WO2015024323A1 - 一种隐形液晶眼镜 - Google Patents

一种隐形液晶眼镜 Download PDF

Info

Publication number
WO2015024323A1
WO2015024323A1 PCT/CN2013/088436 CN2013088436W WO2015024323A1 WO 2015024323 A1 WO2015024323 A1 WO 2015024323A1 CN 2013088436 W CN2013088436 W CN 2013088436W WO 2015024323 A1 WO2015024323 A1 WO 2015024323A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
transparent flexible
substrate
flexible substrate
glasses
Prior art date
Application number
PCT/CN2013/088436
Other languages
English (en)
French (fr)
Inventor
杨久霞
刘建涛
白峰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/355,357 priority Critical patent/US20150160475A1/en
Publication of WO2015024323A1 publication Critical patent/WO2015024323A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/049Contact lenses having special fitting or structural features achieved by special materials or material structures
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/101Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having an electro-optical light valve
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/18Cellular lens surfaces
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular, to a stealth liquid crystal eye lens. Background technique
  • Contact lenses also known as contact lenses, are lenses that are worn on the cornea of the eye to correct vision or protect the eye.
  • Current contact lenses are mainly composed of a silicone hydrogel, a hydrated polymer (mercapto acrylate, hydroxyethyl methacrylate, methacrylate glycerin, etc.).
  • Contact lenses can be classified into three types: hard, semi-rigid, and soft depending on the hardness of the material. Contact lenses not only bring great improvement in the appearance and convenience of patients with refractive errors such as myopia and hyperopia, but also have a wide field of vision and vivid vision. Summary of the invention
  • Embodiments of the present invention provide a stealth liquid crystal eyeglass that can adjust vision, improve refractive error, and facilitate aesthetics.
  • an embodiment of the present invention adopts the following technical solutions: providing a stealth liquid crystal glasses, comprising: a first substrate and a second substrate formed on the box, and a liquid crystal layer disposed between the two substrates;
  • the first substrate includes a first transparent flexible substrate, a first alignment film including a first alignment groove disposed on the first transparent flexible substrate, and the first alignment groove is the invisible liquid crystal lens Centering, extending in a ring shape toward an edge of the invisible liquid crystal glasses;
  • the second substrate comprises a second transparent flexible substrate, and the second transparent flexible substrate is disposed on the second transparent flexible substrate a second alignment film corresponding to the first alignment groove, wherein the liquid crystal layer is disposed between the first alignment film and the second alignment film.
  • the depths of the first orientation groove and the second orientation groove gradually increase from the center to the edge.
  • the depths of the first orientation groove and the second orientation groove gradually decrease from the center to the edge.
  • the ring shape comprises a circular shape or an elliptical shape.
  • the invisible liquid crystal glasses further include: a plurality of transistors disposed on the first transparent flexible substrate, a first electrode electrically connected to one electrode of each transistor, and a first transparent a second electrode on the flexible substrate or on the second transparent flexible substrate.
  • the transistor comprises a thin film transistor.
  • the invisible liquid crystal glasses further comprise a driving module, wherein the driving module is configured to drive liquid crystal molecules in the liquid crystal layer of the invisible liquid crystal glasses to perform deflection.
  • the invisible liquid crystal glasses further comprise an optical sensing element and a control module; wherein the optical sensing element is configured to receive a control signal and send the signal to the control module; the control module is configured according to the control signal And controlling the driving module to drive liquid crystal molecules in the liquid crystal layer for deflection.
  • the invisible liquid crystal glasses further comprise a thin film battery unit disposed on the first transparent flexible substrate, or the second transparent flexible substrate away from a surface of the liquid crystal layer.
  • the thin film battery unit comprises a solar battery.
  • the solar cell includes a P-type silicon pattern layer, an N-type silicon pattern layer, and an intrinsic silicon pattern layer disposed between the P-type silicon pattern layer and the N-type silicon pattern layer.
  • Embodiments of the present invention provide a stealth liquid crystal glasses including a first substrate and a second substrate formed on a box, and a liquid crystal layer disposed between the two substrates;
  • the first substrate includes a first transparent flexible a base substrate, a first alignment film including a first alignment groove disposed on the first transparent flexible substrate, the first alignment groove being centered on a center of the invisible liquid crystal lens An edge of the invisible liquid crystal lens extends;
  • the second substrate includes a second transparent flexible substrate, a second alignment film including a second alignment groove disposed on the second transparent flexible substrate, the second orientation The groove corresponds to the first alignment groove, wherein the liquid crystal layer is disposed between the first alignment film and the second alignment film.
  • the liquid crystal in the liquid crystal layer is arranged in the orientation groove in a certain regularity, so that the invisible liquid crystal glasses obtain a corresponding refractive index to meet the diopter requirement of the user, thereby realizing the function of adjusting vision and improving ametropia. At the same time, it has a convenient and beautiful effect.
  • FIG. 1 is a schematic structural view of a stealth liquid crystal glasses according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram 1 of an orientation groove shape applied to an alignment film of a contact lens of the present invention according to an embodiment of the present invention
  • FIG. 3 is a second schematic diagram of an orientation groove shape applied to an alignment film of a stealth liquid crystal lens according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a stealth liquid crystal glasses including a driving module according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an invisible liquid crystal glasses including an optical sensing element and a control module according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of an invisible liquid crystal glasses including a thin film battery unit according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a process for adjusting invisible liquid crystal glasses according to an embodiment of the present invention.
  • 10-invisible liquid crystal glasses 101-first substrate; 1011-first transparent flexible substrate; 1012-first orientation groove; 1013-first alignment film; 102-second substrate; 1021-second transparent flexible substrate Substrate; 1022-second orientation groove; 1023-second alignment film; 103-liquid crystal layer; 20-drive module; 30-optical sensor element; 40-control module; Thin film battery unit.
  • the embodiment of the present invention provides a contact lens 3, as shown in FIG. 1, which includes a first substrate 101 and a second substrate 102 formed by a pair of boxes, and a liquid crystal layer 103 disposed between the substrates;
  • a substrate 101 includes a first transparent flexible substrate 1011, and a first alignment film 1013 including a first alignment groove 1012 disposed on the first transparent flexible substrate, the first alignment groove 1012 being invisible
  • the center of the liquid crystal glasses 10 is centered and extends annularly toward the edge of the invisible liquid crystal glasses 10;
  • the second substrate 102 includes a second transparent flexible substrate
  • a second alignment film 1023 including a second alignment groove 1022 disposed on the second transparent flexible substrate, the second alignment groove 1022 and the first alignment groove 1012.
  • the first orientation groove 1012 and the second orientation groove 1022 can be used to fix the liquid crystal in the groove and adjust the arrangement of the liquid crystal, and on the other hand can be used to liquidize the liquid crystal layer 103. It is divided into a plurality of annular regions having different radii centered on the center of the invisible liquid crystal glasses 10.
  • the liquid crystal layer can be used for myopia glasses.
  • the myopia lens is a concave lens, its refractive index gradually increases from the center of the lens toward the edge; thus, through the first orientation groove 1012 and the second orientation groove 1022, the liquid crystal layer can be
  • the liquid crystal in 103 is divided into annular regions with different radii centered on the center of the invisible liquid crystal glasses 10, and the refractive index of the liquid crystals of different annular regions is gradually increased from the center of the lens to the edge by, for example, injecting liquid crystals having different refractive indexes. .
  • the first alignment groove 1012 and the second alignment groove 1022 may divide the liquid crystal in the liquid crystal layer 103 into annular regions having different radii centered on the center of the invisible liquid crystal glasses 10, and then pass different refractive indexes by, for example, perfusion.
  • the liquid crystal is such that the refractive index of the liquid crystals in different annular regions gradually decreases from the center of the lens to the edge.
  • the shape of the alignment groove of the invisible liquid crystal lens 10 may be any one of a circular shape, an elliptical shape, a rectangular shape, or a trapezoidal shape, and is not limited thereto.
  • the second orientation groove 1022 and the first orientation groove 1012 correspond to a projection of the second orientation groove 1022 and the first orientation groove 1012, and the first orientation groove
  • the depths of 1012 are also the same; and when the depths of the first orientation grooves 1012 are different, the depths of the second orientation grooves 1022 are also different. That is, the groove depths of the corresponding positions of the first orientation groove 1012 and the second orientation groove 1022 remain the same.
  • the groove depths of the first alignment groove 1012 and the second alignment groove 1022 are designed according to the refractive index characteristics of the liquid crystal in the liquid crystal layer 103, so that the liquid crystal, the orientation groove depth, and The thickness of the liquid crystal layer 103 is optimally matched to satisfy the refractive index requirements of the concave lens and the convex lens.
  • the first transparent flexible substrate 1011 and the second transparent flexible substrate 1021 may be made of a polymer material such as a hydrophilic mercapto siloxane. Ester, fluorosilicone acrylate, polyurethane hydrogel, silk fibroin, and the like.
  • the embodiment of the present invention provides a contact lens 3 including a first substrate 101 and a second substrate 102 formed in a box, and a liquid crystal layer 103 disposed between the substrates;
  • the first substrate 101 includes a first transparent a flexible substrate substrate 1011, a first alignment film 1013 including a first alignment groove 1012 disposed on the first transparent flexible substrate, the first alignment groove 1012 being centered on a center of the invisible liquid crystal lens 10 Extending annularly toward the edge of the invisible liquid crystal glasses 10;
  • the second substrate 102 includes a second transparent flexible substrate 1021, a second alignment film 1023 of the second alignment groove 1022 disposed on the second transparent flexible substrate 1021, and the second alignment groove 1022 and The first orientation grooves 1012 correspond to each other.
  • the invisible liquid crystal glasses can obtain a corresponding refractive index to meet the diopter requirement of the user, thereby realizing the adjustment of the visual acuity. Improve the effect of ametropia, and at the same time have a convenient and beautiful effect.
  • the shape of the orientation groove may be any closed-loop shape, but considering that when the shape of the orientation groove is a shape such as a rectangle or a trapezoid, it has a sharp corner, so that the liquid crystal in the liquid crystal layer 103 will work. It is affected, resulting in poor display performance; therefore, as shown in Figures 2 and 3, the embodiment of the present invention preferably sets the shape of the orientation groove to be circular or elliptical.
  • the depth of the first orientation groove 1012 and the second orientation groove 1022 may be gradually increased from the center to the edge, or may be gradually decreased from the center to the edge.
  • the invisible liquid crystal glasses 10 are concave or convex lenses depends on factors such as liquid crystal, orientation groove depth, thickness of the liquid crystal layer, and the like.
  • the adjustment of the focal length is achieved by adjusting the arrangement of the liquid crystal inside the orientation groove to meet different refractive index requirements, so as to meet the needs of users of near-sight or presbyopia.
  • the processing method of the alignment groove may be a photo-alignment process, as long as the orientation groove can be processed into a desired shape and the processing depth thereof is satisfied.
  • the present invention preferably uses a photo-alignment process as the force-carrying method of the orientation grooves.
  • the invisible liquid crystal glasses 10 further include: a plurality of transistors disposed on the first transparent flexible substrate 1011, a first electrode electrically connected to one electrode of each transistor, and a first electrode disposed at the first Transparent flexible substrate
  • each transistor may be a source or a drain depending on the type of the transistor.
  • the second electrode may be disposed on the second transparent flexible substrate
  • the second electrode can also be disposed in the A transparent flexible substrate 1011 is formed such that a transverse electric field can be formed between the first electrode and the second electrode to control deflection of liquid crystal molecules in the liquid crystal layer 103.
  • the transistor, the first electrode, and the like disposed on the first transparent flexible substrate 1011 may be formed by a process similar to that of the transistor and the pixel electrode in the current array substrate; on the basis, the transistor may be Thin film transistors, which can meet the market demand for thinning.
  • the first substrate 101 may further include a data line connected to a source of the transistor, and the first electrode may be charged through the data line, and the liquid crystal molecules are realized by the interaction of the second electrodes. deflection.
  • the liquid crystal molecules of different annular regions can be deflected by corresponding angles by adjusting the voltage between the first electrodes and the second electrodes, thereby controlling The refractive index of the liquid crystal gradually increases from the center of the lens to the edge.
  • the liquid crystal molecules in different annular regions can be deflected by corresponding angles by adjusting the voltage between the first electrode and the second electrode, thereby controlling the liquid crystal.
  • the refractive index gradually decreases from the center of the lens to the edge. On this basis, it is also possible to achieve precise adjustment of the focal length of the convex lens according to the demand of the user's presbyopia.
  • the liquid crystal glasses further include a plurality of transistors disposed on the first transparent flexible substrate 1011, a first electrode electrically connected to one electrode of each transistor, and a first transparent flexible layer disposed
  • the liquid crystal in the liquid crystal layer 103 may be the same liquid crystal having the same refractive index, or may have different refractive indices. Different kinds of liquid crystals.
  • the liquid crystal in the liquid crystal layer 103 has a different refractive index
  • the different kinds of liquid crystals having different refractive indexes may be arranged according to a certain regularity according to the use of the invisible liquid crystal glasses 10.
  • liquid crystals having different refractive indices may be sequentially filled in the ring-shaped regions from the inside to the outside in a descending order of refractive index; when the invisible liquid crystal glasses are used When used for the reading glasses, the liquid crystals having different refractive indices may be sequentially filled in the respective annular regions from the inside to the outside in the order of the refractive index from the largest to the smallest.
  • the depths of the alignment grooves of different annular regions may be the same or different.
  • the depth of the alignment groove is different, The thickness of the liquid crystal layer 103 is different, and the resulting focal length is also different.
  • the depth may be set according to the refractive index characteristics of the liquid crystal in the liquid crystal layer 103 to make the liquid crystal, the depth of the alignment groove, the thickness of the liquid crystal layer 103, and The voltage between the first electrode and the second electrode is optimally matched to achieve precise adjustment of the focal length.
  • the inside of the alignment groove may be filled with the same liquid crystal or a different liquid crystal.
  • the refractive index of the liquid crystal in different annular regions in the contact lens 3 is gradually increased from the center to both sides to realize the function of the concave lens;
  • the refractive index of the liquid crystals of different annular regions in the invisible liquid crystal glasses 10 is gradually smaller from the center to both sides to achieve the function of the convex lens.
  • the inside of the alignment groove may be filled with the same liquid crystal or a different liquid crystal.
  • the refractive index of the liquid crystal of different annular regions in the contact lens 3 is gradually reduced from the center to both sides to realize the function of the convex lens;
  • Controlling the voltage between the first electrode and the second electrode causes the refractive index of the liquid crystals of different annular regions in the stealth liquid crystal glasses 10 to gradually increase from the center to both sides to achieve the function of the concave lens.
  • the embodiment of the present invention provides a contact lens 3 that can adjust the refractive index of the liquid crystal in the liquid crystal layer 103 according to different needs of the user, so that the invisible liquid crystal glasses 10 exhibit a concave lens, a convex lens, and a flat mirror. And so on.
  • the invisible liquid crystal glasses 10 can be made into a myopic lens;
  • the refractive index of the liquid crystal in the different annular regions divided by the alignment grooves in the liquid crystal layer 103 gradually decreases from the inside to the outside, so that the invisible liquid crystal glasses 10 can become a presbyopic lens;
  • the invisible liquid crystal glasses 10 may be made into a flat mirror; in addition, when the invisible liquid crystal glasses 10 are myopic lenses or old When the lens is taken, the precise adjustment of the focal length can also be achieved by adjusting the refractive index of the liquid crystal to meet the needs of different users for the degree of the lens.
  • the invisible liquid crystal glasses further include a driving module 20 that deflects liquid crystal molecules in the liquid crystal layer 103 of the invisible liquid crystal glasses 10.
  • the annular liquid crystal glasses 10 are divided into a plurality of annular regions.
  • the driving module 20 can apply driving voltages to different annular regions in the invisible liquid crystal glasses 10 as needed, and drive liquid crystal molecules in different annular regions to deflect at corresponding angles, thereby controlling refraction of the liquid crystal.
  • the rate is gradually increased or decreased from the center of the lens toward the edge, for example, so that the liquid crystal glasses realize the function of the glasses or the reading glasses.
  • the driving voltage applied to different annular regions is determined according to the refractive index of the liquid crystal in different annular regions, the depth of the alignment groove, and the thickness of the liquid crystal layer, so that these parameters are optimally matched, thereby achieving Precise adjustment of focal length Section.
  • the invisible liquid crystal glasses 10 further include an optical sensing component 30 and a control module 40.
  • the optical sensing component 30 is configured to receive a control signal and send the control to the control.
  • the module 40 is configured to control the driving module 20 to drive liquid crystal molecules in the liquid crystal layer to perform deflection according to the control signal.
  • an optical remote controller can be configured to send a control signal through the adjustment button of the optical remote controller, and the control signal is received by the optical sensing component 30 and sent to the control module 40, so that the control module 40, according to the control signal, controlling the driving module 20 to drive liquid crystal molecules in the liquid crystal layer to perform deflection.
  • the control signals corresponding to the different adjustment buttons of the optical remote controller may be set in advance for manipulation of the optical sensing element 30.
  • the user can adjust the invisible liquid crystal glasses 10 by simply controlling the corresponding adjustment buttons of the optical remote controller.
  • the focal lengths of the left and right invisible liquid crystal glasses 10 may be adjusted, that is, the degree of myopia correction may be corrected; or when the invisible liquid crystal glasses 10 are used for reading glasses, the left and right invisible liquid crystals may be adjusted.
  • the focal length of the glasses 10, that is, the correction of the presbyopic lens; or when the invisible liquid crystal glasses 10 are for the reading glasses, the liquid crystal glasses can be made into myopia glasses by adjusting the focal lengths of the left and right invisible liquid crystal glasses 10.
  • the user first presses an adjustment button corresponding to the control signal of "adjusting the left-eye stealth liquid crystal glasses" in the optical remote controller, and the optical remote controller then sends the control signal to the optical sensing element 30.
  • the optical sensing element 30 receives the control signal and sends it to the control module 40 to enter a control mode of "adjusting the left-eye invisible liquid crystal glasses”; the user then presses the corresponding corresponding in the optical remote controller
  • An adjustment button for "increasing the focal length of the invisible liquid crystal glasses” the optical remote controller then transmitting the control signal to the optical sensing element 30; the optical sensing element 30 receives the control signal and
  • the control module 40 controls the driving module 20 to drive liquid crystal molecules in the liquid crystal layer corresponding to the left eye to perform deflection according to the control signal to achieve adjustment of the focal length.
  • the invisible liquid crystal glasses 10 further include a surface of the first transparent flexible substrate 1011 or the second transparent flexible substrate 1021 that is away from the liquid crystal layer.
  • Thin film battery unit 50 is applied to
  • the thin film battery unit 50 may be disposed on a side of the first transparent flexible substrate 1011 away from the liquid crystal layer. On the surface.
  • the thin film battery unit 50 includes a solar battery.
  • the solar cell may include a P-type silicon pattern layer, an N-type silicon pattern layer, and an intrinsic silicon pattern layer disposed between the P-type silicon pattern layer and the N-type silicon pattern layer.
  • the optical remote controller may further have a switch for controlling whether the thin film battery unit 50 of the stealth liquid crystal lens 10 is powered.
  • the switch can be turned off to stop the invisible liquid crystal glasses 10; when the glasses are re-applied, the switch can be turned on to make the invisible liquid crystal glasses 10 work normally.
  • the invisible liquid crystal glasses 10 include a first substrate 101 and a second substrate 102 formed by a pair of boxes, and a liquid crystal layer 103 disposed between the two substrates;
  • the first substrate 101 includes a first transparent flexible substrate 1011; a first alignment film 1013 including a first alignment groove 1012 on the first transparent flexible substrate, the first alignment groove 1012 being annularly oriented toward the center of the invisible liquid crystal lens 10
  • An edge of the liquid crystal glasses 10 extends;
  • the second substrate 102 includes a second transparent flexible substrate 1021, and a second alignment film 1023 including a second alignment groove 1022 disposed on the second transparent flexible substrate.
  • the liquid crystal in the liquid crystal layer 103 is the same liquid crystal having the same refractive index.
  • the invisible liquid crystal glasses 10 further include a driving module 20, an optical sensing element 30, and a control module 40; wherein the optical sensing element 30 is configured to receive The control signal is sent to the control module 40.
  • the control module 40 is configured to control the driving module 20 to drive liquid crystal molecules in the liquid crystal layer for deflection according to the control signal.
  • the invisible liquid crystal glasses 10 further include a solar cell including a P-type silicon pattern layer, an N-type silicon pattern layer, and disposed between the P-type silicon pattern layer and the N-type silicon pattern layer The intrinsic silicon pattern layer.
  • the optical sensing component 30 receives the control signal and sends it to the control module 40 to enter a control mode of “adjusting the left-eye stealth liquid crystal glasses”.
  • the optical sensing component 30 receives the control signal and sends it to the control module 40.
  • the control module 40 controls the driving module 20 to drive liquid crystal molecules in different annular regions of the contact lens corresponding to the left eye to perform corresponding angle deflection according to the control signal, thereby implementing the invisible liquid crystal glasses on the left side.
  • the adjustment of the refractive index of 10 increases the focal length of the invisible liquid crystal glasses.
  • control signal If the degree of the invisible liquid crystal glasses 10 still fails to meet the requirements of the user, the user may continue to issue a corresponding control signal of “increasing the focal length of the invisible liquid crystal glasses” or “reducing the focal length of the invisible liquid crystal glasses”. Control signal.

Abstract

公开了一种隐形液晶眼镜(10),涉及液晶显示技术领域,其包括:对盒成形的第一基板(101)和第二基板(102)、以及设置在两基板之间的液晶层(103);第一基板(101)包括第一透明柔性衬底基板(1011)、设置在第一透明柔性衬底基板(1011)上的包括第一取向槽(1012)的第一取向膜(1013),第一取向槽(1012)以隐形液晶眼镜(10)的中心为中心,呈环形向隐形液晶眼镜(10)的边缘延伸;第二基板(102)包括第二透明柔性衬底基板(1021)、设置在第二透明柔性衬底基板(1021)上的包括第二取向槽(1022)的第二取向膜(1023),第二取向槽(1022)和第一取向槽(1012)相对应。这种隐形液晶眼镜可用于调节视力,改善屈光不良,方便美观。

Description

一种隐形液晶眼镜 技术领域
本发明涉及液晶显示技术领域, 尤其涉及一种隐形液晶眼 镜。 背景技术
隐形眼镜, 也叫角膜接触镜, 是一种戴在眼球角膜上, 用以 矫正视力或保护眼睛的镜片。 目前的隐形眼镜, 其材质主要为硅 水凝胶、 水合聚合物(曱基丙烯酸曱脂、 曱基丙烯酸羟乙酯、 曱 基丙烯酸甘油脂等)。根据材料的软硬程度可以将隐形眼镜分为 硬性、 半硬性、 软性三种。 隐形眼镜不仅从外观上和方便性方面 给近视、远视等屈光不正患者带来了很大的改善,而且视野宽阔、 视物逼真。 发明内容
本发明的实施例提供一种隐形液晶眼镜, 可调节视力, 改善 屈光不良, 方便美观。
为达到上述目的, 本发明的实施例采用如下技术方案: 提供一种隐形液晶眼镜,该隐形液晶眼镜包括对盒成形的第 一基板和第二基板、 以及设置在两基板之间的液晶层; 所述第一 基板包括第一透明柔性衬底基板、设置在所述第一透明柔性衬底 基板上的包括第一取向槽的第一取向膜,所述第一取向槽以所述 隐形液晶眼镜的中心为中心,呈环形向所述隐形液晶眼镜的边缘 延伸; 所述第二基板包括第二透明柔性衬底基板、设置在所述第 二透明柔性衬底基板上的包括第二取向槽的第二取向膜,所述第 二取向槽和所述第一取向槽相对应, 其中, 所述液晶层布置在所 述第一取向膜和所述第二取向膜之间。
可选的,所述第一取向槽和所述第二取向槽的深度由中心向 边缘逐渐增大。 可选的,所述第一取向槽和所述第二取向槽的深度由中心向 边缘逐渐减小。
优选的, 所述环形包括圆形或椭圆形。
进一步优选的, 所述隐形液晶眼镜还包括:设置在所述第一 透明柔性衬底基板上的多个晶体管、与各晶体管的一个电极电连 接的第一电极、以及设置在所述第一透明柔性衬底基板上或第二 透明柔性衬底基板上的第二电极。
进一步优选的, 所述晶体管包括薄膜晶体管。
优选的, 所述隐形液晶眼镜还包括驱动模块, 所述驱动模块 用于驱动所述隐形液晶眼镜的液晶层中的液晶分子进行偏转。
进一步优选的,所述隐形液晶眼镜还包括光学传感元件和控 制模块; 其中, 所述光学传感元件用于接收控制信号, 并发送到 所述控制模块; 所述控制模块根据所述控制信号, 来控制所述驱 动模块以驱动所述液晶层中的液晶分子进行偏转。
优选的,所述隐形液晶眼镜还包括设置在所述第一透明柔性 衬底基板、或所述第二透明柔性衬底基板远离所述液晶层的一个 表面上的薄膜电池单元。
进一步优选的, 所述薄膜电池单元包括太阳能电池。
进一步地,所述太阳能电池包括 P型硅图案层、 N型硅图案 层、 以及设置在所述 P型硅图案层和所述 N型硅图案层之间的 本征硅图案层。
本发明实施例提供了一种隐形液晶眼镜,该隐形液晶眼镜包 括对盒成形的第一基板和第二基板、以及设置在两基板之间的液 晶层; 所述第一基板包括第一透明柔性衬底基板、设置在所述第 一透明柔性衬底基板上的包括第一取向槽的第一取向膜,所述第 一取向槽以所述隐形液晶眼镜的中心为中心,呈环形向所述隐形 液晶眼镜的边缘延伸; 所述第二基板包括第二透明柔性衬底基 板、设置在所述第二透明柔性衬底基板上的包括第二取向槽的第 二取向膜, 所述第二取向槽和所述第一取向槽相对应, 其中所述 液晶层布置在所述第一取向膜和所述第二取向膜之间。通过将所 述液晶层中的液晶以一定的规律排布在所述取向槽中,以使所述 隐形液晶眼镜获得相应的折射率, 满足使用者的屈光度需求, 从 而实现调节视力、 改善屈光不良的作用, 同时具有方便美观的效 果。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或现有技术描述中所需要使用的附图作筒单地 介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施 例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提 下, 还可以根据这些附图获得其他的附图。
图 1 为本发明实施例提供的一种隐形液晶眼镜的结构示意 图;
图 2 为本发明实施例提供的一种应用于隐形液晶眼镜取向 膜的取向槽形状示意图一;
图 3 为本发明实施例提供的一种应用于隐形液晶眼镜取向 膜的取向槽形状示意图二;
图 4 为本发明实施例提供的一种包括驱动模块的隐形液晶 眼镜的结构示意图;
图 5 为本发明实施例提供的一种包括光学传感元件和控制 模块的隐形液晶眼镜的结构示意图;
图 6 为本发明实施例提供的一种包括薄膜电池单元的隐形 液晶眼镜的结构示意图;
图 7 为本发明实施例提供的一种隐形液晶眼镜调节过程的 示意图。
附图标记:
10-隐形液晶眼镜; 101-第一基板; 1011-第一透明柔性衬底 基板; 1012-第一取向槽; 1013-第一取向膜; 102-第二基板; 1021- 第二透明柔性衬底基板; 1022-第二取向槽; 1023-第二取向膜; 103-液晶层; 20-驱动模块; 30-光学传感元件; 40-控制模块; 50- 薄膜电池单元。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技 术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本 发明一部分实施例, 而不是全部的实施例。基于本发明中的实施 例,本领域普通技术人员在没有做出创造性劳动前提下所获得的 所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供了一种隐形液晶眼镜 10, 如图 1所示, 其包括对盒成形的第一基板 101和第二基板 102、 以及设置在两 基板之间的液晶层 103; 所述第一基板 101包括第一透明柔性衬 底基板 1011、 设置在所述第一透明柔性衬底基板上的包括第一 取向槽 1012的第一取向膜 1013 , 所述第一取向槽 1012以所述 隐形液晶眼镜 10的中心为中心, 呈环形向所述隐形液晶眼镜 10 的边缘延伸; 所述第二基板 102 包括第二透明柔性衬底基板
1021、 设置在所述第二透明柔性衬底基板上的包括第二取向槽 1022的第二取向膜 1023 ,所述第二取向槽 1022和所述第一取向 槽 1012相对应。
其中, 所述第一取向槽 1012和第二取向槽 1022, —方面可 以用于将液晶固定在槽内, 并调整液晶的排布, 另一方面可以用 于将所述液晶层 103中的液晶划分为以隐形液晶眼镜 10的中心 为中心, 不同半径的多个环形区域。
当所述隐形液晶眼镜 10用于近视眼镜时, 由于近视镜片是 凹透镜, 其折射率是从镜片中心向边缘逐渐增大的; 这样, 通过 所述第一取向槽 1012和所述第二取向槽 1022可以将所述液晶层
103 中的液晶划分为以隐形液晶眼镜 10的中心为中心, 不同半 径的环形区域, 再通过例如灌注不同折射率的液晶, 来使不同环 形区域的液晶的折射率从镜片中心向边缘逐渐增大。
当所述隐形液晶眼镜 10用于老花眼镜时, 由于老花镜片是 凸透镜, 其折射率是从镜片中心向边缘逐渐减小的; 这样, 通过 所述第一取向槽 1012和所述第二取向槽 1022可以将所述液晶层 103 中的液晶划分为以隐形液晶眼镜 10的中心为中心, 不同半 径的环形区域, 再通过例如灌注不同折射率的液晶, 来使不同环 形区域的液晶的折射率从镜片中心向边缘逐渐减小。
当然,也可以通过例如灌注相同折射率的液晶, 来使不同环 形区域的液晶的折射率相同, 从而使所述隐形液晶眼镜 10成为 平镜镜片。
需要说明的是, 第一, 所述隐形液晶眼镜 10的取向槽的形 状可以是圆形、 椭圆形、 矩形或者梯形等任一种形状, 只要能形 成闭环即可, 在此不做限定。
第二,所述第二取向槽 1022和所述第一取向槽 1012相对应 是指,所述第二取向槽 1022和所述第一取向槽 1012的投影重叠, 且在所述第一取向槽 1012的深度相同的情况下, 所述第二取向 槽 1022的深度也相同;在所述第一取向槽 1012的深度不同的情 况下, 所述第二取向槽 1022的深度也不同。 即, 所述第一取向 槽 1012和第二取向槽 1022的对应位置的槽深保持相同。
其中, 在本发明实施例中, 所述第一取向槽 1012和第二取 向槽 1022的槽深需根据所述液晶层 103中的液晶的折射率特性 进行设计, 以使液晶、取向槽深度及液晶层 103厚度达到最佳匹 配, 从而满足凹透镜、 凸透镜的折射率需求。
第三, 所述第一透明柔性衬底基板 1011、 所述第二透明柔 性衬底基板 1021可以由高分子材料制成, 所述高分子材料例如 亲水性曱基两烯酸硅氧烷基酯、 氟硅两烯酸酯、 聚氨酯水凝胶、 丝素蛋白等。
本发明实施例提供了一种隐形液晶眼镜 10, 包括对盒成形 的第一基板 101和第二基板 102、 以及设置在两基板之间的液晶 层 103; 所述第一基板 101包括第一透明柔性衬底基板 1011、设 置在所述第一透明柔性衬底基板上的包括第一取向槽 1012的第 一取向膜 1013 , 所述第一取向槽 1012 以所述隐形液晶眼镜 10 的中心为中心, 呈环形向所述隐形液晶眼镜 10的边缘延伸; 所 述第二基板 102 包括第二透明柔性衬底基板 1021、 设置在所述 第二透明柔性衬底基板 1021上的第二取向槽 1022的第二取向膜 1023 , 且所述第二取向槽 1022和所述第一取向槽 1012相对应。
这样,通过将所述液晶层 103中的液晶以一定的规律排布在 所述取向槽中, 以使所述隐形液晶眼镜获得相应的折射率, 满足 使用者的屈光度需求,从而实现调节视力、改善屈光不良的作用, 同时具有方便美观的效果。
所述取向槽的形状可以是任意的闭环形状,但考虑到当所述 取向槽的形状为矩形或者梯形等形状时,具有明显的棱角,这样, 所述液晶层 103内的液晶在工作时会受到影响,从而导致显示效 果不佳; 因此, 如图 2和图 3所示, 本发明实施例优选将所述取 向槽的形状设置为圆形或椭圆形。
可选的,所述第一取向槽 1012和所述第二取向槽 1022的深 度可以是由中心向边缘逐渐增大,或者可以是由中心向边缘逐渐 减小。
所述隐形液晶眼镜 10 是凹透镜还是凸透镜具体取决于液 晶、 取向槽深度、 液晶层厚度等因素的综合设计。 通过调整所述 取向槽内部液晶的排布以满足不同的折射率要求,从而实现焦距 的调节, 这样便可以满足近视度数或老花度数使用者的需求。
这里, 所述取向槽的加工方法可以是光取向工艺法, 只要是 能够将所述取向槽加工成所需形状并满足其加工深度的要求即 可。 但由于所述隐形液晶眼镜 10应用于眼镜行业, 考虑到加工 精度和加工成本的要求,本发明优选光取向工艺法作为所述取向 槽的力 ρ工方法。
进一步地, 所述隐形液晶眼镜 10还包括: 设置在所述第一 透明柔性衬底基板 1011上的多个晶体管、 与各晶体管的一个电 极电连接的第一电极、 以及设置在所述第一透明柔性衬底基板
1011上或第二透明柔性衬底基板 1021上的第二电极。 其中, 所 述各晶体管的一个电极,根据晶体管的类型不同,其可以是源极, 也可以是漏极。 这里,所述第二电极可以设置在所述第二透明柔性衬底基板
1021 上, 这样在所述第一电极和所述第二电极之间便可以形成 垂直电场来控制所述液晶层 103中液晶分子的偏转; 当然, 所述 第二电极也可以设置在所述第一透明柔性衬底基板 1011上, 这 样在所述第一电极和所述第二电极之间便可以形成横向电场来 控制所述液晶层 103中液晶分子的偏转。
对于设置在所述第一透明柔性衬底基板 1011上的晶体管、 第一电极等可以通过与目前的阵列基板中的晶体管和像素电极 相似的工艺制备形成; 在此基础上, 所述晶体管可以为薄膜晶体 管,这样可以满足薄型化的市场需求。对于上述的第一基板 101 , 还可以包括与所述晶体管的源极连接的数据线,通过该数据线可 以给所述第一电极进行充电, 并通过第二电极的共同作用, 实现 液晶分子的偏转。
这样, 当所述隐形液晶眼镜 10用于近视眼镜时, 可以通过 调节所述第一电极和所述第二电极之间的电压,来使不同环形区 域的液晶分子进行相应角度的偏转,从而控制液晶的折射率从镜 片中心向边缘逐渐增大。在此基础上, 还可以根据使用者的近视 度数的需求, 实现凹透镜焦距的精确调节。
当所述隐形液晶眼镜 10用于老花眼镜时, 可以通过调节所 述第一电极和所述第二电极之间的电压,来使不同环形区域的液 晶分子进行相应角度的偏转,从而控制液晶的折射率从镜片中心 向边缘逐渐减小。在此基础上, 还可以根据使用者的老花度数的 需求, 实现凸透镜焦距的精确调节。
进一步地,当所述液晶眼镜还包括设置在所述第一透明柔性 衬底基板 1011上的多个晶体管、 与各晶体管的一个电极电连接 的第一电极、 以及设置在所述第一透明柔性衬底基板 1011上或 第二透明柔性衬底基板 1021上的第二电极的情况下, 所述液晶 层 103内的液晶可以为具有相同折射率的同一种液晶,也可以为 具有不同折射率的不同种液晶。
其中,在所述液晶层 103内的液晶为具有不同折射率的不同 种液晶的情况下, 可以根据所述隐形液晶眼镜 10的用途, 使所 述具有不同折射率的不同种液晶按一定的规律排列。
例如, 当所述隐形液晶眼镜 10用于近视眼镜时, 可以将折 射率不同的液晶以折射率由小到大的顺序依次填充在由内到外 的各环形区域内; 当所述隐形液晶眼镜 10用于老花眼镜时, 可 以将折射率不同的液晶以折射率由大到小的顺序依次填充在由 内到外的各环形区域内。
此外, 不同环形区域的所述取向槽的深度可以相同,也可以 不同。 其中, 在所述隐形液晶眼镜 10的液晶层 103中灌注同一 种液晶,且所述第一电极和所述第二电极之间的电压相同的情况 下, 所述取向槽的深度不同, 所述液晶层 103的厚度就不同, 那 么得到的焦距也是不同的。
基于此, 当所述取向槽的深度不同时,其深度的设置可以根 据所述液晶层 103中的液晶的折射率特性进行设计, 以使液晶、 取向槽的深度、 液晶层 103的厚度、 以及所述第一电极和第二电 极之间的电压达到最佳匹配, 从而实现焦距的精确调节。
例如: 在所述取向槽的深度由中心向边缘逐渐增大的情况 下, 其内部可以灌注同一种液晶或者不同种液晶。通过控制第一 电极和所述第二电极之间的电压使所述隐形液晶眼镜 10中不同 环形区域内的液晶的折射率由中心向两边逐渐增大,以实现凹透 镜的作用; 当然, 也可以通过控制第一电极和所述第二电极之间 的电压使所述隐形液晶眼镜 10中不同环形区域的液晶的折射率 由中心向两边逐渐较小, 以实现凸透镜的作用。
在所述取向槽的深度由中心向边缘逐渐减小的情况下,其内 部可以灌注同一种液晶或者不同种液晶。通过控制第一电极和所 述第二电极之间的电压使所述隐形液晶眼镜 10中不同环形区域 的液晶的折射率由中心向两边逐渐减小, 以实现凸透镜的作用; 当然,也可以通过控制第一电极和所述第二电极之间的电压使所 述隐形液晶眼镜 10中不同环形区域的液晶的折射率由中心向两 边逐渐增大, 以实现凹透镜的作用。 通过调整所述取向槽内部液晶的排布以满足不同的折射率 要求, 从而实现焦距的调节, 这样便可以满足不同老花度数或近 视度数使用者的需求。
本发明实施例提供了一种隐形液晶眼镜 10, 可以根据使用 者的不同需求, 调整所述液晶层 103中的液晶的折射率, 以使所 述隐形液晶眼镜 10呈现出凹透镜、 凸透镜、 平镜等效果。 即: 当调整所述液晶层 103 中被所述取向槽划分的不同环形区域的 液晶的折射率沿由内到外逐渐增大时,可以使所述隐形液晶眼镜 10成为近视镜片; 当调整所述液晶层 103 中被所述取向槽划分 的不同环形区域的液晶的折射率沿由内到外逐渐变小时,可以使 所述隐形液晶眼镜 10成为老花镜片; 当调整所述液晶层 103中 被所述取向槽划分的不同环形区域的液晶的折射率沿由内到外 不变时, 可以使所述隐形液晶眼镜 10成为平镜; 此外, 当所述 隐形液晶眼镜 10为近视镜片或老花镜片时, 还可以通过调整所 述液晶的折射率实现焦距的精确调节,以满足不同使用者对镜片 度数的需求。
进一步优选的,如图 4所示, 所述隐形液晶眼镜还包括驱动 模块 20, 所述驱动模块 20于驱动所述隐形液晶眼镜 10的液晶 层 103中的液晶分子进行偏转。
在本发明实施例中, 由于所述隐形液晶眼镜 10的取向槽以 所述隐形液晶眼镜 10的中心为中心, 呈环形向边缘延伸, 从而 将所述隐形液晶眼镜 10划分为多个环形区域。 在每个环形区域 中,所述驱动模块 20可以根据需要向所述隐形液晶眼镜 10中的 不同环形区域施加驱动电压,驱动不同环形区域内的液晶分子进 行相应角度的偏转,从而控制液晶的折射率例如从镜片中心向边 缘逐渐增大或逐渐减小,以使所述液晶眼镜实现近视眼镜或老花 眼镜的功能。
需要说明的是,此处不同环形区域所施加的驱动电压需根据 不同环形区域中液晶的折射率、取向槽深度、 以及液晶层的厚度 而定, 以使这些参数达到最佳匹配, 从而可以实现焦距的精确调 节。
进一步可选的, 如图 5所示, 所述隐形液晶眼镜 10还包括 光学传感元件 30和控制模块 40; 其中, 所述光学传感元件 30 用于接收控制信号, 并发送到所述控制模块 40; 所述控制模块 40用于根据所述控制信号, 控制所述驱动模块 20以驱动所述液 晶层中的液晶分子进行偏转。
此处,可以配置一个光学遥控器,通过该光学遥控器的调整 按钮, 发出控制信号, 由所述光学传感元件 30接收该控制信号 并发送到所述控制模块 40, 以使所述控制模块 40根据该控制信 号, 控制所述驱动模块 20来驱动所述液晶层中的液晶分子进行 偏转。这里, 可以预先将所述光学遥控器的不同调整按钮所对应 的控制信号进行设定, 以便对所述光学传感元件 30的操控。
这样, 使用者可以只需控制光学遥控器的相应的调整按钮, 便可实现对隐形液晶眼镜 10的调节。 例如当所述隐形液晶眼镜 10为近视眼镜时, 可以调节左右所述隐形液晶眼镜 10的焦距, 即矫正近视度数; 或者当所述隐形液晶眼镜 10为老花眼镜时, 可以调节左右所述隐形液晶眼镜 10的焦距, 即矫正老花度数; 或者当所述隐形液晶眼镜 10为老花眼镜时, 可以通过调节左右 所述隐形液晶眼镜 10的焦距, 使该液晶眼镜成为近视眼镜。
示例的,使用者首先按下所述光学遥控器中对应 "调节左眼 的隐形液晶眼镜"这一控制信号的调整按钮, 所述光学遥控器随 即向所述光学传感元件 30发出该控制信号; 所述光学传感元件 30接收该控制信号并将其发送到所述控制模块 40, 进入 "调节 左眼的隐形液晶眼镜"的控制模式; 使用者随后再按下所述光学 遥控器中对应 "增大隐形液晶眼镜的焦距"这一控制信号的调整 按钮, 所述光学遥控器再向所述光学传感元件 30发出该控制信 号; 所述光学传感元件 30接收该控制信号并将其发送到所述控 制模块 40; 所述控制模块 40根据该控制信号, 控制所述驱动模 块 20来驱动对应左眼的所述液晶层中的液晶分子进行偏转, 以 实现焦距的调节。 优选的, 如图 6所示, 所述隐形液晶眼镜 10还包括设置在 所述第一透明柔性衬底基板 1011或所述第二透明柔性衬底基板 1021的远离所述液晶层的那个表面上的薄膜电池单元 50。
这里, 具体的, 若所述第一透明柔性衬底基板 1011位于眼 睛的外侧时, 则所述薄膜电池单元 50可以设置在所述第一透明 柔性衬底基板 1011远离所述液晶层的一侧表面上。
进一步地, 所述薄膜电池单元 50包括太阳能电池。
其中, 所述太阳能电池可以包括 P型硅图案层、 N型硅图案 层、 以及设置在所述 P型硅图案层和所述 N型硅图案层之间的 本征硅图案层。
进一步地,所述光学遥控器还可以具有控制所述隐形液晶眼 镜 10的薄膜电池单元 50供电与否的开关。这样, 当不戴隐形液 晶眼镜 10的时候可以将开关关闭,使所述隐形液晶眼镜 10停止 工作; 当重新戴上眼镜的时候可以将开关开启,使所述隐形液晶 眼镜 10正常工作。
下面提供一具体的实施例对上述的隐形液晶眼镜 10进行具 体说明。
所述隐形液晶眼镜 10包括对盒成形的第一基板 101和第二 基板 102、 以及设置在两基板之间的液晶层 103; 所述第一基板 101包括第一透明柔性衬底基板 1011、设置在所述第一透明柔性 衬底基板上的包括第一取向槽 1012的第一取向膜 1013 , 所述第 一取向槽 1012以所述隐形液晶眼镜 10的中心为中心,呈环形向 所述隐形液晶眼镜 10的边缘延伸; 所述第二基板 102包括第二 透明柔性衬底基板 1021、 设置在所述第二透明柔性衬底基板上 的包括第二取向槽 1022 的第二取向膜 1023 , 所述第二取向槽
1022和所述第一取向槽 1012相对应; 其中, 所述取向槽的深度 由中心向外逐渐增加,所述液晶层 103中的液晶为折射率相同的 同一种液晶。
所述隐形液晶眼镜 10还进一步包括驱动模块 20、光学传感 元件 30和控制模块 40; 其中, 所述光学传感元件 30用于接收 控制信号, 并发送到所述控制模块 40; 所述控制模块 40用于根 据所述控制信号, 控制所述驱动模块 20以驱动所述液晶层中的 液晶分子进行偏转。
此外, 所述隐形液晶眼镜 10还包括太阳能电池, 所述太阳 能电池包括 P型硅图案层、 N型硅图案层、 以及设置在所述 P 型硅图案层和所述 N型硅图案层之间的本征硅图案层。
当近视使用者配戴所述隐形液晶眼镜 10, 且需要对左眼的 所述隐形液晶眼镜 10的焦距进行调节时, 示例的, 如图 7所示, 包括如下步骤:
5101、 使用者按下所述光学遥控器的一个调整按钮 " " , 所述光学遥控器随即向所述光学传感元件 30发出控制信号, 该 控制信号表示 "调节左眼的隐形液晶眼镜" 。
5102、 所述光学传感元件 30接收该控制信号并将其发送到 所述控制模块 40, 进入 "调节左眼的隐形液晶眼镜" 的控制模 式。
5103、 使用者按下所述光学遥控器的一个调整按钮 "† " , 所述光学遥控器向所述光学传感元件 30发出控制信号, 该控制 信号表示 "增大隐形液晶眼镜的焦距" 。
5104、 所述光学传感元件 30接收该控制信号并将其发送到 所述控制模块 40。
5105、 所述控制模块 40根据该控制信号控制所述驱动模块 20 以驱动对应左眼的隐形液晶眼镜中不同环形区域内的液晶分 子进行相应角度的偏转, 从而实现对左边的所述隐形液晶眼镜 10的折射率的调节, 使所述隐形液晶眼镜的焦距增大。
5106、 若所述隐形液晶眼镜 10的度数仍未能满足使用者的 要求,则使用者可以继续发出相应的 "增大隐形液晶眼镜的焦距" 的控制信号或 "减小隐形液晶眼镜的焦距" 的控制信号。
以上所述,仅为本发明的具体实施方式,但本发明的保护范 围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露 的技术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保 护范围之内。 因此, 本发明的保护范围应以所述权利要求的保护 范围为准。

Claims

权利要求书
1、 一种隐形液晶眼镜, 其特征在于, 包括: 对盒成形的第 一基板和第二基板、以及设置在所述第一基板和所述第二基板之 间的液晶层, 其中
所述第一基板包括第一透明柔性衬底基板、设置在所述第一 透明柔性衬底基板上的包括第一取向槽的第一取向膜,所述第一 取向槽以所述隐形液晶眼镜的中心为中心,呈环形向所述隐形液 晶眼镜的边缘延伸,
所述第二基板包括第二透明柔性衬底基板、设置在所述第二 透明柔性衬底基板上的包括第二取向槽的第二取向膜,所述第二 取向槽和所述第一取向槽相对应, 以及
所述液晶层布置在所述第一取向膜和所述第二取向膜之间。
2、 根据权利要求 1所述的隐形液晶眼镜, 其特征在于, 所 述第一取向槽和所述第二取向槽的深度由中心向边缘逐渐增大。
3、 根据权利要求 1所述的隐形液晶眼镜, 其特征在于, 所 述第一取向槽和所述第二取向槽的深度由中心向边缘逐渐减小。
4、 根据权利要求 1所述的隐形液晶眼镜, 其特征在于, 所 述环形包括圆形或椭圆形。
5、 根据权利要求 1至 4任一项所述的隐形液晶眼镜, 其特 征在于, 还包括: 设置在所述第一透明柔性衬底基板上的多个晶 体管、与各晶体管的一个电极电连接的第一电极、 以及设置在所 述第一透明柔性衬底基板上或第二透明柔性衬底基板上的第二 电极。
6、 根据权利要求 5所述的隐形液晶眼镜, 其特征在于, 所 述晶体管包括薄膜晶体管。
7、 根据权利要求 5所述的隐形液晶眼镜, 其特征在于, 还 包括: 驱动模块, 用于驱动所述隐形液晶眼镜的液晶层中的液晶 分子进行偏转。
8、 根据权利要求 7所述的隐形液晶眼镜, 其特征在于, 还 包括光学传感元件和控制模块;
其中, 所述光学传感元件用于接收控制信号, 并发送到所述 控制模块;
所述控制模块根据所述控制信号,来控制所述驱动模块以驱 动所述液晶层中的液晶分子进行偏转。
9、 根据权利要求 5所述的隐形液晶眼镜, 其特征在于, 还 包括设置在所述第一透明柔性衬底基板、或所述第二透明柔性衬 底基板远离所述液晶层的表面上的薄膜电池单元。
10、 根据权利要求 9所述的隐形液晶眼镜, 其特征在于, 所 述薄膜电池单元包括太阳能电池。
11、 根据权利要求 10所述的隐形液晶眼镜, 其特征在于, 所述太阳能电池包括 P型硅图案层、 N型硅图案层、 以及设置在 所述 P型硅图案层和所述 N型硅图案层之间的本征硅图案层。
PCT/CN2013/088436 2013-08-20 2013-12-03 一种隐形液晶眼镜 WO2015024323A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/355,357 US20150160475A1 (en) 2013-08-20 2013-12-03 Liquid Crystal Based Contact Lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310363351.4A CN103472596B (zh) 2013-08-20 2013-08-20 一种隐形液晶眼镜
CN201310363351.4 2013-08-20

Publications (1)

Publication Number Publication Date
WO2015024323A1 true WO2015024323A1 (zh) 2015-02-26

Family

ID=49797503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088436 WO2015024323A1 (zh) 2013-08-20 2013-12-03 一种隐形液晶眼镜

Country Status (3)

Country Link
US (1) US20150160475A1 (zh)
CN (1) CN103472596B (zh)
WO (1) WO2015024323A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10859868B2 (en) 2017-08-11 2020-12-08 Coopervision International Limited Flexible liquid crystal cells and lenses
US11003016B2 (en) 2018-09-21 2021-05-11 Coopervision International Limited Flexible, adjustable lens power liquid crystal cells and lenses

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472595B (zh) * 2013-08-20 2014-11-19 北京京东方光电科技有限公司 一种液晶镜片以及液晶眼镜
KR102271817B1 (ko) 2014-09-26 2021-07-01 삼성전자주식회사 증강현실을 위한 스마트 콘택렌즈와 그 제조 및 동작방법
US9715129B2 (en) * 2015-04-15 2017-07-25 Johnson & Johnson Vision Care, Inc. Contact lens with multi-layered pattern
US10474230B2 (en) 2016-12-15 2019-11-12 Tectus Corporation Brightness control for an augmented reality eye-mounted display
US11175544B2 (en) 2017-03-07 2021-11-16 President And Fellows Of Harvard College Stretchable electrooptical and mechanooptical devices comprising a liquid crystal cell disposed between first and second ionic conducting gel layers
CN114839796A (zh) * 2021-02-01 2022-08-02 上海婷伊美科技有限公司 一种可变焦硬性隐形眼镜及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2085070U (zh) * 1991-01-09 1991-09-18 李顺田 光敏液晶变色镜片
CN2182416Y (zh) * 1994-01-31 1994-11-09 清华大学 防护镜用高透过率液晶镜片
CN102081241A (zh) * 2010-11-08 2011-06-01 西华师范大学 光控液晶眼镜
CN202177752U (zh) * 2011-08-19 2012-03-28 天马微电子股份有限公司 一种液晶眼镜
WO2012083524A1 (zh) * 2010-12-21 2012-06-28 海尔集团公司 眼镜镜片、快门式眼镜及立体显示系统
CN102955262A (zh) * 2011-08-31 2013-03-06 深圳光启高等理工研究院 一种近视眼镜镜片
CN203444181U (zh) * 2013-08-20 2014-02-19 北京京东方光电科技有限公司 一种隐形液晶眼镜

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04322214A (ja) * 1991-04-23 1992-11-12 Hitachi Ltd 液晶レンズ及びその使用方法
JPH06324337A (ja) * 1993-03-15 1994-11-25 Toshiba Corp 液晶表示装置
US5818560A (en) * 1994-11-29 1998-10-06 Sanyo Electric Co., Ltd. Liquid crystal display and method of preparing the same
US6619799B1 (en) * 1999-07-02 2003-09-16 E-Vision, Llc Optical lens system with electro-active lens having alterably different focal lengths
JP2001156311A (ja) * 1999-11-30 2001-06-08 Sharp Corp 薄膜太陽電池およびその製造方法
KR20040007064A (ko) * 2002-07-16 2004-01-24 삼성전자주식회사 반사-투과형 액정표시장치 및 이의 제조 방법
US8317321B2 (en) * 2007-07-03 2012-11-27 Pixeloptics, Inc. Multifocal lens with a diffractive optical power region
CN102004351B (zh) * 2010-09-13 2012-12-05 信利半导体有限公司 3d液晶眼镜生产方法
US20120212696A1 (en) * 2011-01-27 2012-08-23 Pixeloptics, Inc. Variable optical element comprising a liquid crystal alignment layer
US20120300171A1 (en) * 2011-05-27 2012-11-29 Pixeloptics, Inc. Programmable Ophthalmic Lenses
US9588396B2 (en) * 2012-02-07 2017-03-07 Mitsui Chemicals, Inc. Laser patterning of conductive films for electro-active lenses
US9310626B2 (en) * 2013-03-15 2016-04-12 Johnson & Johnson Vision Care, Inc. Ophthalmic devices with organic semiconductor transistors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2085070U (zh) * 1991-01-09 1991-09-18 李顺田 光敏液晶变色镜片
CN2182416Y (zh) * 1994-01-31 1994-11-09 清华大学 防护镜用高透过率液晶镜片
CN102081241A (zh) * 2010-11-08 2011-06-01 西华师范大学 光控液晶眼镜
WO2012083524A1 (zh) * 2010-12-21 2012-06-28 海尔集团公司 眼镜镜片、快门式眼镜及立体显示系统
CN202177752U (zh) * 2011-08-19 2012-03-28 天马微电子股份有限公司 一种液晶眼镜
CN102955262A (zh) * 2011-08-31 2013-03-06 深圳光启高等理工研究院 一种近视眼镜镜片
CN203444181U (zh) * 2013-08-20 2014-02-19 北京京东方光电科技有限公司 一种隐形液晶眼镜

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10859868B2 (en) 2017-08-11 2020-12-08 Coopervision International Limited Flexible liquid crystal cells and lenses
US11860470B2 (en) 2017-08-11 2024-01-02 Coopervision International Limited Flexible liquid crystal cells and lenses
US11003016B2 (en) 2018-09-21 2021-05-11 Coopervision International Limited Flexible, adjustable lens power liquid crystal cells and lenses
US11520181B2 (en) 2018-09-21 2022-12-06 Coopervision International Limited Flexible, adjustable lens power liquid crystal cells and lenses

Also Published As

Publication number Publication date
US20150160475A1 (en) 2015-06-11
CN103472596A (zh) 2013-12-25
CN103472596B (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
WO2015024323A1 (zh) 一种隐形液晶眼镜
JP7026925B2 (ja) 眼鏡
RU2594437C2 (ru) Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
WO2015024322A1 (zh) 液晶镜片以及液晶眼镜
US9500884B2 (en) Fluid filled adjustable contact lenses
TWI494637B (zh) 在具有動態光學之光學傳遞內之靜態增進表面區域
US20080278681A1 (en) Progressive addition lens operating in combination with a multi-order diffractive optic
TW201423202A (zh) 包含低黏性液晶性混合物的電活性眼用透鏡
WO2012166718A1 (en) Deformable ophthalmic lenses
US20190113771A1 (en) Electrically focus-tunable lens and eyewear including the same
CN107748452B (zh) 一种基于液晶透镜的变焦眼镜的变焦方法
CN103472619A (zh) 一种液晶镜片以及液晶小孔眼镜
CN110291445B (zh) 镜片及眼睛佩戴物
TWI490595B (zh) 以液晶轉向調整透鏡焦距之光學系統
JP2012128106A (ja) 液晶フレネルレンズの製造方法及び液晶フレネルレンズ
TWI591379B (zh) 具視力補償之頭戴式顯示裝置
CN203444181U (zh) 一种隐形液晶眼镜
CN203444180U (zh) 一种液晶镜片以及液晶眼镜
JP2009251067A (ja) 電子眼鏡
KR20200131633A (ko) 가변 렌즈, 렌즈 모듈 및 이를 포함하는 안경
US11885972B1 (en) Optical element having peripheral foveating region
US20230058115A1 (en) Focus-adjustable liquid crystal eyeglasses
US11733547B1 (en) Modulating impedance to segments of ground plane
CN107807457A (zh) 一种基于液晶双折射的双屈光度眼镜变焦方法
US20150092124A1 (en) Eyeglasses apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14355357

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/07/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13891851

Country of ref document: EP

Kind code of ref document: A1