US20050202176A1 - Aqueous polymer dispersion and method of use - Google Patents

Aqueous polymer dispersion and method of use Download PDF

Info

Publication number
US20050202176A1
US20050202176A1 US11/071,485 US7148505A US2005202176A1 US 20050202176 A1 US20050202176 A1 US 20050202176A1 US 7148505 A US7148505 A US 7148505A US 2005202176 A1 US2005202176 A1 US 2005202176A1
Authority
US
United States
Prior art keywords
polymer particles
weight
aqueous
polymer
coating composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/071,485
Inventor
Jean Brady
Deborah Fradkin
Matthew Gebhard
Caren Puschak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/071,485 priority Critical patent/US20050202176A1/en
Publication of US20050202176A1 publication Critical patent/US20050202176A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • This invention generally relates to an aqueous polymer dispersion suitable for providing dry coatings having improved dirt pickup resistance and an acceptable level of scrub resistance. More particularly, this invention relates to an aqueous polymer dispersion including from 60 to 95 weight % first polymer particles and from 5 to 40 weight % second polymer particles. The second polymer particles include multiethylenically unsaturated monomer as polymerized units. This invention also includes a method for preparing a dry coating from an aqueous coating composition including the aqueous polymer dispersion.
  • Dirt pickup resistance a generally recognized desirable characteristic of a coating, is the ability to minimize the accumulation of material such as dirt, dust, and soot onto the surface of the coating. Coatings with poor dirt pickup resistance are characterized as having an unclean, darkened appearance. The coating must also have a desired balance of other properties, including acceptable scrub resistance. Further, it is desired that such a coating is optionally formed from a coating composition that contains a low level of volatile organic compounds (VOC), or preferably, is formulated in the absence of volatile organic compounds.
  • VOC volatile organic compounds
  • U.S. Pat. No. 5,731,377 is directed to a polymer blend useful as a binder in an aqueous coating composition.
  • the disclosed polymer blend contains from 20 to 60 weight % of a hard emulsion polymer with a glass transition temperature greater than room temperature, and from 40 to 80 weight % of a soft emulsion polymer having a glass transition temperature of less than 15° C.
  • the reference discloses that the polymer blend is useful in paint compositions that provide good block resistance without the use of volatile organic compounds such as a coalescent to aid in film formation.
  • coating compositions are desired that provide dry coatings having both acceptable scrub resistance and acceptable dirt pickup resistance.
  • the problem faced by the inventors is the provision of a suitable aqueous polymer dispersion, an aqueous coating composition including the dispersion, and a method for preparing a dry coating so that a useful level of dirt pickup resistance can be effected while maintaining an acceptable level of scrub resistance, particularly in a low VOC aqueous coating composition.
  • the inventors have discovered an aqueous polymer dispersion including certain first polymer particles and certain second polymer particles that achieve this desired end.
  • This aqueous polymer dispersion which contains surprisingly soft, i.e., low Tg, second polymer particles containing multiethylenically unsaturated monomer as polymerized units, provides a dry coating having useful levels of scrub resistance and suitable levels of dirt pickup resistance.
  • an aqueous polymer dispersion comprising: a) from 60 to 95 weight % first polymer particles, and b) from 5 to 40 weight % second polymer particles, based on the total weight of said first polymer particles and said second polymer particles; wherein said first polymer particles have a glass transition temperature in the range of from ⁇ 20° C.
  • said second polymer particles have a glass transition temperature of less than 0° C., and wherein said second polymer particles comprise as polymerized units, monoethylenically unsaturated monomer and at least 0.2 mole % multiethylenically unsaturated monomer, based on total moles of said monoethylenically unsaturated monomer and said multiethylenically unsaturated monomer comprising said second polymer particles.
  • an aqueous coating composition comprising the aqueous polymer dispersion of the first aspect of the present invention wherein said coating composition has a VOC of from 0 to 5%, by weight based on the total weight of said aqueous coating composition.
  • a method for preparing a dry coating comprising the steps of: a) providing an aqueous coating composition, said composition comprising an aqueous polymer dispersion comprising: i) from 60 to 95 weight % first polymer particles, and ii) from 5 to 40 weight % second polymer particles, based on the total weight of said first polymer particles and said second polymer particles; wherein said first polymer particles have a glass transition temperature in the range of from ⁇ 20° C.
  • said second polymer particles have a glass transition temperature of less than 0° C., and wherein said second polymer particles comprise as polymerized units, monoethylenically unsaturated monomer and at least 0.2 mole % multiethylenically unsaturated monomer, based on total moles of said monoethylenically unsaturated monomer and said multiethylenically unsaturated monomer comprising said second polymer particles: b) applying said aqueous coating composition to a substrate; and c) drying or allowing to dry said aqueous coating composition.
  • w 1 and w 2 refer to the weight fraction of the two comonomers
  • T g(1) and T g(2) refer to the glass transition temperatures of the two corresponding homopolymers in degrees Kelvin.
  • additional terms are added (w n /T g(n) ).
  • the T g of a polymer phase can also be calculated by using the appropriate values for the glass transition temperatures of homopolymers, which can be found, for example, in “Polymer Handbook”, edited by J. Brandrup and E. H. Immergut, Interscience Publishers. The values of T g reported herein are calculated using the Fox equation.
  • the use of the term “(meth)” followed by another term such as acrylate refers to both acrylates and methacrylates.
  • the term “(meth)acrylate” refers to either acrylate or methacrylate;
  • the term “(meth)acrylic” refers to either acrylic or methacrylic;
  • the term “(meth)acrylonitrile” refers to either acrylonitrile or methacrylonitrile;
  • the term “(meth)acrylamide” refers to either acrylamide or methacrylamide.
  • aqueous polymer dispersion refers to a composition containing discrete polymer particles dispersed in an aqueous medium, an aqueous medium being a single phase containing at least 50% by weight water.
  • the aqueous polymer dispersion of this invention includes from 60 to 95 weight % first polymer particles and from 5 to 40 weight % second polymer particles, based on the total weight of said first polymer particles and said second polymer particles dispersed in an aqueous medium.
  • the first polymer particles have a glass transition temperature of in the range of from ⁇ 20° C. to 25° C., preferably in the range of from ⁇ 15° C. to 20° C., and more preferably in the range of from ⁇ 10° C. to 15° C.
  • the second polymer particles have a glass transition temperature of less than 0° C., preferably in the range of from ⁇ 85° C. to less than zero, and more preferably in the range of from ⁇ 60° C. to ⁇ 10° C.
  • the first polymer particles and the second polymer particles are addition polymers, formed from polymerized ethylenically unsaturated monomer.
  • Suitable ethylenically unsaturated monomers include monoethylenically unsaturated monomers and multiethylenically unsaturated monomers.
  • Suitable monoethylenically unsaturated monomers include ethylene, styrene or alkyl-substituted styrenes such as vinyl toluene; vinyl esters such as vinyl acetate and vinyl propionate; vinyl halides such as vinyl chloride and vinylidene chloride; and monoethylenically unsaturated (meth)acrylic monomers.
  • Examples of monoethylenically unsaturated (meth)acrylic monomers include, but are not limited to, esters, amides, and nitriles of (meth)acrylic acid, such as, for example, C 1 to C 24 alkyl esters of (meth)acrylic acid such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, decyl (meth)acrylate, lauryl (meth)acrylate, and stearyl (meth)acrylate; hydroxyalkyl (meth)acrylates such as hydroxyethyl (meth)acrylate and hydroxypropyl (meth)acrylate; amine containing (meth)acrylates such as aminoalkyl (meth)acrylate, N-alkyl aminoalkyl (meth)acrylate, and N,N-dialkyl aminoalkyl (meth)acrylate; (me
  • suitable monoethylenically unsaturated monomers include aldehyde reactive group-containing monomers as taught in EP 1,352,924 including, for example, acetoacetoxyethyl (meth)acrylate and ethyleneurea-group containing monomers.
  • Preferred monoethylenically unsaturated monomers include methyl methacrylate, butyl methacrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, styrene, and acrylonitrile.
  • Suitable monoethylenically unsaturated monomers include monoethylenically unsaturated acid monomer that can be used at a level of from 0.1 to 10% by weight and preferably from 0.5 to 5 weight %, based on polymer weight in either or both of the first polymer particles and the second polymer particles, such as, for example, carboxylic acid-containing monomers and anhydride monomers such as (meth)acrylic acid, crotonic acid, itaconic acid, fumaric acid, maleic acid, monomethyl itaconate, monomethyl fumarate, monobutyl fumarate, and maleic anhydride; sulfur acid containing monomers such as sulfoethyl (meth)acrylate, 2-acrylamido-2-methylpropane sulfonic acid, vinyl sulfonic acid, styrene sulfonic acid, sulfophthalic acid, amino or diamino alkyl or aryl sulfonic acids including 1,4-but
  • either or both of the first polymer particles and the second polymer particles can include, as copolymerized units, from 0.25 to 2.5 weight %, preferably from 0.5 to 2.0 weight %, based on the weight of the polymer particles, itaconic acid, (meth)acrylamide, or both.
  • Suitable multiethylenically unsaturated monomers include diethylenically unsaturated monomers such as allyl (meth)acrylate, diallyl phthalate, 1,3-butylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, tripropylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, polyalkylene glycol di(meth)acrylate, divinyl toluene, butadiene, divinyl naphthalene, and divinyl benzene; and tri-ethylenically unsaturated monomers such as trimethylolpropane tri(meth)acrylate and trivinyl benzene.
  • diethylenically unsaturated monomers such as allyl (meth)acrylate, diallyl phthalate, 1,3-butylene glycol di(meth)acrylate, 1,6-hexanediol di(
  • One or more monoethylenically unsaturated monomers are used to prepare the first polymer particles.
  • Low levels of multiethylenically unsaturated monomer, as polymerized units, are optionally included in the first polymer particles, provided that the quality of film formation is not materially impaired.
  • the first polymer particles typically contain less than 0.2 mole %, preferably less than 0.1 mole %, and more preferably less than 0.05 mole % multiethylenically unsaturated monomer as polymerized units, based on the total moles of ethylenically unsaturated monomer included as polymerized units in the first polymer particles. Still more preferred are first polymer particles prepared in the absence of multiethylenically unsaturated monomer.
  • the first polymer particles are substantially uncrosslinked, when they are applied to a substrate in the method of this invention, although low levels of deliberate or adventitious crosslinking are optionally present.
  • the first polymer particles have a weight average molecular weight as measured by gel permeation chromatography in the range of 75,000 to greater than 2,000,000.
  • the second polymer particles include as polymerized units, at least one monoethylenically unsaturated monomer and at least one multiethylenically unsaturated monomer.
  • the amount of polymerized multiethylenically unsaturated monomer in the second polymer particles is at least 0.2 mole %, based on the total moles of ethylenically unsaturated monomer contained as polymerized units in the second polymer particles.
  • the second polymer particles include as polymerized units, from 0.3 mole % to 10 mole %, and more preferably, from 0.5 mole % to 2.0 mole % multiethylenically unsaturated monomer, based on the total moles of ethylenically unsaturated monomer included as polymerized units in the second polymer particles.
  • the second polymer particles are core/shell polymer particles containing a core of second polymer and a polymer shell.
  • the polymer shell partially or fully encapsulates the second polymer core.
  • the second polymer is as described above.
  • the optional polymer shell has a glass transition temperature of at least 60° C., preferably at least 70° C., and more preferably at least 80° C.
  • the second polymer particles of this embodiment typically contain from 65 to 97 weight % and preferably from 80 to 95 weight % of the second polymer; the amount of the polymer shell is typically in the range of from 3 to 35 weight % and preferably from 5 to 20 weight % of the second polymer particles of this embodiment.
  • the first polymer particles or the second polymer particles contain vinyl toluene as a polymerized unit.
  • Suitable levels of polymerized vinyl toluene are in the range of from 0.1 to 8 weight %, preferably in the range of from 0.5 to 5 weight %, and more preferably in the range of from 1 to 5 weight %, based on the weight of the first polymer particles or the second polymer particles, respectively.
  • Suitable average particle diameters for the first polymer particles or for the second polymer particles are in the range of from 50 nanometers (nm) to 500 nm.
  • the aqueous polymer dispersion can contain first polymer particles and second polymer particles with the same average particle diameters or with different particle diameters. Average particle diameter is measured by a quasielastic light scattering technique, such as provided, for example, by the Model BI-90 Particle Sizer of Brookhaven Instruments Corp.
  • a first aqueous dispersion containing the first polymer particles or a second aqueous dispersion containing the second polymer particles can have a unimodal particle size distribution or a multimodal particle size distribution, including a bimodal particle size distribution.
  • Emulsion polymerization techniques are typically employed to prepare the first polymer particles or the second polymer particles.
  • the practice of emulsion polymerization is discussed in detail in D. C. Blackley, Emulsion Polymerization (Wiley, 1975) and in H. Warson, The Applications of Synthetic Resin Emulsions , Chapter 2 (Ernest Benn Ltd., London 1972).
  • surfactants are optionally used such as, for example, anionic and/or nonionic emulsifiers such as, for example, alkali metal or ammonium salts of alkyl, aryl, or alkylaryl sulfates, sulfonates or phosphates; alkyl sulfonic acids; sulfosuccinate salts; fatty acids; ethylenically unsaturated surfactant monomers; and ethoxylated alcohols or phenols.
  • the amount of surfactant used is usually 0.1% to 6% by weight, based on the total weight of monomers employed in the synthesis.
  • Another optional synthesis adjuvant is a chain transfer agent, which moderates the molecular weight of the first polymer particles or the second polymer particles.
  • Suitable chain transfer agents include, for example, isopropanol, halogenated compounds, n-butyl mercaptan, n-amyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, alkyl thioglycolate, mercaptopropionic acid, and alkyl mercaptoalkanoate.
  • an amount of from 0.001 to 0.05, preferably 0.0025 to 0.05 moles per kg weight of the first polymer particles or second polymer particles is used.
  • Linear or branched C 4 -C 22 alkyl mercaptans such as n-dodecyl mercaptan and t-dodecyl mercaptan are preferred.
  • Methods to add the chain transfer agent(s) include one or more additions, which are continuous, linear, or not, over most or all of the entire reaction period or during limited portion(s) of the reaction period such as, for example, in the kettle charge and in the reduction of residual monomer stage.
  • the reaction temperature for emulsion polymerization is typically maintained at a temperature lower than 100° C. throughout the course of the reaction. Preferred is a reaction temperature between 30° C. and 95° C., more preferably between 50° C. and 90° C.
  • the monomer mixture can be added neat or alternatively as an emulsion in water. Methods to add the monomer mixture include one or more additions, and continuous addition; wherein the addition of the monomer is, linear or not, over the reaction period, or combinations thereof.
  • Suitable polymerization processes to prepare the first polymer particles or the second polymer particles include redox polymerization and polymerization in the presence of a controlled amount of unreacted monomer.
  • One method to prepare the first polymer particles or the second polymer particles is a redox polymerization process.
  • This process employs a redox initiation system that includes at least one initiator, which is commonly referred to as an oxidant, and one or more reductants.
  • Suitable oxidants for redox polymerization include, for example, hydrophilic initiators such as hydrogen peroxide, sodium peroxide, potassium peroxide, t-butyl hydroperoxide, cumene hydroperoxide, ammonium and/or alkali metal persulfates, sodium perborate, perphosphoric acid and salts thereof, potassium permanganate, ammonium or alkali metal salts of peroxydisulfuric acid; and t-alkyl hydroperoxides, including t-amyl hydroperoxide, t-alkyl peroxides, or t-alkyl peresters wherein the t-alkyl group includes at least 5 carbon atoms.
  • hydrophilic initiators such as hydrogen peroxide, sodium peroxide, potassium peroxide, t-butyl hydroperoxide, cumene hydroperoxide, ammonium and/or alkali metal persulfates, sodium perborate, perphosphoric acid and salts thereof, potassium per
  • Typical oxidant levels are in the range of from 0.01% to 3.0% by weight, based on total weight of monomers.
  • Suitable reductants include, for example, sodium sulfoxylate formaldehyde, alkali metal and ammonium salts of sulfur-containing acids, such as sodium sulfite, bisulfite, thiosulfate, hydrosulfite, sulfide, hydrosulfide or dithionite, formadinesulfinic acid, acetone bisulfite, hydroxymethanesulfonic acid, amines such as ethanolamine, glycolic acid, glyoxylic acid hydrate, ascorbic acid, isoascorbic acid, lactic acid, glyceric acid, malic acid, 2-hyroxy-2-sulfinatoacetic acid, tartaric acid, and salts of the preceding acids typically at a level of 0.01% to 3.0% by weight, based on dry polymer weight.
  • Redox reaction catalyzing metal salts of iron, copper, manganese, silver, platinum, vanadium, nickel, chromium, palladium, or cobalt are optionally used.
  • the oxidant and optional reductant are typically added to the reaction mixture together, in separate feeds, in one or more shots, or gradually, whether uniformly or not, or in combinations thereof or variations thereon as is desired.
  • the oxidant and the optional reductant are added concurrently with the monomer mixture.
  • the redox polymerization is preferably carried out at pH of 4 to 8.
  • a redox polymerization process is employed to prepare the first polymer particles.
  • at least 40% by weight, preferably at least 75% by weight, more preferably at least 95% by weight, based on the weight of the first polymer particles, of the first polymer particles are formed by redox polymerization.
  • the last 40 weight %, more preferably the last 75 weight %, and most preferably the last 95 weight % of the first polymer particles are formed by redox polymerization.
  • the redox polymerization is contemplated to include embodiments where some of the polymer is introduced by a polymer seed, formed in situ or not, or formed during hold periods or formed during periods wherein the monomer feed has ended and residual monomer is being converted to polymer.
  • At least 40% by weight, preferably at least 75% by weight, more preferably at least 95% by weight, based on the weight of the first polymer particles, of the first polymer particles are formed by redox polymerization in the presence of 0.001 to 0.05 moles chain transfer agent per kg of weight of the first polymer particles, by which is meant herein that at least the designated amount of first polymer particles are formed by redox emulsion polymerization and that this polymerization is effected contemporaneously with the prior presence and/or addition of a total of 0.001 to 0.05 moles chain transfer agent per kg of weight of the first polymer particles.
  • An alternate method to prepare the first polymer particles is a polymerization process having controlled conversion of the monomer to polymer, referred to herein as “controlled conversion process”.
  • controlled conversion process the monomer is added to an aqueous reaction medium and polymerized in the presence of excess unreacted monomer to form the first polymer particles as is disclosed in EP 1352924.
  • the level of unreacted monomer remaining after the formation of the first polymer particles is typically reduced by various techniques known in the polymerization arts. Examples of such techniques include addition of one or more charges of initiator to polymerize the residual monomer including the methods disclosed in U.S. Patent Application No. 20020160182, or removal of the unreacted monomer by distillation or steam stripping, as disclosed in U.S. Pat. No. 6,348,636.
  • the aqueous polymer dispersion is prepared by combining a first aqueous dispersion containing the first polymer particles and a second aqueous dispersion containing the second polymer particles.
  • the aqueous polymer dispersion typically includes from 20 to 80 weight % polymeric particles, based on the weight of the aqueous polymer dispersion.
  • the aqueous coating composition includes the aqueous polymer dispersion.
  • Other materials are optionally included in the aqueous coating composition including rheology modifiers; coalescents; solvents; biocides; wetting agents; defoamers; dyes; humectants; waxes; surfactants; fillers or extenders; colorants; flatting agents; neutralizers; buffers; freeze-thaw additives; plasticizers; antifoaming agents; tackifiers; hindered amine light stabilizers; photoabsorbers such as benzophenone, substituted benzophenones, and substituted acetophenones; dispersants; anti-oxidants; and pigments.
  • the photoabsorber can combined with the aqueous polymer dispersion or can be added to the aqueous coating composition subsequently.
  • Suitable levels of photoabsorbers include from 0.1 to 5 weight %, preferably from 0.1 to 1 weight %, and more preferably from 0.2 to 0.5 weight % photoabsorber, based on the total weight of the first polymer particles and the second polymer particles.
  • Suitable pigments include zinc oxide, antimony oxide, zirconium oxide, chromium oxide, iron oxide, lead oxide, zinc sulfide, lithopone, and titanium dioxide such as, for example, anatase and rutile titanium dioxide. It is also contemplated that the aqueous polymer dispersion optionally contains opaque polymer particles, such as, for example, RopaqueTM Opaque Polymers (Rohm and Haas Co., Philadelphia Pa.).
  • Suitable extenders include calcium carbonate, calcium sulfate, barium sulfate, mica, clay, calcined clay, feldspar, nepheline, syenite, wollastonite, diatomaceous earth, alumina silicates, non-film forming polymer particles having glass transition temperatures above 35° C.; aluminum oxide, silica, and talc.
  • Suitable colorants include inorganic colorant particles and organic colorant particles.
  • Suitable inorganic colorant particles include, for example, iron oxides chromium oxides; carbon black; and metal effect pigments such as aluminum, copper, copper oxide, bronze, stainless steel, nickel, zinc, and brass.
  • Suitable organic colorant particles include, for example, azo pigments, phthalocyanine pigments, and quinacridone pigments.
  • the amounts of pigment and extender in the aqueous coating composition vary from a pigment volume concentration (PVC) of 0 to 85 and thereby encompass coatings otherwise described in the art, for example, as clear coatings, stains, flat coatings, satin coatings, semi-gloss coatings, gloss coatings, primers, textured coatings, and the like.
  • PVC pigment volume concentration
  • the aqueous polymer dispersion is to be pigmented, at least one pigment is dispersed in the aqueous medium, preferably using high shear mixing. Alternatively, at least one predispersed pigment is used.
  • the first aqueous dispersion containing the first polymer particles and the second aqueous dispersion containing the second polymer particles are added to the pigment dispersion, either simultaneously or sequentially, with mixing under low shear stirring along with other adjuvants as desired, to provide a pigmented aqueous polymer dispersion.
  • the pigment slurry is prepared in the presence of the aqueous polymer dispersion containing the first polymer particles or the second polymers particles, or both.
  • the solids content of the aqueous coating composition is typically in the range of from 25% to 60% by volume.
  • the viscosity of the aqueous coating composition is typically from 50 KU (Krebs Units) to 120 KU as measured using a Brookfield Digital viscometer KU-1; the viscosities appropriate for different application methods vary considerably.
  • a volatile organic compound is defined herein as a carbon containing compound that has a boiling point below 280° C. at atmospheric pressure. Compounds such as water and ammonia are excluded from VOCs.
  • the aqueous coating composition of this invention contains less than 5% VOC, preferably less than 3%, and more preferably less than 1.7%, by weight based on the total weight of the aqueous polymer dispersion.
  • a “low VOC” aqueous coating composition herein is an aqueous polymer dispersion that contains from 0 to 5% VOC by weight based on the total weight of the aqueous polymer dispersion.
  • the aqueous coating composition has a PVC of less than or equal to 35 and has less than 5% VOC by weight, preferably less than 3% VOC by weight, and more preferably less than 1.7% VOC by weight, based on the total weight of the aqueous coating composition.
  • the aqueous coating composition has a PVC of greater than 35 and has less than 3% VOC by weight and preferably less than 1.7% by weight, based on the total weight of the aqueous coating composition.
  • the aqueous coating composition has a PVC of less than or equal to 85 and has less than 1.7% VOC by weight, preferably less than 0.5% by weight, and more preferably less than 0.1% by weight, based on the total weight of the aqueous coating composition.
  • a method for preparing a dry coating includes the steps of: providing the aqueous coating composition including the aqueous polymer dispersion of this invention; applying the aqueous coating composition to a substrate; and drying or allowing to dry the applied aqueous coating composition to prepare the dry coating.
  • the aqueous coating composition can be applied to a substrate using various techniques including, for example, brushing, rolling, drawdown, dipping, with a knife or trowel, curtain coating, and spraying methods such as, for example, air-atomized spray, air-assisted spray, airless spray, high volume low pressure spray, and air-assisted airless spray.
  • the wet coating thickness of the applied aqueous coating composition can be in the range of 1 micron to 250 microns.
  • the aqueous coating composition can be applied onto a substrate as a single coat or multiple coats. After application, the applied aqueous coating composition is typically allowed to dry at ambient conditions or alternatively dried by the application of heat to provide a dry coating. Drying is typically allowed to proceed under ambient conditions such as, for example, at temperatures of from 0° C. to 35° C.
  • the aqueous coating composition is suitable for application onto various substrates including processed wood such as medium density fiber board, chip board, and laminates; mineral substrates such as masonry, cement, fiber cement, cement asbestos, plaster, plasterboard, and glazed and unglazed ceramic; metal substrates such as galvanized iron, galvanized steel, cold rolled steel, aluminum, wrought iron, drop forged steel, and stainless steel; previously painted or primed surfaces (fresh, aged or weathered); cellulosic substrates such as paper and paperboard; glass; asphalt; leather; wallboard; nonwoven materials; and synthetic substrates such as polyvinyl chloride, polyvinylidene chloride, polyethylene, and polypropylene.
  • processed wood such as medium density fiber board, chip board, and laminates
  • mineral substrates such as masonry, cement, fiber cement, cement asbestos, plaster, plasterboard, and glazed and unglazed ceramic
  • metal substrates such as galvanized iron, galvanized steel, cold rolled steel, aluminum, wrought iron, drop forged steel, and stainless steel; previously
  • the dry coating prepared from the aqueous coating composition is suitable as a protective coating or an aesthetic coating.
  • suitable coatings include architectural coatings such as interior and exterior paint coatings, including masonry coatings, wood coating and treatments; floor polishes; maintenance coatings such as metal coatings; paper coatings; and traffic coatings such as those coatings used to provide markings on roads, pavements, and runways.
  • the relative scrub resistance is determined by comparing the performance of an aqueous coating composition including the first and second polymer particles with a comparative aqueous polymer dispersion containing the first polymer particles and comparative second polymer particles.
  • the aqueous polymer dispersion contains 80% by weight of first polymer particles and 20% by weight of second polymer particles, based on the total weight of polymer particles.
  • the comparative aqueous polymer dispersion has 80% by weight of first polymer particles and 20% by weight of comparative second polymer particles, based on the total weight of polymer particles.
  • the relative scrub resistance is the ratio of the number of scrub cycles for the aqueous coating composition divided by the number of scrub cycles for the comparative aqueous coating composition.
  • a relative scrub resistance value, “RS” herein, having a value of 1.1 or above is considered acceptable.
  • the relative dirt pickup resistance is determined by comparing the performance of the aqueous coating composition containing the first polymer particles and the second polymer particles with a comparative aqueous coating composition containing only the first polymer particles.
  • the aqueous polymer dispersion has 80% by weight of first polymer particles and 20% by weight of second polymer particles, based on the total weight of polymer particles.
  • the comparative aqueous polymer composition has 100% by weight of first polymer particles based on the total weight of polymer particles.
  • the relative dirt pickup resistance is the ratio of the ⁇ L* value for the dry coating prepared from the comparative aqueous polymer composition divided by the ⁇ L* value for the dry coating prepared from the aqueous polymer dispersion.
  • a relative dirt pickup resistance value, “RL” herein, having a value of 1.1 or greater indicates acceptable improvement in the dirt pickup resistance.
  • a monomer emulsion is prepared by combining 600 g BA, 20 g MAA, 365 g MMA, 15 g ureido methacrylate, 1.25 g nDDM, 415 g DI water, 6.9 g sodium carbonate, and 30.5 g SLS and emulsifying with stirring.
  • 5.2 g SLS and 380 g DI water are charged to a three-liter multi-neck flask fitted with mechanical stirring. The flask contents are heated to 65° C. under a nitrogen atmosphere.
  • the emulsion feed line is rinsed with 20 g DI water.
  • the contents of the flask are cooled to 60° C.
  • An aqueous solution containing 10 ppm ferrous sulfate, 1 g t-butyl hydroperoxide, and 0.5 g D-isoascorbic acid is added.
  • the contents are neutralized to a pH of 9.5 with ammonium hydroxide.
  • the resulting first aqueous dispersion, Example 1.1 contains 49.2 wt % first polymer particles, based on the total weight of the dispersion.
  • the first polymer particles of Example 1.1 have a Tg of ⁇ 10° C.
  • An aqueous dispersion including first polymer particles is prepared by a thermally initiated controlled conversion process.
  • a monomer emulsion is prepared by combining 480 g MMA, 500 g BA, 20 g MAA, 1.25 g nDDM, 455 g DI water, and 30.5 g SLS and emulsifying with stirring.
  • 5.2 g SLS and 215 g DI water are charged to a stirred 3-liter multi-neck flask. The contents of the flask are heated to 88° C. under a nitrogen atmosphere.
  • To the stirred flask contents are added 35 g of the monomer emulsion followed by a solution containing 0.35 g sodium carbonate and 0.3 g APS in 20 g DI water.
  • the monomer emulsion is gradually added to the flask along with the concurrent addition of a solution containing 1.05 g APS and 6.55 g sodium carbonate in 50 g DI water. Throughout the addition of the monomer emulsion, the contents are maintained at 88° C. After the additions are complete, the emulsion feed line is rinsed with 20 g DI water, which is added to the flask. Next, the contents of the flask are cooled to 60° C. and an aqueous solution containing 10 ppm ferrous sulfate, 1 g t-butyl hydroperoxide, and 0.5 g D-isoascorbic acid is added.
  • Example 1.2 contains 50.2 wt % first polymer particles, based on the total weight of the dispersion.
  • the first polymer particles of Example 1.2 have a Tg of 5° C.
  • a monomer emulsion is prepared by combining 969 g of BA, 34 g of MAA, 680 g of MMA, 460 g DI water, and 18.7 g TritonTM XN-45S surfactant (Triton is a trademark of Dow Chemical Co.), with stirring.
  • TritonTM XN-45S surfactant Triton is a trademark of Dow Chemical Co.
  • 2.5 g TritonTM XN-45S surfactant and 1000 g DI water are charged to a 5-liter multi-neck stirred flask.
  • the contents of the flask are heated to 85° C. under a nitrogen atmosphere.
  • To the stirred flask contents are added 92 g of the monomer emulsion followed by 2.6 g APS in 100 g DI water, and then followed by 1.7 g sodium carbonate in 100 g DI water.
  • the contents of the flask are neutralized to a pH of 9.5 with ammonium hydroxide.
  • the resulting aqueous dispersion, Example 1.3 contains 46.7 wt % of the first polymer particles based on the total weight of the dispersion.
  • the first polymer particles have a glass transition temperature of ⁇ 6° C.
  • An emulsion polymerization reaction is carried out in a reactor equipped with an agitator, a thermocouple, and heating/cooling device.
  • the reactor is charged with 1562 g DI water at 55° C. and 1,260 g of a crosslinked polybutyl acrylate polymer seed dispersion having a mean particle diameter of 230 nm and 50.8 wt % solids.
  • the reactor contents are sparged with nitrogen for thirty minutes.
  • 1.4 g tartaric acid diluted in 100 g DI water are added to the reactor.
  • 70.3 g SLS (28 wt %) is added to the reactor. A nitrogen sweep is applied after the SLS addition.
  • a monomer emulsion is prepared containing 2,231.7 g DI water, 117.1 g SLS, 6321.1 g BA, 44.6 g ALMA. With the contents of the reactor at 50° C., 893.6 g of the monomer emulsion is added to the reactor. After this first charge of monomer emulsion, 1.12 g t-BHP is added. The temperature increases to 60° C. and is maintained at 60° C. for an additional 15 minutes. An additional 65.1 g SLS and 248.5 g DI water are added to the remaining monomer emulsion. The reactor contents are cooled to 53° C. and a second charge of 1,295.2 g of monomer emulsion is added to the reactor.
  • the reactor contents are maintained at peak temperature for an additional 60 minutes.
  • the contents of the reactor are cooled to 40° C. and then filtered through a 400 micron filter.
  • Aqueous ammonium hydroxide (29% active) is added until the pH is 8.5.
  • the resulting aqueous dispersion, Example 2.1 contains second polymer particles containing 94 wt % second polymer having a Tg of ⁇ 54° C., and 6 wt % of polymer shell phase with a Tg of 105° C.
  • the aqueous dispersion of Example 2.2 has a solids level of 49 wt % s.
  • a monomer emulsion is prepared by combining 925 g BA, 5 g MAA, 10 g ALMA, and 50 g VT with 455 g DI water, 6.9 g sodium carbonate, and 30.5 g SLS, with stirring.
  • To the stirred flask contents are added 35 g monomer emulsion followed by 3.5 g APS in 10 g DI water.
  • To the remaining monomer emulsion is added 20 g of a 50 weight % solution of ureido methacrylate.
  • the monomer emulsion is gradually added over a period of 210 minutes.
  • the contents of the flask is maintained at a temperature of 83° C. throughout the monomer addition.
  • 20 g DI water is used to rinse the emulsion feed line to the flask.
  • the contents of the flask is allowed to cool to 60° C.
  • Aqueous solutions of 10 ppm ferrous sulfate, 1 g t-butyl hydroperoxide, and 0.5 g D-Isoascorbic acid are added to the flask.
  • the contents of the flask is neutralized to pH 9.5 with ammonium hydroxide.
  • the resulting aqueous dispersion, Example 2.2 contains second polymer particles with a Tg of ⁇ 55° C.
  • Monomer emulsion I (ME I) is prepared by combining 869.5 g BA, 4.7 g MAA, 9.4 g ureido methacrylate, 9.4 g ALMA, and 47 g VT with 436.1 g DI water, 6.9 g sodium carbonate, and 28.7 g SLS, with stirring.
  • Monomer emulsion II (ME II) is prepared by combining 60 g MMA with 27.3 g DI water and 1.83 g SLS, and emulsifying with stirring. To a 3-liter multi-neck stirred flask, 5.2 g SLS and 400 g DI water are added. The flask contents are heated to 85° C. under nitrogen.
  • the contents of the flask are maintained at 65° C. for 1 hour.
  • the contents of the flask are neutralized to pH 9.5 with ammonium hydroxide.
  • the resulting aqueous dispersion, Example 2.3 includes second polymer particles with 94 wt % second polymer with a Tg of ⁇ 55° C., and 6 wt % polymer shell with a Tg of 105° C.
  • An emulsion polymerization reaction is carried out in a reactor equipped with a mechanical agitator, a thermocouple, and a heating/cooling device.
  • the reactor is charged with 1562 g DI water and 1260 g of a crosslinked polybutyl acrylate polymer seed dispersion having a mean particle diameter of 230 nm at 50.8 wt % solids, and heated to 55° C.
  • the reactor contents is sparged with nitrogen for thirty minutes.
  • a solution of 1.4 g tartaric acid diluted in 100 g DI water is added to the reactor, followed by the immediate addition of 70.3 g SLS.
  • a nitrogen sweep is applied after the SLS addition.
  • a monomer emulsion is prepared by combining 2,231.7 g DI water, 117.1 g SLS, 6321.1 g BA, and 44.6 g ALMA. With the contents of the reactor at 50° C., 893.6 g of the monomer emulsion is added to the reactor. After this first charge of monomer emulsion, 1.12 g t-BHP is added. The reactor temperature increases to 60° C. and the contents of the reactor are maintained at 60° C. for an additional 15 minutes. An additional 65.1 g SLS and 248.5 g DI water are added to the remaining monomer emulsion. The reactor contents are cooled to 53° C.
  • the temperature of the reactor contents increases to a peak temperature above 50° C. and is maintained at peak temperature for 3 minutes.
  • 1.16 g t-BHP and 1.01 g SSF diluted in 48.2 g DI water are added to the reactor.
  • the reactor contents are maintained at temperature for an additional 30 minutes.
  • Aqueous ammonium hydroxide (29% active) is added until the pH of the reactor contents is 8.5.
  • the resulting polymer dispersion, Example 2.4 has a solids level of 49 wt % and contains second polymer particles with a Tg of ⁇ 54° C.
  • a monomer mixture is prepared by combining 413 g DI water, 16.4 g SLS, 495.6 g BA, 1285.0 g MMA, and 36.7 g MAA.
  • 1482 g DI water and 32.8 g SLS are added to a 5-liter flask equipped with mechanical stirring. The contents of the flask are heated to 85° C.
  • a solution containing 5.7 g sodium carbonate dissolved in 56 g DI water is added to the flask, followed by 102 g of the monomer emulsion, followed by a solution containing 7.3 g ammonium persulfate dissolved in 51 g DI water.
  • 36.7 g of 50 weight % ureido methacrylate is added to the monomer emulsion.
  • the remainder of monomer emulsion is added to the flask over a period of 90 minutes, while contents of the flask are maintained at 84° C.
  • the flask contents is maintained at temperature for 10 minutes and then cooled to 65° C.
  • 6.6 ppm ferrous sulfate, 1 g t-butyl hydroperoxide, and 0.5 g D-isoascorbic acid in aqueous solutions are added to the flask.
  • the contents of the flask are neutralized with the addition of 16.0 g ammonium hydroxide (29% active) and diluted with DI water.
  • the resulting aqueous dispersion, Comparative Example A contains 45.9 wt % of the comparative second polymer particles, based on the total weight of the dispersion.
  • the comparative second polymer particles have a glass transition temperature of 43° C.
  • Titanium dioxide dispersions are prepared by mixing the ingredients in Table 3.1 in the order listed under high shear conditions. TABLE 3.1 Titanium Dioxide Dispersion Ingredient Weight in grams Tamol TM 731A dispersant (Rohm and Haas Co.) 13.99 Tego TM Foamex 810 defoamer (Degussa AG) 1.13 Surfynol TM CT-111 surfactant (Air Products) 2.25 Ti-Pure TM R-706 titanium dioxide (E. I. DuPont 264.44 DeNemours Co.) Water 62.26
  • the aqueous coating compositions, Example 3, and the comparative aqueous coating composition, Comparative Example B, are prepared by combining the ingredients in Table 3.2 in the order listed with low shear mixing TABLE 3.2 Aqueous Coating Compositions and Comparative Aqueous Coating Composition Example Example Example Example Ingredient 3.1 3.2 3.3 3.4 titanium dioxide 344.07 g 344.07 g 344.07 g 344.07 g dispersion (3.1) Water 20.00 g 20.00 g 20.00 g 20.00 g propylene glycol 16.50 g 16.50 g 16.50 g 16.50 g Example 1.1 430.1 g 430.1 g 430.1 g — Example 1.2 — — — 430.1 g Example 2.1 106.2 g — — 106.2 g Example 2.2 — 106.2 g — — Example 2.3 — — 106.2 g — Surfynol TM CT-111 1.00 g 1.00 g 1.00 g 1.00 g surfactant ammonia (28%)
  • Titanium dioxide dispersions are prepared according to the procedure of Example 3. Next, the aqueous compositions, Example 4, and the comparative aqueous coating composition, Comparative C, are prepared by adding the ingredients in Table 4.1 in the order listed with low shear mixing. TABLE 4.1 Aqueous Coating Compositions and Comparative Aqueous Coating Composition Example Example Example Example Ingredient 4.1 4.2 4.3 4.4 titanium dioxide 344.07 g 344.07 g 344.07 g 344.07 g 344.07 g dispersion Water 20.00 g 20.00 g 20.00 g 20.00 g propylene glycol 16.50 g 16.50 g 16.50 g Example 1.1 430.1 g 430.1 g 430.1 g — Example 1.2 — — — 430.1 g Example 2.1 106.2 g — — 106.2 g Example 2.2 — 106.2 g — — Example 2.3 — — 106.2 g — Surfynol TM CT-111 1.00 g 1.00 g 1.00 g
  • Dry coating samples are prepared from the aqueous coating compositions, Examples 3.1-3.6, and the comparative aqueous coating composition, Comparative B, and are evaluated according to the procedure for the scrub resistance test.
  • the scrub resistances for the dry coatings prepared from the aqueous coating compositions of this invention, Examples 3.1-3.6 are greater than 110% of the scrub resistance of the dry coating prepared from the comparative aqueous coating composition, Comparative B.
  • the relative scrub resistance value, RS is greater than 1.1. This result indicates improved scrub resistance for the dry coatings prepared from the aqueous coating compositions of this invention relative to the dry coating prepared from the comparative aqueous coating composition.
  • Dry coating samples are prepared from the aqueous coating compositions, Examples 4.1-4.6, and the comparative aqueous coating composition, Comparative C and are evaluated according to the procedure for the dirt pickup resistance test.
  • the dirt pickup resistances for the dry coatings prepared from the aqueous coating compositions of this invention, Examples 4.1-4.6, are greater than 110% of the dirt pickup resistance of the dry coating prepared from the comparative aqueous coating composition, Comparative C.
  • the relative dirt pickup resistance values, RL are greater than 1.1. This result indicates improved dirt pickup resistances for the dry coatings prepared from the aqueous coating compositions of this invention relative to the dry coating prepared from the comparative polymer dispersion.

Abstract

An aqueous polymer dispersion containing a predominant amount of first polymer particles and a smaller amount of second polymer particles is provided. The first polymer particles have a glass transition temperature in the range of from −20° C. to 25° C. The second polymer particles include multiethylenically unsaturated monomer as polymerized units, and have a glass transition temperature of less than 0° C. The aqueous polymer dispersion is useful for providing dry coatings having improved dirt pickup resistance and an acceptable level of scrub resistance. Also provided is an aqueous coating composition including the aqueous polymer dispersion and a method for preparing a dry coating from the aqueous coating composition.

Description

  • This invention generally relates to an aqueous polymer dispersion suitable for providing dry coatings having improved dirt pickup resistance and an acceptable level of scrub resistance. More particularly, this invention relates to an aqueous polymer dispersion including from 60 to 95 weight % first polymer particles and from 5 to 40 weight % second polymer particles. The second polymer particles include multiethylenically unsaturated monomer as polymerized units. This invention also includes a method for preparing a dry coating from an aqueous coating composition including the aqueous polymer dispersion.
  • Dirt pickup resistance, a generally recognized desirable characteristic of a coating, is the ability to minimize the accumulation of material such as dirt, dust, and soot onto the surface of the coating. Coatings with poor dirt pickup resistance are characterized as having an unclean, darkened appearance. The coating must also have a desired balance of other properties, including acceptable scrub resistance. Further, it is desired that such a coating is optionally formed from a coating composition that contains a low level of volatile organic compounds (VOC), or preferably, is formulated in the absence of volatile organic compounds.
  • U.S. Pat. No. 5,731,377 is directed to a polymer blend useful as a binder in an aqueous coating composition. The disclosed polymer blend contains from 20 to 60 weight % of a hard emulsion polymer with a glass transition temperature greater than room temperature, and from 40 to 80 weight % of a soft emulsion polymer having a glass transition temperature of less than 15° C. The reference discloses that the polymer blend is useful in paint compositions that provide good block resistance without the use of volatile organic compounds such as a coalescent to aid in film formation. Despite this disclosure, coating compositions are desired that provide dry coatings having both acceptable scrub resistance and acceptable dirt pickup resistance.
  • The problem faced by the inventors is the provision of a suitable aqueous polymer dispersion, an aqueous coating composition including the dispersion, and a method for preparing a dry coating so that a useful level of dirt pickup resistance can be effected while maintaining an acceptable level of scrub resistance, particularly in a low VOC aqueous coating composition. The inventors have discovered an aqueous polymer dispersion including certain first polymer particles and certain second polymer particles that achieve this desired end. This aqueous polymer dispersion, which contains surprisingly soft, i.e., low Tg, second polymer particles containing multiethylenically unsaturated monomer as polymerized units, provides a dry coating having useful levels of scrub resistance and suitable levels of dirt pickup resistance.
  • In a first aspect of the present invention there is provided an aqueous polymer dispersion comprising: a) from 60 to 95 weight % first polymer particles, and b) from 5 to 40 weight % second polymer particles, based on the total weight of said first polymer particles and said second polymer particles; wherein said first polymer particles have a glass transition temperature in the range of from −20° C. to 25° C.; wherein said second polymer particles have a glass transition temperature of less than 0° C., and wherein said second polymer particles comprise as polymerized units, monoethylenically unsaturated monomer and at least 0.2 mole % multiethylenically unsaturated monomer, based on total moles of said monoethylenically unsaturated monomer and said multiethylenically unsaturated monomer comprising said second polymer particles.
  • In a second aspect of the present invention there is provided an aqueous coating composition comprising the aqueous polymer dispersion of the first aspect of the present invention wherein said coating composition has a VOC of from 0 to 5%, by weight based on the total weight of said aqueous coating composition.
  • In a third aspect of the present invention there is provided a method for preparing a dry coating comprising the steps of: a) providing an aqueous coating composition, said composition comprising an aqueous polymer dispersion comprising: i) from 60 to 95 weight % first polymer particles, and ii) from 5 to 40 weight % second polymer particles, based on the total weight of said first polymer particles and said second polymer particles; wherein said first polymer particles have a glass transition temperature in the range of from −20° C. to 25° C.; wherein said second polymer particles have a glass transition temperature of less than 0° C., and wherein said second polymer particles comprise as polymerized units, monoethylenically unsaturated monomer and at least 0.2 mole % multiethylenically unsaturated monomer, based on total moles of said monoethylenically unsaturated monomer and said multiethylenically unsaturated monomer comprising said second polymer particles: b) applying said aqueous coating composition to a substrate; and c) drying or allowing to dry said aqueous coating composition.
  • “Glass transition temperature” or “Tg” as used herein, is that calculated by the Fox equation [Bulletin of the American Physical Society 1, 3 Page 123 (1956)] as follows: 1 T g = w 1 T g ( 1 ) + w 2 T g ( 2 )
    For a polymer formed from two different monomers, w1 and w2 refer to the weight fraction of the two comonomers, and Tg(1) and Tg(2) refer to the glass transition temperatures of the two corresponding homopolymers in degrees Kelvin. For polymers formed from three or more monomers, additional terms are added (wn/Tg(n)). The Tg of a polymer phase can also be calculated by using the appropriate values for the glass transition temperatures of homopolymers, which can be found, for example, in “Polymer Handbook”, edited by J. Brandrup and E. H. Immergut, Interscience Publishers. The values of Tg reported herein are calculated using the Fox equation.
  • As used herein, the use of the term “(meth)” followed by another term such as acrylate refers to both acrylates and methacrylates. For example, the term “(meth)acrylate” refers to either acrylate or methacrylate; the term “(meth)acrylic” refers to either acrylic or methacrylic; the term “(meth)acrylonitrile” refers to either acrylonitrile or methacrylonitrile; and the term “(meth)acrylamide” refers to either acrylamide or methacrylamide.
  • As used herein, the term “aqueous polymer dispersion” refers to a composition containing discrete polymer particles dispersed in an aqueous medium, an aqueous medium being a single phase containing at least 50% by weight water.
  • The aqueous polymer dispersion of this invention includes from 60 to 95 weight % first polymer particles and from 5 to 40 weight % second polymer particles, based on the total weight of said first polymer particles and said second polymer particles dispersed in an aqueous medium. The first polymer particles have a glass transition temperature of in the range of from −20° C. to 25° C., preferably in the range of from −15° C. to 20° C., and more preferably in the range of from −10° C. to 15° C. The second polymer particles have a glass transition temperature of less than 0° C., preferably in the range of from −85° C. to less than zero, and more preferably in the range of from −60° C. to −10° C.
  • The first polymer particles and the second polymer particles are addition polymers, formed from polymerized ethylenically unsaturated monomer. Suitable ethylenically unsaturated monomers include monoethylenically unsaturated monomers and multiethylenically unsaturated monomers.
  • Examples of suitable monoethylenically unsaturated monomers include ethylene, styrene or alkyl-substituted styrenes such as vinyl toluene; vinyl esters such as vinyl acetate and vinyl propionate; vinyl halides such as vinyl chloride and vinylidene chloride; and monoethylenically unsaturated (meth)acrylic monomers. Examples of monoethylenically unsaturated (meth)acrylic monomers include, but are not limited to, esters, amides, and nitriles of (meth)acrylic acid, such as, for example, C1 to C24 alkyl esters of (meth)acrylic acid such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, decyl (meth)acrylate, lauryl (meth)acrylate, and stearyl (meth)acrylate; hydroxyalkyl (meth)acrylates such as hydroxyethyl (meth)acrylate and hydroxypropyl (meth)acrylate; amine containing (meth)acrylates such as aminoalkyl (meth)acrylate, N-alkyl aminoalkyl (meth)acrylate, and N,N-dialkyl aminoalkyl (meth)acrylate; (meth)acrylonitrile; and (meth)acrylamide. Further examples of suitable monoethylenically unsaturated monomers include aldehyde reactive group-containing monomers as taught in EP 1,352,924 including, for example, acetoacetoxyethyl (meth)acrylate and ethyleneurea-group containing monomers. Preferred monoethylenically unsaturated monomers include methyl methacrylate, butyl methacrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, styrene, and acrylonitrile.
  • Other suitable monoethylenically unsaturated monomers include monoethylenically unsaturated acid monomer that can be used at a level of from 0.1 to 10% by weight and preferably from 0.5 to 5 weight %, based on polymer weight in either or both of the first polymer particles and the second polymer particles, such as, for example, carboxylic acid-containing monomers and anhydride monomers such as (meth)acrylic acid, crotonic acid, itaconic acid, fumaric acid, maleic acid, monomethyl itaconate, monomethyl fumarate, monobutyl fumarate, and maleic anhydride; sulfur acid containing monomers such as sulfoethyl (meth)acrylate, 2-acrylamido-2-methylpropane sulfonic acid, vinyl sulfonic acid, styrene sulfonic acid, sulfophthalic acid, amino or diamino alkyl or aryl sulfonic acids including 1,4-butane diol-2-sulfonic acid; phosphorus acid containing monomers including phosphoalkyl (meth)acrylate; and salts thereof. Preferred monoethylenically unsaturated acid monomers include acrylic acid, methacrylic acid, itaconic acid and phosphoethyl methacrylate.
  • In one embodiment either or both of the first polymer particles and the second polymer particles can include, as copolymerized units, from 0.25 to 2.5 weight %, preferably from 0.5 to 2.0 weight %, based on the weight of the polymer particles, itaconic acid, (meth)acrylamide, or both.
  • Examples of suitable multiethylenically unsaturated monomers include diethylenically unsaturated monomers such as allyl (meth)acrylate, diallyl phthalate, 1,3-butylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, tripropylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, polyalkylene glycol di(meth)acrylate, divinyl toluene, butadiene, divinyl naphthalene, and divinyl benzene; and tri-ethylenically unsaturated monomers such as trimethylolpropane tri(meth)acrylate and trivinyl benzene.
  • One or more monoethylenically unsaturated monomers are used to prepare the first polymer particles. Low levels of multiethylenically unsaturated monomer, as polymerized units, are optionally included in the first polymer particles, provided that the quality of film formation is not materially impaired. The first polymer particles typically contain less than 0.2 mole %, preferably less than 0.1 mole %, and more preferably less than 0.05 mole % multiethylenically unsaturated monomer as polymerized units, based on the total moles of ethylenically unsaturated monomer included as polymerized units in the first polymer particles. Still more preferred are first polymer particles prepared in the absence of multiethylenically unsaturated monomer. Further, the first polymer particles are substantially uncrosslinked, when they are applied to a substrate in the method of this invention, although low levels of deliberate or adventitious crosslinking are optionally present. Typically, the first polymer particles have a weight average molecular weight as measured by gel permeation chromatography in the range of 75,000 to greater than 2,000,000.
  • The second polymer particles include as polymerized units, at least one monoethylenically unsaturated monomer and at least one multiethylenically unsaturated monomer. The amount of polymerized multiethylenically unsaturated monomer in the second polymer particles is at least 0.2 mole %, based on the total moles of ethylenically unsaturated monomer contained as polymerized units in the second polymer particles. Preferably, the second polymer particles include as polymerized units, from 0.3 mole % to 10 mole %, and more preferably, from 0.5 mole % to 2.0 mole % multiethylenically unsaturated monomer, based on the total moles of ethylenically unsaturated monomer included as polymerized units in the second polymer particles.
  • In one embodiment, the second polymer particles are core/shell polymer particles containing a core of second polymer and a polymer shell. The polymer shell partially or fully encapsulates the second polymer core. The second polymer is as described above. The optional polymer shell has a glass transition temperature of at least 60° C., preferably at least 70° C., and more preferably at least 80° C. The second polymer particles of this embodiment typically contain from 65 to 97 weight % and preferably from 80 to 95 weight % of the second polymer; the amount of the polymer shell is typically in the range of from 3 to 35 weight % and preferably from 5 to 20 weight % of the second polymer particles of this embodiment.
  • In one embodiment, the first polymer particles or the second polymer particles contain vinyl toluene as a polymerized unit. Suitable levels of polymerized vinyl toluene are in the range of from 0.1 to 8 weight %, preferably in the range of from 0.5 to 5 weight %, and more preferably in the range of from 1 to 5 weight %, based on the weight of the first polymer particles or the second polymer particles, respectively.
  • Suitable average particle diameters for the first polymer particles or for the second polymer particles are in the range of from 50 nanometers (nm) to 500 nm. The aqueous polymer dispersion can contain first polymer particles and second polymer particles with the same average particle diameters or with different particle diameters. Average particle diameter is measured by a quasielastic light scattering technique, such as provided, for example, by the Model BI-90 Particle Sizer of Brookhaven Instruments Corp. A first aqueous dispersion containing the first polymer particles or a second aqueous dispersion containing the second polymer particles can have a unimodal particle size distribution or a multimodal particle size distribution, including a bimodal particle size distribution.
  • Emulsion polymerization techniques are typically employed to prepare the first polymer particles or the second polymer particles. The practice of emulsion polymerization is discussed in detail in D. C. Blackley, Emulsion Polymerization (Wiley, 1975) and in H. Warson, The Applications of Synthetic Resin Emulsions, Chapter 2 (Ernest Benn Ltd., London 1972). Conventional surfactants are optionally used such as, for example, anionic and/or nonionic emulsifiers such as, for example, alkali metal or ammonium salts of alkyl, aryl, or alkylaryl sulfates, sulfonates or phosphates; alkyl sulfonic acids; sulfosuccinate salts; fatty acids; ethylenically unsaturated surfactant monomers; and ethoxylated alcohols or phenols. The amount of surfactant used is usually 0.1% to 6% by weight, based on the total weight of monomers employed in the synthesis.
  • Another optional synthesis adjuvant is a chain transfer agent, which moderates the molecular weight of the first polymer particles or the second polymer particles. Suitable chain transfer agents include, for example, isopropanol, halogenated compounds, n-butyl mercaptan, n-amyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, alkyl thioglycolate, mercaptopropionic acid, and alkyl mercaptoalkanoate. Generally, an amount of from 0.001 to 0.05, preferably 0.0025 to 0.05 moles per kg weight of the first polymer particles or second polymer particles, is used. Linear or branched C4-C22 alkyl mercaptans such as n-dodecyl mercaptan and t-dodecyl mercaptan are preferred. Methods to add the chain transfer agent(s) include one or more additions, which are continuous, linear, or not, over most or all of the entire reaction period or during limited portion(s) of the reaction period such as, for example, in the kettle charge and in the reduction of residual monomer stage.
  • The reaction temperature for emulsion polymerization is typically maintained at a temperature lower than 100° C. throughout the course of the reaction. Preferred is a reaction temperature between 30° C. and 95° C., more preferably between 50° C. and 90° C. The monomer mixture can be added neat or alternatively as an emulsion in water. Methods to add the monomer mixture include one or more additions, and continuous addition; wherein the addition of the monomer is, linear or not, over the reaction period, or combinations thereof.
  • Suitable polymerization processes to prepare the first polymer particles or the second polymer particles include redox polymerization and polymerization in the presence of a controlled amount of unreacted monomer.
  • One method to prepare the first polymer particles or the second polymer particles is a redox polymerization process. This process employs a redox initiation system that includes at least one initiator, which is commonly referred to as an oxidant, and one or more reductants. Suitable oxidants for redox polymerization include, for example, hydrophilic initiators such as hydrogen peroxide, sodium peroxide, potassium peroxide, t-butyl hydroperoxide, cumene hydroperoxide, ammonium and/or alkali metal persulfates, sodium perborate, perphosphoric acid and salts thereof, potassium permanganate, ammonium or alkali metal salts of peroxydisulfuric acid; and t-alkyl hydroperoxides, including t-amyl hydroperoxide, t-alkyl peroxides, or t-alkyl peresters wherein the t-alkyl group includes at least 5 carbon atoms. Typical oxidant levels are in the range of from 0.01% to 3.0% by weight, based on total weight of monomers. Suitable reductants include, for example, sodium sulfoxylate formaldehyde, alkali metal and ammonium salts of sulfur-containing acids, such as sodium sulfite, bisulfite, thiosulfate, hydrosulfite, sulfide, hydrosulfide or dithionite, formadinesulfinic acid, acetone bisulfite, hydroxymethanesulfonic acid, amines such as ethanolamine, glycolic acid, glyoxylic acid hydrate, ascorbic acid, isoascorbic acid, lactic acid, glyceric acid, malic acid, 2-hyroxy-2-sulfinatoacetic acid, tartaric acid, and salts of the preceding acids typically at a level of 0.01% to 3.0% by weight, based on dry polymer weight. Redox reaction catalyzing metal salts of iron, copper, manganese, silver, platinum, vanadium, nickel, chromium, palladium, or cobalt are optionally used. The oxidant and optional reductant are typically added to the reaction mixture together, in separate feeds, in one or more shots, or gradually, whether uniformly or not, or in combinations thereof or variations thereon as is desired. Preferably, the oxidant and the optional reductant are added concurrently with the monomer mixture. The redox polymerization is preferably carried out at pH of 4 to 8.
  • In one embodiment, a redox polymerization process is employed to prepare the first polymer particles. Preferably, at least 40% by weight, preferably at least 75% by weight, more preferably at least 95% by weight, based on the weight of the first polymer particles, of the first polymer particles are formed by redox polymerization. Preferably, the last 40 weight %, more preferably the last 75 weight %, and most preferably the last 95 weight % of the first polymer particles are formed by redox polymerization. The redox polymerization is contemplated to include embodiments where some of the polymer is introduced by a polymer seed, formed in situ or not, or formed during hold periods or formed during periods wherein the monomer feed has ended and residual monomer is being converted to polymer.
  • In a further embodiment, at least 40% by weight, preferably at least 75% by weight, more preferably at least 95% by weight, based on the weight of the first polymer particles, of the first polymer particles are formed by redox polymerization in the presence of 0.001 to 0.05 moles chain transfer agent per kg of weight of the first polymer particles, by which is meant herein that at least the designated amount of first polymer particles are formed by redox emulsion polymerization and that this polymerization is effected contemporaneously with the prior presence and/or addition of a total of 0.001 to 0.05 moles chain transfer agent per kg of weight of the first polymer particles.
  • An alternate method to prepare the first polymer particles is a polymerization process having controlled conversion of the monomer to polymer, referred to herein as “controlled conversion process”. In this controlled conversion process, the monomer is added to an aqueous reaction medium and polymerized in the presence of excess unreacted monomer to form the first polymer particles as is disclosed in EP 1352924.
  • In the controlled conversion process or the redox process, the level of unreacted monomer remaining after the formation of the first polymer particles is typically reduced by various techniques known in the polymerization arts. Examples of such techniques include addition of one or more charges of initiator to polymerize the residual monomer including the methods disclosed in U.S. Patent Application No. 20020160182, or removal of the unreacted monomer by distillation or steam stripping, as disclosed in U.S. Pat. No. 6,348,636.
  • Generally, the aqueous polymer dispersion is prepared by combining a first aqueous dispersion containing the first polymer particles and a second aqueous dispersion containing the second polymer particles.
  • The aqueous polymer dispersion typically includes from 20 to 80 weight % polymeric particles, based on the weight of the aqueous polymer dispersion.
  • The aqueous coating composition includes the aqueous polymer dispersion. Other materials are optionally included in the aqueous coating composition including rheology modifiers; coalescents; solvents; biocides; wetting agents; defoamers; dyes; humectants; waxes; surfactants; fillers or extenders; colorants; flatting agents; neutralizers; buffers; freeze-thaw additives; plasticizers; antifoaming agents; tackifiers; hindered amine light stabilizers; photoabsorbers such as benzophenone, substituted benzophenones, and substituted acetophenones; dispersants; anti-oxidants; and pigments. The photoabsorber can combined with the aqueous polymer dispersion or can be added to the aqueous coating composition subsequently. Suitable levels of photoabsorbers include from 0.1 to 5 weight %, preferably from 0.1 to 1 weight %, and more preferably from 0.2 to 0.5 weight % photoabsorber, based on the total weight of the first polymer particles and the second polymer particles.
  • Examples of suitable pigments include zinc oxide, antimony oxide, zirconium oxide, chromium oxide, iron oxide, lead oxide, zinc sulfide, lithopone, and titanium dioxide such as, for example, anatase and rutile titanium dioxide. It is also contemplated that the aqueous polymer dispersion optionally contains opaque polymer particles, such as, for example, Ropaque™ Opaque Polymers (Rohm and Haas Co., Philadelphia Pa.).
  • Examples of suitable extenders include calcium carbonate, calcium sulfate, barium sulfate, mica, clay, calcined clay, feldspar, nepheline, syenite, wollastonite, diatomaceous earth, alumina silicates, non-film forming polymer particles having glass transition temperatures above 35° C.; aluminum oxide, silica, and talc.
  • Suitable colorants include inorganic colorant particles and organic colorant particles. Suitable inorganic colorant particles include, for example, iron oxides chromium oxides; carbon black; and metal effect pigments such as aluminum, copper, copper oxide, bronze, stainless steel, nickel, zinc, and brass. Suitable organic colorant particles include, for example, azo pigments, phthalocyanine pigments, and quinacridone pigments.
  • The amounts of pigment and extender in the aqueous coating composition vary from a pigment volume concentration (PVC) of 0 to 85 and thereby encompass coatings otherwise described in the art, for example, as clear coatings, stains, flat coatings, satin coatings, semi-gloss coatings, gloss coatings, primers, textured coatings, and the like. The pigment volume concentration is calculated by the following formula:
    PVC (%)=volume of pigment(s),+volume extender(s)×100. total dry volume of paint
  • If the aqueous polymer dispersion is to be pigmented, at least one pigment is dispersed in the aqueous medium, preferably using high shear mixing. Alternatively, at least one predispersed pigment is used. In one method, the first aqueous dispersion containing the first polymer particles and the second aqueous dispersion containing the second polymer particles are added to the pigment dispersion, either simultaneously or sequentially, with mixing under low shear stirring along with other adjuvants as desired, to provide a pigmented aqueous polymer dispersion. Alternatively, the pigment slurry is prepared in the presence of the aqueous polymer dispersion containing the first polymer particles or the second polymers particles, or both.
  • The solids content of the aqueous coating composition is typically in the range of from 25% to 60% by volume. The viscosity of the aqueous coating composition is typically from 50 KU (Krebs Units) to 120 KU as measured using a Brookfield Digital viscometer KU-1; the viscosities appropriate for different application methods vary considerably.
  • A volatile organic compound (“VOC”) is defined herein as a carbon containing compound that has a boiling point below 280° C. at atmospheric pressure. Compounds such as water and ammonia are excluded from VOCs.
  • In one embodiment, the aqueous coating composition of this invention contains less than 5% VOC, preferably less than 3%, and more preferably less than 1.7%, by weight based on the total weight of the aqueous polymer dispersion. A “low VOC” aqueous coating composition herein is an aqueous polymer dispersion that contains from 0 to 5% VOC by weight based on the total weight of the aqueous polymer dispersion.
  • In a particular embodiment, the aqueous coating composition has a PVC of less than or equal to 35 and has less than 5% VOC by weight, preferably less than 3% VOC by weight, and more preferably less than 1.7% VOC by weight, based on the total weight of the aqueous coating composition. In another preferred embodiment, the aqueous coating composition has a PVC of greater than 35 and has less than 3% VOC by weight and preferably less than 1.7% by weight, based on the total weight of the aqueous coating composition. In an additional embodiment the aqueous coating composition has a PVC of less than or equal to 85 and has less than 1.7% VOC by weight, preferably less than 0.5% by weight, and more preferably less than 0.1% by weight, based on the total weight of the aqueous coating composition.
  • A method for preparing a dry coating is provided, which includes the steps of: providing the aqueous coating composition including the aqueous polymer dispersion of this invention; applying the aqueous coating composition to a substrate; and drying or allowing to dry the applied aqueous coating composition to prepare the dry coating.
  • The aqueous coating composition can be applied to a substrate using various techniques including, for example, brushing, rolling, drawdown, dipping, with a knife or trowel, curtain coating, and spraying methods such as, for example, air-atomized spray, air-assisted spray, airless spray, high volume low pressure spray, and air-assisted airless spray. The wet coating thickness of the applied aqueous coating composition can be in the range of 1 micron to 250 microns. The aqueous coating composition can be applied onto a substrate as a single coat or multiple coats. After application, the applied aqueous coating composition is typically allowed to dry at ambient conditions or alternatively dried by the application of heat to provide a dry coating. Drying is typically allowed to proceed under ambient conditions such as, for example, at temperatures of from 0° C. to 35° C.
  • The aqueous coating composition is suitable for application onto various substrates including processed wood such as medium density fiber board, chip board, and laminates; mineral substrates such as masonry, cement, fiber cement, cement asbestos, plaster, plasterboard, and glazed and unglazed ceramic; metal substrates such as galvanized iron, galvanized steel, cold rolled steel, aluminum, wrought iron, drop forged steel, and stainless steel; previously painted or primed surfaces (fresh, aged or weathered); cellulosic substrates such as paper and paperboard; glass; asphalt; leather; wallboard; nonwoven materials; and synthetic substrates such as polyvinyl chloride, polyvinylidene chloride, polyethylene, and polypropylene.
  • The dry coating prepared from the aqueous coating composition is suitable as a protective coating or an aesthetic coating. Examples of suitable coatings include architectural coatings such as interior and exterior paint coatings, including masonry coatings, wood coating and treatments; floor polishes; maintenance coatings such as metal coatings; paper coatings; and traffic coatings such as those coatings used to provide markings on roads, pavements, and runways.
  • The following examples are presented to illustrate the composition and method of the invention.
    • Test Procedures
    • Scrub Resistance: The aqueous coating composition and a comparative composition, each composition each containing 22% by volume titanium dioxide, having 36% nonvolatile material based on the total volume of the composition, and having the same VOC, less than 1.5 weight % VOC, are drawn down on a single black vinyl chart. The compositions are drawn down in such a way that the two compositions are placed side by side and drawn together by a single drawing with a 0.0762 mm (3 mil) Bird film applicator 152.4 mm (6 inch) in width. Each composition forms a 7.5 cm (3 inch) wide coating on a single chart, and the two compositions have the same coating thickness. The sample is allowed to dry at 23° C. (73° F.) and 50% relative humidity for 7 days. Abrasive scrub resistance is measured with a scrub machine (Gardner Abrasive Tester) using 10 g scrub medium and 5 ml water. A piece of 0.0254 mm (1-mil) thick and 76.2 mm (3 inch) wide vinyl shim is placed underneath the sample vinyl chart. The two side edges of the shim are in the center of each coating. The number of cycles required to completely cut through each coating is recorded.
  • The relative scrub resistance is determined by comparing the performance of an aqueous coating composition including the first and second polymer particles with a comparative aqueous polymer dispersion containing the first polymer particles and comparative second polymer particles. The aqueous polymer dispersion contains 80% by weight of first polymer particles and 20% by weight of second polymer particles, based on the total weight of polymer particles. The comparative aqueous polymer dispersion has 80% by weight of first polymer particles and 20% by weight of comparative second polymer particles, based on the total weight of polymer particles.
  • The relative scrub resistance is the ratio of the number of scrub cycles for the aqueous coating composition divided by the number of scrub cycles for the comparative aqueous coating composition. A relative scrub resistance value, “RS” herein, having a value of 1.1 or above is considered acceptable.
    • Dirt Pickup Resistance: The aqueous coating composition and a comparative composition, each composition containing 22% by volume titanium dioxide, having 36% nonvolatile material based on the total volume of the composition, and having the same VOC, less than 2.5 weight % VOC, are drawn down on separate aluminum panels at a wet thickness of 0.0762 mm (3 mil) using a Bird film applicator 76.2 mm (3 inch) in width. The samples are allowed to dry at 21° C. (70° F.) and 50% relative humidity for 7 days. The samples are exposed in southern Florida at a commercial exposure station (Q-LAB Weathering Research Service, Homestead, Florida). The exposure direction is south at a 45° angle. The colors of the dry coating samples are characterized by measuring initial values of L*, a*, and b* prior to exposure. After 90 days of exposure, the L*, a*, and b* values are remeasured to determine the changes in color of the dry coating samples. The changes in the values of L*, referred to as “ΔL*”, are determined for the dry coating samples. A negative value for ΔL* indicates a darkening of the dry coating as a result of the pickup of dirt and other material on the dry coating surface.
  • The relative dirt pickup resistance is determined by comparing the performance of the aqueous coating composition containing the first polymer particles and the second polymer particles with a comparative aqueous coating composition containing only the first polymer particles. The aqueous polymer dispersion has 80% by weight of first polymer particles and 20% by weight of second polymer particles, based on the total weight of polymer particles. The comparative aqueous polymer composition has 100% by weight of first polymer particles based on the total weight of polymer particles. The relative dirt pickup resistance is the ratio of the ΔL* value for the dry coating prepared from the comparative aqueous polymer composition divided by the ΔL* value for the dry coating prepared from the aqueous polymer dispersion. A relative dirt pickup resistance value, “RL” herein, having a value of 1.1 or greater indicates acceptable improvement in the dirt pickup resistance.
  • The abbreviations listed below are used throughout the examples.
    • ALMA allyl methacrylate
    • APS ammonium persulfate
    • BA butyl acrylate
    • DI water deionized water
    • g gram
    • MAA methacrylic acid
    • MMA methyl methacrylate
    • nm nanometer
    • NaPS sodium persulfate
    • ppm parts per million based on total monomer weight
    • SLS sodium lauryl sulfate (28 % active)
    • SSF sodium formaldehyde sulfoxylate
    • t-BHP tertiary butyl hydroperoxide
    • Tg glass transition temperature
    • VT vinyl toluene
    • wt % weight %
    EXAMPLE 1 Preparation of Aqueous Dispersions Containing First Polymer Particles Example 1.1
  • A monomer emulsion is prepared by combining 600 g BA, 20 g MAA, 365 g MMA, 15 g ureido methacrylate, 1.25 g nDDM, 415 g DI water, 6.9 g sodium carbonate, and 30.5 g SLS and emulsifying with stirring. Next, 5.2 g SLS and 380 g DI water are charged to a three-liter multi-neck flask fitted with mechanical stirring. The flask contents are heated to 65° C. under a nitrogen atmosphere. To the stirred flask contents is added 35 g of the monomer emulsion followed by 0.02 g ferrous sulfate heptahydrate and 0.02 g tetrasodium salt of ethylenediamine-tetraacetic acid in 15.6 g DI water. Polymerization is initiated by the addition of 0.54 g APS in 8 g DI water followed by 0.27 g sodium hydrosulfite in 8 g DI water; gradual addition of the monomer emulsion is then begun. Separate solutions of 2.9 g APS in 50 g DI water and 1 g of D-isoascorbic acid in 50 g DI water are added concurrently with the monomer emulsion. The temperature is maintained at 65° C. throughout the addition of the monomer emulsion. The emulsion feed line is rinsed with 20 g DI water. After completion of the monomer emulsion addition, the contents of the flask are cooled to 60° C. An aqueous solution containing 10 ppm ferrous sulfate, 1 g t-butyl hydroperoxide, and 0.5 g D-isoascorbic acid is added. The contents are neutralized to a pH of 9.5 with ammonium hydroxide. The resulting first aqueous dispersion, Example 1.1, contains 49.2 wt % first polymer particles, based on the total weight of the dispersion. The first polymer particles of Example 1.1 have a Tg of −10° C.
  • Example 1.2
  • An aqueous dispersion including first polymer particles is prepared by a thermally initiated controlled conversion process. A monomer emulsion is prepared by combining 480 g MMA, 500 g BA, 20 g MAA, 1.25 g nDDM, 455 g DI water, and 30.5 g SLS and emulsifying with stirring. Next, 5.2 g SLS and 215 g DI water are charged to a stirred 3-liter multi-neck flask. The contents of the flask are heated to 88° C. under a nitrogen atmosphere. To the stirred flask contents are added 35 g of the monomer emulsion followed by a solution containing 0.35 g sodium carbonate and 0.3 g APS in 20 g DI water. Next, the monomer emulsion is gradually added to the flask along with the concurrent addition of a solution containing 1.05 g APS and 6.55 g sodium carbonate in 50 g DI water. Throughout the addition of the monomer emulsion, the contents are maintained at 88° C. After the additions are complete, the emulsion feed line is rinsed with 20 g DI water, which is added to the flask. Next, the contents of the flask are cooled to 60° C. and an aqueous solution containing 10 ppm ferrous sulfate, 1 g t-butyl hydroperoxide, and 0.5 g D-isoascorbic acid is added. The contents of the flask is neutralized to a pH of 9.5 with ammonium hydroxide. The resulting aqueous dispersion, Example 1.2, contains 50.2 wt % first polymer particles, based on the total weight of the dispersion. The first polymer particles of Example 1.2 have a Tg of 5° C.
  • Example 1.3
  • A monomer emulsion is prepared by combining 969 g of BA, 34 g of MAA, 680 g of MMA, 460 g DI water, and 18.7 g Triton™ XN-45S surfactant (Triton is a trademark of Dow Chemical Co.), with stirring. Next, 2.5 g Triton™ XN-45S surfactant and 1000 g DI water are charged to a 5-liter multi-neck stirred flask. The contents of the flask are heated to 85° C. under a nitrogen atmosphere. To the stirred flask contents are added 92 g of the monomer emulsion followed by 2.6 g APS in 100 g DI water, and then followed by 1.7 g sodium carbonate in 100 g DI water. Next, 34 g of a 50 weight % solution of ureido methacrylate is added to the remainder of the monomer emulsion and the gradual addition of the monomer emulsion is subsequently initiated. The total addition time for the monomer emulsion is 210 minutes. The contents of the flask are maintained at a temperature of 83° C. throughout the addition of the monomer mixture. Next, 60 g DI water is used to rinse the emulsion feed line to the reactor. The contents of the flask is cooled to 65° C. Next 6.6 ppm ferrous sulfate, 1 g t-butyl hydroperoxide, and 0.5 g D-isoascorbic acid in aqueous solutions are added to the flask. The contents of the flask are neutralized to a pH of 9.5 with ammonium hydroxide. The resulting aqueous dispersion, Example 1.3, contains 46.7 wt % of the first polymer particles based on the total weight of the dispersion. The first polymer particles have a glass transition temperature of −6° C.
  • EXAMPLE 2 Preparation of Aqueous Dispersions Containing Second Polymer Particles Example 2.1
  • An emulsion polymerization reaction is carried out in a reactor equipped with an agitator, a thermocouple, and heating/cooling device. The reactor is charged with 1562 g DI water at 55° C. and 1,260 g of a crosslinked polybutyl acrylate polymer seed dispersion having a mean particle diameter of 230 nm and 50.8 wt % solids. The reactor contents are sparged with nitrogen for thirty minutes. Next, 1.4 g tartaric acid diluted in 100 g DI water are added to the reactor. Immediately, 70.3 g SLS (28 wt %) is added to the reactor. A nitrogen sweep is applied after the SLS addition. A monomer emulsion is prepared containing 2,231.7 g DI water, 117.1 g SLS, 6321.1 g BA, 44.6 g ALMA. With the contents of the reactor at 50° C., 893.6 g of the monomer emulsion is added to the reactor. After this first charge of monomer emulsion, 1.12 g t-BHP is added. The temperature increases to 60° C. and is maintained at 60° C. for an additional 15 minutes. An additional 65.1 g SLS and 248.5 g DI water are added to the remaining monomer emulsion. The reactor contents are cooled to 53° C. and a second charge of 1,295.2 g of monomer emulsion is added to the reactor. Immediately, 2.08 g t-BHP is added to the reactor. The temperature increases to above 75° C. and maintained for an additional 15 minutes. Next, a solution of 20 g sodium sulfate in 2,155 g DI water is added to the kettle. After this addition, the contents of the reactor are cooled to 45° C. and 2,220.6 g of monomer emulsion is added to the reactor. Immediately, 3.57 g t-BHP is added to the reactor. The temperature increases to above 85° C. and is maintained for an additional 15 minutes. The reactor contents are cooled to 55° C. and the remaining monomer emulsion is added to the kettle. Immediately, 3.43 g of t-BHP is added to the reactor. The temperature of the contents of the reactor increases reaches above 50° C. and is maintained for 3 minutes. Then 1.16 g t-BHP and 1.01 g SSF diluted in 48.2 g DI water are added to the reactor. The reactor contents are maintained at temperature for an additional 30 minutes and then are allowed to cool to 53° C. A second monomer emulsion is prepared containing 260.3 g DI water, 15.6 g SLS, and 447.2 g MMA. With the contents of the reactor at 53° C., the second monomer emulsion is completely added to the reactor. Immediately, a solution of 0.9 g SSF diluted in 52 g of DI water is added followed by the addition of 0.9 g NaPS. The nitrogen sweep is turned off at peak temperature. The reactor contents are maintained at peak temperature for an additional 60 minutes. The contents of the reactor are cooled to 40° C. and then filtered through a 400 micron filter. Aqueous ammonium hydroxide (29% active) is added until the pH is 8.5. The resulting aqueous dispersion, Example 2.1, contains second polymer particles containing 94 wt % second polymer having a Tg of −54° C., and 6 wt % of polymer shell phase with a Tg of 105° C. The aqueous dispersion of Example 2.2 has a solids level of 49 wt % s.
  • Example 2.2
  • A monomer emulsion is prepared by combining 925 g BA, 5 g MAA, 10 g ALMA, and 50 g VT with 455 g DI water, 6.9 g sodium carbonate, and 30.5 g SLS, with stirring. To a 3-liter multi-neck stirred flask fitted, 5.2 g SLS and 400 g DI water are added. The flask contents are heated to 85° C. under nitrogen. To the stirred flask contents are added 35 g monomer emulsion followed by 3.5 g APS in 10 g DI water. To the remaining monomer emulsion is added 20 g of a 50 weight % solution of ureido methacrylate. The monomer emulsion is gradually added over a period of 210 minutes. The contents of the flask is maintained at a temperature of 83° C. throughout the monomer addition. Next, 20 g DI water is used to rinse the emulsion feed line to the flask. After the complete addition of the monomer emulsion, the contents of the flask is allowed to cool to 60° C. Aqueous solutions of 10 ppm ferrous sulfate, 1 g t-butyl hydroperoxide, and 0.5 g D-Isoascorbic acid are added to the flask. The contents of the flask is neutralized to pH 9.5 with ammonium hydroxide. The resulting aqueous dispersion, Example 2.2, contains second polymer particles with a Tg of −55° C.
  • Example 2.3
  • Monomer emulsion I (ME I) is prepared by combining 869.5 g BA, 4.7 g MAA, 9.4 g ureido methacrylate, 9.4 g ALMA, and 47 g VT with 436.1 g DI water, 6.9 g sodium carbonate, and 28.7 g SLS, with stirring. Monomer emulsion II (ME II) is prepared by combining 60 g MMA with 27.3 g DI water and 1.83 g SLS, and emulsifying with stirring. To a 3-liter multi-neck stirred flask, 5.2 g SLS and 400 g DI water are added. The flask contents are heated to 85° C. under nitrogen. To the flask contents are added 35 g ME I followed by 3.5 g APS in 10 g DI water. Then the balance of ME1 is added gradually. The contents of the flask are maintained at a temperature of 83° C. during the addition of ME I. The emulsion addition line is rinsed with 20 g DI water, which is added to the flask. After complete addition of ME I, the contents of the flask are allowed to cool to 60° C. Next, ME II is added to the flask and allowed to stir for 30 minutes. Aqueous solutions of 10 ppm ferrous sulfate, 1 g t-butyl hydroperoxide, and 0.5 g D-isoascorbic acid are added. The contents of the flask are maintained at 65° C. for 1 hour. The contents of the flask are neutralized to pH 9.5 with ammonium hydroxide. The resulting aqueous dispersion, Example 2.3, includes second polymer particles with 94 wt % second polymer with a Tg of −55° C., and 6 wt % polymer shell with a Tg of 105° C.
  • Example 2.4
  • An emulsion polymerization reaction is carried out in a reactor equipped with a mechanical agitator, a thermocouple, and a heating/cooling device. The reactor is charged with 1562 g DI water and 1260 g of a crosslinked polybutyl acrylate polymer seed dispersion having a mean particle diameter of 230 nm at 50.8 wt % solids, and heated to 55° C. The reactor contents is sparged with nitrogen for thirty minutes. A solution of 1.4 g tartaric acid diluted in 100 g DI water is added to the reactor, followed by the immediate addition of 70.3 g SLS. A nitrogen sweep is applied after the SLS addition. A monomer emulsion is prepared by combining 2,231.7 g DI water, 117.1 g SLS, 6321.1 g BA, and 44.6 g ALMA. With the contents of the reactor at 50° C., 893.6 g of the monomer emulsion is added to the reactor. After this first charge of monomer emulsion, 1.12 g t-BHP is added. The reactor temperature increases to 60° C. and the contents of the reactor are maintained at 60° C. for an additional 15 minutes. An additional 65.1 g SLS and 248.5 g DI water are added to the remaining monomer emulsion. The reactor contents are cooled to 53° C. and a second charge of 1295.2 g of monomer emulsion is added to the reactor, followed by the immediate addition of 2.08 g of t-BHP. The temperature of the reactor contents increases to above 75° C. and is maintained at peak temperature for an additional 15 minutes. Next, a solution of 20 g of sodium sulfate in 2,155 g DI water is added to the reactor. After this addition, the reactor contents are cooled to 45° C. and 2220.6 g of monomer emulsion is added to the reactor, followed by the immediate addition of 3.57 g t-BHP. The temperature of the reactor contents increases to a peak temperature above 85° C. and is maintained at peak temperature for an additional 15 minutes. The reactor contents are cooled to 55° C. and the remaining monomer emulsion is added to the kettle, followed by the immediate addition of 3.43 g t-BHP. The temperature of the reactor contents increases to a peak temperature above 50° C. and is maintained at peak temperature for 3 minutes. After three minutes, 1.16 g t-BHP and 1.01 g SSF diluted in 48.2 g DI water are added to the reactor. The reactor contents are maintained at temperature for an additional 30 minutes. Aqueous ammonium hydroxide (29% active) is added until the pH of the reactor contents is 8.5. The resulting polymer dispersion, Example 2.4, has a solids level of 49 wt % and contains second polymer particles with a Tg of −54° C.
  • COMPARATIVE EXAMPLE A Preparation of An Aqueous Dispersion Containing Comparative Second Polymer Particles
  • A monomer mixture is prepared by combining 413 g DI water, 16.4 g SLS, 495.6 g BA, 1285.0 g MMA, and 36.7 g MAA. Next, 1482 g DI water and 32.8 g SLS are added to a 5-liter flask equipped with mechanical stirring. The contents of the flask are heated to 85° C. A solution containing 5.7 g sodium carbonate dissolved in 56 g DI water is added to the flask, followed by 102 g of the monomer emulsion, followed by a solution containing 7.3 g ammonium persulfate dissolved in 51 g DI water. Next, 36.7 g of 50 weight % ureido methacrylate is added to the monomer emulsion. The remainder of monomer emulsion is added to the flask over a period of 90 minutes, while contents of the flask are maintained at 84° C. The flask contents is maintained at temperature for 10 minutes and then cooled to 65° C. Next 6.6 ppm ferrous sulfate, 1 g t-butyl hydroperoxide, and 0.5 g D-isoascorbic acid in aqueous solutions are added to the flask. After cooling to 45° C., the contents of the flask are neutralized with the addition of 16.0 g ammonium hydroxide (29% active) and diluted with DI water. The resulting aqueous dispersion, Comparative Example A, contains 45.9 wt % of the comparative second polymer particles, based on the total weight of the dispersion. The comparative second polymer particles have a glass transition temperature of 43° C.
  • EXAMPLE 3 Preparation of Aqueous Coating Compositions
  • Titanium dioxide dispersions are prepared by mixing the ingredients in Table 3.1 in the order listed under high shear conditions.
    TABLE 3.1
    Titanium Dioxide Dispersion
    Ingredient Weight in grams
    Tamol ™ 731A dispersant (Rohm and Haas Co.) 13.99
    Tego ™ Foamex 810 defoamer (Degussa AG) 1.13
    Surfynol ™ CT-111 surfactant (Air Products) 2.25
    Ti-Pure ™ R-706 titanium dioxide (E. I. DuPont 264.44
    DeNemours Co.)
    Water 62.26
  • The aqueous coating compositions, Example 3, and the comparative aqueous coating composition, Comparative Example B, are prepared by combining the ingredients in Table 3.2 in the order listed with low shear mixing
    TABLE 3.2
    Aqueous Coating Compositions and Comparative Aqueous Coating
    Composition
    Example Example Example Example
    Ingredient 3.1 3.2 3.3 3.4
    titanium dioxide 344.07 g 344.07 g 344.07 g 344.07 g
    dispersion (3.1)
    Water  20.00 g  20.00 g  20.00 g  20.00 g
    propylene glycol  16.50 g  16.50 g  16.50 g  16.50 g
    Example 1.1  430.1 g  430.1 g  430.1 g
    Example 1.2  430.1 g
    Example 2.1  106.2 g  106.2 g
    Example 2.2  106.2 g
    Example 2.3  106.2 g
    Surfynol ™ CT-111  1.00 g  1.00 g  1.00 g  1.00 g
    surfactant
    ammonia (28%)  0.70 g  0.70 g  0.70 g  0.70 g
    Acrysol ™ RM-2020  29.00 g  29.00 g  29.00 g  29.00 g
    NPR rheology modifier
    Acrysol ™ RM-8W  5.60 g  5.60 g  5.60 g  5.60 g
    rheology modifier
    Water  104.2 g  104.2 g  104.2 g  104.2 g
    VOC (weight %)   1.5   1.5   1.5   1.5
    Ingredient Example 3.5 Example 3.6 Comp. Ex. B
    titanium dioxide dispersion 344.07 g 344.07 g 344.07 g
    Water  20.00 g  20.00 g  20.00 g
    propylene glycol  16.50 g  16.50 g  16.50 g
    Example 1.1  430.1 g  430.1 g
    Example 1.3  430.1 g
    Example 2.1  106.2 g
    Example 2.4  106.2 g
    Comparative Example A 115.26 g
    Surfynol ™ CT-111  1.00 g  1.00 g  1.00 g
    surfactant
    ammonia (28%)  0.70 g  0.70 g  0.70 g
    Acrysol ™ RM-2020 NPR  29.00 g  29.00 g  29.00 g
    rheology modifier
    Acrysol ™ RM-8W rheology  5.60 g  5.60 g  5.60 g
    modifier
    Water  104.2 g  104.2 g 113.62 g
    VOC (weight %)   1.5   1.5   1.5
  • EXAMPLE 4 Preparation of Aqueous Coating Compositions and Comparative Aqueous Coating Composition For Dirt Pickup Resistance Measurements
  • Titanium dioxide dispersions are prepared according to the procedure of Example 3. Next, the aqueous compositions, Example 4, and the comparative aqueous coating composition, Comparative C, are prepared by adding the ingredients in Table 4.1 in the order listed with low shear mixing.
    TABLE 4.1
    Aqueous Coating Compositions and Comparative Aqueous Coating
    Composition
    Example Example Example Example
    Ingredient 4.1 4.2 4.3 4.4
    titanium dioxide 344.07 g 344.07 g 344.07 g 344.07 g
    dispersion
    Water  20.00 g  20.00 g  20.00 g  20.00 g
    propylene glycol  16.50 g  16.50 g  16.50 g  16.50 g
    Example 1.1  430.1 g  430.1 g  430.1 g
    Example 1.2  430.1 g
    Example 2.1  106.2 g  106.2 g
    Example 2.2  106.2 g
    Example 2.3  106.2 g
    Surfynol ™ CT-111  1.00 g  1.00 g  1.00 g  1.00 g
    surfactant
    ammonia (28%)  0.70 g  0.70 g  0.70 g  0.70 g
    Polyphase ™ AF-1  8.00 g  8.00 g  8.00 g  8.00 g
    biocide (Troy
    Corporation)
    Acrysol ™ RM-2020  29.00 g  29.00 g  29.00 g  29.00 g
    NPR rheology modifier
    Acrysol ™ RM-8W  5.60 g  5.60 g  5.60 g  5.60 g
    rheology modifier
    (Rohm and Haas Co.)
    Water  104.2 g  104.2 g  104.2 g  104.2 g
    VOC (weight %)  1.95  1.95  1.95  1.95
    Comparative
    Ingredient Example 4.5 Example 4.6 C
    titanium dioxide dispersion 344.07 g 344.07 g 344.07 g
    Water  20.00 g  20.00 g  20.00 g
    propylene glycol  16.50 g  16.50 g  16.50 g
    Example 1.1  430.1 g 537.65 g
    Example 1.2
    Example 1.3  430.1 g
    Example 2.1  106.2 g
    Example 2.4  106.2 g
    Surfynol ™ CT-111  1.00 g  1.00 g  1.00 g
    surfactant
    ammonia (28%)  0.70 g  0.70 g  0.70 g
    Polyphase ™ AF-1 biocide  8.00 g  8.00 g  8.00 g
    (Troy Corporation)
    Acrysol ™ RM-2020 NPR  29.00 g  29.00 g  29.00 g
    rheology modifier
    (Rohm and Haas Co.)
    Acrysol ™ RM-8W rheology  5.60 g  5.60 g  5.60 g
    modifier (Rohm and
    Haas Co.)
    Water  104.2 g  104.2 g 113.62 g
    VOC (weight %)  1.95  1.95  1.95
  • EXAMPLE 5 Evaluation of Scrub Resistance
  • Dry coating samples are prepared from the aqueous coating compositions, Examples 3.1-3.6, and the comparative aqueous coating composition, Comparative B, and are evaluated according to the procedure for the scrub resistance test. The scrub resistances for the dry coatings prepared from the aqueous coating compositions of this invention, Examples 3.1-3.6, are greater than 110% of the scrub resistance of the dry coating prepared from the comparative aqueous coating composition, Comparative B. Thus, the relative scrub resistance value, RS, is greater than 1.1. This result indicates improved scrub resistance for the dry coatings prepared from the aqueous coating compositions of this invention relative to the dry coating prepared from the comparative aqueous coating composition.
  • EXAMPLE 6 Evaluation of Dirt Pickup Resistance
  • Dry coating samples are prepared from the aqueous coating compositions, Examples 4.1-4.6, and the comparative aqueous coating composition, Comparative C and are evaluated according to the procedure for the dirt pickup resistance test. The dirt pickup resistances for the dry coatings prepared from the aqueous coating compositions of this invention, Examples 4.1-4.6, are greater than 110% of the dirt pickup resistance of the dry coating prepared from the comparative aqueous coating composition, Comparative C. Thus, the relative dirt pickup resistance values, RL, are greater than 1.1. This result indicates improved dirt pickup resistances for the dry coatings prepared from the aqueous coating compositions of this invention relative to the dry coating prepared from the comparative polymer dispersion.

Claims (10)

1. An aqueous polymer dispersion comprising:
(a) from 60 to 95 weight % first polymer particles, and
(b) from 5 to 40 weight % second polymer particles, based on the total weight of said first polymer particles and said second polymer particles;
wherein said first polymer particles have a glass transition temperature in the range of from −20° C. to 25° C.;
wherein said second polymer particles have a glass transition temperature of less than 0° C., and
wherein said second polymer particles comprise as polymerized units, monoethylenically unsaturated monomer and at least 0.2 mole % multiethylenically unsaturated monomer, based on total moles of said monoethylenically unsaturated monomer and said multiethylenically unsaturated monomer comprising said second polymer particles.
2. The aqueous polymer dispersion according to claim 1 wherein said second polymer particles further comprise a polymer shell having a glass transition temperature of at least 60° C.
3. The aqueous polymer dispersion according to claim 1 wherein said first polymer particles, said second polymer particles, or both comprise, as polymerized units, from 0.5 to 5.0% vinyl toluene, by weight based on the weight of said polymer particles.
4. An aqueous coating composition comprising the aqueous polymer dispersion of claim 1 wherein said coating composition has a VOC of from 0 to 5%, by weight based on the total weight of said aqueous coating composition.
5. The aqueous coating composition according to claim 1 further comprising from 0.1 to 1.0% by weight based on the total weight of said first polymer particles and said second polymer particles of at least one photoabsorber selected from benzophenone or substituted benzophenones.
6. A method for preparing a dry coating comprising the steps of:
(a) providing an aqueous coating composition, said composition comprising an aqueous polymer dispersion comprising:
(i) from 60 to 95 weight % first polymer particles, and
(ii) from 5 to 40 weight % second polymer particles, based on the total weight of said first polymer particles and said second polymer particles;
wherein said first polymer particles have a glass transition temperature in the range of from −20° C. to 25° C.;
wherein said second polymer particles have a glass transition temperature of less than 0° C., and
wherein said second polymer particles comprise as polymerized units, monoethylenically unsaturated monomer and at least 0.2 mole % multiethylenically unsaturated monomer, based on total moles of said monoethylenically unsaturated monomer and said multiethylenically unsaturated monomer comprising said second polymer particles:
(b) applying said aqueous coating composition to a substrate; and
(c) drying or allowing to dry said aqueous coating composition.
7. The method according to claim 6 wherein said second polymer particles further comprise a polymer shell having a glass transition temperature of at least 60° C.
8. The method according to claim 6 wherein said aqueous coating composition further comprises from 0.1 to 1.0% by weight based on the total weight of said first polymer particles and said second polymer particles of at least one photoabsorber selected from benzophenone or substituted benzophenones.
9. The method according to claim 6 wherein said first polymer particles, said second polymer particles, or both comprise, as polymerized units, from 0.5 to 5.0% vinyl toluene, by weight based on the weight of said polymer particles.
10. The method according to claim 6 wherein said coating composition has a VOC of from 0 to 5%, by weight based on the total weight of said aqueous coating composition.
US11/071,485 2004-03-11 2005-03-03 Aqueous polymer dispersion and method of use Abandoned US20050202176A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/071,485 US20050202176A1 (en) 2004-03-11 2005-03-03 Aqueous polymer dispersion and method of use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US55226604P 2004-03-11 2004-03-11
US11/071,485 US20050202176A1 (en) 2004-03-11 2005-03-03 Aqueous polymer dispersion and method of use

Publications (1)

Publication Number Publication Date
US20050202176A1 true US20050202176A1 (en) 2005-09-15

Family

ID=34826267

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/071,485 Abandoned US20050202176A1 (en) 2004-03-11 2005-03-03 Aqueous polymer dispersion and method of use

Country Status (5)

Country Link
US (1) US20050202176A1 (en)
EP (1) EP1574555B1 (en)
CN (1) CN1310955C (en)
AU (1) AU2005200954B2 (en)
DE (1) DE602005000838T2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140853A2 (en) * 2007-05-08 2008-11-20 Dow Global Technologies Inc. Water dispersible polymer compositions
EP2141181A1 (en) * 2008-07-03 2010-01-06 Rohm and Haas Company Leather Coating Compositions Having Improved Embossability
US20100113646A1 (en) * 2005-08-19 2010-05-06 James Keith Bardman Aqueous dispersion of polymeric particles
JP2011122038A (en) * 2009-12-10 2011-06-23 Kansai Paint Co Ltd Water-based coating composition
US20150044362A1 (en) * 2012-10-05 2015-02-12 S.C. Johnson & Son, Inc. Method of sealing a colorant to a carpet
JP2015061915A (en) * 2014-10-27 2015-04-02 関西ペイント株式会社 Water-based coating composition
CN114340754A (en) * 2019-09-30 2022-04-12 陶氏环球技术有限责任公司 Process for stripping aqueous dispersions of polymer beads

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8450402B2 (en) * 2007-02-15 2013-05-28 Arkema Inc. Method for reducing plate out of aqueous coating compositions
JP4996582B2 (en) * 2007-12-18 2012-08-08 ローム アンド ハース カンパニー Dispersion of crosslinked latex polymer particles and curable amino resin
CN110678523A (en) * 2017-03-31 2020-01-10 Ppg欧洲公司 Coating composition and use thereof
US11945967B2 (en) 2020-07-02 2024-04-02 Behr Process Corporation Dirt pick up resistant latex resin

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308890A (en) * 1993-02-26 1994-05-03 Rohm And Haas Company Emulsion polymer blend of a multi-stage latex and a non-film forming latex
US5712339A (en) * 1995-04-05 1998-01-27 Sartomer Company Aqueous polymer dispersions
US5731377A (en) * 1990-07-05 1998-03-24 Rohm And Haas Company Polymer blend
US5753742A (en) * 1996-07-31 1998-05-19 The B.F.Goodrich Company High-solids, aqueous, polymeric dispersions
US6258887B1 (en) * 1998-12-08 2001-07-10 Rohm And Haas Company Dirt pickup resistant coating binder and coatings
US6559236B1 (en) * 1998-07-22 2003-05-06 National Starch And Chemical Investment Holding Corporation Method for producing aqueous dispersions of (co)polymers, dispersions obtained using said method, redispersible powders which can be obtained from said dispersions and use thereof
US6624212B2 (en) * 1999-12-23 2003-09-23 Rohm And Haas Company Plastics additives composition, process, and blends thereof
US6632880B2 (en) * 2001-07-09 2003-10-14 E. I. Du Pont De Nemours And Company Coating compositions containing isocyanate-functional non-aqueous dispersed polymers
US6639012B2 (en) * 2000-10-25 2003-10-28 Rohm And Haas Company High rubber impact modifier powders

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2114246A1 (en) * 1993-01-28 1994-07-29 National Starch And Chemical Investment Holding Corporation Latex paint formulations containing no organic solvents based on multistage polymers
US5415220A (en) * 1993-03-22 1995-05-16 Reynolds Metals Company Direct chill casting of aluminum-lithium alloys under salt cover
AU782594B2 (en) * 2000-11-21 2005-08-11 Rohm And Haas Company Polymer-pigment composites

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731377A (en) * 1990-07-05 1998-03-24 Rohm And Haas Company Polymer blend
US5308890A (en) * 1993-02-26 1994-05-03 Rohm And Haas Company Emulsion polymer blend of a multi-stage latex and a non-film forming latex
US5712339A (en) * 1995-04-05 1998-01-27 Sartomer Company Aqueous polymer dispersions
US5753742A (en) * 1996-07-31 1998-05-19 The B.F.Goodrich Company High-solids, aqueous, polymeric dispersions
US6559236B1 (en) * 1998-07-22 2003-05-06 National Starch And Chemical Investment Holding Corporation Method for producing aqueous dispersions of (co)polymers, dispersions obtained using said method, redispersible powders which can be obtained from said dispersions and use thereof
US6258887B1 (en) * 1998-12-08 2001-07-10 Rohm And Haas Company Dirt pickup resistant coating binder and coatings
US6624212B2 (en) * 1999-12-23 2003-09-23 Rohm And Haas Company Plastics additives composition, process, and blends thereof
US6639012B2 (en) * 2000-10-25 2003-10-28 Rohm And Haas Company High rubber impact modifier powders
US6632880B2 (en) * 2001-07-09 2003-10-14 E. I. Du Pont De Nemours And Company Coating compositions containing isocyanate-functional non-aqueous dispersed polymers

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100113646A1 (en) * 2005-08-19 2010-05-06 James Keith Bardman Aqueous dispersion of polymeric particles
US8227542B2 (en) * 2005-08-19 2012-07-24 Rohm And Haas Company Aqueous dispersion of polymeric particles
CN101896171B (en) * 2007-05-08 2012-05-23 陶氏环球技术公司 Water dispersible polymer compositions
US8481114B2 (en) 2007-05-08 2013-07-09 Dow Global Technologies Llc Water dispersible polymer compositions
US20100048751A1 (en) * 2007-05-08 2010-02-25 Keary Colin M Water dispersible polymer compositions
WO2008140853A3 (en) * 2007-05-08 2010-07-15 Dow Global Technologies Inc. Water dispersible polymer compositions
US20100221546A1 (en) * 2007-05-08 2010-09-02 Keary Colin M Water dispersible polymer compositions
US8383198B2 (en) 2007-05-08 2013-02-26 Dow Global Technologies Llc Water dispersible polymer compositions
WO2008140853A2 (en) * 2007-05-08 2008-11-20 Dow Global Technologies Inc. Water dispersible polymer compositions
EP2141181A1 (en) * 2008-07-03 2010-01-06 Rohm and Haas Company Leather Coating Compositions Having Improved Embossability
CN101665556B (en) * 2008-07-03 2012-09-05 罗门哈斯公司 Leather coating compositions having improved embossability
US20100003876A1 (en) * 2008-07-03 2010-01-07 Nungesser Edwin H Leather coating compositions having improved embossability
US8530362B2 (en) 2008-07-03 2013-09-10 Rohm And Haas Company Leather coating compositions having improved embossability
JP2011122038A (en) * 2009-12-10 2011-06-23 Kansai Paint Co Ltd Water-based coating composition
US20150044362A1 (en) * 2012-10-05 2015-02-12 S.C. Johnson & Son, Inc. Method of sealing a colorant to a carpet
JP2015061915A (en) * 2014-10-27 2015-04-02 関西ペイント株式会社 Water-based coating composition
CN114340754A (en) * 2019-09-30 2022-04-12 陶氏环球技术有限责任公司 Process for stripping aqueous dispersions of polymer beads

Also Published As

Publication number Publication date
EP1574555A1 (en) 2005-09-14
CN1310955C (en) 2007-04-18
CN1667054A (en) 2005-09-14
DE602005000838T2 (en) 2007-12-20
AU2005200954B2 (en) 2010-05-20
DE602005000838D1 (en) 2007-05-24
EP1574555B1 (en) 2007-04-11
AU2005200954A1 (en) 2005-09-29

Similar Documents

Publication Publication Date Title
EP1574555B1 (en) Aqueous polymer dispersion and method of use
US6930141B2 (en) Aqueous polymer blend composition
EP0612805B1 (en) Emulsion polymer blend
AU784868B2 (en) Improved coating composition
AU2004202934B2 (en) Aqueous polymer composition
US8158713B2 (en) Scrub and stain-resistant coating
EP2371913B1 (en) Aqueous copolymer dispersion and coating composition
EP1422276B1 (en) Acrylic based aqueous coating composition
US7105593B2 (en) Aqueous polymer blend composition
AU782050B2 (en) Aqueous stain-blocking coating composition
AU782603B2 (en) Aqueous acrylic emulsion polymer composition
EP1614732B1 (en) Acrylic based aqueous coating composition
EP1260553B1 (en) Aqueous polymer blend composition
US20030224157A1 (en) Aqueous polymer composition

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION