WO2017014608A1 - Apparatus and method for measuring surface tension - Google Patents

Apparatus and method for measuring surface tension Download PDF

Info

Publication number
WO2017014608A1
WO2017014608A1 PCT/KR2016/008095 KR2016008095W WO2017014608A1 WO 2017014608 A1 WO2017014608 A1 WO 2017014608A1 KR 2016008095 W KR2016008095 W KR 2016008095W WO 2017014608 A1 WO2017014608 A1 WO 2017014608A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
surface tension
cell
electrode
deflection
Prior art date
Application number
PCT/KR2016/008095
Other languages
French (fr)
Korean (ko)
Inventor
이정훈
최승열
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2017014608A1 publication Critical patent/WO2017014608A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/16Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring distance of clearance between spaced objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables

Definitions

  • the present invention relates to a surface tension measuring device and a measuring method between the liquid, and more specifically, surface tension measuring device and measurement through an electrical method that is much simpler and improved accuracy compared to measuring the surface tension through a conventional optical method It is about a method.
  • Surface tension refers to the force that the liquid on the surface attracts each other.
  • the liquid has the characteristic of minimizing the surface by the force between molecules. Liquid molecules exert a force on each other. One liquid molecule is forced from surrounding molecules in all directions. However, there is no force from above on the surface. Because of this, the surface is more unstable than the middle, and to minimize this unstable state, the liquid tries to minimize the surface, which is unstable.
  • the value is a constant that depends on the type of liquid, but also varies with temperature.
  • Patent related to the measurement of such a conventional surface tension is published Patent Publication No. 1998-026170 (Published: 1998.07.15).
  • the background art described above is technical information that the inventors possess for the derivation of the present invention or acquired in the derivation process of the present invention, and is not necessarily a publicly known technique disclosed to the general public before the application of the present invention. .
  • One embodiment of the present invention is to provide an apparatus and method for measuring the surface tension more accurately and simply by an electrical method.
  • the surface tension measuring apparatus according to an embodiment of the present invention, at least one cell in which the insulating liquid is mounted covering the positive electrode; A power supply unit applying a voltage to the electrode; A measuring unit for measuring a low point of an interface between the non-insulating liquid and the insulating liquid which is changed by the voltage applied to the electrode; And a calculation unit for calculating the surface tension of the interface based on the low point of the interface.
  • a method of measuring surface tension using a surface tension measuring device including at least one cell in which an insulating liquid covers an active electrode comprising: applying a voltage to the electrode; Measuring a low point of an interface between the non-insulating liquid and the insulating liquid, which is fluctuated by the voltage applied to the electrode; And calculating a surface tension of the interface based on the low point of the interface.
  • an embodiment of the present invention can measure the surface tension accurately and simply by an electrical method.
  • any one of the problem solving means of the present invention it is possible to provide a surface tension measuring apparatus for determining the presence and degree of the target molecule based on the degree of deflection of the interface.
  • FIG. 1 is a block diagram for explaining a surface tension measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a reference diagram for explaining a structure of a panel unit according to an exemplary embodiment of the present invention.
  • FIG. 3 is a block diagram of a calculator according to an exemplary embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a surface tension measuring method according to an exemplary embodiment of the present invention.
  • FIG. 5 is a sectional view of a cell before voltage is applied
  • FIG. 6 is a sectional view of a cell after voltage is applied.
  • FIG. 7 is a cross-sectional view of a cell for explaining the method of calculating the surface tension according to the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a cell for explaining the surface tension calculation method according to the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of the cell with the receptor disposed.
  • FIG. 1 is a block diagram for explaining a surface tension measuring apparatus according to an embodiment of the present invention.
  • Surface tension measuring apparatus includes a panel unit 100 and the calculation unit 200.
  • the insulating liquid on which the surface tension is to be measured is determined in the panel unit 100, and the calculating unit 200 calculates the surface tension of the interface between the insulating liquid and the non-insulating liquid mounted on the panel unit 100.
  • FIG. 2 is a reference diagram for explaining a structure of a panel unit according to an exemplary embodiment of the present invention.
  • FIG. 2 illustrates one or more pillars 120 disposed on the substrate 110 of the panel unit 100 according to an exemplary embodiment of the present invention.
  • the substrate 110, the pillar 120, and the electrode 140 are coated with a hydrophobic dielectric material.
  • Hydrophobic dielectric material may be Teflon (Teflon), Cytop (Cytop), or parylene material (Parylene).
  • Teflon Teflon
  • Cytop Cytop
  • Parylene parylene
  • the present invention is not limited thereto, and may be applied to a case where any other type of hydrophobic dielectric material is coated.
  • the shape of the pillar 120 may be preset.
  • the pillar 120 may be circular or may be a square pillar.
  • the present invention is not limited thereto, and the present invention may be applied to the pillar 120 having another form.
  • At least one cell 130 is formed in the panel unit 100.
  • Each cell 130 is formed surrounded by a plurality of pillars (120).
  • the pillars 120 may be formed in a matrix of M * N in whole or in part on the substrate 110. At least two pillars 120 are disposed to surround a specific space to form one cell 130.
  • the shape of the lower surface of the cell 130 according to the embodiment of the present invention may be circular. However, the present invention is not limited thereto, and may be applied even when the shape of the lower surface of the cell 130 is different. Hereinafter, the shape of the lower surface of the cell 130 will be described as being circular.
  • each cell 130 of the panel unit 100 may be connected between at least one adjacent cell 130. That is, each cell 130 may be provided with a connection passage connected to at least one adjacent cell 130.
  • the electrode 140 is disposed in at least one cell 130 of the cells 130 formed in the panel unit 100. In addition, the electrode 140 is formed on the substrate 110. Each electrode 140 may be connected to at least one adjacent electrode 140.
  • Each cell 130 is mounted with an insulating liquid to measure the surface tension.
  • the insulating liquid is mounted covering the electrode 140, and in the cell 130 in which the electrode 140 is not disposed, the insulating liquid is mounted on the substrate 110.
  • a hydrophobic layer (not shown) may be deposited on the substrate 110, the pillar 120, and the electrode 140.
  • a hydrophobic film may be deposited on the electrode 140.
  • the cell 130 according to the embodiment of the present invention is connected to at least one adjacent cell 130, so that when the insulating liquid is mounted, each cell 130 can be easily filled with the insulating liquid.
  • Insulating liquid according to an embodiment of the present invention may be filled by the height of the column (120).
  • the present invention is not limited thereto, and the present invention may be applied to the case where the pillar 120 is filled with an insulating liquid by a height or less.
  • a non-insulating liquid is disposed on the insulating liquid.
  • calculation unit 200 according to an embodiment of the present invention will be described with reference to FIG. 3.
  • FIG. 3 is a block diagram of a calculator 200 according to an embodiment of the present invention.
  • the calculation unit 200 includes a power supply unit 210 for applying a voltage to at least one electrode 140 of the electrodes 140 formed in the cell 130.
  • the power supply unit 210 may maintain the ground state in the non-insulating liquid.
  • the calculator 200 may further include a measurement unit 220 for measuring the low point of the interface between the non-insulating liquid and the insulating liquid (hereinafter referred to as the 'interface').
  • the measurement unit 220 may measure how much the bottom of the interface sags, that is, the degree of sag.
  • the measurement unit 220 may measure how far down the column 120 is.
  • the measurement unit 220 according to the exemplary embodiment of the present invention may measure a numerical value obtained by subtracting the distance from the lower surface of the center of the cell to the position of the interface low point from the height of the column 120 to the degree of deflection of the interface.
  • the bottom of the interface may be the position of the interface at the center of the cell.
  • the shape of the interface may be a shape having a curvature.
  • the calculator 200 may further include a calculator 230 that calculates the surface tension of the interface based on the measured low point of the interface.
  • the calculation unit 230 may calculate the electrical parameters of the interface based on the low point of the interface, and calculate the surface tension based on the calculated electrical parameters.
  • Electrical parameters may include current, impedance or capacitance at the interface measured according to the shape of the interface.
  • the electrical parameters will be described as being limited to the capacitance of the interface, but the present invention is not limited thereto, and the present invention can be applied even when using different parameter values.
  • FIG. 4 is a flowchart illustrating a surface tension measuring method according to an exemplary embodiment of the present invention.
  • the power supply unit 210 applies a voltage to the electrode 140.
  • the magnitude of the voltage applied by the power supply unit 210 may be preset (S401).
  • the power supply unit 210 may maintain the ground state of the non-insulating liquid 520.
  • the measurement unit 220 measures the low point of the interface that varies with the voltage applied to the electrode 140 (S403). At this time, the measurement unit 220 may measure how much the interface bottom is lowered, that is, the degree of sagging of the interface.
  • FIG. 5 is a sectional view of a cell before voltage is applied
  • FIG. 6 is a sectional view of a cell after voltage is applied.
  • the downward direction may be a direction in which the substrate 110 is located.
  • the direction of the force exerted by the interfacial surface tension between the insulating liquid 510 and the non-insulating liquid 520 may be opposite to the direction of the electrical pressure applied to the interface. Therefore, when the voltage is applied to the electrode 140, the smaller the interfacial surface tension between the insulating liquid 510 and the non-insulating liquid 520, the lower the position of the bottom of the interface.
  • the measurement unit 220 may measure the degree of deflection of the interface lowered by applying the voltage to the electrode 140.
  • the measurement unit 220 according to an exemplary embodiment of the present invention may measure a numerical value obtained by subtracting the distance from the lower surface of the cell center to the position of the interface low point from the height of the column 120 to the degree of deflection.
  • the calculation unit 230 calculates the surface tension of the interface based on the measured low point of the interface (S405).
  • FIG. 7 is a cross-sectional view of a cell for explaining the method of calculating the surface tension according to the first embodiment of the present invention.
  • the calculator 230 calculates the capacitance of the interface as the voltage V is applied to the electrode.
  • the calculation unit 230 if the low point of the interface sag, the radius of curvature ( Calculate
  • the calculator 230 may calculate the radius of curvature of the interface based on Equation 1.
  • the calculation unit 230 is the radius of curvature of the interface ( Based on the height of the interface at points located r apart from the center of the cell. Calculate
  • the calculation unit 230 calculates the height of the interface at a point located r apart from the center of the cell based on Equation 2 ) Can be calculated.
  • the calculation unit 230 calculates the deflection viscosity d of the interface and the height of the interface at a point located at a distance r from the center of the cell. ), The capacitance C of the interface is calculated.
  • the calculation unit 230 calculates the capacitance C of the interface based on Equation 3.
  • the calculation unit 230 calculates the surface tension of the interface based on the capacitance C of the interface.
  • the calculation unit 230 may calculate the surface tension based on Equation 4.
  • Is surface energy, Is electrical energy, Is the surface tension, V is the voltage applied to the electrode 140, Is the degree of deflection of the interface at voltage V, Is the area of the interface between the non-insulating and insulating liquid at voltage V. here Is the same as d described above.
  • the energy of the interface according to the embodiment of the present invention may be measured separately or may be calculated and set in advance.
  • FIG. 8 is a cross-sectional view of a cell for explaining the surface tension calculation method according to the second embodiment of the present invention.
  • V1 and V2 may be applied to the electrode 140.
  • V2 is larger than V1.
  • each interface sag according to the applied voltage ( , ) May be different.
  • the greater the voltage applied the greater the interface deflection.
  • the capacitance of the interface according to each interface sag ( , ) May be different depending on the applied voltage.
  • the calculation unit 230 is based on the difference between the energy of the interface when V2 is applied to the electrode 140 (sum of surface energy and electrical energy) and the interface energy when V1 is applied to the electrode 140. Calculate the surface tension of.
  • the calculator 230 may calculate the surface tension of the interface based on Equation 5.
  • the calculation unit 230 at the energy difference of the interface when the first voltage is applied and the energy at the interface when the second voltage is applied,
  • the surface tension can be calculated from the difference in the surface energy obtained by excluding the difference in the electrical energy calculated by the degree of deflection of the interface based on the first voltage and the electrical energy calculated by the degree of deflection of the interface based on the second voltage applied to the electrode. .
  • the degree of deflection at the interface may be affected by the measurement environment, such as the temperature at which it is measured. According to the second embodiment of the present invention, since the surface tension is measured based on the interfacial energy difference, it is possible to measure the accurate surface tension without affecting the environment in which the surface tension measuring device is disposed.
  • FIG. 9 is a cross-sectional view of the cell with the receptor disposed.
  • Surface tension measuring apparatus can be utilized as a biosensor.
  • At least one or more receptors are disposed in any one of the cells of the surface tension measuring apparatus. More specifically, the receptor is disposed at the interface.
  • the receptor includes a hydrophilic portion and a hydrophobic portion, in accordance with an embodiment of the invention, wherein the hydrophobic portion of the receptor faces the insulating liquid direction and the hydrophilic portion faces the non-insulating liquid direction.
  • a target molecule may be coupled to the hydrophilic portion of the receptor.
  • the target molecule according to the embodiment of the present invention may be a protein molecule or a DNA.
  • the interface can then vary based on the amount of target molecule binding to the receptor. In other words, the lower the interface, the lower the amount of target molecules that bind to the receptor. That is, the lower point of the interface sags downward by the weight of the bound target molecule as the amount of the target molecule binds to the receptor.
  • the calculation unit 230 may determine the presence or degree of target molecules in the non-insulating liquid, based on the degree of deflection of the interface.
  • the surface tension measuring apparatus may further include a separate panel unit 100 including a cell in which a receptor is not disposed. That is, the surface tension measuring apparatus may include a panel unit 100 in which a receptor is disposed in a cell and a panel unit 100 in which a receptor is not disposed in a cell. Therefore, the cells in which the receptors are placed and the cells in which the receptors are not disposed are distinguished from each other and do not affect each other.
  • the additional panel unit 100 and the conventional panel unit 100 added at this time may have the same structure except for inclusion of a receptor.
  • the calculation unit 230 may determine the degree of movement of the interface low point when there is no target molecule in the non-insulating liquid, based on the amount of change of the interface (degree of low point low) of the cell in which the receptor is not disposed.
  • the calculation unit 230 may compare the amount of change in the interface of the cell in which the receptor is not disposed with the change in the interface of the cell in which the receptor is disposed, and determine whether or not there is a target molecule that binds to the receptor.
  • the present invention has industrial applicability with regard to a surface tension measuring device and a measuring method between liquids by measuring the surface tension accurately and simply by an electrical method.

Abstract

A surface tension measurement apparatus according to an embodiment of the present invention comprises: at least one cell into which insulating liquid is embedded while covering an electrode; a power source unit for applying a voltage to the electrode; a measuring unit for measuring the bottom of a interface between the insulating liquid and non-insulating liquid, which varies with the voltage applied to the electrode; and a calculation unit for calculating the surface tension of the interface on the basis of the bottom of the interface.

Description

표면장력 측정 장치 및 측정 방법Surface tension measuring device and measuring method
본 발명은 액체 사이의 표면장력측정장치 및 측정방법에 관한 것으로서, 보다 구체적으로는 종래의 광학적 방법을 통해 표면장력을 측정하는 것에 비해 훨씬 간단하고 정확도가 향상된 전기적 방법을 통한 표면장력 측정 장치 및 측정 방법에 관한 것이다.The present invention relates to a surface tension measuring device and a measuring method between the liquid, and more specifically, surface tension measuring device and measurement through an electrical method that is much simpler and improved accuracy compared to measuring the surface tension through a conventional optical method It is about a method.
표면장력은 표면의 액체가 서로 끌어 당기는 힘을 말하는 것으로 액체는 분자 간의 힘에 의하여 그 표면을 최소화 하려는 특징이 있다. 액체분자 들은 서로 힘이 작용한다. 한 개의 액체 분자는 모든 방향의 주위 분자들로부터 힘을 받게 된다. 하지만, 표면에서는 위로부터 받는 힘이 존재하지 않는다. 이로 인해 표면에서는 중간에서보다 불안정한 상태이고, 이 불안정한 상태를 최소화 하기 위해 액체는 불안정한 부분인 표면을 최소화 하려고 한다.Surface tension refers to the force that the liquid on the surface attracts each other. The liquid has the characteristic of minimizing the surface by the force between molecules. Liquid molecules exert a force on each other. One liquid molecule is forced from surrounding molecules in all directions. However, there is no force from above on the surface. Because of this, the surface is more unstable than the middle, and to minimize this unstable state, the liquid tries to minimize the surface, which is unstable.
이러한 불안정성은 표면의 다른 입자에 힘을 작용해 줄 수도 있다. 즉, 액체의 분자간 인력의 균형이 액면 부근에서 깨지고, 액면 부근의 분자가 액체속의 분자보다 위치에너지가 크고, 이 때문에 액체가 전체표면적에 비례한 에너지를 가지게 되어 표면장력이 생기게 된다. 그래서, 표면장력은 단위면적에 작용하는 에너지에 대한식으로 표현 되기도 한다. 실제 사용되는 것은 단위길이의 선의 양쪽에 작용하는 장력에 의해 표시된다.This instability can force other particles on the surface. That is, the balance of the intermolecular attraction of the liquid is broken near the liquid level, and the molecules near the liquid level have a higher potential energy than the molecules in the liquid, which causes the liquid to have an energy proportional to the total surface area, resulting in surface tension. Thus, surface tension is often expressed in terms of the energy acting on the unit area. What is actually used is indicated by the tension on both sides of the line of unit length.
그 값은 액체의 종류에 따라 결정되는 상수이지만, 온도에 따라서도 변한다.The value is a constant that depends on the type of liquid, but also varies with temperature.
이렇듯 표면장력은 표면상에 위치한 모든 분자들간에 작용하는 인력의 형태이며, 이는 액체의 압축에 대한 저항력과 균형을 이루게 된다. As such, surface tension is a form of attraction between all the molecules on the surface, which is in balance with the resistance to compression of the liquid.
이러한 표면장력을 측정하기 위해, 종래에는 다양한 기술이 이용되었다. 이러한 종래의 표면장력의 측정과 관련한 특허로는 공개특허: 특1998-026170 (공개일 :1998.07.15)가 있다.In order to measure this surface tension, various techniques have been used in the past. Patent related to the measurement of such a conventional surface tension is published Patent Publication No. 1998-026170 (Published: 1998.07.15).
이러한 종래의 표면장력을 측정하는 기술은 이미지 또는 형광의 세기 등의 광학적인 정보를 이용하는 것이 대부분이었다. 그러나, 이러한 방법은 복잡하고, 이러한 기술을 이용하는 표면장력 측정 장치는 설치 비용이 높아 경제성이 떨어진다는 문제점이 있었다. 따라서 이러한 문제점을 해결하기 위한 장치 및 방법이 요구되고 있는 실정이다.Most conventional techniques for measuring surface tension use optical information such as image or fluorescence intensity. However, this method is complicated, and the surface tension measuring device using this technique has a problem that the installation cost is high and the economy is low. Therefore, there is a need for an apparatus and method for solving these problems.
한편, 전술한 배경기술은 발명자가 본 발명의 도출을 위해 보유하고 있었거나, 본 발명의 도출 과정에서 습득한 기술 정보로서, 반드시 본 발명의 출원 전에 일반 공중에게 공개된 공지기술이라 할 수는 없다.On the other hand, the background art described above is technical information that the inventors possess for the derivation of the present invention or acquired in the derivation process of the present invention, and is not necessarily a publicly known technique disclosed to the general public before the application of the present invention. .
본 발명의 일실시예는 전기적인 방법에 의해 보다 정확하고 간편하게 표면장력을 측정할 수 있는 장치 및 방법을 제공하는 데에 목적이 있다.One embodiment of the present invention is to provide an apparatus and method for measuring the surface tension more accurately and simply by an electrical method.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 제 1 측면에 따르면, 본 발명의 실시예에 따른 표면장력 측정 장치는, 절연성 액체가 적극을 덮으며 실장되는 적어도 하나의 셀; 상기 전극에 전압을 인가하는 전원부; 상기 전극에 인가된 전압으로 변동되는 비절연성 액체와 상기 절연성 액체의 계면의 저점을 계측하는 계측부; 및 상기 계면의 저점에 기초하여 상기 계면의 표면장력을 계산하는 계산부를 포함한다.As a technical means for achieving the above technical problem, according to a first aspect of the present invention, the surface tension measuring apparatus according to an embodiment of the present invention, at least one cell in which the insulating liquid is mounted covering the positive electrode; A power supply unit applying a voltage to the electrode; A measuring unit for measuring a low point of an interface between the non-insulating liquid and the insulating liquid which is changed by the voltage applied to the electrode; And a calculation unit for calculating the surface tension of the interface based on the low point of the interface.
본 발명의 제 2 측면에 따르면, 절연성 액체가 적극을 덮으며 실장되는 적어도 하나의 셀을 포함하는 표면장력 측정 장치를 이용하여 표면장력을 측정하는 방법은 상기 전극에 전압을 인가하는 단계; 상기 전극에 인가된 전압으로 변동되는 비절연성 액체와 상기 절연성 액체의 계면의 저점을 계측하는 단계; 및 상기 계면의 저점에 기초하여 상기 계면의 표면장력을 계산하는 단계를 포함한다.According to a second aspect of the present invention, a method of measuring surface tension using a surface tension measuring device including at least one cell in which an insulating liquid covers an active electrode is mounted, the method comprising: applying a voltage to the electrode; Measuring a low point of an interface between the non-insulating liquid and the insulating liquid, which is fluctuated by the voltage applied to the electrode; And calculating a surface tension of the interface based on the low point of the interface.
전술한 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 본 발명의 일 실시예는 전기적인 방법에 의해 정확하고 간편하게 표면장력을 측정할 수 있다.According to any one of the problem solving means of the present invention described above, an embodiment of the present invention can measure the surface tension accurately and simply by an electrical method.
또한 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 계면의 처짐 정도에 기초하여, 타겟 분자의 존재 여부 및 정도를 판단하는 표면장력 측정 장치를 제공할 수 있다.In addition, according to any one of the problem solving means of the present invention, it is possible to provide a surface tension measuring apparatus for determining the presence and degree of the target molecule based on the degree of deflection of the interface.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
도 1은 본 발명의 일실시예에 따른 표면장력 측정 장치를 설명하기 위한 구성도이다.1 is a block diagram for explaining a surface tension measuring apparatus according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 패널부의 구조를 설명하기 위한 참고도이다.2 is a reference diagram for explaining a structure of a panel unit according to an exemplary embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 산출부의 블록도이다.3 is a block diagram of a calculator according to an exemplary embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 표면장력 측정 방법에 대한 흐름도이다.4 is a flowchart illustrating a surface tension measuring method according to an exemplary embodiment of the present invention.
도 5는 전압이 인가되기 전 셀의 단면도이고, 도 6은 전압이 인가된 이후의 셀의 단면도이다.5 is a sectional view of a cell before voltage is applied, and FIG. 6 is a sectional view of a cell after voltage is applied.
도 7는 본 발명의 제 1 실시예에 따른 표면장력 계산 방법을 설명하기 위한 셀의 단면도이다.7 is a cross-sectional view of a cell for explaining the method of calculating the surface tension according to the first embodiment of the present invention.
도 8은 본 발명의 제 2 실시예에 따른 표면장력 계산 방법을 설명하기 위한 셀의 단면도이다.8 is a cross-sectional view of a cell for explaining the surface tension calculation method according to the second embodiment of the present invention.
도 9는 리셉터가 배치된 상태의 셀의 단면도이다.9 is a cross-sectional view of the cell with the receptor disposed.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is "connected" to another part, this includes not only "directly connected" but also "electrically connected" with another element in between. . In addition, when a part is said to "include" a certain component, which means that it may further include other components, except to exclude other components unless otherwise stated.
이하 첨부된 도면을 참고하여 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
다만 이를 설명하기에 앞서, 아래에서 사용되는 용어들의 의미를 먼저 정의한다. However, before describing this, the meanings of the terms used below are first defined.
도 1은 본 발명의 일실시예에 따른 표면장력 측정 장치를 설명하기 위한 구성도이다.1 is a block diagram for explaining a surface tension measuring apparatus according to an embodiment of the present invention.
본 발명의 실시예에 따른 표면장력 측정 장치는 패널부(100) 및 산출부(200)를 포함한다. 패널부(100)에는 표면장력이 측정될 절연성 액체가 실정되고, 산출부(200)는 패널부(100)에 실장되는 절연성 액체와 비절연성 액체 사이의 계면의 표면장력을 산출한다.Surface tension measuring apparatus according to an embodiment of the present invention includes a panel unit 100 and the calculation unit 200. The insulating liquid on which the surface tension is to be measured is determined in the panel unit 100, and the calculating unit 200 calculates the surface tension of the interface between the insulating liquid and the non-insulating liquid mounted on the panel unit 100.
다음은 도 2를 참조하여 본 발명의 실시예에 따른 패널부(100)의 구조에 대하여 설명하다.Next, a structure of the panel unit 100 according to an exemplary embodiment of the present invention will be described with reference to FIG. 2.
도 2는 본 발명의 실시예에 따른 패널부의 구조를 설명하기 위한 참고도이다.2 is a reference diagram for explaining a structure of a panel unit according to an exemplary embodiment of the present invention.
도 2는 본 발명의 실시예에 따른, 패널부(100)의 기판(110)에는 하나 이상의 기둥(120)이 배치된다. 기판(110), 기둥(120) 및 전극(140)은 소수성 유전물질로 코팅된다. 본 발명의 실시예에 따른 소수성 유전 물질은 테프론(Teflon), 사이탑(Cytop), 또는 패럴린물질(Parylene)이 있을 수 있다. 그러나 본 발명은 이에 한정되지 않고 얼마든지 다른 종류의 소수성 유전 물질이 코팅된 경우에도 적용될 수 있다. 2 illustrates one or more pillars 120 disposed on the substrate 110 of the panel unit 100 according to an exemplary embodiment of the present invention. The substrate 110, the pillar 120, and the electrode 140 are coated with a hydrophobic dielectric material. Hydrophobic dielectric material according to an embodiment of the present invention may be Teflon (Teflon), Cytop (Cytop), or parylene material (Parylene). However, the present invention is not limited thereto, and may be applied to a case where any other type of hydrophobic dielectric material is coated.
본 발명의 실시예에 따르면 기둥(120)의 형태는 기 설정되어 있을 수 있다. 기둥(120)은 원형일 수도 있으며, 사각 기둥일 수도 있다. 그러나 본 발명은 이에 한정되지 않고, 다른 형태의 기둥(120)인 경우에도 본 발명의 적용이 가능하다. According to the embodiment of the present invention, the shape of the pillar 120 may be preset. The pillar 120 may be circular or may be a square pillar. However, the present invention is not limited thereto, and the present invention may be applied to the pillar 120 having another form.
또한 패널부(100)에는 적어도 하나 이상의 셀(130)이 형성된다. 각각의 셀(130)은 복수의 기둥(120)에 둘러싸여 형성된다. In addition, at least one cell 130 is formed in the panel unit 100. Each cell 130 is formed surrounded by a plurality of pillars (120).
도 2를 참조하여 기둥(120)이 배치와 기둥(120)의 배치로 형성되는 셀(130)에 대하여 설명하면, 기둥(120)은 기판(110)에 전부 또는 일부가 M*N의 행렬 형태로 배치되며, 적어도 두개의 기둥(120)은 특정 공간을 둘러싸며 배치되어 하나의 셀(130)을 형성한다. Referring to FIG. 2, the cell 120 in which the column 120 is formed by the arrangement of the pillars 120 and the arrangement of the pillars 120 will be described. The pillars 120 may be formed in a matrix of M * N in whole or in part on the substrate 110. At least two pillars 120 are disposed to surround a specific space to form one cell 130.
본 발명의 실시예에 따른 셀(130) 하면의 형상은 원형일 수 있다. 그러나 본 발명은 이에 한정되지 않고, 셀(130) 하면의 형상이 다른 경우에도 적용될 수 있다. 이하에서는 셀(130) 하면의 형상이 원형인 것으로 한정하여 설명하겠다.The shape of the lower surface of the cell 130 according to the embodiment of the present invention may be circular. However, the present invention is not limited thereto, and may be applied even when the shape of the lower surface of the cell 130 is different. Hereinafter, the shape of the lower surface of the cell 130 will be described as being circular.
또한 패널부(100)의 각 셀(130)은 적어도 하나의 인접 셀(130)간 연결될 수 있다. 즉, 각 셀(130)에는 적어도 하나의 인접 셀(130)과 연결되는 연결통로가 배치될 수 있다.In addition, each cell 130 of the panel unit 100 may be connected between at least one adjacent cell 130. That is, each cell 130 may be provided with a connection passage connected to at least one adjacent cell 130.
패널부(100)에 형성된 셀(130) 중 적어도 하나의 셀(130)에는 전극(140)이 배치된다. 또한 전극(140)은 기판(110)에 형성된다. 각각의 전극(140)은 적어도 하나의 인접 전극(140)과 연결될 수 있다. The electrode 140 is disposed in at least one cell 130 of the cells 130 formed in the panel unit 100. In addition, the electrode 140 is formed on the substrate 110. Each electrode 140 may be connected to at least one adjacent electrode 140.
각각의 셀(130)에는 표면장력을 측정할 절연성 액체가 실장된다. 전극(140)이 배치된 셀(130)에서 절연성 액체는 전극(140)을 덮으며 실장되고, 전극(140)이 배치되지 않는 셀(130)에서는 기판(110)위에 실장된다. Each cell 130 is mounted with an insulating liquid to measure the surface tension. In the cell 130 in which the electrode 140 is disposed, the insulating liquid is mounted covering the electrode 140, and in the cell 130 in which the electrode 140 is not disposed, the insulating liquid is mounted on the substrate 110.
본 발명의 실시예에 따르면 기판(110), 기둥(120), 전극(140)은 소수성막(hydrophobic layer, 미도시)이 증착될 수 있다. According to an embodiment of the present invention, a hydrophobic layer (not shown) may be deposited on the substrate 110, the pillar 120, and the electrode 140.
본 발명의 실시예에 따르면, 기판(110), 기둥(120) 및 전극(140)이 소수성 유전물질로 코팅됨에 따라, 전극(140)에는 소수성막이 증착될 수 있다.According to an embodiment of the present invention, as the substrate 110, the pillar 120, and the electrode 140 are coated with a hydrophobic dielectric material, a hydrophobic film may be deposited on the electrode 140.
본 발명의 실시예에 따른 셀(130)은 적어도 하나의 인접 셀(130)과 연결되어 있어, 절연성 액체의 실장시, 쉽게 각각의 셀(130)을 절연성 액체로 채울 수 있다. 본 발명의 실시예에 따른 절연성 액체는 기둥(120)의 높이만큼 채워 질 수 있다. 그러나 본 발명은 이에 한정되지 않고, 기둥(120)이 높이 이하만큼 절연성 액체가 채워지는 경우에도 본 발명의 적용이 가능하다.The cell 130 according to the embodiment of the present invention is connected to at least one adjacent cell 130, so that when the insulating liquid is mounted, each cell 130 can be easily filled with the insulating liquid. Insulating liquid according to an embodiment of the present invention may be filled by the height of the column (120). However, the present invention is not limited thereto, and the present invention may be applied to the case where the pillar 120 is filled with an insulating liquid by a height or less.
또한 절연성 액체 위에는 비절연성 액체가 배치된다.In addition, a non-insulating liquid is disposed on the insulating liquid.
다음은 도 3을 참조하여, 본 발명의 실시예에 따른 산출부(200)를 설명한다.Next, the calculation unit 200 according to an embodiment of the present invention will be described with reference to FIG. 3.
도 3은 본 발명의 실시예에 따른 산출부(200)의 블록도이다.3 is a block diagram of a calculator 200 according to an embodiment of the present invention.
본 발명의 실시예에 따른 산출부(200)는 셀(130)에 형성된 전극(140) 중 적어도 하나의전극(140)에 전압을 인가하는 전원부(210)를 포함한다. 본 발명의 실시예에 따른 전원부(210)는 비절연성 액체에 접지상태를 유지시킬 수도 있다.The calculation unit 200 according to the embodiment of the present invention includes a power supply unit 210 for applying a voltage to at least one electrode 140 of the electrodes 140 formed in the cell 130. The power supply unit 210 according to the embodiment of the present invention may maintain the ground state in the non-insulating liquid.
또한 산출부(200)는 비절연성 액체와 절연성 액체의 계면(이하 '계면'이라 함)의 저점을 계측하는 계측부(220)를 더 포함할 수 있다. 본 발명의 실시예에 따른 계측부(220)는 계면의 저점이 얼마나 아래로 처져있는지 즉 처짐 정도를 계측할 수 있다. 계측부(220)는 기둥(120)을 기준으로 얼마나 아래로 처져있는지를 계측할 수 있다. 본 발명의 실시예에 따른 계측부(220)는 기둥(120)의 높이에서 셀의 중심의 하면에서 계면 저점의 위치까지의 거리를 뺀 수치를 계면의 처짐 정도로 계측할 수 있다.In addition, the calculator 200 may further include a measurement unit 220 for measuring the low point of the interface between the non-insulating liquid and the insulating liquid (hereinafter referred to as the 'interface'). The measurement unit 220 according to the embodiment of the present invention may measure how much the bottom of the interface sags, that is, the degree of sag. The measurement unit 220 may measure how far down the column 120 is. The measurement unit 220 according to the exemplary embodiment of the present invention may measure a numerical value obtained by subtracting the distance from the lower surface of the center of the cell to the position of the interface low point from the height of the column 120 to the degree of deflection of the interface.
본 발명의 실시예에 따른 계면의 저점은 셀의 중앙에서의 계면의 위치 일 수 있다. 계면의 저점의 처짐에 따라, 계면의 형상은 곡률을 갖는 형상이 될 수 있다. The bottom of the interface according to the embodiment of the present invention may be the position of the interface at the center of the cell. As the bottom of the interface sags, the shape of the interface may be a shape having a curvature.
또한 산출부(200)는 측정된 계면의 저점에 기초하여 계면의 표면장력을 계산하는 계산부(230)를 더 포함할 수 있다. In addition, the calculator 200 may further include a calculator 230 that calculates the surface tension of the interface based on the measured low point of the interface.
본 발명의 실시예에 따른 계산부(230)는 계면의 저점에 기초하여, 계면의 전기적 파라미터를 산출하고, 산출된 전기적 파라미터에 기초하여, 표면장력을 계산할 수 있다. 본 발명의 실시예에 따른 전기적 파라미터는 계면의 형상에 따라 측정되는 계면에서의 전류, 임피던스 또는 정전용량을 포함할 수 있다.The calculation unit 230 according to an embodiment of the present invention may calculate the electrical parameters of the interface based on the low point of the interface, and calculate the surface tension based on the calculated electrical parameters. Electrical parameters according to embodiments of the present invention may include current, impedance or capacitance at the interface measured according to the shape of the interface.
이하에서는 전기적 파라미터가 계면의 정전용량인 것으로 한정하여 설명하겠으나, 본 발명은 이에 한정되지 않고, 얼마든지 다른 파라미터 값을 이용하는 경우에도 적용이 가능하다. Hereinafter, the electrical parameters will be described as being limited to the capacitance of the interface, but the present invention is not limited thereto, and the present invention can be applied even when using different parameter values.
계측부(220) 및 계산부(230)의 상세한 동작에 관해서는 아래에서 설명하겠다.Detailed operations of the measurement unit 220 and the calculation unit 230 will be described below.
다음은 도 4 내지 도 6을 참조하여 본 발명의 실시예에 따른 표면장력 측정방법에 대하여 설명한다.Next, a method of measuring surface tension according to an exemplary embodiment of the present invention will be described with reference to FIGS. 4 to 6.
도 4는 본 발명의 실시예에 따른 표면장력 측정 방법에 대한 흐름도이다.4 is a flowchart illustrating a surface tension measuring method according to an exemplary embodiment of the present invention.
전원부(210)는 전극(140)에 전압을 인가한다. 이때 전원부(210)가 인가하는 전압의 크기는 기 설정되어 있을 수 있다(S401). 이때 전원부(210)는 비절연성 액체(520)의 접지상태를 유지시킬 수도 있다.The power supply unit 210 applies a voltage to the electrode 140. In this case, the magnitude of the voltage applied by the power supply unit 210 may be preset (S401). In this case, the power supply unit 210 may maintain the ground state of the non-insulating liquid 520.
계측부(220)는 전극(140)에 인가된 전압으로 변동되는 계면의 저점을 계측한다(S403). 이때 계측부(220)는 계면 저점이 얼마나 내려왔는지 즉 계면의처짐 정도를 계측할 수 있다.The measurement unit 220 measures the low point of the interface that varies with the voltage applied to the electrode 140 (S403). At this time, the measurement unit 220 may measure how much the interface bottom is lowered, that is, the degree of sagging of the interface.
도 5 및 도 6을 참조하여, 전압의 인가로 변동되는 계면의 저점 계측 방법을 설명한다.5 and 6, a method for measuring the low point of an interface that is changed by application of voltage will be described.
도 5는 전압이 인가되기 전 셀의 단면도이고, 도 6은 전압이 인가된 이후의 셀의 단면도이다.5 is a sectional view of a cell before voltage is applied, and FIG. 6 is a sectional view of a cell after voltage is applied.
도 5 및 도 6을 참조하면, 도 6의 계면의 저점이 도 6의 계면의 저점보다 더 아래에 위치하는 것을 알 수 있다.5 and 6, it can be seen that the bottom of the interface of FIG. 6 is located below the bottom of the interface of FIG. 6.
도 5 및 도 6을 참조하여 설명하면, 전극(140)에 전압이 인가되면, 절연성 액체(510)에 전기장이 형성된다. 절연성 액체(510)에 전기장이 형성됨에 따라, 절연성 액체(510)와 비절연성 액체(520) 사이의 계면에는 전기적 압력이 작용하게 된다. 계면에 작용되는 전기적 압력으로 인해, 계면의 저점은 하방으로 낮아지게 된다. 본 명세서에서 하방은 기판(110)이 위치한 방향일 수 있다.Referring to FIGS. 5 and 6, when a voltage is applied to the electrode 140, an electric field is formed in the insulating liquid 510. As the electric field is formed in the insulating liquid 510, electrical pressure is applied to the interface between the insulating liquid 510 and the non-insulating liquid 520. Due to the electrical pressure applied to the interface, the bottom of the interface is lowered downward. In the present specification, the downward direction may be a direction in which the substrate 110 is located.
절연성 액체(510)와 비절연성 액체(520)의 계면 표면장력이 작용하는 힘의 방향은 계면에 작용되는 전기적 압력의 방향과 반대방향일 수 있다. 따라서 전극(140)에 전압 인가시, 절연성 액체(510)와 비절연성 액체(520) 의 계면 표면장력이 작을수록 계면의 저점의 위치는 더 낮아지게 된다.The direction of the force exerted by the interfacial surface tension between the insulating liquid 510 and the non-insulating liquid 520 may be opposite to the direction of the electrical pressure applied to the interface. Therefore, when the voltage is applied to the electrode 140, the smaller the interfacial surface tension between the insulating liquid 510 and the non-insulating liquid 520, the lower the position of the bottom of the interface.
본 발명의 실시예에 따른 계측부(220)는 위와 같이, 전극(140)에 전압 인가로 낮아지는 계면의 처짐 정도를 계측할 수 있다. 본 발명의 실시예에 따른 계측부(220)는 기둥(120)의 높이에서 셀 중심의 하면에서 계면 저점의 위치까지의 거리를 뺀 수치를 처짐 정도로 계측할 수 있다.As described above, the measurement unit 220 according to the embodiment of the present invention may measure the degree of deflection of the interface lowered by applying the voltage to the electrode 140. The measurement unit 220 according to an exemplary embodiment of the present invention may measure a numerical value obtained by subtracting the distance from the lower surface of the cell center to the position of the interface low point from the height of the column 120 to the degree of deflection.
다시 도 4를 참조하여, 본 발명의 실시예에 따른 표면장력 측정 방법을 설명한다.Referring back to Figure 4, it will be described in the surface tension measurement method according to an embodiment of the present invention.
계산부(230)는 계측된 계면의 저점에 기초하여 계면의 표면장력을 계산한다(S405). The calculation unit 230 calculates the surface tension of the interface based on the measured low point of the interface (S405).
도 7 및 도 8을 참조하여, 계산부(230)가 표면장력을 계산하는 구체적인 방법에 대하여 설명하겠다.7 and 8, a detailed method of calculating the surface tension by the calculator 230 will be described.
먼저 도 7을 참조하여, 본 발명의 제 1 실시예에 따른 표면장력 계산 방법을 설명한다.First, a method of calculating surface tension according to a first embodiment of the present invention will be described with reference to FIG. 7.
도 7는 본 발명의 제 1 실시예에 따른 표면장력 계산 방법을 설명하기 위한 셀의 단면도이다.7 is a cross-sectional view of a cell for explaining the method of calculating the surface tension according to the first embodiment of the present invention.
계산부(230)는 전압 V가 전극에 인가됨에 따른, 계면의 정전용량을 계산한다. The calculator 230 calculates the capacitance of the interface as the voltage V is applied to the electrode.
이 과정을 상세히 설명하면, 계산부(230)는 계면의 저점이 처지면, 계면의 곡률 반경(
Figure PCTKR2016008095-appb-I000001
)을 계산한다.
Explaining this process in detail, the calculation unit 230, if the low point of the interface sag, the radius of curvature (
Figure PCTKR2016008095-appb-I000001
Calculate
계산부(230)는 수식 1에 기초하여 계면의 곡률 반경을 계산할 수 있다.The calculator 230 may calculate the radius of curvature of the interface based on Equation 1.
[수식 1][Equation 1]
Figure PCTKR2016008095-appb-I000002
Figure PCTKR2016008095-appb-I000002
여기서 d는 계면의 처짐 정도,
Figure PCTKR2016008095-appb-I000003
은 셀의 반경이다. 수식 1을 참조하면, 계면의 곡률 반경(
Figure PCTKR2016008095-appb-I000004
)은 d 즉 계면의 처짐 정도에 영향을 받음을 알 수 있다.
Where d is the degree of deflection of the interface,
Figure PCTKR2016008095-appb-I000003
Is the radius of the cell. Referring to Equation 1, the radius of curvature of the interface (
Figure PCTKR2016008095-appb-I000004
) Is influenced by d, that is, the degree of deflection of the interface.
계산부(230)는 계면의 곡률 반경(
Figure PCTKR2016008095-appb-I000005
)에 기초하여, 셀의 중앙에서 r만큼 떨어진 곳에 위치한 점에서의 계면의 높이(
Figure PCTKR2016008095-appb-I000006
)를 계산한다.
The calculation unit 230 is the radius of curvature of the interface (
Figure PCTKR2016008095-appb-I000005
Based on the height of the interface at points located r apart from the center of the cell.
Figure PCTKR2016008095-appb-I000006
Calculate
계산부(230)는 수식 2에 기초하여 셀의 중앙에서 r만큼 떨어진 곳에 위치한 점에서의 계면의 높이(
Figure PCTKR2016008095-appb-I000007
)를 계산할 수 있다.
The calculation unit 230 calculates the height of the interface at a point located r apart from the center of the cell based on Equation 2
Figure PCTKR2016008095-appb-I000007
) Can be calculated.
[수식 2][Formula 2]
Figure PCTKR2016008095-appb-I000008
Figure PCTKR2016008095-appb-I000008
여기서
Figure PCTKR2016008095-appb-I000009
은 코딩 기둥(120)의 높이이다.
here
Figure PCTKR2016008095-appb-I000009
Is the height of the coding column 120.
계산부(230)는 계산된 계면의 처짐 점도(d) 및 셀의 중앙에서 r만큼 떨어진 곳에 위치한 점에서의 계면의 높이(
Figure PCTKR2016008095-appb-I000010
)에 기초하여, 계면의 정전 용량(C)를 계산한다.
The calculation unit 230 calculates the deflection viscosity d of the interface and the height of the interface at a point located at a distance r from the center of the cell.
Figure PCTKR2016008095-appb-I000010
), The capacitance C of the interface is calculated.
계산부(230)는 수식 3에 기초하여 계면의 정전 용량(C)를 계산한다.The calculation unit 230 calculates the capacitance C of the interface based on Equation 3.
[수식 3][Equation 3]
Figure PCTKR2016008095-appb-I000011
Figure PCTKR2016008095-appb-I000011
여기서
Figure PCTKR2016008095-appb-I000012
는 유전율이고,
Figure PCTKR2016008095-appb-I000013
는 절연성 액체 및 전극(140)에 증착된 소수성막의 평균 유전상수이고,
Figure PCTKR2016008095-appb-I000014
는 전극(140)에 증착된 소수성막의 두께이다.
here
Figure PCTKR2016008095-appb-I000012
Is the permittivity,
Figure PCTKR2016008095-appb-I000013
Is the average dielectric constant of the insulating liquid and the hydrophobic film deposited on the electrode 140,
Figure PCTKR2016008095-appb-I000014
Is the thickness of the hydrophobic film deposited on the electrode 140.
계산부(230)는 계면의 정전 용량(C)에 기초하여 계면의 표면장력을 계산한다. 계산부(230)는 수식 4에 기초하여 표면장력을 계산할 수도 있다.The calculation unit 230 calculates the surface tension of the interface based on the capacitance C of the interface. The calculation unit 230 may calculate the surface tension based on Equation 4.
[수식 4][Equation 4]
Figure PCTKR2016008095-appb-I000015
Figure PCTKR2016008095-appb-I000015
여기서
Figure PCTKR2016008095-appb-I000016
는 표면에너지이고,
Figure PCTKR2016008095-appb-I000017
는 전기에너지이고,
Figure PCTKR2016008095-appb-I000018
는 표면장력이고, V는 전극(140)에 인가되는 전압이고,
Figure PCTKR2016008095-appb-I000019
는 전압 V에서 계면의 처짐 정도,
Figure PCTKR2016008095-appb-I000020
는 전압 V일 때 비절연성과 절연성 액체 사이의 계면의 면적이다. 여기서
Figure PCTKR2016008095-appb-I000021
는 위에서 설명한 d와 같다.
here
Figure PCTKR2016008095-appb-I000016
Is surface energy,
Figure PCTKR2016008095-appb-I000017
Is electrical energy,
Figure PCTKR2016008095-appb-I000018
Is the surface tension, V is the voltage applied to the electrode 140,
Figure PCTKR2016008095-appb-I000019
Is the degree of deflection of the interface at voltage V,
Figure PCTKR2016008095-appb-I000020
Is the area of the interface between the non-insulating and insulating liquid at voltage V. here
Figure PCTKR2016008095-appb-I000021
Is the same as d described above.
두 에너지(표면에너지 및 전기에너지)의 합(계면의 에너지)이 일정할 때, 표면장력 값이 작아지게 되면 표면에너지가 전체적으로 감소하게 되는데 이를 상쇄하기 위해서는 전기에너지가 증가해야 한다. 본 발명에서 전압은 일정하기 때문에
Figure PCTKR2016008095-appb-I000022
가 늘어나면 정전용량 값이 커지게 된다. 따라서, 수식 4에 따라, 계산되는 정전용량(C)을 알면 역으로 표면장력을 구할 수 있다.
When the sum of the two energies (surface energy and electrical energy) is constant (interface energy), if the surface tension value decreases, the surface energy decreases as a whole. In the present invention, since the voltage is constant
Figure PCTKR2016008095-appb-I000022
If increases, the capacitance value increases. Therefore, according to Equation 4, knowing the calculated capacitance (C) can be obtained inversely the surface tension.
본 발명의 실시예에 따른 계면의 에너지는 별도로 측정될 수도 있으며, 기 계산되어 설정될 수도 있다. The energy of the interface according to the embodiment of the present invention may be measured separately or may be calculated and set in advance.
다음은 도 8을 참조하여, 본 발명의 제 2 실시예에 따른 표면장력 계산 방법을 설명한다.Next, a method of calculating surface tension according to a second embodiment of the present invention will be described with reference to FIG. 8.
이하에서 제 2 실시예에 따른 표면장력 계산 방법을 설명함에 있어서, 제 1 실시예에 따른 표면장력 계산 방법과 동일한 부분에 대해서는 상세한 설명을 생략하도록 하겠다.In the following description of the surface tension calculation method according to the second embodiment, detailed descriptions of the same parts as the surface tension calculation method according to the first embodiment will be omitted.
도 8은 본 발명의 제 2 실시예에 따른 표면장력 계산 방법을 설명하기 위한 셀의 단면도이다.8 is a cross-sectional view of a cell for explaining the surface tension calculation method according to the second embodiment of the present invention.
본 발명의 제 2 실시예에 따르면, 전극(140)에 서로 다른 전압(V1, V2)이 인가될 수 있다. 이하에서는 V2가 V1보다 큰 것을 가정하여 설명하겠다.According to the second embodiment of the present invention, different voltages V1 and V2 may be applied to the electrode 140. Hereinafter, it will be assumed that V2 is larger than V1.
전극(140)에 각각 다른 전압(V1, V2)이 인가될 경우, 각각의 인가전압에 따른 각각의 계면 처짐(
Figure PCTKR2016008095-appb-I000023
,
Figure PCTKR2016008095-appb-I000024
)은 서로 다를 수 있다. 특히 더 큰 전압이 인가될수록 계면 처짐은 더 크게 발생된다. 또한 각각의 계면 처짐에 따른 계면의 정전 용량(
Figure PCTKR2016008095-appb-I000025
,
Figure PCTKR2016008095-appb-I000026
)도 인가 전압에 따라 서로 다를 수 있다.
When different voltages V1 and V2 are applied to the electrode 140, each interface sag according to the applied voltage (
Figure PCTKR2016008095-appb-I000023
,
Figure PCTKR2016008095-appb-I000024
) May be different. In particular, the greater the voltage applied, the greater the interface deflection. In addition, the capacitance of the interface according to each interface sag (
Figure PCTKR2016008095-appb-I000025
,
Figure PCTKR2016008095-appb-I000026
) May be different depending on the applied voltage.
계산부(230)는 전극(140)에 V2가 인가되었을 때의 계면의 에너지(표면 에너지 및 전기 에너지의 합)과 전극(140)에 V1이 인가되었을 때의 계면 에너지의 차에 기초하여, 계면의 표면장력을 산출한다. The calculation unit 230 is based on the difference between the energy of the interface when V2 is applied to the electrode 140 (sum of surface energy and electrical energy) and the interface energy when V1 is applied to the electrode 140. Calculate the surface tension of.
계산부(230)는 수식 5에 기초하여, 계면의 표면장력을 산출할 수 있다.The calculator 230 may calculate the surface tension of the interface based on Equation 5.
[수식 5][Equation 5]
Figure PCTKR2016008095-appb-I000027
Figure PCTKR2016008095-appb-I000027
여기서
Figure PCTKR2016008095-appb-I000028
은 전압 V1일 때 비절연성과 절연성 액체 사이의 계면의 면적이고,
Figure PCTKR2016008095-appb-I000029
은 전압 V2일 때 비절연성과 절연성 액체 사이의 계면의 면적이다.
here
Figure PCTKR2016008095-appb-I000028
Is the area of the interface between the non-insulating and insulating liquid at voltage V1,
Figure PCTKR2016008095-appb-I000029
Is the area of the interface between the non-insulating and insulating liquid at voltage V2.
수식 5를 참조하면, 제 1 전압이 V2이고, 제 2 전압이 V1일 때, 계산부(230)는 제 1 전압 인가시의 계면의 에너지 및 상기 제 2 전압 인가시의 계면의 에너지차에서, 제 1 전압에 기초한 계면의 처짐 정도로 산출된 전기 에너지 및 상기 전극에 인가되는 제 2 전압에 기초한 계면의 처짐 정도로 산출된 전기 에너지의 차를 제외하여 구해진 표면 에너지의 차로부터 표면장력을 산출할 수 있다.Referring to Equation 5, when the first voltage is V2 and the second voltage is V1, the calculation unit 230 at the energy difference of the interface when the first voltage is applied and the energy at the interface when the second voltage is applied, The surface tension can be calculated from the difference in the surface energy obtained by excluding the difference in the electrical energy calculated by the degree of deflection of the interface based on the first voltage and the electrical energy calculated by the degree of deflection of the interface based on the second voltage applied to the electrode. .
계면의 처짐 정도는 측정되는 곳의 온도 등 측정 환경에 영향을 받을 수 있다. 본 발명의 제 2 실시예에 따를 경우, 계면 에너지 차에 기초하여 표면장력을 측정하므로, 표면장력 측정 장치가 배치된 환경에 영향 없이 정확한 표면장력을 측정할 수도 있다. The degree of deflection at the interface may be affected by the measurement environment, such as the temperature at which it is measured. According to the second embodiment of the present invention, since the surface tension is measured based on the interfacial energy difference, it is possible to measure the accurate surface tension without affecting the environment in which the surface tension measuring device is disposed.
다음은 도 9를 참조하여, 본 발명의 실시예에 따른 표면장력 측정 장치의 활용예를 설명한다.Next, with reference to FIG. 9, the application of the surface tension measuring apparatus according to an embodiment of the present invention will be described.
도 9는 리셉터가 배치된 상태의 셀의 단면도이다.9 is a cross-sectional view of the cell with the receptor disposed.
본 발명의 실시예에 따른 표면장력 측정 장치는 바이오 센서로 활용될 수 있다.Surface tension measuring apparatus according to an embodiment of the present invention can be utilized as a biosensor.
구체적으로 설명하면, 표면장력 측정 장치의 셀 중 어느 하나에 적어도 하나 이상의 리셉터(receptor)가 배치된다. 보다 상세하게는 리셉터는 계면에 배치된다. 리셉터는친수성 부분 및 소수성 부분을 포함하는데 본 발명의 실시예에 따르면, 리셉터의 소수성 부분은 절연성 액체 방향을 향하고 친수성 부분은 비절연성 액체 방향을 향하도록 배치된다.Specifically, at least one or more receptors are disposed in any one of the cells of the surface tension measuring apparatus. More specifically, the receptor is disposed at the interface. The receptor includes a hydrophilic portion and a hydrophobic portion, in accordance with an embodiment of the invention, wherein the hydrophobic portion of the receptor faces the insulating liquid direction and the hydrophilic portion faces the non-insulating liquid direction.
이후, 전극(140)에 전압이 인가되면, 리셉터의 친수성 부분에는 타겟 분자(target molecule)가 결합될 수 있다. 본 발명의 실시예에 따른 타겟 분자는 단백질 분자 또는DNA 일 수 있다.Thereafter, when a voltage is applied to the electrode 140, a target molecule may be coupled to the hydrophilic portion of the receptor. The target molecule according to the embodiment of the present invention may be a protein molecule or a DNA.
이때 계면은 리셉터와 결합하는 타겟 분자의 양에 기초하여 변동할 수 있다. 즉 계면의 저점은 리셉터와 결합하는 타겟 분자의 양이 많을수록 더 낮아지게 된다. 즉 계면의 저점은 리셉터와 결합하는 타겟 분자의 양이 많을수록 결합된 타겟 분자의 무게에 의해 더 아래로 처진다. The interface can then vary based on the amount of target molecule binding to the receptor. In other words, the lower the interface, the lower the amount of target molecules that bind to the receptor. That is, the lower point of the interface sags downward by the weight of the bound target molecule as the amount of the target molecule binds to the receptor.
본 발명의 실시예에 따른 계산부(230)는 계면의 처짐 정도에 기초하여, 비절연성 액체 내의 타겟 분자의 존재 여부 또는 정도를 판단 할 수 있다.The calculation unit 230 according to an embodiment of the present invention may determine the presence or degree of target molecules in the non-insulating liquid, based on the degree of deflection of the interface.
본 발명의 일 실시예에 따르면, 표면장력 측정 장치는 리셉터(receptor)가 배치되지 않은 셀을 포함하는 별도의 패널부(100)를 더 포함할 수 있다. 즉 표면장력 측정 장치는 셀에 리셉터가 배치된 패널부(100) 및 셀에 리셉터가 배치되지 않은 패널부(100)를 포함할 수 있다. 따라서 리셉터가 배치된 셀과 리셉터가 배치되지 않은 셀은 상호간 구분되어 상호간 영향을 미치지 않는다. 또한 이때 추가되는 별도의 패널부(100)와 종래의 패널부(100)는 리셉터 포함여부를 제외하고 구조가 동일 할 수도 있다.According to an embodiment of the present invention, the surface tension measuring apparatus may further include a separate panel unit 100 including a cell in which a receptor is not disposed. That is, the surface tension measuring apparatus may include a panel unit 100 in which a receptor is disposed in a cell and a panel unit 100 in which a receptor is not disposed in a cell. Therefore, the cells in which the receptors are placed and the cells in which the receptors are not disposed are distinguished from each other and do not affect each other. In addition, the additional panel unit 100 and the conventional panel unit 100 added at this time may have the same structure except for inclusion of a receptor.
이중 리셉터가 배치되지 않은 셀의 전극(140)에 리셉터가 배치된 셀의 전극에 인가된 전압과 동일한 크기의 전압이 인가되면, 계면의 저점은 어느 정도 아래로 내려간다.When a voltage having the same magnitude as that applied to the electrode of the cell in which the receptor is disposed is applied to the electrode 140 of the cell in which the double receptor is not disposed, the bottom of the interface is lowered to some extent.
계산부(230)는 리셉터가 배치되지 않은 셀의 계면의 변화량(저점의 처짐 정도)에 기초하여, 비절연성 액체 내에 타겟 분자가 없을 경우의 계면 저점의 이동 정도를 파악할 수 있다.The calculation unit 230 may determine the degree of movement of the interface low point when there is no target molecule in the non-insulating liquid, based on the amount of change of the interface (degree of low point low) of the cell in which the receptor is not disposed.
계산부(230)는 사용자는 리셉터가 배치되지 않은 셀의 계면의 변화량과 리셉터가 배치된 셀의 계면의 변화랑을 비교하여, 리셉터와 결합하는 타겟 분자의 존재 여부 또는 정도를 판단할 수도 있다.The calculation unit 230 may compare the amount of change in the interface of the cell in which the receptor is not disposed with the change in the interface of the cell in which the receptor is disposed, and determine whether or not there is a target molecule that binds to the receptor.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is shown by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.
본 발명은 전기적인 방법에 의해 정확하고 간편하게 표면장력을 측정하는 것으로 액체 사이의 표면장력측정장치 및 측정방법에 관한 것에 대하여 산업상 이용가능성이 있다.Industrial Applicability The present invention has industrial applicability with regard to a surface tension measuring device and a measuring method between liquids by measuring the surface tension accurately and simply by an electrical method.

Claims (20)

  1. 절연성 액체가 적극을 덮으며 실장되는 적어도 하나의 셀;At least one cell in which an insulating liquid covers the positive electrode and is mounted;
    상기 전극에 전압을 인가하는 전원부;A power supply unit applying a voltage to the electrode;
    상기 전극에 인가된 전압으로 변동되는 비절연성 액체와 상기 절연성 액체의 계면의 저점을 계측하는 계측부; 및A measuring unit for measuring a low point of an interface between the non-insulating liquid and the insulating liquid which is changed by the voltage applied to the electrode; And
    상기 계면의 저점에 기초하여 상기 계면의 표면장력을 계산하는 계산부를 포함하는 표면장력 측정 장치.And a calculation unit for calculating the surface tension of the interface based on the low point of the interface.
  2. 제 1항에 있어서,The method of claim 1,
    상기 비절연성 액체는 상기 절연성 액체의 위에 배치되는, 표면장력 측정 장치.And the non-insulating liquid is disposed above the insulating liquid.
  3. 제 1항에 있어서,The method of claim 1,
    상기 셀은 소정의 형태의 기둥에 둘러싸여 형성되는, 표면장력 측정 장치.And the cell is formed surrounded by a pillar of a predetermined shape.
  4. 제 1항에 있어서,The method of claim 1,
    상기 계산부는,The calculation unit,
    상기 전극에 인가되는 전압에 의해 낮아지는 상기 계면의 처짐 정도에 기초하여, 상기 계면의 표면장력을 산출하는, 표면장력 측정 장치.The surface tension measuring apparatus which calculates the surface tension of the said interface based on the deflection degree of the said interface lowered by the voltage applied to the said electrode.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 계산부는,The calculation unit,
    상기 계면의 처짐 정도에 기초하여 상기 계면의 전기적 파라미터를 계산하고, 상기 전기적 파라미터에 기초하여 상기 계면의 표면장력을 산출하는, 표면장력 측정 장치.And an electrical parameter of the interface is calculated based on the degree of deflection of the interface, and a surface tension of the interface is calculated based on the electrical parameter.
  6. 제5항에 있어서,The method of claim 5,
    상기 전기적 파라미터는, The electrical parameter is,
    상기 계면의 정전용량인, 표면장력 측정 장치. Surface tension measuring device, the capacitance of the interface.
  7. 제 1항에 있어서,The method of claim 1,
    상기 계산부는,The calculation unit,
    상기 계면의 처짐 정도에 기초하여 상기 계면의 곡률 반경을 계산하고, 상기 계면의 곡률 반경에 기초하여 상기 셀의 중앙에서 소정의 거리만큼 이동된 지점에서의 계면의 높이를 계산하고, 상기 처짐 정도 및 상기 셀의 중앙에서 소정의 거리만큼 이동된 지점에서의 계면의 높이에 기초하여 상기 계면의 정전 용량을 계산하고, 상기 계면의 에너지에서 상기 정전 용량으로 산출된 전기 에너지를 제외하여 구해진 표면 에너지로부터 표면장력을 산출하는, 표면장력 측정 장치.The radius of curvature of the interface is calculated based on the degree of deflection of the interface, the height of the interface at a point moved by a predetermined distance from the center of the cell is calculated based on the radius of curvature of the interface, and the degree of deflection and Calculates the capacitance of the interface based on the height of the interface at a point moved by a predetermined distance from the center of the cell, and calculates the surface from the surface energy obtained by subtracting the electrical energy calculated as the capacitance from the energy of the interface. Surface tension measuring device to calculate the tension.
  8. 제 1항에 있어서,The method of claim 1,
    상기 계산부는,The calculation unit,
    상기 전극에 인가되는 제 1 전압에 기초한 계면의 처짐 정도, 상기 전극에 인가되는 제 2 전압에 기초한 계면의 처짐 정도 및 상기 제 1 전압인가시의 계면의 에너지 및 상기 제 2 전압인가시의 계면의 에너지의 차에 기초하여 표면장력을 산출하는, 표면장력 측정 장치. The degree of deflection of the interface based on the first voltage applied to the electrode, the degree of deflection of the interface based on the second voltage applied to the electrode, and the energy of the interface when applying the first voltage and the interface when applying the second voltage A surface tension measuring device for calculating surface tension based on a difference in energy.
  9. 제8항에 있어서,The method of claim 8,
    상기 계산부는,The calculation unit,
    상기 제 1 전압인가시의 계면의 에너지 및 상기 제 2 전압인가시의 계면의 에너지차에서, 제 1 전압에 기초한 계면의 처짐 정도로 산출된 전기 에너지 및 상기 전극에 인가되는 제 2 전압에 기초한 계면의 처짐 정도로 산출된 전기 에너지의 차를 제외하여 구해진 표면 에너지의 차로부터 표면장력을 산출하는, 표면장력 측정 장치.From the energy difference of the interface at the time of applying the first voltage and the energy at the interface at the applying of the second voltage, the electrical energy calculated by the degree of deflection of the interface based on the first voltage and the interface based on the second voltage applied to the electrode The surface tension measuring apparatus which calculates surface tension from the difference of surface energy calculated | required except the difference of electrical energy calculated to the extent of deflection.
  10. 제 1항에 있어서,The method of claim 1,
    상기 셀에는 리셉터가 상기 계면에 배치되며, The cell has a receptor disposed at the interface,
    상기 계산부는,The calculation unit,
    상기 전극에 전압 인가시, 상기 리셉터가 배치된 셀의 계면의 처짐 정도에 기초하여, 상기 리셉터에 결합하는 타겟 분자의 존재 여부 및 정도를 판단하는, 표면장력 측정 장치.When the voltage is applied to the electrode, on the basis of the degree of deflection of the interface of the cell on which the receptor is disposed, the presence and extent of the target molecules that bind to the receptor, the surface tension measuring apparatus.
  11. 제 10항에 있어서,The method of claim 10,
    상기 셀과 구분되며 상기 리셉터가 배치되지 않은 셀을 더 포함하고, Further comprising a cell that is distinct from the cell and the receptor is not disposed,
    상기 계산부는,The calculation unit,
    상기 리셉터가 배치되지 않은 셀의 전극에 전압 인가시의 상기 리셉터가 배치되지 않은 셀의 계면의 처짐 정도와, 상기 리셉터가 배치된 셀의 계면의 처짐 정도를 비교하여, 상기 리셉터에 결합하는 타겟 분자의 존재 여부 및 정도를 판단하는, 표면장력 측정 장치.A target molecule that binds to the receptor by comparing the deflection of the interface of the cell in which the receptor is not disposed with the deflection of the interface of the cell in which the receptor is disposed when voltage is applied to the electrode of the cell in which the receptor is not disposed. Surface tension measuring device for determining the presence and degree of.
  12. 제 1항에 있어서,The method of claim 1,
    각각의 셀은 적어도 하나의 셀과 연결되는, 표면장력 측정 장치.Wherein each cell is connected with at least one cell.
  13. 절연성 액체가 적극을 덮으며 실장되는 적어도 하나의 셀을 포함하는 표면장력 측정 장치를 이용하여 표면장력을 측정하는 방법에 있어서,In the method of measuring the surface tension by using a surface tension measuring device comprising at least one cell in which the insulating liquid covers the positive electrode,
    상기 전극에 전압을 인가하는 단계;Applying a voltage to the electrode;
    상기 전극에 인가된 전압으로 변동되는 비절연성 액체와 상기 절연성 액체의 계면의 저점을 계측하는 단계; 및Measuring a low point of an interface between the non-insulating liquid and the insulating liquid, which is fluctuated by the voltage applied to the electrode; And
    상기 계면의 저점에 기초하여 상기 계면의 표면장력을 계산하는 단계를 포함하는 표면장력 측정 방법.And calculating a surface tension of the interface based on the low point of the interface.
  14. 제 13항에 있어서,The method of claim 13,
    상기 비절연성 액체는 상기 절연성 액체의 위에 배치되는, 표면장력 측정 방법.And the non-insulating liquid is disposed above the insulating liquid.
  15. 제 13항에 있어서,The method of claim 13,
    상기 셀은 소정의 형태의 기둥에 둘러싸여 형성되는, 표면장력 측정 방법.And the cell is formed surrounded by a pillar of a predetermined shape.
  16. 제 13항에 있어서,The method of claim 13,
    상기 계산하는 단계는,The calculating step,
    상기 전극에 인가되는 전압에 의해 낮아지는 상기 계면의 처짐 정도에 기초하여, 상기 계면의 표면장력을 산출하는, 표면장력 측정 방법.The surface tension measuring method of calculating the surface tension of the said interface based on the degree of deflection of the said interface lowered by the voltage applied to the said electrode.
  17. 제 16항에 있어서,The method of claim 16,
    상기 계산하는 단계는,The calculating step,
    상기 계면의 처짐 정도에 기초하여 상기 계면의 전기적 파라미터를 계산하고, 상기 전기적 파라미터에 기초하여, 상기 계면의 표면장력을 산출하는, 표면장력 측정 방법.And calculating the electrical parameters of the interface based on the degree of deflection of the interface, and calculating the surface tension of the interface based on the electrical parameters.
  18. 제 13항에 있어서,The method of claim 13,
    상기 계산하는 단계,The calculating step,
    상기 계면의 처짐 정도에 기초하여 상기 계면의 곡률 반경을 계산하고, 상기 계면의 곡률 반경에 기초하여 상기 셀의 중앙에서 소정의 거리만큼 이동된 지점에서의 계면의 높이를 계산하고, 상기 처짐 정도 및 상기 셀의 중앙에서 소정의 거리만큼 이동된 지점에서의 계면의 높이에 기초하여 상기 계면의 정전 용량을 계산하고, 상기 계면의 에너지에서 상기 정전 용량으로 산출된 전기 에너지를 제외하여 구해진 표면 에너지로부터 표면장력을 산출하는, 표면장력 측정 방법.The radius of curvature of the interface is calculated based on the degree of deflection of the interface, the height of the interface at a point moved by a predetermined distance from the center of the cell is calculated based on the radius of curvature of the interface, and the degree of deflection and Calculates the capacitance of the interface based on the height of the interface at a point moved by a predetermined distance from the center of the cell, and calculates the surface from the surface energy obtained by subtracting the electrical energy calculated as the capacitance from the energy of the interface. Surface tension measurement method for calculating the tension.
  19. 제 13항에 있어서,The method of claim 13,
    상기 계산하는 단계,The calculating step,
    상기 전극에 인가되는 제 1 전압에 기초한 계면의 처짐 정도, 상기 전극에 인가되는 제 2 전압에 기초한 계면의 처짐 정도 및 상기 제 1 전압인가시의 계면의 에너지 및 상기 제 2 전압인가시의 계면의 에너지 차에 기초하여 표면장력을 산출하는, 표면장력 측정 방법.The degree of deflection of the interface based on the first voltage applied to the electrode, the degree of deflection of the interface based on the second voltage applied to the electrode, and the energy of the interface when applying the first voltage and the interface when applying the second voltage Surface tension measurement method for calculating the surface tension based on the energy difference.
  20. 제 13항에 있어서,The method of claim 13,
    상기 셀 중 적어도 하나의 셀에는 리셉터가 상기 계면에 배치되며, At least one of the cells has a receptor disposed at the interface,
    상기 계산하는 단계는,The calculating step,
    상기 전극에 전압 인가시, 상기 리셉터가 배치된 셀의 계면의 처짐 정도에 기초하여, 상기 리셉터에 결합하는 타겟 분자의 존재 여부 및 정도를 판단하는, 표면장력 측정 방법.When the voltage is applied to the electrode, on the basis of the degree of deflection of the interface of the cell in which the receptor is disposed, the presence and extent of the target molecule to bind to the receptor is determined.
PCT/KR2016/008095 2015-07-23 2016-07-25 Apparatus and method for measuring surface tension WO2017014608A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0104418 2015-07-23
KR1020150104418A KR20170012751A (en) 2015-07-23 2015-07-23 Device and method for measuring surface tenstion

Publications (1)

Publication Number Publication Date
WO2017014608A1 true WO2017014608A1 (en) 2017-01-26

Family

ID=57834313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008095 WO2017014608A1 (en) 2015-07-23 2016-07-25 Apparatus and method for measuring surface tension

Country Status (2)

Country Link
KR (1) KR20170012751A (en)
WO (1) WO2017014608A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008110560A1 (en) * 2007-03-13 2008-09-18 Varioptic Dielectric and hydrophobic coatings for electrowetting applications
JP2010078603A (en) * 2008-09-23 2010-04-08 Commiss Energ Atom Micro-device for analyzing liquid samples
KR20130078841A (en) * 2011-12-31 2013-07-10 서울대학교산학협력단 Device for measuring surface tenstion and method for measuring surface tension

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008110560A1 (en) * 2007-03-13 2008-09-18 Varioptic Dielectric and hydrophobic coatings for electrowetting applications
JP2010078603A (en) * 2008-09-23 2010-04-08 Commiss Energ Atom Micro-device for analyzing liquid samples
KR20130078841A (en) * 2011-12-31 2013-07-10 서울대학교산학협력단 Device for measuring surface tenstion and method for measuring surface tension

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHOI, SEUAGYUL ET AL.: "Surface Tension Monitoring in a 'Soft' Interface Using Electrowetting on Dielectric", MEMS, vol. 27th, 2014, XP032578987 *
VAFAEL SAEID ET AL.: "The Effect of Nanoparticles on the Liquid-gas Surface Tension of Bi2Te3 Nanofluids", NANOTECHNOLOGY, vol. 20, no. 18, 15 April 2009 (2009-04-15), XP020152928 *

Also Published As

Publication number Publication date
KR20170012751A (en) 2017-02-03

Similar Documents

Publication Publication Date Title
CN109239539B (en) Device and experimental method for researching partial discharge characteristics of epoxy insulating material
Laugere et al. Downscaling aspects of a conductivity detector for application in on-chip capillary electrophoresis
WO2012154012A2 (en) Graphene domain measurement system and method using afm friction mapping
WO2017105020A2 (en) Method for measuring intensity of touch pressure in touch input device, and touch input device for detecting intensity of touch pressure
JPH0533745B2 (en)
WO2015037837A1 (en) Tactile sensor using fine droplets of liquid metal
CN109470133B (en) Electrostatic self energizing strains grid sensor
WO2015080391A1 (en) Method for correcting touch input position error and device for same
WO2013100244A1 (en) Apparatus and method for measuring surface tension
US20230408441A1 (en) Ion sensing device
WO2017014608A1 (en) Apparatus and method for measuring surface tension
CN108226237A (en) A kind of detection method and device
WO2017142166A1 (en) Microelectrode biosensor using dielectric electrophoresis
WO2020204462A1 (en) Device for measuring water level by using capacitive technique, and method therefor
WO2010050673A2 (en) Resistance measuring apparatus and measuring method
WO2018182082A1 (en) Microfluidic chip-based isoelectric focusing based on contactless conductivity detection and requiring no pumps
WO2014159358A1 (en) Vertical hall effect sensor with offset reduction
CN104536169B (en) A kind of structure and method for being used to obtain capacitor's capacity in array base palte
CN110335560A (en) The electric test method of array substrate, display panel and array substrate
JP6797931B2 (en) Sequencing Structure, Chips, Systems and Sequencing Methods
WO2011138985A1 (en) Capacitive element sensor and method for manufacturing same
WO2011105668A1 (en) Fluid viscosity measuring device
CN107658319A (en) Display panel and display device
WO2014088263A1 (en) Sensor system
WO2012148241A2 (en) Feed line-compensated power transmission apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16828112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16828112

Country of ref document: EP

Kind code of ref document: A1