CN1169383C - 空间的和时间的均衡器以及均衡方法 - Google Patents

空间的和时间的均衡器以及均衡方法 Download PDF

Info

Publication number
CN1169383C
CN1169383C CNB01116493XA CN01116493A CN1169383C CN 1169383 C CN1169383 C CN 1169383C CN B01116493X A CNB01116493X A CN B01116493XA CN 01116493 A CN01116493 A CN 01116493A CN 1169383 C CN1169383 C CN 1169383C
Authority
CN
China
Prior art keywords
tap coefficient
signal
array antenna
tap
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB01116493XA
Other languages
English (en)
Other versions
CN1316861A (zh
Inventor
謇锓
冨里繁
松本正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of CN1316861A publication Critical patent/CN1316861A/zh
Application granted granted Critical
Publication of CN1169383C publication Critical patent/CN1169383C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • H04B3/14Control of transmission; Equalising characterised by the equalising network used
    • H04B3/143Control of transmission; Equalising characterised by the equalising network used using amplitude-frequency equalisers
    • H04B3/145Control of transmission; Equalising characterised by the equalising network used using amplitude-frequency equalisers variable equalisers

Abstract

解调阵列天线21的各个单元的输出,并将其存储在存储装置29中。该解调输出乘以自适应阵列天线的抽头系数,相乘后的输出由组合装置28组合,并通过前馈滤波器22提供组合的输出给自适应均衡器23,进行均衡以便获得一个判定码元。在训练信号接收期间,自适应阵列天线和自适应均衡器23的抽头系数由抽头系数计算装置24进行收敛处理,然后前馈滤波器22和自适应均衡器23的抽头系数由抽头系数计算装置25进行收敛处理,以使误差信号变小。

Description

空间的和时间的均衡器以及均衡方法
本发明涉及一种空间的和时间的均衡器,该均衡器是用于移动通信的自适应阵列天线和自适应均衡器的混合,以及一种空间的和时间的均衡方法。
自适应阵列天线和自适应均衡器在移动通信中消除干扰是有效的。自适应阵列天线自适应地产生一个波束图(一个方向图),其中相对较高的天线增益的波束(该方向图的主瓣)指向期望接收的电波,对天线增益相当低的方向图的零指向诸如来自另一个用户的信号的干扰波。自适应阵列天线执行空间的信号处理并且是消除期望电波的相同的信道干扰波即同信道干扰的一个有效的装置。
自适应均衡器已经被用于消除期望的但延迟在其后的多路径电波,即,码元间干扰。该空间的和时间的均衡器是该自适应阵列天线和自适应均衡器的组合。
在图10中,描述了例如在1EICE、DSP99-178、SAT99-133、RCS99-183(2000,01)技术报告的第25-30页(在下文中称作文献1)的Saito等人的“空间的和时间的均衡器的分离的信道估计方案研究”和IEICE,A-p97-146(1997,11)的技术报告的第85-92页(在下文中称作文献2)的Fukawa的“自适应阵列和MLSE检测器的级联及其性能”中公开的常规的空间的和时间的均衡器。在这个现有技术例子中,自适应天线10的不同单元A1,A2,...,AL具有前向馈送的滤波器F1,F2,...,FL,用于补偿码元定时偏移。来自接收信号的码元定时补偿常常降低自适应均衡器11的特性,但是这可以通过提供前馈滤波器F1至FL避免。形成每一个的前馈滤波器F1至FL的横向滤波器的抽头需要设置在比传输码元周期T更短的时间间隔,通常是T/2时间间隔。前馈滤波器F1至FL的输出由组合器12组合,其后馈送给自适应均衡器11。在所示的空间的和时间的均衡器中,连接到自适应阵列15A的天线单元A1至AL和自适应均衡器11的前馈滤波器F1至FL的抽头系数都同时地计算并且由抽头系数计算部分13设置。因此,抽头系数可以整体上收敛到最佳的值。执行中,通常使用所谓的训练信号,在接收方已知发送码元码型。利用图10的配置,前馈滤波器F1至FL的抽头总数是如此大,使得用于由抽头系数计算部分13进行的抽头系数计算的计算复杂性增加了,引起抽头系数收敛的扩展时间的问题。
文献1还公开图10的空间的和时间的均衡器的简化版本。图11描述这样的一个简化配置,即打算减少使用的抽头总数。如图在图11中所示的,在这个均衡器中,不提供前馈滤波器F1至FL,相反从天线单元A1至AL的输出由乘法器M1至ML乘以加权(抽头系数),使相乘的输出由组合器12组合并且经过前馈滤波器14提供给自适应均衡器。即,在组合器12和自适应均衡器11之间提供前馈滤波器14,该乘法器M1至ML连接到天线单元A1至AL,以加权(抽头系数)复数乘(complex-multiply)其输出以便控制接收信号的相位和接收信号的幅度。但是,利用这种配置,在同时估计全部抽头系数的情况下,不能够获得充分的收敛,因为对于自适应阵列天线10的乘法器M1至ML和前馈滤波器14的抽头系数是以乘积的形式提供的。因此,分别地计算抽头系数。
作为开始,自适应阵列天线10和自适应均衡器的抽头系数的加权(抽头系数)由抽头系数计算部件16使用训练信号的上半周期同时收敛。在这种情况下,前馈滤波器14的抽头系数由抽头系数计算部件17设置,以使该滤波器14的转移功能是1,即,该滤波器14只通过信号。接下来,前馈滤波器14和自适应均衡器11的抽头系数由抽头系数计算部件17使用训练信号的下半周期同时收敛。因此,在自适应均衡器11中由抽头系数计算部件16或者17设置该抽头系数,其按照需要由转换器18转换。
在图10和11的任一个配置中,计算该抽头系数,以使自适应阵列天线10消除其它用户的空间上不同的干扰波和自适应均衡器11不能均衡的长延迟的电波,并且自适应均衡器11处理在时域中可均衡的短的延迟的电波,诸如码间干扰。
在如上所述的成批处理的图10例子中,由于自适应阵列天线10的每个单元具有前向馈送滤波器FFF,天线单元数量的增加导致抽头总数显著的增加,因此计算复杂性相应地增加。这成为由硬件形成空间的和时间的均衡器的重要的障碍,因此不可能实现该均衡器。另外,由于抽头系数的收敛需要长的训练信号周期,因此可察觉传输效率较低。
利用图11的方案,自适应阵列天线10,前馈滤波器14和自适应均衡器11的抽头系数的收敛不总能提供最佳的收敛结果,并且接收特性比在成批处理情况下更低。此外,由于在自适应阵列天线10的抽头系数收敛期间前馈滤波器14是在只通过状态,如果出现码元定时偏移,不能获得充分的收敛。
因此本发明的一个目的是提供一种允许抽头系数的最佳的收敛而不明显地增加计算复杂性的空间的和时间的均衡器,和一种均衡方法。
根据本发明的空间的和时间的均衡器包括:
自适应阵列天线,其复数乘来自包括L个单元的振列天线的振列天线输出信号与自适应阵列天线的抽头系数以控制接收信号的幅度和相位,并且组合相乘后的输出信号为阵列天线复合信号,所述L是等于或者大于2的一个整数;
前馈滤波器,包括分别提供有前馈滤波器的抽头系数的N个抽头的横向滤波器,用于接收该阵列天线复合信号,并输出N个抽头的信号作为第一抽头输入信号以及输出滤波输出信号,所述N是等于或者大于2的一个整数;
自适应均衡器,其具有每个以自适应均衡加权系数加权的M个抽头的自适应均衡电路,用于模拟传播路径特性,输出来自提供有码元序列的自适应均衡的M个抽头的信号作为第二抽头输入信号,并根据自适应均衡电路的输出,输出用于接收码元的估计误差信号,以及输出判定的码元信号。
第一抽头系数计算装置,用于从该阵列天线输出信号、第二抽头输入信号和估计误差信号计算自适应阵列天线的抽头系数和自适应均衡器的抽头系数;
第二抽头系数计算装置,用于从第一和第二抽头输入信号以及估计误差信号计算前馈滤波器的抽头系数和自适应均衡器的抽头系数;
抽头系数选择装置,用于从第一抽头系数计算装置选择地输出自适应均衡器的抽头系数或者从第二抽头系数计算装置选择地输出自适应均衡器的抽头系数;和
接收质量估计装置,使得第一和第二抽头系数计算装置重复其收敛操作,直到估计接收质量已经达到期望的程度为止。
根据本发明的空间的和时间的均衡方法包括步骤:
(a)根据来自阵列天线的接收信号和第一抽头输入信号以及来自所述自适应均衡器的估计误差信号计算自适应阵列天线的抽头系数和自适应均衡器的抽头系数;
(b)从前馈滤波器的抽头输出提供的第二抽头输入信号计算前馈滤波器的抽头系数和自适应均衡器的抽头系数,第一抽头输入信号和估计误差信号;
(c)通过使用自适应阵列天线的抽头系数计算自适应均衡器中的估计误差,前馈滤波器的抽头系数和由所述步骤(a)和(b)计算的前馈滤波器的抽头系数和自适应均衡器的抽头系数;和
(d)判定该估计误差是否小于预定值,如果否,重复所述步骤(a)和(B)。
或者,在所述步骤(c)不计算估计误差,并且进行检查看看所述步骤(a)和(b)的重复的次数是否达到大于2的预定值,而如果在所述步骤(d)达到预定的次数,该处理终止。
利用提供的接收质量估计装置,可以判定该抽头系数是否充分地收敛,因此可以进行收敛操作直到该抽头系数充分收敛;
图1是说明本发明的第一实施例的功能配置的方框图;
图2是描述图1中的阵列天线输出信号组合部件28的例子的图;
图3是描述图1中的前馈滤波器22的例子的图;
图4A是表示图1中的自适应均衡器23的例子的图;
图4B是描述图4A中的复制发生器32的例子的图;
图5是表示根据本发明的空间的和时间的均衡过程的流程图;
图6是表示图5的空间的和时间的均衡过程的修改的流程图;
图7是表示图5的空间的和时间的均衡过程的另一个修改的流程图;
图8是描述用于产生一个复制的复制发生器32的修改形式同时考虑了未来的码元的框图;
图9是表示图1中的自适应均衡器23的另一个例子的图;
图10是描述常规的空间的和时间的均衡器的图;和
图11是描述另一个常规的空间的和时间的均衡器的图。
第一实施例:
图1以方框形式示出根据本发明的空间的和时间的均衡器的第一实施例,它是先前参照图11描述的现有技术的一种改进。因此,这个实施例的均衡器正如图11现有技术例子基本上包括自适应阵列天线10、前馈滤波器22、自适应均衡器23和抽头系数计算部件24与25。正如稍后相对图2描述的,自适应阵列天线10中的阵列天线21对应于图11中的天线单元A1至AL,而阵列天线输出组合部件28对应于图11中的乘法器M1至ML。前馈滤波器22、自适应均衡器23和抽头系数计算部件24与25分别对应于图11中的前馈滤波器14、自适应均衡器11和抽头系数计算部件16与17。
根据本实施例的空间的和时间的均衡器新提供有接收质量估计部件26。为了分别地计算该抽头系数,抽头系数选择部件27在各自的抽头系数计算部件24和25之间暂时的转换,以使其中计算的自适应均衡器的抽头系数选择地设置在自适应均衡器23中。
该接收信号是由包括L个(其中L是等于或者大于2的一个整数)单元的阵列天线21接收的,由此提供该接收信号作为L序列的阵列天线输出信号。在本实施例中这些输出信号由L个解调器20解调。已解调信号SR馈送给阵列天线输出组合部件28。图2描述该阵列天线输出组合部件28的一个例子。输入给该组合部件28的L序列阵列天线输出信号SA1至SAL在乘法器MA1至MAL中分别复数乘自适应阵列天线WA1至WAL的抽头系数。这些相乘的信号由阵列天线输出组合器12组合为一个阵列天线组合信号SC
阵列天线组合信号Sc输入给前馈滤波器22。图3描述前馈滤波器22的一个例子。阵列天线组合信号Sc馈送给单位延迟单元D1至DN-1的串联电路。在这个例子中,每个单位延迟单元的延迟时间设置为码元传输周期T的1/2。在前馈滤波器22中,该延迟单元D1至DN-1的输入和输出信号Si1至SiN在乘法器MF1至MFN中分别复数乘前馈滤波器WF1至WFN的抽头系数,并且相乘的输出由组合器30组合为滤波输出信号SF。即,前馈滤波器22是由N抽头(其中N是等于或者大于2的一个整数)横向滤波器形成的。延迟单元输入/输出信号Si1至SiN作为抽头输入信号St1提供给抽头系数计算部件25。
提供有滤波输出信号SF作为到它的输入,该自适应均衡器执行均衡处理。图4A描述自适应均衡器23的一个例子。所示的配置称为MLSE类型并且用于最大似然(likelihood)序列估计。在自适应均衡器23中,从最大似然估计器31提供接收信号的候选码元序列信号SSSC={S1,...SM},而在复制发生器32中,候选码元序列信号SSSC分别复数乘自适应均衡器WE1至WEM的抽头系数。即,正如在图4B中描述的,复制发生器32在乘法器ME1至MEM中分别以自适应均衡器WE1至WEM的抽头系数复数乘输入候选码元序列信号SSSC={S1,...SM},并且该相乘的输出由组合器33组合为接收信号的复制信号SRPL。因此,自适应均衡器23使用一个M抽头(在此M是等于或者大于1的一个整数)横向滤波器作为复制发生器32。
在自适应均衡器23的所示的例子中,提供候选码元序列信号SSSC作为抽头输入信号St2,它馈送给抽头系数计算部件24与25。在自适应均衡器23中,复制信号SRPL和到自适应均衡器23的输入信号的滤波信号SF之间的差由减法器34计算以便产生一个估计误差信号ε。估计误差信号ε的绝对值由平方电路35平方,该平方值|ε|2用作最大似然序列估计器31中的维特比算法的分支量度。利用维特比算法获得的最可能的码元码型从用于解码该接收信号的最大似然序列估计器31输出。
接收该输入信号作为突发信号(burst signal),每个突发信号具有一个帧配置,从训练信号周期开始,其后跟随一个数据周期。为了开始计算每组抽头系数,驱动开关SW将复制发生器32的输入侧从最大似然估计器31转换到训练信号存储器36,由此提供预定的码元序列的训练信号STR给复制发生器32。在接收训练信号、阵列天线输出信号SR和抽头输入信号Si2(即,训练信号)期间,根据传播路径条件,通过使用滤波的接收的信号SF的复制信号SRPL的估计误差信号,抽头系数计算部件24执行抽头系数收敛处理,通过该处理,自适应阵列天线10的抽头系数,即,对应于乘法器MA1至MAL的自适应阵列天线WA1至WAL的抽头系数,以及用于自适应均衡器23的抽头系数WE1到WEM从初始值收敛。
在这个例子中,抽头系数WE1至WEM和WA1至WAL在该训练周期中收敛,以使从自适应均衡器23输出的估计误差信号的电平减少到最小。在这种情况下,前馈滤波器22设置为仅通过信号。这可通过设置对应于第一抽头系数的前馈滤波器WF1的抽头系数为1而其它抽头系数WF2至WFN为0来实现。已知的LMS或者RLS算法可用于这个收敛。在使用RLS算法的情况下,下面是计算抽头系数W={WA1至WAL,WE1至WEM}的操作。
X(i)=1/λ(P(i-1)U(i))            (1)
K(i)=X(i)/(1+UH(i)X(i))          (2)
W(i)=W(i-1)+K(i)α*(i)           (3)
P(i)=λP(i-1)-K(i)XH(i)          (4)
其中λ是等于或者小于1的一个忽略系数(forgetting coefficient),U(i)是包括抽头输入信号SR和St2的一个矢量,P(i)是U(i)的相关矩阵,而α*(i)表示估计误差信号ε。H表示复共扼转置。为了使对于自适应均衡器23的所有的抽头系数不为零,自适应均衡器WE1至WEM的抽头系数之一固定为1,对自适应均衡器的其它剩余抽头系数进行收敛处理。正如从方程式(1)至(4)看到的,该抽头系数由递归关系表示。该抽头系数W以连续的增加值i收敛。因此,可以通过输入该输入信号输入信号和估计误差递归地获得该抽头系数W。
该抽头系数计算部件25使用估计误差信号ε、抽头输入信号St1(接收信号Si1至SiN)和抽头输入信号St2(训练信号STR)对前馈滤波器WF1至WFN的抽头系数和自适应均衡器WE1至WEM的抽头系数执行抽头系数收敛处理。这个收敛处理还使用方程式(1)至(4)以便在训练信号周期中收敛抽头系数WF1至WFN和WE1至WEM,最小化从自适应均衡器23输出的估计误差信号的电平。在此情况下,P(i)是从前馈滤波器22提供的抽头输入信号St1和从自适应均衡器23提供的抽头输入信号St2的相关矩阵的逆矩阵。在这个计算中,自适应阵列天线WA1至WAL的抽头系数固定在该抽头系数计算部件24中在抽头系数收敛处理末尾计算的值。使用抽头系数收敛处理中的最后的计算值,可以快速收敛自适应均衡器WE1至WEM的抽头系数的初始值。
通过抽头系数计算部件24该自适应均衡系数WE1至WEM的收敛结果传递到抽头系数计算部件25,用于进一步收敛。一旦收敛由该抽头系数计算部分24完成,抽头系数选择部件27就暂时地转换到抽头系数计算部件25侧。
接收质量估计部件26首先估计从自适应均衡器23输出的估计误差信号的幅度。
然后,当可以判定该估计误差信号的幅度与该接收信号功率比较充分地小时,估计部件26判定抽头系数的收敛已经结束,并且输出在训练信号周期中完成抽头系数收敛的接收质量估计信号。在这种情况下,根据传播路径条件,例如在相对于接收信号功率下-20或者-30dB选择评价的准则或者门限值。即例如,当信噪比相当差时,减少估计误差信号是有限的。例如在图4的MLSE类型均衡器中接收功率可以以复制发生器32的输出功率代替。在图9的判定反馈型均衡器中,接收功率只需要设置在1,因为该抽头系数受控制以使期望的电波接收功率是1。
另一方面,当估计误差信号大并且判定该抽头系数的收敛不充分时,接收质量估计部件26输出接收质量估计信号SQ指令使用训练信号再次执行抽头系数收敛处理。抽头系数计算部件24和25响应该信号SQ,在训练信号周期再次执行抽头系数收敛处理。在重复抽头系数收敛处理时,自适应阵列天线的抽头系数、前馈滤波器的抽头系数和自适应均衡器的抽头系数的初始值是在抽头系数计算部件24和25中前面的抽头系数收敛处理的末尾计算的值。
由抽头系数计算部件24和25进行的上述的抽头系数收敛处理重复执行,直到判定抽头系数收敛已经结束为止。接收质量估计部件26提供作为接收质量估计信号,例如对于抽头系数计算部件24进行的抽头系数收敛为(1,0),对于由抽头收敛计算部件25进行的抽头收敛为(0,1),而对于表示抽头系数收敛处理结束为(1,1)。因此,当从接收质量估计部件26提供接收质量估计信号(1,0)时,抽头系数计算部件24开始处理,而抽头系数计算部件25停止处理;当提供接收信号质量估计信号(0,1)时,抽头系数计算部件24停止处理而抽头系数计算部件25开始处理;并且当提供接收质量估计信号(1,1)时,抽头系数计算部件24和25在数据信号期间使用来自自适应均衡器23的候选码元序列信号执行抽头系数计算处理。
抽头系数计算部件24和25重复抽头系数收敛处理直到估计误差信号变为低于上述的评价准则。在图1的实施例中,提供存储部件29作为一个缓冲器。在接收突发信号时,从解调器20输出的L天线单元的解调输出被存储在存储部件29中。对于抽头系数收敛处理,可以反复地使用存储在该存储部件29中的接收的训练信号。这避免了需要长时间地使用一训练信号。在抽头系数收敛处理之后还使用存储在存储部件29中的接收信号执行数据周期的解码处理。
在由抽头系数计算部件24和25进行的抽头系数收敛处理中,训练信号周期可以分为两个部分:上半周期用于系数计算部分24,而下半周期用于抽头系数计算部件25。或者,训练信号周期可以分为四部分,在此情况下四个四分之一周期顺序地互相交替地分配给系数计算部件24和25。无论如何,由抽头系数计算部件25进行的系数收敛处理后面是判定估计误差信号的幅度是否成为小于预定值,并且重复进行由系数计算部件24和25进行的收敛处理,直到估计误差信号变成小于预定值。
当判定收敛已经结束时,复制发生器32的输入(图4A)转换到最大似然估计器31,接着在数据信号周期中起动该处理。通常,输入信号方向的暂时的变化比传播路径的暂时的变化更慢。因此,在数据信号周期中,自适应阵列天线WA1至WAL的抽头系数固定在由抽头系数计算部件24进行的抽头系数收敛处理的末尾计算的值,并且只更新前馈滤波器WF1至WFN的抽头系数和自适应均衡器WE1至WEM的抽头系数,利用其进行输入信号的方向的暂时的变化,以便跟随传播路径的暂时的变化。这是通过仅起动抽头系数计算部件25实现的。在传输速率比传播路径的暂时的变化足够更快的情况下,例如当传输速率是每秒几十个M码元时,停止由抽头系数计算部件24与25进行的抽头系数更新,并且在该数据周期中使用训练周期末尾的抽头系数执行码元解调。由于上述的处理的结果,自适应均衡器23输出一个判定码元信号,因此解码接收的信号。
图5是表示本发明的第一实施例的空间的和时间的均衡过程的例子的流程图。
步骤S1:对于接收的训练信号周期,系数计算部件24使用训练信号STR作为来自训练信号存储器36(图4A)的抽头输入信号St2来自减法器34的估计误差信号ε和来自存储部件29的解码的训练信号,执行自适应阵列天线WA1至WAL的抽头系数和自适应均衡器WE1至WEM的抽头系数的收敛处理,以便最小化估计误差信号电平。即,抽头系数计算部件24执行对于自适应阵列天线10和自适应均衡器23的抽头系数收敛处理。
步骤S2:进行检查以便确定由抽头系数计算部件24进行的收敛处理的次数的数量是否为k=1,即,该收敛处理是否为第一个收敛处理。
步骤S3;如果是,则传送迄今为止的阵列天线复合信号输出到空的前馈滤波器22。
步骤S4:当由抽头系数计算部件24的处理是第二或者随后的处理时,抽头系数计算部件25使用来自前馈滤波器22的各自的抽头的信号Si1至SiN作为抽头输入信号St1,来自减法器34的估计误差信号ε和来自训练信号存储器36的训练信号STR作为抽头输入信号St2,执行前馈滤波器WF1至WFN的抽头系数和自适应均衡器WE1至WEM的抽头系数的收敛处理,以便最小化估计误差信号电平。即,抽头系数计算部件25执行对于前馈滤波器22和自适应均衡器23的抽头系数收敛处理。
步骤S5:在阵列天线输出组合部件28,该前馈滤波器22和复制发生器32中设置收敛处理之后的抽头系数,计算估计误差。
步骤S6:进行检查确定该计算估计误差是否小于预定值。
步骤S7:当估计误差大于预定值时,处理计数k的当前的值递增一,接着返回至步骤S1,并且重复步骤S2至S6。如果估计误差信号小于预定值,该过程转到步骤S8。
步骤S8:在数据信号周期中更新抽头系数。
步骤S9:在数据信号周期中进行解码。
在图5的过程中,当即使已经执行了多于预定次数的收敛处理之后,估计误差没变为小于该预定值,即,当接收质量依然低时,可能丢弃有关的接收信号并且请求发送方重发一个信号。图6表示在这样的情况下接下来的过程。如图所示,在图5中的步骤S7之后提供步骤S10以确定处理计数k的次数是否小于该预定值K;如果是,则过程返回至步骤S1,而如果不是,该过程转到步骤S11,请求发送方重发该信号。
在图5的过程中,在步骤S6中不判定估计误差是否小于该预定值,而是可以通过如图7中的步骤S6’所示的判定收敛处理是否已经重复了预定的次数K的两倍,如果否,通过步骤S7返回至步骤S1并且重复该处理。
在上面的实施例中,相同的训练信号可用于抽头系数计算部件24和25中。在这种情况下,重复地使用存储在存储部件29中的解调信号的训练信号周期;训练信号的整个长度比在每个抽头系数计算部件中使用不同的训练信号的情况下短。就信息传输效率而言这是有利的。
第二实施例:
通常,使用于解调的码元定时与接收信号的引导电波的定时一致。在图4A的获得最优良的接收特性的MLSE型均衡器中,上述定时取作时间0(即现在时间点),并且从在时间0的候选码元和过去的或者前面的候选码元(-T,-2T,…)中产生复制信号用于均衡。
但是,当在解调器侧再生的码元定时中存在同步误差时或者当延迟的电波的接收电平比引导电波的接收电平显著地高时,当前的码元定时后的未来的码元的分量被作为码元间干扰包含在接收信号中。由于这样的未来的码元分量不包含在该均衡器中产生的复制信号中,因此估计误差增加了并且该接收特性变差。
当自适应阵列天线10放置在自适应均衡器23前面的级时,其中包含作为码间干扰的这样的未来的码元的延迟电波被认为是干扰分量,由自适应阵列天线10形成方向图,其中零指向这样的延迟电波。由于这个原因,输入到自适应均衡器23的期望信号分量整体上减小了,产生不能获得充分的接收特性的可能性。
图8表示设计用于防止由于这种码元定时偏移引起接收特性的恶化的一个复制发生器的配置。
在形成第一个实施例中的图4B配置的复制发生器32的横向滤波器中,M抽头分别提供有对应于在时间0,-T,-2T,...,-(M-L)T的时间点的候选码元S1,S2,...,SM。在图8中,M抽头提供有对应于在时间+m1T,...,+T,0,-T,-2T,...,-(m2-1)T的候选码元S1,S2,....SM,然后利用M个乘法器ME1至MEM,这些候选码元分别乘以自适应均衡器WE1至WEM的M个抽头系数,并且相乘的输出利用加法器33相加在一起以获得复制信号SRPL。在这个情况下,M=m1+m2,其中m1和m2是等于或大于1的整数,而在时间T,2T,...,m1T的候选码元对应于未来的信号。
在训练信号周期中的初始的抽头系数收敛处理中,随后的过程用于信号处理。
(a)收敛该自适应阵列天线(AAA)10和自适应均衡器的抽头系数。在通过自适应均衡器的复制产生中,候选信号也被输出用于未来的码元。
(b)收敛前馈滤波器(FF滤波器或者只是FFF)22和自适应均衡器23的抽头系数。
(c)重复步骤(a)和(b)。
接收信号的过程通常等同于图5所示的过程,但是与后者的不同在于在通过自适应均衡器复制产生中候选信号也提供给未来的码元。
在训练信号周期中,由于该码元码型是已知的,可以容易地产生未来的候选码元。另外,根据本实施例,即使未来的时间点的码元分量被作为码间干扰包含在接收信号中,也可能准确地产生该复制信号,因此改进该接收特性。
在这个实施例中,在步骤(a)之后发现在未来的侧的抽头系数的值充分地小并判定没有由于码元定时偏移引起的未来的码元干扰的情况下,可以在随后的处理中在复制中停止包含未来的码元。这使得计算复杂性降低。
而且,在步骤(a)之后发现未来侧的抽头系数的值大于一定的值并可以判定由于码元定时偏移存在未来的码元干扰的情况下,则可以调整该码元定时以便抑制由未来的码元引起的干扰。还可以在码元定时调整之后执行步骤(a);即,可以重复进行码元定时调整和步骤(a)直到未来侧的抽头系数值充分地小为止。
另一方面,由于前馈滤波器22具有码元定时偏移调整能力,可以在前馈滤波器22中通过自适应均衡器除去从复制产生中未来的码元自动地调整该码元定时偏移。在随后的处理中的复制中不必包含未来的码元。
在该数据周期中使用上面的方案的情况下,由于未来的码元都没有确定,存在包含未来的码元的多个候选码元序列;但是,通过设置可能作为状态接收的所有的候选码元序列,上面的方案可用于该数据周期中。
构成包含未来的码元的格子结构(trellis)并执行码元序列估计是困难的。但是,在这种情况下,可以通过执行处理解决该问题,其中:仅在对每个码元的分支度量的计算时,也考虑未来的码元有关的状态;状态的数量增加不在格子结构转移中反映;因此,与未来的码元有关的状态转移不包含在该路径历史中。即,对未来的码元,不执行该顺序估计,而执行每个码元的判定处理,
第三实施例:
判定反馈均衡器可用作图1实施例中的自适应均衡器23。图9说明其配置的一个例子。在这种情况下,使用反馈型式的判定码元信号代替在最大似然估计型均衡器中使用的候选码元信号。即,在当前接收的码元前由复制发生器32’产生接收码元的延迟的分量的复制,然后延迟的分量的复制由加法器34A从前馈滤波器22馈送的滤波输出信号(接收信号)Sf中减去,并且由判定设备42判定从该加法器34A的输出是1还是0。
这个判定结果被作为解码的码元输出,并且输入到单位延迟单元DU1至DUM-1的串联电路;每个单位延迟单元具有一个码元周期T的延迟时间。延迟单元DU1到DUM-1的输出信号分别通过乘法器ME1到MEM-1复数乘自适应均衡器WE1至WEM-1的抽头系数。相乘的输出由组合器33组合,并且估计由于传播路径在当前的码元前的接收码元的延迟分量,在这之后提供组合的输出给减法器34A。即,由构成复制发生器32’的延迟单元DU1至DUM-1,乘法器ME1至MEM-1和组合器33产生在当前的接收码元前面的接收码元的延迟分量的复制。延迟单元DU1至DUM-1的输出信号被用作抽头输入信号St2,它被加到图1中的抽头系数计算部件24和25。判定设备42的输入和输出信号之间的差由减法器34B计算并且被用作估计误差信号ε。
和图4中的复制发生器32不同,复制发生器32′在图9的实施例中仅使用前面时间点的码元即来自延迟单元DU1至DUM-1的输出产生复制:为了与图4的情况相比较,复制发生器被示出具有M-1个抽头,但是这个值没有特定的含意,并且抽头的数量是任意的。
在图1的实施例中,执行用于解调输出的自适应阵列天线的加权,也可以对RF信号执行加权。在这样一种情况下,输入到抽头系数计算部件24的信号需要分别地解调。即,在图1中,去除在阵列天线20输出侧的L个解调器20,一个解调器连接到阵列天线输出信号组合部件28的输出侧和L个解调器插入在从阵列天线21到抽头系数计算部件24的信号行中。
但是,在这种情况下,由于存储部件29存储RF信号,相当实际的是分开该训练周期而不是重复地使用相同的训练周期。
图9的第三实施例也可以与图8的第二实施例组合。
在第一、第二和第三实施例中,在图2中的阵列天线输出组合部件28,在图3中的前馈滤波器22,在图4和8中的复制发生器32和图9中的自适应均衡器23每个都已经描述了具有与抽头系数的数量相同数量的乘法器并且同时执行乘操作,但是仅仅通过重复地起动一个乘法器而不是使用这么多乘法器进行一个接一个的乘操作也是可能的。
本发明能够实现结构简单的空间的和时间的均衡器。即使对每一个自适应阵列天线、前馈滤波器和自适应均衡器执行抽头系数计算处理,可以获得抽头系数的充分的收敛而不需大量的复杂计算,因此可以获得与用于成批处理的更复杂的结构可获得的相同程度的接收特性。

Claims (16)

1.一种空间的和时间的均衡器,包括:
自适应阵列天线,其以自适应阵列天线的抽头系数复数乘来自包括L个单元的阵列天线的阵列天线输出信号以便控制接收信号的幅度和相位,并且组合相乘的输出信号为阵列天线复合信号,所述L是等于或者大于2的一个整数;
前馈滤波器,包括分别以前馈滤波器的抽头系数加权的N抽头的横向滤波器,用于接收所述阵列天线复合信号并输出N抽头的信号作为第一抽头输入信号和滤波输出信号,所述N是等于或者大于2的一个整数;
自适应均衡器,其具有分别以自适应均衡器的抽头系数加权的M抽头的复制发生器,输出来自提供有码元序列的所述复制发生器的M抽头的信号作为第二抽头输入信号,并且根据所述自适应均衡电路的输出输出用于接收码元的估计误差信号,以及输出判定码元信号,所述M是等于或者大于1的整数;
第一抽头系数计算装置,用于从所述阵列天线输出信号、所述第二抽头输入信号和所述估计误差信号计算自适应阵列天线的所述抽头系数和自适应均衡器的所述抽头系数;
第二抽头系数计算装置,用于从所述第一和第二抽头输入信号和所述估计误差信号计算前馈滤波器的所述抽头系数和自适应均衡器的所述抽头系数;
抽头系数选择装置,用于选择从所述第一抽头系数计算装置输出自适应均衡器的所述抽头系数或者从所述第二抽头系数计算装置输出自适应均衡器的所述抽头系数;和
接收质量估计装置,用于使所述第一和第二抽头系数计算装置重复其收敛操作直到估计该接收质量已经达到期望程度为止。
2.根据权利要求1的空间的和时间的均衡器,其中所述接收质量估计装置与所述自适应均衡器以及所述第一和第二抽头系数计算装置相连接,并通过检查察看所述估计误差信号是否小于预定值来判定所述接收质量是否已经达到预定的程度。
3.根据权利要求1的空间的和时间的均衡器,其中所述接收质量估计装置与所述自适应均衡器以及所述第一和第二抽头系数计算装置相连接,并通过重复进行两次或预定多次所述第一和第二抽头计算装置的收敛操作来判定所述接收质量已经达到预定程度。
4.根据权利要求1的空间的和时间的均衡器,其中所述复制发生器包括:提供有码元序列的M个乘法器,用于分别将自适应均衡器的所述抽头系数乘以这些码元;和组合器,用于组合来自所述M乘法器的相乘的输出以便提供组合的输出作为所述接收码元的复制;并且所述自适应均衡器包括:减法器,用于输出所述滤波输出信号和作为所述估计误差信号的所述复制之间的差;最大似然估算器,用于产生候选码元序列,用于根据所述估计误差信号进行最大似然估计以便输出一个判定码元;具有存储作为训练信号的预定的码元序列的训练信号存储器;和开关,在接收信号的训练信号周期中选择所述训练信号存储器的读出的所述训练信号,在所述接收信号的数据信号周期中从所述最大似然估算器中选择所述候选码元序列并且提供所述选择的候选码元序列给所述复制发生器,并提供所述选择候选码元序列作为所述第一抽头输入信号给所述第一和第二抽头系数计算装置。
5.根据权利要求4的空间的和时间的均衡器,其中所述最大似然估算器产生包括该当前时间点前面的M个码元的码元序列作为所述候选码元序列。
6.根据权利要求4的空间的和时间的均衡器,其中所述最大似然估算器产生包括m1个未来的码元和从现在时间点到过去时间点所覆盖的m2个码元的总数为M个码元的码元序列作为所述候选码元序列,其中m1和m2是等于或者大于1的整数。
7.根据权利要求1的空间的和时间的均衡器,其中所述自适应均衡器包括:多个级联连接的延迟单元,每个延迟单元具有等于一个码元周期的延迟时间;多个乘法器,用于分别以自适应均衡器的所述抽头系数乘所述延迟单元的输出;一个组合器,用于组合来自所述乘法器的输出;第一减法器,用于提供所述组合器的输出和所述滤波输出信号之间的差;一个判定设备,用于判定从所述第一减法器输出的电平以便输出所述判定码元;第二减法器,用于提供所述判定码元和作为所述估计误差信号的所述第一减法器输出之间的差;训练信号存储器,用于存储预定的码元序列的训练信号;和一个开关,在接收信号的训练信号周期中顺序地从所述训练信号存储器中选择所述训练信号的码元,在所述接收信号的数据信号周期中选择所述判定码元,并提供选择的码元给所述级联的所述延迟单元。
8.根据权利要求4至7的任一个权利要求的空间的和时间的均衡器,其中所述自适应阵列天线包括解调器,用于解调来自所述L个单元的阵列天线的接收信号;和阵列天线输出组合装置,其以自适应阵列天线的所述抽头系数复数乘来自所述解调器的解调输出,组合相乘的输出为所述阵列天线复合信号。
9.根据权利要求8的空间的和时间的均衡器,其还包括接收信号存储装置,用于暂存所述解调器的解调的接收信号,和其中由所述第一和第二抽头系数计算装置对从所述接收信号存储装置读出的已解调信号执行处理。
10.根据权利要求2至7的任一个权利要求的空间的和时间的均衡器,其中所述自适应阵列天线包括阵列天线输出组合装置,用于以自适应阵列天线的所述抽头系数复数乘来自所述L单元阵列天线的接收的信号,并用于组合相乘的输出;和解调器,用于解调该组合输出,并用于输出解调的输出作为所述阵列天线复合信号。
11.根据权利要求10的空间和时间的均衡器,它还包括接收信号存储装置,用于暂存从所述阵列天线接收的信号,其中对接收信号存储装置读出的接收信号执行如所述第一和第二抽头系数计算装置进行的处理。
12.一种空间的和时间的均衡方法,由前馈滤波器补偿从具有阵列天线的自适应阵列天线输出中的码元定时偏移,并由自适应均衡器进行码元判定,所述方法包括以下步骤:
(a)根据来自所述阵列天线的接收信号和第一抽头输入信号以及来自所述自适应均衡器的估计误差信号,对来自所述阵列天线的输出计算自适应阵列天线的抽头系数和自适应均衡器的抽头系数,同时,如果有先前计算的自适应均衡器的抽头系数,则使用先前计算的自适应均衡器的抽头系数作为自适应均衡器的初始系数;(b)根据从所述前馈滤波器的抽头输出提供的第二抽头输入信号、所述第一抽头输入信号和所述估计误差信号,计算前馈滤波器的抽头系数和自适应均衡器的所述抽头系数,同时,使用先前计算的自适应均衡器的抽头系数作为自适应均衡器的初始系数;
(c)在所述自适应均衡器中通过使用由所述步骤(a)和(b)计算的自适应阵列天线的所述抽头系数、前馈滤波器的所述抽头系数和自适应均衡器的所述抽头系数计算估计误差;和
(d)判定所述估计误差是否小于预定值,并且如果不是,重复所述步骤(a)和(b)。
13.一种空间的和时间的均衡方法,其由前馈滤波器补偿从具有阵列天线的自适应阵列天线输出中的码元定时偏移并由自适应均衡器进行码元判定,所述方法包括步骤:
(a)根据来自所述阵列天线的接收信号和第一抽头输入信号以及来自所述自适应均衡器的估计误差信号,对来自所述阵列天线的输出计算自适应阵列天线的抽头系数和自适应均衡器的抽头系数,同时,如果有先前计算的自适应均衡器的抽头系数,则使用先前计算的自适应均衡器的抽头系数作为自适应均衡器的初始系数;
(b)根据从所述前馈滤波器的抽头输出提供的第二抽头输入信号、所述第一抽头输入信号和所述估计误差信号,计算前馈滤波器的抽头系数和自适应均衡器的所述抽头系数,同时,使用先前计算的自适应均衡器的抽头系数作为自适应均衡器的初始系数;和
(c)判定所述步骤(a)和(b)的重复的次数是否已经达到大于2的预定值,如果否,重复所述步骤(a)和(b)。
14.根据权利要求12或者13的空间的和时间的均衡方法,其中所述步骤(a)和(b)是在接收信号的训练信号的上半周期和下半周期执行操作的步骤。
15.根据权利要求12或者13的空间的和时间的均衡方法,它还包括在存储装置中存储脉冲串方式(burstwise)接收信号的步骤,其中所述步骤(a)和(b)是从所述存储装置读出接收信号的相同的训练信号周期并执行操作的步骤。
16.根据权利要求12或者13的空间的和时间的均衡方法,其中:在所述步骤(a)抽头系数收敛处理期间,所述前馈滤波器被设置在只通过状态;和在所述步骤(b)中第二抽头系数收敛处理期间,在所述步骤(a)计算的自适应阵列天线的所述抽头系数是固定的,自适应均衡器的所述抽头系数设置在初始值,并且计算前馈滤波器的所述抽头系数以及自适应均衡器的所述抽头系数。
CNB01116493XA 2000-03-27 2001-03-27 空间的和时间的均衡器以及均衡方法 Expired - Fee Related CN1169383C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000085778 2000-03-27
JP085778/2000 2000-03-27

Publications (2)

Publication Number Publication Date
CN1316861A CN1316861A (zh) 2001-10-10
CN1169383C true CN1169383C (zh) 2004-09-29

Family

ID=18602043

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB01116493XA Expired - Fee Related CN1169383C (zh) 2000-03-27 2001-03-27 空间的和时间的均衡器以及均衡方法

Country Status (4)

Country Link
US (1) US6862316B2 (zh)
EP (1) EP1158694B1 (zh)
CN (1) CN1169383C (zh)
DE (1) DE60137559D1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2813728B1 (fr) * 2000-09-07 2003-03-07 Mitsubishi Electric Inf Tech Recepteur cdma adaptatif bi-modulaire
JP2002344362A (ja) * 2001-05-14 2002-11-29 Hitachi Kokusai Electric Inc 等化装置、受信装置、及び等化方法並びに受信方法
US7035343B2 (en) * 2002-01-31 2006-04-25 Qualcomm Inc. Closed loop transmit diversity antenna verification using trellis decoding
US7099409B2 (en) * 2002-02-13 2006-08-29 Broadcom Corporation Channel estimation and/or equalization using repeated adaptation
KR100878524B1 (ko) * 2002-05-21 2009-01-13 삼성전자주식회사 등화기의 필터 탭계수 갱신 장치 및 갱신 방법
KR100467317B1 (ko) * 2002-05-22 2005-01-24 한국전자통신연구원 스케일러블 적응등화 장치
EP1376896A1 (en) * 2002-06-20 2004-01-02 Evolium S.A.S. Iterative channel estimation for receiving wireless transmissions using multiple antennas
AU2003262848A1 (en) * 2002-08-21 2004-03-11 Zyray Wireless, Inc. Antenna array including virtual antenna elements
US8457230B2 (en) 2002-08-21 2013-06-04 Broadcom Corporation Reconfigurable orthogonal frequency division multiplexing (OFDM) chip supporting single weight diversity
US7035330B2 (en) * 2002-12-17 2006-04-25 Scintera Networks, Inc. Decision feedback equalizer with dynamic feedback control
US6940898B2 (en) * 2002-11-08 2005-09-06 Scintera Networks, Inc. Adaptive coefficient signal generator for adaptive signal equalizers with fractionally-spaced feedback
US7039104B2 (en) * 2002-11-08 2006-05-02 Scintera Networks, Inc. Adaptive coefficient signal generator for adaptive signal equalizers with fractionally-spaced feedback
US7120193B2 (en) * 2002-11-08 2006-10-10 Scintera Networks, Inc. Decision feedback equalizer with dynamic feedback control
EP1445886B1 (en) * 2003-01-31 2015-05-20 Ntt Docomo, Inc. Multiple-output multiple-input (MIMO) communication system, MIMO receiver and MIMO receiving method
US7272176B2 (en) * 2003-02-18 2007-09-18 Qualcomm Incorporated Communication receiver with an adaptive equalizer
US20050053127A1 (en) * 2003-07-09 2005-03-10 Muh-Tian Shiue Equalizing device and method
KR20050027785A (ko) * 2003-09-16 2005-03-21 삼성전자주식회사 신호 품질 검출 방법 및 그 장치와, 이를 구현하기 위한프로그램이 기록된 기록매체
CN1297075C (zh) * 2003-12-02 2007-01-24 中国人民解放军空军雷达学院 干扰阻塞空间谱估计方法
WO2005117273A1 (ja) * 2004-05-26 2005-12-08 Nec Corporation 空間多重信号検出方法及びそれを用いる時空間反復復号器
US7436615B2 (en) * 2005-12-08 2008-10-14 International Business Machines Corporation Using a measured error to determine coefficients to provide to an equalizer to use to equalize an input signal
JP2007195075A (ja) * 2006-01-20 2007-08-02 Fujitsu Ltd 復調回路および復調方法
KR101133839B1 (ko) * 2006-02-13 2012-04-06 에스티 에릭슨 에스에이 필터 가중 추정 디바이스, 등화기, 통신 수신기 및 통신 장비
US20090135944A1 (en) * 2006-10-23 2009-05-28 Dyer Justin S Cooperative-MIMO Communications
KR100902336B1 (ko) * 2007-07-20 2009-06-12 한국전자통신연구원 동일채널 중계장치 및 그 방법
JP2009135712A (ja) * 2007-11-29 2009-06-18 Kyocera Corp 受信装置、無線基地局及び受信方法
JP4573361B2 (ja) * 2008-08-22 2010-11-04 京セラ株式会社 無線通信装置および無線通信方法
GB2494204B (en) * 2011-09-05 2017-05-24 Roke Manor Research Method and apparatus for signal detection
US8599914B1 (en) * 2012-06-20 2013-12-03 MagnaCom Ltd. Feed forward equalization for highly-spectrally-efficient communications
WO2014186445A1 (en) * 2013-05-15 2014-11-20 Huawei Technologies Co., Ltd. Low complexity, adaptive, fractionally spaced equalizer with non-integer sampling
US10303146B2 (en) * 2017-05-31 2019-05-28 Oracle International Corporation Servomechanism error handling
CN108063738B (zh) * 2017-11-22 2020-08-25 西南电子技术研究所(中国电子科技集团公司第十研究所) 数字均衡器的收敛判决方法
CN113783811A (zh) * 2020-06-10 2021-12-10 英业达科技有限公司 计算接头系数的方法及其装置
CN115943569A (zh) * 2020-06-23 2023-04-07 马维尔亚洲私人有限公司 高速数据信道中的滤波器的环境感知运行时间配置
JP2023546697A (ja) * 2020-10-23 2023-11-07 マーベル アジア ピーティーイー、リミテッド スパース性インパルス応答を有する高速データチャネルでの等化
CN112887236B (zh) * 2021-01-12 2021-09-21 烽火通信科技股份有限公司 一种高速突发信号的同步及均衡装置与方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166689A (en) * 1970-08-12 2000-12-26 Lockheed Martin Corporation Adaptive beamformer with beam mainlobe maintenance
JP2663820B2 (ja) * 1992-12-28 1997-10-15 日本電気株式会社 判定帰還形等化器
JP2697648B2 (ja) * 1994-12-26 1998-01-14 日本電気株式会社 判定帰還形等化器
US6240098B1 (en) * 1995-08-22 2001-05-29 Thomson-Csf Method and device for space division multiplexing of radio signals transmitted in cellular radio communications
FR2742619B1 (fr) * 1995-12-15 1998-02-06 Thomson Csf Procede d'egalisation multicapteur permettant une reception multicapteur en presence d'interferences et de multitrajets de propagation, et recepteur pour sa mise en oeuvre
AU2756797A (en) 1996-05-20 1997-12-09 Post Und Telekom Austria Aktiengesellschaft Process and device for reception with directional resolution
US5870430A (en) * 1996-12-26 1999-02-09 Thomson-Csf Process for multi-sensor equalisation in a radio receiver in the presence of interference and multiple propagation paths
FR2758926B1 (fr) * 1997-01-24 1999-04-30 France Telecom Procede d'egalisation multicapteurs dans un recepteur radioelectrique comportant un nombre determine de voies de reception et recepteur correspondant
DE69839960D1 (de) * 1997-06-03 2008-10-16 Nippon Telegraph & Telephone Adaptive gruppensender/empfänger
JP3465739B2 (ja) * 1998-04-07 2003-11-10 日本電気株式会社 Cdma適応アンテナ受信装置及び通信システム
US6115409A (en) * 1999-06-21 2000-09-05 Envoy Networks, Inc. Integrated adaptive spatial-temporal system for controlling narrowband and wideband sources of interferences in spread spectrum CDMA receivers
US6317467B1 (en) * 2000-06-14 2001-11-13 Lloyd C. Cox Beamforming and interference cancellation system using general purpose filter architecture

Also Published As

Publication number Publication date
DE60137559D1 (de) 2009-03-19
US20010026197A1 (en) 2001-10-04
EP1158694B1 (en) 2009-01-28
EP1158694A3 (en) 2002-10-02
US6862316B2 (en) 2005-03-01
CN1316861A (zh) 2001-10-10
EP1158694A2 (en) 2001-11-28

Similar Documents

Publication Publication Date Title
CN1169383C (zh) 空间的和时间的均衡器以及均衡方法
CN1078410C (zh) 用于多径时间离散信号的分集接收机
CN1248515C (zh) 自适应均衡设备和方法
US5946351A (en) Tap selectable decision feedback equalizer
CN1082300C (zh) 多副天线的数字蜂窝通信系统中用于干扰抑制合成的方法和装置
JP4463689B2 (ja) 無線受信機用の複雑でない等化器
CN1146141C (zh) 无线电通信中减少干扰的接收机和方法
EP1721475A1 (en) Constrained optimization based mimo lmmse-sic receiver for cdma downlink
CN1449603A (zh) 用均衡器和雷克接收机处理已调信号的方法和装置
CN1578424A (zh) 使用空间分集和波束形成接收数字电视信号的方法和装置
CN1926779A (zh) 在w-cdma系统中用于sinr估计的cpich处理
CN1446417A (zh) 用于对具有发射机或信道引入的比特间耦合的接收信号进行解码的基带处理器、方法和系统
US20070171960A1 (en) Apparatus and methods for implementing a split equalizer filter for sparse channels
CN1902834A (zh) 用于cdma系统的统一的mmse均衡和多用户检测途径
CN1345107A (zh) 自适应天线接收设备
CN1343402A (zh) 无线基站装置和无线通信方法
CN1813426A (zh) 用于wcdma终端的高级白化器-rake接收机
CN1367622A (zh) 自适应均衡方法及自适应均衡器
CN1294790A (zh) 自适应均衡器及自适应均衡方法
US20060072449A1 (en) Method and system for channel equalization
JP3808311B2 (ja) 受信方法及び受信機
TWI334281B (zh)
CN1653723A (zh) 自适应天线发射/接收设备
CN1197262C (zh) 利用多信号定时进行连续取消的方法和设备
CN105827556B (zh) 双向turbo均衡方法及系统,水声通信系统

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040929

Termination date: 20140327