110305006A1 (en) 2011-12-15
US9044055B2 true US9044055B2 (en) 2015-06-02

Family

ID=42729017

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/202,839 Expired - Fee Related US9044055B2 (en) 2009-03-12 2010-03-03 Garment with a retroreflective and electroluminescent article

Country Status (3)

Country Link
US (1) US9044055B2 (en)
EP (1) EP2405778B1 (en)
WO (1) WO2010104706A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU167826U1 (en) * 2016-05-20 2017-01-10 Андрей Александрович Сирык PUSATAS PORTABLE ALARM SYSTEM
US20190037934A1 (en) * 2017-08-02 2019-02-07 VisionVest, LLC Safety vest
USD874157S1 (en) 2017-04-06 2020-02-04 Radians, Inc. Shirt with reflective tape
US20200046049A1 (en) * 2018-08-09 2020-02-13 Michael J. Benz Illuminated Glow Jacket
US10617159B2 (en) * 2017-09-30 2020-04-14 Wearable Technology Limited High visibility garments for operatives working in a hazardous environments
US20220071327A1 (en) * 2020-09-10 2022-03-10 Chance Line Industrial Co., Ltd. Light-reflective mark formed with light-reflective yarn
US11925219B2 (en) * 2015-06-18 2024-03-12 Jeffrey Garre Barkshire Fashionable high-visibility safety apparel

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8732866B2 (en) * 2009-11-20 2014-05-27 Ryan T. Genz Fabric constructions with sensory transducers
US9399428B2 (en) 2012-11-08 2016-07-26 Pioneer Corporation Mirror device
US20150276203A1 (en) * 2014-03-27 2015-10-01 Seke Llc Layered reflective strip, article, and/or garment, and methods for integrating electronic and/or electrical components for improving awareness, safety, and/or visibiity
DK3139448T3 (en) * 2014-04-23 2020-02-03 Light Flex Tech S L Light transmitting textile element with a free connection system
US10143250B2 (en) 2014-11-07 2018-12-04 Richard R. W. Schulz Removable clothing patches and associated methods
US9901138B2 (en) * 2014-11-13 2018-02-27 Adidas Ag Multilayered materials with color changing properties
GB201501297D0 (en) 2015-01-27 2015-03-11 Mas Active Trading Pvt Ltd Device
US10201194B2 (en) * 2015-05-11 2019-02-12 Te Connectivity Corporation Process of applying a conductive composite, transfer assembly having a conductive composite, and a garment with a conductive composite
US10563858B2 (en) * 2015-05-26 2020-02-18 Timothy Ryan Polanowski Athletic wear illumination
JP6433963B2 (en) * 2016-11-17 2018-12-05 パイオニア株式会社 Mirror device
US10892588B2 (en) * 2016-12-01 2021-01-12 Dupont Electronics, Inc. Electrical connections for wearables and other articles
US11297885B2 (en) 2017-05-21 2022-04-12 Nike, Inc. Reflective articles of wear
US10555565B2 (en) * 2017-05-31 2020-02-11 Nike, Inc. Reflective articles of wear
US11360247B2 (en) 2017-10-27 2022-06-14 3M Innovative Properties Company Portable detection systems and devices including a detector that detects reflected energy

Citations (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1038469A (en) 1963-03-06 1966-08-10 Philips Electronic Associated Improvements in or relating to joints between electrically conducting bodies
US3758192A (en) 1970-08-20 1973-09-11 Minnesota Mining & Mfg Reflex-reflective structures including fabric and transfer foils
GB1424754A (en) 1972-01-24 1976-02-11 Minnesota Mining & Mfg Light transmissive retroreflective sheeting
EP0166534A1 (en) 1984-05-29 1986-01-02 Infratron (Uk) Limited Visual indicator safety device
US4664966A (en) * 1985-11-18 1987-05-12 Minnesota Mining And Manufacturing Company Enclosed-lens retroreflective sheeting having tough, weather-resistant, transparent cover film
US4684353A (en) 1985-08-19 1987-08-04 Dunmore Corporation Flexible electroluminescent film laminate
US4983436A (en) 1987-04-15 1991-01-08 Minnesota Mining And Manufacturing Company Retroreflective sheeting with backing film
USD314673S (en) 1987-07-13 1991-02-19 Hercules Incorporated Embossed diaper cover stock material or similar article
US4999936A (en) 1988-04-24 1991-03-19 Calamia Thomas J Illuminated sign
WO1991018374A1 (en) 1990-05-12 1991-11-28 Edgar Stephen Roy Dakin Visibility aid
US5237448A (en) 1991-02-05 1993-08-17 American Ingenuity, Inc. Visibility enhancing material
US5272562A (en) 1993-02-05 1993-12-21 Minnesota Mining And Manufacturing Company Cube-corner retroreflective articles
EP0594089A1 (en) 1992-10-19 1994-04-27 Minnesota Mining And Manufacturing Company Illumination devices and optical fibres for use therein
US5315491A (en) 1992-09-30 1994-05-24 American Ingenuity, Inc. Reflecting and luminous layered material
WO1994025666A1 (en) 1993-05-05 1994-11-10 Minnesota Mining And Manufacturing Company Retroreflective transfer sheet material
EP0648436A1 (en) 1993-10-18 1995-04-19 Walpurga Mag. Brosch Light emitting garments
US5567040A (en) 1995-04-11 1996-10-22 Tabanera; Dennis A. Electroluminescent jacket and bag
US5570945A (en) 1993-11-22 1996-11-05 Chien; Tseng-Lu Soft light-strip
EP0759179A1 (en) 1994-05-12 1997-02-26 Minnesota Mining And Manufacturing Company Retroreflective article and method of making same
WO1998020375A1 (en) 1996-11-08 1998-05-14 Minnesota Mining And Manufacturing Company Electroluminescent retroreflective article
WO1998020279A1 (en) 1996-11-07 1998-05-14 Minnesota Mining And Manufacturing Company Light-illuminating rods
US5770124A (en) 1996-04-30 1998-06-23 Minnesota Mining And Manufacturing Company Method of making glittering cube-corner retroreflective sheeting
WO1998058281A1 (en) 1997-06-16 1998-12-23 Minnesota Mining And Manufacturing Company Self light-emitting retroreflective sheet and method for producing the same
US5856030A (en) 1996-12-30 1999-01-05 E.L. Specialists, Inc. Elastomeric electroluminescent lamp
US5856029A (en) 1996-05-30 1999-01-05 E.L. Specialists, Inc. Electroluminescent system in monolithic structure
US5981032A (en) 1997-07-02 1999-11-09 3M Innovative Properties Company Retroreflective cube corner sheeting mold and sheeting formed therefrom
US6066384A (en) * 1997-08-01 2000-05-23 3M Innovative Properties Company Retroreflective article having a binder layer containing an epoxy resin and a silicone crosslinked polymer
US6086213A (en) 1998-06-10 2000-07-11 Holce; Mary Elizabeth Universal mount for EL lights, retroreflective sheeting materials, and reflectors
US6146006A (en) 1995-02-08 2000-11-14 Flexalite Technology Corporation Method and apparatus for light transmission
EP1084633A1 (en) 1999-09-14 2001-03-21 Isis Trust "Garment provided with at least one luminescent means"
WO2001049941A2 (en) 1999-12-30 2001-07-12 Avery Dennison Corporation Light stable fluorescent vinyl suitable for use as a highway retroreflective roll-up sign
US6261633B1 (en) 1996-05-30 2001-07-17 E.L. Specialists, Inc. Translucent layer including metal/metal oxide dopant suspended in gel resin
US6271631B1 (en) * 1998-10-15 2001-08-07 E.L. Specialists, Inc. Alerting system using elastomeric EL lamp structure
USD446945S1 (en) 2000-02-28 2001-08-28 Louis Vuitton Malletier, S.A. Fabric pattern
EP1127984A1 (en) 1999-08-30 2001-08-29 Matsushita Shokai Co., LTD. Planar light emitting device and light-emitting guide
US20020141060A1 (en) 2001-03-28 2002-10-03 Reflexite Corporation Prismatic retroreflector having a multi-plane facet
WO2003007740A2 (en) 2001-07-21 2003-01-30 Stuart Ian Jukes Garment lighting
US6551726B1 (en) 1996-05-30 2003-04-22 E. L. Specialists, Inc. Deployment of EL structures on porous or fibrous substrates
US20030150043A1 (en) * 2002-02-13 2003-08-14 Koppes Robert D. High visibility safety apparel and graphic transfer therefor
DE20313630U1 (en) 2003-09-03 2003-12-24 Stehn, Hartwig Clothing item, e.g. safety jacket for police, firemen or road workers, has illumination in form of electroluminescent film arranged on surface of material from which item of clothing is manufactured
US6696786B2 (en) 2000-10-11 2004-02-24 Mrm Acquisitions Llc Membranous monolithic EL structure with urethane carrier
US6717361B2 (en) 2000-10-11 2004-04-06 Mrm Acquisitions, Llc Membranous EL system in UV-cured urethane envelope
US6769138B2 (en) 2002-12-23 2004-08-03 Safe Lites, Llc Safety vest and other clothing articles
DE202004011734U1 (en) 2004-07-27 2004-09-30 Fer Fahrzeugelektrik Gmbh Safety jacket for police and ambulance personnel, has reflective surface with signs and electroluminescent arrangement with power supply and electronic control
WO2004100111A2 (en) 2003-04-29 2004-11-18 France Telecom Textile display
JP2005077445A (en) 2003-08-29 2005-03-24 Keiwa Inc Light diffusing sheet and backlight unit using same
JP2005077448A (en) 2003-08-29 2005-03-24 Keiwa Inc Light diffusing sheet and backlight unit using the same
US6898018B2 (en) * 2000-10-18 2005-05-24 Sharp Kabushiki Kaisha Luminous display element
GB2408915A (en) 2003-11-22 2005-06-15 Adam Ford Illuminated apparel, baggage or similar
US20050157390A1 (en) 2004-01-21 2005-07-21 Weiss Douglas E. Retroreflective elements and articles
US6931665B2 (en) 2001-07-30 2005-08-23 3M Innovative Properties Company Vapor permeable retroreflective garment
US6964493B1 (en) 2003-01-17 2005-11-15 Whitlock Enterprises, Llc Method and apparatus for adding light transmission to an article of clothing
US20060011287A1 (en) 1999-12-30 2006-01-19 3M Innovative Properties Company Segmented sheeting and methods of making and using same
US20060034064A1 (en) 2004-08-13 2006-02-16 James Kanzler Illuminated safety vest
US20060044651A1 (en) 2002-10-08 2006-03-02 Nippon Carbide Kogyo Kabushiki Kaisha Recursive-reflective display devices
US20060092625A1 (en) * 2004-11-01 2006-05-04 Mckowen Martin Electronic luminescent clothing and tapes
CA2487264A1 (en) 2004-11-12 2006-05-12 Martin Mckowen Electronic luminescent clothing and tapes
JP2006228455A (en) 2005-02-15 2006-08-31 Koizumi Sangyo Corp Electroluminescent light source body and electroluminescent light source device
US7144127B2 (en) 2002-12-23 2006-12-05 Safe Lites, Llc Single assembly EL lighting for garments
WO2006129246A2 (en) 2005-05-31 2006-12-07 Koninklijke Philips Electronics N.V. Light-source with fabric diffusing layer
US7220011B2 (en) 1998-11-23 2007-05-22 Hurwitz Marni M Marine craft and apparatus including electroluminescent auxiliary illumination
WO2007065227A1 (en) 2005-12-09 2007-06-14 All Innovations Pty Ltd Light guides, illuminated articles and devices
FR2896608A1 (en) 2006-01-26 2007-07-27 Graux Christophe Anselme Valen User e.g. pedestrian, visualizing, signaling, communicating and safety device for being worn by user, has garment on which electroluminescent elements are placed on body`s sides and sleeves` faces and controlled by remotecontrol-transmitter
WO2007092152A2 (en) 2006-02-02 2007-08-16 3M Innovative Properties Company License plate assembly
US20080030856A1 (en) * 2006-08-01 2008-02-07 Tao-Ming Tom King Breathable retroreflective material for high visibility safety apparel and reflective apparel
WO2008122920A2 (en) * 2007-04-04 2008-10-16 Philips Intellectual Property & Standards Gmbh Light emitting device
EP1992240A1 (en) 2007-05-18 2008-11-19 LYTTRON Technology GmbH Protective gear with an EL glowing laminate and manufacturing method and application therefor
US20090021831A1 (en) 2007-07-16 2009-01-22 3M Innovative Properties Company Prismatic retroreflective article with cross-linked image layer and method of making same
USD587907S1 (en) 2006-08-02 2009-03-10 3M Innovative Properties Company Retroreflective article
USD587909S1 (en) 2006-08-02 2009-03-10 3M Innovative Properties Company Retroreflective article
USD587908S1 (en) 2006-08-02 2009-03-10 3M Innovative Properties Company Retroreflective article
US20090070967A1 (en) * 2006-01-10 2009-03-19 Joseph Gonzalez Conspicuity devices and methods
US20090097234A1 (en) * 2007-09-28 2009-04-16 Osram Opto Semiconductors Gmbh Illumination Device, Luminaire and Display Device
USD594663S1 (en) 2006-08-02 2009-06-23 3M Innovative Properties Company Retroreflective article
USD594664S1 (en) 2006-08-02 2009-06-23 3M Innovative Properties Company Retroreflective article
USD613073S1 (en) 2009-03-12 2010-04-06 3M Innovative Properties Company Retroreflective and luminous article
GB2466027A (en) 2008-12-08 2010-06-09 Personal Security Prot Ltd Reflective strip
US20100177517A1 (en) 2009-01-10 2010-07-15 Stephen Foley Safety flag
US20100202143A1 (en) 2007-09-18 2010-08-12 Michael Ruehlemann Illumination Device and Actively Illuminated Article
US20100232143A1 (en) 2009-03-12 2010-09-16 Kenneth Burrows Hybrid electroluminescent assembly
US20100231113A1 (en) 2009-03-12 2010-09-16 3M Innovative Properties Company Laminate reflective and electroluminescent article

Patent Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1038469A (en) 1963-03-06 1966-08-10 Philips Electronic Associated Improvements in or relating to joints between electrically conducting bodies
US3758192A (en) 1970-08-20 1973-09-11 Minnesota Mining & Mfg Reflex-reflective structures including fabric and transfer foils
GB1424754A (en) 1972-01-24 1976-02-11 Minnesota Mining & Mfg Light transmissive retroreflective sheeting
EP0166534A1 (en) 1984-05-29 1986-01-02 Infratron (Uk) Limited Visual indicator safety device
US4684353A (en) 1985-08-19 1987-08-04 Dunmore Corporation Flexible electroluminescent film laminate
US4664966A (en) * 1985-11-18 1987-05-12 Minnesota Mining And Manufacturing Company Enclosed-lens retroreflective sheeting having tough, weather-resistant, transparent cover film
US4983436A (en) 1987-04-15 1991-01-08 Minnesota Mining And Manufacturing Company Retroreflective sheeting with backing film
USD314673S (en) 1987-07-13 1991-02-19 Hercules Incorporated Embossed diaper cover stock material or similar article
US4999936A (en) 1988-04-24 1991-03-19 Calamia Thomas J Illuminated sign
WO1991018374A1 (en) 1990-05-12 1991-11-28 Edgar Stephen Roy Dakin Visibility aid
US5237448A (en) 1991-02-05 1993-08-17 American Ingenuity, Inc. Visibility enhancing material
US5315491A (en) 1992-09-30 1994-05-24 American Ingenuity, Inc. Reflecting and luminous layered material
EP0594089A1 (en) 1992-10-19 1994-04-27 Minnesota Mining And Manufacturing Company Illumination devices and optical fibres for use therein
US5272562A (en) 1993-02-05 1993-12-21 Minnesota Mining And Manufacturing Company Cube-corner retroreflective articles
WO1994025666A1 (en) 1993-05-05 1994-11-10 Minnesota Mining And Manufacturing Company Retroreflective transfer sheet material
US5503906A (en) * 1993-05-05 1996-04-02 Minnesota Mining And Manufacturing Company Retroreflective transfer sheet material
EP0648436A1 (en) 1993-10-18 1995-04-19 Walpurga Mag. Brosch Light emitting garments
US5570945A (en) 1993-11-22 1996-11-05 Chien; Tseng-Lu Soft light-strip
EP0759179A1 (en) 1994-05-12 1997-02-26 Minnesota Mining And Manufacturing Company Retroreflective article and method of making same
US6146006A (en) 1995-02-08 2000-11-14 Flexalite Technology Corporation Method and apparatus for light transmission
US5567040A (en) 1995-04-11 1996-10-22 Tabanera; Dennis A. Electroluminescent jacket and bag
EP0896683A1 (en) 1996-04-30 1999-02-17 Minnesota Mining And Manufacturing Company Method of making glittering cube-corner retroreflective sheeting
US5770124A (en) 1996-04-30 1998-06-23 Minnesota Mining And Manufacturing Company Method of making glittering cube-corner retroreflective sheeting
US6551726B1 (en) 1996-05-30 2003-04-22 E. L. Specialists, Inc. Deployment of EL structures on porous or fibrous substrates
US5856029A (en) 1996-05-30 1999-01-05 E.L. Specialists, Inc. Electroluminescent system in monolithic structure
US5980976A (en) 1996-05-30 1999-11-09 E.L. Specialists, Inc. Method for constructing el system in monolithic structure
US6261633B1 (en) 1996-05-30 2001-07-17 E.L. Specialists, Inc. Translucent layer including metal/metal oxide dopant suspended in gel resin
WO1998020279A1 (en) 1996-11-07 1998-05-14 Minnesota Mining And Manufacturing Company Light-illuminating rods
US6142643A (en) * 1996-11-08 2000-11-07 3M Innovative Properties Company Electroluminescent retroreflective article
WO1998020375A1 (en) 1996-11-08 1998-05-14 Minnesota Mining And Manufacturing Company Electroluminescent retroreflective article
US5856030A (en) 1996-12-30 1999-01-05 E.L. Specialists, Inc. Elastomeric electroluminescent lamp
US6309764B1 (en) 1996-12-30 2001-10-30 E.L. Specialists, Inc. Elastomeric EL lamp on apparel
US6270834B1 (en) 1996-12-30 2001-08-07 E.L. Specialists, Inc. Method for construction of elastomeric EL lamp
US6166856A (en) * 1997-06-16 2000-12-26 3M Innovative Properties Company Self light-emitting retroreflective sheet and method for producing the same
WO1998058281A1 (en) 1997-06-16 1998-12-23 Minnesota Mining And Manufacturing Company Self light-emitting retroreflective sheet and method for producing the same
US5981032A (en) 1997-07-02 1999-11-09 3M Innovative Properties Company Retroreflective cube corner sheeting mold and sheeting formed therefrom
US6066384A (en) * 1997-08-01 2000-05-23 3M Innovative Properties Company Retroreflective article having a binder layer containing an epoxy resin and a silicone crosslinked polymer
US6086213A (en) 1998-06-10 2000-07-11 Holce; Mary Elizabeth Universal mount for EL lights, retroreflective sheeting materials, and reflectors
US6271631B1 (en) * 1998-10-15 2001-08-07 E.L. Specialists, Inc. Alerting system using elastomeric EL lamp structure
US7220011B2 (en) 1998-11-23 2007-05-22 Hurwitz Marni M Marine craft and apparatus including electroluminescent auxiliary illumination
EP1127984A1 (en) 1999-08-30 2001-08-29 Matsushita Shokai Co., LTD. Planar light emitting device and light-emitting guide
EP1084633A1 (en) 1999-09-14 2001-03-21 Isis Trust "Garment provided with at least one luminescent means"
WO2001049941A2 (en) 1999-12-30 2001-07-12 Avery Dennison Corporation Light stable fluorescent vinyl suitable for use as a highway retroreflective roll-up sign
US20060011287A1 (en) 1999-12-30 2006-01-19 3M Innovative Properties Company Segmented sheeting and methods of making and using same
USD446945S1 (en) 2000-02-28 2001-08-28 Louis Vuitton Malletier, S.A. Fabric pattern
US6696786B2 (en) 2000-10-11 2004-02-24 Mrm Acquisitions Llc Membranous monolithic EL structure with urethane carrier
US6717361B2 (en) 2000-10-11 2004-04-06 Mrm Acquisitions, Llc Membranous EL system in UV-cured urethane envelope
US6898018B2 (en) * 2000-10-18 2005-05-24 Sharp Kabushiki Kaisha Luminous display element
US20020141060A1 (en) 2001-03-28 2002-10-03 Reflexite Corporation Prismatic retroreflector having a multi-plane facet
WO2003007740A2 (en) 2001-07-21 2003-01-30 Stuart Ian Jukes Garment lighting
US20070056077A1 (en) * 2001-07-30 2007-03-15 3M Innovative Properties Company Vapor permeable retroreflective garment
US7107622B2 (en) 2001-07-30 2006-09-19 3M Innovative Properties Company Vapor permeable retroreflective garment
US20060143772A1 (en) 2001-07-30 2006-07-06 3M Innovative Properties Company Vapor permeable retroreflective garment
US7600269B2 (en) 2001-07-30 2009-10-13 3M Innovative Properties Company Vapor permeable retroreflective garment
US8015620B2 (en) 2001-07-30 2011-09-13 3M Innovative Properties Company Vapor permeable retroreflective garment
US6931665B2 (en) 2001-07-30 2005-08-23 3M Innovative Properties Company Vapor permeable retroreflective garment
US6974610B1 (en) 2002-02-13 2005-12-13 Safe Reflections, Inc. Graphic transfer for high visibility safety apparel
US6859941B2 (en) 2002-02-13 2005-03-01 Safe Reflections, Inc. High visibility safety apparel and graphic transfer therefor
US20030150043A1 (en) * 2002-02-13 2003-08-14 Koppes Robert D. High visibility safety apparel and graphic transfer therefor
US20060044651A1 (en) 2002-10-08 2006-03-02 Nippon Carbide Kogyo Kabushiki Kaisha Recursive-reflective display devices
US7144127B2 (en) 2002-12-23 2006-12-05 Safe Lites, Llc Single assembly EL lighting for garments
US7229184B2 (en) 2002-12-23 2007-06-12 Safe Lites, Llc EL lighted articles
US20060291194A1 (en) * 2002-12-23 2006-12-28 Safe Lites, Llc. El lighted articles
US7147339B2 (en) 2002-12-23 2006-12-12 Safe Lites, Llc EL lighted garment with reduced glow up
US6769138B2 (en) 2002-12-23 2004-08-03 Safe Lites, Llc Safety vest and other clothing articles
US7229183B2 (en) 2002-12-23 2007-06-12 Safe Lites, Llc EL lighting for safety orange garments
US7281813B2 (en) 2002-12-23 2007-10-16 Safe Lites, Llc EL lighted articles
US6964493B1 (en) 2003-01-17 2005-11-15 Whitlock Enterprises, Llc Method and apparatus for adding light transmission to an article of clothing
WO2004100111A2 (en) 2003-04-29 2004-11-18 France Telecom Textile display
JP2005077448A (en) 2003-08-29 2005-03-24 Keiwa Inc Light diffusing sheet and backlight unit using the same
JP2005077445A (en) 2003-08-29 2005-03-24 Keiwa Inc Light diffusing sheet and backlight unit using same
DE20313630U1 (en) 2003-09-03 2003-12-24 Stehn, Hartwig Clothing item, e.g. safety jacket for police, firemen or road workers, has illumination in form of electroluminescent film arranged on surface of material from which item of clothing is manufactured
GB2408915A (en) 2003-11-22 2005-06-15 Adam Ford Illuminated apparel, baggage or similar
US20050157390A1 (en) 2004-01-21 2005-07-21 Weiss Douglas E. Retroreflective elements and articles
US7156528B2 (en) 2004-01-21 2007-01-02 3M Innovative Properties Company Retroreflective elements and articles
DE202004011734U1 (en) 2004-07-27 2004-09-30 Fer Fahrzeugelektrik Gmbh Safety jacket for police and ambulance personnel, has reflective surface with signs and electroluminescent arrangement with power supply and electronic control
US20060034064A1 (en) 2004-08-13 2006-02-16 James Kanzler Illuminated safety vest
US20060092625A1 (en) * 2004-11-01 2006-05-04 Mckowen Martin Electronic luminescent clothing and tapes
CA2487264A1 (en) 2004-11-12 2006-05-12 Martin Mckowen Electronic luminescent clothing and tapes
JP2006228455A (en) 2005-02-15 2006-08-31 Koizumi Sangyo Corp Electroluminescent light source body and electroluminescent light source device
WO2006129246A2 (en) 2005-05-31 2006-12-07 Koninklijke Philips Electronics N.V. Light-source with fabric diffusing layer
WO2007065227A1 (en) 2005-12-09 2007-06-14 All Innovations Pty Ltd Light guides, illuminated articles and devices
US20090070967A1 (en) * 2006-01-10 2009-03-19 Joseph Gonzalez Conspicuity devices and methods
FR2896608A1 (en) 2006-01-26 2007-07-27 Graux Christophe Anselme Valen User e.g. pedestrian, visualizing, signaling, communicating and safety device for being worn by user, has garment on which electroluminescent elements are placed on body`s sides and sleeves` faces and controlled by remotecontrol-transmitter
WO2007092152A2 (en) 2006-02-02 2007-08-16 3M Innovative Properties Company License plate assembly
US20080030856A1 (en) * 2006-08-01 2008-02-07 Tao-Ming Tom King Breathable retroreflective material for high visibility safety apparel and reflective apparel
USD594664S1 (en) 2006-08-02 2009-06-23 3M Innovative Properties Company Retroreflective article
USD587907S1 (en) 2006-08-02 2009-03-10 3M Innovative Properties Company Retroreflective article
USD587909S1 (en) 2006-08-02 2009-03-10 3M Innovative Properties Company Retroreflective article
USD587908S1 (en) 2006-08-02 2009-03-10 3M Innovative Properties Company Retroreflective article
USD594663S1 (en) 2006-08-02 2009-06-23 3M Innovative Properties Company Retroreflective article
WO2008122920A2 (en) * 2007-04-04 2008-10-16 Philips Intellectual Property & Standards Gmbh Light emitting device
WO2008142012A1 (en) 2007-05-18 2008-11-27 Lyttron Technology Gmbh Protective clothing comprising an electroluminescent (el) illumination laminate, production method therefor and use thereof
EP1992240A1 (en) 2007-05-18 2008-11-19 LYTTRON Technology GmbH Protective gear with an EL glowing laminate and manufacturing method and application therefor
US20090021831A1 (en) 2007-07-16 2009-01-22 3M Innovative Properties Company Prismatic retroreflective article with cross-linked image layer and method of making same
US20100202143A1 (en) 2007-09-18 2010-08-12 Michael Ruehlemann Illumination Device and Actively Illuminated Article
US20090097234A1 (en) * 2007-09-28 2009-04-16 Osram Opto Semiconductors Gmbh Illumination Device, Luminaire and Display Device
GB2466027A (en) 2008-12-08 2010-06-09 Personal Security Prot Ltd Reflective strip
US20100177517A1 (en) 2009-01-10 2010-07-15 Stephen Foley Safety flag
USD613073S1 (en) 2009-03-12 2010-04-06 3M Innovative Properties Company Retroreflective and luminous article
US20100232143A1 (en) 2009-03-12 2010-09-16 Kenneth Burrows Hybrid electroluminescent assembly
US20100231113A1 (en) 2009-03-12 2010-09-16 3M Innovative Properties Company Laminate reflective and electroluminescent article

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
International Search Report PCT/US2010/025994 Nov. 5, 2010, 5 pgs.
M 96 10 334 and M 97 00 908 DE Taste Sample Sheet Folder 13 of 0/10/1997, Retro Reflecting Films for Speedometer Glass Lenses of the Type 1, 2, 3.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11925219B2 (en) * 2015-06-18 2024-03-12 Jeffrey Garre Barkshire Fashionable high-visibility safety apparel
RU167826U1 (en) * 2016-05-20 2017-01-10 Андрей Александрович Сирык PUSATAS PORTABLE ALARM SYSTEM
USD874157S1 (en) 2017-04-06 2020-02-04 Radians, Inc. Shirt with reflective tape
USD954447S1 (en) 2017-04-06 2022-06-14 Radians, Inc. Reflective tape
US20190037934A1 (en) * 2017-08-02 2019-02-07 VisionVest, LLC Safety vest
US10617159B2 (en) * 2017-09-30 2020-04-14 Wearable Technology Limited High visibility garments for operatives working in a hazardous environments
US20200046049A1 (en) * 2018-08-09 2020-02-13 Michael J. Benz Illuminated Glow Jacket
US20220071327A1 (en) * 2020-09-10 2022-03-10 Chance Line Industrial Co., Ltd. Light-reflective mark formed with light-reflective yarn

Also Published As

Publication number Publication date
WO2010104706A2 (en) 2010-09-16
WO2010104706A3 (en) 2010-12-23
EP2405778A2 (en) 2012-01-18
EP2405778B1 (en) 2013-07-17
US20110305006A1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
US9044055B2 (en) Garment with a retroreflective and electroluminescent article
US8288940B2 (en) Laminate reflective and electroluminescent article
EP2407006B1 (en) Hybrid electroluminescent assembly
US6974610B1 (en) Graphic transfer for high visibility safety apparel
US10856589B1 (en) Safety garment with lights
US7246380B2 (en) Protective garment with repairable integrated visibility-enhancing features
US20140355257A1 (en) Illuminated article of clothing
CN106471680B (en) With the luminous fabric element for freely connecting system
US20060092625A1 (en) Electronic luminescent clothing and tapes
US20140307423A1 (en) Flexible interconnect circuitry
CN110708976B (en) Reflective wearing article
KR20110001704A (en) Flexible led panel
CN201127311Y (en) Luminous alarm clothes
US20050223464A1 (en) Luminescent vest equipped with plastic optical fibers
JP2004308050A (en) Light emitting element-attached garment
US20200085117A1 (en) Reflective articles of wear
CN220262226U (en) Cloth with luminous layer
WO2005039338A1 (en) Device and method for improving the visibility of clothing
CN213246999U (en) Safety garment with light emitting and reflecting functions
CN210672166U (en) Wearable potential safety hazard investigation device
CN210403010U (en) Electronic device
CN220140872U (en) Protective clothing with warning sign
US20040126626A1 (en) Luminescent fabric
CN112334030A (en) Method for producing a luminous sports garment
AU2004203578A1 (en) Electronic Luminescent Clothing and Tapes

Legal Events

Date Code Title Description
AS Assignment

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEHENBERGER, RODNEY K.;REEL/FRAME:026791/0429

Effective date: 20110819

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20230602