Search Images Maps Play YouTube Gmail Drive Calendar More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN100479036 C
Publication typeGrant
Application numberCN 200710102594
Publication date15 Apr 2009
Filing date16 May 2007
Priority date30 Jul 2006
Also published asCN101114462A, US7365929, US7480114, US20080024904, US20080151416
Publication number200710102594.7, CN 100479036 C, CN 100479036C, CN 200710102594, CN-C-100479036, CN100479036 C, CN100479036C, CN200710102594, CN200710102594.7
Inventors伊万格罗斯S埃列夫特里奥, 卓奥瓦尼谢吕比尼, 罗伯特A.哈特金斯, 詹斯杰里托
Applicant国际商业机器公司
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Synchronous servo channel and operation method thereof
CN 100479036 C
Abstract  translated from Chinese
提供了一种用于数据磁带驱动器的完全同步的伺服通道,这种提供包括:初始获得同步伺服通道参数;产生用于信号内插的定时基础;产生磁带速度估计和y-位置估计;及最优地检测嵌入在伺服突发中的纵向位置(LPOS)码元。 Provides a fully synchronous servo channel A data tape drives, which provide, including: obtaining initial synchronous servo channel parameters; generating a timing basis for signal interpolation; produce tape velocity and y- position estimates estimation; and most excellent longitudinal position detecting embedded servo burst of (LPOS) symbols.
Claims(20)  translated from Chinese
1.一种在数据磁带驱动器中操作同步伺服通道的方法,在数据磁带驱动器中装载的磁带具有速度、相对于伺服元件的横向(y)位置和相对于磁带的末端的纵向位置,该方法包括: 在未事先指示出磁带速度或磁带的y-位置的情况下,从伺服通道模数转换器输出的信号采样序列中获得初始伺服通道参数; 从内插伺服通道信号的零交叉中产生用于伺服通道信号内插的定时基础,由此提取定时信息,而不管包括在伺服通道信号中的非等距隔开的伺服突发; 从通道模数转换器输出的信号采样序列中产生磁带速度估计和y-位置估计; 检测并解码在伺服突发中编码的纵向位置码元;以及监视纵向位置检测并给解码后的纵向位置码元分配可靠性测量值。 1. A method for operating a tape drive in a data synchronous servo channel, the data loaded in the tape drive with the tape speed, relative to the servo element of the transverse (y) and the position with respect to a longitudinal end of the tape position, the method comprising : In the absence of prior tape speed position indicating y- or tape case, to obtain the initial parameters from the servo channel signal sample sequence output of the servo channel ADC; interpolated servo channel signal is generated from the zero crossing for Timing based servo channel signal interpolation, thereby extracting the timing information, regardless of including non-equidistant in the servo channel signal spaced servo burst; generated from the tape speed signal sample sequence to estimate channel ADC output and y- position estimates; servo burst detection and decoding encoded longitudinal position symbols; and a detecting and monitoring the longitudinal position of the longitudinal position to the decoded symbol allocation reliability of measured values.
2. 根据权利要求1的方法,其中获得初始伺服通道参数的步骤包括识别在伺服通道信号中的正或负峰值的有效序列。 2. A method according to claim 1, wherein the step of obtaining the initial servo channel parameters comprises identifying positive or effective in the servo channel signal in a sequence of negative peak.
3. 根据权利要求1的方法,其中产生定时基础的步骤包括执行定时恢复环路,在定时恢复环路中由内插伺服通道信号的零交叉触发定时调整。 3. The method according to claim 1, wherein the step of generating a timing base comprises performing timing recovery loop, timing recovery loop by interpolating zero-crossing signal triggers the servo channel timing adjustment.
4. 根据权利要求3的方法,其中定时环路保持基本独立于磁带的速度。 4. The method according to claim 3, wherein the timing loop remains substantially independent of tape speed.
5. 根据权利要求3的方法,其中产生定时基础的步骤是在磁带加速和减速期间执行的。 5. The method according to claim 3, wherein the step of generating a timing base is a tape acceleration and deceleration during execution.
6. 根据权利要求l的方法,其中产生磁带速度估计和y-位置估计的步骤包括通过使用从通道模数转换器输出的信号采样确定伺服通道信号的零交叉, 6. The method according to claim l, wherein the step of generating the tape velocity and y- position estimates include the estimated signal samples from the channel by using the output of the ADC determines the zero crossing of the servo channel signal,
7. 根据权利要求6的方法,其中产生磁带速度估计和y-位置估计的步骤还包括监视伺服通道信号的双位的峰值的发生。 7. A method according to claim 6, wherein the generating step and the tape velocity estimates y- location estimate further comprises dibit peak monitor servo channel signal occurs.
8. 根据权利要求7的方法,其中产生磁带速度估计和y-位置估计的步骤还包括如果双位的峰值数小于预定阈值,则宣告锁定丢失, 并重新开始初始获得。 8. The method according to claim 7, wherein the tape velocity estimates and y- generating a location estimate further comprises if the number of double-peak value is less than the predetermined threshold, the lock is declared lost, and restart the initial obtained.
9. 根据权利要求1的方法,其中检测纵向位置码元的步骤包括脉沖宽度调制(PWM)检测。 9. The method according to claim 1, wherein the step of detecting the longitudinal position of the symbols includes a pulse width modulation (PWM) is detected.
10. 根据权利要求l的方法,其中:检测和解码纵向位置码元的步骤包括同时在第一和第二并行伺服通道中检测和解码纵向位置码元,从而分别产生第一和第二纵向位置码元;及给解码后的纵向位置码元分配可靠性测量值的步驟包括给第一纵向位置码元分配第一可靠性测量值并给第二纵向位置码元分配第二可靠性测量值;该方法还包括在笫一和第二纵向位置码元之间选择具有最高的分配的可靠性的纵向位置码元。 10. The method according to claim l, wherein: the step of detecting and decoding the longitudinal position of symbols comprises simultaneously detecting the first and second parallel longitudinal servo channel and decode the symbol position, thereby respectively generating a first and a second longitudinal position symbols; and to the longitudinal position of the decoded symbol allocation reliability of measurement values comprises a first longitudinal position to a first symbol assigned to the reliability of the measurement value and a second longitudinal position of the second symbol distribution measurement reliability; The method further includes between Zi and a second longitudinal position of the symbol to select the longitudinal position of the reliability symbols having the highest assigned.
11. 一种用于数据磁带驱动器的同步伺服通道,包括: 伺服读取器,被配置为从数据磁带读取伺服突发; 固定频率时钟;模数转换器,可操作用于以由时钟提供的采样速率输出信号采样,并被耦合以从伺服读取器接收包括伺服突发的伺服通道信号;获得模块,具有被耦合以便以由所迷时钟建立的采样速率从模数转换器接收信号采样序列的第一输入端,并可操作用于在没有事先指示出磁带速度或磁带的y-位置的情况下从所述信号釆样序列中产生初始伺服通道参数;定时基础产生器,对内插伺服通道信号的零交叉作出响应,工作于由所述时钟建立的速率,并可操作用于输出多个信号,所述多个信号包括用于产生内插伺服信号采样的定时信息;伺服通道信号内插器,具有被耦合以从模数转换器接收信号采样序列的第一输入端和被耦合以从定时基础产生器接收定时倌息用于产生内插伺服信号采样的第二输入端;最优纵向位置检测器,具有被耦合以接收来自伺服通道信号内插器的输出的第一输入端和被耦合以接收从定时基础产生器输出的所述多个信号中的至少一个的第二输入端,所述纵向位置检测器可操作用于检测和解码嵌入在伺服突发中的纵向位置码元;纵向位置检测监视器,可操作用于给解码后的纵向位置码元分配可靠性测量值;及通道参数估计器,其初始对来自获得模块的初始伺服通道参数作出响应,该通道参数估计器具有被耦合以接收来自模数转换器的信号采样序列的第一输入端和被耦合以接收从定时基础产生器输出的信号中的至少一个的第二输入端,该通道参数估计器可搮作用于从通道模数转换器输出的信号采样序列中产生磁带速度估计和y-位置估计, 11. A method for synchronizing data tape drive servo channel, comprising: a servo reader, configured to read the servo burst data from the magnetic tape; fixed frequency clock; digital converter operable to provide the clock The sampling rate of the output signal samples, and coupled to receive from the servo reader comprises a servo burst servo channel signal; acquisition module, so as to be coupled with the sampling rate established by the clock fans received signal samples from the analog- first input sequence, and operable to generate the initial parameters from the servo channel signal Bian-like sequence in the absence of prior tape speed position indicating y- or tape case; timing basis generator, the interpolation zero crossing signal in response servo channel, operating in the rate established by the clock, and operable to output a plurality of signals, said plurality of signals comprises interpolating the servo signal samples to produce timing information is used; the servo channel signal an interpolator, coupled to receive a signal having a sequence of samples from the analog to digital converter and a first input terminal coupled to receive the timing from the timing generator groom basic information for generating a servo signal samples interpolated second input terminal; most Excellent longitudinal position detector, having coupled to receive an output from the servo channel signal interpolation device and a first input terminal coupled to said plurality of signals received from the timing basis generator output at least one of the second input end, the longitudinal position detector operable to detect and decode embedded in the longitudinal position of the servo burst symbol; longitudinal position sensing monitor operable to decoded symbols assigned longitudinal position measurement reliability value ; and channel parameter estimator initial servo channel parameters from the initial acquisition module responds, the channel parameter estimation has been coupled to the first input terminal for receiving a signal from the ADC sample sequence and is coupled to receive From the signal output from the timing generator basis of at least one of the second input terminal, the channel parameter estimator may 搮 acting on the magnetic tape from the signal samples to produce a sequence of channel ADC output speed estimate and y- position estimates,
12. 根据权利要求11的伺服通道,其中获得模块被配置为通过使用从通道模数转换器输出的信号采样,识别在伺服通道信号中的正或负峰值的有效序列。 Servo channel according to claim 11, wherein the obtaining module is configured to use the signal samples from the ADC output of the channel, in the servo channel signal, identifying a positive or negative peak valid sequences.
13. 根据权利要求11的伺服通道,其中定时基础产生器还可操作用于在磁带加速和减速期间产生所述多个信号。 Servo channel according to claim 11, wherein the base timing generator is further operable for generating said plurality of signals during tape acceleration and deceleration.
14. 根据权利要求11的伺服通道,其中通道参数估计器还可操作用于通过使用从通道模数转换器输出的信号采样从伺服通道信号的零交叉中产生磁带速度估计。 Servo channel according to claim 11, wherein the channel parameter estimator is further operable to signal samples from the channel by using the ADC output tape velocity estimates generated from the zero-cross the servo channel signal.
15. 根据权利要求14的伺服通道,其中通道参数估计器还可操作用于通过监视伺服通道信号中的双位的峰值的发生而产生磁带速度估计和y-位置估计。 Servo channel according to claim 14, wherein the channel parameter estimator is further operable to servo channel signal by monitoring the occurrence of a peak generated dibit tape velocity estimates and y- position estimates.
16. 根据权利要求11的伺服通道,其中: 该伺服通道包括第一和第二并行伺服通道;所述纵向位置检测器还可操作用于同时在笫一和第二并行伺服通道中检测和解码纵向位置码元,从而分别产生第一和第二纵向位置码元;及所述纵向位置检测监视器还可採作用于:给笫一纵向位置码元分配第一可靠性测量值并给笫二纵向位置码元分配第二可靠性测量值;及在第一和第二纵向位置码元之间选择具有最高的分配的可靠性的纵向位置码元。 Servo channel according to claim 11, wherein: the servo channel comprising first and second parallel servo channel; the longitudinal position detector is further operable for simultaneously detecting Zi and second parallel servo channel and decoding the longitudinal position of the symbol, thereby respectively generating a first and a second longitudinal position symbols; and detecting the longitudinal position monitor may also be taken to act on: Zi a longitudinal position to assign a first symbol and reliability of the measurement value to Zi two assigning a second longitudinal position of the symbol reliability of measurement value; and selecting longitudinal position reliability symbol having the highest assigned between the first and the second longitudinal position symbols.
17. —种用于数据磁带驱动器的同步伺服通道,包括: 伺服读取器,被配置为从以磁带速度纵向运动通过祠服读取器的数据磁带读取祠服突发,该磁带还具有相对于伺服读取器的橫向(y)位置和相对于磁带的末端的纵向位置; 可工作于固定频率的时钟;模数转换器,可操作用于以由时钟提供的采样速率输出信号釆样,并被耦合以从,服读取器接收包括伺服突发的伺服通道信号,所述伺服突发包括嵌入其中的编码的纵向位置码元;工作于由所述时钟建立的速率的通道参数获得模块,包括:被耦合以从模数转换器接收信号采样序列的笫一输入端; 被耦合以从所述通道参数估计器接收至少一个控制信号的第二输入端;及多个输出端,用于至少输出初始磁带速度估计和初始y-位置估计;定时基础产生器,初始至少对来自参数获得模块的初始磁带速度估计和初始y-位置估计作出响应,该定时基础产生器包括控制单元并可操作用于输出多个控制信号和定时误差信号;伺服通道信号内插器,工作于由所述时钟建立的速率,包括: 被耦合以从模数转换器接收信号采样序列的笫一输入端;及被耦合以从定时基础产生器接收定时信息用于产生内插伺服信号采样的笫二输入端;通道参数估计器,初始至少对来自参数获得模块的初始磁带速度估计和初始y-位置估计作出响应,该参数估计器包括:被耦合以从模数转换器接收信号采样序列的笫一输入端;及被耦合以接收从定时基础产生器输出的信号中的至少一个的第二输入端;及从通道模数转换器输出的信号采样序列中提供磁带速度估计的第一输出端和从通道模数转换器输出的信号釆样序列中提供y-位置估计的第二输出端; 最优纵向位置检测器,包括:被耦合以接收来自伺服通道信号内插器的输出的第一榆入端;被耦合以接收从定时基础产生器输出的所述多个信号中的至少一个的笫二输入端;及提供解码后的纵向位置码元的输出端;及纵向位置检测监视器,可操作用于给解码后的纵向位置码元分配可靠性测量值。 17. - kind of tape drives for data synchronization servo channels, including: a servo reader is configured from a tape speed of longitudinal motion reads Temple temple clothing clothes burst through the tape reader data, the tape also has relative to the servo reader lateral (y) position and a longitudinal position relative to the end of the tape; and can work in a fixed frequency clock; ADC operable at a sampling rate provided by the sample clock output signal Bian and coupled to the, reader receives server comprises a servo burst servo channel signal, wherein the embedded servo burst includes encoded longitudinal position symbols; work in established by the clock rate of the channel parameters obtained module, comprising: an input terminal coupled to Zi received signal samples from the ADC sequence; is coupled to receive from the at least one channel parameter estimator of a second control signal input terminal; and a plurality of output terminals, with The initial tape velocity estimate and initial y- position estimates at least an output; timing basis generator, at least for the initial parameters obtained from the initial tape velocity estimate and initial y- module location estimates in response to the timing basis generator comprises a control unit and operative to output a plurality of control signals and timing error signal; interpolator servo channel signal, operating in a rate established by the clock, comprising: Zi is coupled to receive a signal sample sequence from an input analog to digital converter; and is coupled to receive timing information from the timing basis generator for generating a servo signal sampling interpolation of two-input Zi; channel parameter estimator, at least for the initial parameters obtained from the initial tape velocity estimation module to estimate the position and the initial y- In response, the parameter estimator comprises: Zi is coupled to an input sequence of received signal samples from the ADC; and is coupled to receive a signal from the timing basis generator output at least one of the second input terminal; and provided from the signal sample sequence of the channel ADC output tape velocity estimates a first output terminal and a second output for providing a signal from Bian-like sequence in the y- channel ADC output location estimates; optimal longitudinal position detector comprising: coupled to receive a first end into elm servo channel signal from the output of the interpolator; is coupled to the plurality of signals received from the timing basis generator output at least one of the two-input Zi ; and providing decoded output terminal longitudinal position symbols; and longitudinal position sensing monitor operable to decoded symbol allocation reliability longitudinal position measurements.
18. 根据权利要求17的伺服通道,其中参数获得模块被配置为通过使用从通道模数转换器输出的信号采样,识别在伺服通道信号中的正或负峰值的有效序列。 Claim 18. The servo channel 17, wherein the parameter obtaining module is configured to output signal samples from the channel by using the ADC, the effective recognition sequence in the positive or negative peak of the servo channel signal.
19. 根据权利要求17的伺服通道,其中通道参数估计器还可操作用于通过使用从通道模数转换器输出的信号采样从伺服信号的零交叉中产生磁带速度估计和y-位置估计。 According to claim 17, servo channel, wherein the channel parameter estimator is further operable to signal samples by using the ADC output is generated from the channel estimation and y- tape velocity estimate from the zero-cross position servo signal.
20. 根据权利要求19的伺服通道,其中通道参数估计器还可操千通过监视—计和y-位置估计, 20. The claim 19 servo channel, where the channel parameter estimator can be operated by monitoring thousands - estimated count and y- position,
Description  translated from Chinese

同步伺服通道及其操作方法 Synchronous servo channel and its method of operation

技术领域 FIELD

本发明总体上涉及磁带存储系统中的伺服通道体系结构,尤其涉及同步伺服通道体系结构。 Relates to tape storage systems generally to servo channel architecture of the present invention, particularly relates to a synchronous servo channel architecture.

背景技术 BACKGROUND

基于定时的伺服(TBS)是90年代末专门为线性磁带驱动器开发的技术。 Based on the timing of the servo (TBS) is dedicated to the late 1990s, the development of linear tape drive technology. 在TBS系统中,记录的伺服图案由具有两种不同的方位角斜坡的过渡(transition)构成,头(head)位置从由读取该图案的窄头产生的相对脉冲定时中得出。 In TBS systems, recorded servo patterns having two different azimuth angles slope transition (transition) structure, the head (head) position by the timing pulse derived from a relatively narrow head reading the pattern generated. TBS图案还允许编码额外的纵向位置(LPOS)信息而不影响横向位置误差信号(PES)的产生。 TBS patterns also allow the encoding of additional longitudinal position (LPOS) information without affecting the lateral position error signal (PES) is generated. 这一点通过从其标称图案位置位移过渡来获得,如图1所示。 This is accomplished by the displacement of the transition from its nominal position to obtain a pattern as shown in Fig. 在磁带系统中通常有两种LPOS信息和PES可从其获得的专用伺服通道可用。 In tape systems there are typically two dedicated servo channels from which LPOS information can be obtained and the PES available. 用于线性磁带系统的基于定时的循轨伺服被线性磁带开放(LTO)联盟采用作为所谓LTO磁带驱动系统的标准。 For linear tape system based on the timing of the tracking servo is linear tape open (LTO) coalition called LTO tape drive system as standard.

通常,对LPOS信息的检测是基于对在伺服通道输出处的双位信号采样的峰值的位移的观察的。 Typically, the detection of LPOS information is based on the displacement of the peak of the servo dibit signal samples at the output of the channel viewed. 这种方法具有以下严重局限性: This method has the following serious limitations:

a) 如果期望以每微米的采样数表示的、独立于磁带速度的恒定速率,A/D转换器采样频率必须要随着磁带速度而变化。 a) If it is desired to express the number of samples per micrometer, independent of tape speed at a constant rate, A / D converter sampling frequency must vary with the speed of the tape. 如果采用固定的采样频率,该速率取决于磁带速度。 If a fixed sampling frequency, the rate depends on the tape speed.

b) 选择固定采样速率的结果是在LPOS检测器(峰值检测器) 处每双位的采样数的响应可依赖于速度而变化。 b) selecting a fixed sampling rate results in the LPOS detector (peak detector) at each pair of bits in response to the number of samples may vary depending on the speed of change.

c) 在加速和减速期间,即在速度向目标速度改变的阶段,不能进行可靠的LPOS检测。 c) during the acceleration and deceleration, i.e., the target speed change speed stage, can not be reliable LPOS detection.

d) 对于使用脉沖位置调制(PPM)技术产生的LPOS图案来说, 峰值检测不是最优的检测方案。 d) using pulse position modulation (PPM) techniques for generating the LPOS pattern, the peak detector is not optimal detection scheme. e) 在伺服通道的输出处不可能监视信号的时间演变,因为没有时间基准。 e) at the time the output of the servo channel is not possible to monitor the evolution of the signal, because there is no time reference.

f) 不可能有对LPOS检测处理的可靠性的度量。 f) there can be a measure of the LPOS detection process reliability.

为了使用图2所示的现有技术的LPOS异步体系结构在高速下支持足够的分辨率,需要更高ADC釆样速率。 In order to use the prior art shown in FIG. 2 LPOS asynchronous architecture to support sufficient resolution at high speed, preclude the need for higher ADC sample rate. 例如,如果最高目标速度是v-12.5m/s,则在假设ADC釆样速率为15MHz的情况下获得0.83fim的分辨率。 For example, if the highest target velocity is v-12.5m / s, then the assumption that the sample rate of ADC preclude the resolution obtained 0.83fim case of 15MHz. 很明显,当想要分辨+ A0.25nm的LPOS脉沖位置调制时,这样的分辨率是不够的。 Obviously, when you want to tell A0.25nm + LPOS pulse position modulation, so the resolution is not enough. 特别是,要想使用异步方法获得0.05jim的分辨率,需要250MHz的采样速率。 In particular, in order to use asynchronous method to obtain 0.05jim resolution required sampling rate of 250MHz.

发明内容 SUMMARY

本发明提供了一种完全同步的伺服通道,这种提供包括:初始获得同步伺服通道参数;产生信号内插的定时基础;产生磁带速度估计和y-位置估计;最优地检测嵌入到伺服突发中的纵向位置(LPOS)码元。 The present invention provides a fully synchronous servo channel, which provided comprising: obtaining an initial synchronous servo channel parameters; generating a timing basis for signal interpolation; produce tape velocity and y- position estimates estimation; optimally detecting embedded servo protrusion Hair longitudinal position (LPOS) symbols.

同步伺服通道参数的初始获得可以不依赖于磁带速度的任何以前已知的测量值在广泛范围的磁带速度下盲进行。 Any previously known measured values of synchronous servo channel parameters may be obtained without depending on the initial tape speed in a wide range of tape speed performed blind. 另外,该初始获得是从ADC的输出中产生的,无需参考驱动马达电流。 In addition, the initial generation is obtained from the output of the ADC, without reference to the drive motor current.

信号内插的定时基础的产生可以在广泛范围的磁带速度下通过从不均匀间隔开的伺服突发获得中提取定时信息执行,甚至可以在磁带加速和减速的期间执行。 Signal interpolation timing basis generation by extracting timing information from the servo burst unevenly spaced obtained performed under a wide range of tape speed, can be executed even during acceleration and deceleration of the tape.

磁带速度估计和y-位置估计的产生也从ADC的输出中获得,从而避免在估计的产生和定时恢复过程之间产生联系。 Tape speed estimation and y- position estimates generated also received from the ADC output, thereby avoiding contact between the estimated production and timing of the recovery process. 这些估计优选地从由伺服读取器提供的伺服通道信号的零交叉中获得,而不是使用受到了噪声增加不利影响的峰值检测获得。 These estimates are preferably obtained from the zero-cross provided by a servo reader servo channel signal, rather than being used to increase the adverse effects of noise peak detection obtained. 伺服通道信号的零交叉是通过观察ADC输出信号采样序列确定的。 Zero-crossing signal is the servo channel ADC output signal by observing the sample sequence determined.

纵向位置(LPOS)码元的最优检测也不依赖于峰值检测。 Optimal detection longitudinal position (LPOS) symbol is not dependent on the peak detection. 另外, 可靠性测量值或值可以分配给检测输出。 In addition, the reliability of the measured value or values can be assigned to the detection output. 当磁带驱动器包括两个并行伺服通道且可靠性值被分配给每一个并行伺服通道检测的LPOS码元时,可比较所述两个值,并可选择具有表示最可靠检测的值的码元。 When the tape drive includes two parallel servo channel and a reliability value is assigned to each one parallel servo channel detection LPOS symbols, can compare the two values, and selecting a detected value represents the most reliable symbols. 附图说明 Brief Description

图1示出了具有嵌入的LPOS信息的伺服突发的LTO规范。 Figure 1 illustrates the LTO specification LPOS information having embedded servo bursts. 图2示出了现有技术LPOS异步检测体系结构的框图。 Figure 2 shows a block diagram of a prior art LPOS asynchronous detection architecture. 图3示出了本发明LPOS异步体系结构的框图。 Figure 3 shows a block diagram of the invention of the present LPOS asynchronous architecture. 图4示出了可实现本发明的异步伺服通道的框图。 Figure 4 shows a block diagram of asynchronous servo channel of the present invention. 图5示出了描述初始获得处理的流程图. Figure 5 shows a flowchart describing the processing of the initial obtained.

图6是用于磁带速度和y-位置估计的计算的峰值到达时间之间的间隔的曲线图。 Figure 6 is a peak for the tape velocity and y- position estimates computed arrival time graph interval between.

图7是正确获得的概率的曲线图。 Figure 7 is a graph showing the probability of correctly obtained. 图8是错误获得的概率的曲线图。 Figure 8 is a graph showing the probability of error obtained.

图9是速度误差的标称标准偏离相对于在伺服通道输出处的信噪比的曲线图。 Figure 9 is a speed difference with respect to the nominal standard deviation from the graph in SNR at the output of the servo channel.

图10是平均获得时间相对于在伺服通道输出处的信噪比的曲线图。 FIG 10 is obtained on average with respect to time in the signal to noise ratio at the output of the servo channel graph.

图IIA是双位脉冲的自动校正的曲线图。 Figure IIA is a two-bit pulse graph is automatically corrected. 图IIB是自相关函数的偏导数的曲线图。 Figure IIB is self-graph partial derivative of the correlation function. 图12示出了定时基础产生系统的操作的框图。 Figure 12 shows a block diagram of the operation of the timing basis generation system. 图13示出了定时基础产生系统的更加详细的框图。 Figure 13 shows a more detailed block diagram of the timing basis generation system. 图14示出了定时基础产生系统的线性等价模型。 Figure 14 shows a linear equivalent basis timing model generation system. 图15示出了定时基础产生系统的简化模型。 Figure 15 shows a simplified model of the timing basis generation system. 图16A和16B分别示出了对于v-0.5m/s和对于v- 12.5m/s,内插信号采样和定时相位会聚的曲线图。 16A and 16B, respectively, shows that for v-0.5m / s and for v- 12.5m / s, the interpolated signal samples and timing phase convergence graph.

图n是描述了异步监视功能的操作的流程图。 FIG n is a flowchart describing the operation of the asynchronous monitoring function.

图18是示出了观察窗口的产生的时序图。 FIG 18 is a timing diagram illustrating the generation of the observation window. 图19是异步监视功能的框图。 Figure 19 is a block diagram of an asynchronous monitoring functions.

图20A和20B分别示出了对于v=6m/s和对于v=12m/s, y-位置估计的均值和标准偏离的曲线图。 20A and 20B, respectively, shows that for v = 6m / s, and graphs for v = 12m / s, y- position estimates of the mean and standard deviation. 图21A和21B分别示出了对于v=6m/s和v=12m/s的磁带速度估计的标准偏离的曲线图。 21A and 21B, respectively, shows that for v = 6m / s and v = 12m / s of the estimated standard deviation of the tape velocity graph.

图22A和22B分别是基于峰值检测的用于LPOS码元的大多数(majority)解码规则的示意图和表。 22A and 22B, respectively, are based on peak detection of LPOS symbols for the majority (majority) decoding rule is a schematic diagram and table.

图23示出了最优LPOS检测系统的框图。 Figure 23 shows a block diagram of the optimum LPOS detection system.

图24A和24B分别是用于A 、 B突发中的第二和笫四双位中的度 24A and 24B are used for A, B and undertaking of the second burst of four pairs of bits of

量计算的匹配滤波波形的曲线图。 Graph calculating matched filter waveform.

图25示出了简化的LPOS码元检测系统的框图。 Figure 25 shows a simplified block diagram of LPOS symbol detection system.

图26A和26B分别是在磁带加速期间估计的速度和计算的度量 26A and 26B, respectively, are estimated during the acceleration and velocity measurements calculated in the tape

值的曲线图。 Graph values.

图27示出了用于SDR和码元判决(decision)可靠性估计的产生的系统的框图。 Figure 27 shows a block diagram for SDR and symbols judgment (decision) to produce reliable estimates of the system.

图28示出了用于在由并行伺服通道检测到的两个LPOS码元之间选择具有最高可靠性测量值的LPOS码元的系统的框图。 Figure 28 shows a block diagram for parallel servo channel between the two detected LPOS symbols having the highest reliability of the measured value LPOS symbol system.

具体实施方式同步伺服通道体系结构 DETAILED DESCRIPTION synchronous servo channel architecture

利用本发明的体系结构,动态内插器允许在检测器输出处的任何采样速率,只有一个局限性,这是由于可能的混叠效应。 Architecture utilizing the present invention, the interpolation in the dynamic within allows any sampling rate at the output of the detector, only one limitation, which is possible due to aliasing effects. 例如,在磁过渡之间的距离为Lp=2.1nm的情况下,没有与15MHz固定ADC时钟的混叠效应而实现的最大速度是vmax==2.1x (15/2) -15.75m/s。 By example, the distance between the magnetic transition is Lp = 2.1nm, the maximum speed with no aliasing effects 15MHz fixed ADC clock is achieved vmax == 2.1x (15/2) -15.75m / s. 在这种情况下,在用于实现0.05jim的分辨率的突发内插之后的等价釆样频率等于315MHz。 In this case, the equivalent burst inserted in resolution for realizing 0.05jim after Bian sample frequency is equal to 315MHz. 注意,这是在异步体系结构中需要的固定的采样频率。 Note that this is the fixed sampling frequency in an asynchronous architecture needs.

图3示出了本发明的同步LPOS检测体系结构400的基本构建块。 Figure 3 shows a synchronous LPOS detection architecture 400 of the present invention, the basic building blocks. 因为每单位长度的采样数是固定并独立于突发内插之后的速度的, 可以使用匹配的滤波方法来进行在存在噪声的情况下的PPM的最优检测。 Because the number of samples per unit length is fixed and independent of velocity after the burst of interpolation, filtering method may be used to carry out the optimal matching detection of PPM in the presence of noise. 匹配的滤波器将具有固定的每单位长度的采样数。 Matched filter will have a fixed number of samples per unit length. 另外,位置误差和速度估计可以通过测量基于定时的伺服突发的各个双位的零交叉之间的距离获得。 In addition, the position error and velocity estimates can be obtained by measuring the distance based on the timing of the servo bursts each double-zero-crossing between. 可靠的位置误差产生、速度估计和LPOS检测是在斜坡向上(ramp-up)、斜坡向下(ramp-down)期间对于多至最大速度的任何恒定磁带速度执行的,该最大速度由下式给出作为第一估计 Reliable position error generation, velocity estimation, and LPOS detection is up (ramp-up), the ramp down (ramp-down) for the period up to the maximum speed for any constant tape velocity performed in the slope, the maximum speed is given by As a first estimate

其中Lp是磁过渡之间的最小距离,以nm表示,且fs是ADC的固定采样速率,以MHz表示。 Where Lp is the minimum distance between the magnetic transition, in nm, and fs is the fixed sampling rate of the ADC, in MHz. 也可以支持对信噪比加上失真率的监视以便进行伺服通道选择。 You can also add support for the signal to noise ratio distortion rate monitor for servo channel selection.

图4示出了同步伺服通道400的更详细的框图。 Figure 4 shows a more detailed block diagram of the synchronous servo channel 400. 同步伺服通道参数的初始获得由获得电路402执行。 Synchronous servo channel parameters is performed by obtaining an initial get 402 circuits. 磁带速度和y-位置估计及祠服通道操作的监视由参数估计块404提供。 Surveillance tape speed and y- position estimates and the Temple service channels operated by the parameter estimation block 404 provides. 必须产生内插信号采样从而这 Interpolated signal samples must be generated so that

定时基础产生块1300确定。 Timing generation block 1300 to determine the base. 最后,LPOS码元判决由最优LPOS检测块2300给出。 Finally, LPOS symbol verdict given by the best LPOS detection block 2300.

同步伺服通道参数的初始获得 Synchronous servo channel parameters to obtain initial

同步伺服通道设计的一个主要挑战是对用于定时基础底层信号内插的产生的初始时刻和标称步内插间隔的确定。 A major challenge for synchronous servo channel design is to determine the time of the initial basis for the underlying internal timing signals generated and inserted a nominal step interpolation interval. 以微秒表示的作为磁带通过以微米表示的标称步内插距离Xi的标称步内插间隔Ti由下式给出: As the magnetic tape by the nominal step interpolation distance in microns Xi nominal step interpolation interval expressed in microseconds Ti is given by:

0 , (2) 0, (2)

其中v表示以m/s表示的磁带速度。 Where v is the tape velocity in m / s expressed. 另外,对于基于匹配滤波的最优LPOS码元检测来说,还需要知道伺服读取器的横向(y)位置。 In addition, for optimum LPOS symbol detection based on matched filtering, it also needs to know the servo reader transverse (y) position. 因此, 作为初始获得处理的结果,除了需要获得初始时刻和标称步内插间隔之外,还需要获得磁带速度和y-位置的可靠估计。 Therefore, as an initial treatment results obtained, in addition to the initial time and need to get inside the nominal step interpolation interval, but also need to obtain a reliable estimate of the tape speed and y- position.

初始获得应当使用模数转换器(ADC )输出信号采样的序列而一点也不需要事先知道磁带速度或y-位置执行。 Should be used to obtain an initial digital converter (ADC) sampling of the output signal sequence and is not required to know in advance the location of the tape speed or y- execution. 因此,重要的是设计一种完成广泛范围( 一般对于LTO驱动系统来说在从0.5m/s到12.5m/s 的范围内)的磁带速度的通道参数的可靠初始获得的方法。 Therefore, it is important to design a wide range of complete (typically for an LTO drive systems in the range from 0.5m / s to 12.5m / s) is a reliable method for the initial tape speed channel parameters obtained. 因为ADC的采样频率固定且通常在从15MHz到24MHz的范围内,在低磁带速度的情况下将获得每双位若干采样的伺服突发,而在高磁带速度的情况下将仅仅每双位几个采样的伺服突发将被给予获得电路。 Since the sampling frequency of the ADC is fixed and typically in the range from 15MHz to 24MHz, in the case of low tape speed will acquire a few samples per dibit of a servo burst, and in the case of high tape speed will only a few bits per pair sample servo burst will be obtained given circuit. 由于在初始获得的开始无法得到定时信息,获得方法将依赖于对伺服突发的双位的峰值的观察。 Since at the beginning of the initial timing information can not be obtained, will depend on the method of obtaining observations of dibit peaks of the servo burst. 通常,如果通道输出信号采样的绝对值超出给定阈值的话,检测到伺服突发的双位的正或负的峰值。 Typically, if the absolute value of the channel output signal sample exceeds a given threshold value, the detection of a double-bit positive or negative peak value of the servo bursts. 因此,在低速度的情况下,获得方法必须在即使来自一个双位的几个连续信号采样超出阈值的情况下,也能够检测到唯一峰值。 Thus, in the case of low speed, the method must be obtained in the case where even if several consecutive signal samples from a dibit exceeds the threshold, it is possible to detect a unique peak. 在高速度的情况下,其必须要应付来自双位的正或负的峰值的信号采样都没有超过阈值的事件。 In the case of high speed, which must deal with positive or negative peak of the signal samples from the dual bit did not exceed the threshold event. 注意,伺服帧由C、 D、 A、 B伺服突发的序列识别,如图1所示。 Note, the servo burst frame sequence recognition by C, D, A, B servo, shown in Figure 1.

本发明还提供了基于伺服帧中的【4455】突发的有效序列的识别的同步伺服通道参数的初始获得。 The present invention further provides an initial synchronous servo channel parameters based on the servo frame for the [4455] identification of a valid burst sequence obtained. 这是通过伺服突发中的双位的正和负的峰值之间的时间间隔的粗略估计实现的。 This is a rough estimate by the time the servo burst dibit of the positive and negative peak interval between implementations.

描述用于初始获得的方法的流程图如图5所示。 The method of obtaining the initial description of the flowchart shown in Figure 5 is used. 在获得处理的开始,初始化以下变量和数组(步骤500): At the beginning of obtaining treatment, initialize the following variables and arrays (step 500):

a) acqFlag=0,获得标记指示出同步伺服通道处于获得模式; a) acqFlag = 0, obtained marks indicating the synchronous servo channel is in acquisition mode;

b) kO,在每个釆样时刻计数器加1; b) kO, preclude the sample at each time counter is incremented;

c) 11=0,在每次信号采样的绝对值超出了由thres表示的给定阁值时,给索引加l; c) 11 = 0, the absolute value of each signal sample exceeds a given value Court, adding to the index l represented by thres;

d) Np=0,在伺服突发内检测到的双位峰值(正和负)的数目; d) Np = 0, number of dibit peaks (positive and negative) within the servo burst detected;

e) Tp-Tp,ma"双位的所述两个峰值之间的时间间隔的粗略估计;选 e) Tp-Tp, ma "rough estimate of the time between two peaks of the dibit interval; selected

择初始值Tp,max,使得对于给定范围内的所有磁带速度,双位峰值之 Optional initial value Tp, max, so that for a given range of all the tape speed, double-peak value

间的时间间隔小于Tp,mj Between time interval is less than Tp, mj

f) Tn,其元素由峰值到达时间给出的向量; f) Tn, whose elements are given by the peak arrival time vector;

g) p-[j,其元素由伺服突发中检测出的峰值的数目给出的向量。 g) p- [j, the number of its elements is detected by a servo burst peak given vector.

在每一采样时刻,计数器加l(步骤502 ),并将其与给定maxCnt 值比较(步骤504):如果计数器超过maxCnt,则超时期间届满(步骤506),获得处理重新开始。 Expire (step 506) if the counter exceeds the period maxCnt, timeout, get treatment resumed: at each sampling time, the counter is incremented l (step 502), and compares it with the given maxCnt value (step 504). 否则,在时间k的信号釆样的绝对值, 由lrkl表示,与给定阈值进行比较(步骤508)。 Otherwise, at time k the absolute value of the signal sample Bian, represented by lrkl, with a given threshold value (step 508). 如果lrkl超过了阈值,则很有可能获得了对应于双位的峰值(正或负)的信号釆样。 If lrkl exceeds the threshold value, it is likely to obtain a two-position, corresponding to the peak value (positive or negative) of signal samples Bian. 在索引 Index

n加1的情况下,笫n个峰值到达时间和信号采样被存储为tn=kT和r^rk(步骤510),其中T表示固定采样间隔。 when n plus 1, Zi n peak arrival time and signal sample are stored as tn = kT and r ^ rk (step 510), where T represents the sampling interval is fixed. 如上所述,必须要确定绝对值超过阈值的信号采样是属于已经检测到的峰值还是新的峰值。 As described above, must exceed the threshold to determine the absolute value of the signal sample belonging to a peak has been detected or a new peak. 出于该目的,rn的符号与绝对值超过阈值的上一个采样的符号(由sgn(rvO给出)进行比较(步骤512)。 For this purpose, rn on the sign of the absolute value exceeds the threshold value of a symbol sample (by sgn (rvO shown) (step 512).

如果sgn(rn)-sgn(ivO,则很可能两个釆样属于不同的峰值。该两个采样之间的时间间隔与双位的峰值之间的时间间隔的当前估计进行比较(步骤514)。如果T,Vd,则更新该估计,且该估计被给出新值Tp-Vd (步骤516)。注意,获得处理的过程中,Tp 向给出双位的峰值之间的时间间隔的期望估计的值单调递减。由于tn 是新的峰值的达到时间,其值被附加到向量T,峰值计数器Np加l(步骤518)。此时需要确定新的峰值属于当前考虑的伺服突发的双位还是新的突发的双位。为此,将时间差t『t^与值mTp进行比较(步骤520 ), 其中m是常量,该常量被选择,以使得在假设Tp等于双位的峰值之间的标称间隔的情况下,对于所有磁带速度和伺服读取器的所有横向位置来说,在同一突发中的连续双位的峰值之间的时间间隔小于mTp, 而在不同突发中的连续双位的峰值之间的时间间隔大于mTp。如果H.户mTp,则检测到新的突发,在前一个突发中检测到的峰值的数目值Np-1被附加到向量p,且用于当前突发的峰值计数器Np被初始化为l(步骤522)。现在继续到检验向量p的后4个元素是否相应于伺服帧的伺服突发中的峰值数目的期望序列,其是【881010】(步骤524)。 如果是这样,识别出相应于伺服突发的序列【CDAB】(见图1)的【4 4 5 5】突发的序列,并且可以计算出用于开始同步伺服通道操作的初始化参数(步骤526)。否则,获得处理继续到下一个采样间隔(步骤502)。 If sgn (rn) -sgn (ivO, it is likely that the two belong to different kind Bian peak current estimate of the time interval and a double-peak times and between the two sampling interval (step 514) If T, Vd, the estimate is updated and given the new value is the estimate Tp-Vd (step 516). Note that, the process of obtaining treated, Tp to give the desired double-peak time interval between the the estimated value of the monotonically decreasing. Since tn is the time to reach a new peak, its value is appended to the vector T, the peak counter Np plus l (step 518). At this time need to identify new peak belongs to the currently considered servo burst bis A new burst bit or double-bit. For this purpose, the time difference t "t ^ is compared with the value mTp (step 520), where m is a constant that is chosen, such that Tp is assumed equal to the peak value of the dibit between the case where the nominal interval for all speeds and all transverse position of the tape servo reader, in the same time in successive burst dibit interval between peaks is less than mTp, and in different burst the time between successive peaks dibit interval is greater than mTp. If H. household mTp, a new burst is detected, the previous burst number of the detected peak value Np-1 is appended to the vector p, Peak counter Np and for the current burst is initialized to l (step 522). Now proceed to test whether the four elements of the vector p after servo burst corresponding to the servo frame number of peaks expected sequence, which is [ 881010] (step 524). If so, identify a sequence corresponding to the servo burst [CDAB] (see Figure 1) [4455] burst sequence, and can be used to calculate the start synchronous servo channel initialization parameters of the operation (step 526). Otherwise, processing continues to get the next sampling interval (step 502).

如果sgn(rn)"gn(ivO,必须考虑两种情况,如果T^tn-d (步骤528),很可能两个采样属于同一峰值,不采取更新向量T和p以及Np的动作,获得处理继续到下一采样间隔(步骤502 )。如杲Tp々n-tn小很可能两个采样从同一极性的、属于连续双位的峰值获得,这意味着发生了漏掉了峰值检测的事件。在这种情况下,两个峰值到达时间值 If sgn (rn) "gn (ivO, two cases must be considered, if T ^ tn-d (step 528), it is possible that two samples belong to the same peak value, do not take update vector T and p and Np operation, acquisition processing proceed to the next sampling interval (step 502). As Gao Tp々n-tn two small samples may be obtained from the same polarity, the peak belonging bicontinuous bits, which means that missed peak detection event has occurred In this case, two peak arrival time values

(由C和"表示)被附加到向量t,峰值计数器Np加2 (步骤530 )。 漏掉的峰值的到达时间",的估计从漏掉的峰值的极性、在双位的峰值之间的时间间隔的估计T p和磁带的运动方向的知识中获得。 Missing from the peak polarity, in between the double-peak (C and is represented by ") is appended to the vector t, the peak counter Np + 2 (step 530). Missed peak arrival time", the estimate estimate obtained in the direction of movement of the magnetic tape T p and the knowledge of the time interval. 对于正向磁带运动,在伺服通道的输出端,首先获得具有正极性的双位峰值, 而对于反向磁带运动,首先获得具有负极性的峰值。 For forward tape motion, at the output of the servo channel, the first obtained having a positive polarity dibit peak, while for reverse tape movement, first obtaining a peak having a negative polarity. 因此,如果磁带正沿正向方向运动且漏掉的峰值的极性为负,或者如果磁带正沿反向方向运动且漏掉的峰值的极性为正,则漏掉的峰值到达时间被估计为tn,=tn —i + Tp,否则其被估计为tn, = tn —, + Tp。 Therefore, if the tape movement in the forward direction and the positive polarity of missed peak is negative, or if the tape movement in the reverse direction and are missed peak polarity is positive, the missed peak arrival time is estimated to be for tn, = tn -i + Tp, otherwise it is estimated as tn, = tn -, + Tp. 如上所述,此时必须确定新的峰值属于当前考虑的伺服突发的双位还是新突发的双位(步骤532)。 As mentioned above, must be determined at this time a new peak belonging to the current account of the servo burst or a new burst of double-double digit (step 532). 如果C-tn-户mTp,则检测到新的突发,且又需要考虑磁带运动的方向来确定下面的步骤(步骤534)。 If the C-tn- households mTp, new burst is detected, and because the need to consider the direction of tape motion to determine the next steps (step 534). 假定磁带运动的正向方向。 Assumed the direction of tape movement forward. 类似的过程可以适用于反向方向的情况。 A similar process can be applied to the case of reverse direction. 如果检测到的峰值具有正极性,则这很有可能对应着新突发的第一峰值。 If the detected peak has positive polarity, this is likely to correspond to the first peak of the new burst. 然后,值〜-l被附加到向量p,且用于当前突发的峰值计数Np被初始化为1 (步骤536)。 Then, the value of ~-l was appended to the vector p, and the peak value for the current burst count Np is initialized to 1 (step 536). 然后为了序列【8 8 10 10】检查向量p的后四个元素(步骤538)。 Then in order to sequence [881010] After checking the four elements of the vector p (step 538). 另一方面,如果检测到的峰值具有负极性,则很有可能新突发的第一峰值被漏掉了。 On the other hand, if the detected peak has negative polarity, it is likely that the first peak of the new burst has been missed. 然后,值Np-2被附加到向量p,且用于当前突发的峰值计数Np被初始化为2 (步骤540)。 Then, the value Np-2 is appended to the vector p, and for the peak count Np current burst is initialized to two (step 540). 注意,在该情况下,不为了序列【8 8 10 10】检查向量p的后四个元素,因为假设在检测到"C突发,,的第一双位的第一峰值(见图1)时发生从"获得,,模式向"跟踪模式"的过渡,以减少获得系统的实现复杂度。 Note that, in this case, not to sequence [881010] After checking the four elements of the vector p, since it is assumed in the detected "C burst ,, a first peak of the first two-position (see Figure 1) When a transition from ",, to obtain mode" tracking mode "transition, in order to reduce implementation complexity of the system obtained.

一旦在向量p的后四个元件中检测到序列【8 8 10 10】,计算开始同步通道操作所需的各种参数,且将变量acqFlag被设置为1 (步骤526),以指示获得处理的成功结束。 Once detected after four elements of the vector into the sequence p [881,010], calculation operations required to synchronize the start of the channel parameters, and the variable acqFlag be set to 1 (step 526), to indicate the acquisition processing of Successful completion. 在假设考虑C、 D和A的峰值到达时间以便计算磁带速度和y-位置估计的情况下,如图6所示, 期望的估计分别由下式给出:<formula>formula see original document page 15</formula> Estimated under the assumption considering the peak C, D and A in order to calculate the arrival time of the tape speed and y- position estimation, shown in Figure 6, expectations were given by the following equation: <formula> formula see original document page 15 </ formula>

(步骤526),其中对于正向磁带运动,《 = 100nm,对于反向磁带运动,f = 95nm。 (Step 526), which for the forward movement of the tape, "= 100nm, for reverse tape movement, f = 95nm. 当获得处理结束后,同步伺服通道操作开始于初始时 When the process is completed after obtaining synchronous servo channel operation began in initial

刻ti,o-",标称步内插间隔被设置到Ti,fXi/Vest,0,以便产生定时基础 Moment ti, o- ", the nominal step interpolation interval is set to Ti, fXi / Vest, 0, in order to generate a timing basis

底层信号内插(步骤526)。 Within the underlying signal interpolation (step 526). 该获得处理还提供由下式给出的参数: The deal also provided to obtain the parameters given by the following equation:

<formula>formula see original document page 15</formula>(5) <Formula> formula see original document page 15 </ formula> (5)

其中L-」表示小于或等于Z的最大整数。 Wherein L- "represents the largest integer less than or equal to Z,. 该参数指示以Xi的倍数表示 This parameter indicates to Xi multiple representation

的内插步的估计数,其将当前釆样与对应于C突发中的第一双位的零交叉的采样分开,对应于C突发中的第一双位的零交叉的采样将用于定时恢复环路的第一定时调整。 The estimated interpolation steps, which will preclude the current sample and the zero-cross sampling corresponding to the first dibit of the C burst apart, corresponding to the C burst in a zero crossing of the first dibit of the sample with in the timing recovery loop of a first timing adjustment.

在获得电路402的实现中,向量T和p分别实现为长度36和4 的延迟线。 Towards obtaining circuit 402, the vector T and p are implemented as delay lines of length 36 and 4. 还要注意,用于计算估计的电路所引入的等待时间应小于伺服突发之间的时间间隙。 Note also that the circuit for calculating the estimated wait time should be less than the introduction of a time gap between servo bursts. 另外,为了获得可靠的磁带速度和y-位置估计,需要以高的精确度实现用于执行正数之间的划分的电路。 Further, in order to obtain reliable tape velocity and y- position estimates, requires high accuracy to achieve a circuit for performing division between positive numbers. 上述需要通过应用Newton - Raphson的算法来通过迭代近似计算除数的导数,并然后通过将被除数和除数的倒数相乘获得期望的商而得到了满足。 By applying the above needs Newton - Raphson iterative algorithm to calculate the divisor approximate derivative, and then by multiplying the inverse of the dividend and the divisor to obtain the desired provider and have been met. 例如,在算法的三次迭代之后,除法计算中的相对误差小于0.4%, 其在四次迭代之后小于1.6xl0—5。 For example, after three iterative algorithm, division calculation of the relative error is less than 0.4%, which is less than 1.6xl0-5 after four iterations.

通过仿真对上述获得方法的执行进行了研究。 Obtained by simulation of the implementation of the above methods were studied. 在假定Lorentzian 模型的情况下,对一次过渡的磁带记录通道响应由下式表示: Assuming Lorentzian model, the transition to a tape recording channel response represented by the formula:

<formula>formula see original document page 15</formula> <Formula> formula see original document page 15 </ formula>

其中参数PW50/2表示以微米表示的、在以速度v运动的磁带上的点之间的距离,这些点在平行于伺服带中心线的线上,且在这些点伺服读取器分别产生对一个过渡的通道响应的最大值和该最大值的一半。 Wherein the parameter PW50 / 2 expressed in micrometers, and the distance in the moving velocity v of the tape between the points, the points are parallel to the servo band centerline line, and at these points, respectively produce the servo reader a transition channel response half the maximum value and the maximum value. 因此,双位信号脉冲由下式给出: Accordingly, double-pulse signal is given by:

g(f;v)=€>(/;v)-0(f-re;v), <7) g (f; v) = €> (/; v) -0 (f-re; v), <7)

其中T0-Lp/vns,Lp表示磁过渡之间的距离。 Where T0-Lp / vns, Lp represents the distance between the magnetic transition. 回想前面所讲述过的, 在伺服帧内的双位如图l所示产生的情况下,Lp = 2.1nm。 Recall that previously described before, in the case of generating the servo frame as shown in FIG dibit l, Lp = 2.1nm.

对于磁带速度和用于峰值检测的给定阈值的各种值来说,正确获得和错误获得的概率分别在图7和8中示出为在伺服通道输出端的信噪比(SNR)的函数。 For tape speed and various values for a given peak detection threshold value, the probability of correct acquisition and error obtained in FIG. 7 and 8, respectively, are shown as a function of the output of the servo channel signal to noise ratio (SNR) of. 如果关于初始y-位置估计的误差的绝对值小于2.5nm,则宣告正确获得,否则宣告错误获得。 If the absolute value of the error on the initial position estimate is less than y- 2.5nm, is declared the right to obtain, or else declare error obtained. 在假定PW50/2.1nm=0.4 以便用于产生伺月良突发、加性白高斯噪声、等于15MHz的采样频率、 恒定磁带速度和等于0的y-位置的Lorentzian通道的情况下,每个概率值由获得处理的500次实现获得a在正确获得的情况下当标称因子由磁带速度给定时的关于初始磁带速度估计的误差的标称标准偏离和在正确获得的情况下的平均获得时间在图9和10中对于各种磁带速度值分别示出。 In the case of assuming PW50 / 2.1nm = 0.4 to be used for months to produce good servo burst, additive white Gaussian noise, sampling frequency equal to 15MHz, constant tape velocity and y- position equal to 0 of the Lorentzian channel, each probability value obtained by processing 500 times in the case of achieving obtain a correct nominal factor when acquired by the tape speed to the timing of the tape on the initial estimate of the error rate of the nominal standard deviation and the average obtained in the case of obtaining the right time Figures 9 and 10, respectively, for various values of tape velocity is shown. 对于从0.5m/s到12.5m/s范围内的磁带速度值绘出了两者的四条曲线。 For from 0.5m / s to 12.5m / s within the range of the tape speed values plotted both four curves.

用于信号内插的定时基础的产生 Generating a timing basis for signal interpolation of

伺服通道的同步操作需要用于信号内插的定时基础的产生,使得 Synchronous operation of the servo channel signal interpolation required for the generation of the timing basis, such that

内插的信号采样以每微米1/Xi个采样的预定固定速率获得,其中Xi表 Interpolated signal samples per micrometer predetermined fixed rate 1 / Xi samples obtained, wherein Xi table

示独立于磁带速度的标称步内插距离。 Interpolation distance shown independent of the nominal tape speed step. 例如,如果Xi-0.05jim,则速率1/Xi等于每秒20个采样。 For example, if Xi-0.05jim, the rate 1 / Xi is equal to 20 samples per second. 用于定时基础的产生的自然基准由伺服突发提供,伺服突发周期性地在伺服通道输出端出现,如图1所示。 Naturally generated reference for timing based servo burst provided by the servo bursts periodically appear in the output of the servo channel, as shown in FIG. 因此,在伺服通过输出端的信号可以被当成导频信号,从导频信号中可以提取定时信息。 Therefore, the servo can be considered as a pilot signal through an output terminal of the signal, timing information can be extracted from the pilot signal. 但是,从伺服通道信号中提取定时信息不是简单直接的,因为A、 B、 C、 D伺服突发不是等间隔的。 However, the servo channel signal extracted from the timing information is not straightforward, because A, B, C, D servo bursts are not equally spaced. 另外,在伺服突发之间的间隔取决于伺服读取器的y-位置、伺服帧的重复周期,而伺服突发内的连续双位之间的时间间隔取决于磁带速度。 Further, the spacing between the servo bursts depends on the position of the servo reader y-, servo frame repetition period, and the time bicontinuous position servo bursts depends on the interval between the tape speed. 另外,需要考虑到用于编码A和B突发中的LPOS信息的脉冲位置调制的存在。 In addition, to take into account the presence of pulse position modulation for encoding the A and B bursts LPOS information. 对于正向方向的磁带运动,伺服通道信号由下式给出:<formula>formula see original document page 17</formula> For the forward direction of tape movement, the servo channel signal is given by: <formula> formula see original document page 17 </ formula>

其中t表示要恢复的定时相位,向量b表示属于二进制字符表{0, 1} 中的LPOS码元序列,w(t)是频镨密度为No的加性白高速噪声,KF 是祠服通道信号中的伺服帧的数目,qi('), i=0,......, 3分别表示C、 D、 Where t represents a timing phase to be restored, are binary vector b represents the character table {0, 1} LPOS symbol sequence, w (t) is the frequency of praseodymium density No speed additive white noise, KF is the Temple service channel number of servo frames in the signal, qi ('), i = 0, ......, 3 respectively C, D,

A、 B伺服突发。 A, B servo bursts. 定义af2bk-l,ake(-l,+lM司服突发可以如下表示: Definition af2bk-l, ake (-l, + lM Servo bursts can be expressed as follows:

<formula>formula see original document page 17</formula> <Formula> formula see original document page 17 </ formula>

(9) (9)

其中TF = LF/v ns, Td=Ld/v fis, ^0.05,且g(t;v)表示双位信号脉沖,其取决于磁带速度v,如在(7)中所定义的。 Where TF = LF / v ns, Td = Ld / v fis, ^ 0.05, and g (t; v) represents dibit signal pulse, which depends on the tape velocity v, as in (7) as defined. 回顾前面讲述的,LF = 200nm 且Ld-5fim,如图1所示的。 Review described earlier, LF = 200nm and Ld-5fim, as shown in Figure 1. 对于反向方向的磁带运动,在A和B突发的定义中乘以项TV的系数分别被选择为95/200和145/200而不是1/2和3/4的情况下,信号r(t)可以以与(8)相似的方式表示。 For the reverse direction of tape movement, in the definition of A and B bursts in the coefficient multiplying term TV is selected as the case of 95/200 and 145/200 instead of 1/2 and 3/4, the signal r ( t) may be in (8) in a similar manner indicated.

为了确定定时相位的估计,传统定时恢复方法将依赖于首先确定似然性函数,然后将其在不需要的随机变量上进行平均,最后找到最大化结果函数的定时相位的值。 In order to determine the estimated timing phase, conventional timing recovery methods would rely on first determining the likelihood function, and then averaged over the unwanted random variables, and finally found to maximize the value of the result function of timing phase. 观察(8)和(9),发现似然性函数取决于定义相位、伺服读取器的y-位置、磁带速度和LPOS二进制码元的序列。 Observation (8) the likelihood function depends on the definition phase, the position of the servo reader y-, sequence and (9), and found that the tape speed LPOS binary symbols. 然后,似然性函数可以表示成:<formula>formula see original document page 18</formula>引入脉冲响应为gM(t;V)-g(-t;V)的匹配滤波器,并定义巻积积分 Then, the likelihood function can be expressed as: <formula> formula see original document page 18 </ formula> introduction of the impulse response of gM (t; V) -g (-t; V) of the matched filter and define convolving integration

h(t;v)-产gM(t;v),似然性函数的表达式成为 h (t; v) - production gM (t; v), the likelihood of becoming a function of expression

<formula>formula see original document page 18</formula>在假设y-位置和磁带速度的联合概率分布及LPOS码元的先验分布是已知的情况下,定时相位的最大似然性(ML)估计则由下式给出: <Formula> formula see original document page 18 </ formula> y- position in the joint probability assumptions and tape velocity distribution and the prior distribution of LPOS symbols are under known circumstances, timing phase of maximum likelihood (ML) estimate is then given by:

<formula>formula see original document page 18</formula> <Formula> formula see original document page 18 </ formula>

(12) (12)

但是用于获得定时相位的估计的传统ML估计方法的应用防止了以下的严重困难: However, the application of traditional ML estimation methods used to obtain estimates of the timing phase of serious difficulties preventing the following:

a) 上述公式中的ML估计方法不能^f艮好地适用于直接实现,甚至不能很好地适用于每个伺服帧计算一次误差项的定时恢复反馈环路形式的实现,因为计算复杂度太大。 a) in the above formula ML estimation method can not ^ f Burgundy well suited for direct implementation, or even not well suited to each servo frame error term computing a timing recovery feedback loop form of realization, since the computational complexity is too great.

b) 找到似然性函数的最大值需要首先计算巻积积分对t的偏导数;该运算可以在数字域进行,但其通常导致较大的实现复杂度和不可忽视的噪声增加。 b) find the maximum likelihood function integral convolving first calculate the partial derivative of the t's; the operation can be performed in the digital domain, but it usually leads to a greater realization of the complexity and increase the noise can not be ignored. c)似然性函数所依赖于的随机变量可以呈现出时变概率分布; 例如,在斜坡向上和斜坡向下期间经历的磁带速度的变化可以引起磁 c) When the random variable likelihood function depends on the probability distribution may exhibit variable; for example, changes in the ramp up and ramp down period experienced can cause the magnetic tape speed

带速度和定时相位在若干伺服帧中的联合概率分布的严重变化。 Serious changes in the joint probability and timing belt speed phase servo frame in several distribution.

本发明还提供了依赖于定时恢复环路的用于同步伺服通道操作的定时基础的产生,在定时恢复环路中,通过观察内插伺服通道信号 The present invention also provides a timing recovery relies on generating a timing basis for synchronous servo channel operation of the loop, and in the timing recovery loop, the observation by interpolating the servo channel signal

的零交叉来确定定时调整。 The zero crossing to determine the timing adjustment. 在假设y-位置和磁带速度的可靠估计,和^被有效计算(这将在下一段示出),并且观察到在似然性函数(11) 的指数处的和中只有4项取决于LPOS码元ak的情况下,对于每一个k,定时相位的估计可以被如下地近似: Y- assuming the position and velocity of a reliable estimate of the tape, and ^ are effectively computing (which is shown in the next section), and the observed likelihood function (11) and the index at only 4 yards depending LPOS When the element ak, for each k, the estimated timing phase may be approximated as follows:

fs啤max Z"r<y,v(s,,,f), (13) 其中: fs beer max Z "r <y, v (s ,,, f), (13) wherein:

W丄,— y W Shang, - y

lw。 lw. 台L台1 4"0) J台I f—30) Taiwan Taiwan L 1 4 "0) J station I f-30)

一4 f * f 、 4 f 、 A 4 f * f, 4 f,

.丄;v . Shang; v

4 4

(14) (14)

在上述公式中,似然性函数对LPOS码元序列的依赖型以及对y-位置和磁带速度的平均被去除了。 In the above formula, the likelihood function dependent LPOS symbol sequence and the average of the y- position and tape velocity are removed. 但是,为了找到似然性函数的最大值,仍需要计算对定时相位的偏导数。 However, in order to find the maximum likelihood function, still need to calculate the partial derivatives of the timing phase. 引入指示y-位置和磁带速度 Introducing indication y- position and tape speed

估计的符号》和^来取代(3)和(4)中定义的y^和Vest,因为使用 Estimated symbol "^ be substituted and (3) and y ^ and Vest (4) is defined, because the use of

低通滤波来产生,和^ ,而y^和Vd指即时估计。 Low-pass filter to generate, and ^, y ^ and Vd which means immediate estimate.

注意,对于中等到大的信噪比的值来说,对于时移Ts的适当选择,h(T;v)的每个峰值由双位脉冲的自相关函数Cg (t-Ts;v) ==g*gM (t-Ts;v)的峰值近似确定。 Note that, for moderate to large values of SNR, for a suitable choice of the time shift Ts, h (T; v) of each peak by the autocorrelation function dibit pulse Cg (t-Ts; v) = = g * gM (t-Ts; v) determine the approximate peak. 还要注意,由于g(t;v)是具有奇对称性的函数,自相关Cg(T;v)是具有偶对称性的函数。 Also note that since g (t; v) is a function with odd symmetry, the autocorrelation Cg (T; v) is a function with even symmetry. 因此,对于定时相位相对于最优值的小的偏差,h(T;v)对定时相位的偏导数及由此而来的似 Therefore, the optimal value of the timing phase relative to the small deviations, h (T; v) on the partial derivative of the phase of the timing and the like resulting

然性函数^"("'》的偏导数呈现出奇对称性。这意味着在双位脉冲被当 Probability function ^ "(" '"partial derivative showing surprisingly symmetry. This means that double-pulse is when

作定时相位相对于最优值的偏离的函数的情况下,如图IIA和图11B 所示,h(T;v)偏导数的行为与变量的小值的双位脉冲的行为类似。 Next timing phase as a function of the deviation from the optimal value of the case, as shown in FIG. 11B and IIA, h (T; v) is similar to the behavior of a small double-pulse partial derivative values and the behavior of the variables. 在进一步观察到h(T;v)的峰值被与伺服通道信号的零交叉(其出现在伺服突发的双位脉冲的峰值之间)相对应地获得的情况下,有可能得出结论:由ML方法提供的定时信息近似等于通过直接与零交叉相对应地采样伺服通道信号而获得的定时信息。 In further observed that h (T; v) is the case where the peak of the servo channel signal zero crossing (which occur between the peaks of the servo bursts dibit pulses) corresponding to the obtained, it is possible to conclude: timing information provided by the ML method is approximately equal to the timing information by directly sampling the servo channel in correspondence with the zero crossing signal obtained. 因此,在假设f表示定时相位的可靠估计,即"r的情况下,期望的定时信息可表示为〜0.(15)其中r表示增益因子,而&表示加性白高速噪声(AWGN)釆样。注意,完全避免了由于计算偏导数引起的噪声增加。在模数转换之前执行的抗混叠滤波操作在这种情况下近似等价于用于产生信号r(t)的足够统计值的最优滤波。在误差反馈配置中依赖于内插伺服通道信号的零交叉来确定定时误差的定时基础产生系统1300可以这样如图12所示地设计。注意, 相应于定时误差(15)的表达式中的和的平均运算由环路滤波器1302 执行,假设环路滤波器1302为比例积分器型的。因此,在假设可靠的y-位置和磁带速度估计及可忽略的误差的情况下,输入到环路滤波器的定时误差估计《)由下式给出:4、) = 4'",;r' av,")+ w(f,':)* g(e":; v)+ w",, (16)其中、表示由时间基础产生系统提供用于在被考虑用于定时恢复的伺服通道信号的零交叉附近的信号内插的时刻,、表示'"'相对于零交叉的时间的偏离,且w"'是AWGN采样。定时基础产生系统1300的框图在图13中示出。序列{^指示将要确定信号采样{r(tn)}从而信号采样{r(t„)}以独立于磁带速度的每微秒1/Xi个采样的期望固定速率获得的时刻。 Thus, assuming f represents a reliable estimate of the timing phase, i.e. "lower r case, the desired timing information can be expressed as ~ 0. (15) where r denotes a gain factor, and high-speed & represents additive white noise (AWGN) Bian like. Note that, completely avoiding an increase in noise due to calculate the partial derivatives caused in analog to digital conversion before the anti-aliasing filtering operations performed in this case is approximately equivalent to the statistical value sufficient for generating a signal r (t) of the Optimal Filtering Depending on the interpolated servo channel signal in the zero crossing error feedback configuration to determine the timing basis generation system 1300 of timing errors can be designed such as shown in Fig. 12. Note that, corresponding to the timing error (15) of the expression and wherein the averaging operation is performed by the loop filter 1302, it is assumed for the proportional integral loop filter 1302 type Therefore, assuming reliable y- position and tape velocity estimation and negligible error situation, loop filter input to the timing error estimate ") is given by: 4,) = 4 '",; r' av, ") + w (f, ':) * g (e" :; v) + w ",, (16) where, represents the time base generated by the system for the time being considered for timing recovery within the zero-crossing signal in the vicinity of the servo channel signal indicates the interpolated ,, '' 'with respect to the zero crossing deviation time, and w "'is AWGN sample. a block diagram of the timing basis generation system 1300 in FIG. 13 shows the sequence {^ directions to be determined signal samples {r (tn)} so that the signal samples {r (t") } at a desired fixed rate independent of the tape velocity of 1 / Xi obtained per microsecond sampling time. 显然,标称步内插间隔Ti 和ADC采样间隔T通常不相称。 Obviously, the nominal step interpolation interval Ti and ADC sampling interval T is usually disproportionate. 因此,在内插时刻(tj用线性内插来获得信号采样,内插时刻{^}由下式递归获得:其中Ti,n表示标称步内插间隔的估计,如(2)所示。步内插间隔估计由下式给出:其中5",『"是直接从磁带速度估计中得出的步内插间隔估计,a、是在环路滤波输出端获得的校正项,nz是小于或等于n的最大时间索引, 在该时间定时误差估计已输入到环路滤波器。在内插时间计算单元中, 第n个内插时刻被表示为:(19)7"其中k。和^分别表示作为采样间隔T的倍数的第n个内插时刻的整数部分和分数部分。线性内插这样就给出了由下式给出的内插信号采样:+4„+1(20)定时基础产生系统1300的目标是提供内插信号采样,所述内插信号采样与位于平行于伺服带中心线的线上的、由步内插距离A等距离隔开的磁带上的点相应地再生由伺服读取器产生的信号。但是,通常,y-位置和磁带速度的值使得内插信号采样不正好对应于伺服通道信号的零。换句话说,定时误差估计e^由内插信号采样给出,该内插信号釆样在作为步内插距离Xi的倍数、并靠近如定时基础产生系统估计出的零交叉的位置计算出。因此,步内插距离Xi确定关于定时误差估计的标准偏差的下边界。在假设零交叉位置是在所述步内插间隔内均匀分布的随机变量的情况下,关于定时误差估计的标准偏差的下边界等于V(V^)。例如,如果x产o.05nm,关于零交叉位置误差估计的标准偏差的下边界为14.4nm。注意,在原理上,通过减小步内插距离i的大小,可以使该下边界任意地小。在实践中,只要项^(、^v)小于xAWGN到零交叉位置误差估计的标准偏差的分布就够了。如前所述,伺服通道信号的零交叉不是等距离隔开的。尤其是, 在贡献定时信息的零交叉之间的时间间隔取决于伺服读取器的y-位置和磁带速度。另外还要记得,用于编码LPOS位的A和B突发中的双位的零交叉不被考虑用于提取定时信息。如图13所示,选择内插信号采样用于提取定时信息是由叫作"控制单元,,1304的有限状态机结合内插"计数器"1306完成的。每次当计算新的内插信号采样时,"计数器,,1306将输入到"控制单元,,1304的变量IntpCnt加1。在假设由"内插时间计算,,单元410使用的步内插间隔Tj的估计可靠、且关于伺服帧的开始(即伺服帧中的C突发的第一双位的第一零交叉的时间)的信息可得到的情况下,知道y-位置的可靠估计对于"控制单元,,1304确定必须选择哪些内插信号采样用于定时信息的提取就足够了。 Therefore, the interpolation in time (tj is obtained by linear interpolation signal samples, the interpolation time {^} obtained by the following recursive formula: where Ti, n represents an estimate of the nominal step interpolation interval, as 2) shown in (. interpolation interval estimate is given by the step: wherein 5 "," "is derived directly from the tape velocity estimate in step interpolation interval estimate, a, is the correction term obtained at the output of the loop filter, nz is less than or equal to the maximum of the time index n, at which time the timing error estimate has been input to the loop filter interpolation time calculation unit, the n-th interpolation time is expressed as: (19) 7 'wherein k and ^ denote multiples of the sampling interval T as the time of the n-th interpolation integer part and a fractional part of the linear interpolation so that the interpolation signal is given by the given sampling: +4 "+1 (20) Timing target basis generation system 1300 is to provide interpolated signal samples within, the interpolated signal samples and located parallel to the servo band centerline line, by the step interpolation distance A equidistantly spaced on the tape corresponding reproduction point signal generated by the servo reader. However, in general, the value of y- position and tape speed such that the interpolated signal samples do not exactly correspond to zeros of the servo channel signal. In other words, the timing error estimate e ^ by the interpolation signal samples given that preclude the kind of interpolation signal interpolation step in as a multiple of the distance Xi and close to generating system as the basis to estimate the timing of the zero crossing of the calculated position. Therefore, within walking distance interpolation Xi determine criteria for the timing error estimation When lower boundary deviation. assuming zero-cross position is inserted random variable uniformly distributed within the interval of the step, on the lower boundary of the standard deviation of the timing error estimate is equal to V (V ^). For example, if x yield o.05nm, on the lower boundary of the zero-crossing position error estimate of the standard deviation of 14.4nm. Note that, in principle, by reducing the size of the step interpolation distance i, so that the lower boundary can be arbitrarily small. In practice, Distribution long term ^ (, ^ v) to a zero-cross position is smaller than xAWGN error estimate of the standard deviation is enough. As described above, the servo channel signal are not equally spaced zero crossing. In particular, the contribution of timing information The time interval between zero-crossing depends servo reader y- position and tape velocity. Also remember, A and B burst bits used to encode LPOS double-bit zero-cross will not be considered for extraction timing information shown in Figure 13, select the interpolation signal for extracting timing information is sampled by the called "finite state machine control unit in combination ,, 1304 interpolation" Counter "1306 completed each time when calculating the new When the interpolated signal sampling, "1306 will be entered into the counter ,," ,, 1304 control unit variable IntpCnt plus 1. Assuming that "time is calculated within the interpolation step unit 410 ,, using interpolation interval Tj reliable estimates, and When the servo frame on the beginning (i.e. the C burst in a servo frame of the first pair of bits of the first zero-cross time) information available, reliable estimates of y- know the location for the "control unit 1304 determines ,, You must select which signal sampling interpolation is used to extract timing information is sufficient. "控制单元"1304输出以下变量:a) burstFlag,按照规则0 - >C突发,1 - >D突发,2 - >A突发, 3 - >B突发来识別当前伺服突发的变量;b) dibitFlag,识别伺服突发内的当前双位的变量;c) newTimErr,被断言(assert)将新的定时误差估计输入到环路滤波器中的变量;d) IntpCntReset,被断言复位内插"计数器,,1306的变量。 在伺服帧的结束处,即在B突发的最后一个双位的零交叉处,变量IntpCntReset被断言复位"计数器"1306,变量burstFlag被设置成0以指示C突发的发生,且变量dibitFIag也被i殳置成0以指示C突发的第一双位的发生。将B突发的最后一个双位的零交叉与C突发的第一双位分开的内插步的数目的估计由以下变量给出:Dsc,0 +2加(;7730)》(21)其中,DBC,。表示对于y=0, B突发的最后一个双位和C突发的第一双位之间的距离,其对于正向和反向方向的磁带运动来说,分别是30nm 和3印m。变量newTimErr当"计数器"1306指示IntpCntNum个内插步已经结束时被断言,相应的内插信号采样作为新的定时误差估计输入到定时恢复环路滤波器1302,且变量dibitFlag被设置为1以指示C 突发的第二双位即将发生。然后,"控制单元"1304的操作进行到计算将当前零交叉与下一零交叉分开的内插步的数目。每次达到新的零交叉时,变量newTimErr被断言,且变量dibitFlag加1。如果零交叉是伺服突发的最后一个零交叉,则变量burstFlag加1,而变量dibitFlag被设置为0。注意,指示估计的在零交叉之间的内插步的数目的变量IntpCntNum在下一零交叉属于同一伺服突发的情况下由L^"」给出,在下一零交叉属于不同的伺服突发的情况下由类似于(21)的表达式给出,其中使用对于yO来说的当前突发的最后一个双位和下一突发的第一双位之间的距离来代替DBc, o。 Output "Control unit" 1304 of the following variables: a) burstFlag, in accordance with rule 0 -> C burst, 1 -> D burst, 2 -> A burst, 3 -> B burst to identify the current servo burst variable; b) of the current two-bit variable dibitFlag, identification within the servo burst; c) newTimErr, is asserted (assert) the new timing error estimate to the loop filter input variables; d) IntpCntReset, reset is asserted Interpolation ",, 1306 counter variable. At the end of a servo frame, i.e. the last in a burst B dibit zero crossing, variable IntpCntReset asserted reset" Counter "1306, the variable burstFlag are set to 0 to indicate C burst occurrence, and the variable i Shu dibitFIag also be set to 0 to indicate a first pair of bits C burst occurrence. The B burst last dibit of the C burst zero crossing a first double- a separate estimate of the number of interpolation steps is given by the following variables: Dsc, 0 +2 plus (; 7730) "(21) wherein, DBC ,. means that for y = 0, B burst and C last dibit The first double-digit distance between bursts, and its movement to tape for the forward and reverse directions, respectively, and three Indian 30nm m. Variable newTimErr when the "counter" within IntpCntNum 1306 indicate an interpolation step has ended is asserted, the corresponding interpolated signal sample as a new timing error estimate is input to the timing recovery loop filter 1302, and the variable dibitFlag is set to 1 to indicate a second burst C dibit about to occur. Then, "a control unit "1304 operation to calculate the number of the current zero crossing and the next zero crossing separate interpolation step each time to reach a new zero-crossing, the variable newTimErr is asserted, and the variable dibitFlag plus 1. If the zero-crossing is a servo sudden issued at the last zero crossing, the variable burstFlag incremented, and the variable dibitFlag is set to 0. Note, indicates the estimated zero crossing in the step of interpolating between a number of variables IntpCntNum the next zero crossing belongs to the same servo burst When ^ "" is given by L, in the case of the next zero crossing belongs to a different servo burst is given by similar (21) of the expression, which is used for the current burst yO last dibit and the distance to the next burst between the first double-digit instead DBc, o. 在A和B突发的笫二和第四双位的零交叉用于编码LPOS位的特定情况下,由IntpCntNum给定的移位的双位和相邻的双位之间的内插步的数目仍然取作等于LA^"'」。 In A and B burst Zi second and fourth dibit of the zero-crossing particular case LPOS bits for encoding, by a given shift within IntpCntNum dibit and the adjacent double-step of interpolating between The number is still taken as equal to LA ^ "'." 但是,当计算出将相应于A和B突发的第二或第四双位的零交叉的内插信号釆样时,dibitFlag加l,而不需要断言newTimErr。 However, when the calculated corresponding to the A and B bursts of the second or the fourth dibit of a zero-cross signal Bian interpolated samples, dibitFlag plus l, without the need to assert newTimErr. 当实现B突发的最后一个双位的零交叉时,"计数器,,1306 又复位,且新的伺服帧的处理开始。注意,在用于同步伺服通道的定时基础产生系统1300的实际实现中,不需要明显地计算出每一内插步处的内插信号采样。内插信号采样的实际计算可以仅在几个时刻进行,这些时刻由"控制单元"1304 确定,"控制单元"1304是定时调整的产生和在A和B突发中发现的脉冲位置调制LPOS信号的匹配滤波所需要的。在假设在正常伺服通道操作期间定时误差的值很小的情况下,获得图14所示的定时基础产生系统1300的线性等价模型1400。注意, 在此考虑的定时基础产生系统的模型与通常在通信接收机或硬盘驱动器中发现的离散时间误差跟踪同步器的模型显著不同,在离散时间误差跟踪同步器的模型中以等间距的时间间隔计算定时误差估计,同步器必须工作于其上的频率偏移的范围是标称频率的百分之几的量级。参考图14,定时误差检测器1402的增益由零交叉处的双位脉沖的导数的绝对值给出。从(6)和(7)中,可以得出,该增益与磁带速度成比例,因此表示为KDV。噪声釆样T)n包括AWGN和由如上所 When the last burst to achieve B dibit zero cross, ",, 1306 and reset the counter, and the new process is started servo frame. Note that in the timing basis for synchronous servo channel is generated in the actual implementation of system 1300 , no clearly calculated at each step of interpolating interpolated signal samples. The actual calculation of interpolated signal samples may be only a few moments, the moments 1304 determines "control means" from, "the control unit" 1304 is The generation and timing adjustment matched filtering of pulse-position modulated LPOS signals in the A and B bursts found required. In the case of a small value is assumed during normal servo channel operation timing error, is obtained as shown in Fig. 14 timing base to generate the equivalent linear system model 1300 1400. Note that the model considered here, the timing basis generation system with discrete time is usually found in a communications receiver or hard drive error tracking synchronizer model is significantly different, in discrete time tracking error synchronizer model at equal intervals of time interval calculating a timing error estimation, synchronization must operate on a frequency offset of its range is a few percent of the nominal frequency of the order of. Referring to Figure 14, the timing error detector gain 1402 is given by the absolute value of the derivative zero crossing of the dibit pulses. From (6) and (7) can be drawn, the gain is proportional to the tape speed, it is indicated as KDV. preclude noise Sample T) n include AWGN and by As

述的内插步的非零长度引入的量化噪声的分量。 Component of non-zero length of said interpolation step is introduced quantization noise. 通过包括在环路滤波 By including the loop filter

器1406的输入端在估计的零交叉时刻(其特征为索引n-nz (16 )) 提供内插信号并在其它时刻提供零误差信号的开关1404,对在连续定时误差估计之间的可变间距建模。 Input of 1406 at an estimated zero-crossing time interpolation (characterized by the index n-nz (16)) provided at other times in the signal and provide zero error signal switch 1404, a continuous variable timing error between the estimated spacing modeling. 观察(17)和(18),可以得出, 定时基础产生系统使用在零交叉时刻确定的标称步内插间隔的估计,直到将新的定时误差估计输入到环路滤波器并计算出新的定时校正项。 Observation (17) and (18) can be drawn, the timing basis generation system for use in estimation of the zero crossing times to determine the nominal step interpolation interval, until a new timing error estimate is input to the loop filter and to calculate a new timing correction term. 通过在环路滤波器的分支中包括用于提供与定时误差估计成比例的项的釆样保持元件1408,对该行为进行建模。 By branch loop filter included for providing a timing error estimate Bian term proportional sample holding member 1408, the behavior model. 注意,保持间隔的可变持续时间具有与乘以定时误差估计的可变增益等价的影响。 Note that the variable duration of the holding interval multiplied by the timing error estimate has a variable gain equivalent of. 为了补偿这种影响,需要引入由在图14中的6„表示的项来"均衡"应用到每一定时误差估计的增益。由于零交叉之间的最小距离为Ld-5jmi,且"控制单元"1304知道将上一次访问的零交叉与下一个分 To compensate for this effect, the need to introduce by 6 in FIG. 14 "indicates to" balance "is applied to each timing error estimate gain. Since the minimum distance between the zero crossing for Ld-5jmi, and" control unit "1304 will be the last to know to access the next zero crossing points

开的距离,独立于磁带速度的值e。 Apart by a distance, independent of tape speed value e. 由下式给出: Is given by:

(22) (Twenty two)

其中"〜表示在时间处的零交叉离下一个即将来临的零交叉的以 Wherein "~ represents the time at the zero crossing from the next upcoming zero crossing to

微米表示的距离,且Ilz是小于或等于Il的最大时间索引,在该时间定 Distance expressed in microns, and Ilz is less than or equal to the maximum time index Il, and in the time given

时误差估计已经被输入到环路滤波器(还参看(18))。 When the error estimate has been input to the loop filter (also see (18)).

如上所述,用于同步伺服通道400的定时基础产生系统1300必须在广泛范围的磁带速度下操作,其转换为广泛范围的相应最小伺服通道信号带宽。 As described above, the timing basis for synchronous servo channel 400, generating system 1300 must be operated at a wide range of tape speed, which is converted to the corresponding minimum servo channel signal bandwidths wide range. 显然,这一点对系统参数有不可忽视的影响,系统参数必须被选择,使得定时基础产生系统的动态行为保持为基本独立于磁带速度。 Obviously, this system has a negligible impact parameters, system parameters must be selected such that the timing basis generation system dynamic behavior is kept essentially independent of the tape speed. 为了评价用于改变磁带速度的系统性能,考虑图15中所示的简化模型1500。 In order to evaluate system performance for varying tape speed, consider the simplified model shown in Fig. 15 1500. 假设定时误差估计的可变间距由于如上所述的可变增益6n的存在而被完美地补充,并假设磁带速度估计等于实际速度, Assuming the estimated timing error due to variable spacing variable gain presence 6n described above are perfectly complementary, and assuming that the actual speed of the tape speed is estimated to be equal,

即^ == v ,使得偏移量项巧,"一^消失。这样,图15的环路等价于在输入端具有与周期Td-Ld/v ns循环静止(cyclostationary)的信号的轨道误差同步器。利用该简化的模型1500,取决于磁带速度的定时基础产生系统1300的环路带宽由下式给出: That ^ == v, so that the offset entry clever, "a ^ disappears. Thus, the loop 15 is equivalent to having a period at the input Td-Ld / v ns cycle stationary (cyclostationary) track error signal . synchronizer utilizing the simplified model 1500, the tape speed is dependent on the timing basis generation system 1300 of the loop bandwidth is given by the following formula:

<formula>formula see original document page 25</formula>(23) <Formula> formula see original document page 25 </ formula> (23)

其中闭环频率响应H (z;v)由下式表示: Wherein the closed-loop frequency response H (z; v) represented by the formula:

咖)--Z + " 、. (24) Coffee) - Z + ", (24).

通过选择环路参数y"""和"-《",并将H (z;v)和Td的表达式代入(23),可以得出,决定环路行为的乘积B (v) Td独立于磁带速度。例如,通过选择KD-l, "l.lxl0-2,和;-9.4xl0—6,获得乘积B (v) Td=0.18。 By choosing the loop parameters y "" "and" - "", and H (z; v) and Td is substituted into the expression (23) can be drawn, determines the loop behavior of the product B (v) Td independent of tape speed, for example, by choosing KD-l, "l.lxl0-2, and;. -9.4xl0-6, to obtain product B (v) Td = 0.18.

定时基础产生系统1300的另一个需要是要在磁带加速和减速期间实现可靠的伺服通道操作。 Another timing basis generation system 1300 is to achieve a reliable servo channel operation during tape acceleration and deceleration. 注意,该需要转换为要求在频率1/Ta随时间线性变化的同时实现可靠的通道操作。 Note that this requirement needs to be converted to a frequency 1 / Ta changes linearly with time while achieving a reliable channel operation. 众所周知,类似于图15 的简化模型1500的笫二级定时恢复环路在存在线性变化输入频率的情况下呈现出非零定时误差。 As we all know, the simplified model is similar to Figure 15 of Zi 1500 secondary timing recovery loop in the case where there is a linear change in input frequency exhibits a nonzero timing error. 通过使用磁带速度估计^来周期性确定步内插间隔估计^"'(见(18))的选择消除了该问题,而不用增加环路滤波器的环路带宽或级数。因此,即使在斜坡向上期间和斜坡向下期间,也实现可靠的系统操作。因此,如果磁带速度恒定,在环路滤波器的积分器中累积的项变为难以察觉地小。注意,在此情况下, 与可变增益en相乘可以在环路滤波之后执行,而不严重影响环路行为。 By using the tape velocity estimate ^ to periodically determine the step interpolation interval estimate ^ '' (see (18)) selection eliminates the problem without increasing the loop bandwidth of the loop filter or the number of stages. Thus, even in the During the ramp up and ramp down period, but also for reliable system operation. Thus, if the tape speed is constant, accumulated in the loop filter's integrator term becomes difficult to detect small. Note that, in this case, and variable gain en multiplied after the loop filter can be implemented without seriously affecting the behavior of the loop.

通过仿真对定时基础产生系统1300的性能进行了研究。 The simulation of performance of the timing basis generation system 1300 has been studied. 图16A 和16B示出了对于等于v-0.5m/s(图16A)和v^2,5m/s(图16B)的磁带速度的恒定值,C突发的内插信号采样和定时基础的会聚。 16A and 16B shows that for equal v-0.5m / s (Fig. 16A) and v ^ 2,5m / constant value s (Fig. 16B) of the tape speed, C burst interpolated signal samples and timing based convergence. 输入到环路滤波器作为零交叉时刻附近的定时误差估计的采样由实心圆團标记指示。 Input to the loop filter as close to zero crossing times estimated timing error sampling indicated by solid circles mark group. 对于PW50/2.1nm=0.4用于产生伺服突发、AWGN产生SNR =25dB、 ADC的采样频率fs=15MHz、标称步内插距离Xi=0.25nm、 For PW50 / 2.1nm = 0.4 for generating a servo burst, AWGN produce SNR = 25dB, ADC sampling frequency fs = 15MHz, the nominal step interpolation distance Xi = 0.25nm,

25关于速度估计的初始误差等于1%、环路滤波参数对于v=0.5m/s有--i"o-1和〃"2"^ ,对于v=12.5m/s有〃"ixi。 25 initial error rate estimate is equal to about 1%, the loop filter parameters for v = 0.5m / s have --i "o-1 and 〃" 2 "^, for v = 12.5m / s have 〃" ixi. -3和0-2"。"的 3 and 0-2. "" The

Lorentzian通道,获得了结果。 Lorentzian channel, get the results.

基于伺服通道输出信号的零交叉的估计产生 Produce estimates based on zero-crossing servo channel output signal

在前面的段中,认识到了同步伺服通道400的定时基础产生系统1300需要分别由yw和Vd表示的可靠的y-位置和磁带速度估计来确定步内插间隔和内插间隔的零交叉的时刻的估计以及各种环路参数 In the previous section, recognizes the synchronous servo channel 400 of the timing basis generation system 1300 needs are reliable tape velocity and y- position and Vd indicated by yw estimation step to determine the interpolation interval and the interpolation interval of the zero-crossing time estimates and various loop parameters

值。 Value. 因此,yest和Vest的产生出现了问题,yest和Vest的产生应当利用在 Therefore, yest and Vest generation there is a problem, yest and Vest generation should be used in

伺服通道ADC406的输出端的信号采样执行,从而避免了y一和vest 的产生和定时基础的产生之间的联系.相关问题是同步伺服通道操作的监视。 The output of the signal sampling performed in the servo channel ADC406, thus avoiding a contact y and vest and the generation of the timing basis generation between. Related problem is the monitoring of the synchronous servo channel operation. 必须设计这样一种监视系统,该监视系统容易地检测定时基础产生系统的偶尔失谐并重新开始获得过程,该偶尔失谐可以例如由伺服通道输出信号中的暂时损伤确定。 A monitoring system must be designed such that the monitoring system to easily detect the timing basis generation system of occasional detuning and re-start the process of obtaining, for example, the occasional detuning can be determined by the servo channel output signal in a temporary injury. 另外,在这种情况下,必须通过直接观察在伺服通道ADC的输出端处的信号采样来获得解决方案。 Further, in this case, must be obtained by direct observation of the solution samples the signal at the output of the servo channel ADC. 回顾前面讨论过的,在获得处理的末尾处的磁带速度和y-位置估计由分别(3)和(4)给出,其中在伺服通道ADC的输出端处的C、 D和A突发的峰值到达时间被考虑用于计算估计(仍参看图6)。 Review discussed earlier, the tape speed in obtaining treatment and y- position at the end of each estimate is given by (3) and (4), in which the output of the servo channel ADC of C, D and A burst time to peak is considered for calculating the estimated (Still referring to FIG. 6). 但是,基于峰值产生y-位置和磁带速度估计产生下列缺点: However, based on the peak position and tape produced y- velocity estimation produces the following disadvantages:

a) 双位的峰值的到达时间由对信号导数的计算进行近似的运算确定,从而引入噪声增加。 a) double-peak signal arrival time by calculating the derivative of the approximate calculation carried out to determine, thereby increasing the introduction of noise.

b) 如果没有检测到C、 D和A突发中的双位的一个或多个峰值, 不能可靠产生y-位置和磁带速度估计。 b) If not detected, C, D, and A bursts dibit of one or more peaks, can not reliably produce y- position and tape velocity estimates. 为了应付漏掉的峰值检测事件, 插入虚(dummy)峰值到达时间以获得y^和vest不是期望的方法。 In order to cope with the missing peak detection event, insert dummy (dummy) peak arrival time in order to obtain y ^ and vest is not the desired method.

c) 检测获得参数的损失、并适当地重新开始并验证y-位置和磁带速度估计的产生可能会花很长时间(几个伺服帧的量级)。 generate c) detect loss parameters obtained and properly re-start and verify y- position and tape velocity estimates might take a long time (on the order of several servo frames).

本发明还提供了y-位置和磁带速度估计的产生和同步伺服通道400的操作的同时监视。 The present invention also provides a y- position and tape velocity estimates and generating synchronous servo channel operation 400 while monitoring. 该方法依赖确定伺服通道ADC的输出端的信号的零交叉来产生yest和vest,依赖观察由有限状态机确定的时间间隔内的同一信号的峰值的发生来监视同步伺服通道操作。 The method relies on determining the zero crossing of the ADC output of the servo channel signal to generate yest and vest, the peak of the same signal within the observed dependence is determined by the finite state machine to monitor the time interval occurs synchronous servo channel operation. 定时基础产生 Generate timed basis

系统的有限状态机"控制单元"1304用于提供需要的观察窗口。 System finite state machine "Control unit" 1304 to provide the necessary observation windows.

在初始参数获得处理期间,磁带速度和y-位置估计通过使用在C、 D和A突发中的相应双位之间的时间间隔的测量值确定。 During the initial parameter acquisition processing, the tape velocity and y- position estimates by using the C, D, and A bursts corresponding measured value of the time interval between dibit is determined. 为了计算由(3)和(4)给出的估计,考虑双位的峰值到达时间。 To calculate the estimated by (3) and (4) given consideration dibit peak arrival time. 但是,在产生定时基础的期间,关于伺服通道输出信号的定时相位的可靠信息通过观察伺服突发的双位的零交叉的时刻获得,而通过在匹配滤波之后确定伺服信号的峰值的时刻获得的定时信息受到噪声增加的影响。 However, during the generation of the timing basis, reliable information on the servo channel output signal of the timing phase of the servo burst by observing the zero crossing times dibit obtained, and by determining the peak of the servo signal after matched filtering time obtained timing information by the impact of an increase in noise. 这是由于,峰值的时刻由对信号导数的计算进行近似的运算确定。 This is because the peak is determined by calculating the time derivative of the signal approximating operation. 因此, 通过在(3)和(4)中引入由伺服通道输出信号的零交叉的时刻获得时间间隔的测量值,与使用受到噪声增加影响的峰值到达时间的测量值相比,获得更可靠的估计。 Therefore, by (3) and (4) introduced by the zero crossing of the servo channel output signal of the time interval measured values obtained, and by using the effect of increasing the noise peak value of the time of arrival measurements compared to obtain more reliable estimates.

在这种情况下,避免了在漏掉的峰值检测的情况下确定yest和vest 的问题,因为定时基础产生系统1300提供了关于观察间隔的信息,在该观察间隔中有很大可能性会期望发生伺服通道输出信号的零交叉。 In this case, to avoid the peak detection in the case of missing determine yest and vest problems, since the timing basis generation system 1300 provides the information about the observation intervals, there is a great likelihood of the observation interval desired a servo channel output signal of the zero crossing.

有零交叉发生的情况下,釆用由定时基础产生系统提供的零交叉的估计时刻。 The case of zero crossover occurs, preclude the use of zero-crossing time estimates provided by the timing basis generation system. 但是,如果损伤持续一段跨数个伺服帧的期间,会发生定时基础产生系统的失谐。 However, if the damage during across several servo frames for a period of, detuning of the timing basis generation system may occur. 为了检测该事件,仍监视由定时基础产生系统确定的观察窗口内的伺服突发的双位的峰值的产生。 To detect this event, still monitored by the timing based servo bursts generated dibit peaks within the system to determine the generation of the observation window. 如果每伺服帧的检测的峰值数低于固定阈值,并且在一段预定时间间隔保持低于该阈值,则宣告锁定丢失,并重新开始初始获得处理。 If the number of detected peaks per servo frame below the fixed threshold, and at a predetermined time interval is kept below the threshold, loss of lock is declared and the initial acquisition processing resumes.

如图4所示,y-位置和磁带速度估计的产生和同步伺服通道操作的监视是由两个功能实现的。 4, y- position and tape velocity estimates and generating synchronous servo channel operation monitoring is implemented by two functions. "异步监视功能"408基于由"控制单元"1304提供的观察间隔确定零交叉时刻并检测双位的发生,如前所述该观察间隔具有关于伺服帧的突发中的双位的完整定时信息。 "Asynchronous monitoring function" 408 based on the "Control unit" 1304 provided by the observation interval determining zero crossing times and detects the occurrence of double bit, as described above in the observation interval of two-bit burst having complete information about the timing of the servo frame . "同步监视功能"l卯O然后基于从"异步监视功能"408获得的信息计算y-位置和磁带速度估计,并监视定时基础产生功能的产生。 "Synchronization monitoring" l d O Then, based on information from "asynchronous monitoring function" 408 obtained to calculate the position and tape velocity estimates y-, and monitor timing generation produces basic functions.

描述异步监视功能408的操作的流程图在图17中示出。 Describe the operation of the asynchronous monitoring function 408 of the flowchart shown in FIG. 17. 在获得处理的末尾处,初始化下列变量(步骤1700): Obtained at the end of treatment, initialize the following variables (Step 1700):

a) acqFlag=l,获得标记指示同步伺服通道处于跟踪模式; a) acqFlag = l, get mark indicates synchronous servo channel is in tracking mode;

b) k=0,在每个采样时刻计数器加1,在每个伺服帧的开头计数器复位; b) k = 0, counter incremented by one at the beginning of each servo frame counter is reset at each sampling time;

c) k,-O,在每个零交叉时刻索引加1 ,在每个俏服帧的开头索引复 c) k, -O, at each zero-crossing time index plus 1, the index at the beginning of each frame is pretty complex service

位; Bit;

d )peakDetFlagk,=0,峰值检测标记在由伺服帧内的零交叉时刻定界的每一个第k个时间间隔的开头复位为0,如果在该第k个时间间隔内检测到双位的正峰值则峰值检测标记设置为1。 d) peakDetFlagk, = 0, peak detection flag at the beginning of each servo frame k-th zero-crossing time interval delimited time is reset to 0, if it is detected within the k-th time interval to double-positive the peak, the peak detection flag is set to 1.

在每个采样时刻,"异步监视功能"408首先检查是否"控制单元"1304正信号通知新帧的发生(步骤1702)。 In each sampling time, "Asynchronous monitoring function" 408 first checks whether the "Control unit" 1304 is the occurrence of a new frame is signaled (step 1702). 回顾前面讲述过的, 在伺服帧的末尾处,即在B突发的最后一个双位的零交叉处,变量IntpCntReset被断言复位"计数器"1306,变量burstFlag被设置为0 以指示C突发的发生,且变量dibitFlag也被设置为0以指示C突发的第一双位的发生。 Recall described earlier, at the end of the servo frame, that is the last burst B double-zero-crossing point, variable IntpCntReset asserted reset "counter" 1306 burstFlag variable is set to 0 to indicate that the C burst occurs, and the variable dibitFlag is also set to 0 to indicate a first pair of bits C burst occurrence. 因此,只要变量IntpCntReset被断言,变量newFrame就被设置为1。 Therefore, as long as the variable IntpCntReset is asserted, the variable is set to 1 to newFrame. 在该情况下,计数器k和索引k,被复位(步骤1704)。 In this case, the counter k and the index k, is reset (step 1704). 在检查了新帧的发生,计数器k加l (步骤1706)。 After checking the occurrence of a new frame, the counter k is incremented by l (step 1706).

然后将计数器采用的值与第k个观察间隔(wLk,,wRk,)的边界进行比较(步骤1708 ),第k个观察间隔(wU,,wRk,)的边界是由"控制单元"1304提供的。 The counter value is then used with the k-th observation interval (wLk ,, wRk,) boundary (step 1708), the k-th observation interval (wU ,, wRk,) boundaries is 1304 to provide the "Control unit" by a. 在假设伺服通道信号的极性使得首先检测到双位的正峰值的情况下,期望在第k个观察间隔内检测到与伺服帧的第k个双位相关联的正峰值以及零交叉。 Under the assumption that the polarity of the servo channel signal is such that the first detected positive peak of the double-bit case, it is desirable in the k-th observation interval detected in the k-th two-phase associated with the positive peak and zero crossing of the servo frame. "控制单元"1304还提供第三变量,由wPk,表示,使得wLk,<wPk,<wRk,。 "Control unit" 1304 also provides a third variable, by wPk, said that making wLk, <wPk, <wRk ,. 然后(wLk,,wRk,)定义了笫k个观察间隔中的子区间,在该子区间中如图18所示对于采样频率f产15MHz和恒定磁带速度v-12.5m/s,期望检测到双位峰值。 Then (wLk ,, wRk,) defines the k-th observation interval Zi subintervals, in the sub-interval 18 to 15MHz and a sampling frequency f yield constant tape velocity v-12.5m / s, the desired detected double-peak. 如果wU,〈k〈wPk,(步骤1710)且通道输出采样&超过由thres表示的给定阈值(步骤1712 ),则变量peakDetFlagk,被设置为1 (步骤1714 )以指示在笫k个时间间隔内检测到了双位峰值。 If wU, <k <wPk, (step 1710) and the channel output samples & exceeds a given threshold value (step 1712), the variable by thres represented peakDetFlagk, is set to 1 (step 1714) to indicate Zi k time intervals detected within a double-peak. 如果wLk《l^wPk,且两个最新近的通道输出采样满足条件rk-^O且1\<0(步骤1716),则检测到零交叉,且在第k个时间间隔中的零交叉时刻计算为 If wLk "l ^ wPk, and the two most recent channel output samples satisfy the condition rk- ^ O and 1 \ <0 (step 1716), then a zero crossing is detected, and in the k-th time interval of the zero crossing times calculated as

<formula>formula see original document page 29</formula>7\ (步骤1718) 25) <Formula> formula see original document page 29 </ formula> 7 \ (step 1718) 25)

-'* J - '* J

由图18中的实心圆團标记指示的每一个零交叉时刻被记录为整数加分数部分,其中整数部分由值kl给出,分数部分使用简单的查找表确定。 By each zero-crossing instant solid circles in FIG. 18 indicated by the marker group is recorded as an integer plus fractional part, where the integer part is given by the value kl, fractional part using a simple lookup table to determine.

当k-wPk,(步骤1720),观察间隔届满,索引k,加1,变量peakDetFlagk,复位为0 (步骤1722)。 When the k-wPk, (step 1720), the expiry observation interval, the index k, plus a variable peakDetFlagk, is reset to 0 (step 1722). 如上所述,如果到观察间隔届满为止没有检测到零交叉,则变量tz,k,取由定时基础产生系统1300提供的零交叉的估计的时刻值。 As described above, if the observation interval until the expiration of the zero crossing is not detected, the variable tz, k, takes the value of the time base generated by the timing of the zero crossing estimation system 1300 provided.

"同步监视功能"l卯0的框图在图19中示出。 L d block diagram "synchronization monitoring function" 0 is shown in Figure 19. 当计数器1卯2达到了观察窗口的上边界,即k-wRk,时,变量peakDetFlagk,和tz,k,的值被输入到累加器l卯4及延迟线1906。 When the counter reaches a mortise and two observation window on the boundary, ie, k-wRk, when variables peakDetFlagk, and tz, k, the values are entered into the accumulator l d 4 and delay line 1906. 只要变量newFrame被设置为1 (即在每一伺服帧的开头),计数器1902、累加器1904和延迟线1906 被复位。 As long as the variable newFrame is set to 1 (i.e., at the beginning of each servo frame), the counter 1902, the accumulator 1904 and delay line 1906 are reset. 在A突发的结尾处,可以估计C、 D和A突发中的相应双位之间的时间间隔。 A burst at the end, can be estimated C, D, and A bursts in time corresponding interval between dibit. 因此,在与A突发的最后一个双位相关联的观察窗口的末尾处,变量newEstimate被^:置为1,并计算y-位置的新值和磁带速度估计。 Thus, at the end, and the variable A burst phase associated with the last one pair of newEstimate observation window is ^: set to 1, and calculate the new value of y- position and tape velocity estimates. 参考图6,在C、 D和A突发中的相应双位之间的时间间隔的测量值由下式给出: 6, the corresponding measured value of the time interval between dibit in reference to FIG. C, D, and A bursts are given by:

51 + B2 + B3 + S4-應i -sum2 "z^ -(tz,8+tz,10 +tz>11), (26) 51 + B2 + B3 + S4- should i -sum2 "z ^ - (tz, 8 + tz, 10 + tz> 11), (26)

And

+ +^3 +J4 = tf3-SUm2 =tz_4 +tz_7 -(t;y +tz,9 +&。 (27) + + ^ 3 + J4 = tf 3-SUm2 = tz_4 + tz_7 - (t; y + tz, 9 + & (27).

"同步监视功能"404然后分别根据(3)和(4)执行估计yest 和Vest的即时值的计算,其中y^/【2tan(7i;/30)I和Ve幅产4ffs。 "Synchronous monitoring function" 404 then separately performed according to (3) and (4) calculating an estimated yest and Vest immediate value, wherein y ^ / [2tan (7i; / 30) I and Ve web production 4ffs. 回顾前面所述,对于正向磁带运动,f-lO(Him,对于反向磁带运动,f = 95nm。 y-位置和磁带速度估计的平均值夕和f由图19中示出的电路1900中的一阶〗氐通滤波器1908A、 1908B估计。^氐通滤波器1908A、 1908B 的时间常数选择为在减少影响估计的即时值的噪声的需要以及保持定时基础产生系统釆用的估计的平均值的计算中的延迟小于磁带驱动器中的y-位置和磁带速度的最大变化率的倒数的需要之间的折衷。 Recalling the previously described, for forward tape motion, f-lO (Him, for reverse tape motion, f = 95nm. Y- position and tape velocity estimates from the average value Xi and f in Fig. 19 shows a circuit 1900 The first order〗 Di-pass filter 1908A, 1908B estimates. ^ Di-pass filter 1908A, 1908B of the time constant selected to reduce the noise impact of the estimated value of immediate needs and to maintain basic timing generation system adopts the mean estimate eclectic calculation delay is less than the reciprocal of the maximum rate of change of the tape drive y- position and tape velocity requires between.

在每个帧的末尾处,用于变量peakDetFlagk,的累加器l卯4的内容指示已经检测出的伺服突发中的双位的正峰值数。 Content at the end of each frame, for variable peakDetFlagk, accumulator l d 4 indicates a servo burst has been detected in the number of double positive peak bit. 然后将该数与由monThres表示的预定阈值比较1910,并复位累加器1904。 Then the number with a predetermined threshold value represented by monThres compare 1910 and the accumulator 1904 is reset. 如果对于等于由frameCntThres表示的预定值的连续数目的伺服帧,在帧中检测到的峰值数小于monThres,则宣告锁定丢失,并重新开始获得过程。 If the number for successive servo frames equal to a predetermined value represented by frameCntThres, the number of peaks detected in the frame is less than monThres, lock is declared lost, and begin to acquire process. 通过仿真研究了用于产生y-位置和磁带速度估计的系统的性能。 Through the simulation performance for generating y- position and tape velocity estimation system. 图20A、 20B和21A、 21B示出了分别对于等于y=0m的y-位置的恒定值、等于v-6m/s(图20A、 21A)和v-12m/s(图20B、 21B)的磁带速度的恒定值,y-位置估计和均值和标准偏差以及磁带速度估计的标准偏差。 Figure 20A, 20B and 21A, 21B are shown, respectively, equal to y = 0m for the y- position constant value, equal to v-6m / s (Fig. 20A, 21A) and v-12m / s (Fig. 20B, 21B) of constant tape speed, y- position estimates and the mean and standard deviation of the estimated standard deviation of the tape velocity. 未示出磁带速度估计的平均值,因为该均值与实际值的偏差是可忽略的。 Not shown, the average tape velocity estimate, since the deviation of the mean value and the actual value is negligible. 在所述两个图中,还示出了基于峰值检测的系统性能用于比较。 In the two figures, also shows the performance of the system based on peak detection for comparison. 对于PW50/2.1pm=0.4用于产生伺服突发且ADC的采样频率fs=15MHz的Lorentzian通道,获得了结果。 For PW50 / 2.1pm = 0.4 for generating a servo burst and the ADC sampling frequency fs = 15MHz of Lorentzian channel, to obtain the results.

LPOS码元的最优检测 Optimal detection of LPOS symbols

如前所述,伺服帧通过如图1所示将A和B突发中的第二和第四双位的过渡从其标称图案位置位移,允许LPOS信息的编码,而不影响y-位置和磁带速度估计的产生。 As described above, the servo frame shown in Figure 1 by the A and B bursts in the second and fourth dibit transitions from its nominal pattern position displacement, allowing encoding of LPOS information, without affecting the y- position and tape speed estimated production. 注意,调制距离取决于磁带驱动器产品。 Note that the modulation distance depends on the tape drive products. 在由IBM⑧开发并出售的LTP产品(例如3580型)中,调制为士(U5jim,而在IBM企业产品(例如3592型)中,调制为士0.5nm。 在许多异步伺服通道中,LPOS信息的检测基于对伺服通道输出处的双位信号采样的峰值的位移的观察。在A和B突发中的双位之间的八个间隔的测量值标记为ah,如图22A中对于等于1的编码的LPOS 码元示出的。检测器按照图22B的表执行相应间隔的测量值之间的比较,并应用要求四个可能的条件中的至少三个条件为真的大多数(majority)解码规则以确定编码的LPOS码元。 In developed and sold by IBM⑧ LTP products (such as 3580-type), the modulation of disabilities (U5jim, while IBM enterprise products (for example, type 3592), the modulation of 0.5nm. In many asynchronous servo channels, LPOS information Detection Based on observation of the displacement of the peak of the dibit signal samples at the output of the servo channel. eight interval measurement marks A and B dibit burst between the ah, FIG. 22A is equal to 1 for the encoded LPOS symbols shown. interval corresponding detector performs the comparison between the measured values in accordance with the table in FIG. 22B, and the application of the four possible conditions at least three conditions require true majority (majority) decoding rules to determine the encoded LPOS symbol.

基于峰值检测和记录峰值到达时间的传统方法具有如下局限性: a)对于使用脉沖位置调制(PPM)技术编码的LPOS码元,基于釆用峰值到达时间差的间隔测量的大多数解码规则不是最优检测方案。 The method has the following limitations of the traditional peak detection and recording of peak arrival time based on: a) using pulse position modulation (PPM) techniques encoded LPOS symbols based on peak arrival time difference preclude the use of most of the measurement interval is not optimal decoding rule detection scheme. b) 如果用于码元判决的图22的表中列出的4个条件中的2个条件满足,除了诉诸于投硬币法之外,不清楚如何去打破平局。 b) If the conditions for the four symbols of the decision table in Figure 22 are listed in the two conditions are met, in addition to resort to methods other than coin, it is unclear how to break the tie. c) 不可能有与关于LPOS码元的判决相关联的可靠性的度量。 c) not have a measure of judgment on LPOS symbol associated reliability. 本发明还提供了LPOS码元的最优检测和LPOS检测处理的可靠性的同时监视。 The present invention also provides a reliable and optimum LPOS detection of LPOS symbol detection process at the same time monitoring. 该方法基于这样一种度量,该度量对于每个LPOS码元^{-1,+1},给出了两种假设"。—和^^"的可能性。 The method is based on a measure, the measure for each LPOS symbol ^ {- 1, + 1}, given the possibility of two hypotheses "and ^^ .-" in. 然后,通过使用为假设测试而采用的度量,引入与LPOS检测相关联的信噪比加上失真率的测量值,其允许监视LPOS检测处理并监视各个LPOS码元判决的可靠性。 Then, by using the metrics used for hypothesis testing, signal to noise ratio associated with the introduction of the LPOS detection plus distortion ratio measurements, which allows monitoring LPOS detection process and monitor the reliability of each LPOS symbol decisions. 尤其是,因为在磁带系统中总有两个可以得到LPOS 信息的专用伺服通道可用,可以容易地采用该新引入的可靠性测量值来确定所述两个通道中的哪一个提供了最可靠的LPOS码元判决。 In particular, because in tape systems there are always two channels can be dedicated servo LPOS information is available, the reliability can be easily measured using the value of the newly introduced to determine which of the two channels provides the most reliable one LPOS symbol decision. 回顾一下双位信号脉冲(7)和伺服通道输出信号(8)和(9) 的表达式以及用于在存在AWGN的情况下从给定组中检测波形信号的最优接收机的公式表示。 Recall dibit signal pulse (7) and the servo channel output signal (8) and expressions (9) and in the presence of AWGN for representation from the receiver to a given set of optimal waveform signal detected in the formula. 观察(8)和(9),可以认识到LPOS码元的编码是通过对A和B突发的第二双位和笫四双位应用脉冲位置调制获得的。 Observation (8) and (9), can be recognized LPOS symbol coding is through the A and B bursts second double-digit and four pairs of Zi-bit applications received pulse position modulation. 因此,在假设磁带速度恒定的情况下,与假设的可能性相关联的度量〜"'ae{—^可以表示为<formula>formula see original document page 32</formula>(28)注意,由(28)给出的度量等价于由匹配滤波接收机获得的度量。 现在回想对应关系1>产^+1)/2,1^{0,1},引入变量的变化x=vt,并且对于PO,l, j=l,2,定义匹配滤波波形々)(屮)为<formula>formula see original document page 32</formula>(29)度量(28)的表达式变成<formula>formula see original document page 32</formula>(30)<formula>formula see original document page 32</formula><formula>formula see original document page 33</formula>.注意,度量(30)的表达式独立于磁带速度。回顾前面所述,定时基础产生系统提供了时刻序列{^},使得以独立于磁带速度的每微米1/Xi 个采样的固定速率获得内插信号采样《r(tn》。因此,在假设采样速率足够大得能够避免混叠效应、且Nf-Lf/Xj是整数的情况下,可以使用内插信号采样在数字域将该度量计算为<formula>formula see original document page 33</formula>(31)其中A(v)' "!'2,3'4表示整数集,该整数集可以定义为<formula>formula see original document page 33</formula>本发明的最优LPOS码元检测器2300计算值mp,f, p-0,l,并将它们进行比较以产生对在笫f个伺服帧中编码的LPOS码元的判决^ , 如图23所示,即:<formula>formula see original document page 33</formula>在图24中,对于PW50 - 0.84fim,y=0和x产0.25pm,示出了波形可以得出,通过考虑由集合AW'"""指定的索引的子集以执行(31)中的求和,可以大大减少度量计算所需的复杂度。尤其是,度量(31)的近似(其提供了可靠的LPOS码元判决)通过仅考虑每一集合中相应于对于pO,l, j=l,2,波形々^"的最大绝对值的四个索引获得。 Therefore, under the assumption that the tape speed is constant, the likelihood metrics associated with hypotheses ~ "'ae {- ^ can be expressed as <formula> formula see original document page 32 </ formula> (28) Note that, by ( 28) is equivalent to the metric given by the metric obtained by the matched filter receiver. retrospect correspondence 1> Production ^ + 1) / 2,1 ^ {0,1}, introducing the change of variables x = vt, and for PO, l, j = l, 2, define the match filtered waveform 々) (Che) for <formula> formula see original document page 32 </ formula> (29) Metric (28) becomes an expression <formula> formula see original document page 32 </ formula> (30) <formula> formula see original document page 32 </ formula> <formula> formula see original document page 33 </ formula>. Note that the metric (30) is independent of the expression cassette speed. recalled previously, the timing basis generation system provides the time sequence {^}, so that independent of tape speed per micrometer 1 / Xi samples at a fixed rate to obtain interpolated signal samples "r (tn". Thus, in Assuming the sampling rate is sufficiently large to avoid aliasing effects can be obtained, and Nf-Lf / Xj is the case where an integer can be interpolated signal samples in the digital domain using the metric calculation for <formula> formula see original document page 33 </ formula > (31) where A (v) '"!' 2,3'4 represents the set of integers, which can be defined as the set of integers <formula> formula see original document page 33 </ formula> optimum LPOS symbol detection of the present invention 2300. Calcd mp, f, p-0, l, and compare them to produce encoded in Zi f servo frame LPOS symbol decision ^, shown in Figure 23, namely: <formula> formula see original document page 33 </ formula> In Figure 24, for the PW50 - 0.84fim, y = 0 and x production 0.25pm, shows waveforms can be obtained by considering the collection AW '"" "specified index to perform a subset (31) of the summation, can greatly reduce the complexity of metric computation. In particular, the metric (31) approximation (which provides reliable LPOS symbol decision) by only considering each set of corresponding to pO, l, j = l, 2, waveform 々 ^ "the maximum absolute value of four indexes obtained. 然后,被考虑用于度量计算的3^), i=l,2,3,4的索引的子集由下式给出:<formula>formula see original document page 34</formula>其中Lp-2.1pm表示双位的正和负峰值之间的距离。 Then, being considered for a measure ^), i = l, 2,3,4 three indexes calculated subset is given by: <formula> formula see original document page 34 </ formula> where Lp-2.1 pm represents the distance double digit positive and negative peak. 例如,被考虑用于度量(31)的近似的计算的波形々""),卩-O,l的采样由图24A和24B中较大的标记指示。 For example, be considered for metric (31) is approximately calculated waveform 々 ""), Jie -O, l is sampled by 24A and 24B in the larger numerals. 在图25中示出了简化的LPOS码元检测系统2500的框图。 In the FIG. 25 shows a block diagram of a simplified LPOS symbol detection system 2500. 由"控制单元"1304提供了每一帧的16个内插时刻(在该时刻估计对该度量作出贡献的项,如(34)所示)的值&},"控制单元"1304具有关于伺服帧突发中的双位的完全的定时信息,如前所述。 1304 provides "Control unit" by the 16 interpolation in time of each frame (at the time of the measurement item is estimated to contribute, such as (34) below) The value &}, "Control unit" 1304 has on the servo frame burst dibit complete timing information, as previously described. 关于时刻(tj 的知识还允许正确地选择匹配滤波波形的采样,如图25的框图所示。 在由"控制单元"1304确定出的每一时刻tn,计算内插信号采样,从这些内插信号采样提取选择的波形采样,p-0, 1。对产生的差求平方并累加,以形成所述两个度量值mp,f, pO,l。当变量newSymbolDecision在求和间隔(求和间隔在B突发的第四个双位的末尾处发生)的末尾处被"控制单元"1304设置为1时,根据规则(33)检测新的LPOS码元,且累加器复位。由Mc,f和Mw表示的、被假设为分别指示用于正确和不正确假设的度量的低和高度量值在检测系统的输出端出现,用于进一步处理,以确定LPOS检测处理的可靠性度在假设磁带速度恒定的情况下,已得出度量(31)的表达式。但是,如前所述,速度估计被输入到定时基础产生系统1300以跟踪时变速度。因此,即使在磁带运动的加速和减速期间,也能获得可靠的LPOS码元判决。图26A和图26B示出了在磁带加速期间、对于AWGN 伺服通道,给出估计的速度(图26A)和计算出的度量值(图26B) 的仿真结果。其中AWGN伺服通道的特征在于SNR等于25dB,初始磁带速度等于0.5m/s,且磁带加速度等于10m/s2。为了确定检测处理的质量,定义了在检测点的平均信噪比加上失真率。引入量Mc和"^以分別表示用于正确假设的度量的均值和方差,引入量M!和"^'以分别表示用于不正确假设的度量的均值和方差,在检测点的平均信噪比加上失真率定义为<formula>formula see original document page 35</formula>(35)与LPOS码元判决相关联的可靠性的测量值由下式给出<formula>formula see original document page 35</formula>(36)用于产生平均信噪比加上失真率的估计和每一LPOS码元判决的可靠性的系统2700的框图如图27所示。如上所迷,SDRest,f和RELest, 可用来分别监视LPOS检测处理和选择由两个并行工作的伺服通道所检测的LPOS码元的最可靠的一个。图28示出了用于在由并行伺服通道2810A、 2810B所检测的两个LPOS码元之间选择具有最高可靠性测量值的LPOS码元的系统2800 的框图。在比较模块2820中比较来自两个通道2810A、 2810B的可靠性测量值,由选择器2830选择表示最可靠LPOS码元的测量值。 About time (tj knowledge also permits proper choice of sampling the waveform matched filter, as shown in the block diagram 25 shown by the "Control unit" 1304 is determined every moment tn, calculating the interpolation signal samples, the interpolation from these signal samples to extract selected waveform, p-0, 1. squaring of generating and accumulating the difference, to form the two metric values mp, f, pO, l. When the variable newSymbolDecision summation interval (summation interval B burst occurred in the fourth at the end of two-bit) at the end is "control unit" 1304 is set to 1, according to the rules (33) detects the new LPOS symbols, and the accumulator is reset by Mc, f and Mw expressed, is assumed to indicate the low and high values for correct and incorrect assumptions metric at the output of the detection system occurs, for further processing, in order to determine the degree of reliability of the LPOS detection process on the assumption that the tape Under the speed is constant, a measure (31) of the representation is derived. However, as described above, velocity estimation is input to the timing basis generation variable speed system 1300 to track. Thus, even during acceleration and deceleration of the tape motion period, but also to obtain reliable LPOS symbol decision. 26A and FIG. 26B shows the tape during acceleration, for AWGN servo channel, given the estimated velocity (Fig. 26A) and the computed metric values (Fig. 26B) of The simulation results. wherein AWGN servo channel characterized in that the SNR is equal to 25dB, the initial tape speed is equal to 0.5m / s, and tape acceleration equal to 10m / s2. In order to determine the quality of the detection process, the definition of the average SNR at the detection point plus distortion. introduction amount Mc and "^ to denote the metric for the correct hypothesis mean and variance, the introduction of an amount M! and" ^ "is used to denote an incorrect assumption of the mean and variance metrics at the detection point The average distortion plus noise ratio is defined as <formula> formula see original document page 35 </ formula> (35) associated with the reliability of the decision LPOS symbol measured value is given by <formula> formula see original document page 35 </ formula> (36) used to generate an average reliability of the system block diagram of the signal to noise ratio plus distortion ratio estimate and judgment of each LPOS symbol 2700 shown in Figure 27. As fans, SDRest, f and RELest, , respectively, can be used to monitor the LPOS detection process and select the most reliable one by two servo channels operating in parallel detected LPOS symbols. Figure 28 shows a parallel in the servo channel 2810A, 2810B are block diagram of the measured values with the highest reliability detected between two LPOS symbols LPOS symbol system 2800 in 2820 in comparison module compares the reliability of the measured values from the two channels 2810A, 2810B, and 2830 selection by the selector represents the most reliable measurement LPOS symbols. 已测量出基于同步伺服通道的原型LPOS码元检测器的性能,并将其与如当前在LTO磁带驱动器产品中使用的基于峰值检测的传统LPOS码元检测器的性能进行比较。 Has been measured based on the prototype synchronous servo channel LPOS symbol detector performance and compare it with such traditional LPOS symbol detector performance peak detection based on the current use of the LTO tape drive products. 同步伺服通道和TBS系统已通过使用FPGA实现,并通过使用在磁带驱动器伺服通道ADC的输出端处的信号作为两种系统的输入并行运行。 And TBS channel synchronous servo system has been realized through the use of FPGA, and by using the signal at the output of the tape drive servo channel ADC to run concurrently as the input of the two systems. 已使用完全相同的LPOS字解码器来解码LPOS码元的序列并测量所述两个通道内的判决误差的数目,而不应用误差校正。 Has exactly the same LPOS word decoder decodes the sequence of LPOS symbols and measure the number of decision error within the two channels, without applying error correction. 通常在正常磁带驱动操作期间提供伺脲信息的所述两个物理伺服通道CHA和CHB由伺服读取器在磁带速度等于6.22m/s的情况下在磁带上的12个不同的横向位置(由环绕点(wrap)号表示)读取。 12 different lateral positions on the tape case of urea usually provide servo information during normal tape drive operation of the two physical servo channels CHA and CHB by the servo reader in the tape speed is equal to 6.22m / s (from Surround point (wrap) sign indicates) read. LPOS字误差的数目的测量值通过每个环绕点读取80000个LPOS字获得,并且为每个环绕点重复。 The number of errors in the measured value LPOS word read 80000 LPOS word to get through each point surround and surround point for each repetition. 结果在表I中表示》 The results are shown "in Table I

表I Table I

<table>table see original document page 36</column></row> <table> 注意,误差的总数不考虑从环绕点#30和环绕点#46获得的结果,因为在这些情况下,同步误差防止TBS系统令人满意地工作。 <Table> table see original document page 36 </ column> </ row> <table> Note that the total number of errors does not consider the results obtained from the surround and surround-point point # 30 # 46, because in these cases, the synchronization error prevention TBS systems work satisfactorily. 尤其是,TBS系统同步误差是由于伺服带边缘处的间隙检测器的故障引起的。 In particular, TBS system synchronization errors due to clearance of the fault detector at the servo band edges caused. 在正常操作条件下所述两种系统的误差总数之间的比较指示基于同步伺服通道体系结构的LPOS系统取得的误差率好于基于TBS的LPOS检测系统所呈现出的误差率的大约46倍。 Under normal operating conditions of the comparison indicates that the total number of errors between the two systems of error rate achieved LPOS system synchronous servo channel architecture is better than that based on the LPOS detection system based on TBS by showing error rate of approximately 46 times. 虽然在表I中示出的结果是由特定的磁带驱动器和特定的卡盒(cartridge)获得的,期望通常所迷两种系统之间的性能差不会与在此所示出的有显著的不同。 While Table I shows the results from a particular tape drive and a particular cartridge (cartridge) obtained, it is desirable that the fans will not usually have poor performance in this illustrated between the two systems significant different.

重要的是要注意,虽然本发明已在完全功能的数据处理系统的环境下描述,本领域普通技术人员将认识到,本发明的处理能够以指令 It is important to note that although the present invention has been described in the context of a fully functioning data processing system environment, those of ordinary skill in the art will recognize that the present invention is capable of processing instructions

的计算机可读介质和各种形成分发,且不管实际用于实现这种分发的信号承载媒体的特定类型,本发明都适用。 The computer-readable media and various formation distribution, and regardless of the actual distribution for the specific implementation of this type of signal bearing medium, the present invention is applicable. 计算机可度媒体的例子包 Examples of the computer media pack

括诸如软盘、硬盘驱动器、RAM和CD-ROM的可记录型媒体和诸如数字与模拟通信链路的传输型媒体。 Including such as floppy disks, hard drives, RAM, and CD-ROM and the recordable-type media such as digital and analog transmission media type communication link.

本发明的描述是为了示例和说明而提出的,但不打算是穷尽的, 或限于所公开形式的发明。 Description of the present invention is presented for purposes of illustration and description, but not intended to be exhaustive or limited to the disclosed form of the invention. 许多修改和变形对于本领域普通技术人员来说将是明显的。 Many modifications and variations to those of ordinary skill will be apparent. 实施例的选择和说明是为了最好地解释本发明的原理、实际应用,并使本领域普通技术人员能够理解本发明的各种实施例,这些实施例具有适于所考虑的特定应用的各种修改。 Is the embodiment chosen and described in order to best explain the principles of the invention, the practical application, and to those of ordinary skill to understand the invention for various embodiments, these embodiments have adapted to each particular application under consideration modifications. 另外,虽然上面对方法和系统进行了描述,本领域中的需要也可以由包括用于磁带存储系统中的横向位置(LPOS)检测的指令的计算机程序产品满足。 Further, although the upper face of a method and system has been described in the art may also be required by a tape storage system comprising lateral position (LPOS) detection of instructions for a computer program product meets.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
CN1283851A2 Aug 200014 Feb 2001国际商业机器公司Tough detection to servo datas modulated as time base
US539637413 Nov 19927 Mar 1995Sony CorporationMethod and apparatus for reproducing and after-recording digital information signals on magnetic tape
US560858324 May 19954 Mar 1997Conner Peripherals, Inc.System for qualifying the detection of a servo dibit
Classifications
International ClassificationG11B5/584, G11B21/10
Cooperative ClassificationG11B5/59688
European ClassificationG11B5/596P
Legal Events
DateCodeEventDescription
30 Jan 2008C06Publication
19 Mar 2008C10Request of examination as to substance
15 Apr 2009C14Granted