Search Images Maps Play YouTube Gmail Drive Calendar More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN101114462 A
Publication typeApplication
Application numberCN 200710102594
Publication date30 Jan 2008
Filing date16 May 2007
Priority date30 Jul 2006
Also published asCN100479036C, US7365929, US7480114, US20080024904, US20080151416
Publication number200710102594.7, CN 101114462 A, CN 101114462A, CN 200710102594, CN-A-101114462, CN101114462 A, CN101114462A, CN200710102594, CN200710102594.7
Inventors卓奥瓦尼谢吕比尼, 伊万格罗斯S埃列夫特里奥, 詹斯杰里托, 罗伯特A.哈特金斯
Applicant国际商业机器公司
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
同步伺服通道及其操作方法 Synchronous servo channel and its method of operation translated from Chinese
CN 101114462 A
Abstract  translated from Chinese
提供了一种用于数据磁带驱动器的完全同步的伺服通道,这种提供包括:初始获得同步伺服通道参数;产生用于信号内插的定时基础;产生磁带速度估计和y-位置估计;及最优地检测嵌入在伺服突发中的纵向位置(LPOS)码元。 Provides a fully synchronous servo channel A data tape drives, which provide, including: obtaining initial synchronous servo channel parameters; generating a timing basis for signal interpolation; produce tape velocity and y- position estimates estimation; and most excellent longitudinal position detecting embedded servo burst of (LPOS) symbols.
Claims(21)  translated from Chinese
1.一种在数据磁带驱动器中操作同步伺服通道的方法,在数据磁带驱动器中装载的磁带具有速度、相对于伺服元件的横向(y)位置和相对于磁带的末端的纵向位置(LPOS),该方法包括: A method of operating a tape drive in a data synchronous servo channel, the data loaded in the tape drive with the tape speed, relative to the servo element of the transverse (y) and the position relative to the longitudinal position of the tape ends (LPOS), the method comprising:
在未事先指示出磁带速度或磁带的y-位置的情况下,从伺服通道模数转换器(ADC)输出的信号采样序列中获得初始伺服通道参数; In the absence of prior y- position indicating speed or tape cassette case, to obtain an initial servo channel parameters from the signal sampling sequence servo channel ADC (ADC) in the output;
从内插伺服通道信号的零交叉中产生用于伺服通道信号内插的定时基础,由此提取定时信息,而不管包括在伺服通道信号中的非等距隔开的伺服突发; Interpolated servo channel signal from the zero crossing of the basis for generating a timing signal interpolated servo channel, thereby extracting the timing information, including non-equidistant regardless of the channel signal in the servo servo burst apart;
从通道ADC输出的信号采样序列中产生磁带速度估计和y-位置估计; Produce the tape from the channel ADC output signal sample sequence in speed estimation and y- position estimates;
检测并解码在伺服突发中编码的LPOS码元;以及 Servo burst detection and decoding encoded LPOS symbol; and
监视LPOS检测并给解码后的LPOS码元分配可靠性测量值。 LPOS detection and monitoring to the decoded LPOS symbol allocation reliability of measurement values.
2.根据权利要求1的方法,其中获得初始伺服通道参数的步骤包括识别在伺服通道信号中的正或负峰值的有效4 4 5 5序列。 2. A method according to claim 1, wherein the step of obtaining the initial servo channel parameters comprises identifying in the servo channel signal in the positive or negative peak of the effective 4455 sequence.
3.根据权利要求1的方法,其中产生定时基础的步骤包括执行定时恢复环路,在定时恢复环路中由内插伺服通道信号的零交叉触发定时调整。 3. The method according to claim 1, wherein the step of generating a timing base comprises performing timing recovery loop, timing recovery loop by interpolating zero-crossing signal triggers the servo channel timing adjustment.
4.根据权利要求3的方法,其中定时环路保持基本独立于磁带的速度。 4. The method according to claim 3, wherein the timing loop remains substantially independent of tape speed.
5.根据权利要求3的方法,其中产生定时基础的步骤是在磁带加速和减速期间执行的。 5. The method according to claim 3, wherein the step of generating a timing base is a tape acceleration and deceleration during execution.
6.根据权利要求1的方法,其中产生磁带速度估计和y-位置估计的步骤包括通过使用从通道ADC输出的信号采样确定伺服通道信号的零交叉。 6. The method according to claim 1, wherein the generating step and the tape velocity estimates y- location estimate comprises determining by use of the zero crossing of the servo channel signal from the signal sampling channel ADC output.
7.根据权利要求6的方法,其中产生磁带速度估计和y-位置估计的步骤还包括监视伺服通道信号的双位的峰值的发生。 7. A method according to claim 6, wherein the generating step and the tape velocity estimates y- location estimate further comprises dibit peak monitor servo channel signal occurs.
8.根据权利要求7的方法,其中产生磁带速度估计和y-位置估计的步骤还包括如果双位的峰值数小于预定阈值,则宣告锁定丢失,并重新开始初始获得。 8. The method according to claim 7, wherein the tape velocity estimates and y- generating a location estimate further comprises if the number of double-peak value is less than the predetermined threshold, the lock is declared lost, and restart the initial obtained.
9.根据权利要求1的方法,其中检测LPOS码元的步骤包括脉冲宽度调制(PWM)检测。 9. The method according to claim 1, wherein the step of detecting LPOS symbols including pulse width modulation (PWM) is detected.
10.根据权利要求1的方法,其中: 10. The method according to claim 1, wherein:
检测和解码LPOS码元的步骤包括同时在第一和第二并行伺服通道中检测和解码LPOS码元,从而分别产生第一和第二LPOS码元;及 A step of detecting and decoding LPOS symbol comprises a first and a second simultaneously in parallel in the servo channel LPOS symbol detection and decoding, respectively, thereby generating first and second LPOS symbols; and
给解码后的LPOS码元分配可靠性测量值的步骤包括给第一LPOS码元分配第一可靠性测量值并给第二LPOS码元分配第二可靠性测量值; Steps to decoded LPOS symbol allocation reliability measurements include LPOS symbol assigned to the first reliable measurement of the first and second LPOS symbol assigned to the reliability of the measured values of the second;
该方法还包括在第一和第二LPOS码元之间选择具有最高的分配的可靠性的LPOS码元。 The method further includes between the first and second select reliable LPOS symbol LPOS symbols has the highest assigned.
11.一种用于数据磁带驱动器的同步伺服通道,包括: 11. A method for synchronizing data tape drive servo channels, including:
伺服读取器,被配置为从数据磁带读取伺服突发; Servo reader, configured to read the servo burst data from the magnetic tape;
固定频率时钟; Fixed frequency clock;
模数转换器(ADC),可操作用于以由时钟提供的采样速率输出信号采样,并被耦合以从伺服读取器接收包括伺服突发的伺服通道信号; Analog to digital converter (ADC), operable at a sampling rate provided by the sampling clock output signal, and coupled to receive a servo channel comprising a servo burst signal from the servo reader;
获得模块,具有被耦合以便以由所述时钟建立的采样速率从ADC接收信号采样序列的第一输入端,并可操作用于在没有事先指示出磁带速度或磁带的y-位置的情况下从所述信号采样序列中产生初始伺服通道参数; Acquisition module, so as to be coupled with the sampling rate established by the clock input terminal receiving a first signal sample sequence from the ADC, and operable in the absence of prior tape speed position indicating y- or tape from the case The servo channel parameters to generate the initial signal sampling sequence;
定时基础产生器,对内插伺服通道信号的零交叉作出响应,工作于由所述时钟建立的速率,并可操作用于输出多个信号,所述多个信号包括用于产生内插伺服信号采样的定时信息; A timing basis generator, internal interpolated servo channel zero crossing signal in response to the work rate established by the clock, and operable to output a plurality of signals, said plurality of signals comprises means for interpolating the servo signal generating timing information sampled;
伺服通道信号内插器,具有被耦合以从ADC接收信号采样序列的第一输入端和被耦合以从定时基础产生器接收定时信息用于产生内插伺服信号采样的第二输入端; Interpolator servo channel signal, coupled to receive a signal having a sequence of samples from the ADC and a first input terminal coupled to receive timing information from the timing basis generator for generating a servo signal interpolation sampled second input terminal;
最优纵向位置(LPOS)检测器,具有被耦合以接收来自伺服通道信号内插器的输出的第一输入端和被耦合以接收从定时基础产生器输出的所述多个信号中的至少一个的第二输入端,所述LPOS检测器可操作用于检测和解码嵌入在伺服突发中的LPOS码元; Optimal longitudinal position (LPOS) detector, having coupled to receive an output from the servo channel signal interpolation device and a first input terminal coupled to at least one of said plurality of signals received from the timing basis generator output in the a second input terminal, the LPOS detector is operable to detect and decode the embedded servo burst of LPOS symbols;
LPOS检测监视器,可操作用于给解码后的LPOS码元分配可靠性测量值;及 LPOS detection monitor operable to decoded LPOS symbol allocation reliability of measurement values; and
通道参数估计器,其初始对来自获得模块的初始伺服通道参数作出响应,该通道参数估计器具有被耦合以接收来自ADC的信号采样序列的第一输入端和被耦合以接收从定时基础产生器输出的信号中的至少一个的第二输入端,该通道参数估计器可操作用于从通道ADC输出的信号采样序列中产生磁带速度估计和y-位置估计。 Channel parameter estimator obtained from the initial module for servo channel parameters of the initial response to the channel parameter estimation has been coupled to receive a signal from the ADC sample sequence of the first input is coupled to and received from the timing generator foundation signal output from the second input terminal of at least one of, the channel parameter estimator operable to generate tape velocity and y- position estimates from the estimated signal sample sequence channel ADC output.
12.根据权利要求11的伺服通道,其中获得模块被配置为通过使用从通道ADC输出的信号采样,识别在伺服通道信号中的正或负峰值的有效4 4 5 5序列。 Servo channel according to claim 11, wherein the obtaining module is configured to use the signal samples from the ADC output of the channel, in the servo channel signal, identifying the positive or negative peak of the effective 4455 sequence.
13.根据权利要求11的伺服通道,其中定时基础产生器还可操作用于在磁带加速和减速期间产生所述多个信号。 Servo channel according to claim 11, wherein the base timing generator is further operable for generating said plurality of signals during tape acceleration and deceleration.
14.根据权利要求11的伺服通道,其中通道参数估计器还可操作用于通过使用从通道ADC输出的信号采样从伺服通道信号的零交叉中产生磁带速度估计。 Servo channel according to claim 11, wherein the channel parameter estimator is further operable to produce by using the tape velocity estimate from the zero crossing of the servo channel signal from the signal output of the ADC sampling channels.
15.根据权利要求14的伺服通道,其中通道参数估计器还可操作用于通过监视伺服通道信号中的双位的峰值的发生而产生磁带速度估计和y-位置估计。 Servo channel according to claim 14, wherein the channel parameter estimator is further operable to servo channel signal by monitoring the occurrence of a peak generated dibit tape velocity estimates and y- position estimates.
16.根据权利要求11的伺服通道,其中: Servo channel according to claim 11, wherein:
该伺服通道包括第一和第二并行伺服通道; The servo channel includes first and second parallel servo channel;
所述LPOS检测器还可操作用于同时在第一和第二并行伺服通道中检测和解码LPOS码元,从而分别产生第一和第二LPOS码元;及 The LPOS detector is further operable for detecting both the first and second parallel channels and decoding servo LPOS symbols, thereby respectively generating first and second LPOS symbols; and
所述LPOS检测监视器还可操作用于: The LPOS detection monitor further operable to:
给第一LPOS码元分配第一可靠性测量值并给第二LPOS码元分配第二可靠性测量值;及 LPOS symbol assigned to the first reliable measurement of the first and second measurement reliability value assigned to the second LPOS symbols; and
在第一和第二LPOS码元之间选择具有最高的分配的可靠性的LPOS码元。 Between the first and second select reliable LPOS symbol LPOS symbols has the highest assigned.
17.一种用于数据磁带驱动器的同步伺服通道,包括: 17. A method for synchronizing data tape drive servo channels, including:
伺服读取器,被配置为从以磁带速度纵向运动通过伺服读取器的数据磁带读取伺服突发,该磁带还具有相对于伺服读取器的横向(y)位置和相对于磁带的末端的纵向位置(LPOS); Servo reader configured from longitudinal movement with the tape speed servo burst read by the servo reader of data cartridge, the magnetic tape is also with respect to the servo reader lateral (y) and the position of the tape relative to the end longitudinal position (LPOS);
可工作于固定频率的时钟; Can work in a fixed frequency clock;
模数转换器(ADC),可操作用于以由时钟提供的采样速率输出信号采样,并被耦合以从伺服读取器接收包括伺服突发的伺服通道信号,所述伺服突发包括嵌入其中的编码的LPOS码元; Analog to digital converter (ADC), operable at a sampling rate provided by the sampling clock output signal, and coupled to receive a servo channel comprising a servo burst signal from the servo reader, wherein the embedded servo burst comprises encoded LPOS symbols;
工作于由所述时钟建立的速率的通道参数获得模块,包括: Working at the clock rate established by the channel parameter obtaining module, comprising:
被耦合以从ADC接收信号采样序列的第一输入端; Is coupled to the first input terminal for receiving a signal from a sample sequence ADC;
被耦合以从所述通道参数估计器接收至少一个控制信号的第二输入端;及 Is coupled to receive from the at least one channel parameter estimator of a second control signal input terminal; and
多个输出端,用于至少输出初始磁带速度估计和初始y-位置估计; A plurality of output terminals, for outputting at least the initial tape velocity estimate and initial y- position estimates;
定时基础产生器,初始至少对来自参数获得模块的初始磁带速度估计和初始y-位置估计作出响应,该定时基础产生器包括控制单元并可操作用于输出多个控制信号和定时误差信号; A timing basis generator, at least for the initial parameters obtained from the initial tape velocity estimation module and y- position estimates an initial response to the base timing signal generator comprises a plurality of control and timing error signal output control means and operable;
伺服通道信号内插器,工作于由所述时钟建立的速率,包括: Servo channel signal interpolator operates rate established by the clock, comprising:
被耦合以从ADC接收信号采样序列的第一输入端;及 Is coupled to a first input terminal for receiving signal sample sequence from ADC; and
被耦合以从定时基础产生器接收定时信息用于产生内插伺服信号采样的第二输入端; Is coupled to receive timing information from the timing basis generator for generating a servo signal interpolation sampled second input terminal;
通道参数估计器,初始至少对来自参数获得模块的初始磁带速度估计和初始y-位置估计作出响应,该参数估计器包括: Channel parameter estimator, at least for the initial tape speed initial parameters obtained from the module and the initial estimate y- position estimates in response to the parameter estimator comprises:
被耦合以从ADC接收信号采样序列的第一输入端;及 Is coupled to a first input terminal for receiving signal sample sequence from ADC; and
被耦合以接收从定时基础产生器输出的信号中的至少一个的第二输入端;及 Is coupled to receive the signal output from the timing generator basis of at least one of the second input terminal; and
从通道ADC输出的信号采样序列中提供磁带速度估计的第一输出端和从通道ADC输出的信号采样序列中提供y-位置估计的第二输出端; Provided from the signal output of the ADC sample sequence channel estimation in tape speed and providing a first output signal from the output channel ADC sample sequence in the y- position estimates of the second output terminal;
最优纵向位置(LPOS)检测器,包括: Optimal longitudinal position (LPOS) detector, comprising:
被耦合以接收来自伺服通道信号内插器的输出的第一输入端; Is coupled to a first input terminal for receiving the signal output from the servo channel of the interpolator;
被耦合以接收从定时基础产生器输出的所述多个信号中的至少一个的第二输入端;及 Coupled to said plurality of signals received from the timing basis generator output at least one of the second input terminal; and
提供解码后的LPOS码元的输出端;及 Output terminal for providing decoded LPOS symbol; and
LPOS检测监视器,可操作用于给解码后的LPOS码元分配可靠性测量值。 LPOS detection monitor operable to decoded LPOS symbol allocation reliability of measured values.
18.根据权利要求17的伺服通道,其中参数获得模块被配置为通过使用从通道ADC输出的信号采样,识别在伺服通道信号中的正或负峰值的有效4 4 5 5序列。 Claim 18. The servo channel 17, wherein the parameter obtaining module is configured by using the signal samples from channel ADC output, in the servo channel signal identifying the positive or negative peak of the effective 4455 sequence.
19.根据权利要求17的伺服通道,其中通道参数估计器还可操作用于通过使用从通道ADC输出的信号采样从伺服信号的零交叉中产生磁带速度估计和y-位置估计。 According to claim 17, servo channel, wherein the channel parameter estimator is further operable to signal samples from the channel by using the ADC output is generated tape velocity and y- position estimates from the estimated zero crossing servo signal.
20.根据权利要求19的伺服通道,其中通道参数估计器还可操作用于通过监视伺服通道信号的双位的峰值的发生而产生磁带速度估计和y-位置估计。 20. The claim 19 servo channel, wherein the channel parameter estimator is further operable to monitor the occurrence of the peak by the servo channel signal is generated dibit tape velocity and y- position estimates estimation.
21.一种可用于可编程计算机的计算机可读介质的计算机程序产品,该计算机程序产品具有体现于其中的计算机可读代码,用于在数据磁带驱动器中操作同步伺服通道,在数据磁带驱动器中装载的磁带具有速度、相对于伺服元件的横向(y)位置和相对于磁带的末端的纵向位置(LPOS),该计算机可读代码包括用于执行根据权利要求1-10中的任一个的方法中的步骤的指令。 21. A computer program product for a programmable computer may be a computer-readable medium, the computer program product having embodied therein computer readable code for synchronous servo channel operation in the data tape drive, the tape drive data loading the tape has the speed with respect to the servo element of the transverse (y) and the position relative to the longitudinal position of the tape ends (LPOS), the computer readable code comprises means for performing any of 1-10 A method according to claim step instructions.
Description  translated from Chinese
同步伺服通道及其操作方法 Synchronous servo channel and its method of operation

[0001] 技术领域 [0001] Technical Field

[0002] 本发明总体上涉及磁带存储系统中的伺服通道体系结构,尤其涉及同步伺服通道体系结构。 Relates to a tape storage system overall servo channel architecture [0002] the present invention, and more particularly to synchronous servo channel architecture.

[0003] 背景技术 [0003] BACKGROUND

[0004] 基于定时的伺服(TBS)是90年代末专门为线性磁带驱动器开发的技术。 [0004] based on the timing of the servo (TBS) is dedicated to the late 1990s, the development of linear tape drive technology. 在TBS系统中,记录的伺服图案由具有两种不同的方位角斜坡的过渡(transition)构成,头(head)位置从由读取该图案的窄头产生的相对脉冲定时中得出。 In TBS systems, recorded servo patterns having two different azimuth angles slope transition (transition) structure, the head (head) position by the timing pulse derived from a relatively narrow head reading the pattern generated. TBS图案还允许编码额外的纵向位置(LPOS)信息而不影响横向位置误差信号(PES)的产生。 TBS patterns also allow the encoding of additional longitudinal position (LPOS) information without affecting the lateral position error signal (PES) is generated. 这一点通过从其标称图案位置位移过渡来获得,如图1所示。 This is accomplished by the displacement of the transition from its nominal position to obtain a pattern as shown in Fig. 在磁带系统中通常有两种LPOS信息和PES可从其获得的专用伺服通道可用。 In tape systems there are typically two dedicated servo channels from which LPOS information can be obtained and the PES available. 用于线性磁带系统的基于定时的循轨伺服被线性磁带开放(LTO)联盟采用作为所谓LTO磁带驱动系统的标准。 For linear tape system based on the timing of the tracking servo is linear tape open (LTO) coalition called LTO tape drive system as standard.

[0005] 通常,对LPOS信息的检测是基于对在伺服通道输出处的双位信号采样的峰值的位移的观察的。 [0005] Typically, the detection of LPOS information is based on the displacement of the peak of the servo dibit signal samples at the output of the channel viewed. 这种方法具有以下严重局限性: This method has the following serious limitations:

[0006] a)如果期望以每微米的采样数表示的、独立于磁带速度的恒定速率,A/D转换器采样频率必须要随着磁带速度而变化。 [0006] a) If it is desired to the number of samples per micrometer represented, independent of tape speed at a constant rate, A / D converter sampling frequency must vary with the speed of the tape. 如果采用固定的采样频率,该速率取决于磁带速度。 If a fixed sampling frequency, the rate depends on the tape speed.

[0007] b)选择固定采样速率的结果是在LPOS检测器(峰值检测器)处每双位的采样数的响应可依赖于速度而变化。 [0007] b) selecting a fixed sampling rate results in the LPOS detector (peak detector) at each pair of bits in response to the number of samples may vary depending on the speed of change.

[0008] c)在加速和减速期间,即在速度向目标速度改变的阶段,不能进行可靠的LPOS检测。 [0008] c) during the acceleration and deceleration, i.e., the target speed change speed stage, can not be reliable LPOS detection.

[0009] d)对于使用脉冲位置调制(PPM)技术产生的LPOS图案来说,峰值检测不是最优的检测方案。 [0009] d) using pulse position modulation (PPM) techniques to produce the LPOS pattern, the peak detection is not the optimum detection scheme.

[0010] e)在伺服通道的输出处不可能监视信号的时间演变,因为没有时间基准。 [0010] e) at the output of the servo channel is not possible to monitor the time evolution of the signal, because there is no time reference.

[0011] f)不可能有对LPOS检测处理的可靠性的度量。 [0011] f) there can be a measure of the LPOS detection process reliability.

[0012] 为了使用图2所示的现有技术的LPOS异步体系结构在高速下支持足够的分辨率,需要更高ADC采样速率。 [0012] In order to use LPOS asynchronous architecture of the prior art shown in FIG. 2 support sufficient resolution at high speed, require higher ADC sample rate. 例如,如果最高目标速度是v=12.5m/s,则在假设ADC采样速率为15MHz的情况下获得0.83μm的分辨率。 For example, if the highest target velocity is v = 12.5m / s, the ADC sampling rate is assumed in order to obtain a resolution of 0.83μm case of 15MHz. 很明显,当想要分辨+/-0.25μm的LPOS脉冲位置调制时,这样的分辨率是不够的。 Obviously, when you want to tell LPOS pulse position modulation +/- 0.25μm, so the resolution is not enough. 特别是,要想使用异步方法获得0.05μm的分辨率,需要250MHz的采样速率。 In particular, in order to use asynchronous method to obtain 0.05μm resolution, sampling rate of 250MHz required.

[0013] 发明内容 [0013] SUMMARY OF THE INVENTION

[0014] 本发明提供了一种完全同步的伺服通道,这种提供包括:初始获得同步伺服通道参数;产生信号内插的定时基础;产生磁带速度估计和y-位置估计;最优地检测嵌入到伺服突发中的纵向位置(LPOS)码元。 [0014] The present invention provides a fully synchronous servo channel, which provided comprising: obtaining an initial synchronous servo channel parameters; generating a timing basis for signal interpolation; produce tape velocity and y- position estimates estimation; optimally detect embedded servo burst longitudinal position (LPOS) symbols.

[0015] 同步伺服通道参数的初始获得可以不依赖于磁带速度的任何以前已知的测量值在广泛范围的磁带速度下盲进行。 [0015] The initial synchronous servo channel parameters to obtain any previously known measurements may not rely on the tape speed in a wide range of tape speed performed blind. 另外,该初始获得是从ADC的输出中产生的,无需参考驱动马达电流。 In addition, the initial generation is obtained from the output of the ADC, without reference to the drive motor current.

[0016] 信号内插的定时基础的产生可以在广泛范围的磁带速度下通过从不均匀间隔开的伺服突发获得中提取定时信息执行,甚至可以在磁带加速和减速的期间执行。 [0016] the basis of the timing signal generating interpolated by extracting timing information from the servo burst unevenly spaced obtained performed under a wide range of tape speed, can be executed even during acceleration and deceleration of the tape.

[0017] 磁带速度估计和y-位置估计的产生也从ADC的输出中获得,从而避免在估计的产生和定时恢复过程之间产生联系。 [0017] tape speed estimation and y- position estimates generated also be obtained from the ADC output, thereby avoiding contact between the estimated production and timing of the recovery process. 这些估计优选地从由伺服读取器提供的伺服通道信号的零交叉中获得,而不是使用受到了噪声增加不利影响的峰值检测获得。 These estimates are preferably obtained from the zero-cross provided by a servo reader servo channel signal, rather than being used to increase the adverse effects of noise peak detection obtained. 伺服通道信号的零交叉是通过观察ADC输出信号采样序列确定的。 Zero-crossing signal is the servo channel ADC output signal by observing the sample sequence determined.

[0018] 纵向位置(LPOS)码元的最优检测也不依赖于峰值检测。 [0018] longitudinal position (LPOS) optimal detection symbol does not depend on the peak detection. 另外,可靠性测量值或值可以分配给检测输出。 In addition, the reliability of the measured value or values can be assigned to the detection output. 当磁带驱动器包括两个并行伺服通道且可靠性值被分配给每一个并行伺服通道检测的LPOS码元时,可比较所述两个值,并可选择具有表示最可靠检测的值的码元。 When the tape drive includes two parallel servo channel and a reliability value is assigned to each one parallel servo channel detection LPOS symbols, can compare the two values, and selecting a detected value represents the most reliable symbols.

[0019] 附图说明 [0019] Brief Description

[0020] 图1示出了具有嵌入的LPOS信息的伺服突发的LTO规范。 [0020] Figure 1 shows a embedded LPOS information LTO specification of servo bursts.

[0021] 图2示出了现有技术LPOS异步检测体系结构的框图。 [0021] Figure 2 shows a block diagram of a prior art LPOS asynchronous detection architecture.

[0022] 图3示出了本发明LPOS异步体系结构的框图。 [0022] Figure 3 shows a block diagram of the invention of the present LPOS asynchronous architecture.

[0023] 图4示出了可实现本发明的异步伺服通道的框图。 [0023] Figure 4 shows a block diagram of asynchronous servo channel of the present invention.

[0024] 图5示出了描述初始获得处理的流程图。 [0024] FIG. 5 shows a flowchart describing the processing of the initial obtained.

[0025] 图6是用于磁带速度和y-位置估计的计算的峰值到达时间之间的间隔的曲线图。 [0025] Figure 6 is calculated for the peak position of the tape velocity and y- graph of estimated arrival time interval between.

[0026] 图7是正确获得的概率的曲线图。 [0026] FIG. 7 is a graph showing the probability of correctly obtained.

[0027] 图8是错误获得的概率的曲线图。 [0027] FIG. 8 is a graph showing the probability of error obtained.

[0028] 图9是速度误差的标称标准偏离相对于在伺服通道输出处的信噪比的曲线图。 [0028] Figure 9 is the standard deviation from the nominal speed error with respect to the signal to noise ratio at the output of the servo channel graph.

[0029] 图10是平均获得时间相对于在伺服通道输出处的信噪比的曲线图。 [0029] FIG. 10 is obtained on average with respect to time in the signal to noise ratio at the output of the servo channel graph.

[0030] 图11A是双位脉冲的自动校正的曲线图。 [0030] FIG. 11A is a graph of a double-pulse automatic correction.

[0031] 图11B是自相关函数的偏导数的曲线图。 [0031] FIG. 11B is a graph since the partial derivative of the correlation function.

[0032] 图12示出了定时基础产生系统的操作的框图。 [0032] FIG. 12 shows a block diagram of the operation of the timing basis generation system.

[0033] 图13示出了定时基础产生系统的更加详细的框图。 [0033] Figure 13 shows a more detailed block diagram of the timing basis generation system.

[0034] 图14示出了定时基础产生系统的线性等价模型。 [0034] Figure 14 shows a linear equivalent basis timing model generation system.

[0035] 图15示出了定时基础产生系统的简化模型。 [0035] Figure 15 shows a simplified model of the timing basis generation system.

[0036] 图16A和16B分别示出了对于v=0.5m/s和对于v=12.5m/s,内插信号采样和定时相位会聚的曲线图。 [0036] Figures 16A and 16B, respectively, shows that for v = 0.5m / s and a graph for v = 12.5m / s, the interpolated signal samples and timing phase convergence.

[0037] 图17是描述了异步监视功能的操作的流程图。 [0037] FIG. 17 is a flowchart describing the operation of the asynchronous monitoring function.

[0038] 图18是示出了观察窗口的产生的时序图。 [0038] FIG. 18 is a timing diagram illustrating the generation of the observation window.

[0039] 图19是异步监视功能的框图。 [0039] FIG. 19 is a block diagram of an asynchronous monitoring functions.

[0040] 图20A和20B分别示出了对于v=6m/s和对于v=12m/s,y-位置估计的均值和标准偏离的曲线图。 [0040] Figures 20A and 20B, respectively, shows that for v = 6m / s and v = 12m / s, y- position estimates of the mean and standard deviation for graphs.

[0041] 图21A和21B分别示出了对于v=6m/s和v=12m/s的磁带速度估计的标准偏离的曲线图。 [0041] Figures 21A and 21B, respectively, shows that for v = 6m / s and v = 12m / s of the estimated standard deviation of the tape velocity graph.

[0042] 图22A和22B分别是基于峰值检测的用于LPOS码元的大多数(majority)解码规则的示意图和表。 [0042] Figures 22A and 22B are a schematic diagram and table based on the peak detection for most (majority) decoding rule for LPOS symbols.

[0043] 图23示出了最优LPOS检测系统的框图。 [0043] Figure 23 shows a block diagram of the optimum LPOS detection system.

[0044] 图24A和24B分别是用于A、B突发中的第二和第四双位中的度量计算的匹配滤波波形的曲线图。 [0044] Figures 24A and 24B, respectively, are used for A, B burst graph of the second and fourth dibit in the metric calculation matched filter waveform.

[0045] 图25示出了简化的LPOS码元检测系统的框图。 [0045] Figure 25 shows a simplified block diagram of the LPOS symbol detection system.

[0046] 图26A和26B分别是在磁带加速期间估计的速度和计算的度量值的曲线图。 [0046] Figures 26A and 26B are graphs of the estimated speed and during acceleration calculated metric tape.

[0047] 图27示出了用于SDR和码元判决(decision)可靠性估计的产生的系统的框图。 [0047] Figure 27 shows a block diagram for SDR and symbols judgment (decision) to produce reliable estimates of the system.

[0048] 图28示出了用于在由并行伺服通道检测到的两个LPOS码元之间选择具有最高可靠性测量值的LPOS码元的系统的框图。 [0048] Figure 28 shows a block diagram for parallel servo channel between the two detected LPOS symbols having the highest reliability of the measured value LPOS symbol system.

[0049] 具体实施方式 [0049] DETAILED DESCRIPTION

[0050] 同步伺服通道体系结构 [0050] synchronous servo channel architecture

[0051] 利用本发明的体系结构,动态内插器允许在检测器输出处的任何采样速率,只有一个局限性,这是由于可能的混叠效应。 [0051] The architecture of the present invention inserted within a dynamic allows any sampling rate at the output of the detector, there is only one limitation, which is due to possible aliasing effects. 例如,在磁过渡之间的距离为Lp=2.1μm的情况下,没有与15MHz固定ADC时钟的混叠效应而实现的最大速度是vmax=2.1(15/2)=15.75m/s。 By example, the distance between the magnetic transition is Lp = 2.1μm, the maximum speed with no aliasing effects 15MHz fixed ADC clock is realized by vmax = 2.1 (15/2) = 15.75m / s. 在这种情况下,在用于实现0.05μm的分辨率的突发内插之后的等价采样频率等于315MHz。 In this case, the sampling frequency for realizing an equivalent resolution within 0.05μm burst after interpolation equals 315MHz. 注意,这是在异步体系结构中需要的固定的采样频率。 Note that this is the fixed sampling frequency in an asynchronous architecture needs.

[0052] 图3示出了本发明的同步LPOS检测体系结构400的基本构建块。 [0052] Figure 3 shows a synchronous LPOS detection architecture of the present invention, the basic building blocks 400. 因为每单位长度的采样数是固定并独立于突发内插之后的速度的,可以使用匹配的滤波方法来进行在存在噪声的情况下的PPM的最优检测。 Because the number of samples per unit length is fixed and independent of velocity after the burst of interpolation, filtering method may be used to carry out the optimal matching detection of PPM in the presence of noise. 匹配的滤波器将具有固定的每单位长度的采样数。 Matched filter will have a fixed number of samples per unit length. 另外,位置误差和速度估计可以通过测量基于定时的伺服突发的各个双位的零交叉之间的距离获得。 In addition, the position error and velocity estimates can be obtained by measuring the distance based on the timing of the servo bursts each double-zero-crossing between. 可靠的位置误差产生、速度估计和LPOS检测是在斜坡向上(ramp-up)、斜坡向下(ramp-down)期间对于多至最大速度的任何恒定磁带速度执行的,该最大速度由下式给出作为第一估计 Reliable position error generation, velocity estimation, and LPOS detection is up (ramp-up), the ramp down (ramp-down) for the period up to the maximum speed for any constant tape velocity performed in the slope, the maximum speed is given by As a first estimate

[0053] vmax=Lp(fs/2), (1) [0053] vmax = Lp (fs / 2), (1)

[0054] 其中Lp是磁过渡之间的最小距离,以μm表示,且fs是ADC的固定采样速率,以MHz表示。 [0054] where Lp is the minimum distance between the magnetic transition to μm represent and fs is the fixed sampling rate of the ADC, in MHz. 也可以支持对信噪比加上失真率的监视以便进行伺服通道选择。 You can also add support for the signal to noise ratio distortion rate monitor for servo channel selection.

[0055] 图4示出了同步伺服通道400的更详细的框图。 [0055] Figure 4 shows a more detailed block diagram of the synchronous servo channel 400. 同步伺服通道参数的初始获得由获得电路402执行。 Synchronous servo channel parameters is performed by obtaining an initial get 402 circuits. 磁带速度和y-位置估计及伺服通道操作的监视由参数估计块404提供。 Surveillance tape speed and y- position estimates and servo channel operated by the parameter estimation block 404 provides. 必须产生内插信号采样从而这些内插信号采样可以以独立于磁带速度的预定固定速率获得的时刻由定时基础产生块1300确定。 Must generate interpolated signal samples so that these can be interpolated signal sampling time independent of the tape speed to obtain a predetermined fixed rate generated by the timing block 1300 to determine the basis. 最后,LPOS码元判决由最优LPOS检测块2300给出。 Finally, LPOS symbol verdict given by the best LPOS detection block 2300.

[0056] 同步伺服通道参数的初始获得 [0056] The initial synchronous servo channel parameters obtained

[0057] 同步伺服通道设计的一个主要挑战是对用于定时基础底层信号内插的产生的初始时刻和标称步内插间隔的确定。 A major challenge is the initial moment the underlying basis for the internal timing signals generated and inserted a nominal step interpolation interval is determined [0057] synchronous servo channel design. 以微秒表示的作为磁带通过以微米表示的标称步内插距离xi的标称步内插间隔Ti由下式给出: As the magnetic tape by the nominal step interpolation distance in microns xi expressed in microseconds nominal step interpolation interval Ti is given by:

[0058] [0058]

[0059] 其中v表示以m/s表示的磁带速度。 [0059] where v is the tape velocity in m / s expressed. 另外,对于基于匹配滤波的最优LPOS码元检测来说,还需要知道伺服读取器的横向(y)位置。 In addition, for optimum LPOS symbol detection based on matched filtering, it also needs to know the servo reader transverse (y) position. 因此,作为初始获得处理的结果,除了需要获得初始时刻和标称步内插间隔之外,还需要获得磁带速度和y-位置的可靠估计。 Therefore, as an initial treatment results obtained, in addition to the initial time and need to get inside the nominal step interpolation interval, but also need to obtain a reliable estimate of the tape speed and y- position.

[0060] 初始获得应当使用模数转换器(ADC)输出信号采样的序列而一点也不需要事先知道磁带速度或y-位置执行。 [0060] should be used to obtain an initial digital converter (ADC) sampling of the output signal sequence and is not required to know in advance the location of the tape speed or y- execution. 因此,重要的是设计一种完成广泛范围(一般对于LTO驱动系统来说在从0.5m/s到12.5m/s的范围内)的磁带速度的通道参数的可靠初始获得的方法。 Therefore, it is important to design a wide range of complete (typically for an LTO drive systems in the range from 0.5m / s to 12.5m / s) is a reliable method for the initial tape speed channel parameters obtained. 因为ADC的采样频率固定且通常在从15MHz到24MHz的范围内,在低磁带速度的情况下将获得每双位若干采样的伺服突发,而在高磁带速度的情况下将仅仅每双位几个采样的伺服突发将被给予获得电路。 Since the sampling frequency of the ADC is fixed and typically in the range from 15MHz to 24MHz, in the case of low tape speed will acquire a few samples per dibit of a servo burst, and in the case of high tape speed will only a few bits per pair sample servo burst will be obtained given circuit. 由于在初始获得的开始无法得到定时信息,获得方法将依赖于对伺服突发的双位的峰值的观察。 Since at the beginning of the initial timing information can not be obtained, will depend on the method of obtaining observations of dibit peaks of the servo burst. 通常,如果通道输出信号采样的绝对值超出给定阈值的话,检测到伺服突发的双位的正或负的峰值。 Typically, if the absolute value of the channel output signal sample exceeds a given threshold value, the detection of a double-bit positive or negative peak value of the servo bursts. 因此,在低速度的情况下,获得方法必须在即使来自一个双位的几个连续信号采样超出阈值的情况下,也能够检测到唯一峰值。 Thus, in the case of low speed, the method must be obtained in the case where even if several consecutive signal samples from a dibit exceeds the threshold, it is possible to detect a unique peak. 在高速度的情况下,其必须要应付来自双位的正或负的峰值的信号采样都没有超过阈值的事件。 In the case of high speed, which must deal with positive or negative peak of the signal samples from the dual bit did not exceed the threshold event. 注意,伺服帧由C、D、A、B伺服突发的序列识别,如图1所示。 Note, the servo burst frame sequence recognition by C, D, A, B servo, shown in Figure 1.

[0061] 本发明还提供了基于伺服帧中的【4455】突发的有效序列的识别的同步伺服通道参数的初始获得。 [0061] The present invention further provides an initial synchronous servo channel parameters based on the servo frame for the [4455] identification of a valid burst sequence obtained. 这是通过伺服突发中的双位的正和负的峰值之间的时间间隔的粗略估计实现的。 This is a rough estimate by the time the servo burst dibit of the positive and negative peak interval between implementations.

[0062] 描述用于初始获得的方法的流程图如图5所示。 Flowchart of a method [0062] described for the initial obtained as shown in Fig. 在获得处理的开始,初始化以下变量和数组(步骤500): At the beginning of obtaining treatment, initialize the following variables and arrays (step 500):

[0063] a)acqFlag=0,获得标记指示出同步伺服通道处于获得模式; [0063] a) acqFlag = 0, obtained marks indicating the synchronous servo channel is in acquisition mode;

[0064] b)k=0,在每个采样时刻计数器加1; [0064] b) k = 0, the counter is incremented at each sampling time 1;

[0065] c)n=0,在每次信号采样的绝对值超出了由thres表示的给定阈值时,给索引加1; [0065] c) n = 0, the absolute value of each signal sample exceeds the thres represented by a given threshold value, to the index is incremented by 1;

[0066] d)Np=0,在伺服突发内检测到的双位峰值(正和负)的数目; [0066] d) Np = 0, number of dibit peaks (positive and negative) within the servo burst detected;

[0067] e)Tp=Tp,max,双位的所述两个峰值之间的时间间隔的粗略估计;选择初始值Tp,max,使得对于给定范围内的所有磁带速度,双位峰值之间的时间间隔小于Tp,max; [0067] e) Tp = Tp, max, a rough estimate of the double-time interval between two peaks; selecting an initial value Tp, max, so that for a given range of all the tape speed, double-peak value between the time interval is less than Tp, max;

[0068] f)T=[],其元素由峰值到达时间给出的向量; [0068] f) T = [], vector whose elements are the time given by the peak arrival;

[0069] g)p=[],其元素由伺服突发中检测出的峰值的数目给出的向量。 [0069] g) p = [], the number of its elements is detected by a servo burst peak given vector.

[0070] 在每一采样时刻,计数器加1(步骤502),并将其与给定maxCnt值比较(步骤504):如果计数器超过maxCnt,则超时期间届满(步骤506),获得处理重新开始。 [0070] In each sampling time, the counter is incremented by one (step 502), and compared with a given maxCnt value (step 504) which: If the counter exceeds maxCnt, the timeout period expires (step 506), dealt a fresh start. 否则,在时间k的信号采样的绝对值,由|rk|表示,与给定阈值进行比较(步骤508)。 Otherwise, the absolute value of the signal sampling time k by | rk | indicates, with a given threshold value (step 508). 如果|rk|超过了阈值,则很有可能获得了对应于双位的峰值(正或负)的信号采样。 If | rk | exceeds the threshold value, it is likely to obtain a two-position, corresponding to the peak value (positive or negative) of signal samples. 在索引n加1的情况下,第n个峰值到达时间和信号采样被存储为tn=kT和rn=rk(步骤510),其中T表示固定采样间隔。 In the case of the index n is incremented by 1, the n-th peak arrival time and signal sample are stored as tn = kT and rn = rk (step 510), where T represents the fixed sampling interval. 如上所述,必须要确定绝对值超过阈值的信号采样是属于已经检测到的峰值还是新的峰值。 As described above, must exceed the threshold to determine the absolute value of the signal sample belonging to a peak has been detected or a new peak. 出于该目的,rn的符号与绝对值超过阈值的上一个采样的符号(由sgn(rn-1)给出)进行比较(步骤512)。 For this purpose, the absolute value symbol exceeds the threshold value on a sample of the symbol rn (given by sgn (rn-1)) (step 512).

[0071] 如果sgn(rn)=sgn(rn-1),则很可能两个采样属于不同的峰值。 [0071] If sgn (rn) = sgn (rn-1), it is likely that two samples belong to distinct peaks. 该两个采样之间的时间间隔tn-tn-1与双位的峰值之间的时间间隔的当前估计进行比较(步骤514)。 The time interval between two samples tn-tn-1 with the double-peak time interval between the current estimate (step 514). 如果Tp>tn-tn-1,则更新该估计,且该估计被给出新值Tp=tn-tn-1(步骤516)。 If Tp> tn-tn-1, then update the estimates, and the estimate is given the new value Tp = tn-tn-1 (step 516). 注意,获得处理的过程中,Tp向给出双位的峰值之间的时间间隔的期望估计的值单调递减。 Note that, the process of obtaining treated, Tp to give the desired time interval between dibit peaks estimated value monotonically decreasing. 由于tn是新的峰值的达到时间,其值被附加到向量τ,峰值计数器Np加1(步骤518)。 Since tn is the time to reach a new peak, its value is appended to the vector τ, peak counter Np is incremented (step 518). 此时需要确定新的峰值属于当前考虑的伺服突发的双位还是新的突发的双位。 In this case need to identify new peak belongs to the currently considered servo burst or new burst dibit dibit. 为此,将时间差tn-tn-1与值mTp进行比较(步骤520),其中m是常量,该常量被选择,以使得在假设Tp等于双位的峰值之间的标称间隔的情况下,对于所有磁带速度和伺服读取器的所有横向位置来说,在同一突发中的连续双位的峰值之间的时间间隔小于mTp,而在不同突发中的连续双位的峰值之间的时间间隔大于mTp。 For this purpose, the time difference tn-tn-1 is compared with the value mTp (step 520), where m is a constant, the constant is chosen such that in case of assuming Tp is equal to the nominal interval between dibit peaks, For all the lateral position of the tape speed and all servo reader, in the same time in successive burst dibit interval between peaks is less than mTp, while between successive dibit peaks of the burst in different time interval is greater than mTp. 如果tn-tn-1>mTp,则检测到新的突发,在前一个突发中检测到的峰值的数目值Np-1被附加到向量p,且用于当前突发的峰值计数器Np被初始化为1(步骤522)。 If tn-tn-1> mTp, a new burst is detected, the first in a burst of the number of the detected peak value Np-1 is appended to the vector p, and the peak value for the current burst counter Np is is initialized to 1 (step 522). 现在继续到检验向量p的后4个元素是否相应于伺服帧的伺服突发中的峰值数目的期望序列,其是【881010】(步骤524)。 After four elements whether now proceed to examine the vector p corresponding to the servo bursts of a servo frame number of peaks expected sequence, which is [881010] (step 524). 如果是这样,识别出相应于伺服突发的序列【CDAB】(见图1)的【4455】突发的序列,并且可以计算出用于开始同步伺服通道操作的初始化参数(步骤526)。 If so, identify the sequences corresponding to the servo burst [CDAB] (see Figure 1) [4455] burst sequence, and may calculate an initialization parameter for starting the synchronous servo channel operation (step 526). 否则,获得处理继续到下一个采样间隔(步骤502)。 Otherwise, processing continues to get the next sampling interval (step 502).

[0072] 如果sgn(rn)=sgn(rn-1),必须考虑两种情况,如果Tp>tn-tn-1(步骤528),很可能两个采样属于同一峰值,不采取更新向量τ和p以及Np的动作,获得处理继续到下一采样间隔(步骤502)。 [0072] If sgn (rn) = sgn (rn-1), two cases must be considered, if Tp> tn-tn-1 (step 528), it is possible that two samples belong to the same peak value, and do not take update vector τ p and Np operation to obtain the processing proceeds to the next sampling interval (step 502). 如果Tp<tn-tn-1,很可能两个采样从同一极性的、属于连续双位的峰值获得,这意味着发生了漏掉了峰值检测的事件。 If Tp <tn-tn-1, it is possible that two samples from the same polarity, a continuous double-peak belonging obtained, which means that missed peak detection event has occurred. 在这种情况下,两个峰值到达时间值(由tn'和tn表示)被附加到向量τ,峰值计数器Np加2(步骤530)。 In this case, two peak arrival time values (represented by tn 'and tn) is attached to the vector τ, peak counter Np + 2 (step 530). 漏掉的峰值的到达时间tn'的估计从漏掉的峰值的极性、在双位的峰值之间的时间间隔的估计Tp和磁带的运动方向的知识中获得。 Missed peak arrival time tn 'estimated from the peak value of polarity of missing knowledge direction at time dibit interval between peaks of the estimate of the movement and tape Tp obtained. 对于正向磁带运动,在伺服通道的输出端,首先获得具有正极性的双位峰值,而对于反向磁带运动,首先获得具有负极性的峰值。 For forward tape motion, at the output of the servo channel, the first obtained having a positive polarity dibit peak, while for reverse tape movement, first obtaining a peak having a negative polarity. 因此,如果磁带正沿正向方向运动且漏掉的峰值的极性为负,或者如果磁带正沿反向方向运动且漏掉的峰值的极性为正,则漏掉的峰值到达时间被估计为tn'=tn-1+Tp,否则其被估计为tn'=tn-1+Tp。 Therefore, if the tape movement in the forward direction and the positive polarity of missed peak is negative, or if the tape movement in the reverse direction and are missed peak polarity is positive, the missed peak arrival time is estimated to be to tn '= tn-1 + Tp, otherwise it is estimated as tn' = tn-1 + Tp. 如上所述,此时必须确定新的峰值属于当前考虑的伺服突发的双位还是新突发的双位(步骤532)。 As mentioned above, must be determined at this time a new peak belonging to the current account of the servo burst or a new burst of double-double digit (step 532). 如果tn'-tn-1>mTp,则检测到新的突发,且又需要考虑磁带运动的方向来确定下面的步骤(步骤534)。 If tn'-tn-1> mTp, new burst is detected, and because they need to be considered to determine the direction of tape movement following steps (step 534). 假定磁带运动的正向方向。 Assumed the direction of tape movement forward. 类似的过程可以适用于反向方向的情况。 A similar process can be applied to the case of reverse direction. 如果检测到的峰值具有正极性,则这很有可能对应着新突发的第一峰值。 If the detected peak has positive polarity, this is likely to correspond to the first peak of the new burst. 然后,值Np-1被附加到向量p,且用于当前突发的峰值计数Np被初始化为1(步骤536)。 Then, the value Np-1 is appended to the vector p, and the peak value for the current burst count Np is initialized to 1 (step 536). 然后为了序列【881010】检查向量p的后四个元素(步骤538)。 Then in order to sequence [881010] After checking the four elements of the vector p (step 538). 另一方面,如果检测到的峰值具有负极性,则很有可能新突发的第一峰值被漏掉了。 On the other hand, if the detected peak has negative polarity, it is likely that the first peak of the new burst has been missed. 然后,值Np-2被附加到向量p,且用于当前突发的峰值计数Np被初始化为2(步骤540)。 Then, the value Np-2 is appended to the vector p, and for the peak count Np current burst is initialized to two (step 540). 注意,在该情况下,不为了序列【881010】检查向量p的后四个元素,因为假设在检测到“C突发”的第一双位的第一峰值(见图1)时发生从“获得”模式向“跟踪模式”的过渡,以减少获得系统的实现复杂度。 Note that, in this case, not to sequence [881010] After checking the four elements of the vector p, since it is assumed during detection of the "C burst" of the first peak of the first dibit (see FIG. 1) from the " was "mode to" track mode "transition in order to reduce implementation complexity obtain system.

[0073] 一旦在向量p的后四个元件中检测到序列【881010】,计算开始同步通道操作所需的各种参数,且将变量acqFlag被设置为1(步骤526),以指示获得处理的成功结束。 [0073] Upon detection of the four elements of the vector p after the sequence [881010], the calculation of various parameters required to start the operation of the synchronization channel, and the variable acqFlag be set to 1 (step 526), to indicate the acquisition processing of Successful completion. 在假设考虑C、D和A的峰值到达时间以便计算磁带速度和y-位置估计的情况下,如图6所示,期望的估计分别由下式给出: Under the assumption considering the peak C, D and A tape arrival time in order to calculate the speed and y- position estimation, shown in Figure 6, the desired estimates are given by:

[0074] [0074]

[0075] 及 [0075] and

[0076] [0076]

[0077] (步骤526),其中对于正向磁带运动,l=100μm,对于反向磁带运动,l=95μm。 [0077] (step 526), wherein for forward tape movement, l = 100μm, for reverse tape motion, l = 95μm. 当获得处理结束后,同步伺服通道操作开始于初始时刻ti,0=tn,标称步内插间隔被设置到Ti,0=xi/vest,0,以便产生定时基础底层信号内插(步骤526)。 When the process is completed after obtaining synchronous servo channel operation began in the initial time ti, 0 = tn, the nominal step interpolation interval is set to Ti, 0 = xi / vest, 0, in order to generate the underlying foundation within the timing signal interpolation (step 526 ). 该获得处理还提供由下式给出的参数: The deal also provided to obtain the parameters given by the following equation:

[0078] [0078]

[0079] 其中z表示小于或等于z的最大整数。 [0079] wherein z represents the largest integer less than or equal to z,. 该参数指示以xi的倍数表示的内插步的估计数,其将当前采样与对应于C突发中的第一双位的零交叉的采样分开,对应于C突发中的第一双位的零交叉的采样将用于定时恢复环路的第一定时调整。 This parameter indicates the estimated number of interpolation steps represented in multiples of xi, which corresponds to the current sample and the zero crossing C burst sample of the first dibit separately, corresponding to the C burst in a first two-position zero-cross sampling timing recovery loop for a first timing adjustment.

[0080] 在获得电路402的实现中,向量τ和p分别实现为长度36和4的延迟线。 [0080] In achieving obtaining circuit 402, the vectors τ and p are implemented as delay lines of length 36 and 4. 还要注意,用于计算估计的电路所引入的等待时间应小于伺服突发之间的时间间隙。 Note also that the circuit for calculating the estimated wait time should be less than the introduction of a time gap between servo bursts. 另外,为了获得可靠的磁带速度和y-位置估计,需要以高的精确度实现用于执行正数之间的划分的电路。 Further, in order to obtain reliable tape velocity and y- position estimates, requires high accuracy to achieve a circuit for performing division between positive numbers. 上述需要通过应用Newton-Raphson的算法来通过迭代近似计算除数的导数,并然后通过将被除数和除数的倒数相乘获得期望的商而得到了满足。 These needs through the application of Newton-Raphson iterative algorithm to compute approximate derivative of the divisor and the dividend and then multiplied by the reciprocal of the divisor to obtain the desired business and have been met. 例如,在算法的三次迭代之后,除法计算中的相对误差小于0.4%,其在四次迭代之后小于1.610-5。 For example, after three iterative algorithm, division calculation of the relative error is less than 0.4%, which is less than 1.6 10-5 after four iterations.

[0081] 通过仿真对上述获得方法的执行进行了研究。 [0081] obtained through simulation performed on the above-described method were investigated. 在假定Lorentzian模型的情况下,对一次过渡的磁带记录通道响应由下式表示: Assuming Lorentzian model, the transition to a tape recording channel response represented by the formula:

[0082] [0082]

[0083] 其中参数PW50/2表示以微米表示的、在以速度v运动的磁带上的点之间的距离,这些点在平行于伺服带中心线的线上,且在这些点伺服读取器分别产生对一个过渡的通道响应的最大值和该最大值的一半。 [0083] where the parameter PW50 / 2 expressed in microns, and the distance in the moving velocity v of the tape between the points, the points are parallel to the line of the servo band centerline, and at which point the servo reader respectively generate half of the channel response for a transition of the maximum value and the maximum value.

[0084] 因此,双位信号脉冲由下式给出: [0084] Thus, a double-pulse signal is given by:

[0085] g(t;v)=Θ(t;v)-Θ(t-TΘ;v), (7) [0085] g (t; v) = Θ (t; v) -Θ (t-TΘ; v), (7)

[0086] 其中TΘ=Lp/vμs,Lp表示磁过渡之间的距离。 [0086] where TΘ = Lp / vμs, Lp represents the distance between the magnetic transition. 回想前面所讲述过的,在伺服帧内的双位如图1所示产生的情况下,Lp=2.1μm。 Recall that previously described before, in the case shown in FIG. 1 servo frame generated double digit, Lp = 2.1μm.

[0087] 对于磁带速度和用于峰值检测的给定阈值的各种值来说,正确获得和错误获得的概率分别在图7和8中示出为在伺服通道输出端的信噪比(SNR)的函数。 [0087] for various values of tape velocity and the peak detector for a given threshold value, the probability of correct acquisition and error obtained are shown in Figures 7 and 8 for the signal to noise ratio at the output of the servo channel (SNR) function. 如果关于初始y-位置估计的误差的绝对值小于2.5μm,则宣告正确获得,否则宣告错误获得。 If the absolute value of the error on the initial position estimate is less than y- 2.5μm, is declared the right to obtain, or else declare error obtained. 在假定PW50/2.1μm=0.4以便用于产生伺服突发、加性白高斯噪声、等于15MHz的采样频率、恒定磁带速度和等于0的y-位置的Lorentzian通道的情况下,每个概率值由获得处理的500次实现获得。 In the case of assuming PW50 / 2.1μm = 0.4 to be used for generating a servo bursts, additive white Gaussian noise, sampling frequency equal to 15MHz, constant tape velocity and y- position equal to 0 of the Lorentzian channel, each probability value by get treated to achieve 500 times get. 在正确获得的情况下当标称因子由磁带速度给定时的关于初始磁带速度估计的误差的标称标准偏离和在正确获得的情况下的平均获得时间在图9和10中对于各种磁带速度值分别示出。 In the case of the correct nominal factor obtained when the tape speed to the timing deviation from the nominal standard deviation and the average on the initial tape velocity estimate obtained in the case of obtaining the correct time in Figures 9 and 10, for various tape speeds values are shown. 对于从0.5m/s到12.5m/s范围内的磁带速度值绘出了两者的四条曲线。 For from 0.5m / s to 12.5m / s within the range of the tape speed values plotted both four curves.

[0088] 用于信号内插的定时基础的产生 [0088] generating a timing basis for signal interpolation of

[0089] 伺服通道的同步操作需要用于信号内插的定时基础的产生,使得内插的信号采样以每微米1/xi个采样的预定固定速率获得,其中xi表示独立于磁带速度的标称步内插距离。 Synchronous Operation [0089] The need for the servo channel signal interpolation timing basis generation, so that interpolated signal samples per micrometer predetermined fixed rate 1 / xi samples obtained, where xi represents the tape speed is independent of the nominal step interpolation distance. 例如,如果xi=0.05μm,则速率1/xi等于每秒20个采样。 For example, if xi = 0.05μm, the rate 1 / xi is equal to 20 samples per second. 用于定时基础的产生的自然基准由伺服突发提供,伺服突发周期性地在伺服通道输出端出现,如图1所示。 Naturally generated reference for timing based servo burst provided by the servo bursts periodically appear in the output of the servo channel, as shown in FIG. 因此,在伺服通过输出端的信号可以被当成导频信号,从导频信号中可以提取定时信息。 Therefore, the servo can be considered as a pilot signal through an output terminal of the signal, timing information can be extracted from the pilot signal. 但是,从伺服通道信号中提取定时信息不是简单直接的,因为A、B、C、D伺服突发不是等间隔的。 However, the servo channel signal extracted from the timing information is not straightforward, because A, B, C, D servo bursts are not equally spaced. 另外,在伺服突发之间的间隔取决于伺服读取器的y-位置、伺服帧的重复周期,而伺服突发内的连续双位之间的时间间隔取决于磁带速度。 Further, the spacing between the servo bursts depends on the position of the servo reader y-, servo frame repetition period, and the time bicontinuous position servo bursts depends on the interval between the tape speed. 另外,需要考虑到用于编码A和B突发中的LPOS信息的脉冲位置调制的存在。 In addition, to take into account the presence of pulse position modulation for encoding the A and B bursts LPOS information. 对于正向方向的磁带运动,伺服通道信号由下式给出: For the forward direction of tape movement, the servo channel signal is given by:

[0090] [0090]

[0091] [0091]

[0092] 其中τ表示要恢复的定时相位,向量b表示属于二进制字符表{0,1}中的LPOS码元序列,w(t)是频谱密度为N0的加性白高速噪声,KF是伺服通道信号中的伺服帧的数目,qi(),i=0,......,3分别表示C、D、A、B伺服突发。 [0092] where τ represents a timing phase to be restored, are binary vector b represents the character table LPOS symbol sequence {0,1} is, w (t) is the spectral density of the additive white noise N0 of speed, KF servo number of servo frames in the channel signal, qi (), i = 0, ......, 3 respectively C, D, A, B servo bursts. 定义ak=2bk-1,ak∈{-1,+1},伺服突发可以如下表示: Definition ak = 2bk-1, ak∈ {-1, + 1}, the servo bursts can be expressed as follows:

[0093] [0093]

[0094] [0094]

[0095] [0095]

[0096] [0096]

[0097] 其中TF=LF/vμs,Td=Ld/vμs,ξ=0.05,且g(t;v)表示双位信号脉冲,其取决于磁带速度v,如在(7)中所定义的。 [0097] where TF = LF / vμs, Td = Ld / vμs, ξ = 0.05, and g (t; v) represents dibit signal pulse, which depends on the tape velocity v, as in (7) as defined. 回顾前面讲述的,LF=200μm且Ld=5μm,如图1所示的。 Review described earlier, LF = 200μm and Ld = 5μm, as shown in Figure 1. 对于反向方向的磁带运动,在A和B突发的定义中乘以项TF的系数分别被选择为95/200和145/200而不是1/2和3/4的情况下,信号r(t)可以以与(8)相似的方式表示。 For the reverse direction of tape movement, in the definition of A and B burst is multiplied by a coefficient term TF were selected as a 95/200 and 145/200 instead of 1/2 and 3/4, the signal r ( t) may be in (8) in a similar manner indicated.

[0098] 为了确定定时相位的估计,传统定时恢复方法将依赖于首先确定似然性函数,然后将其在不需要的随机变量上进行平均,最后找到最大化结果函数的定时相位的值。 [0098] In order to determine the estimated timing phase, conventional timing recovery methods would rely on first determining the likelihood function, and then averaged over the unwanted random variables, and finally found the result function which maximizes the value of the timing phase. 观察(8)和(9),发现似然性函数取决于定义相位、伺服读取器的y-位置、磁带速度和LPOS二进制码元的序列。 Observation (8) the likelihood function depends on the definition phase, the position of the servo reader y-, sequence and (9), and found that the tape speed LPOS binary symbols. 然后,似然性函数可以表示成: Then, the likelihood function can be expressed as:

[0099] [0099]

[0100] [0100]

[0101] [0101]

[0102] [0102]

[0103] 引入脉冲响应为gM(t;v)=g(-t;v)的匹配滤波器,并定义卷积积分h(t;v)=r*gM(t;v),似然性函数的表达式成为 [0103] introduced impulse response gM (t; v) = g (-t; v) of the matched filter, and define the convolution integral h (t; v) = r * gM (t; v), the likelihood function of the expression becomes

[0104] [0104]

[0105] [0105]

[0106] [0106]

[0107] 在假设y-位置和磁带速度的联合概率分布及LPOS码元的先验分布是已知的情况下,定时相位的最大似然性(ML)估计则由下式给出: [0107] distribution and the prior distribution of LPOS symbols in the joint probability assumptions y- position and tape speed is under known circumstances, timing phase of maximum likelihood (ML) is estimated by the following equation:

[0108] [0108]

[0109] 但是用于获得定时相位的估计的传统ML估计方法的应用防止了以下的严重困难: Applications [0109] However, the timing for obtaining estimates of the traditional ML phase estimation method of preventing serious difficulties following:

[0110] a)上述公式中的ML估计方法不能很好地适用于直接实现,甚至不能很好地适用于每个伺服帧计算一次误差项的定时恢复反馈环路形式的实现,因为计算复杂度太大。 [0110] a) in the above formula ML estimation methods are not well suited for direct implementation, or even not well suited for a frame error term calculation timing recovery feedback loop implemented in the form of each of the servo, because the computational complexity too.

[0111] b)找到似然性函数的最大值需要首先计算卷积积分对τ的偏导数;该运算可以在数字域进行,但其通常导致较大的实现复杂度和不可忽视的噪声增加。 [0111] b) find the maximum likelihood function of the need to calculate the convolution integral partial derivatives of τ; and the operation can be performed in the digital domain, but it usually leads to a greater realization of the complexity and increase the noise can not be ignored.

[0112] c)似然性函数所依赖于的随机变量可以呈现出时变概率分布;例如,在斜坡向上和斜坡向下期间经历的磁带速度的变化可以引起磁带速度和定时相位在若干伺服帧中的联合概率分布的严重变化。 When [0112] c) random variable likelihood function depends on the probability distribution may exhibit variable; for example, changes in the ramp up and ramp down period experienced tape speed and the tape speed can cause timing phase in a number of servo frames serious changes in the joint probability distribution.

[0113] 本发明还提供了依赖于定时恢复环路的用于同步伺服通道操作的定时基础的产生,在定时恢复环路中,通过观察内插伺服通道信号的零交叉来确定定时调整。 [0113] The present invention also provides a timing recovery relies on generating a timing basis for synchronous servo channel operation of the loop, and in the timing recovery loop, the observation by interpolating the servo channel signal to determine the zero cross timing adjustment. 在假设y-位置和磁带速度的可靠估计 Y- assuming the position and velocity of a reliable estimate of the tape

And

被有效计算(这将在下一段示出),并且观察到在似然性函数(11)的指数处的和中只有4项取决于LPOS码元ak的情况下,对于每一个k,定时相位的估计可以被如下地近似: Is effectively calculated (shown in the next paragraph), and it was observed in the likelihood function (11) of the index and at only 4 depending on the case of the LPOS symbol ak, for each k, the timing phase estimate can be approximated as follows:

[0114] [0114]

[0115] 其中: [0115] where:

[0116] [0116]

[0117] [0117]

[0118] 在上述公式中,似然性函数对LPOS码元序列的依赖型以及对y-位置和磁带速度的平均被去除了。 [0118] In the above formula, the likelihood function dependent LPOS symbol sequence and the average of the y- position and tape velocity are removed. 但是,为了找到似然性函数的最大值,仍需要计算对定时相位的偏导数。 However, in order to find the maximum likelihood function, still need to calculate the partial derivatives of the timing phase. 引入指示y-位置和磁带速度估计的符号 Introducing indication y- position and tape speed estimated symbol

And

来取代(3)和(4)中定义的yest和vest,因为使用低通滤波来产生 Instead of (3) and (4) as defined in yest and vest, because the use of low-pass filter to generate

And

而yest和vest指即时估计。 And yest and vest means immediate estimate.

[0119] 注意,对于中等到大的信噪比的值来说,对于时移Ts的适当选择,h(τ;v)的每个峰值由双位脉冲的自相关函数Cg(τ-Ts;v)=g*gM(τ-Ts;v)的峰值近似确定。 [0119] Note that, for moderate to large values of SNR, for a suitable choice of the time shift Ts, h (τ; v) is the autocorrelation function of each peak by the dibit pulse Cg (τ-Ts; v) = g * gM (τ-Ts; v) determine the approximate peak. 还要注意,由于g(τ;v)是具有奇对称性的函数,自相关Cg(τ;v)是具有偶对称性的函数。 Also note that since g (τ; v) is a function with odd symmetry, the autocorrelation Cg (τ; v) is a function with even symmetry. 因此,对于定时相位相对于最优值的小的偏差,h(τ;v)对定时相位的偏导数及由此而来的似然性函数 Thus, with respect to the timing phase for small deviations from the optimal value, h (τ; v) of the timing phase and the resulting partial derivative of the likelihood function

的偏导数呈现出奇对称性。 The partial derivative showing surprising symmetry. 这意味着在双位脉冲被当作定时相位相对于最优值的偏离的函数的情况下,如图11A和图11B所示,h(τ;v)偏导数的行为与变量的小值的双位脉冲的行为类似。 This means that the phase of timing as in the case of double-pulse to deviate from the optimal value function, as shown, h (τ; v) 11A and 11B small values of partial derivatives behavior variables Similar behavior double-pulse.

[0120] 在进一步观察到h(τ;v)的峰值被与伺服通道信号的零交叉(其出现在伺服突发的双位脉冲的峰值之间)相对应地获得的情况下,有可能得出结论:由ML方法提供的定时信息近似等于通过直接与零交叉相对应地采样伺服通道信号而获得的定时信息。 [0120] In the h (τ; v) is further observed that the peak was the case with the servo channel signal zero crossing (which occur between the peaks of the servo bursts dibit pulses) corresponding to the access, it is possible to give concluded that: the timing information provided by the ML method is approximately equal to the timing information by directly sampling the servo channel in correspondence with the zero crossing signal obtained. 因此,在假设 Therefore, the assumption

表示定时相位的可靠估计,即的情况下,期望的定时信息可表示为 Represents a reliable estimate of the timing phase, i.e. under the circumstances, the desired timing information can be expressed as

[0121] [0121]

[0122] [0122]

[0123] [0123]

[0124] [0124]

[0125] 其中Γ表示增益因子,而 [0125] where Γ represents the gain factor, and

表示加性白高速噪声(AWGN)采样。 Represents additive white high speed noise (AWGN) samples. 注意,完全避免了由于计算偏导数引起的噪声增加。 Note that, to completely avoid the noise increase due to the calculation of the partial derivatives caused. 在模数转换之前执行的抗混叠滤波操作在这种情况下近似等价于用于产生信号r(t)的足够统计值的最优滤波。 Analog to digital conversion before the anti-aliasing filtering operations performed in this case approximately equivalent to optimum filtering enough statistical values for generating a signal r (t) is.

[0126] 在误差反馈配置中依赖于内插伺服通道信号的零交叉来确定定时误差的定时基础产生系统1300可以这样如图12所示地设计。 [0126] dependent on the error feedback configuration to an interpolation between the zero crossing of the servo channel signal to determine the timing basis generation system 1300 of the timing error may be designed such as shown in Figure 12. 注意,相应于定时误差(15)的表达式中的和的平均运算由环路滤波器1302执行,假设环路滤波器1302为比例积分器型的。 Note that, corresponding to the timing error (15) of the expression and the averaging operation is performed by the loop filter 1302, assuming the loop filter 1302 is proportional integrator type. 因此,在假设可靠的y-位置和磁带速度估计及可忽略的误差的情况下,输入到环路滤波器的定时误差估计e(tnz)由下式给出: Therefore, assuming reliable y- position and tape velocity estimates and the case where errors can be ignored, the input to the loop filter of the timing error estimate e (tnz) is given by the following formula:

[0127] [0127]

[0128] 其中tnz表示由时间基础产生系统提供用于在被考虑用于定时恢复的伺服通道信号的零交叉附近的信号内插的时刻,εnz表示tnz相对于零交叉的时间的偏离,且wnz是AWGN采样。 [0128] wherein tnz represented by the time base generating system is used in the servo channel signal is considered for timing recovery of the signal near the zero crossings of the interpolated time, εnz represents tnz the deviation from zero-cross time, and wnz is AWGN samples.

[0129] 定时基础产生系统1300的框图在图13中示出。 [0129] a block diagram of the timing basis generation system 1300 is shown in FIG. 13. 序列{tn}指示将要确定信号采样{r(tn)}从而信号采样{r(tn)}以独立于磁带速度的每微秒1/xi个采样的期望固定速率获得的时刻。 Sequence {tn} indicates signal samples to be determined {r (tn)} so that the sampling timing signal {r (tn)} are independent of tape speed in every microsecond desired fixed rate 1 / xi samples obtained. 显然,标称步内插间隔Ti和ADC采样间隔T通常不相称。 Obviously, the nominal step interpolation interval Ti and ADC sampling interval T is usually disproportionate. 因此,在内插时刻{tn}用线性内插来获得信号采样,内插时刻{tn}由下式递归获得: Therefore, the interpolation in time {tn} is obtained by linear interpolation signal samples, the interpolation time {tn} obtained by the following recursive formula:

[0130] tn+1=tn+Ti,n, (17) [0130] tn + 1 = tn + Ti, n, (17)

[0131] 其中Ti,n表示标称步内插间隔的估计,如(2)所示。 [0131] where Ti, n represents an estimate of the nominal step interpolation interval, as described in (2) below. 步内插间隔估计由下式给出: Step interpolation interval estimate is given by the following formula:

[0132] [0132]

[0133] 其中是直接从磁带速度估计中得出的步内插间隔估计,Δtnz是在环路滤波输出端获得的校正项,nz是小于或等于n的最大时间索引,在该时间定时误差估计已输入到环路滤波器。 [0133] wherein is derived directly from the tape velocity estimate in step interpolation interval estimate, Δtnz is a correction term obtained at the output of the loop filter, nz is less than or equal to the maximum time index n, the timing error estimate at that time has been input to the loop filter. 在内插时间计算单元中,第n个内插时刻被表示为: Interpolation time calculation unit, the n-th interpolation time is expressed as:

[0134] [0134]

[0135] 其中kn和μn分别表示作为采样间隔T的倍数的第n个内插时刻的整数部分和分数部分。 [0135] where kn and μn denote multiples of the sampling interval T as the time of the n-th interpolation integer part and a fractional part. 线性内插这样就给出了由下式给出的内插信号采样: This linear interpolation interpolated signal is given by the given sampling:

[0136] [0136]

[0137] 定时基础产生系统1300的目标是提供内插信号采样,所述内插信号采样与位于平行于伺服带中心线的线上的、由步内插距离xi等距离隔开的磁带上的点相应地再生由伺服读取器产生的信号。 [0137] the timing basis generation system 1300 is to target interpolated signal samples provided within, the inner and the interpolated signal samples lies parallel to the centerline of the servo band line, by the step interpolation distance xi equidistantly spaced on the magnetic tape signal generated by the servo reader reproduction point accordingly. 但是,通常,y-位置和磁带速度的值使得内插信号采样不正好对应于伺服通道信号的零。 However, in general, the value of y- position and tape speed such that the interpolated signal samples do not exactly correspond to zeros of the servo channel signal. 换句话说,定时误差估计e(tnz)由内插信号采样给出,该内插信号采样在作为步内插距离xi的倍数、并靠近如定时基础产生系统估计出的零交叉的位置计算出。 In other words, the timing error estimate e (tnz) interpolated signal samples given by the interpolated signal samples xi multiple interpolation distance as the inner step in and close to generating system as the basis to estimate the timing of the zero crossing of the calculated position . 因此,步内插距离xi确定关于定时误差估计的标准偏差的下边界。 Thus, the step interpolation distance xi determines a timing error estimate on the lower boundary of the standard deviation. 在假设零交叉位置是在所述步内插间隔内均匀分布的随机变量的情况下,关于定时误差估计的标准偏差的下边界等于 In the case of zero-cross position is interpolated assuming random variable uniformly distributed within the interval in step, on the lower boundary of the standard deviation of the timing error estimate is equal to

例如,如果xi=0.05μm,关于零交叉位置误差估计的标准偏差的下边界为14.4nm。 For example, if xi = 0.05μm, the lower boundary on the zero-crossing position error estimate of the standard deviation of 14.4nm. 注意,在原理上,通过减小步内插距离xi的大小,可以使该下边界任意地小。 Note that, in principle, by reducing the size of the step interpolation distance xi, so that the lower boundary can be arbitrarily small. 在实践中,只要项 In practice, long term

小于AWGN到零交叉位置误差估计的标准偏差的分布就够了。 Distribution of less than AWGN to the zero-cross position error estimate of the standard deviation is enough.

[0138] 如前所述,伺服通道信号的零交叉不是等距离隔开的。 [0138] As described above, the servo channel signal are not equally spaced zero crossing. 尤其是,在贡献定时信息的零交叉之间的时间间隔取决于伺服读取器的y-位置和磁带速度。 In particular, the contribution of the timing information in the time interval between zero-crossing depends servo reader y- position and tape velocity. 另外还要记得,用于编码LPOS位的A和B突发中的双位的零交叉不被考虑用于提取定时信息。 Also recall that, A and B bits used to encode LPOS burst dibit zero crossing is not considered for the extraction of timing information. 如图13所示,选择内插信号采样用于提取定时信息是由叫作“控制单元”1304的有限状态机结合内插“计数器”1306完成的。 13, select the interpolation signal samples as shown by the timing information for extracting called "control unit" within the finite state machine 1304 is inserted binding "counter" 1306 completed. 每次当计算新的内插信号采样时,“计数器”1306将输入到“控制单元”1304的变量IntpCnt加1。 Each time a new calculation of the interpolation signal samples, "Counter" 1306 will be entered in the variable "Control unit" 1304 IntpCnt plus 1. 在假设由“内插时间计算”单元410使用的步内插间隔Ti的估计可靠、且关于伺服帧的开始(即伺服帧中的C突发的第一双位的第一零交叉的时间)的信息可得到的情况下,知道y-位置的可靠估计对于“控制单元”1304确定必须选择哪些内插信号采样用于定时信息的提取就足够了。 In the hypothesis "the interpolation calculation time" by the synchronization unit 410 uses the interpolation interval Ti estimate reliable, and begins on the servo frames (i.e., the C burst in a servo frame of a first zero crossing time of the first dibit) Under the circumstances the information available, reliable estimates of y- know the location for the "control unit" 1304 determines which extracts the interpolated signal samples must be selected for the timing information is sufficient. “控制单元”1304输出以下变量: "Control unit" 1304 outputs the following variables:

[0139] a)burstFlag,按照规则0->C突发,1->D突发,2->A突发,3->B突发来识别当前伺服突发的变量; [0139] a) burstFlag, in accordance with the rules of 0-> C sudden, 1-> D burst, 2-> A sudden, 3-> B burst to identify the current variable servo burst;

[0140] b)dibitFlag,识别伺服突发内的当前双位的变量; [0140] b) dibitFlag, identifying the current double-bit variable servo burst inside;

[0141] c)newTimErr,被断言(assert)将新的定时误差估计输入到环路滤波器中的变量; [0141] c) newTimErr, is asserted (assert) the new timing error estimates to the loop filter input variables;

[0142] d)IntpCntReset,被断言复位内插“计数器”1306的变量。 [0142] d) IntpCntReset, asserted insert "counter" variable in the 1306 reset.

[0143] 在伺服帧的结束处,即在B突发的最后一个双位的零交叉处,变量IntpCntReset被断言复位“计数器”1306,变量burstFlag被设置成0以指示C突发的发生,且变量dibitFlag也被设置成0以指示C突发的第一双位的发生。 [0143] At the end of a servo frame, i.e. the B burst last dibit zero crossing, variable IntpCntReset asserted reset "Counter" 1306, the variable burstFlag are set to 0 to indicate the occurrence of burst C, and variable dibitFlag is also set to 0 to indicate a first pair of bits C burst occurrence. 将B突发的最后一个双位的零交叉与C突发的第一双位分开的内插步的数目的估计由以下变量给出: The B burst last dibit zero crossing C burst and the first dibit separate interpolation step estimates the number of variables is given by the following:

[0144] [0144]

[0145] 其中,DBC,0表示对于y=0,B突发的最后一个双位和C突发的第一双位之间的距离,其对于正向和反向方向的磁带运动来说,分别是30μm和35μm。 [0145] wherein, DBC, 0 denotes the distance to the y = 0, B burst and C dibit last burst between the first pair of bits, which for the forward and reverse directions of tape movement, the are 30μm and 35μm. 变量newTimErr当“计数器”1306指示IntpCntNum个内插步已经结束时被断言,相应的内插信号采样作为新的定时误差估计输入到定时恢复环路滤波器1302,且变量dibitFlag被设置为1以指示C突发的第二双位即将发生。 When the variable newTimErr "Counter" 1306 indicates insert step has ended within IntpCntNum a asserted, the corresponding interpolated signal sample as a new timing error estimate is input to the timing recovery loop filter 1302, and the variable dibitFlag is set to 1 to indicate that C sudden impending second double-digit. 然后,“控制单元”1304的操作进行到计算将当前零交叉与下一零交叉分开的内插步的数目。 Then, the operation "Control unit" 1304 proceeds to calculate the number of the current zero crossing and the next zero-cross separate interpolation step. 每次达到新的零交叉时,变量newTimErr被断言,且变量dibitFlag加1。 Each time you reach a new zero-crossing, variable newTimErr is asserted, and the variable dibitFlag plus one. 如果零交叉是伺服突发的最后一个零交叉,则变量burstFlag加1,而变量dibitFlag被设置为0。 If the zero crossing is the last servo burst zero crossing, the variable burstFlag incremented, and the variable dibitFlag is set to 0. 注意,指示估计的在零交叉之间的内插步的数目的变量IntpCntNum在下一零交叉属于同一伺服突发的情况下由Ld/xi给出,在下一零交叉属于不同的伺服突发的情况下由类似于(21)的表达式给出,其中使用对于y=0来说的当前突发的最后一个双位和下一突发的第一双位之间的距离来代替DBC,0。 Note that indicates the estimated interpolation step in between the number of zero-cross variables IntpCntNum in the case of the next zero crossing belongs to the same servo burst is given by Ld / xi, at the next zero crossing belongs to a different servo burst The case is given by an expression similar to (21), wherein the distance y = 0 for the current burst is the last dibit of the next burst and between the first pair of bits instead of DBC, 0. 在A和B突发的第二和第四双位的零交叉用于编码LPOS位的特定情况下,由IntpCntNum给定的移位的双位和相邻的双位之间的内插步的数目仍然取作等于Ld/xi。 In A and B bursts of the second and fourth dibit of a zero-cross LPOS bits used to encode a particular case, the shift from a given position and the adjacent double dibit step of interpolating between IntpCntNum The number is still taken as equal Ld / xi. 但是,当计算出将相应于A和B突发的第二或第四双位的零交叉的内插信号采样时,dibitFlag加1,而不需要断言newTimErr。 However, when the calculated corresponding to the A and B bursts of the second or the fourth dibit of a zero-cross interpolated signal samples, dibitFlag plus one, without the need for assertion newTimErr. 当实现B突发的最后一个双位的零交叉时,“计数器”1306又复位,且新的伺服帧的处理开始。 When the last burst to achieve B dibit zero crossing, the "Counter" 1306 is reset again, and a new servo frame starts processing.

[0146] 注意,在用于同步伺服通道的定时基础产生系统1300的实际实现中,不需要明显地计算出每一内插步处的内插信号采样。 [0146] Note that the timing synchronous servo channel basis for generating the actual implementation of the system in 1300, obviously does not need to calculate the interpolation at each step of the interpolated signal samples. 内插信号采样的实际计算可以仅在几个时刻进行,这些时刻由“控制单元”1304确定,“控制单元”1304是定时调整的产生和在A和B突发中发现的脉冲位置调制LPOS信号的匹配滤波所需要的。 The actual calculation of interpolated signal samples may be only a few moments, the moments 1304 determines "control means" from, "the control unit" 1304 is generated and the timing adjustment pulse position modulation in the A and B burst signal LPOS found The matched filtering required.

[0147] 在假设在正常伺服通道操作期间定时误差的值很小的情况下,获得图14所示的定时基础产生系统1300的线性等价模型1400。 [0147] In the case of small value assumptions during normal operation of the servo channel timing errors, and get basic timing shown in Figure 14 to produce the equivalent linear system model 1300 1400. 注意,在此考虑的定时基础产生系统的模型与通常在通信接收机或硬盘驱动器中发现的离散时间误差跟踪同步器的模型显著不同,在离散时间误差跟踪同步器的模型中以等间距的时间间隔计算定时误差估计,同步器必须工作于其上的频率偏移的范围是标称频率的百分之几的量级。 Note that the model considered here, the timing basis generation system with discrete time is usually found in a communications receiver or hard drive error tracking synchronizer model significantly different at discrete time error tracking synchronizer models with equally spaced time Interval timing error estimate is calculated, synchronization must work on their frequency offset range is a few per cent of the nominal frequency of the order.

[0148] 参考图14,定时误差检测器1402的增益由零交叉处的双位脉冲的导数的绝对值给出。 [0148] Referring to Figure 14, the gain of the timing error detector 1402 is given by the absolute value of the derivative zero crossing of the dibit pulses. 从(6)和(7)中,可以得出,该增益与磁带速度成比例,因此表示为KDv。 From (6) and (7), can be drawn, the gain is proportional to the speed of the tape, and therefore represented as KDv. 噪声采样ηn包括AWGN和由如上所述的内插步的非零长度引入的量化噪声的分量。 AWGN noise samples ηn include components and by the nonzero length of the interpolation step described above, the quantization noise is introduced. 通过包括在环路滤波器1406的输入端在估计的零交叉时刻(其特征为索引n=nz(16))提供内插信号并在其它时刻提供零误差信号的开关1404,对在连续定时误差估计之间的可变间距建模。 By including the loop filter input terminal 1406 of the estimated zero crossing times (wherein the index n = nz (16)) provides the interpolation signal and the other time to provide a zero error signal switch 1404, a timing error on the continuous variable spacing between modeled estimate. 观察(17)和(18),可以得出,定时基础产生系统使用在零交叉时刻确定的标称步内插间隔Ti,nz的估计,直到将新的定时误差估计输入到环路滤波器并计算出新的定时校正项Δtnz。 Observation (17) and (18) can be drawn, the timing basis generation system for use in determining the zero crossing times of the nominal step interpolation interval Ti, nz is estimated until a new timing error estimate is input to the loop filter and calculate a new timing correction term Δtnz. 通过在环路滤波器的分支中包括用于提供与定时误差估计成比例的项的采样保持元件1408,对该行为进行建模。 By branch loop filter included for providing the estimated sampling timing error term proportional to the holding member 1408, the behavior model. 注意,保持间隔的可变持续时间具有与乘以定时误差估计的可变增益等价的影响。 Note that the variable duration of the holding interval multiplied by the timing error estimate has a variable gain equivalent of. 为了补偿这种影响,需要引入由在图14中的θn表示的项来“均衡”应用到每一定时误差估计的增益。 To compensate for this effect, the need to introduce items in Fig. 14 by θn represented to "balance" is applied to each timing error estimate gain. 由于零交叉之间的最小距离为Ld=5μm,且“控制单元”1304知道将上一次访问的零交叉与下一个分开的距离,独立于磁带速度的值θn由下式给出: Since the minimum distance between the zero crossing for Ld = 5μm, and the "Control unit" 1304 to know the last visited zero crossing from the next separation distance, independent of tape speed value θn given by the following formula:

[0149] [0149]

[0150] 其中Dnz表示在时间tnz处的零交叉离下一个即将来临的零交叉的以微米表示的距离,且nz是小于或等于n的最大时间索引,在该时间定时误差估计已经被输入到环路滤波器(还参看(18))。 [0150] wherein Dnz representing a time tnz zero crossing at a distance from the next upcoming zero crossing in microns, and nz is the largest time index smaller than or equal to n, at which time the timing error estimate has been input to the loop filter (also see (18)).

[0151] 如上所述,用于同步伺服通道400的定时基础产生系统1300必须在广泛范围的磁带速度下操作,其转换为广泛范围的相应最小伺服通道信号带宽。 [0151] As described above, the timing basis for synchronous servo channel generation system 400 of 1300 must be operated at a wide range of tape speed, which is converted to a wide range of corresponding minimum servo channel signal bandwidths. 显然,这一点对系统参数有不可忽视的影响,系统参数必须被选择,使得定时基础产生系统的动态行为保持为基本独立于磁带速度。 Obviously, this system has a negligible impact parameters, system parameters must be selected such that the timing basis generation system dynamic behavior is kept essentially independent of the tape speed. 为了评价用于改变磁带速度的系统性能,考虑图15中所示的简化模型1500。 In order to evaluate system performance for varying tape speed, consider the simplified model shown in Fig. 15 1500. 假设定时误差估计的可变间距由于如上所述的可变增益θn的存在而被完美地补充,并假设磁带速度估计等于实际速度,即使得偏移量项 Assuming the estimated timing error due to the presence of a variable pitch variable gain θn described above are perfectly complementary, and assuming that the actual speed of the tape speed is estimated to be equal, even if the item was offset

消失。 Disappear. 这样,图15的环路等价于在输入端具有与周期Td = Ld/vμs循环静止(cyclostationary)的信号的轨道误差同步器。 Thus, the loop of Fig. 15 is equivalent to the input terminal having the period Td = Ld / vμs cycle stationary (cyclostationary) the track error signal synchronizer. 利用该简化的模型1500,取决于磁带速度的定时基础产生系统1300的环路带宽由下式给出: Using this simplified model 1500, depending on the tape speed of the timing basis generation system 1300 of the loop bandwidth is given by:

[0152] [0152]

[0153] 其中闭环频率响应H(z;v)由下式表示: [0153] wherein the closed-loop frequency response H (z; v) represented by the formula:

[0154] [0154]

[0155] 通过选择环路参数和并将H(z;v)和Td的表达式代入(23),可以得出,决定环路行为的乘积B(v)Td独立于磁带速度。 [0155] By choosing the loop parameters and and H (z; v) and Td is substituted into the expression (23) can be drawn, determines the loop behavior of the product B (v) Td independent of tape velocity. 例如,通过选择KD=1,γ=1.110-2,和ζ=9.410-6,获得乘积B(v)Td=0.18。 For example, by choosing KD = 1, γ = 1.1 10-2, and ζ = 9.4 10-6, to obtain the product B (v) Td = 0.18.

[0156] 定时基础产生系统1300的另一个需要是要在磁带加速和减速期间实现可靠的伺服通道操作。 [0156] Another timing basis generation system 1300 is to achieve a reliable servo channel operation during tape acceleration and deceleration. 注意,该需要转换为要求在频率1/Td随时间线性变化的同时实现可靠的通道操作。 Note that this requirement needs to be converted to the frequency 1 / Td change linearly with time while achieving a reliable channel operation. 众所周知,类似于图15的简化模型1500的第二级定时恢复环路在存在线性变化输入频率的情况下呈现出非零定时误差。 As we all know, the simplified model is similar to Figure 15 of the second stage 1500 of the timing recovery loop in the case where there is a linear change in input frequency exhibits a nonzero timing error. 通过使用磁带速度估计 By using the tape speed estimate

来周期性确定步内插间隔估计 Step inside to periodically determine the interpolation interval estimate

(见(18))的选择消除了该问题,而不用增加环路滤波器的环路带宽或级数。 (See (18)) selection eliminates the problem without increasing the loop bandwidth of the loop filter or the number of stages. 因此,即使在斜坡向上期间和斜坡向下期间,也实现可靠的系统操作。 Thus, even during the ramp up and ramp down period, but also for reliable system operation. 因此,如果磁带速度恒定,在环路滤波器的积分器中累积的项变为难以察觉地小。 Therefore, if the tape speed is constant, accumulated in the loop filter integrator becomes difficult to detect small items. 注意,在此情况下,与可变增益θn相乘可以在环路滤波之后执行,而不严重影响环路行为。 Note that, in this case, is multiplied by the variable gain θn-loop filtering may be performed after execution, without seriously affecting the loop behavior.

[0157] 通过仿真对定时基础产生系统1300的性能进行了研究。 [0157] The simulation of the performance of the timing basis generation system 1300 has been studied. 图16A和16B示出了对于等于v=0.5m/s(图16A)和v=12.5m/s(图16B)的磁带速度的恒定值,C突发的内插信号采样和定时基础的会聚。 16A and 16B shows that for equal to v = 0.5m / s (Fig. 16A) and v = a constant value of 12.5m / s (Fig. 16B) of the tape speed, C burst interpolated signal samples and timing based convergence . 输入到环路滤波器作为零交叉时刻附近的定时误差估计的采样由实心圆圈标记指示。 Input to the loop filter as timing error near the zero crossing times estimated by the solid circle mark indicating the sampling. 对于PW50/2.1μm=0.4用于产生伺服突发、AWGN产生SNR=25dB、ADC的采样频率fs=15MHz、标称步内插距离xi=0.25μm、关于速度估计的初始误差等于1%、环路滤波参数对于v=0.5m/s有和对于v=12.5m/s有和的Lorentzian通道,获得了结果。 For PW50 / 2.1μm = 0.4 for generating a servo burst, AWGN produce SNR = 25dB, ADC sampling frequency fs = 15MHz, the nominal step interpolation distance xi = 0.25μm, the initial estimate of the error rate is equal to about 1%, ring Road filtering parameters for v = 0.5m / s with and for v = 12.5m / s and a Lorentzian channel has obtained the results.

[0158] 基于伺服通道输出信号的零交叉的估计产生 [0158] Based on the estimated zero crossings of the servo channel output signal generated

[0159] 在前面的段中,认识到了同步伺服通道400的定时基础产生系统1300需要分别由yest和vest表示的可靠的y-位置和磁带速度估计来确定步内插间隔和内插间隔的零交叉的时刻的估计以及各种环路参数值。 [0159] In the previous paragraph, recognized the synchronous servo channel timing basis generation system needs 400 1300 respectively y- reliable location and tape speed represented by yest and vest within walking estimate to determine the interpolation interval and zero interpolation interval estimation and various loop parameter values crossing time. 因此,yest和vest的产生出现了问题,yest和vest的产生应当利用在伺服通道ADC406的输出端的信号采样执行,从而避免了yest和vest的产生和定时基础的产生之间的联系。 Thus, yest and vest is generated a problem, yest and vest in the generation of signal samples should be performed utilizing the output of the servo channel ADC406, thus avoiding contact yest and vest and the generation of the timing basis generation between. 相关问题是同步伺服通道操作的监视。 The problem is related to the monitoring of synchronous servo channel operation. 必须设计这样一种监视系统,该监视系统容易地检测定时基础产生系统的偶尔失谐并重新开始获得过程,该偶尔失谐可以例如由伺服通道输出信号中的暂时损伤确定。 A monitoring system must be designed such that the monitoring system to easily detect the timing basis generation system of occasional detuning and re-start the process of obtaining, for example, the occasional detuning can be determined by the servo channel output signal in a temporary injury. 另外,在这种情况下,必须通过直接观察在伺服通道ADC的输出端处的信号采样来获得解决方案。 Further, in this case, must be obtained by direct observation of the solution samples the signal at the output of the servo channel ADC.

[0160] 回顾前面讨论过的,在获得处理的末尾处的磁带速度和y-位置估计由分别(3)和(4)给出,其中在伺服通道ADC的输出端处的C、D和A突发的峰值到达时间被考虑用于计算估计(仍参看图6)。 [0160] review discussed earlier in the process to get the tape speed and y- position at the end of each estimate is given by (3) and (4), in which the output of the servo channel ADC of C, D and A burst time to peak is considered for calculating the estimated (still with reference to FIG. 6). 但是,基于峰值产生y-位置和磁带速度估计产生下列缺点: However, based on the peak position and tape produced y- velocity estimation produces the following disadvantages:

[0161] a)双位的峰值的到达时间由对信号导数的计算进行近似的运算确定,从而引入噪声增加。 [0161] a) a double-peak signal arrival time by calculating the derivative of the approximate calculation carried out to determine, and thus the introduction of noise increases.

[0162] b)如果没有检测到C、D和A突发中的双位的一个或多个峰值,不能可靠产生y-位置和磁带速度估计。 [0162] b) If not detected C, D, and A bursts in a two-bit or a plurality of peaks, can not reliably produce y- position and tape velocity estimates. 为了应付漏掉的峰值检测事件,插入虚(dummy)峰值到达时间以获得yest和vest不是期望的方法。 In order to cope with the missing peak detection event, insert dummy (dummy) peak arrival time to get yest and vest is not the desired method.

[0163] c)检测获得参数的损失、并适当地重新开始并验证y-位置和磁带速度估计的产生可能会花很长时间(几个伺服帧的量级)。 Produce [0163] c) detecting loss parameters obtained and properly re-start and verify y- position and tape velocity estimates might take a long time (on the order of several servo frames).

[0164] 本发明还提供了y-位置和磁带速度估计的产生和同步伺服通道400的操作的同时监视。 While [0164] The present invention further provides a y- position and tape velocity estimates and the operation of generating synchronous servo channel 400 monitoring. 该方法依赖确定伺服通道ADC的输出端的信号的零交叉来产生yest和vest,依赖观察由有限状态机确定的时间间隔内的同一信号的峰值的发生来监视同步伺服通道操作。 The method relies on determining the zero crossing of the ADC output of the servo channel signal to generate yest and vest, the peak of the same signal within the observed dependence is determined by the finite state machine to monitor the time interval occurs synchronous servo channel operation. 定时基础产生系统的有限状态机“控制单元”1304用于提供需要的观察窗口。 Timing basis generation system of finite-state machine "Control unit" 1304 is used to provide the necessary observation windows.

[0165] 在初始参数获得处理期间,磁带速度和y-位置估计通过使用在C、D和A突发中的相应双位之间的时间间隔的测量值确定。 [0165] In the initial parameters obtained during the processing, the tape velocity and y- position estimates by using the C, D, and A bursts corresponding measured value of the time interval between dibit is determined. 为了计算由(3)和(4)给出的估计,考虑双位的峰值到达时间。 To calculate the estimated by (3) and (4) given consideration dibit peak arrival time. 但是,在产生定时基础的期间,关于伺服通道输出信号的定时相位的可靠信息通过观察伺服突发的双位的零交叉的时刻获得,而通过在匹配滤波之后确定伺服信号的峰值的时刻获得的定时信息受到噪声增加的影响。 However, during the generation of the timing basis, reliable information on the servo channel output signal of the timing phase of the servo burst by observing the zero crossing times dibit obtained, and by determining the peak of the servo signal after matched filtering time obtained timing information by the impact of an increase in noise. 这是由于,峰值的时刻由对信号导数的计算进行近似的运算确定。 This is because the peak is determined by calculating the time derivative of the signal approximating operation. 因此,通过在(3)和(4)中引入由伺服通道输出信号的零交叉的时刻获得时间间隔的测量值,与使用受到噪声增加影响的峰值到达时间的测量值相比,获得更可靠的估计。 Therefore, by (3) and (4) introduced by the zero crossing of the servo channel output signal of the time interval measured values obtained, and by using the effect of increasing the noise peak value of the time of arrival measurements compared to obtain more reliable estimates.

[0166] 在这种情况下,避免了在漏掉的峰值检测的情况下确定yest和vest的问题,因为定时基础产生系统1300提供了关于观察间隔的信息,在该观察间隔中有很大可能性会期望发生伺服通道输出信号的零交叉。 [0166] In this case, to avoid the peak detection in the case of missing determine yest and vest problems, since the timing basis generation system 1300 provides the information about the observation interval, it is very likely in the observation interval will be expected to occur between the zero crossing of the servo channel output signal. 在偶尔由于例如在伺服通道输出信号中的损伤引起的在观察间隔中没有零交叉发生的情况下,采用由定时基础产生系统提供的零交叉的估计时刻。 Occasionally, due to injury, for example in the servo channel output signal induced in the observation interval is not the case of the occurrence of a zero crossing, the zero crossing estimates generated using the system time provided by the timing basis. 但是,如果损伤持续一段跨数个伺服帧的期间,会发生定时基础产生系统的失谐。 However, if the damage during across several servo frames for a period of, detuning of the timing basis generation system may occur. 为了检测该事件,仍监视由定时基础产生系统确定的观察窗口内的伺服突发的双位的峰值的产生。 To detect this event, still monitored by the timing based servo bursts generated dibit peaks within the system to determine the generation of the observation window. 如果每伺服帧的检测的峰值数低于固定阈值,并且在一段预定时间间隔保持低于该阈值,则宣告锁定丢失,并重新开始初始获得处理。 If the number of detected peaks per servo frame below the fixed threshold, and at a predetermined time interval is kept below the threshold, loss of lock is declared and the initial acquisition processing resumes.

[0167] 如图4所示,y-位置和磁带速度估计的产生和同步伺服通道操作的监视是由两个功能实现的。 [0167] 4, y- position and tape velocity estimates and generating synchronous servo channel operation monitoring is implemented by two functions. “异步监视功能”408基于由“控制单元”1304提供的观察间隔确定零交叉时刻并检测双位的发生,如前所述该观察间隔具有关于伺服帧的突发中的双位的完整定时信息。 "Asynchronous monitoring function" 408 based on the "Control unit" 1304 provided by the observation interval determining zero crossing times and detects the occurrence of double bit, as described above in the observation interval of two-bit burst having complete information about the timing of the servo frame . “同步监视功能”1900然后基于从“异步监视功能”408获得的信息计算y-位置和磁带速度估计,并监视定时基础产生功能的产生。 "Synchronization monitoring function" based on information from 1900 and "asynchronous monitoring function" 408 obtained to calculate the position and tape velocity estimates y-, and monitor timing generation produces basic functions.

[0168] 描述异步监视功能408的操作的流程图在图17中示出。 [0168] a flow chart describing the operation of the asynchronous monitoring function 408 is shown in FIG. 17. 在获得处理的末尾处,初始化下列变量(步骤1700): Obtained at the end of treatment, initialize the following variables (Step 1700):

[0169] a)acqFlag=1,获得标记指示同步伺服通道处于跟踪模式; [0169] a) acqFlag = 1, obtained mark indicates synchronous servo channel is in tracking mode;

[0170] b)k=0,在每个采样时刻计数器加1,在每个伺服帧的开头计数器复位; [0170] b) k = 0, counter incremented by one at the beginning of each servo frame counter is reset at each sampling time;

[0171] c)k'=0,在每个零交叉时刻索引加1,在每个伺服帧的开头索引复位; [0171] c) k '= 0, at each zero-crossing instant plus an index, the index is reset at the beginning of each servo frame;

[0172] d)peakDetFlagk'=0,峰值检测标记在由伺服帧内的零交叉时刻定界的每一个第k个时间间隔的开头复位为0,如果在该第k个时间间隔内检测到双位的正峰值则峰值检测标记设置为1。 [0172] d) peakDetFlagk '= 0, peak detection flag at the beginning of each servo frame k-th zero-crossing time interval delimited time is reset to 0, if it is detected within the k-th time interval to the dual bit positive peak, the peak detection flag is set to 1.

[0173] 在每个采样时刻,“异步监视功能”408首先检查是否“控制单元”1304正信号通知新帧的发生(步骤1702)。 [0173] In each sampling time, "Asynchronous monitoring function" 408 first checks whether the "Control unit" 1304 is the occurrence of a new frame is signaled (step 1702). 回顾前面讲述过的,在伺服帧的末尾处,即在B突发的最后一个双位的零交叉处,变量IntpCntReset被断言复位“计数器”1306,变量burstFlag被设置为0以指示C突发的发生,且变量dibitFlag也被设置为0以指示C突发的第一双位的发生。 Recall described earlier, at the end of the servo frame, that is the last burst B double-zero-crossing point, variable IntpCntReset asserted reset "counter" 1306 burstFlag variable is set to 0 to indicate that the C burst occurs, and the variable dibitFlag is also set to 0 to indicate a first pair of bits C burst occurrence. 因此,只要变量IntpCntReset被断言,变量newFrame就被设置为1。 Therefore, as long as the variable IntpCntReset is asserted, the variable is set to 1 to newFrame. 在该情况下,计数器k和索引k'被复位(步骤1704)。 In this case, the counter k and the index k 'are reset (step 1704). 在检查了新帧的发生,计数器k加1(步骤1706)。 After checking the occurrence of a new frame, the counter k is incremented (step 1706).

[0174] 然后将计数器采用的值与第k个观察间隔(wLk',wRk')的边界进行比较(步骤1708),第k个观察间隔(wLk',wRk')的边界是由“控制单元”1304提供的。 [0174] Then the value of the counter using the k-th observation interval (wLk ', wRk') of the boundary (step 1708), the k-th observation interval (wLk ', wRk') of the boundary by the "Control unit "1304 provided. 在假设伺服通道信号的极性使得首先检测到双位的正峰值的情况下,期望在第k个观察间隔内检测到与伺服帧的第k个双位相关联的正峰值以及零交叉。 Under the assumption that the polarity of the servo channel signal is such that the first detected positive peak of the double-bit case, it is desirable in the k-th observation interval detected in the k-th two-phase associated with the positive peak and zero crossing of the servo frame. “控制单元”1304还提供第三变量,由wPk'表示,使得wLk'<wPk'<wRk'。 "Control unit" 1304 also provides a third variable, by wPk 'representation so wLk' <wPk '<wRk'. 然后(wLk',wRk')定义了第k个观察间隔中的子区间,在该子区间中如图18所示对于采样频率fs=15MHz和恒定磁带速度v=12.5m/s,期望检测到双位峰值。 Then (wLk ', wRk') defines the k-th observation interval subintervals, in the sub-interval 18 for sampling frequency fs = 15MHz and constant tape velocity v = 12.5m / s, the desired detected double-peak. 如果wLk'<k<wPk'(步骤1710)且通道输出采样rk超过由thres表示的给定阈值(步骤1712),则变量peakDetFlagk'被设置为1(步骤1714)以指示在第k个时间间隔内检测到了双位峰值。 If wLk '<k <wPk' (step 1710) and the channel output sample rk exceeds by thres represented by a given threshold value (step 1712), the variable peakDetFlagk 'is set to 1 (step 1714) to indicate the k-th time interval detected within a double-peak. 如果wLk'<k<wPk'且两个最新近的通道输出采样满足条件rk-1≥0且rk<0(步骤1716),则检测到零交叉,且在第k个时间间隔中的零交叉时刻计算为 If wLk '<k <wPk' and the two most recent channel output samples satisfy the condition rk-1≥0 and rk <0 (step 1716), then a zero crossing is detected, and in the k-th time interval of the zero crossing time is calculated as

[0175] [0175]

[0176] 由图18中的实心圆圈标记指示的每一个零交叉时刻被记录为整数加分数部分,其中整数部分由值k-1给出,分数部分使用简单的查找表确定。 [0176] Each zero crossing times by solid circles in FIG. 18 indicated by the marker is recorded as an integer plus fractional part, where the integer part is given by the value k-1, a fractional part using a simple lookup table to determine.

[0177] 当k=wPk'(步骤1720),观察间隔届满,索引k'加1,变量peakDetFlagk'复位为0(步骤1722)。 [0177] When k = wPk '(step 1720), the expiry observation interval, the index k' plus a variable peakDetFlagk 'is reset to 0 (step 1722). 如上所述,如果到观察间隔届满为止没有检测到零交叉,则变量tZ,k'取由定时基础产生系统1300提供的零交叉的估计的时刻值。 As described above, if the observation interval until the expiration of the zero crossing is not detected, the variable tZ, k 'takes generation system 1300 provides a zero crossing of the estimated value of time by the timing basis.

[0178] “同步监视功能”1900的框图在图19中示出。 [0178] block diagram of a "synchronization monitoring function" 1900 is shown in FIG. 19. 当计数器1902达到了观察窗口的上边界,即k=wRk'时,变量peakDetFlagk'和tZ,k'的值被输入到累加器1904及延迟线1906。 When the counter 1902 has reached the upper border of the observation window, i.e. k = wRk ', the variable peakDetFlagk' value and tZ, k 'are input to the accumulator 1904 and delay line 1906. 只要变量newFrame被设置为1(即在每一伺服帧的开头),计数器1902、累加器1904和延迟线1906被复位。 As long as the variable newFrame is set to 1 (i.e., at the beginning of each servo frame), the counter 1902, the accumulator 1904 and delay line 1906 are reset. 在A突发的结尾处,可以估计C、D和A突发中的相应双位之间的时间间隔。 A burst at the end, can be estimated C, D, and A bursts in time corresponding interval between dibit. 因此,在与A突发的最后一个双位相关联的观察窗口的末尾处,变量newEstimate被设置为1,并计算y-位置的新值和磁带速度估计。 Thus, at the end, and the variable A burst phase associated with the last one pair of newEstimate observation window is set to 1, and calculate the new value of y- position and tape velocity estimates. 参考图6,在C、D和A突发中的相应双位之间的时间间隔的测量值由下式给出: 6, the corresponding measured value of the time interval between dibit in reference to FIG. C, D, and A bursts are given by:

[0179] B1+B2+B3+B4=sum1-sum2=tZ,0+tZ,1+tZ,2+tZ,3-(tZ,8+tZ,9+tZ,10+tZ,11), (26)及 [0179] B1 + B2 + B3 + B4 = sum1-sum2 = tZ, 0 + tZ, 1 + tZ, 2 + tZ, 3- (tZ, 8 + tZ, 9 + tZ, 10 + tZ, 11), ( 26) and

[0180] A1+A2+A3+A4=sum3-sum2=tZ,4+tZ,5+tZ,6+tZ,7-(tZ,8+tZ,9+tZ,10+tZ,11). (27) [0180] A1 + A2 + A3 + A4 = sum3-sum2 = tZ, 4 + tZ, 5 + tZ, 6 + tZ, 7- (tZ, 8 + tZ, 9 + tZ, 10 + tZ, 11). ( 27)

[0181] “同步监视功能”404然后分别根据(3)和(4)执行估计yest和vest的即时值的计算,其中y=l/[2tan(π/30)]和vconst=4lfs。 [0181] "synchronization monitoring function" 404 then performed separately according to (3) and (4) to calculate the estimated yest and vest immediate value, where y = l / [2tan (π / 30)] and vconst = 4lfs. 回顾前面所述,对于正向磁带运动,l=100μm,对于反向磁带运动,l=95μm。 Recalling the foregoing, for the forward movement of the tape, l = 100μm, for reverse tape movement, l = 95μm. y-位置和磁带速度估计的平均值 y- position and tape velocity estimates of the mean

And

由图19中示出的电路1900中的一阶低通滤波器1908A、1908B估计。 Figure 19 shows the circuit in 1900 in the first-order low-pass filter 1908A, 1908B estimates. 低通滤波器1908A、1908B的时间常数选择为在减少影响估计的即时值的噪声的需要以及保持定时基础产生系统采用的估计的平均值的计算中的延迟小于磁带驱动器中的y-位置和磁带速度的最大变化率的倒数的需要之间的折衷。 Low pass filter 1908A, 1908B of the time constant selected to calculate the average of the estimated noise in the need to reduce the impact of the estimated instantaneous value of the timing basis generation system and to maintain the delay is less than the use of the tape drive y- position and tape compromise needs maximum rate of change of speed between the reciprocal.

[0182] 在每个帧的末尾处,用于变量peakDetFlagk'的累加器1904的内容指示已经检测出的伺服突发中的双位的正峰值数。 Content [0182] At the end of each frame, for the variable peakDetFlagk 'accumulator 1904 indicates a servo burst has been detected in the number of double positive peak bit. 然后将该数与由monThres表示的预定阈值比较1910,并复位累加器1904。 Then the number with a predetermined threshold value represented by monThres compare 1910 and the accumulator 1904 is reset. 如果对于等于由frameCntThres表示的预定值的连续数目的伺服帧,在帧中检测到的峰值数小于monThres,则宣告锁定丢失,并重新开始获得过程。 If the number for successive servo frames equal to a predetermined value represented by frameCntThres, the number of peaks detected in the frame is less than monThres, lock is declared lost, and begin to acquire process.

[0183] 通过仿真研究了用于产生y-位置和磁带速度估计的系统的性能。 [0183] performance through simulation studies for generating y- position and tape velocity estimation system. 图20A、20B和21A、21B示出了分别对于等于y=0m的y-位置的恒定值、等于v=6m/s(图20A、21A)和v=12m/s(图20B、21B)的磁带速度的恒定值,y-位置估计和均值和标准偏差以及磁带速度估计的标准偏差。 Figure 20A, 20B and 21A, 21B, respectively, are shown for a constant value equal to y = 0m the y- position equal to v = 6m / s (Fig. 20A, 21A) and v = 12m / s (Fig. 20B, 21B) of constant tape speed, y- position estimates and the mean and standard deviation of the estimated standard deviation of the tape velocity. 未示出磁带速度估计的平均值,因为该均值与实际值的偏差是可忽略的。 Not shown, the average tape velocity estimate, since the deviation of the mean value and the actual value is negligible. 在所述两个图中,还示出了基于峰值检测的系统性能用于比较。 In the two figures, also shows the performance of the system based on peak detection for comparison. 对于PW50/2.1μm=0.4用于产生伺服突发且ADC的采样频率fs=15MHz的Lorentzian通道,获得了结果。 For PW50 / 2.1μm = 0.4 for generating a servo burst and the ADC sampling frequency fs = 15MHz of Lorentzian channel, to obtain the results.

[0184] LPOS码元的最优检测 Optimal detection [0184] LPOS symbols

[0185] 如前所述,伺服帧通过如图1所示将A和B突发中的第二和第四双位的过渡从其标称图案位置位移,允许LPOS信息的编码,而不影响y-位置和磁带速度估计的产生。 [0185] As described above, without affecting the servo frame in Fig. 1 by the A and B bursts in the second and fourth dibit transitions from its nominal pattern position displacement, allowing encoded LPOS information, y- position and tape velocity estimates generated. 注意,调制距离取决于磁带驱动器产品。 Note that the modulation distance depends on the tape drive products. 在由IBM开发并出售的LTP产品(例如3580型)中,调制为0.25μm,而在IBM企业产品(例如3592型)中,调制为0.5μm。 Developed and sold by IBM of LTP product (e.g., 3580 type), the modulation is 0.25μm, and the IBM enterprise product (e.g., 3592 type), the modulation of 0.5μm. 在许多异步伺服通道中,LPOS信息的检测基于对伺服通道输出处的双位信号采样的峰值的位移的观察。 In many asynchronous servo channels, LPOS detection information based on the double-sampling the servo channel output signal at the peak of the displacement observed. 在A和B突发中的双位之间的八个间隔的测量值标记为ah,如图22A中对于等于1的编码的LPOS码元示出的。 In A and B of the measured values of the eight burst interval between dibit labeled ah, FIG. 22A is equal to 1 for the encoding of LPOS symbols shown. 检测器按照图22B的表执行相应间隔的测量值之间的比较,并应用要求四个可能的条件中的至少三个条件为真的大多数(majority)解码规则以确定编码的LPOS码元。 Detector performs the comparison between the measured value of the corresponding intervals according to the table in FIG. 22B, and the application requirements of the four possible conditions at least three conditions is true most of the (majority) decoding rule to determine the encoded LPOS symbol.

[0186] 基于峰值检测和记录峰值到达时间的传统方法具有如下局限性: [0186] The method has the following limitations of traditional peak detect and record the peak arrival time based on:

[0187] a)对于使用脉冲位置调制(PPM)技术编码的LPOS码元,基于采用峰值到达时间差的间隔测量的大多数解码规则不是最优检测方案。 [0187] a) using pulse position modulation (PPM) techniques encoded LPOS symbol detection scheme is not optimal use of the majority decoding rule based on the difference in arrival time of the peak interval measurement.

[0188] b)如果用于码元判决的图22的表中列出的4个条件中的2个条件满足,除了诉诸于投硬币法之外,不清楚如何去打破平局。 [0188] b) if the conditions for the four symbols of the decision table in Figure 22 are listed in the two conditions are met, in addition to resort to methods other than coin, it is unclear how to break the tie.

[0189] c)不可能有与关于LPOS码元的判决相关联的可靠性的度量。 [0189] c) can not have a measure of reliability and on the LPOS symbol decision is associated.

[0190] 本发明还提供了LPOS码元的最优检测和LPOS检测处理的可靠性的同时监视。 [0190] The present invention also provides a reliable and optimum LPOS detection of LPOS symbol detection process at the same time monitoring. 该方法基于这样一种度量,该度量对于每个LPOS码元al∈{-1,+1},给出了两种假设Hal=-1和Hal=+1的可能性。 The method is based on a metric, the metric for each LPOS symbol al∈ {-1, + 1}, is given the possibility of two hypotheses Hal = 1 and Hal = + 1's. 然后,通过使用为假设测试而采用的度量,引入与LPOS检测相关联的信噪比加上失真率的测量值,其允许监视LPOS检测处理并监视各个LPOS码元判决的可靠性。 Then, by using the metrics used for hypothesis testing, signal to noise ratio associated with the introduction of the LPOS detection plus distortion ratio measurements, which allows monitoring LPOS detection process and monitor the reliability of each LPOS symbol decisions. 尤其是,因为在磁带系统中总有两个可以得到LPOS信息的专用伺服通道可用,可以容易地采用该新引入的可靠性测量值来确定所述两个通道中的哪一个提供了最可靠的LPOS码元判决。 In particular, because in tape systems there are always two channels can be dedicated servo LPOS information is available, the reliability can be easily measured using the value of the newly introduced to determine which of the two channels provides the most reliable one LPOS symbol decision.

[0191] 回顾一下双位信号脉冲(7)和伺服通道输出信号(8)和(9)的表达式以及用于在存在AWGN的情况下从给定组中检测波形信号的最优接收机的公式表示。 [0191] Recall dibit signal pulse (7) and the servo channel output signal (8) and (9) as well as for expression in the presence of AWGN from a given group is detected waveform signal optimal receiver formula. 观察(8)和(9),可以认识到LPOS码元的编码是通过对A和B突发的第二双位和第四双位应用脉冲位置调制获得的。 Observation (8) and (9), can be appreciated LPOS symbol encoded by the A and B bursts of the second and fourth pair of double-bit application pulse position modulation obtained. 因此,在假设磁带速度恒定的情况下,与假设的可能性相关联的度量Hal=α,α∈{-1,+1}可以表示为 Therefore, under the assumption that the tape speed is constant, with the possibility of assuming the metric associated Hal = α, α∈ {-1, + 1} can be expressed as

[0192] [0192]

[0193] [0193]

[0194] [0194]

[0195] [0195]

[0196] 注意,由(28)给出的度量等价于由匹配滤波接收机获得的度量。 [0196] Note that the metric by (28) gives the equivalent measure obtained by the matched filter receiver. 现在回想对应关系bl=(al+1)/2,bl∈{0,1},引入变量的变化x=vt,并且对于β=0,1,j=1,2,定义匹配滤波波形sβ(j)(x;y)为 Looking back now, the correspondence between bl = (al + 1) / 2, bl∈ {0,1}, the introduction of variable change x = vt, and for β = 0,1, j = 1,2, the definition of the matched filter waveform sβ ( j) (x; y) is

[0197] [0197]

[0198] 度量(28)的表达式变成 [0198] measure (28) of the expression becomes

[0199] [0199]

[0200] [0200]

[0201] [0201]

[0202] [0202]

[0203] 注意,度量(30)的表达式独立于磁带速度。 [0203] Note that the metric (30) is independent of the expression of the tape speed. 回顾前面所述,定时基础产生系统提供了时刻序列{tn},使得以独立于磁带速度的每微米1/xi个采样的固定速率获得内插信号采样{r(tn)}。 Recalling the foregoing, the timing basis generation system provides the time sequence {tn}, so that independent of tape speed fixed rate per micrometer 1 / xi samples obtained interpolated signal samples {r (tn)}. 因此,在假设采样速率足够大得能够避免混叠效应、且NF=LF/xi是整数的情况下,可以使用内插信号采样在数字域将该度量计算为 Thus, assuming the sampling rate is sufficiently large to avoid aliasing effects can be obtained, and NF = LF / xi is an integer of the case, can be inserted within the signal samples in the digital domain using the metric is calculated as

[0204] [0204]

[0205] [0205]

[0206] 其中 [0206] where

i=1,2,3,4表示整数集,该整数集可以定义为 i = 1,2,3,4 denote the set of integers, which can be defined as the set of integers

[0207] (32) [0207] (32)

[0208] [0208]

[0209] [0209]

[0210] [0210]

[0211] [0211]

[0212] 本发明的最优LPOS码元检测器2300计算值mβ,l,β=0,1,并将它们进行比较以产生对在第l个伺服帧中编码的LPOS码元的判决 [0212] The optimum LPOS symbol detector 2300 of the present invention Calcd mβ, l, β = 0,1, and compare them to produce the l -th servo frame encoded LPOS symbol decision

如图23所示,即: Shown in Figure 23, namely:

[0213] [0213]

[0214] 在图24中,对于PW50=0.84μm,y=0和xi=0.25μm,示出了波形sβ(j)(x;y),β=0,1。 [0214] In Fig. 24, for PW50 = 0.84μm, y = 0 and xi = 0.25μm, shows a waveform sβ (j) (x; y), β = 0,1.

[0215] 可以得出,通过考虑由集合 [0215] can be derived by considering the collection

i=1,2,3,4指定的索引的子集以执行(31)中的求和,可以大大减少度量计算所需的复杂度。 i = 1,2,3,4 specified index to perform a subset (31) of the summation, can greatly reduce the complexity of metric computation. 尤其是,度量(31)的近似(其提供了可靠的LPOS码元判决)通过仅考虑每一集合中相应于对于β=0,1,j=1,2,波形sβ(j)(x;y)的最大绝对值的四个索引获得。 In particular, the metric (31) approximation (which provides reliable LPOS symbol decision) by considering each set corresponding to only for β = 0,1, j = 1,2, waveform sβ (j) (x; Four index y) of the largest absolute value is obtained. 然后,被考虑用于度量计算的 Then, be considered for metric calculation

i=1,2,3,4的索引的子集由下式给出: i = 1,2,3,4 index subset is given by:

[0216] [0216]

[0217] [0217]

[0218] [0218]

[0219] [0219]

[0220] 其中Lp=2.1μm表示双位的正和负峰值之间的距离。 [0220] where Lp = 2.1μm double digit indicates the distance of the positive and negative peak. 例如,被考虑用于度量(31)的近似的计算的波形sβ(1)(x;y),β=0,1的采样由图24A和24B中较大的标记指示。 For example, the waveform sβ be considered for metric (31) is approximately calculated (1) (x; y), β = 0,1 is sampled by 24A and 24B in the larger numerals.

[0221] 在图25中示出了简化的LPOS码元检测系统2500的框图。 [0221] In FIG. 25 illustrates a block diagram of a simplified LPOS symbol detection system 2500. 由“控制单元”1304提供了每一帧的16个内插时刻(在该时刻估计对该度量作出贡献的项,如(34)所示)的值{tn},“控制单元”1304具有关于伺服帧突发中的双位的完全的定时信息,如前所述。 Providing 16 the interpolated time of each frame by the "Control unit" 1304 (at the time of the measurement item is estimated to contribute, such as (34) below) the value of {tn}, "Control unit" 1304 has on frame in the burst servo dibit complete timing information, as previously described. 关于时刻{tn}的知识还允许正确地选择匹配滤波波形的采样,如图25的框图所示。 Knowledge of the time {tn} also allows the proper selection of sampling the waveform matched filter, a block diagram is shown in Figure 25. 在由“控制单元”1304确定出的每一时刻tn,计算内插信号采样,从这些内插信号采样提取选择的波形采样,sβ(j)(m;y),β=0,1。 In the "Control unit" 1304 is determined every moment tn, the calculation of interpolated signal samples from the interpolated signal samples to extract selected waveform, sβ (j) (m; y), β = 0,1. 对产生的差求平方并累加,以形成所述两个度量值mβ,l,β=0,1。 Squaring the difference of generated and accumulated to form the two metric values mβ, l, β = 0,1. 当变量newSymbolDecision在求和间隔(求和间隔在B突发的第四个双位的末尾处发生)的末尾处被“控制单元”1304设置为1时,根据规则(33)检测新的LPOS码元,且累加器复位。 When the end of the variable newSymbolDecision summation interval in (B summation interval in the fourth burst occurs at the end of the double-bit) is to be at the "Control unit" 1304 is set to 1, according to the rules (33) detecting a new LPOS code Yuan, and the accumulator is reset. 由MC,l和MI,l表示的、被假设为分别指示用于正确和不正确假设的度量的低和高度量值在检测系统的输出端出现,用于进一步处理,以确定LPOS检测处理的可靠性度量。 By MC, l and MI, l expressed, is assumed to be correct and is not used to indicate the correct assumptions measure low and high values at the output of the detection system appears, for further processing, in order to determine the LPOS detection process reliability metrics.

[0222] 在假设磁带速度恒定的情况下,已得出度量(31)的表达式。 [0222] Under the assumption of constant tape velocity, the metric has (31) an expression derived. 但是,如前所述,速度估计被输入到定时基础产生系统1300以跟踪时变速度。 However, as mentioned above, the speed is estimated to be input to the variable speed base to generate timing system to track 1300. 因此,即使在磁带运动的加速和减速期间,也能获得可靠的LPOS码元判决。 Thus, even during acceleration and during deceleration of the tape motion, but also to obtain reliable LPOS symbol decision. 图26A和图26B示出了在磁带加速期间、对于AWGN伺服通道,给出估计的速度(图26A)和计算出的度量值(图26B)的仿真结果。 26A and FIG. 26B shows the tape during acceleration, for AWGN servo channel, given the estimated velocity (Fig. 26A) and the computed metric values (Fig. 26B) of the simulation results. 其中AWGN伺服通道的特征在于SNR等于25dB,初始磁带速度等于0.5m/s,且磁带加速度等于10m/s2。 Wherein AWGN servo channel characterized in that the SNR is equal to 25dB, the initial tape speed is equal to 0.5m / s, and tape acceleration equal to 10m / s2.

[0223] 为了确定检测处理的质量,定义了在检测点的平均信噪比加上失真率。 [0223] In order to determine the quality of the detection process, the definition of the average SNR detection point plus distortion. 引入量MC和σMC2以分别表示用于正确假设的度量的均值和方差,引入量MI和σMI2以分别表示用于不正确假设的度量的均值和方差,在检测点的平均信噪比加上失真率定义为 MC and σMC2 introduction amount to represent the metric for the correct hypothesis mean and variance, the introduction amount of MI and σMI2 to represent a measure for the incorrect hypothesis mean and variance, the average SNR at the detection point plus distortion is defined as

[0224] [0224]

[0225] 与LPOS码元判决相关联的可靠性的测量值由下式给出: [0225] the reliability of the measured value associated with the LPOS symbol judgment is given by:

[0226] [0226]

[0227] 用于产生平均信噪比加上失真率的估计和每一LPOS码元判决的可靠性的系统2700的框图如图27所示。 The reliability of the system block diagram [0227] used to generate an average of distortion plus noise ratio estimates and judgments each LPOS symbol 2700 shown in Figure 27.

[0228] 如上所述,SDRest,l和RELest,l可用来分别监视LPOS检测处理和选择由两个并行工作的伺服通道所检测的LPOS码元的最可靠的一个。 [0228] As described above, SDRest, l and RELest, l can be used to monitor the LPOS detection process and select the most reliable one by two servo channels operating in parallel detected LPOS symbols, respectively. 图28示出了用于在由并行伺服通道2810A、2810B所检测的两个LPOS码元之间选择具有最高可靠性测量值的LPOS码元的系统2800的框图。 Figure 28 shows a servo passage between parallel by the detected 2810A, 2810B two LPOS symbols having the highest reliability of the measured values of the system block diagram of LPOS symbol 2800. 在比较模块2820中比较来自两个通道2810A、2810B的可靠性测量值,由选择器2830选择表示最可靠LPOS码元的测量值。 In comparison module 2820 compare measured values from the two channels reliability 2810A, 2810B, the selection by the selector 2830 indicates the measured value of the most reliable LPOS symbol.

[0229] 已测量出基于同步伺服通道的原型LPOS码元检测器的性能,并将其与如当前在LTO磁带驱动器产品中使用的基于峰值检测的传统LPOS码元检测器的性能进行比较。 [0229] have been measured based on the prototype synchronous servo channel LPOS symbol detector performance and compare it with such traditional LPOS symbol detector performance peak detection based on the current use of the LTO tape drive products. 同步伺服通道和TBS系统已通过使用FPGA实现,并通过使用在磁带驱动器伺服通道ADC的输出端处的信号作为两种系统的输入并行运行。 And TBS channel synchronous servo system has been realized through the use of FPGA, and by using the signal at the output of the tape drive servo channel ADC to run concurrently as the input of the two systems. 已使用完全相同的LPOS字解码器来解码LPOS码元的序列并测量所述两个通道内的判决误差的数目,而不应用误差校正。 Has exactly the same LPOS word decoder decodes the sequence of LPOS symbols and measure the number of decision error within the two channels, without applying error correction. 通常在正常磁带驱动操作期间提供伺服信息的所述两个物理伺服通道CHA和CHB由伺服读取器在磁带速度等于6.22m/s的情况下在磁带上的12个不同的横向位置(由环绕点(wrap)号表示)读取。 12 different lateral positions on the tape case usually providing servo information during normal tape drive operation of the two physical servo channels CHA and CHB by the servo reader in the tape speed is equal to 6.22m / s (from the surround Point (wrap) sign indicates) read. LPOS字误差的数目的测量值通过每个环绕点读取80000个LPOS字获得,并且为每个环绕点重复。 The number of errors in the measured value LPOS word read 80000 LPOS word to get through each point surround and surround point for each repetition. 结果在表I中表示。 The results are shown in Table I below.

[0230] 表I [0230] Table I

[0231] TBS和同步伺服系统之间的性能比较 [0231] compare the performance between TBS and synchronous servo system

[0232] [0232]

[0233] 注意,误差的总数不考虑从环绕点#30和环绕点#46获得的结果,因为在这些情况下,同步误差防止TBS系统令人满意地工作。 [0233] Note that the total number of errors does not consider the results obtained from the surround points # 30 and # 46 surrounding the point, since in these cases, to prevent the TBS system synchronization errors work satisfactorily. 尤其是,TBS系统同步误差是由于伺服带边缘处的间隙检测器的故障引起的。 In particular, TBS system synchronization errors due to clearance of the fault detector at the servo band edges caused. 在正常操作条件下所述两种系统的误差总数之间的比较指示基于同步伺服通道体系结构的LPOS系统取得的误差率好于基于TBS的LPOS检测系统所呈现出的误差率的大约46倍。 Under normal operating conditions of the comparison indicates that the total number of errors between the two systems of error rate achieved LPOS system synchronous servo channel architecture is better than that based on the LPOS detection system based on TBS by showing error rate of approximately 46 times. 虽然在表I中示出的结果是由特定的磁带驱动器和特定的卡盒(cartridge)获得的,期望通常所述两种系统之间的性能差不会与在此所示出的有显著的不同。 While Table I shows the results from a particular tape drive and a particular cartridge (cartridge) obtained, there will be no difference between a desired performance and illustrated here between the two systems is usually a significant different.

[0234] 重要的是要注意,虽然本发明已在完全功能的数据处理系统的环境下描述,本领域普通技术人员将认识到,本发明的处理能够以指令的计算机可读介质和各种形成分发,且不管实际用于实现这种分发的信号承载媒体的特定类型,本发明都适用。 [0234] It is important to note that although the present invention has been described in the context of a fully functioning data processing system environment, those of ordinary skill in the art will recognize that the present invention is capable of processing instructions in a computer-readable medium and a variety of formed distribution, and regardless of the actual distribution for the specific implementation of this type of signal bearing medium, the present invention is applicable. 计算机可度媒体的例子包括诸如软盘、硬盘驱动器、RAM和CD-ROM的可记录型媒体和诸如数字与模拟通信链路的传输型媒体。 Examples of media include a computer such as floppy disks, hard drives, RAM, and CD-ROM and the recordable-type media such as digital and analog transmission media type communication link.

[0235] 本发明的描述是为了示例和说明而提出的,但不打算是穷尽的,或限于所公开形式的发明。 [0235] description of the present invention is presented for purposes of illustration and description, but not intended to be exhaustive or limited to the disclosed form of the invention. 许多修改和变形对于本领域普通技术人员来说将是明显的。 Many modifications and variations to those of ordinary skill will be apparent. 实施例的选择和说明是为了最好地解释本发明的原理、实际应用,并使本领域普通技术人员能够理解本发明的各种实施例,这些实施例具有适于所考虑的特定应用的各种修改。 Is the embodiment chosen and described in order to best explain the principles of the invention, the practical application, and to those of ordinary skill to understand the invention for various embodiments, these embodiments have adapted to each particular application under consideration modifications. 另外,虽然上面对方法和系统进行了描述,本领域中的需要也可以由包括用于磁带存储系统中的横向位置(LPOS)检测的指令的计算机程序产品满足。 Further, although the upper face of a method and system has been described in the art may also be required by a tape storage system comprising lateral position (LPOS) detection of instructions for a computer program product meets.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
CN102473419A *2 Jun 201023 May 2012国际商业机器公司Control method and apparatus for a dual-channel weighted lpos combining scheme
CN102473419B *2 Jun 201022 Jul 2015国际商业机器公司Control method and apparatus for a dual-channel weighted LPOS combining scheme
CN102770914A *19 Jan 20117 Nov 2012国际商业机器公司Synchronization of symmetric timing based servo bursts
CN102770914B *19 Jan 201129 Jul 2015国际商业机器公司磁带伺服写入器及基于对称定时的伺服突发的同步方法
US890253128 Aug 20122 Dec 2014International Business Machines CorporationDynamically controlling tape velocity
US92518403 Oct 20142 Feb 2016International Business Machines CorporationDynamically controlling tape velocity
US93619287 Dec 20157 Jun 2016International Business Machines CorporationDynamically controlling tape velocity
WO2014032458A1 *21 Jun 20136 Mar 2014International Business Machines CorporationDynamically controlling tape velocity
Classifications
International ClassificationG11B21/10, G11B5/584
Cooperative ClassificationG11B5/59688
European ClassificationG11B5/596P
Legal Events
DateCodeEventDescription
30 Jan 2008C06Publication
19 Mar 2008C10Request of examination as to substance
15 Apr 2009C14Granted