US3861870A - Fabric softening compositions containing water-insoluble particulate material and method - Google Patents

Fabric softening compositions containing water-insoluble particulate material and method Download PDF

Info

Publication number
US3861870A
US3861870A US357130A US35713073A US3861870A US 3861870 A US3861870 A US 3861870A US 357130 A US357130 A US 357130A US 35713073 A US35713073 A US 35713073A US 3861870 A US3861870 A US 3861870A
Authority
US
United States
Prior art keywords
poly
composition
particulate material
accordance
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US357130A
Inventor
James Byrd Edwards
Francis Louvaine Diehl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to US357130A priority Critical patent/US3861870A/en
Priority to CA198,215A priority patent/CA1029154A/en
Priority to DE2420532A priority patent/DE2420532C2/en
Priority to JP4960774A priority patent/JPS5727225B2/ja
Priority to CH598974A priority patent/CH578078A5/xx
Priority to NL7405965A priority patent/NL7405965A/xx
Priority to AT367074A priority patent/AT347553B/en
Priority to GB1945074A priority patent/GB1428062A/en
Priority to IT7422287A priority patent/IT1017572B/en
Priority to BE143924A priority patent/BE814552A/en
Priority to FR7415423A priority patent/FR2228130B1/fr
Application granted granted Critical
Publication of US3861870A publication Critical patent/US3861870A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/025Metal oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/46Compounds containing quaternary nitrogen atoms
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/46Compounds containing quaternary nitrogen atoms
    • D06M13/463Compounds containing quaternary nitrogen atoms derived from monoamines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/11Starch or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/244Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
    • D06M15/256Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/423Amino-aldehyde resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process

Definitions

  • This invention relates to fabric softening compositions which comprise in addition to conventional fabric softening agents a substantially water-insoluble particulate material. These compositions impart to fabrics treated therewith in a conventional manner a series of fabric-care benefits including anti-wrinkling, ease of ironing, softening, folding ease, enhanced fabric drapability and appearance improvement, which cannot be achieved simultaneously from the use of softening and fabric conditioning compositions known in the art.
  • present day fabric softeners impart a softness to the fabric (actually this softness is best likened to a tactile sensation of lubricity, which is distinguishable from fabric softness occasioned by enhanced fabric bulkiness) and control of electrostatic charge.
  • Modern day washing machines and dryers by means of elaborate cycles and temperature control are able to markedly improve the extent of fabric wrinkling.
  • Other products such as well-known laundry starches, if desired in combination with particulate organic constituents having a melting point below ironing temperatures, impart when applied after the washing cycle, crease permanence and ease of ironing benefits and also impart a body to the fabric, i.e., a sizing effect.
  • the softening compositions of this invention impart all of these and other benefits simultaneously when applied in a conventional manner. That is, the softening compositions of this invention, by some imperfectly understood physical-chemical interaction at the fiber or yarn level, impart, through the rinse cycle or in general through the conditioning operation, the benefits enumerated, by way of example, hereinbefore. These benefits are solely attributable to the presence of a substantially water-insoluble particulate material as hereinafter defined in combination with cation-active fabric softener compounds.
  • Fabric softening compositions on the basis of quaternary ammonium compounds such as ditallowdimethylammonium chloride are known in the art and have been commercialized for a decade as rinse softening compositions.
  • Other approaches to fabric softening involve the use of various clay particles.
  • U.S. Pat. No. 3,033,699 pertains to compositions and processes for improving the anti-static properties of synthetic fiber yarns through the application of an aqueous suspension of magnesium montmorillonite clay and an alkali stabilized colloidal silica salt.
  • U.S. Pat. No. 3,594,212 teaches that cellulosic fibrous materials can be softened by treatment thereof with montmorillonite clays and polyamines or polyquaternary ammonium compounds.
  • Pat. No. 3,063,128 dis closes a process for controlling static properties of synthetic textile fibers and exhibiting moisture regain not exceeding 5% through the application of an aqueous suspension of montmorillonite to the fibers followed by 1 drying such as to insure that at least about 0.5% of the montmorillonite clays have been deposited on the fibers.
  • the co-pending applications; Gloss, U.S. Ser. No. 333,104, filed Feb. 16, i973, and Bernardino, Ser. No. 337,331, filed Mar. 2, 1973; relate to the use of smectite-type clays in fabric softening compositions.
  • fabric conditioning compositions containing various particulate materials for the purpose of a specific function are known in the art.
  • detergent scouring compositions containing water-insoluble particulate materials which mostly have a particle diameter in the range from about to micrometers and a hardness of about 7 on the Moh scale.
  • Thermoplastic particulate materials are also known in the art and have been used in connection with laundering and conditioning operations, mainly for the purpose of textile finishing, ease of ironing, and sizing. These thermoplastic materials are softened or fused during, e.g., ironing thereby providing a sizing to the fabric.
  • prior art fabric conditioning compositions containing the particulate materials referred to hereinbefore do not produce the fabric conditioning benefits of the instant compositions, and in many cases, tend to impart harshness or stiffness to the fabric.
  • compositions which are capable of imparting a broad range of desirable properties to fabrics treated therewith.
  • Such compositions comprise:
  • the present invention provides a process capable of simultaneously imparting a series of desirable fabric-care benefits to textiles treated therewith.
  • Such method comprises treating textiles in a liquor comprising:
  • the present invention relates to fabric softening compositions capable of imparting a series of fabriccare benefits to fabrics treated therewith.
  • compositions comprise (1) a cation-active fabric softener compound; and (2) a substantially waterinsoluble particulate material.
  • the essential cation-active fabric softener compound will normally be employed in the compositions of this invention in an amount from about 0.5% to about 95%.
  • the amount of cationic fabric softener can vary.
  • a liquid softening composition preferably comprises from about 1% to about 30%, especially from about 2% to about 25% of said cationic softener. If, in liquid compositions, more than about 30% is used, product stability problems may occur, such as, for example, thickening and the possible formation of undesired gel. If less than 0.5% is used, excessive amounts of softener composition are required to achieve acceptable softening, i.e., this creates uneconomical conditions as regards storage and handling of low-active formulae.
  • Solid, granular or powdered, softening compositions of this invention preferably comprise from about 1% to about 60%, especially from about 5% to about 40% of cation-active ingredient; the upper limit being dependent upon the physical state of the softening ingredient and, if applicable, upon the amount of drying and/or granulating carrier material to be added for obtaining a solid softening composition.
  • the lower cation-active limit, as for the liquid softening composition is based on economical and performance considerations, i.e., handling cost versus overall fabric benefits desirable from a given amount of solid softening composition.
  • the cation-active organic fabric softener compounds for use in the compositions of this invention, are known fabric-softening compounds. Generally, these comprise cationic nitrogen-containing compounds such as quaternary ammonium compounds and amines and have one or two straight-chain organic groups of at least eight carbon atoms. Preferably, they. have one or two such groups of from 12 to 22 carbon atoms.
  • Preferred cation-active softener compounds include the quaternary ammonium softener compounds corresponding to the formula from 12 to 22 carbon atoms; R and R are each alkyl groups of from 1 to 3 carbon atoms; and X is an anion selected from halogen, acetate, phosphate, nitrate and methyl sulfate radicals.
  • preferred cationic softener compounds of the invention are the dialkyl dimethyl ammonium chlorides, wherein the alkyl groups have from 12 to 22 carbon atoms and are derived from long-chain fatty acids, such as hydrogenated tallow.
  • alkyl is intended as including unsaturated compounds such as are present in alkyl groups derived from naturally occurring fatty oils.
  • tallow refers to fatty alkyl groups derived from tallow fatty acids. Such fatty acids give rise to quaternary softener compounds wherein R and R have predominantly from 16 to 18 carbon atoms.
  • coconut refers to fatty acid groups from coconut oil fatty acids.
  • the coconutalkyl R and R groups have from about 8 to about 18 carbon atoms and predominate in C to C alkyl groups.
  • Representative examples of quaternary softeners of the invention include tallow trimethyl ammonium chloride; ditallow dimethyl ammonium chloride; ditallow dimethyl ammonium methyl sulfate; dihexade cyl dimethyl ammonium chloride; di(hydrogenated tallow) dimethyl ammonium chloride; dioctadecyl dimethyl ammonium chloride; dieicosyl dimethyl ammonium chloride; didocosyl dimethyl ammonium chloride; di(hydrogenated tallow) dimethyl ammonium methyl sulfate; dihexadecyl diethyl ammonium chloride; dihexadecyl dimethyl ammonium acetate; ditallow dipropyl ammonium phosphate; ditallow dimethyl ammonium nitrate; di(coconut-alky
  • An especially preferred class of quaternary ammonium softeners of the invention correspond to the formula CH CH wherein R and R are each straight chain aliphatic groups of from 12 to 22 carbon atoms and X is halogen, e.g., chloride.
  • X is halogen, e.g., chloride.
  • ditallow dimethyl ammonium chloride and di(hydrogenated tallow-alkyl) dimethyl ammonium chloride and di(- coconut-alkyl) dimethyl ammonium chloride these compounds being preferred from the standpoint of exherein are the quaternary imidazolinium salts.
  • Pre-- ferrred salts are those conforming to the formula wherein R is an alkyl containing from 1 to 4, preferably from 1 to 2, carbon atoms, R is an alkyl containing from 1 to 4 carbon atoms or a hydrogen radical, R is an alkyl containing from 1 to 22, preferably at least 15, carbon atoms, R an alkyl containing from 8 to 22, preferably at least 15, carbon atoms, and X is an anion, preferably methyl sulfate or chloride ions.
  • Other suitable anions include those disclosed with reference to the cationic quaternary ammonium fabric softeners described hereinbefore.
  • cationic quaternary ammonium fabric softeners which are useful herein include, for example, alkyl (C to C )-pyridinium chlorides, alkyl (C to C alkyl (C to Cg)-morpholinium chlorides, and quaternary derivatives of amino acids and amino esters.
  • cationic fabric softeners mentioned above can be used singly or in combination in the practice of the present invention.
  • l-methyll Operability of the essential substantially waterinsoluble particulate component for use in the compositions of the instant invention is dependent on a series of characteristics; namely, (1) an average particle size from about l.0 to about 50, preferably from about 5 to about 30 micrometers; (2) a shape having an anisotropy of about 5:1 to 1:1; (3) a hardness of less than about 5.5 on the Moh scale; (4) a melting (softening) temperature above about 150C; and (5) substantial freedom from exchangeable calcium and magnesium ions.
  • Said particulate component is used in the instant compositions in an amount from about 0.01% to about 95%.
  • the level of particulate material can vary widely, depending upon physical state and intended use of a particular composition.
  • liquid softener formulations normally have a level of particulate material from about 0.01% to about preferably from 0.1% to 6%, more preferably from 0.2% to 4
  • the upper limit is normally dictated by the material possibility for incorporating a given amount of particulate component without disturbing the liquid state of the composition, i.e., to avoid, for example, gelatinization, phase separation and precipitation.
  • the lower limit is based on economical and performance considerations, i.e., a further reduction of softener compound entails that excessive amounts of softening composition are needed to achieve the inventive advantages.
  • the solid softening compositions of this invention preferably contain from about 0.1% to about 50%, more preferably from about 0.2% to about 25% of the essential particulate component. Increasing I the level of particulate ingredient above the upper limit (95%) does not procure additional performance advantages.
  • the average particle size of the substantially waterinsoluble particulate component is within the range from about 1 to about 50, preferably from about 5 to about micrometers.
  • the particle diameter limitation appears to relate to the diameters of (commercially) available textile fibers which fall mostly within the range of about 10 to about 30 micrometers, Accordingly, the use of particulate water-insoluble materials having an average diameter of more than about mi crometers will not provide the fabric benefits enumerated hereinbefore. On the other hand, the use of particulate water-insoluble materials having an average particle size diameter of less than about 1 micrometer will not provide the overall fabric benefits obtainable through the practice of this invention.
  • the substantially water-insoluble particulate component is further characterized by an anisotropy (axial ratio) of about 5:1 to 1:1.
  • the determination of particle size can be based on the measurement of the projection area of the water-insoluble particle or on the linear measures of this projection area. Or, in other words, the loose particle resting on its surface of maximum stability, the long and intermediate axis are normally horizontal and the short axis vertical.
  • the term long axis represents the maximum overall length of the particle; intermediate axis stands for the maximum dimension of a particle in a direction perpendicular to the long axis; whereas short axis represents the maximum dimension in a direction perpendicular to the plane containing the long and intermediate axis.
  • anisotropy represents the ratio of long axis to short axis for a specific particulate material.
  • Preferred for use in the compositions of this invention are particulate materials having an anisotropy within the range from about 3:1 to about 1.121.
  • the essential particulate component for use herein has a hardness of less than about 5.5 on the Moh scale.
  • the hardness as so measured is a criterion of the resistance of a particular material to crushing. It is known as being a fairly good indication of the abrasive character of a particulate ingredient.
  • materials arranged in increased order of hardness according to the Moh scale are as follows: h(hardness)-l:talc; dried filter-press cakes, soap-stone, waxes, aggregated salt crystals; h-2: gypsum, rock salt, crystalline salt ingeneral; h-3: barytes, chalk, brimstone, calcite; h-4: fluo rite, soft phosphate, magnesite, limestone; h-5: apatite, hard phosphate, hard limestone, chromite, bauxite; h-6: feldspar, ilmenite, hornblendes; h-7: quartz, granite; h-8: topaz; h-9: corrundum, emery; and h-10: diamond.
  • Suitable particulate materials have a hardness of less than about 5.5 on the Moh scale. Although some fabtion resulting from multicycle textile-treating operations.
  • the substantially water-insoluble particulate material' has a melting point about C.
  • Particulate materials having a melting point below that temperature do not provide the fabric benefits because of their tendency to melt and accordingly spread through the fabric thereby giving body to the fabric which is commonly known as sizing. This is undesirable in the context of this invention and the particulate materials must be such as to maintain under ironing conditions, i.e., above around 150C, their integrity and shape as said characteristics are essential for the attainment of the fabric-care benefits derivable from the uses of the compositions of the instant invention.
  • the particulate material must be substantially water-soluble as its function depends upon its integrity, shape, firmness, etc. as described in detail hereinbefore. It should be recognized, however, that minor parts of the particulate ingredient, preferably not more than 20%, can be water-soluble without markedly decreasing the performance advantages.
  • the water-insoluble particulate materials are substantially free of exchangeable calcium and magnesium ions.
  • exchangeable alkaline earth metal ions such as calcium and magnesium in the particulate materials appears to increase their hydrophilic properties. This results in enhanced swellability characteristics, which, in turn, constitute an obstacle to the uniform and stable enmeshing of particulate material within the fiber structure.
  • particulate materials having exchangeable calcium and magnesium ions in their structure detract from attaining overall fabric benefits as described hereinabove.
  • DRY-FLO starches are surface-treated starches bearing hydrophobic moieties which have been reacted with the starch molecule through the formation of ester and ether linkages. As a result of its chemical modification, these starch derivatives are water-repellant and accordingly substantially waterinsoluble. Dry-Flo starches have an average particle size diameter of about 9ll micrometers.
  • Additional substantially water-insoluble particulate materials suitable for use in the compositions of the instant invention include:
  • Another substantially water-insoluble particulate component for use in the instant compositions is a starch granule having, in addition to the essential parameters as defined in the claims, a swelling power of less than about 15 at a temperature of 65C. Modification of the starch granules in a matter such as to render it more soluble by gelatinizing, derivatizing, or degrading is to be avoided to the extent it leads to starches which can lose their firm shape and also do not qualify for use in the present invention. Soluble or gelatinizable starches having a swelling power of more than about 15 to 65C are less suitable as they tend to lose their individual shape and consequently run into the fiber which, in turn, leads to undesirable stiffness of fabrics.
  • the swelling power is determined according to the mthod set forth in Cereal Chem, 36, pp. 534-544 (1959) Harry W. Leach, et al.
  • Ten grams of starch are suspended in 180 ml. of distilled water in a tared 250- ml. centrifuge bottle.
  • the suspension is mechanically stirred with a small stainless-steel paddle (0.75-in. wide, l.5-in. high) at a rate just sufficient to keep the starch completely suspended (i.e., 200 rpm.) This low speed avoids shearing the fragile swollen granules and consequent solubilization of the starch.
  • the bottle is lowered into a thermostatted water bath maintained at a temperature of 65C (i0.lC) and held for 30 minutes, slow stirring being continued during this period.
  • the bottle is then removed, wiped dry, and placed on the torsion balance.
  • the stirrer is removed and rinsed into the bottle with sufficient distilled water to bring the total weight of water present to 200.0 g. (including the moisture in the original starch).
  • the bottle is stoppered, mixed by gentle shaking, and then centrifuged for 15 minutes at 2,200 rpm. (i.e., 700 times gravity). The clear supernate is carefully drawn off by suction to within )4 in. of the precipitated paste.
  • Starches having a swelling power of more than l5 at 65C are not suitable for use in the instant composition.
  • suitable starches can, for example, be obtained, from corn, wheat, and rice.
  • Current potato and tapioca starches have a swelling power exceeding 15 at a temperature of 65C and, therefore, are not suitable for being used in the compositions of this invention.
  • More complete information concerning waterinsoluble starches, the processes for their preparation and isolation from a variety of raw materials are well known [see, for example: THE STARCH INDUSTRY, Knight, J. W., Pergamon Press, London (1969)].
  • textile materials consist essentially of assemblies of fine flexible fibers arranged in more or less orderly geometrical arrays. lndividual fibers within the assembly are usually in a bent or twisted configuration and are in various states of contact with neighboring fibers. When the assembly is deformed the fibers move relative to each other and this relative motion accounts to a large extent for the characteristic flexibility of textile materials.
  • textile fabrics treated in accordance with the present invention are characterized by having discrete particulate materials intimately dispersed, in a substantive fashion, in the interstices of the fiber matrix. It is believed that these particulate materials, so interfiberly positioned, act in the manner of ball bearings to reduce interfiber forces during deformation of the textile fabric as a whole.
  • the gross effect is the enhancement of visco-elastic recovery (anti-wrinkling effect) and diminution of the forces operable at interfiber contact points (ease of ironing effect).
  • the particle diameter limitation is appreciated since most commercially available textile fibers have diameters which fall within the range of about to about 30 micrometers.
  • the particulate material of the invention must preferably be comparable to the textile fiber diameters.
  • the above-mentioned benefits are similarly related to the presence of the particulate material at points within interstices of individual fiber yarns. Microscopic examination of textile yarns in cross section reveals that textiles treated in accordance with the present invention have greater yarn diameters than similar textile yarns which are distinguishable by the absence of particulate materials. Hence, the particulate materials positioned in the interfiber spaces effectively open up the yarn (apparent increase in bulk) resulting in a softer, fluffier textile fabric.
  • the anti-static benefit appears to be related to a change in the resistivity of the fabric matrix containing the particulate materials; for example, the copresence of chemically modified starch granules such as DRY-FLO starch, in the textile fabric, increases the equilibrium moisture content of the matrix, thereby decreasing its resistivity and diminishing static build-up.
  • a particular embodiment of the present invention provides a method for treating fabrics for simultaneously imparting fabric-care benefits to textiles treated therewith.
  • the fabrics are treated in an aqueous liquor comprising from about 0.2 ppm (part per million) to about 5,000 ppm, preferably from about 2.5 ppm to about 1,000 ppm of a cation-active fabric softener.
  • Suitable and preferred cationic softening agents for use in the instant method are the same as those which fit the composition aspect of this invention; these species have been described in great detail hereinbefore.
  • Another essential component for use in the aqueous liquor is represented by substantially water-insoluble particulate materials having: (1) an average particle size in the range from about 1 to about 50 micrometers; (2) a shape having an anisotropy of about 5:1 to 1:1; (3) a hardness of less than about 5.5 on the Moh scale; (4) a melting point above about 150C; and (5) substantial freedom from exchangeable calcium and magnesium ions.
  • the particulate material is used in an amount from about 0.2 ppm to about 1,000 ppm, preferably from about 0.5 ppm to about 500 ppm.
  • Suitable and preferred species are those which fit the composition requirements of this invention; said species are described in greater detail hereinbefore.
  • the aqueous liquor needed 'for carrying out the method of this invention can, for example, be prepared by adding to a substantially aqueous medium softening compositions corresponding to the fabric softening compositions in this invention. Similar results can also be obtained, however, by adding the individual ingredients to an aqueous medium. As an example thereof, one may consider adding to the aqueous medium a softening composition containing all ingredients except the particulate material which is to be added separately. It is also possible to prepare a softening composition containing the cation-active agents and other usual ingredients whereas the particulate material can be added in combination with inerts like urea or with other minor ingredients.
  • the particulate material can be admixed with a conventional previously prepared fabric softening composition, or can be incorporated together with the individual ingredients of the composition prior to the mixing and uniformizing process.
  • care has to be taken to avoid processing steps which might alter the native granular integrity of the particulate material.
  • excessive heating and grinding operations must be avoided as these steps may contribute to a disruption of the particulate material structure and accordingly render the softening composition less effective for fabric conditioning operations.
  • the preparation of homogenous and storage stable liquid softening compositions in accordance with this invention may require the incorporation of phase stabilizers, suspending agents, thickeners, and the like in the usual amounts.
  • compositions of the instant invention can also contain additonal ingredients to make them more attractive or more effective and also inert fillers.
  • the composition of this invention can contain thickeners, solubilizing agents, and also minor amounts of detergent ingredients for the purpose of rendering, for example, the liquid compositions hereof, more storage stable and also in order to facilitate incorporation therein of higher amounts of the essential ingredients.
  • Dyes, perfumes and anti-bacterial agents can be incorporated for improving the aesthetics and for performance reasons.
  • inerts such as urea, sodium sulfate and sodium chloride.
  • conditioning compositions of the present invention are evaluated by certain tests upon textile fabrics treated therewith as set forth below.
  • a bundle of mixed fabrics (ca. 53% allcotton; 12% 65/35 polyester/cotton blend; 17% nylon; 18% Da cron) is treated for 10 minutes in a miniature agitator washer containing two gallons of aqueous liquor containing the test softening compositions (as set forth below).
  • the temperature is F; water hardness 7 grains/gallon artificial hardness.
  • the bundle comprises 5% by weight of the softening liquor. The bundle is spin extracted prior to being dried in a commercial dryer.
  • the static charge on each fabric is then measured by a standard electrostatic technique within a Faraday cage.
  • the sum of the absolute values of the charges on all fabrics in the bundle, divided by the sum of the area (yards of the total fabric surface (2 sides of the fabric) is then computed.
  • This so-called static value (volts/yard correlates with gross observations of the effects of static charges on fabric surfaces, i.e., electrical shocks, sparks, fabric clinging, etc.
  • no static clinging is exhibited by fabrics having a static value less than about 1.5 volts/yards substantial static clinging is noted in fabrics having a static value above 4.5 volts/yard?
  • Anti-wrinkling Test (measured). These tests are performed against untreated controls.
  • the temperature is 100F; water hard ss 7 A liquid base fabrlc softenlng composltlon was pregrains/gallon artificial hardness.
  • the bundle is spin expared havlng the followmg formula? tracted prior to being dried in a commercial dryer.
  • the fabric-care Smooth, unwrinkled fabric gives essentially a straight benefits represent reduced wrinkling and reduced ironline of constant llght intensity whereas a wrinkled fabing efforts measured as previously described, In all ric gives a series of peaks and minima.
  • the ratio of the cases, the performance of the inventive formulations absolute distance through which the fabric was moved tested was compared to the performance of an identical to the length of the plotted curve is quantitatively reformulation which did not contain particulate materilated to the extent of wrinkling. als.
  • the temperature is 100 F; water hardness 7 gralns/gall l h d Th b ndle is S in "acted ease of lronlng, antl-wrinkllng and appearance lmar 1 e u p ex provements to fabrics treated therewith. prlor to being dried in a commerclal dryer.
  • distearyl dimethyl ammonium chloride is incorporated at a level of: 2,5%; 4,5%; 7%; 11%; 14.5%, 18%; 20.5%; and 25%, respectively.
  • DRY-FLO starch is used (in the formulation) at a level of: 0.2%, 0.8%; 1.2%; 2%; 3%; 4.5%; 6%, 7.2%; and 9%, respectively.
  • Solid fabric-conditioning compositions which provide a broad range of benefits to fabrics treated therewith, are prepared having the following formulas:
  • a fabric softening composition comprising a. from about 0.5% to about 95% by weight of a cation-active fabric softener compound having from one to two straight-chain organic groups of from 8 to 22 carbon atoms; and b. from about 95% to about 0.01% by weight of a substantially water-insoluble particulate material having i. an average particle size in the range from about 1 to about 50 micrometers; ii. a shape having an anisotropy of about 5:1 to 1:1; iii. a hardness of less than about 5.5 on the Moh scale; iv. a melting point above about 150C; and v. substantial freedom from exchangeable calcium and magnesium ions. 2.
  • a composition in accordance with claim 1 wherein the cation-active softener compound has the formula R2 R ⁇ R3 PARTS BY WEIGHT Ingredients XlV XV XVl XVll XVlll XlX XXI 69,2 DRY-FLO starch: average particle diameter 10pm Minors, including dye, perfume, emulsifying agent, hydrotropes and moisture 7 5 4 Substantially identical results are obtained when DRY-FLO starch is replaced with an equivalent amount of: poly(methylmethacrylate) isotactic or syndiotactic form; poly(tetrafluoroethylene); polystyrene; po1y(styrenedivinylbenzene); polyvinyltoluene; poly(- melamineformaldehyde-ureaformaldehyde); poly(ureaformaldehyde); fine glass micro-balloons;
  • a liquid fabric softening composition comprising a. from about 1% to about 30% by weight of a cationactive fabric softener compound having from 1 to 2 straight-chain organic groups of from 8 to 22 carbon atoms; and
  • composition in accordance with claim 4 wherein the cation-active fabric softener compound is present in an amount from about 2% to about by weight.
  • composition in accordance with claim 6 wherein the cation-active softener compound has the formula wherein R is hydrogen or an aliphatic group of from 1 to 22 carbon atoms; R is an aliphatic group having from 12 to 22 carbon atoms; R and R are each alkyl groups of from 1 to 3 carbon atoms; and x is an anion selected from halogen, acetate, phosphate, nitrate and methyl sulfate radicals.
  • the substantially water-insoluble particulate material is selected from the group consisting of surface-modified starch, poly(methylmethacrylate), poly(tetrafluoroethylene), polystyrene, poly(styrenedivinylbenzene), poly(vinyltoluene), poly(melamineformaldehydeureaformaldehyde), poly(ureaformaldehyde), glass beads, glass microballoons, starch, and mixtures thereof.
  • a solid fabric softening composition comprising a. from about 1% to about 60% by weight of a cationactive fabric softener compound having from 1 to 2 straight-chain organic groups of from 8 to 22 carbon atoms; and
  • composition in accordance with claim 9 wherein the cation-active fabric softener is used in an amount from about 5% to about 40% by weight.
  • composition in accordance with claim 10 wherein the substantially water-insoluble particulate material is present in an amount from about 0.2% to about 25% by weight.
  • a composition in accordance with claim 11 wherein the cation-active fabric softener is selected from the group consisting of i. quaternary ammonium compounds of the formula phate, nitrate, and methyl sulfate radicals; and ii. imidazolinium salts of the formula wherein R is an alkyl containing from 1 to 4 carbon atoms, R is an alkyl containing from 1 to 4 carbon atoms or a hydrogen radical, R is an alkyl containing from 1 to 22 carbon atoms, R is an alkyl containing from 8 to 22 carbon atoms, and X is an an- 1011.
  • a composition in accordance with claim 12 wherein the substantially water-insoluble particulate material is selected from the group consisting of surface-modified starch, poly(methylmethacrylate, poly(tetrafluoroethylene), polystyrene, poly(- styrenedivinylbenzene), poly(vinyltoluene), poly(melamineformaldehyde-ureaformaldehyde), poly(ureaformaldehyde), glass beads, glass microballoons, starch, and mixtures thereof.
  • a composition in accordance with claim 13 wherein the quaternary ammonium fabric softener is selected from the group consisting of tallow trimethyl ammonium chloride; ditallow dimethyl ammonium chloride; ditallow dimethyl ammonium methyl sulfate; dihexadecyl dimethyl ammonium chloride; di(hy- 0 drogenated tallow) dimethyl ammonium chloride; di-
  • octadecyl dimethyl ammonium chloride dieicosyl dimethyl ammonium chloride; didocosyl dimethyl ammonium chloride; di(hydrogenated tallow) dimethyl ammonium methyl sulfate; dihexadecyl diethyl ammo- 5 nium chloride; dihexadecyl dimethyl ammonium acetate; ditallow dipropyl ammonium phosphate; ditallow dimethyl ammonium nitrate; di(coconut-alkyl) methyl ammonium chloride.
  • a method for treating fabrics to impart desirable fabric-care benefits comprising treatingfabrics in an aqueous liquor comprising:
  • a substantially water-insoluble particulate material having: i. an average particle size in the range from about 1 to about 50 micrometers; ii. a shape having an anisotropy of about :1 to 1:1;

Abstract

Fabric softening compositions with improved conditioning properties comprising a cation-active fabric softener and certain substantially water-insoluble particulate materials are described. The compositions permit the simultaneous attainment of softening, ease of ironing, anti-wrinkling and appearance benefits of fabrics treated therewith.

Description

United States Patent [1 Edwards et al.
[ Jan. 21, 1975 [54] FABRIC SOFTENING COMPOSITIONS CONTAINING WATER-INSOLUBLE PARTICULATE MATERIAL AND METHOD [75] Inventors: James Byrd Edwards, Roselawn;
Francis Louvaine Diehl, Wyoming,
both of Ohio [73] Assignee: The Procter & Gamble Company,
Cincinnati, Ohio [22] Filed: May 4, 1973 [21] Appl. No.: 357,130
[52] US. Cl... 8/ll5.6, 117/1395 CF, 117/1395 A, 252/8.6, 252/8.8
[51] Int. Cl. D06c 19/00 [58] Field of Search 252/8.6, 8.8; 8/1 15.6, 8/137;117/139.5 CF, 139.5 A
[56] References Cited UNITED STATES PATENTS 3,696,034 10/1972 Hewitt et al. 252/8.6 X 3,756,950 9/1973 Gluck 252/8.8 X
Primary ExaminerStephen J. Lechert. Jr.
[57] ABSTRACT 17 Claims, No Drawings FABRIC SOFTENING COMPOSITIONS CONTAINING WATER-INSOLUBLE PARTICULATE MATERIAL AND METHOD BACKGROUND OF THE INVENTION This invention relates to fabric softening compositions which comprise in addition to conventional fabric softening agents a substantially water-insoluble particulate material. These compositions impart to fabrics treated therewith in a conventional manner a series of fabric-care benefits including anti-wrinkling, ease of ironing, softening, folding ease, enhanced fabric drapability and appearance improvement, which cannot be achieved simultaneously from the use of softening and fabric conditioning compositions known in the art.
Modern fabric-softening and conditioning compositions, washing machines and dryers are subject to continuous improvement with a view to achieve a series of fabric benefits such as, for example, softening, body, anti-wrinkling, ease of ironing, and improvement in appearance. As of yet, however, no single fabric conditioning composition is available capable of providing textiles treated therewith in the conventional matter with a broad spectrum of fabric-care benefits as, for example, referred to hereinbefore.
For example, present day fabric softeners impart a softness to the fabric (actually this softness is best likened to a tactile sensation of lubricity, which is distinguishable from fabric softness occasioned by enhanced fabric bulkiness) and control of electrostatic charge. Modern day washing machines and dryers by means of elaborate cycles and temperature control are able to markedly improve the extent of fabric wrinkling. Other products such as well-known laundry starches, if desired in combination with particulate organic constituents having a melting point below ironing temperatures, impart when applied after the washing cycle, crease permanence and ease of ironing benefits and also impart a body to the fabric, i.e., a sizing effect.
The softening compositions of this invention, however, impart all of these and other benefits simultaneously when applied in a conventional manner. That is, the softening compositions of this invention, by some imperfectly understood physical-chemical interaction at the fiber or yarn level, impart, through the rinse cycle or in general through the conditioning operation, the benefits enumerated, by way of example, hereinbefore. These benefits are solely attributable to the presence of a substantially water-insoluble particulate material as hereinafter defined in combination with cation-active fabric softener compounds.
Fabric softening compositions on the basis of quaternary ammonium compounds such as ditallowdimethylammonium chloride are known in the art and have been commercialized for a decade as rinse softening compositions. Other approaches to fabric softening involve the use of various clay particles. For example, U.S. Pat. No. 3,033,699, pertains to compositions and processes for improving the anti-static properties of synthetic fiber yarns through the application of an aqueous suspension of magnesium montmorillonite clay and an alkali stabilized colloidal silica salt. U.S. Pat. No. 3,594,212 teaches that cellulosic fibrous materials can be softened by treatment thereof with montmorillonite clays and polyamines or polyquaternary ammonium compounds. U.S. Pat. No. 3,063,128 dis closes a process for controlling static properties of synthetic textile fibers and exhibiting moisture regain not exceeding 5% through the application of an aqueous suspension of montmorillonite to the fibers followed by 1 drying such as to insure that at least about 0.5% of the montmorillonite clays have been deposited on the fibers. The co-pending applications; Gloss, U.S. Ser. No. 333,104, filed Feb. 16, i973, and Bernardino, Ser. No. 337,331, filed Mar. 2, 1973; relate to the use of smectite-type clays in fabric softening compositions.
Other known fabric conditioning compositions containing various particulate materials for the purpose of a specific function are known in the art. Examples thereof are detergent scouring compositions containing water-insoluble particulate materials, which mostly have a particle diameter in the range from about to micrometers and a hardness of about 7 on the Moh scale. Thermoplastic particulate materials are also known in the art and have been used in connection with laundering and conditioning operations, mainly for the purpose of textile finishing, ease of ironing, and sizing. These thermoplastic materials are softened or fused during, e.g., ironing thereby providing a sizing to the fabric.
The prior art teachings, however, aim at achieving specific functions and objectives which, as regards the properties of the particulate materials, i.e., waterinsolubility, shape, integrity, particle size diameter. hardness, presence of exchangeable alkaline earth metal ions and melting (softening) temperatures. are essentially different from the physical properties of the water-insoluble particulate materials which qualify for use in the compositions of the instant invention.
In any event, prior art fabric conditioning compositions containing the particulate materials referred to hereinbefore do not produce the fabric conditioning benefits of the instant compositions, and in many cases, tend to impart harshness or stiffness to the fabric.
Accordingly, it is an object of the present invention to provide fabric softening compositions comprising cation-active fabric softener compounds and waterinsoluble particulate materials which impart antiwrinkling, ease of ironing, softening, anti-static, folding ease, enhanced fabric drapability and appearance benefits to fabrics treated therewith.
It is an additional object of the present invention to provide fabric softening compositions capable of conditioning fabrics treated therewith with a view to obtaining a degree of enhanced tactile and appearance properties by reference to what results from the use of fabric softening compositions applied in a conventional manner, i.e., during the rinsing operation.
By utilization of certain particulate materials capable of conferring desirable fabric benefits when present in combination with cation-active fabric softener compounds, these above-described objectives can now be attained and fabric softening compositions formulated which are capable of imparting to fabrics treated therewith a series of desirable properties including antiwrinkling, ease of ironing, fabric softening, anti-static, folding ease, enhanced fabric drapability, and appearance benefits.
SUMMARY OF THE INVENTION The instant invention provides softening compositions which are capable of imparting a broad range of desirable properties to fabrics treated therewith. Such compositions comprise:
a. from about 0.5% to about 95% by weight of a cation-active fabric softener compound having from one to two straight-chain organic groups of from 8 to 22 carbon atoms; and
b. from about 95% to about 0.01% by weight of a substantially water-insoluble particulate material having:
i. an average particle size in the range from about 1 to about 50 micrometers;
ii. a shape having an anisotropy of about 5:1 to 1:1;
iii. a hardness of less than about 5.5 on the Moh scale;
iv. a melting point above about 150 C; and
v. substantial freedom from exchangeable calcium and magnesium ions.
In its method embodiment, the present invention provides a process capable of simultaneously imparting a series of desirable fabric-care benefits to textiles treated therewith. Such method comprises treating textiles in a liquor comprising:
a. from about 0.2 ppm (part per million) to 5,000 ppm of a cation-active fabric softener compound having from one to two straight-chain organic groups of from 8 to 22 carbon atoms; and
b. from about 0.2 ppm to 1000 ppm ofa substantially water-insoluble particulate material having;
i. an average particle size in the range from about 1 to about 50 micrometers;
ii. a shape having an anisotropy of about 5:1 to 1:1;
iii. a hardness of less than about 5.5 on the Moh scale;
iv. a melting point above about 150C; and
v. substantial freedom from exchangeable calcium and magnesium ions.
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to fabric softening compositions capable of imparting a series of fabriccare benefits to fabrics treated therewith.
These compositions comprise (1) a cation-active fabric softener compound; and (2) a substantially waterinsoluble particulate material.
Unless indicated to the contrary, the percent indications stand for percent by weight.
The essential cation-active fabric softener compound will normally be employed in the compositions of this invention in an amount from about 0.5% to about 95%. Obviously, depending upon physical state and intended use of a particular composition, the amount of cationic fabric softener can vary. For example, a liquid softening composition preferably comprises from about 1% to about 30%, especially from about 2% to about 25% of said cationic softener. If, in liquid compositions, more than about 30% is used, product stability problems may occur, such as, for example, thickening and the possible formation of undesired gel. If less than 0.5% is used, excessive amounts of softener composition are required to achieve acceptable softening, i.e., this creates uneconomical conditions as regards storage and handling of low-active formulae. Solid, granular or powdered, softening compositions of this invention preferably comprise from about 1% to about 60%, especially from about 5% to about 40% of cation-active ingredient; the upper limit being dependent upon the physical state of the softening ingredient and, if applicable, upon the amount of drying and/or granulating carrier material to be added for obtaining a solid softening composition. The lower cation-active limit, as for the liquid softening composition, is based on economical and performance considerations, i.e., handling cost versus overall fabric benefits desirable from a given amount of solid softening composition.
The cation-active organic fabric softener compounds, for use in the compositions of this invention, are known fabric-softening compounds. Generally, these comprise cationic nitrogen-containing compounds such as quaternary ammonium compounds and amines and have one or two straight-chain organic groups of at least eight carbon atoms. Preferably, they. have one or two such groups of from 12 to 22 carbon atoms. Preferred cation-active softener compounds include the quaternary ammonium softener compounds corresponding to the formula from 12 to 22 carbon atoms; R and R are each alkyl groups of from 1 to 3 carbon atoms; and X is an anion selected from halogen, acetate, phosphate, nitrate and methyl sulfate radicals.
Because of their excellent softening efficacy and ready availability, preferred cationic softener compounds of the invention are the dialkyl dimethyl ammonium chlorides, wherein the alkyl groups have from 12 to 22 carbon atoms and are derived from long-chain fatty acids, such as hydrogenated tallow. As employed herein, alkyl is intended as including unsaturated compounds such as are present in alkyl groups derived from naturally occurring fatty oils. The term tallow refers to fatty alkyl groups derived from tallow fatty acids. Such fatty acids give rise to quaternary softener compounds wherein R and R have predominantly from 16 to 18 carbon atoms. The term coconut refers to fatty acid groups from coconut oil fatty acids. The coconutalkyl R and R groups have from about 8 to about 18 carbon atoms and predominate in C to C alkyl groups. Representative examples of quaternary softeners of the invention include tallow trimethyl ammonium chloride; ditallow dimethyl ammonium chloride; ditallow dimethyl ammonium methyl sulfate; dihexade cyl dimethyl ammonium chloride; di(hydrogenated tallow) dimethyl ammonium chloride; dioctadecyl dimethyl ammonium chloride; dieicosyl dimethyl ammonium chloride; didocosyl dimethyl ammonium chloride; di(hydrogenated tallow) dimethyl ammonium methyl sulfate; dihexadecyl diethyl ammonium chloride; dihexadecyl dimethyl ammonium acetate; ditallow dipropyl ammonium phosphate; ditallow dimethyl ammonium nitrate; di(coconut-alkyl) dimethyl ammonium chloride.
An especially preferred class of quaternary ammonium softeners of the invention correspond to the formula CH CH wherein R and R are each straight chain aliphatic groups of from 12 to 22 carbon atoms and X is halogen, e.g., chloride. Especially preferred are ditallow dimethyl ammonium chloride and di(hydrogenated tallow-alkyl) dimethyl ammonium chloride and di(- coconut-alkyl) dimethyl ammonium chloride, these compounds being preferred from the standpoint of exherein are the quaternary imidazolinium salts. Pre-- ferrred salts are those conforming to the formula wherein R is an alkyl containing from 1 to 4, preferably from 1 to 2, carbon atoms, R is an alkyl containing from 1 to 4 carbon atoms or a hydrogen radical, R is an alkyl containing from 1 to 22, preferably at least 15, carbon atoms, R an alkyl containing from 8 to 22, preferably at least 15, carbon atoms, and X is an anion, preferably methyl sulfate or chloride ions. Other suitable anions include those disclosed with reference to the cationic quaternary ammonium fabric softeners described hereinbefore. Particularly preferred are those imidazolinium compounds in which both R, and R are alkyls of from 12 to 22 carbon atoms, e.g., l-methyl-l- [(stearoylamide)ethyl]-2-heptadecyl-4,5- dihydroimidazolinium methyl sulfate; [palmitoylamide)ethyl]-2-octadecyl-4,5- dihydroimidazolinium chloride.
Other cationic quaternary ammonium fabric softeners, which are useful herein include, for example, alkyl (C to C )-pyridinium chlorides, alkyl (C to C alkyl (C to Cg)-morpholinium chlorides, and quaternary derivatives of amino acids and amino esters.
The cationic fabric softeners mentioned above can be used singly or in combination in the practice of the present invention.
l-methyll Operability of the essential substantially waterinsoluble particulate component for use in the compositions of the instant invention is dependent on a series of characteristics; namely, (1) an average particle size from about l.0 to about 50, preferably from about 5 to about 30 micrometers; (2) a shape having an anisotropy of about 5:1 to 1:1; (3) a hardness of less than about 5.5 on the Moh scale; (4) a melting (softening) temperature above about 150C; and (5) substantial freedom from exchangeable calcium and magnesium ions. Said particulate component is used in the instant compositions in an amount from about 0.01% to about 95%. As with the cationic component, the level of particulate material can vary widely, depending upon physical state and intended use of a particular composition. For example, liquid softener formulations normally have a level of particulate material from about 0.01% to about preferably from 0.1% to 6%, more preferably from 0.2% to 4 The upper limit is normally dictated by the material possibility for incorporating a given amount of particulate component without disturbing the liquid state of the composition, i.e., to avoid, for example, gelatinization, phase separation and precipitation. As with the cation-active softener, the lower limit is based on economical and performance considerations, i.e., a further reduction of softener compound entails that excessive amounts of softening composition are needed to achieve the inventive advantages. The solid softening compositions of this invention preferably contain from about 0.1% to about 50%, more preferably from about 0.2% to about 25% of the essential particulate component. Increasing I the level of particulate ingredient above the upper limit (95%) does not procure additional performance advantages.
The average particle size of the substantially waterinsoluble particulate component is within the range from about 1 to about 50, preferably from about 5 to about micrometers. The particle diameter limitation appears to relate to the diameters of (commercially) available textile fibers which fall mostly within the range of about 10 to about 30 micrometers, Accordingly, the use of particulate water-insoluble materials having an average diameter of more than about mi crometers will not provide the fabric benefits enumerated hereinbefore. On the other hand, the use of particulate water-insoluble materials having an average particle size diameter of less than about 1 micrometer will not provide the overall fabric benefits obtainable through the practice of this invention.
The substantially water-insoluble particulate component is further characterized by an anisotropy (axial ratio) of about 5:1 to 1:1. The determination of particle size can be based on the measurement of the projection area of the water-insoluble particle or on the linear measures of this projection area. Or, in other words, the loose particle resting on its surface of maximum stability, the long and intermediate axis are normally horizontal and the short axis vertical. In that context, the term long axis represents the maximum overall length of the particle; intermediate axis stands for the maximum dimension of a particle in a direction perpendicular to the long axis; whereas short axis represents the maximum dimension in a direction perpendicular to the plane containing the long and intermediate axis. The meaning of anisotropy represents the ratio of long axis to short axis for a specific particulate material. Preferred for use in the compositions of this invention are particulate materials having an anisotropy within the range from about 3:1 to about 1.121.
See also: Advances in OPTICAL and ELECTRON MICROSCOPY, Vol. 3, R. Barer and V. E. Cosslett, ACADEMIC PRESS 1969, London and New York.
The essential particulate component for use herein has a hardness of less than about 5.5 on the Moh scale.
The hardness as so measured is a criterion of the resistance of a particular material to crushing. It is known as being a fairly good indication of the abrasive character of a particulate ingredient. Examples of materials arranged in increased order of hardness according to the Moh scale are as follows: h(hardness)-l:talc; dried filter-press cakes, soap-stone, waxes, aggregated salt crystals; h-2: gypsum, rock salt, crystalline salt ingeneral; h-3: barytes, chalk, brimstone, calcite; h-4: fluo rite, soft phosphate, magnesite, limestone; h-5: apatite, hard phosphate, hard limestone, chromite, bauxite; h-6: feldspar, ilmenite, hornblendes; h-7: quartz, granite; h-8: topaz; h-9: corrundum, emery; and h-10: diamond.
Suitable particulate materials have a hardness of less than about 5.5 on the Moh scale. Although some fabtion resulting from multicycle textile-treating operations.
The substantially water-insoluble particulate material' has a melting point about C. Particulate materials havinga melting point below that temperature do not provide the fabric benefits because of their tendency to melt and accordingly spread through the fabric thereby giving body to the fabric which is commonly known as sizing. This is undesirable in the context of this invention and the particulate materials must be such as to maintain under ironing conditions, i.e., above around 150C, their integrity and shape as said characteristics are essential for the attainment of the fabric-care benefits derivable from the uses of the compositions of the instant invention.
In addition, the particulate material must be substantially water-soluble as its function depends upon its integrity, shape, firmness, etc. as described in detail hereinbefore. It should be recognized, however, that minor parts of the particulate ingredient, preferably not more than 20%, can be water-soluble without markedly decreasing the performance advantages.
The water-insoluble particulate materials are substantially free of exchangeable calcium and magnesium ions. The presence of exchangeable alkaline earth metal ions such as calcium and magnesium in the particulate materials appears to increase their hydrophilic properties. This results in enhanced swellability characteristics, which, in turn, constitute an obstacle to the uniform and stable enmeshing of particulate material within the fiber structure. As a result, particulate materials having exchangeable calcium and magnesium ions in their structure detract from attaining overall fabric benefits as described hereinabove.
Preferred for use in the instant compositions are surface-treated starch derivatives such as DRY-FLO" starch manufactured by NATIONAL STARCH PROD- UCTS, New York. DRY-FLO starches are surfacemodified starches bearing hydrophobic moieties which have been reacted with the starch molecule through the formation of ester and ether linkages. As a result of its chemical modification, these starch derivatives are water-repellant and accordingly substantially waterinsoluble. Dry-Flo starches have an average particle size diameter of about 9ll micrometers.
Additional substantially water-insoluble particulate materials suitable for use in the compositions of the instant invention include:
Average Particle Range Particle Ingredient Size um Size am -fine glass microballoons (ECCO- SPHERES 8 -15 -glass beads PF l2-R (coated) 17 5-45 -glass beads PF-l l" 30 -50 -glass beads (unispheresW 22 -37 glass niicrohullons (ECCOSPHERES 1(1 30 -gla|ss heads PF-IZ 17 5-44 Emersion & Cuming: Canton. Mass. Cataphote Corp.: Jackson. Miss.
See also: (1) Technical Data Sheet for Teflon 7A; and brochure re Typical Properties Common to All Granular Teflon FFE-Fluorocarbon Resins, No. A- 43044; both being issued by DuPont de Nemours; (2) Catalog of Small Glass Beads, issued by Microbeads Division, Cataphote Corporation, Jackson, Mississippi; particularly documents MB-1ll-DS-5/72; MB-lV-DS- 5/72; MB-V-LP-5/72; and MB-Vll-LP-5/72; and (3) Technical Information Brochure concerning ECCOS- PHERES, hollow glass and ceramic microspheres, MI- CROBALLOON S, issued by Emerson and Cuming, lnc., Canton, Mass; the above documents being hereby incorporated by reference.
Another substantially water-insoluble particulate component for use in the instant compositions is a starch granule having, in addition to the essential parameters as defined in the claims, a swelling power of less than about 15 at a temperature of 65C. Modification of the starch granules in a matter such as to render it more soluble by gelatinizing, derivatizing, or degrading is to be avoided to the extent it leads to starches which can lose their firm shape and also do not qualify for use in the present invention. Soluble or gelatinizable starches having a swelling power of more than about 15 to 65C are less suitable as they tend to lose their individual shape and consequently run into the fiber which, in turn, leads to undesirable stiffness of fabrics.
The swelling power is determined according to the mthod set forth in Cereal Chem, 36, pp. 534-544 (1959) Harry W. Leach, et al. Ten grams of starch are suspended in 180 ml. of distilled water in a tared 250- ml. centrifuge bottle. The suspension is mechanically stirred with a small stainless-steel paddle (0.75-in. wide, l.5-in. high) at a rate just sufficient to keep the starch completely suspended (i.e., 200 rpm.) This low speed avoids shearing the fragile swollen granules and consequent solubilization of the starch. The bottle is lowered into a thermostatted water bath maintained at a temperature of 65C (i0.lC) and held for 30 minutes, slow stirring being continued during this period. The bottle is then removed, wiped dry, and placed on the torsion balance. The stirrer is removed and rinsed into the bottle with sufficient distilled water to bring the total weight of water present to 200.0 g. (including the moisture in the original starch). The bottle is stoppered, mixed by gentle shaking, and then centrifuged for 15 minutes at 2,200 rpm. (i.e., 700 times gravity). The clear supernate is carefully drawn off by suction to within )4 in. of the precipitated paste. An aliquot of this supernate is evaporated to dryness on the steam bath and then dried for 4 hours in the vacuum oven at C. The percentage of solubles extracted from the starch is calculated to dry basis. The remaining aqueous layer above the sedimented starch paste is then siphoned off as quantitatively as possible. The bottle and paste are reweighed on the torsion balance, and the swelling power calculated as the weight of sedimented paste per g. of dry-basis starch.
Starches having a swelling power of more than l5 at 65C are not suitable for use in the instant composition. Although the final choice of starch which will meet requirements of this invention depends upon the origin of the material and also upon process conditions such as bleaching, degradation, and isolation applied to a given species, suitable starches can, for example, be obtained, from corn, wheat, and rice. Current potato and tapioca starches have a swelling power exceeding 15 at a temperature of 65C and, therefore, are not suitable for being used in the compositions of this invention. More complete information concerning waterinsoluble starches, the processes for their preparation and isolation from a variety of raw materials are well known [see, for example: THE STARCH INDUSTRY, Knight, J. W., Pergamon Press, London (1969)].
As explained hereinafter, however, without being limited as a result thereof, it is thought that the parameters of the particulate material for use in the instant compositions are essential to the extent that said characteristics directly contribute to the beneficial fabric properties.
These critical limitations as to the nature of the particulate material were determined initially by actual experimentation. While applicants will not be held by any theoretical interpretation of these crificaflimitations, it appears that the particulate material interacts with the textile material at the fiber level to impart the above enumerated benefits to the textile fabric as a whole. In this respect it is to be noted that textile materials consist essentially of assemblies of fine flexible fibers arranged in more or less orderly geometrical arrays. lndividual fibers within the assembly are usually in a bent or twisted configuration and are in various states of contact with neighboring fibers. When the assembly is deformed the fibers move relative to each other and this relative motion accounts to a large extent for the characteristic flexibility of textile materials. ,To what extent a given textile material will recover when a deforming force is removed is largely determined by the nature of the interaction of the individual fibers making up the textile material. Textile fibers are viscoelastic and hence will exhibit delayed recovery from strain. However, the large number of interfiber contact points provide frictional restraints which further hinder the recovery process. In most textile structures the area of interfiber contact is probably less than 1% of the total fiber area. The force per contact point is generally estimated to be within the range of l to 10 dynes.
It is with this view of textile materials that applicants hypothesis going to explain the efficacy of particulate materials in imparting the related effects of antiwrinkling, ease of ironing, softness, anti-static benefits and appearance improvements can be appreciated. For purpose of conceptualization, this hypothesis will hereinafter be referred to as the ball bearing effect. The conceptualization is useful in interpreting the interaction of the particulate material and the textile matrix under imposed forces of deformation.
By means of microscopic analysis and staining techniques, it has been determined that textile fabrics treated in accordance with the present invention are characterized by having discrete particulate materials intimately dispersed, in a substantive fashion, in the interstices of the fiber matrix. It is believed that these particulate materials, so interfiberly positioned, act in the manner of ball bearings to reduce interfiber forces during deformation of the textile fabric as a whole. The gross effect is the enhancement of visco-elastic recovery (anti-wrinkling effect) and diminution of the forces operable at interfiber contact points (ease of ironing effect). Under this conceptualization, and as already referred to hereinbefore, the particle diameter limitation is appreciated since most commercially available textile fibers have diameters which fall within the range of about to about 30 micrometers. Therefore, to be effective, the particulate material of the invention must preferably be comparable to the textile fiber diameters. The above-mentioned benefits are similarly related to the presence of the particulate material at points within interstices of individual fiber yarns. Microscopic examination of textile yarns in cross section reveals that textiles treated in accordance with the present invention have greater yarn diameters than similar textile yarns which are distinguishable by the absence of particulate materials. Apparently, the particulate materials positioned in the interfiber spaces effectively open up the yarn (apparent increase in bulk) resulting in a softer, fluffier textile fabric. The anti-static benefit appears to be related to a change in the resistivity of the fabric matrix containing the particulate materials; for example, the copresence of chemically modified starch granules such as DRY-FLO starch, in the textile fabric, increases the equilibrium moisture content of the matrix, thereby decreasing its resistivity and diminishing static build-up.
A particular embodiment of the present invention provides a method for treating fabrics for simultaneously imparting fabric-care benefits to textiles treated therewith. To that effect, the fabrics are treated in an aqueous liquor comprising from about 0.2 ppm (part per million) to about 5,000 ppm, preferably from about 2.5 ppm to about 1,000 ppm of a cation-active fabric softener. Suitable and preferred cationic softening agents for use in the instant method are the same as those which fit the composition aspect of this invention; these species have been described in great detail hereinbefore.
Another essential component for use in the aqueous liquor is represented by substantially water-insoluble particulate materials having: (1) an average particle size in the range from about 1 to about 50 micrometers; (2) a shape having an anisotropy of about 5:1 to 1:1; (3) a hardness of less than about 5.5 on the Moh scale; (4) a melting point above about 150C; and (5) substantial freedom from exchangeable calcium and magnesium ions. The particulate material is used in an amount from about 0.2 ppm to about 1,000 ppm, preferably from about 0.5 ppm to about 500 ppm. Suitable and preferred species are those which fit the composition requirements of this invention; said species are described in greater detail hereinbefore.
The aqueous liquor needed 'for carrying out the method of this invention can, for example, be prepared by adding to a substantially aqueous medium softening compositions corresponding to the fabric softening compositions in this invention. Similar results can also be obtained, however, by adding the individual ingredients to an aqueous medium. As an example thereof, one may consider adding to the aqueous medium a softening composition containing all ingredients except the particulate material which is to be added separately. It is also possible to prepare a softening composition containing the cation-active agents and other usual ingredients whereas the particulate material can be added in combination with inerts like urea or with other minor ingredients.
The particulate material can be admixed with a conventional previously prepared fabric softening composition, or can be incorporated together with the individual ingredients of the composition prior to the mixing and uniformizing process. Whatever route is selected for incorporating the essential particulate component, care has to be taken to avoid processing steps which might alter the native granular integrity of the particulate material. As an example, excessive heating and grinding operations must be avoided as these steps may contribute to a disruption of the particulate material structure and accordingly render the softening composition less effective for fabric conditioning operations. As is well known to the skilled artisan, the preparation of homogenous and storage stable liquid softening compositions in accordance with this invention may require the incorporation of phase stabilizers, suspending agents, thickeners, and the like in the usual amounts.
The compositions of the instant invention can also contain additonal ingredients to make them more attractive or more effective and also inert fillers. For example, the composition of this invention can contain thickeners, solubilizing agents, and also minor amounts of detergent ingredients for the purpose of rendering, for example, the liquid compositions hereof, more storage stable and also in order to facilitate incorporation therein of higher amounts of the essential ingredients. Dyes, perfumes and anti-bacterial agents can be incorporated for improving the aesthetics and for performance reasons. In the solid softening compositions of this invention there can be present major amounts of inerts such as urea, sodium sulfate and sodium chloride.
The conditioning compositions of the present invention are evaluated by certain tests upon textile fabrics treated therewith as set forth below.
Anti-Static Test A bundle of mixed fabrics (ca. 53% allcotton; 12% 65/35 polyester/cotton blend; 17% nylon; 18% Da cron) is treated for 10 minutes in a miniature agitator washer containing two gallons of aqueous liquor containing the test softening compositions (as set forth below). The temperature is F; water hardness 7 grains/gallon artificial hardness. The bundle comprises 5% by weight of the softening liquor. The bundle is spin extracted prior to being dried in a commercial dryer.
The static charge on each fabric is then measured by a standard electrostatic technique within a Faraday cage. The sum of the absolute values of the charges on all fabrics in the bundle, divided by the sum of the area (yards of the total fabric surface (2 sides of the fabric) is then computed. This so-called static value (volts/yard correlates with gross observations of the effects of static charges on fabric surfaces, i.e., electrical shocks, sparks, fabric clinging, etc. Depending on the fabric bundle tested, no static clinging is exhibited by fabrics having a static value less than about 1.5 volts/yards substantial static clinging is noted in fabrics having a static value above 4.5 volts/yard? Anti-wrinkling Test (measured). These tests are performed against untreated controls.
Other tests such as, for example, softness (related to bulkiness), ease of folding, fabric drapability and fra- 5 grance are assessed subjectively by expert panelists A bundle of mixed fabrics (ca. 53% all-cotton; 12% against unmarked controls. 65/35 polyester/cotton blends; 17% nylon; 18% Da- The following examples are illustrative of this invencron) is treated for ten minutes in a miniature agitator ,tion. washer containing two gallons of aqueous liquor containing the test softening compositions (as set forth be- BASE COMPOSITION low). The temperature is 100F; water hard ss 7 A liquid base fabrlc softenlng composltlon was pregrains/gallon artificial hardness. The bundle is spin expared havlng the followmg formula? tracted prior to being dried in a commercial dryer.
The extent of wrinkling on a given piece of fabric is l d' P-t:b whl then measured by mountlng the fabric on a flat, movl5 ngre mm M 8 y Hg able surface within a light-tight box. A fine beam of gita llo ivdimethylanltmonium chloride 5 5.b25I
- t 1 OW light from a source above the fabric impinges upon the 23:32 ethanol y ee e fabric at an angle Of 90 AS the mounted fabrlc 1S perfume, miscellaneous 1.5 moved through a predetermined distance, a miniature Balance photocell affixed adjacent to the stationary light source resonds to scattered light at an angle of 45 to the fabric s f A p f h gh in n y measured y h A substantially water-insoluble particulate material photocell versus the length of the fabric path traversed was added to the base composition prior to testing. The gives a profile (curve) which is in all practical respects softening composition so prepared was used at a cona facsimile of the surface of the test fabric. That is, a 25 centration of 0.1% in the rinse water. The fabric-care Smooth, unwrinkled fabric gives essentially a straight benefits represent reduced wrinkling and reduced ironline of constant llght intensity whereas a wrinkled fabing efforts measured as previously described, In all ric gives a series of peaks and minima. The ratio of the cases, the performance of the inventive formulations absolute distance through which the fabric was moved tested was compared to the performance of an identical to the length of the plotted curve is quantitatively reformulation which did not contain particulate materilated to the extent of wrinkling. als. Each of the particulate materials listed in the table E H T t below provided a statistically significant (a 0.05, 386 0 ronmg es one-tailed test) reduction in both wrinkling and ironing A bundle of mixed fabrics (ca. 53% all-cotton; 12% efforts. The fabrics treated were polyester/cotton /35 polyester/cotton blends; 17% nylon; 18% Da- 65/35 and cotton.
Particulate Material Average Particle PPM in "/1 in Softener Example Particulate Material Size um Rinse-Solution Formulalion 1 Glass micro balloons (ECCOSPHERES 1G) 30 30 3 ll Poly(tetrafluorethylene) (MOLYKOTE 522) 10 30 3 I11 Poly(ureaf0rmaldehyde) 6 3 03 1V Poly(methylmethacrylate) (syndiotactic) l8 3 0.3 V Glass beads PF-l2S l7 3 0.3 V1 Glass beads PF-lZT l7 3 0.3 Vll DRY-FLOStarch 10' 30 3 Vlll Poly(melamineformaldehyde/ureaformaldehyde) 5 3 03 IX Glass beads (Unispheres) 22 3 0.3 X Glass beads PF-l2R l7 3 0.3 Xl Poly(styrenedivinylbenzene) 6 3 0.3 Xll Glass beads PF-l l 30 3 0.3
cron) is treated for 10 minutes in a miniature agitator EXAMPLE X11 .Washer Contammg. 2 gallons 9 aqueous hquor comam' 55 A fabric softening composition having the formula mg the test softenlng composltlons (as set forth below).
o given hereinafter simultaneously imparts softening, The temperature is 100 F; water hardness 7 gralns/gall l h d Th b ndle is S in "acted ease of lronlng, antl-wrinkllng and appearance lmar 1 e u p ex provements to fabrics treated therewith. prlor to being dried in a commerclal dryer.
The ease of ironing of each fabric is then measured 0 by ,using an instrumented, but otherwise conventional, iron. In essence, the iron by means of sensors fitted in Ingredient Parts y Weight its interior measures the amount of effort required by Dislearyl dimethy] ammonium chloride an operator to smooth the surface of the test fabrlc to oRY- FLO starch; average particle a subjectively smooth appearance. The total amount of 65 if f 'i f lnor ingredients Including work requlred to achleve this appearance is a function emulsifier. isopropanol, dye. of the force exerted on the iron (measured) and the dis- Pem'me Water Balance lo tance traversed by the iron in the plane of the fabric Urea Substantially identical results are obtained when the distearyl dimethyl ammonium chloride is replaced with an equivalent amount of: tallow trimethyl ammonium chloride; ditallow dimethyl ammonium methyl sulfate; dihexadecyl dimethyl ammonium chloride; di(hydrogenated tallow) dimethyl ammonium chloride; dioctadecyl dimethyl ammonium chloride; dieicosyl dimethyl ammonium chloride; didocosyl dimethyl ammonium chloride; di(hydrogenated tallow) dimethyl ammonium methyl sulfate; dihexadecyl diethyl ammonium chloride; dihexadecyl dimethyl ammonium acetate; ditallow dipropyl ammoniumphosphate; ditallow dimethyl ammoniumnitrate; di(coconut alkyl) dimethyl ammonium chloride; primary tallow amine; primary hydrogenated-tallow amine; tallow-1,3-propylene diamine; oleyl 1,3-propylene diamine; coconut-1,3- propylene diamine; and soya 1,3 propylene diamine.
Substantially identical results are also obtained when the distearyl dimethylammonium chloride is substituted by an equivalent quantity of: l-methyl-l- [(stearoylamide)ethyl]-2-heptadecyl-4,5- dihydroimidazolinium methyl sulfate; and l-methyl-l- [(palmitoylamide)ethyl]-2-octadecyl-4,5- dihydroimidazolinium chloride.
Substantially identical results are also obtained by substituting DRY-FLO starch by an equivalent amount of po1y(methylmethacrylate) isotactic or syndiotactic form; po1y(tetrafluoroethylene); polystyrene; poly(- styrenedivinylbcnzene); polyvinyltoluene; poly(melamincformaldehyde-ureaformaldehyde); poly(ureaformaldehyde); fine glass micro-balloons; glass beads, coated if desirable; and starch.
A broad range of fabric-care benefits are as well obtained when distearyl dimethyl ammonium chloride is incorporated at a level of: 2,5%; 4,5%; 7%; 11%; 14.5%, 18%; 20.5%; and 25%, respectively.
A broad range of fabric-care benefits are also obtained when the DRY-FLO starch is used (in the formulation) at a level of: 0.2%, 0.8%; 1.2%; 2%; 3%; 4.5%; 6%, 7.2%; and 9%, respectively.
Solid fabric-conditioning compositions, which provide a broad range of benefits to fabrics treated therewith, are prepared having the following formulas:
glass beads, coated if desirable; and starch. Substantially identical results are also obtained when urea is replaced with an equivalent amount of sodium sulfate, sodium chloride and the like fillers. We claim:
1. A fabric softening composition comprising a. from about 0.5% to about 95% by weight of a cation-active fabric softener compound having from one to two straight-chain organic groups of from 8 to 22 carbon atoms; and b. from about 95% to about 0.01% by weight of a substantially water-insoluble particulate material having i. an average particle size in the range from about 1 to about 50 micrometers; ii. a shape having an anisotropy of about 5:1 to 1:1; iii. a hardness of less than about 5.5 on the Moh scale; iv. a melting point above about 150C; and v. substantial freedom from exchangeable calcium and magnesium ions. 2. A composition in accordance with claim 1 wherein the cation-active softener compound has the formula R2 R \R3 PARTS BY WEIGHT Ingredients XlV XV XVl XVll XVlll XlX XX XXI 69,2 DRY-FLO starch: average particle diameter 10pm Minors, including dye, perfume, emulsifying agent, hydrotropes and moisture 7 5 4 Substantially identical results are obtained when DRY-FLO starch is replaced with an equivalent amount of: poly(methylmethacrylate) isotactic or syndiotactic form; poly(tetrafluoroethylene); polystyrene; po1y(styrenedivinylbenzene); polyvinyltoluene; poly(- melamineformaldehyde-ureaformaldehyde); poly(ureaformaldehyde); fine glass micro-balloons;
poly(vinyltoluene), poly(melamineformaldehydeureaformaldehyde), poly(ureaformaldehyde), glass beads, glass microballoons, starch, and mixtures thereof.
' 4. A liquid fabric softening composition comprising a. from about 1% to about 30% by weight of a cationactive fabric softener compound having from 1 to 2 straight-chain organic groups of from 8 to 22 carbon atoms; and
b. from about 0.01% to about by weight of a substantially water-insoluble particulate material having: 5
i. an average particle size in the range from about 1 to about 50 micrometers;
ii. a shape having an anisotropy of about 5:1 to 1:1,
iii. a hardness of less than about 5.5 on the Moh scale;
iv. a melting point above about 150C; and
v. substantial freedom from exchangeable calcium and magnesium ions.
5. A composition in accordance with claim 4 wherein the cation-active fabric softener compound is present in an amount from about 2% to about by weight.
6. A composition in accordance with claim 5 wherein the substantially water-insoluble particulate material is present in an amount from about 0.1% to about 6% by a 20 weight.
7. A composition in accordance with claim 6 wherein the cation-active softener compound has the formula wherein R is hydrogen or an aliphatic group of from 1 to 22 carbon atoms; R is an aliphatic group having from 12 to 22 carbon atoms; R and R are each alkyl groups of from 1 to 3 carbon atoms; and x is an anion selected from halogen, acetate, phosphate, nitrate and methyl sulfate radicals.
8. A composition in accordance with claim 7 wherein 4 the substantially water-insoluble particulate material is selected from the group consisting of surface-modified starch, poly(methylmethacrylate), poly(tetrafluoroethylene), polystyrene, poly(styrenedivinylbenzene), poly(vinyltoluene), poly(melamineformaldehydeureaformaldehyde), poly(ureaformaldehyde), glass beads, glass microballoons, starch, and mixtures thereof.
9. A solid fabric softening composition comprising a. from about 1% to about 60% by weight ofa cationactive fabric softener compound having from 1 to 2 straight-chain organic groups of from 8 to 22 carbon atoms; and
b. from about 0.1% to about 50% by weight of a substantially water-insoluble particulate material havi. an average particle size in the range from about 1 to about 50 micrometers;
ii. a shape having an anisotropy of about 5:1 to 1:1;
iii. a hardness of less than about 5.5 on the Moh scale;
iv. a melting point above about 150C; and
v. substantial freedom from exchangeable calcium and magnesium ions.
10. A composition in accordance with claim 9 wherein the cation-active fabric softener is used in an amount from about 5% to about 40% by weight.
11. A composition in accordance with claim 10 wherein the substantially water-insoluble particulate material is present in an amount from about 0.2% to about 25% by weight.
12. A composition in accordance with claim 11 wherein the cation-active fabric softener is selected from the group consisting of i. quaternary ammonium compounds of the formula phate, nitrate, and methyl sulfate radicals; and ii. imidazolinium salts of the formula wherein R is an alkyl containing from 1 to 4 carbon atoms, R is an alkyl containing from 1 to 4 carbon atoms or a hydrogen radical, R is an alkyl containing from 1 to 22 carbon atoms, R is an alkyl containing from 8 to 22 carbon atoms, and X is an an- 1011.
13. A composition in accordance with claim 12 wherein the substantially water-insoluble particulate material is selected from the group consisting of surface-modified starch, poly(methylmethacrylate, poly(tetrafluoroethylene), polystyrene, poly(- styrenedivinylbenzene), poly(vinyltoluene), poly(melamineformaldehyde-ureaformaldehyde), poly(ureaformaldehyde), glass beads, glass microballoons, starch, and mixtures thereof.
14. A composition in accordance with claim 13 wherein the quaternary ammonium fabric softener is selected from the group consisting of tallow trimethyl ammonium chloride; ditallow dimethyl ammonium chloride; ditallow dimethyl ammonium methyl sulfate; dihexadecyl dimethyl ammonium chloride; di(hy- 0 drogenated tallow) dimethyl ammonium chloride; di-
octadecyl dimethyl ammonium chloride; dieicosyl dimethyl ammonium chloride; didocosyl dimethyl ammonium chloride; di(hydrogenated tallow) dimethyl ammonium methyl sulfate; dihexadecyl diethyl ammo- 5 nium chloride; dihexadecyl dimethyl ammonium acetate; ditallow dipropyl ammonium phosphate; ditallow dimethyl ammonium nitrate; di(coconut-alkyl) methyl ammonium chloride.
15. A method for treating fabrics to impart desirable fabric-care benefits, said method comprising treatingfabrics in an aqueous liquor comprising:
a. from about 0.2 ppm (part per million) to 5,000 ppm of a cation-active fabric softener compound having from 1 to 2 straight-chain organic groups of from 8 to 22 carbon atoms; and
b. from about 0.2 ppm to 1,000 ppm of a substantially water-insoluble particulate material having: i. an average particle size in the range from about 1 to about 50 micrometers; ii. a shape having an anisotropy of about :1 to 1:1;
iii. a hardness of less than about 5.5 on the Moh scale; iv. a melting point above about 150C; and
thereof.

Claims (16)

  1. 2. A composition in accordance with claim 1 wherein the cation-active softener compound has the formula
  2. 3. A composition in accordance with claim 2 wherein the substantially water-insoluble particulate material is selected from the group consisting of surface-modified starch, poly(methylmethacrylate), poly(tetrafluoroethylene), polystyrene, poly(styrenedivinylbenzene), poly(vinyltoluene), poly(melamineformaldehyde-ureaformaldehyde), poly(ureaformaldehyde), glass beads, glass microballoons, starch, and mixtures thereof.
  3. 4. A liquid fabric softening composition comprising a. from about 1% to about 30% by weight of a cation-active fabric softener compound having from 1 to 2 straight-chain organic groups of from 8 to 22 carbon atoms; and b. from about 0.01% to about 10% by weight of a substantially water-insoluble particulate material having: i. an average particle size in the range from about 1 to about 50 micrometers; ii. a shape having an anisotropy of about 5:1 to 1:1, iii. a hardness of less than about 5.5 on the Moh scale; iv. a melting point above about 150*C; and v. substantial freedom from exchangeable calcium and magnesium ions.
  4. 5. A composition in accordance with claim 4 wherein the cation-active fabric softener compound is present in an amount from about 2% to about 25% by weight.
  5. 6. A composition in accordance with claim 5 wherein the substantially water-insoluble particulate material is present in an amount from about 0.1% to about 6% by weight.
  6. 7. A composition in accordance with claim 6 wherein the cation-active softener compound has the formula
  7. 8. A composition in accordance with claim 7 wherein the substantially water-insoluble particulate material is selected from the group consisting of surface-modified starch, poly(methylmethacrylate), poly(tetrafluoroethylene), polystyrene, poly(styrenedivinylbenzene), poly(vinyltoluene), poly(melamineformaldehyde-ureaformaldehyde), poly(ureaformaldehyde), glass beads, glass microballoons, starch, and mixtures thereof.
  8. 9. A solid fabric softening composition comprising a. from about 1% to about 60% by weight of a cation-active fabric softener compound having from 1 to 2 straight-chain organic groups of from 8 to 22 carbon atoms; and b. from about 0.1% to about 50% by weight of a substantially water-insoluble particulate material having: i. an average particle size in the range from about 1 to about 50 micrometers; ii. a shape having an anisotropy of about 5:1 to 1:1; iii. a hardness of less than about 5.5 on the Moh scale; iv. a melting point above about 150*C; and v. substantial freedom from exchangeable calcium and magnesium ions.
  9. 10. A composition in accordance with claim 9 wherein the cation-active fabric softener is used in an amount from about 5% to about 40% by weight.
  10. 11. A composition in accordance with claim 10 wherein the substantially water-insoluble particulate material is present in an amount from about 0.2% to about 25% by weight.
  11. 12. A composition in accordance with claim 11 wherein the cation-active fabric softener is selected from the group consisting of i. quaternary ammonium compounds of the formula
  12. 13. A composition in accordance with claim 12 wherein the substantially water-insoluble particulate material is selected from the group consisting of surface-modified starch, poly(methylmethacrylate, poly(tetrafluoroethylene), polystyrene, poly(styrenedivinylbenzene), poly(vinyltoluene), poly(melamineformaldehyde-ureaformaldehyde), poly(ureaformaldehyde), glass beads, glass microballoons, starch, and mixtures thereof.
  13. 14. A composition in accordance with claim 13 wherein the quaternary ammonium fabric softener is selected from the group consisting of tallow trimethyl ammonium chloride; ditallow dimethyl ammonium chloride; ditallow dimethyl ammonium methyl sulfate; dihexadecyl dimethyl ammonium chloride; di(hydrogenated tallow) dimethyl ammonium chloride; dioctadecyl dimethyl ammonium chloride; dieicosyl dimethyl ammonium chloride; didocosyl dimethyl ammonium chloride; di(hydrogenated tallow) dimethyl ammonium methyl sulfate; dihexadecyl diethyl ammonium chloride; dihexadecyl dimethyl ammonium acetate; ditallow dipropyl ammonium phosphate; ditallow dimethyl ammonium nitrate; di(coconut-alkyl) dimethyl ammonium chloride.
  14. 15. A method for treating fabrics to impart desirable fabric-care benefits, said method comprising treating fabrics in an aqueous liquor comprising: a. from about 0.2 ppm (part per million) to 5,000 ppm of a cation-active fabric softener compound having from 1 to 2 straight-chain organic groups of from 8 to 22 carbon atoms; and b. from about 0.2 ppm to 1,000 ppm of a substantially water-insoluble particulate material having: i. an average particle size in the range from about 1 to about 50 micrometers; ii. a shape having an anisotropy of about 5:1 to 1:1; iii. a hardness Of less than about 5.5 on the Moh scale; iv. a melting point above about 150*C; and v. substantial freedom from exchangeable calcium and magnesium ions.
  15. 16. A method in accordance with claim 15 wherein the cation-active fabric softener compound is used in a amount from about 2.5 ppm to about 1,000 ppm.
  16. 17. A method in accordance with claim 16 wherein the substantially water-insoluble particulate material is selected from the group consisting of surface-modified starch, poly(methylmethacrylate), poly(tetrafluoroethylene), polystyrene, poly(styrenedivinylbenzene), poly(vinyltoluene), poly(melamineformaldehyde-ureaformaldehyde), poly(ureaformaldehyde), glass beads, glass microballoons, starch, and mixtures thereof.
US357130A 1973-05-04 1973-05-04 Fabric softening compositions containing water-insoluble particulate material and method Expired - Lifetime US3861870A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US357130A US3861870A (en) 1973-05-04 1973-05-04 Fabric softening compositions containing water-insoluble particulate material and method
CA198,215A CA1029154A (en) 1973-05-04 1974-04-26 Fabric softening compositions with improved conditioning properties
DE2420532A DE2420532C2 (en) 1973-05-04 1974-04-27 Fabric softening agents
CH598974A CH578078A5 (en) 1973-05-04 1974-05-02
JP4960774A JPS5727225B2 (en) 1973-05-04 1974-05-02
AT367074A AT347553B (en) 1973-05-04 1974-05-03 TEXTILE SOFTENER COMPOSITIONS
NL7405965A NL7405965A (en) 1973-05-04 1974-05-03
GB1945074A GB1428062A (en) 1973-05-04 1974-05-03 Fabric-softening compositions with conditioning properties
IT7422287A IT1017572B (en) 1973-05-04 1974-05-03 SOFTENING COMPOSITIONS OF FABRICS WITH IMPROVED ITS CONDITIONING
BE143924A BE814552A (en) 1973-05-04 1974-05-03 FABRIC SOFTENING COMPOSITIONS WITH IMPROVED PACKAGING PROPERTIES
FR7415423A FR2228130B1 (en) 1973-05-04 1974-05-03

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US357130A US3861870A (en) 1973-05-04 1973-05-04 Fabric softening compositions containing water-insoluble particulate material and method

Publications (1)

Publication Number Publication Date
US3861870A true US3861870A (en) 1975-01-21

Family

ID=23404419

Family Applications (1)

Application Number Title Priority Date Filing Date
US357130A Expired - Lifetime US3861870A (en) 1973-05-04 1973-05-04 Fabric softening compositions containing water-insoluble particulate material and method

Country Status (11)

Country Link
US (1) US3861870A (en)
JP (1) JPS5727225B2 (en)
AT (1) AT347553B (en)
BE (1) BE814552A (en)
CA (1) CA1029154A (en)
CH (1) CH578078A5 (en)
DE (1) DE2420532C2 (en)
FR (1) FR2228130B1 (en)
GB (1) GB1428062A (en)
IT (1) IT1017572B (en)
NL (1) NL7405965A (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018688A (en) * 1975-07-21 1977-04-19 The Procter & Gamble Company Capsules, process of their preparation and fabric conditioning composition containing said capsules
DE2731080A1 (en) * 1976-07-12 1978-01-19 Procter & Gamble CLOTHING EQUIPMENT
US4076633A (en) * 1974-10-18 1978-02-28 The Procter & Gamble Company Fabric treating articles with improved conditioning properties
US4081384A (en) * 1975-07-21 1978-03-28 The Proctor & Gamble Company Solvent-free capsules and fabric conditioning compositions containing same
US4096072A (en) * 1976-02-09 1978-06-20 The Procter & Gamble Company Fabric conditioning compositions
US4165290A (en) * 1978-03-13 1979-08-21 The Procter & Gamble Company Fabric care composition containing starch and quaternary ammonium compound
US4203852A (en) * 1974-03-01 1980-05-20 Colgate-Palmolive Company Softener, bleach and anti-cling composition
US4203851A (en) * 1978-06-16 1980-05-20 Colgate-Palmolive Company Fabric softening compositions and methods for manufacture thereof
US4427410A (en) 1974-09-06 1984-01-24 Colgate-Palmolive Company Fabric softening composition containing molecular sieve zeolite
EP0188350A2 (en) * 1985-01-15 1986-07-23 Unilever Plc Fabric conditioning method
EP0188349A2 (en) * 1985-01-15 1986-07-23 Unilever Plc Fabric conditioning composition
US4610796A (en) * 1974-09-06 1986-09-09 The Colgate-Palmolive Co. Fabric softener composition containing molecular sieve zeolite
US4615814A (en) * 1984-04-02 1986-10-07 Purex Corporation Porous substrate with absorbed antistat or softener, used with detergent
US4636328A (en) * 1984-04-05 1987-01-13 Purex Corporation Multi functional laundry product and employment of same during fabric laundering
US4642258A (en) * 1983-07-05 1987-02-10 Economics Laboratory, Inc. Treatment of fabrics in machine dryers using treating means containing fabric treating composition having resistance to change in viscosity and release rate with temperature change
US4923622A (en) * 1977-10-22 1990-05-08 Imperial Chemical Industries Plc Fabric softener composition: concentrate of quaternary ammonium compound and an oil
US5445747A (en) * 1994-08-05 1995-08-29 The Procter & Gamble Company Cellulase fabric-conditioning compositions
US5599786A (en) * 1993-08-12 1997-02-04 The Procter & Gamble Company Cellulase fabric-conditioning compositions
EP0760243A1 (en) 1995-08-31 1997-03-05 The Procter & Gamble Company Use of allylic alcohol perfumes as a malodour reduction agent
US5616553A (en) * 1993-08-12 1997-04-01 The Procter & Gamble Company Fabric conditioning compositions
US5721205A (en) * 1994-04-29 1998-02-24 The Procter & Gamble Company Cellulase fabric-conditioning compositions
EP0839899A1 (en) 1996-10-30 1998-05-06 The Procter & Gamble Company Fabric softening compositions
US6294179B1 (en) * 1992-05-21 2001-09-25 Lever Brothers Company, Division Of Conopco, Inc. Method of exfoliating skin
US6376456B1 (en) * 1998-10-27 2002-04-23 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Wrinkle reduction laundry product compositions
US20020094942A1 (en) * 2000-09-06 2002-07-18 The Procter & Gamble Company Fabric additive articles and package therefor
US20030096728A1 (en) * 2001-07-27 2003-05-22 The Procter & Gamble Company Fabric care systems for providing anti-wrinkle benefits to fabric
WO2003085074A1 (en) * 2002-04-10 2003-10-16 Henkel Kommanditgesellschaft Auf Aktien Textile cleaning agent which is gentle on textiles
US20040071742A1 (en) * 2002-10-10 2004-04-15 Popplewell Lewis Michael Encapsulated fragrance chemicals
US20040072719A1 (en) * 2002-10-10 2004-04-15 Bennett Sydney William Encapsulated fragrance chemicals
US20040071746A1 (en) * 2002-10-10 2004-04-15 Popplewell Lewis Michael Encapsulated fragrance chemicals
US20040138093A1 (en) * 2002-10-10 2004-07-15 Joseph Brain Encapsulated fragrance chemicals
US20050112152A1 (en) * 2003-11-20 2005-05-26 Popplewell Lewis M. Encapsulated materials
US20050113267A1 (en) * 2003-11-20 2005-05-26 Popplewell Lewis M. Particulate fragrance deposition on surfaces and malodour elimination from surfaces
US20050113282A1 (en) * 2003-11-20 2005-05-26 Parekh Prabodh P. Melamine-formaldehyde microcapsule slurries for fabric article freshening
US20050119151A1 (en) * 2002-04-10 2005-06-02 Konstanze Mayer Textile cleaning agent which is gentle on textiles
US20050227907A1 (en) * 2004-04-13 2005-10-13 Kaiping Lee Stable fragrance microcapsule suspension and process for using same
US20050226900A1 (en) * 2004-04-13 2005-10-13 Winton Brooks Clint D Skin and hair treatment composition and process for using same resulting in controllably-releasable fragrance and/or malodour counteractant evolution
US20060102656A1 (en) * 2004-11-17 2006-05-18 Troost Erik H Multi-compartment storage and delivery containers and delivery system for microencapsulated fragrances
US20070207174A1 (en) * 2005-05-06 2007-09-06 Pluyter Johan G L Encapsulated fragrance materials and methods for making same
DE102007012909A1 (en) 2007-03-19 2008-09-25 Momentive Performance Materials Gmbh Fragrance-modified, reactive polyorganosiloxanes
DE102007012910A1 (en) 2007-03-19 2008-09-25 Momentive Performance Materials Gmbh Fragrance-modified, branched polyorganosiloxanes
US20100113325A1 (en) * 2007-03-22 2010-05-06 Lg Household & Health Care Ltd. Composition for textile softener having low temperature activity and textile softener sheet comprising the same
WO2015164677A1 (en) 2014-04-23 2015-10-29 Gregory Van Buskirk Cleaning formulations for chemically sensitive individuals: compositions and methods
EP2947138A1 (en) 2006-06-01 2015-11-25 The Procter & Gamble Company Concentrated perfume compositions
WO2016115408A1 (en) 2015-01-14 2016-07-21 Gregory Van Buskirk Improved fabric treatment method for stain release
US11441106B2 (en) 2017-06-27 2022-09-13 Henkel Ag & Co. Kgaa Particulate fragrance enhancers

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5157138A (en) * 1974-11-13 1976-05-19 Matsushita Electric Ind Co Ltd JUNKANGATAMEMORIOMOCHIITA DEISUPURE ISOCHI
US4162983A (en) * 1978-03-13 1979-07-31 The Procter & Gamble Company Fabric care composition containing starch and surfactant
JPS598794A (en) * 1982-07-05 1984-01-18 ライオン株式会社 Additive for granular detergent
JP2895125B2 (en) * 1987-10-09 1999-05-24 マーチン・マリエッタ・コーポレーション Preparation method and application of electrostrictive ceramic materials
CN107109297B (en) 2014-12-15 2019-08-16 荷兰联合利华有限公司 Dumpable liquid fabric conditioner composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696034A (en) * 1970-10-20 1972-10-03 Colgate Palmolive Co Mixed alkanolamide fabric softening compositions
US3756950A (en) * 1971-03-08 1973-09-04 Lever Brothers Ltd Fabric softening compositions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE589548A (en) * 1959-04-09
US3033699A (en) * 1959-05-08 1962-05-08 Du Pont Antistatic composition
US3594212A (en) * 1968-03-25 1971-07-20 Gen Mills Inc Treatment of fibrous materials with montmorillonite clays and polyamines and polyquaternary ammonium compounds
US3703480A (en) * 1970-11-16 1972-11-21 Colgate Palmolive Co Fabric-softener compositions
US3954632A (en) * 1973-02-16 1976-05-04 The Procter & Gamble Company Softening additive and detergent composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696034A (en) * 1970-10-20 1972-10-03 Colgate Palmolive Co Mixed alkanolamide fabric softening compositions
US3756950A (en) * 1971-03-08 1973-09-04 Lever Brothers Ltd Fabric softening compositions

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203852A (en) * 1974-03-01 1980-05-20 Colgate-Palmolive Company Softener, bleach and anti-cling composition
US4610796A (en) * 1974-09-06 1986-09-09 The Colgate-Palmolive Co. Fabric softener composition containing molecular sieve zeolite
US4427410A (en) 1974-09-06 1984-01-24 Colgate-Palmolive Company Fabric softening composition containing molecular sieve zeolite
US4076633A (en) * 1974-10-18 1978-02-28 The Procter & Gamble Company Fabric treating articles with improved conditioning properties
US4081384A (en) * 1975-07-21 1978-03-28 The Proctor & Gamble Company Solvent-free capsules and fabric conditioning compositions containing same
US4018688A (en) * 1975-07-21 1977-04-19 The Procter & Gamble Company Capsules, process of their preparation and fabric conditioning composition containing said capsules
US4096072A (en) * 1976-02-09 1978-06-20 The Procter & Gamble Company Fabric conditioning compositions
DE2731080A1 (en) * 1976-07-12 1978-01-19 Procter & Gamble CLOTHING EQUIPMENT
US4923622A (en) * 1977-10-22 1990-05-08 Imperial Chemical Industries Plc Fabric softener composition: concentrate of quaternary ammonium compound and an oil
US4165290A (en) * 1978-03-13 1979-08-21 The Procter & Gamble Company Fabric care composition containing starch and quaternary ammonium compound
US4203851A (en) * 1978-06-16 1980-05-20 Colgate-Palmolive Company Fabric softening compositions and methods for manufacture thereof
US4642258A (en) * 1983-07-05 1987-02-10 Economics Laboratory, Inc. Treatment of fabrics in machine dryers using treating means containing fabric treating composition having resistance to change in viscosity and release rate with temperature change
US4615814A (en) * 1984-04-02 1986-10-07 Purex Corporation Porous substrate with absorbed antistat or softener, used with detergent
US4636328A (en) * 1984-04-05 1987-01-13 Purex Corporation Multi functional laundry product and employment of same during fabric laundering
US4950412A (en) * 1985-01-15 1990-08-21 Lever Brothers Company Fabric conditioning composition
EP0188350A3 (en) * 1985-01-15 1989-11-29 Unilever Plc Fabric conditioning method
EP0188349A2 (en) * 1985-01-15 1986-07-23 Unilever Plc Fabric conditioning composition
EP0188350A2 (en) * 1985-01-15 1986-07-23 Unilever Plc Fabric conditioning method
US4964873A (en) * 1985-01-15 1990-10-23 Lever Brothers Company Fabric conditioning method
EP0188349A3 (en) * 1985-01-15 1989-11-29 Unilever Plc Fabric conditioning composition
US6294179B1 (en) * 1992-05-21 2001-09-25 Lever Brothers Company, Division Of Conopco, Inc. Method of exfoliating skin
US5599786A (en) * 1993-08-12 1997-02-04 The Procter & Gamble Company Cellulase fabric-conditioning compositions
US5616553A (en) * 1993-08-12 1997-04-01 The Procter & Gamble Company Fabric conditioning compositions
US5721205A (en) * 1994-04-29 1998-02-24 The Procter & Gamble Company Cellulase fabric-conditioning compositions
US5445747A (en) * 1994-08-05 1995-08-29 The Procter & Gamble Company Cellulase fabric-conditioning compositions
EP0760243A1 (en) 1995-08-31 1997-03-05 The Procter & Gamble Company Use of allylic alcohol perfumes as a malodour reduction agent
EP0839899A1 (en) 1996-10-30 1998-05-06 The Procter & Gamble Company Fabric softening compositions
US6376456B1 (en) * 1998-10-27 2002-04-23 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Wrinkle reduction laundry product compositions
US20020094942A1 (en) * 2000-09-06 2002-07-18 The Procter & Gamble Company Fabric additive articles and package therefor
US20110220680A1 (en) * 2000-09-06 2011-09-15 Allison Jane Danneels Fabric additive articles and package therefor
US20030096728A1 (en) * 2001-07-27 2003-05-22 The Procter & Gamble Company Fabric care systems for providing anti-wrinkle benefits to fabric
US20040259762A1 (en) * 2001-07-27 2004-12-23 The Procter & Gamble Company Fabric care systems for providing anti-wrinkle benefits to fabric
US7196048B2 (en) 2001-07-27 2007-03-27 The Procter & Gamble Co. Fabric care systems for providing anti-wrinkle benefits to fabric
US6818610B2 (en) 2001-07-27 2004-11-16 Procter & Gamble Company Fabric care systems for providing anti-wrinkle benefits to fabric
WO2003085074A1 (en) * 2002-04-10 2003-10-16 Henkel Kommanditgesellschaft Auf Aktien Textile cleaning agent which is gentle on textiles
US20050119151A1 (en) * 2002-04-10 2005-06-02 Konstanze Mayer Textile cleaning agent which is gentle on textiles
US20040072719A1 (en) * 2002-10-10 2004-04-15 Bennett Sydney William Encapsulated fragrance chemicals
US7585824B2 (en) 2002-10-10 2009-09-08 International Flavors & Fragrances Inc. Encapsulated fragrance chemicals
US20040071742A1 (en) * 2002-10-10 2004-04-15 Popplewell Lewis Michael Encapsulated fragrance chemicals
US20040071746A1 (en) * 2002-10-10 2004-04-15 Popplewell Lewis Michael Encapsulated fragrance chemicals
US20040138093A1 (en) * 2002-10-10 2004-07-15 Joseph Brain Encapsulated fragrance chemicals
US7196049B2 (en) 2002-10-10 2007-03-27 International Flavors & Fragrances, Inc Encapsulated fragrance chemicals
US7125835B2 (en) 2002-10-10 2006-10-24 International Flavors & Fragrances Inc Encapsulated fragrance chemicals
US7122512B2 (en) 2002-10-10 2006-10-17 International Flavors & Fragrances Inc Encapsulated fragrance chemicals
US7119057B2 (en) 2002-10-10 2006-10-10 International Flavors & Fragrances Inc. Encapsulated fragrance chemicals
US20050113267A1 (en) * 2003-11-20 2005-05-26 Popplewell Lewis M. Particulate fragrance deposition on surfaces and malodour elimination from surfaces
US20050153135A1 (en) * 2003-11-20 2005-07-14 Popplewell Lewis M. Encapsulated materials
US20050113282A1 (en) * 2003-11-20 2005-05-26 Parekh Prabodh P. Melamine-formaldehyde microcapsule slurries for fabric article freshening
US7105064B2 (en) 2003-11-20 2006-09-12 International Flavors & Fragrances Inc. Particulate fragrance deposition on surfaces and malodour elimination from surfaces
US7491687B2 (en) 2003-11-20 2009-02-17 International Flavors & Fragrances Inc. Encapsulated materials
US20050112152A1 (en) * 2003-11-20 2005-05-26 Popplewell Lewis M. Encapsulated materials
US20050226900A1 (en) * 2004-04-13 2005-10-13 Winton Brooks Clint D Skin and hair treatment composition and process for using same resulting in controllably-releasable fragrance and/or malodour counteractant evolution
US20050227907A1 (en) * 2004-04-13 2005-10-13 Kaiping Lee Stable fragrance microcapsule suspension and process for using same
US20060102656A1 (en) * 2004-11-17 2006-05-18 Troost Erik H Multi-compartment storage and delivery containers and delivery system for microencapsulated fragrances
US7594594B2 (en) 2004-11-17 2009-09-29 International Flavors & Fragrances Inc. Multi-compartment storage and delivery containers and delivery system for microencapsulated fragrances
US20070207174A1 (en) * 2005-05-06 2007-09-06 Pluyter Johan G L Encapsulated fragrance materials and methods for making same
EP2947138A1 (en) 2006-06-01 2015-11-25 The Procter & Gamble Company Concentrated perfume compositions
DE102007012910A1 (en) 2007-03-19 2008-09-25 Momentive Performance Materials Gmbh Fragrance-modified, branched polyorganosiloxanes
DE102007012909A1 (en) 2007-03-19 2008-09-25 Momentive Performance Materials Gmbh Fragrance-modified, reactive polyorganosiloxanes
US20100113325A1 (en) * 2007-03-22 2010-05-06 Lg Household & Health Care Ltd. Composition for textile softener having low temperature activity and textile softener sheet comprising the same
US8420589B2 (en) 2007-03-22 2013-04-16 Lg Household & Health Care Ltd Composition for textile softener having low temperature activity and textile softener sheet comprising the same
WO2015164677A1 (en) 2014-04-23 2015-10-29 Gregory Van Buskirk Cleaning formulations for chemically sensitive individuals: compositions and methods
WO2016115408A1 (en) 2015-01-14 2016-07-21 Gregory Van Buskirk Improved fabric treatment method for stain release
US11441106B2 (en) 2017-06-27 2022-09-13 Henkel Ag & Co. Kgaa Particulate fragrance enhancers

Also Published As

Publication number Publication date
FR2228130B1 (en) 1977-10-28
CH578078A5 (en) 1976-07-30
CA1029154A (en) 1978-04-11
IT1017572B (en) 1977-08-10
DE2420532C2 (en) 1984-01-12
NL7405965A (en) 1974-11-06
DE2420532A1 (en) 1974-11-21
JPS5040895A (en) 1975-04-14
ATA367074A (en) 1978-05-15
FR2228130A1 (en) 1974-11-29
BE814552A (en) 1974-11-04
GB1428062A (en) 1976-03-17
JPS5727225B2 (en) 1982-06-09
AT347553B (en) 1979-01-10

Similar Documents

Publication Publication Date Title
US3861870A (en) Fabric softening compositions containing water-insoluble particulate material and method
US3095373A (en) Fabric softeners
CA1090057A (en) Textile treatment compositions
US3920563A (en) Soap-cationic combinations as rinse cycle softeners
US3936538A (en) Polymeric film dryer-added fabric softening compositions
US4237155A (en) Articles and methods for treating fabrics
US4076633A (en) Fabric treating articles with improved conditioning properties
US3928213A (en) Fabric softener and soil-release composition and method
US4128484A (en) Fabric softening compositions
US3904359A (en) Post-wash fabric treating method
US3954632A (en) Softening additive and detergent composition
US3703480A (en) Fabric-softener compositions
US4179382A (en) Textile conditioning compositions containing polymeric cationic materials
US3993573A (en) Softening additive and detergent composition
CA1074964A (en) Fabric conditioning compositions
GB2039556A (en) Fabric softening compositions
US3892681A (en) Detergent compositions containing water insoluble starch
EP0007135B1 (en) Articles and methods for treating fabrics
US3920561A (en) Composition for imparting softness and soil release properties to fabrics
US5858960A (en) Fabric softening composition
US4051046A (en) Detergent compositions containing insoluble particulate materials having fabric conditioning properties
CN101421381A (en) Rinse-added fabric treatment composition
US5154838A (en) Liquid softener
CA3041104C (en) Fabric treatment compositions having low calculated cationic charge density polymers and fabric softening actives and methods for providing a benefit
US4626364A (en) Particulate fabric softening and antistatic built detergent composition and particulate agglomerate for use in manufacture thereof