WO2013166368A1 - Volume dimensioning systems and methods - Google Patents

Volume dimensioning systems and methods Download PDF

Info

Publication number
WO2013166368A1
WO2013166368A1 PCT/US2013/039438 US2013039438W WO2013166368A1 WO 2013166368 A1 WO2013166368 A1 WO 2013166368A1 US 2013039438 W US2013039438 W US 2013039438W WO 2013166368 A1 WO2013166368 A1 WO 2013166368A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
dimensional object
processor
image
wireframe model
Prior art date
Application number
PCT/US2013/039438
Other languages
French (fr)
Inventor
Jeffrey Mark HUNT
Edward J. JENNINGS
Nancy WOJACK
Scott Xavier HOULE
Original Assignee
Intermec Ip Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intermec Ip Corp. filed Critical Intermec Ip Corp.
Priority to EP13785171.3A priority Critical patent/EP2845170B1/en
Publication of WO2013166368A1 publication Critical patent/WO2013166368A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Definitions

  • This disclosure generally relates to non-contact systems and methods for determining dimensions and volume of one or more objects.
  • Volume dimensioning systems are useful for providing dimensional and volumetric data related to three-dimensional objects disposed within the point of view of the volume dimensioning system. Such dimensional and volumetric information is useful for example, in providing users with accurate shipping rates based on the actual size and volume of the object being shipped. Additionally, the volume dimensioning system's ability to transmit parcel data immediately to a carrier can assist the carrier in selecting and scheduling appropriately sized vehicles based on measured cargo volume and dimensions. Finally, the ready availability of dimensional and volumetric information for all the objects within a carrier's network assists the carrier in ensuring optimal use of available space in the many different vehicles and containers used in local, interstate, and international commerce.
  • Automating the volume dimensioning process can speed parcel intake, improve the overall level of billing accuracy, and increase the efficiency of cargo handling.
  • parcels are not confined to a standard size or shape, and may, in fact, have virtually any size or shape. Additionally, parcels may also have specialized handling instructions such as a fragile side that must be protected during shipping or a side that must remain up throughout shipping.
  • Automated systems may struggle with assigning accurate dimensions and volumes to irregularly shaped objects, with a single object that may be represented as a combination of two objects ⁇ e.g., a guitar) or with multiple objects that may be better represented as a single object (e.g., a pallet holding multiple boxes that will be shrink-wrapped for transit). Automated systems may also struggle with identifying a particular portion of an object as being "fragile” or a particular portion of an object that should remain "up" while in transit.
  • Providing users with the ability to identify and/or confirm the shape and/or numbers of either single objects or individual objects within a group or stack of objects and to identify the boundaries of irregularly shaped objects benefits the user in providing cartage rates that are proportionate to the actual size and/or volume of the parcel being shipped.
  • Involving the user in providing accurate shape and/or volume data for a parcel or in providing an accurate outline of an irregularly shaped parcel also benefits the carrier by providing data that can be used in optimizing transport coordination and planning.
  • Providing the user with the ability to designate one or more special handling instructions provides the user with a sense of security that the parcel will be handled in accordance with their wishes, that fragile objects will be protected and that "up" sides will be maintained on the "top" of the parcel during transport.
  • the special handling instructions also benefit the transporter by providing information that can be useful in load planning (ensuring, for example, "fragile” sides remain protected and “up” sides remain “up” in load planning) and in reducing liability for mishandled parcels that are damaged in transit.
  • a method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determining from the received image data a number of features in three dimensions of the first three-dimensional object by at least one processor communicatively coupled to the at least one nontransitory processor-readable medium; based at least on part on the determined features of the first three- dimensional object, fitting a first three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor; and causing a displaying of an image of the first three-dimensional packaging wireframe model fitted about an image of the first three-dimensional object on a display on which the image of the first three-dimensional object is displayed.
  • the method may further include receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of the first three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; and causing a displaying of an updated image of the first three- dimensional packaging wireframe model fitted about the image of the first three- dimensional object on the display.
  • the method may further include receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of the three-dimensional packaging wireframe model relative to the displayed image of the first three- dimensional object; based at least in part on the received user input, fitting a second three-dimensional packaging wireframe model about the first three- dimensional object by the at least one processor, the second three-dimensional packaging wireframe model having a different geometrical shape than the first three-dimensional wireframe model; and causing a displaying of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display.
  • the method may further include receiving at least one user input via a user interface, the user input indicative of an identification of a second three-dimensional object, the second three-dimensional object different from the first three-dimensional object; based at least in part on the received user input, fitting a second three- dimensional packaging wireframe model about the second three-dimensional object by the at least one processor, the second three-dimensional wireframe model; and causing a displaying of an image of the second three-dimensional packaging wireframe model fitted about the image of the second three- dimensional object on the display.
  • the at least one processor may cause the concurrent displaying of the image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display and the image of the second three-dimensional packaging wireframe model fitted about the image of the second three-dimensional object on the display.
  • the method may further include receiving at least one user input via a user interface, the user input indicative of an identification of at least one portion of the first three-dimensional object; based at least in part on the received user input, fitting one three-dimensional packaging wireframe model about a first portion of the first three-dimensional object by the at least one processor; based at least in part on the received user input, fitting one three- dimensional packaging wireframe model about a second portion of the first three-dimensional object by the at least one processor; and causing a concurrent displaying of an image of the three-dimensional wireframe models respectively fitted about the image of the first and the second portions of the first three-dimensional object on the display.
  • the at least one processor may cause the displaying of the image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display to rotate about an axis.
  • the method may further include receiving image data of the area from a second point of view by at least one nontransitory processor-readable medium from at least one image sensor, the second point of view different from the first point of view; determining from the received image data at least one additional feature in three dimensions of the first three- dimensional object by at least one processor; based on the determined features of the first three-dimensional object, at least one of adjusting the first three- dimensional packaging wireframe model or fitting a second three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor; and causing a displaying of an image of at least one of the adjusted first three-dimensional packaging wireframe model or the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display.
  • Fitting a first three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor may include selecting from a number of defined geometric primitives that define respective volumes and sizing at least one dimension of the selected geometric primitive based on a corresponding dimension of the first three-dimensional object such that the first three-dimensional object is completely encompassed by the selected and sized geometric primitive.
  • the method may further include producing a wireframe model of the first three- dimensional object; and causing a concurrently displaying of the wireframe model of the first three-dimensional object along with the three-dimensional packaging wireframe model.
  • the method may further include receiving at least one user input via a user interface, the user input indicative of a geometric primitive of the first three-dimensional object; and selecting the first three- dimensional object from a plurality of three-dimensional objects represented in the image data by at least one processor, based at least in part on the user input indicative of the geometric primitive of the first three-dimensional object. Selecting the first three-dimensional object from a plurality of three-dimensional objects represented in the image data based at least in part on the user input indicative of the geometric primitive of the first three-dimensional object includes determining which of the three-dimensional objects has a geometric primitive that most closely matches the geometric primitive indicated by the received user input.
  • the method may further include receiving at least one user input via a user interface, the user input indicative of an acceptance of the first three-dimensional packaging wireframe model; and performing at least a volumetric calculation using a number of dimensions of the selected three- dimensional packaging wireframe model.
  • the method may further include receiving at least one user input via a user interface, the user input indicative of a rejection of the first three-dimensional packaging wireframe model; and in response to the received user input, fitting a second three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor, the second three-dimensional packaging wireframe model having a different geometric primitive than the first three-dimensional wireframe model; and causing a displaying of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display.
  • the method may further include receiving at least one user input via a user interface, the user input indicative of a second three- dimensional packaging wireframe model, the second three-dimensional packaging wireframe model having a different geometric primitive than the first three-dimensional wireframe model; in response to the received user input, fitting the second three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor; and causing a displaying of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display by the at least one processor.
  • the method may further include causing by the at least one processor a displaying of a plurality of user selectable icons, each corresponding to a respective one of a plurality of three-dimensional packaging wireframe model and selectable by a user to be fitted to the first three- dimensional object.
  • the method may further include receiving at least one user input via a user interface, the user input indicative of a region of interest of the displayed image of the first three-dimensional object; and in response to the received user input, causing by the at least one processor a displaying of an enlarged image of a portion of the first three-dimensional object corresponding to the region of interest by the display.
  • the method may further include causing by the at least one processor a displaying of a plurality of user selectable icons, each corresponding to a respective one of a plurality of three-dimensional packaging wireframe model and selectable by a user to be fitted to the first three-dimensional object.
  • the volume dimensioning system comprises a computer having a first processor, a camera and the display, and the volume dimensioning system further comprises a volume dimensioning system having a second processor, the volume
  • dimensioning system selectively detachably coupleable to the computer, and causing a displaying of an image of the first three-dimensional packaging wireframe model fitted about an image of the first three-dimensional object on a display on which the image of the first three-dimensional object is displayed includes the second processor causing the first processor to display the image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display of the first computer.
  • a volume dimensioning system may be summarized as including at least one image sensor communicably coupled to at least one nontransitory processor-readable medium; at least one processor communicably coupled to the at least one nontransitory processor-readable medium; a machine executable instruction set stored within at least one nontransitory processor- readable medium, that when executed by the at least one processor causes the at least one processor to: read image data from the at least one nontransitory processor-readable medium, the image data associated with a first point of view of an area sensed by the at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determine from the received image data a number of features in three dimensions of the first three- dimensional object; based at least on part on the determined features of the first three-dimensional object, fit a first three-dimensional packaging wireframe model about the first three-dimensional object; and cause a display of an image of the first three-dimensional packaging wireframe model fitted about an image of the first three-dimensional object on a display device.
  • the machine executable instruction set may further include instructions, that when executed by the at least one processor cause the at least one processor to: select from a number of defined geometric primitives that define respective volumes and sizing at least one dimension of the selected geometric primitive based on a corresponding dimension of the first three-dimensional object such that the first three-dimensional object is completely encompassed by the selected and sized geometric primitive;
  • the machine executable instruction set stored within at least one nontransitory processor- readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: responsive to a user input received by the at least one processor, change a position of at least a portion of the displayed image of the first three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; and cause a display of an updated image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display device.
  • the machine executable instruction set stored within at least one nontransitory processor-readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: responsive to a user input received by the at least one processor, change a position of at least a portion of the displayed image of the three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; responsive to a user input received by the at least one processor, fit a second three-dimensional packaging wireframe model about the first three-dimensional object, the second three- dimensional packaging wireframe model having a different geometrical shape than the first three-dimensional wireframe model; and cause a display of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display device.
  • the machine executable instruction set stored within at least one nontransitory processor-readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: responsive to a user input received by the at least one processor, the user input indicative of an identification of a second three-dimensional object different from the first three-dimensional object, fit a second three-dimensional packaging wireframe model about the second three-dimensional object; and cause a display of an image of the second three-dimensional packaging wireframe model fitted about the image of the second three-dimensional object on the display.
  • the machine executable instruction set stored within at least one nontransitory processor-readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: responsive to a user input received by the at least one processor, the user input indicative of an identification of at least one portion of the first three- dimensional object, fit a three-dimensional packaging wireframe model about a first portion of the first three-dimensional object; responsive to a user input received by the at least one processor, the user input indicative of an
  • identification of at least one portion of the first three-dimensional object fit a three-dimensional packaging wireframe model about a second portion of the first three-dimensional object; and cause a display of an image of the three- dimensional wireframe models fitted about the image of the first and the second portions of the first three-dimensional object on the display device.
  • the machine executable instruction set stored within at least one nontransitory processor-readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: responsive to a user input received by the at least one processor, the user input indicative of a second three-dimensional packaging wireframe model having a different geometric primitive than the first three-dimensional wireframe model, fit the second three-dimensional packaging wireframe model about the first three- dimensional object by the at least one processor; and cause a display of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display.
  • the machine executable instruction set stored within at least one nontransitory processor- readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: cause a display of a plurality of user selectable icons on the display device, each user selectable icon corresponding to a respective one of a plurality of three-dimensional packaging wireframe models and selectable by a user to be fitted to the first three-dimensional object.
  • a method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determining from the received image data a number of features in three dimensions of the first three-dimensional object by at least one processor communicatively coupled to the at least one nontransitory processor-readable medium; based at least in part on the determined features of the first three- dimensional object, identifying a first portion and at least a second portion of the first three-dimensional object by the at least one processor; based on the determined features of the first three-dimensional object, fitting a first three- dimensional packaging wireframe model about the first portion of the first three- dimensional object by the at least one processor; based on the determined features of the first three-dimensional object, fitting a second three-dimensional packaging wireframe model about the second portion of the first three- dimensional object by the at least one processor; and causing a concurrent
  • the method may further include receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of at least one of the first three-dimensional packaging wireframe model or the second three-dimensional packaging wireframe model relative to the displayed image of the first and second portions of the first three-dimensional object, respectively; and causing a displaying of an updated image of the first and second three-dimensional packaging wireframe models fitted about the image of the first and second portions of the first three-dimensional object on the display.
  • the method may further include receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of at least one of the first three-dimensional packaging wireframe model or the second three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; based at least in part on the received user input, fitting a replacement three-dimensional packaging wireframe model about at least one of the first or second portions of the first three-dimensional object by the at least one processor, the replacement three-dimensional packaging wireframe model having a different geometric primitive than the first or second three-dimensional wireframe model that it replaces; and causing a displaying of an image of at least the replacement three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display.
  • the at least one processor may cause the displaying of the image of the first and the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display to rotate about an axis.
  • the method may further include receiving image data of the area from a second point of view by at least one nontransitory processor-readable medium from at least one image sensor, the second point of view different from the first point of view; determining from the received image data at least one additional feature in three dimensions of the first three-dimensional object by at least one processor; based on the determined features of the first three-dimensional object, performing at least one of adjusting the first or second three-dimensional packaging wireframe model or fitting a third three-dimensional packaging wireframe model about at least a portion of the first three-dimensional object not discernible from the first point of view by the at least one processor; and causing a displaying of an image of at least one of the adjusted first or second three-dimensional packaging wireframe model or the first, second, and third three-dimensional packaging wireframe models fitted about the image of the first three-dimensional object
  • Fitting a first three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor may include selecting the first three-dimensional packaging wireframe model from a number of defined geometric primitives that define respective volumes and sizing at least one dimension of the selected geometric primitive based on a corresponding dimension of the first portion of the first three-dimensional object such that the first portion of the first three-dimensional object is completely encompassed by the selected and sized geometric primitive; and wherein fitting a second three-dimensional packaging wireframe model about the second portion of the first three-dimensional object by the at least one processor may include selecting the second three-dimensional packaging wireframe model from the number of defined geometric primitives that define respective volumes and sizing at least one dimension of the selected geometric primitive based on a corresponding dimension of the second portion of the first three-dimensional object such that the second portion of the first three-dimensional object is completely encompassed by the selected and sized geometric primitive.
  • the method may further include producing a wireframe model of the first three-dimensional object; and causing a
  • the method may further include receiving at least one user input via a user interface, the user input indicative of a geometric primitive of at least the first portion or the second portion of the first three-dimensional object; and selecting the first three-dimensional object from a plurality of three- dimensional objects represented in the image data by at least one processor, based at least in part on the user input indicative of the geometric primitive of at least a portion of the first three-dimensional object.
  • Selecting the first three- dimensional object from a plurality of three-dimensional objects represented in the image data by at least one processor, based at least in part on the user input indicative of the geometric primitive of at least a portion of the first three- dimensional object may include determining which of the three-dimensional objects contains a portion having a geometric primitive that most closely matches the geometric primitive indicated by the received user input.
  • the method may further include receiving at least one user input via a user interface, the user input indicative of an acceptance of the first three- dimensional packaging wireframe model and the second three-dimensional packaging wireframe model; and performing at least a volumetric calculation using a number of dimensions of the selected first and second three- dimensional packaging wireframe models.
  • the method may further include receiving at least one user input via a user interface, the user input indicative of a rejection of at least one of the first three-dimensional packaging wireframe model or the second three-dimensional packaging wireframe model; and in response to the received user input, fitting a replacement three-dimensional packaging wireframe model about the first or second portion of the first three- dimensional object by the at least one processor, the replacement three- dimensional packaging wireframe model having a different geometric primitive than the first or second three-dimensional wireframe model that it replaces; and causing a displaying of an image of the replacement three-dimensional packaging wireframe model fitted about at least a portion of the image of the first three-dimensional object on the display.
  • the method may further include receiving at least one user input via a user interface, the user input indicative of a replacement three-dimensional packaging wireframe model, the replacement three-dimensional packaging wireframe model having a different geometric primitive than at least one of the first three-dimensional wireframe model and the second three-dimensional wireframe model; in response to the received user input, fitting the replacement three-dimensional packaging wireframe model about either the first or second portion of the first three-dimensional object by the at least one processor; and causing a displaying of an image of the replacement three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display by the at least one processor.
  • the method may further include causing by the at least one processor a displaying of a plurality of user selectable options, each user selectable option corresponding to a respective one of a plurality of three- dimensional packaging wireframe model and selectable by a user to be fitted to either the first or second portion of the first three-dimensional object.
  • a volume dimensioning system may be summarized as including at least one image sensor communicably coupled to at least one nontransitory processor-readable medium; at least one processor communicably coupled to the at least one nontransitory processor-readable medium; and a machine executable instruction set stored within at least one nontransitory processor- readable medium, that when executed by the at least one processor causes the at least one processor to: read image data from the at least one nontransitory processor-readable medium, the image data associated with a first point of view of an area sensed by the at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determine from the received image data a number of features in three dimensions of the first three- dimensional object; based at least in part on the determined features of the first three-dimensional object, identify a first portion and at least a second portion of the first three-dimensional object; based on the determined features of the first three-dimensional object, fit a first three-dimensional packaging wireframe model about the first portion of the first three-dimensional object; based
  • the first three-dimensional wireframe model may be a first geometric primitive; and wherein the second three-dimensional wireframe model may be a second geometric primitive.
  • a method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determining that there are insufficient features in the image data to determine a three-dimensional volume occupied by the first three- dimensional object; in response to the determination, generating an output to change at least one of a relative position or orientation of at least one image sensor with respect to at least the first three-dimensional object to obtain image data from a second point of view, the second point of view different from the first point of view.
  • Generating an output to change at least one of a relative position or orientation of at least one image sensor with respect to at least the first three-dimensional object to obtain image data from a second point of view may include generating at least one output, including at least one of an audio output or a visual output that is perceivable by a user.
  • the at least one output may indicate to the user a direction of movement to change at least one of a relative position or orientation of the at least one sensor with respect to the first three- dimensional object.
  • the method may further include causing a displaying of an image of a two-dimensional packaging wireframe model fitted about a portion of an image of the first three-dimensional object on a display on which the image of the first three-dimensional object is displayed.
  • the causing of the displaying of the image of the two-dimensional packaging wireframe model fitted about the portion of the image of the first three-dimensional object may occur before generating the output.
  • a volume dimensioning system may be summarized as including at least one image sensor communicably coupled to at least one nontransitory processor-readable medium; at least one processor communicably coupled to the at least one nontransitory processor-readable medium; and a machine executable instruction set stored within at least one nontransitory processor- readable medium, that when executed by the at least one processor causes the at least one processor to: read image data from the at least one nontransitory processor-readable medium, the image data associated with a first point of view of an area sensed by the at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determine from the received image data that there are an insufficient number of features in the image data to determine a three-dimensional volume occupied by the first three-dimensional object; responsive to the determination of an insufficient number of features in the image data, generate an output to change at least one of a relative position or orientation of at least one image sensor with respect to at least the first three-dimensional object to obtain image data from a second point of view, the second point
  • the machine executable instruction set may further include instructions that when executed by the at least one processor further cause the at least one processor to: generate at least one output, including at least one of an audio output or a visual output that is perceivable by a user.
  • the at least one output may indicate to the user a direction of movement to change at least one of a relative position or orientation of the at least one sensor with respect to the first three-dimensional object.
  • a method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; receiving at least one user input via a user interface
  • the user input indicative of at least a portion of the three-dimensional packaging wireframe model of the first three-dimensional object; in response to the received user input, fitting the user inputted three-dimensional packaging wireframe model to at least a portion of one or more edges of the first three-dimensional object by the at least one processor; and causing a displaying of an image of the user inputted three- dimensional packaging wireframe model fitted about the image of the first three- dimensional object on the display by the at least one processor.
  • the at least one processor may cause the displaying of the image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display to rotate about an axis.
  • the method may further include receiving image data of the area from a second point of view by at least one nontransitory processor-readable medium from at least one image sensor, the second point of view different from the first point of view; determining from the received image data at least one additional feature in three dimensions of the first three-dimensional object by at least one processor; based on the determined features of the first three-dimensional object, performing at least one of adjusting the three-dimensional packaging wireframe model by accepting additional user input via the user interface communicably coupled to at least one processor, the additional user input indicative the first three-dimensional packaging wireframe model; and causing a displaying of an image of at least one of the adjusted first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display.
  • the method may further include receiving at least one user input via a user interface, the user input indicative of an acceptance
  • a method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional void to be dimensioned; determining from the received image data a number of features in three dimensions of the first three-dimensional void by at least one processor communicatively coupled to the at least one nontransitory processor-readable medium; based at least on part on the determined features of the first three- dimensional void, fitting a first three-dimensional receiving wireframe model within the first three-dimensional void by the at least one processor; and causing a displaying of an image of the first three-dimensional receiving wireframe model fitted within an image of the first three-dimensional void on a display on which the image of the first three-dimensional void is displayed.
  • the method may further include calculating by the at least one processor, at least one of an available receiving dimension and an available receiving volume encompassed by the first three-dimensional receiving wireframe model.
  • the method may further include receiving by the at least one nontransitory processor-readable medium at least one of dimensional data and volume data for each of a plurality of three-dimensional objects, the
  • dimensional data and volume data determined based upon a respective three- dimensional packaging wireframe model fitted to each of the plurality of three- dimensional objects and corresponding to at least one of the respective dimensions and volume of each of the plurality of three-dimensional objects; and determining by the at least one processor communicably coupled to the at least one nontransitory processor-readable medium based at least in part on at least one of the available receiving dimension and an available receiving volume encompassed by the first three-dimensional receiving wireframe model at least one of a position and an orientation of at least a portion of the plurality of three-dimensional objects within the first three-dimensional void; wherein at least one of the position and the orientation of at least a portion of the plurality of three-dimensional objects within the first three-dimensional void minimizes at least one of: at least one dimension occupied by at least a portion of the plurality of three-dimensional objects within the first three-dimensional void, or a volume occupied by at least a portion of the plurality of three-dimensional objects within the first three-dimensional void.
  • a volume dimensioning system may be summarized as including at least one image sensor communicably coupled to at least one nontransitory processor-readable medium; at least one processor communicably coupled to the at least one nontransitory processor-readable medium; and a machine executable instruction set stored within at least one nontransitory processor- readable medium, that when executed by the at least one processor causes the at least one processor to: read image data from the at least one nontransitory processor-readable medium, the image data associated with a first point of view of an area sensed by the at least one image sensor, the area including at least a first three-dimensional void to be dimensioned; determine from the received image data a number of features in three dimensions of the first three- dimensional void; based at least on part on the determined features of the first three-dimensional void, fit a first three-dimensional receiving wireframe model within the first three-dimensional void; and cause a display of an image of the first three-dimensional receiving wireframe model fitted within an image of the first three-dimensional void on the display device.
  • the machine executable instruction set may further include instructions, that when executed by the at least one processor further cause the at least one processor to: determine at least one of an available receiving dimension and an available receiving volume encompassed by the first three- dimensional receiving wireframe model; receive from the at least one
  • nontransitory processor-readable medium at least one of dimensional data and volume data for each of a plurality of three-dimensional objects, the
  • dimensional data and volume data determined based upon a respective three- dimensional packaging wireframe model fitted to each of the plurality of three- dimensional objects and corresponding to at least one of the respective dimensions and volume of each of the plurality of three-dimensional objects; and determine based at least in part on at least one of the available receiving dimension and the available receiving volume encompassed by the first three- dimensional receiving wireframe model at least one of a position and an orientation of at least a portion of the plurality of three-dimensional objects within the first three-dimensional void; wherein at least one of the position and the orientation of at least a portion of the plurality of three-dimensional objects within the first three-dimensional void minimizes at least one of: at least one dimension occupied by at least a portion of the plurality of three-dimensional objects within the first three-dimensional void, or a volume occupied by at least a portion of the plurality of three-dimensional objects within the first three- dimensional void.
  • a method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determining from the received image data a number of features in three dimensions of the first three-dimensional object by at least one processor communicatively coupled to the at least one nontransitory processor-readable medium; based at least on part on the determined features of the first three- dimensional object, fitting a first three-dimensional packaging wireframe model selected from a wireframe library stored within the at least one nontransitory processor-readable medium about the first three-dimensional object by the at least one processor; receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of the first three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; associating via the processor, a plurality of points differentiating the changed first
  • Figure 1 A is a schematic diagram of an example volume dimensioning system coupled to a host computer, with two three-dimensional objects disposed within the field-of-view of the host system camera and the field-of-view of the volume dimensioning system image sensor.
  • Figure 1 B is a block diagram of the example volume dimensioning system and host computer depicted in Figure 1A.
  • Figure 2 is an example volume dimensioning method using a volume dimensioning system including an image sensor, a non-transitory, machine-readable storage, a processor, a camera, and a display device.
  • Figure 3 is an example volume dimensioning method based on the method depicted in Figure 2 and including receipt of a corrected first three- dimensional packaging wireframe model.
  • Figure 4 is an example volume dimensioning method based on the method depicted in Figure 2 and including selection of a second three- dimensional packaging wireframe model to replace the first three-dimensional packaging wireframe model.
  • Figure 5 is an example volume dimensioning method based on the method depicted in Figure 2 and including fitting a first three-dimensional packaging wireframe model about a first three-dimensional object and fitting a second three-dimensional packaging wireframe model about a second three- dimensional object.
  • Figure 6 is an example volume dimensioning method based on the method depicted in Figure 2 and including fitting a three-dimensional packaging wireframe model about a first portion of a first three-dimensional object and fitting a three-dimensional packaging wireframe model about a second portion of the first three-dimensional object.
  • Figure 7 is an example volume dimensioning method based on the method depicted in Figure 2 and including rotation of the first three- dimensional packaging wireframe model to detect the existence of additional three-dimensional features of the three-dimensional object and adjustment of the first three-dimensional packaging wireframe model or addition of a second three-dimensional packaging wireframe model to encompass the additional three-dimensional features.
  • Figure 8 is an example volume dimensioning method based on the method depicted in Figure 2 and including receipt of an input including a geometric primitive and selection of three-dimensional objects within the point of view of the image sensor that are substantially similar to or match the received geometric primitive input.
  • Figure 9 is an example volume dimensioning method based on the method depicted in Figure 2 and including acceptance of the fitted first three-dimensional packaging wireframe model and calculation of the
  • Figure 10 is an example volume dimensioning method based on the method depicted in Figure 2 and including receipt of an input rejecting the first three-dimensional packaging wireframe model fitted to the three- dimensional object and selection and fitting of a second three-dimensional packaging wireframe model to the first three-dimensional object.
  • Figure 1 1 is an example volume dimensioning method based on the method depicted in Figure 2 and including receipt of an input selecting a second three-dimensional packaging wireframe model and fitting of the second three-dimensional packaging wireframe model to the first three-dimensional object.
  • Figure 12 is an example volume dimensioning method based on the method depicted in Figure 2 and including receipt of an input indicating a region of interest within the first point of view and the display of an enlarged view of the region of interest.
  • Figure 13 is an example volume dimensioning method including autonomous identification of first and second portions of a first three- dimensional object and fitting three-dimensional packaging wireframe models about each of the respective first and second portions of the three-dimensional object.
  • Figure 14 is an example volume dimensioning method including the determination that an insufficient number of three-dimensional features are visible within the first point of view to permit the fitting of a first three- dimensional packaging wireframe model about the three-dimensional object.
  • Figure 15 is a schematic diagram of an example volume dimensioning system coupled to a host computer, with a three-dimensional void disposed within the field-of-view of the host system camera and the field-of- view of the volume dimensioning system image sensor.
  • Figure 16 is an example volume dimensioning method including the fitting of a first three-dimensional receiving wireframe model within a first three-dimensional void, for example an empty container to receive one or more three-dimensional objects.
  • Figure 17 is an example volume dimensioning method based on the method depicted in Figure 15 and including the receipt of dimensional or volumetric data associated with one or more three-dimensional packaging wireframe models and the determining of positions or orientations of the one or more three-dimensional packaging wireframe models within the three- dimensional void.
  • Figure 18 is an example volume dimensioning method including the selection of a first geometric primitive based on a pattern of feature points, the rejection of the first three-dimensional packaging wireframe model, the selection of a second geometric primitive based on the pattern of feature points, and the future selection of the second geometric primitive for a similar pattern of feature points.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment.
  • the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment.
  • the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
  • Volume dimensioning systems provide dimensional and
  • Volume dimensioning systems typically employ one or more image sensors to obtain or otherwise capture an image containing the one or more three-dimensional objects located within the field-of-view of the image sensor. Based on the shape, overall complexity, or surface contours of each of the three-dimensional objects, the volume dimensioning system can select one or more geometric primitives from a library to serve as a model of the three-dimensional object. A wireframe packaging model based, at least in part, on the selected one or more geometric primitives can then be scaled or fitted to encompass the image of each respective three-dimensional object.
  • the scaled and fitted wireframe provides a packaging wireframe that includes sufficient t space about the three- dimensional to include an estimate of the packaging, blocking, padding, and wrapping used to ship the three-dimensional object.
  • the three- dimensional packaging wireframe model generated by the system can be used to provide shipping data such as the dimensions and volume of not just the three-dimensional object itself, but also any additional packaging or boxing necessary to ship the three-dimensional object.
  • a box shaped three-dimensional object may result in the selection of a single, cubic, geometric primitive by the volume dimensioning system as approximating the packaging of the actual three-dimensional object.
  • the three-dimensional packaging wireframe model associated with a cubic geometric primitive can then be scaled and fitted to the image of the actual three-dimensional object within the volume dimensioning system to provide a model approximating the size and shape of the packaging of the actual three- dimensional object.
  • the length, width, height, and volume of the packaging can be determined by the volume dimensioning system.
  • an obelisk shaped three-dimensional object may result in the selection of two geometric primitives by the volume dimensioning system, a rectangular prism representing the body of the obelisk and a four-sided pyramid representing the top of the obelisk.
  • the three- dimensional packaging wireframe models associated with each of these geometric primitives can then be scaled and fitted to the image of the actual three-dimensional object within the volume dimensioning system to provide a model approximating the size, shape, and proportions of the actual, packaged, three-dimensional object. From the virtual representation of the three- dimensional object provided by the three-dimensional packaging wireframe model, the length, width, height, and volume of the packaged obelisk can be determined by the volume dimensioning system.
  • one or more geometric primitives about three-dimensional objects having even highly complex surface features can be encompassed by the one or more relatively simple geometric primitives to provide a three-dimensional packaging wireframe model of the packaged three-dimensional object that includes allowances for packing, padding, bracing, and boxing of the three-dimensional object.
  • the volume dimensioning system can permit a user to identify special handling instructions, fragile surfaces, shipping orientation, and the like on the three-dimensional packaging wireframe model. Such handling instructions can then be associated with a given object and where the volume dimensioning system is used to perform load planning, objects can be positioned and oriented within the load plan in accordance with the handling instructions.
  • the interactive nature of the volume dimensioning system can advantageously permit a user to enter, select, or modify the three- dimensional packaging wireframe model fitted to a particular three-dimensional object to more closely follow the actual outline, shape, contours, or surfaces of the object.
  • the system can "learn" new geometric primitives or wireframe models based on received user input, for example user input altering or modifying the three-dimensional packaging wireframe model fitted by the volume dimensioning system about three-dimensional objects having a characteristic size or shape.
  • Figure 1 A depicts an illustrative volume dimensioning system 1 10 physically and communicably coupled to a host computer 150 using one or more data busses 1 12.
  • the volume dimensioning system 1 10 is equipped with an image sensor 1 14 having a field-of-view 1 16.
  • the host computer 150 is equipped with a camera 152 having a field-of-view 154 and a display device 156.
  • Two three-dimensional objects, a pyramidal three-dimensional object 102a and a cubic three-dimensional object 102b appear within the field-of-view 1 16 of the image sensor 1 14 and the field-of- view 154 of the camera 152.
  • the three-dimensional objects 102 are depicted as surrounded by a scaled and fitted pyramidal geometric primitive 104a and a scaled and fitted cubic geometric primitive 104b (collectively 104) as displayed upon on the one or more display devices 156.
  • Scaled, fitted, three-dimensional packaging wireframe models 106a, 106b are depicted as encompassing the scaled and fitted geometric primitives 104a, 104b, respectively.
  • the scaled, fitted three-dimensional packaging wireframe models 106 may be generated by the host computer 150 or, more preferably by the volume dimensioning system 1 10.
  • the image on the display device 156 is a provided in part using the image data acquired by the camera 152 coupled to the host computer system 150 which provides the virtual representation of the three-dimensional objects 104, and in part using the scaled and fitted three- dimensional packaging wireframe models 106 provided by the volume dimensioning system 1 10.
  • Data, including visible image data provided by the camera 152 and depth map data and intensity image data provided by the image sensor 1 14 is exchanged between the host computer 150 and the volume dimensioning system 1 10 via the one or more data busses 1 12.
  • the volume dimensioning system 1 10 and the host computer system 150 may be partially or completely incorporated within the same housing, for example a self service kiosk or a handheld computing device.
  • FIG. 1 B depicts an operational level block diagram of the volume dimensioning system 1 10 and the host computer 150.
  • the volume dimensioning system 1 10 can include the image sensor 1 14 communicably coupled to one or more non-transitory, machine-readable storage media 1 18 and one or more processors 120 that are also communicably coupled to the one or more non-transitory, machine-readable storage media 1 18.
  • the one or more processors 120 includes an interface 122 used to exchange data between the volume dimensioning system 1 10 and the host computer system 150 via the one or more data busses 1 12.
  • the interface 122 can include an I/O controller, serial port, a parallel port, or a network suitable for receipt of the one or more data busses 1 12.
  • the interface 122 can be an I/O controller having at least one universal serial bus (“USB") connector, and the one or more data busses 1 12 can be a USB cable.
  • USB universal serial bus
  • dimensioning system 1 10 can be at least partially enclosed within a housing 124.
  • the housing 124 can be detachably attached to the host computer system 150 using one or more attachment features on the exterior surface of the housing 124, the exterior surface of the host computer 150, or exterior surfaces of both the housing 124 and the host computer 150.
  • the host computer system 150 can include the camera 152 which is communicably coupled to a first bridge processor (e.g., a southbridge processor) 162 via one or more serial or parallel data buses, for example a universal serial bus (“USB”), a small computer serial interface (“SCSI”) bus, a peripheral component interconnect (“PCI”) bus, an integrated drive electronics (“IDE”) bus or similar.
  • a first bridge processor e.g., a southbridge processor
  • serial or parallel data buses for example a universal serial bus (“USB"), a small computer serial interface (“SCSI”) bus, a peripheral component interconnect (“PCI”) bus, an integrated drive electronics (“IDE”) bus or similar.
  • One or more local busses 164 communicably couple the first bridge processor 162 to a second bridge processor (e.g., a northbridge processor) 176.
  • the one or more non-transitory, machine-readable storage medium 158 and central processing units (“CPUs”) 160 are communicably coupled to the second bridge processor 176 via one or more high-
  • the one or more display devices 156 are coupled to the second bridge processor 176 via an interface 170 such as a Digital Visual Interface (“DVI”) or a High Definition Multimedia Interface (“HDMI").
  • DVI Digital Visual Interface
  • HDMI High Definition Multimedia Interface
  • the one or more display devices 156 include at least one touch-screen display device capable of receiving user input to the host computer 150, some or all of the one or more display devices 156 may also be communicably coupled to the first bridge processor 162 via one or more USB interfaces 172.
  • the volume dimensioning system 1 10 is communicably coupled to the host computer 150 via one or more communication or data interfaces, for example one or more USB interfaces coupled to a USB bus 174 within the host computer.
  • the USB bus 174 may also be shared with other peripheral devices, such as one or more I/O devices 166, for example one or more keyboards, pointers, touchpads, trackballs, or the like.
  • the host computer 150 can be of any size, structure, or form factor, including, but not limited to a rack mounted kiosk system, a desktop computer, a laptop computer, a netbook computer, a handheld computer, or a tablet computer. Although for clarity and brevity one specific host computer architecture was presented in detail, those of ordinary skill in the art will appreciate that any host computer architecture may be used or substituted with equal effectiveness.
  • the image sensor 1 14 includes any number of devices, systems, or
  • three-dimensional image data it should be understood by one of ordinary skill in the art that the term may apply to more than one three- dimensional image and therefore would equally apply to "three-dimensional video images" which may be considered to comprise a series or time-lapse sequence including a plurality of "three-dimensional images.”
  • the three- dimensional image data acquired or captured by the image sensor 1 14 can include data collected using electromagnetic radiation either falling within the visible spectrum ⁇ e.g., wavelengths in the range of about 360 nm to about 750 nm) or falling outside of the visible spectrum ⁇ e.g., wavelengths below about 360 nm or above about 750 nm).
  • three-dimensional image data may be collected using infrared, near-infrared, ultraviolet, or near-ultraviolet light.
  • the three-dimensional image data acquired or captured by the image sensor 1 14 can include data collected using laser or ultrasonic based imaging technology.
  • supplemental lighting system may be synchronized to and used in conjunction with the volume dimensioning system 100.
  • a supplemental lighting system providing one or more structured light patterns or a supplemental lighting system providing one or more gradient light patterns may be used to assist in acquiring, capturing, or deriving three-dimensional image data from the scene within the field-of-view 1 16 of the image sensor 1 14.
  • the image sensor 1 14 includes a single sensor capable of acquiring both depth data providing a three- dimensional depth map and intensity data providing an intensity image for objects within the field-of-view 1 16 of the image sensor 1 14.
  • the acquisition of depth and intensity data using a single image sensor 1 14 advantageously eliminates parallax and provides a direct mapping between the depth map and the intensity image.
  • the depth map and intensity image may be collected in an alternating sequence by the image sensor 1 14 and the resultant depth data and intensity data stored within the one or more non-transitory, machine-readable storage media 1 18.
  • the three-dimensional image data captured or acquired by the image sensor 1 14 may be in the form of an analog signal that is converted to digital data using one or more analog-to-digital (“A/D") converters (not shown) within the image sensor 1 14 or within the volume dimensioning system 1 10 prior to storage within the one or more non-transitory, machine-readable, storage media 1 18.
  • A/D analog-to-digital
  • the three-dimensional image data captured or acquired by the image sensor 1 14 may be in the form of one or more digital data groups, structures, or files comprising digital data supplied directly by the image sensor 1 14.
  • the image sensor 1 14 can be formed from or contain any number of image capture elements, for example picture elements or "pixels.”
  • the image sensor 1 14 can have between 1 ,000,000 pixels (1 MP) and 100,000,000 pixels (100 MP).
  • the image sensor 1 14 can include any number of current or future developed image sensing devices or systems, including, but not limited to, one or more complementary metal-oxide semiconductor
  • CMOS charge-coupled device
  • CCD charge-coupled device
  • the three-dimensional image data captured by the image sensor 1 14 can include more than one type of data associated with or collected by each image capture element.
  • the image sensor 1 14 may capture depth data related to a depth map of the three-dimensional objects within the point of view of the image sensor 1 14 and may also capture intensity data related to an intensity image of the three-dimensional objects in the field-of-view of the image sensor 1 14.
  • the image sensor 1 14 captures or otherwise acquires more than one type of data
  • the data in the form of data groups, structures, files or the like may be captured either simultaneously or in an alternating sequence by the image sensor 1 14.
  • the image sensor 1 14 may also provide visible image data capable of providing a visible black and white, grayscale, or color image of the three-dimensional objects 102 within the field-of-view 1 16 of the image sensor 1 14. Where the image sensor 1 14 is able to provide visible image data, the visible image data may be communicated to the host computer 150 for display on the one or more display devices 156. In some instances, where the image sensor 1 14 is able to provide visible image data, the host computer system camera 152 may be considered optional and may be eliminated.
  • the one or more non-transitory, machine- readable storage media 1 18 can be any form of data storage device including, but not limited to, optical data storage, electrostatic data storage,
  • all or a portion of the one or more non- transitory, machine-readable storage media 1 18 may be disposed within the one or more processors 120, for example in the form of a cache or similar non- transitory memory structure capable of storing data or machine-readable instructions executable by the one or more processors 120.
  • the volume dimensioning system 1 10 including the image sensor 1 14, the communicably coupled one or more non-transitory, machine-readable storage media 1 18, and the communicably coupled one or more processors 120 are functionally combined to provide a system capable of selecting one or more geometric primitives 104 to virtually represent each of the one or more three-dimensional objects 102 appearing in the field-of-view 1 16 of the image sensor 1 14. Using the selected one or more geometric primitives 104, the system can then fit a three-dimensional packaging wireframe model 106 about each of the respective three-dimensional objects 102.
  • the one or more non-transitory, machine-readable storage media 1 18 can have any data storage capacity from about 1 megabyte (1 MB) to about 3 terabytes (3 TB). In some embodiments two or more devices or data structures may form all or a portion of the one or more non-transitory, machine- readable storage media 1 18.
  • the one or more non-transitory, machine-readable storage media 1 18 can include an nonremovable portion including a non-transitory, electrostatic, storage medium and a removable portion such as a Secure Digital (SD) card, a compact flash (CF) card, a Memory Stick, or a universal serial bus (“USB”) storage device.
  • SD Secure Digital
  • CF compact flash
  • USB universal serial bus
  • the one or more processors 120 can execute one or more instruction sets that are stored in whole or in part in the one or more non- transitory, machine-readable storage media 1 18.
  • the machine executable instruction set can include instructions related to basic functional aspects of the one or more processors 120, for example data transmission and storage protocols, communication protocols, input/output ("I/O") protocols, USB protocols, and the like.
  • Machine executable instruction sets related to all or a portion of the volume dimensioning functionality of the volume dimensioning system 1 10 and intended for execution by the one or more processors 120 may also be stored within the one or more non-transitory, machine-readable storage media 1 18, within the one or more processors 120, or within both the one or more non-transitory, machine-readable storage media 1 18 and the one or more processors 120.
  • Additional volume dimensioning system 1 10 functionality may also be stored in the form of one or more machine executable instruction sets within the one or more non-transitory, machine-readable storage media 1 18. Such functionality may include system security settings, system configuration settings, language preferences, dimension and volume preferences, and the like.
  • the one or more non-transitory, machine-readable storage media 1 18 may also store a library containing a number of geometric primitives useful in the construction of three-dimensional packaging wireframe models by the one or more processors 120.
  • geometric primitive refers to a simple three-dimensional geometric shape such as a cube, cylinder, sphere, cone, pyramid, torus, prism, and the like that may be used individually or combined to provide a virtual representation of more complex three- dimensional geometric shapes or structures.
  • the geometric primitives stored within the one or more non-transitory, machine-readable storage media 1 18 are selected by the one or more processors 120 as basic elements in the construction of a virtual representation 104 of each of the three-dimensional objects 102 appearing within the field-of-view 1 16 of the image sensor 1 14.
  • processors 120 is useful in fitting properly scaled three-dimensional packaging wireframe models 106 to each of the three-dimensional objects 102 appearing in the field-of-view 1 16 of the image sensor 1 14.
  • a properly scaled three- dimensional packaging wireframe model 106 permits the accurate
  • a properly scaled and fitted three-dimensional packaging wireframe model 106 will fall on the boundaries of the geometric primitive 104 fitted to the three-dimensional object 102 by the one or more processors 120 as viewed on the one or more display devices 156 as depicted in Figure 1A.
  • the one or more processors 120 can include any device comprising one or more cores or independent central processing units that are capable of executing one or more machine executable instruction sets.
  • the one or more processors 120 can, in some embodiments, include a general purpose processor such as a central processing unit ("CPU") including, but not limited to, an Intel ® Atom ® processor, an Intel ® Pentium ® , Celeron ® , or Core 2 ® processor, and the like.
  • CPU central processing unit
  • the one or more processors 120 can include a system-on-chip (“SoC”) architecture, including, but not limited to, the Intel ® Atom ® System on Chip (“Atom SoC”) and the like.
  • SoC system-on-chip
  • the one or more processors 120 can include a dedicated processor such as an application specific integrated circuit (“ASIC”), a programmable gate array (“PGA” or “FPGA”), a digital signal processor (“DSP”), or a reduced instruction set computer (“RISC”) based processor.
  • ASIC application specific integrated circuit
  • PGA programmable gate array
  • DSP digital signal processor
  • RISC reduced instruction set computer
  • the one or more processors 120 can include one or more low power consumption processors, for example Intel ® Pentium M ® , or Celeron M ® mobile system processors or the like, to extend the system battery life.
  • Three-dimensional packaging wireframe model data may be bi-directionally transferred from the volume dimensioning system 1 10 to the host computer 150 via the one or more data busses 1 12.
  • the three-dimensional packaging wireframe model 106 data can, for example, be combined with visual image data captured or acquired by the camera 152 to provide a display output including a visual image of one or more three-dimensional objects 102 appearing in both the camera 152 field-of-view 154 and the image sensor 1 14 field-of-view 1 16 encompassed by the geometric primitive 104 and the fitted three-dimensional packaging wireframe models 106 provided by the volume dimensioning system 1 10.
  • the camera 152 can acquire or capture visual image data of the scene within the field-of-view 154 of the camera 152. As a separate device that is discrete from the image sensor 1 14, the camera 152 will have a field-of-view 154 than differs from the image sensor 1 14 field-of-view 1 16.
  • the one or more CPUs 160, the one or more processors 120, or a combination of the one or more CPUs 160 and the one or more processors 120 will calibrate, align, map, or otherwise relate the field-of-view 154 of the camera 152 to the field-of-view 1 16 of the image sensor 1 14 thereby linking or spatially mapping in two-dimensional space or three-dimensional space the visual image data captured or acquired by the camera 152 to the three-dimensional image data captured or acquired by the image sensor 1 14.
  • a preferred embodiments will calibrate, align, map, or otherwise relate the field-of-view 154 of the camera 152 to the field-of-view 1 16 of the image sensor 1 14 thereby linking or spatially mapping in two-dimensional space or three-dimensional space the visual image data captured or acquired by the camera 152 to the three-dimensional image data captured or acquired by the image sensor 1 14.
  • the one or more processors 120 in the volume dimensioning system 1 10 are used to calibrate, align, or spatially map in three-dimensions the field-of-view 1 16 of the image sensor 1 14 to the field-of-view 154 of the camera 152 such that three-dimensional objects 102 appearing in the field-of-view 1 16 of the image sensor 1 14 are spatially mapped or correlated in three-dimensions to the same three-dimensional objects 102 appearing in the field-of-view 154 of the camera 152.
  • the camera 152 can be formed from or contain any number of image capture elements, for example picture elements or "pixels.”
  • the camera 152 may have between 1 ,000,000 pixels (1 MP) and 100,000,000 pixels (100 MP).
  • the camera 152 may capture or acquire more than one type of data, for example the camera 152 may acquire visual image data related to the visual image of the scene within the field-of-view 154 of the camera 152 as well as infrared image data related to an infrared image of the scene within the field-of-view 154 of the camera 152.
  • the data may be collected into one or more data groups, structures, files, or the like.
  • the visual image data captured or acquired by the camera 152 may originate as an analog signal that is converted to digital visual image data using one or more internal or external analog-to-digital (“A/D”) converters (not shown).
  • A/D analog-to-digital
  • the visual image data acquired by the camera 152 is acquired in the form of digital image data provided directly from one or more complementary metal-oxide semiconductor (“CMOS”) sensors or one or more charge-coupled device (“CCD”) sensors disposed at least partially within the camera 152. At least a portion of the visual image data from the camera 152 is stored in the one or more non- transitory, machine-readable storage media 158 in the form of one or more data groups, structures, or files.
  • CMOS complementary metal-oxide semiconductor
  • CCD charge-coupled device
  • Image data is transferred between the camera 152 and the one or more non-transitory, machine-readable storage media 158 via the first bridge processor 162, the second bridge processor 176 and one or more serial or parallel data buses 164, 168.
  • the image data provided by the camera 152 can be stored within the one or more non-transitory, machine-readable storage media 158 in one or more data groups, structures, or files.
  • the one or more non-transitory, machine-readable storage media 158 can have any data storage capacity from about 1 megabyte (1 MB) to about 3 terabytes (3 TB). In some embodiments two or more devices or data structures may form all or a portion of the one or more non-transitory, machine-readable storage media 158.
  • the one or more non-transitory, machine- readable storage media 158 can include an non-removable portion including a non-transitory, electrostatic, storage medium and a removable portion such as a Secure Digital (SD) card, a compact flash (CF) card, a Memory Stick, or a universal serial bus (“USB”) storage device.
  • SD Secure Digital
  • CF compact flash
  • USB universal serial bus
  • the one or more CPUs 160 can include any device comprising one or more cores or independent central processing units that are capable of executing one or more machine executable instruction sets.
  • the one or more CPUs 160 can, in some embodiments, include a general purpose processor including, but not limited to, an Intel ® Atom ® processor, an Intel ® Pentium ® , Celeron ® , or Core 2 ® processor, and the like.
  • the one or more CPUs 160 can include a system-on-chip (“SoC”) architecture, including, but not limited to, the Intel Atom System on Chip (“Atom SoC”) and the like.
  • the one or more CPUs 160 can include a dedicated processor such as an application specific integrated circuit (“ASIC”), a programmable gate array (“PGA” or “FPGA”), a digital signal processor (“DSP”), or a reduced instruction set computer (“RISC”) based processor.
  • ASIC application specific integrated circuit
  • PGA programmable gate array
  • DSP digital signal processor
  • RISC reduced instruction set computer
  • the host computer 150 is a battery-powered portable system
  • the one or more CPUs 160 can include one or more low power consumption processors, for example Intel ® Pentium M ® , or Celeron M ® mobile system processors or the like, to extend the system battery life.
  • the image sensor 1 14 correlated, aligned, or spatially mapped the field-of-view 154 of the camera 152 with the field of view 1 16 of the image sensor 1 14 upon initial coupling of the volume dimensioning system 1 10 to the host computer 150.
  • the image data captured or acquired by the camera 152 will therefore be spatially mapped, aligned, or correlated with the three- dimensional image data captured or acquired by the image sensor 1 14.
  • the three-dimensional packaging wireframe models 106 fitted by the one or more processors 120 to the three-dimensional objects 102 in the field-of-view 1 16 of the image sensor 1 14 will align with the image of the three- dimensional objects 102 when viewed on the one or more display devices 156.
  • Merging, overlaying, or otherwise combining the three-dimensional packaging wireframe models 106 provided by the one or more processors 120 with the image data captured or acquired by the camera 152 creates a display image on the one or more display devices 156 that contains both an image of the three- dimensional object 102 and the corresponding three-dimensional packaging wireframe model 106.
  • the host computer 150 may have one or more discrete graphical processing units (GPUs - not shown) or one or more GPUs integrated with the one or more CPUs 160.
  • the one or more CPUs 160 or one or more GPUs can generate a display image output to provide a visible image on the one or more display devices 156.
  • the display image output can be routed through the second bridge processors 176 to the one or more display devices 156 in the host computer system 150.
  • the one or more display devices 156 include at least an output device capable of providing a visible image perceptible to the unaided human eye.
  • the one or more display devices 156 can include one or more input devices, for example a resistive or capacitive touch-screen.
  • the one or more display devices 156 can include any current or future, analog or digital, two-dimensional or three-dimensional display technology, for example cathode ray tube (“CRT”), light emitting diode (“LED”), liquid crystal display (“LCD”), organic LED (“OLED”), digital light processing (“DLP”), elnk, and the like.
  • CTR cathode ray tube
  • LED light emitting diode
  • LCD liquid crystal display
  • OLED organic LED
  • DLP digital light processing
  • elnk elnk
  • the one or more display devices 156 may be self-illuminating or provided with a backlight such as a white LED to facilitate use of the system 100 in low ambient light environments.
  • One or more peripheral I/O devices 166 may be communicably coupled to the host computer system 150 to facilitate the receipt of user input by the host computer 150 via a pointer, a keyboard, a touchpad, or the like.
  • the one or more peripheral I/O devices 166 may be USB devices that are communicably coupled to the USB bus 174.
  • the one or more peripheral I/O devices 166 or the one or more display devices 156 may be used by the one or more processors 120 or one or more CPUs 160 to receive specialized shipping instructions associated with one or more three-dimensional objects 102 from a user.
  • Such specialized instructions can include any data provided by the user that is relevant to how a particular three-dimensional object 102 should be handled, and can include, but is not limited to, designation of fragile areas, designation of proper shipping orientation, designation of top-load only or crushable contents, and the like.
  • FIG. 2 shows a method 200 of operation of an example illustrative volume dimensioning system such as the system depicted in Figures 1 A and 1 B.
  • Data captured or acquired by the image sensor 1 14 is used by the one or more processors 120 to select one or more geometric primitives 104, for example from a library in the one or more non-transitory, machine-readable storage media 1 18.
  • the one or more geometric primitives 104 selected by the one or more processors 120 are used to construct a virtual representation of the packaging about the one or more three-dimensional objects 102 appearing in the field-of-view 1 16 of the image sensor 1 14.
  • the one or more processors 120 can therefore use the one or more selected geometric primitives 104 to construct a three-dimensional packaging wireframe model 106 that, when fitted to the three-dimensional object 102, provides a three-dimensional packaging wireframe model 106 that is scaled and fitted to encompass or otherwise contain the three-dimensional object 102.
  • the one or more processors 120 can use the plurality of features identified on the three-dimensional object 102 in selecting the one or more geometric primitives 104 from the library.
  • the three-dimensional packaging wireframes 106 encompassing each three-dimensional object 102 within the volume dimensioning system 1 10 permit a reasonably accurate determination of the dimensions and volume of each three-dimensional object 102.
  • the user benefits from accurate dimensional and volumetric information by receiving accurate shipping rates based on the object's true size and volume. Carriers benefit from accurate dimensional and volumetric information by having access to data needed to optimize the packing of the objects for transport and the subsequent routing of transportation assets based upon reasonably accurate load data.
  • the image sensor 1 14 captures or acquires three- dimensional image data which is communicated to the one or more non- transitory, machine-readable storage media 1 18 via one or more data busses 126.
  • the three-dimensional image data captured by the image sensor 1 14 includes a first three-dimensional object 102 disposed within the field-of-view 1 16 of the image sensor 1 14.
  • the three-dimensional image data captured by the image sensor 1 14 may include depth data providing a depth map and intensity data providing an intensity image of the field-of-view 1 16 of the image sensor 1 14.
  • At least a portion of the three-dimensional image data received by the one or more non-transitory, machine-readable storage media 1 18 is communicated to or otherwise accessed by the one or more processors 120 in order to select one or more geometric primitives 104 preparatory to fitting a first three-dimensional packaging wireframe model 106 about all or a portion of the first three-dimensional object 102.
  • the one or more processors 120 determine a number of features on the first three-dimensional object 102 contained in the three-dimensional image data.
  • the features may include any point, edge, or other discernible structure on the first three-dimensional object 102 and detectible in the image represented by the three-dimensional image data.
  • one or more features may correspond to a three- dimensional point on the three-dimensional object 102 that is detectible in a depth map containing the first three-dimensional object, an intensity image in which the three-dimensional object, or both a depth map and an intensity image in which the first three-dimensional object 102 appears as is represented.
  • the identified features may include boundaries or defining edges of the first three- dimensional object, for example corners, arcs, lines, edges, angles, radii, and similar characteristics that define all or a portion of the external boundary of the first three-dimensional object 102.
  • the one or more processors 120 selects one or more geometric primitives 104 from the library.
  • the one or more processors 120 use the selected one or more geometric primitives 104 to roughly represent the packaging encompassing first three-dimensional object 102 making allowances for any specialized packing instructions (e.g., fragile surfaces, extra packing, unusual packing shapes, etc.) that may have been provided by the user.
  • the one or more processors 120 fit a three-dimensional packaging wireframe model 106 about all or a portion of the first three-dimensional object 102 that encompasses substantially all of the processor identified features defining an external boundary of the first three- dimensional object 102 and reflecting any specialized packing instructions provided by the user.
  • the one or more processors 120 may identify seven or more features ⁇ e.g., four defining the corners of one face of the cube, two additional defining the corners of a second face of the cube and one defining the fourth corner of the top of the cube).
  • the user may have identified one surface of the cube as requiring "extra packaging.” Based on these indentified features and the user's specialized packing instructions, the one or more processors 120 may select a rectangular prismatic geometric primitive 104 accommodating the cubic three- dimensional object 102 and the extra packaging requirements identified by the user and use the selected rectangular prismatic geometric primitive 104 to fit a first three-dimensional packaging wireframe model 106 that substantially encompasses the cubic first three-dimensional object 102 and the associated packaging surrounding the object.
  • the first three-dimensional object 102 may be a cylinder and the one or more processors 120 may identify a number of features about the face and defining the height of the cylinder. Based on these identified features, the one or more processors 120 may select a cylindrical geometric primitive 104 and use the selected geometric primitive to fit a first three-dimensional packaging wireframe model 106 to the cylindrical first three- dimensional object 102 that substantially encompasses the object and includes an allowance for packaging materials about the cylindrical three-dimensional object 102.
  • the one or more processors 120 may search the library for one or more geometric primitives 104 having features, points, or nodes substantially similar to the spatial
  • the one or more processors may use one or more appearance-based or feature-based shape recognition or shape selection methods. For example a "large modelbases" appearance-based method using eigenfaces may be used to select geometric primitives 104 appropriate for fitting to the first three-dimensional object 102.
  • the one or more processors 120 can generate a video, image, or display output that includes data providing an image of the first three- dimensional packaging wireframe model 106 as fitted to the first three- dimensional object 102.
  • the video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes one or more images providing the concurrent or simultaneous depiction of the first three-dimensional object 102 using image data from the camera 152 and the fitted first three-dimensional packaging wireframe model 106.
  • simultaneously depicting the geometric primitive 104 fitted to the first three- dimensional object 102 along with the first three-dimensional packaging wireframe model 106 fitted thereto may also be provided on the one or more display devices 156.
  • Figure 3 shows a method 300 extending from the method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B.
  • the first three-dimensional packaging wireframe model 106 fitted by the one or more processors 120 may not properly encompass the first three- dimensional object 102.
  • the first three-dimensional object is a box
  • one face of the first three-dimensional packaging wireframe model 106 generated by the one or more processors 120 may be situated in too close proximity to the three-dimensional object 102 to permit the insertion of adequate padding between the three-dimensional object 102 and the shipping box.
  • Such incorrectly positioned or sized three-dimensional packaging wireframe models 106 may result in erroneous shipping rate information or erroneous packing information. Therefore, providing a process to correct the shape, size, or position of all or a portion of the three-dimensional packaging wireframe model 106 is advantageous to both the user and the carrier.
  • the one or more processors 120 receive an input indicative of a desired change at least a portion of the first three-dimensional packaging wireframe model 106.
  • the change in position of the first three- dimensional packaging wireframe model 106 may include a change to a single point, multiple points, or even a scalar, arc, curve, face, or line linking two or more points used by the one or more processors 120 to fit the three- dimensional packaging wireframe model 106.
  • the one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150.
  • a touch-screen display device 1 14 advantageously enables a user to visually align all or a portion of the first three- dimensional packaging wireframe model 106 with all or a corresponding portion of the image of first three-dimensional object 102 in an intuitive and easy to visualize manner.
  • a prior input received by the one or more processors 120 may be used to place the system 100 in a mode where a subsequent input indicating the desired change to the three-dimensional packaging wireframe model 106 will be provided to the one or more processors 120.
  • the one or more processors 120 can generate a video, image, or display data output that includes image data of the modified or updated first three-dimensional packaging wireframe model 106 as fitted to the first three-dimensional object 102.
  • the video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image contemporaneously or simultaneously depicting the first three-dimensional object 102 using image data from the camera 152 and the first three-dimensional packaging wireframe model 106 data as fitted by the one or more processors 120.
  • an image concurrently or simultaneously depicting the first three- dimensional object 102 along with the one or more scaled and fitted geometric primitives 104 and the first three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
  • Figure 4 shows a method 400 extending from the method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B.
  • the first three-dimensional packaging wireframe model 106 fitted by the one or more processors 120 may not properly encompass the first three- dimensional object 102 and in fact, the first three-dimensional packaging wireframe model 106 as fitted by the one or more processors 120 may require significant modification or replacement to substantially conform to both the first three-dimensional object 102 and any associated specialized shipping requirements provided by the user.
  • a cylindrical geometric primitive 104 may be selected by the one or more processors 120, resulting in a cylindrical first three-dimensional packaging wireframe model 106.
  • the one or more processors 120 may select a second geometric primitive 104, for example a rectangular prismatic geometric primitive, and fit a more appropriate second three-dimensional packaging wireframe model 106 to replace the previously fitted first three-dimensional packaging wireframe model 106.
  • the one or more processors 120 receive an input indicative of a desired change to at least a portion of the first three-dimensional packaging wireframe model 106 fitted to the three-dimensional object 102.
  • the input may specify one or more of a single point, multiple points, or even a scalar, arc, curve, face, or line linking two or more points used by the one or more processors 120 to fit the three-dimensional packaging wireframe model 106.
  • the one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150.
  • a touch-screen display device 1 14 advantageously enables a user to visually align all or a portion of the first three-dimensional packaging wireframe model 106 with all or a corresponding portion of the image of the first three- dimensional object 102 in an intuitive and easy to visualize manner.
  • a prior input received by the one or more processors 120 may be used to place the system 100 in a mode where a subsequent input indicating the desired change to the three-dimensional packaging wireframe model 106 will be provided to the one or more processors 120.
  • the one or more processors 120 may select from the library one or more second geometric primitives 104 that are different from the first geometric primitive 104 and fit the second three- dimensional packaging wireframe 106 model using the second geometric primitive 104 to substantially encompass the first three-dimensional object 102. For example, where the one or more processors 120 detect from the input that a cylindrical three-dimensional packaging wireframe model 106 is being changed to a rectangular prismatic three-dimensional packaging wireframe model 106, the one or more processors 120 may alternatively select a second geometric primitive 104 corresponding to a rectangular prism from the library to fit the second three-dimensional packaging wireframe model 106 to the first three-dimensional object 102.
  • the one or more processors 120 can generate a video, image, or display data output that includes image data of the second three- dimensional packaging wireframe model 106 as fitted to the first three- dimensional object 102.
  • the video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image contemporaneously or
  • an image concurrently or simultaneously depicting the first three-dimensional object 102 along with the one or more scaled and fitted second geometric primitives 104 and the first three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
  • Figure 5 shows a method 500 extending from the method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B.
  • a second three-dimensional object 102 may be present in the field-of-view 1 16 of the image sensor 1 14.
  • the second three-dimensional object 102 may not be detected by the one or more processors 120 and consequently a second three-dimensional packaging wireframe model 106 may not be fitted about the second three-dimensional object 102 by the one or more processors 120.
  • one or more second geometric primitives 104 can be selected by the one or more processors 120 and used to fit a second three-dimensional packaging wireframe model 106 to the second three-dimensional object 102 based at least in part upon the receipt of an input by the one or more processors 120 indicating the existence of the second three-dimensional object 102.
  • the one or more processors 120 receive an input that indicates a second three-dimensional object 102 exists within the field-of-view 1 16 of the image sensor 1 14.
  • the one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150.
  • the use of a touch-screen display device 1 14 advantageously enables a user to draw a perimeter around or otherwise clearly delineate the second three-dimensional object 102.
  • a prior input received by the one or more processors 120 may be used to place the system 100 in a mode where a subsequent input indicating the second three-dimensional object 102 will be provided to the one or more processors 120. Responsive to the input indicating the existence of a second three- dimensional object 102 within the field-of-view 1 16 of the image sensor 1 14, the one or more processors 120 may detect additional three-dimensional features associated with the second three-dimensional object 102.
  • the one or more processors 120 may select from the library one or more second geometric primitives 104 to provide representation of the packaging encompassing the second three-dimensional object 102.
  • the one or more processors 120 fit a second three-dimensional packaging wireframe model 106 about the second three-dimensional object 102 that is responsive to any specialized instructions received from the user and encompasses substantially all the three-dimensional features of the second three-dimensional object 102 identified by the one or more processors 120 at 502.
  • the one or more processors 120 can generate a video, image, or display data output that includes image data of the second three- dimensional packaging wireframe model 106 as fitted to the virtual
  • the video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs to the one or more display devices 156 that includes image data depicting an image of the second three-dimensional object 102 using image data from the camera 152 along with the fitted second three-dimensional packaging wireframe model 106 provided by the one or more processors 120.
  • an image concurrently or simultaneously depicting the second three-dimensional object 102 along with the one or more scaled and fitted second geometric primitives 104 and the second three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
  • the one or more processors 120 can generate a video, image, or display data output that includes image data of the first three- dimensional packaging wireframe model 106 as fitted to the first three- dimensional object 102.
  • the video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image contemporaneously or
  • first and second three-dimensional objects 102 simultaneously depict images of the first and second three-dimensional objects 102 using image data from the camera 152 along with the respective first and second three-dimensional packaging wireframe models 106 fitted by the one or more processors 120.
  • an image concurrently or simultaneously depicting the first and second three-dimensional objects 102 along with the one or more scaled and fitted first and second geometric primitives 104 and the first and second three-dimensional packaging wireframe models 106 may also be provided on the one or more display devices 156.
  • Figure 6 shows a method 600 extending from method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B.
  • the first three-dimensional object 102 may have a complex or nonuniform shape that, when virtually represented as a plurality of geometric primitives 104, is best fitted using a corresponding plurality of three-dimensional packaging wireframe models 106.
  • one three-dimensional packaging wireframe model 106 may be fitted to a first portion of a three- dimensional object 102 and another three-dimensional packaging wireframe model 106 may be fitted to a second portion of the three-dimensional object 102.
  • a more accurate three-dimensional packaging wireframe model 106 may incorporate a plurality wireframe models 106, such as a first three- dimensional packaging wireframe model 106 fitted to the body portion of the guitar-shaped object and a second three-dimensional packaging wireframe model 106 fitted to the neck portion of the guitar-shaped object may provide a more accurate three-dimensional packaging wireframe model 106 for the entire guitar-shaped object. Fitting of multiple three-dimensional packaging wireframe models 106 may be performed automatically by the one or more processors 120, or performed responsive to the receipt of a user input indicating that a plurality of three-dimensional packaging wireframe models should be used.
  • Providing a user with the ability to designate the use of three-dimensional packaging wireframe models 106 about different portions of a single three- dimensional object 102 may provide the user with a more accurate freight rate estimate based upon the actual configuration of the object and may provide the carrier with a more accurate shipping volume.
  • the one or more processors 120 receive an input that identifies a portion of the first three-dimensional object 102 that may be represented using a separate three-dimensional packaging wireframe model 106.
  • the user may provide an input that when received by the one or more processors 120, indicates the neck of the guitar is best fitted using separate three-dimensional packaging wireframe model 106.
  • the one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150.
  • a touch-screen display device 1 14 advantageously enables a user to draw a perimeter or otherwise clearly delineate the portion of the first three- dimensional object 102 for which one or more separate geometric primitives 104 may be selected and about which a three-dimensional packaging wireframe model 106 may be fitted by the one or more processors 120.
  • a prior input received by the one or more processors 120 may be used to place the system 100 in a mode where a subsequent input indicating the portion of the first three-dimensional object 102 suitable for representation by a separate three-dimensional packaging wireframe model 106 will be provided as an input to the one or more processors 120.
  • the one or more processors 120 can select one or more geometric primitives 104 encompassing the first portion of the first three-dimensional object 102. Based on the one or more selected geometric primitives 104, the one or more processors 120 fit a three-dimensional packaging wireframe model 106 about the first portion of the three-dimensional object 102. Continuing with the illustrative example of a guitar - the one or more processors 120 may receive an input indicating the user's desire to represent the neck portion of the guitar as a first three- dimensional packaging wireframe model 106.
  • the one or more processors 120 select one or more appropriate geometric primitives 104, for example a cylindrical geometric primitive, and fit a cylindrical three-dimensional packaging wireframe model 106 that encompasses the first portion of the first three- dimensional object 102 (i.e., the neck portion of the guitar).
  • the one or more processors 120 select one or more geometric primitives 104 encompassing the second portion of the first three- dimensional object 102. Based on the one or more selected geometric primitives 104, the one or more processors 120 fit a three-dimensional packaging wireframe model 106 about the second portion of the first three- dimensional object 102.
  • the separate three-dimensional packaging wireframe model 106 fitted to the second portion may be the same as, different from, or a modified version of the three-dimensional packaging wireframe model 106 fitted to the first portion of the three-dimensional object 102.
  • the single, three-dimensional packaging wireframe model 106 originally fitted by the one or more processors 120 to the entire guitar may have been in the form of a rectangular three-dimensional packaging wireframe model 106 encompassing both the body portion and the neck portion of the guitar.
  • the one or more processors 120 may reduce the size of the originally fitted, rectangular, three-dimensional packaging wireframe model 106 to a rectangular three-dimensional packaging wireframe model 106 fitted about the second portion of the first three-dimensional object 104 (i.e., the body of the guitar).
  • the one or more processors 120 can generate a video, image, or display data output that includes image data of the three-dimensional packaging wireframe models 106 fitted to the first and second portions of the first three-dimensional object 102.
  • the video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 including an image concurrently or simultaneously depicting the first and second portions of the first three-dimensional object 102 using image data from the camera 152 and the respective three-dimensional packaging wireframe models 106 fitted to each of the first and second portions by the one or more processors 120.
  • an image concurrently or simultaneously depicting the first and second portions of the first three- dimensional object 102 along with their respective one or more scaled and fitted geometric primitives 104 and their respective three-dimensional packaging wireframe models 106 may also be provided on the one or more display devices 156.
  • Figure 7 shows a method 700 extending from method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B.
  • one or more features present on the first three-dimensional object 102 may not be visible from the point of view of the image sensor 1 14.
  • a protruding feature may lie on a portion of the three-dimensional object 102 facing away from the image sensor 1 14 such that substantially all of the feature is hidden from the image sensor 1 14.
  • a failure to incorporate the hidden feature may result in erroneous or inaccurate rate information being provided to a user or erroneous or inaccurate packing dimensions or volumes being provided to the carrier.
  • obtaining image data from a second point of view that includes the previously hidden or obscured feature will permit the one or more processors 120 to select one or more geometric primitives 104 fitting the entire three-dimensional object 102 including the features hidden in the first point of view.
  • the one or more processors 120 are able to fit the first three-dimensional packaging wireframe model 106 about the entire first three- dimensional object 102 or alternatively, to add a second three-dimensional packaging wireframe model 106 incorporating the portion of the first three- dimensional object 102 that was hidden in the first point of view of the image sensor 1 14.
  • the one or more processors 120 rotate the fitted three-dimensional packaging wireframe model 106 about an axis to expose gaps in the model or to make apparent any features absent from the model but present on the first three-dimensional object 102.
  • the volume dimensioning system 1 10 may provide a video, image, or display data output to the host computer 150 providing a sequence or views of the fitted first three-dimensional packaging wireframe model 106 such that the first three-dimensional packaging wireframe model 106 appears to rotate about one or more axes when viewed on the one or more display devices 156.
  • the system 100 can generate an output, for example a prompt displayed on the one or more display devices 156, requesting a user to provide an input confirming the accuracy of or noting any deficiencies present in the first three-dimensional packaging wireframe model 106.
  • additional image data in the form of a second point of view of the first three-dimensional object 102 that exposes the previously hidden or obscured feature on the first three-dimensional object 102 may be provided to the one or more processors 120.
  • Image data may be acquired or captured from a second point of view in a variety of ways.
  • the image sensor 1 14 may be automatically or manually displaced about the first three-dimensional object 102 to provide a second point of view that includes the previously hidden feature.
  • a second image sensor (not shown in Figures 1 A, 1 B) disposed remote from the system 100 may provide a second point of view of the first three-dimensional object 102.
  • the system 100 may generate an output, for example an output visible on the one or more display devices 156 providing guidance or directions to the user to physically rotate the first three-dimensional object 102 to provide a second point of view to the image sensor 1 14.
  • the system 100 may generate a signal output, for example a signal output from the host computer 150 that contains instructions to automatically rotate a turntable upon which the first three-dimensional object 102 has been placed to provide a second point of view of the first three- dimensional object 102 to the image sensor 1 14.
  • a signal output for example a signal output from the host computer 150 that contains instructions to automatically rotate a turntable upon which the first three-dimensional object 102 has been placed to provide a second point of view of the first three- dimensional object 102 to the image sensor 1 14.
  • the one or more processors 120 can detect a portion of the first three-dimensional object 102 that was hidden in the first point of view. Such detection can be accomplished, for example by tracking the feature points on the first three-dimensional object 102 visible in the first point of view as the first point of view is transitioned to the second point of view. Identifying new feature points appearing in the second point of view that were absent from the first point of view provide an indication to the one or more processors 120 of the existence of a previously hidden or obscured portion or feature of the first three- dimensional object 102.
  • the one or more processors 120 can modify one or more originally selected geometric primitives 140 ⁇ e.g., by stretching the geometric primitive 104) to incorporate the previously hidden or obscured feature, or alternatively can select one or more second geometric primitives 104 that when combined with the one or more previously selected geometric primitives 104 encompasses the previously hidden or obscured feature on the first three-dimensional object 102.
  • the one or more processors 120 may modify the one or more originally selected geometric primitives 104 to encompass the feature hidden or obscured in the first point of view, but visible in the second point of view.
  • the three-dimensional packaging wireframe model 106 can then be scaled and fitted to the modified originally selected geometric primitive 104 to encompass the feature present on the first three-dimensional object 102.
  • a first three-dimensional packaging wireframe model 106 may be fitted to a rectangular prismatic three-dimensional object 102, and a hidden feature in the form of a smaller rectangular prismatic solid may be located on the rear face of the rectangular prismatic three-dimensional object 102.
  • the one or more processors 120 may in such a situation, modify the originally selected geometric primitive 104 to encompass the smaller rectangular prismatic solid.
  • the one or more processors 120 can then scale and fit the first three-dimensional packaging wireframe model 106 to encompass the entire first three-dimensional object 102 by simply modifying, by stretching, the originally fitted rectangular three-dimensional packaging wireframe model 106.
  • the one or more processors 120 may alternatively select one or more second geometric primitives 104 to encompass the smaller rectangular solid feature and fit a second three-dimensional packaging wireframe model 106 to the second geometric primitive 104.
  • the three-dimensional object 102 is a guitar-shaped object
  • the first point of view may expose only the body portion of the guitar-shaped object to the image sensor 1 14 while the neck portion remains substantially hidden from the first point of view of the image sensor 1 14.
  • the one or more processors 120 can detect an additional feature that includes the neck portion of the guitar-shaped object.
  • the one or more processors 120 may select a second geometric primitive 104 and use the selected second geometric primitive 104 to fit a second three-dimensional packaging wireframe model 106 about the neck portion of the guitar-shaped object.
  • the one or more processors 120 can generate a video, image, or display data output that includes image data of the one or more three- dimensional packaging wireframe models 106 fitted to the first three- dimensional object 102, including features visible from the first and second points of view of the image sensor 1 14.
  • the video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image concurrently or simultaneously displaying the first three-dimensional object 102 using image data from the camera 152 and the one or more three-dimensional packaging wireframe models 106 fitted to respective portions of the first three-dimensional object 102 by the one or more processors 120.
  • an image concurrently or simultaneously depicting the first and second portions of the first three-dimensional object 102 along with one or more geometric primitives 104 and the scaled and fitted three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
  • Figure 8 shows a method 800 extending from method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B.
  • the field-of- view 1 16 of the image sensor 1 14 may contain a multitude of potential first three-dimensional objects 102, yet the only three-dimensional objects of interest to a user may have a particular size or shape.
  • the field- of-view 1 16 of the image sensor 1 14 may be filled with a three bowling balls and a single box which represents the desired first three-dimensional object 102.
  • the one or more processors 120 may select four geometric primitives 104 - three associated with the bowling balls and one associated with the box and fit three-dimensional packaging wireframe models 106 to each of the three bowling balls and the single box. Rather than laboriously deleting the three spherical wireframes fitted to the bowling balls, in some embodiments, the one or more processors 120 may receive an input designating a particular geometric primitive shape as indicating the desired first three-dimensional object 102 within the field-of-view 1 16 of the image sensor 1 14.
  • the one or more processors 120 may receive an input indicating a rectangular prismatic geometric primitive as designating the particular shape of the desired first three-dimensional object. This allows the one or more processors 120 to automatically eliminate the three bowling balls within the field-of-view of the image sensor 1 14 as potential first three-dimensional objects 102. Such an input, when received by the one or more processors 120 effectively provides a screen or filter for the one or more processors 120 eliminating those three-dimensional objects 102 having geometric primitives not matching the indicated desired geometric primitive received by the one or more processors 120.
  • the one or more processors 120 receive an input indicative of a desired geometric primitive 104 useful in selecting, screening, determining or otherwise distinguishing the first three-dimensional object 102 from other objects that are present in the field-of-view 1 16 of the image sensor 1 14.
  • the one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150.
  • text or graphical icons indicating various geometric primitive shapes may be provided in the form of a list, menu, or selection window to the user.
  • the one or more processors 120 search through the three- dimensional objects 102 appearing in the field-of-view 1 16 of the image sensor 1 14 to locate only those first three-dimensional objects 102 having a shape that is substantially similar to or matches the user selected geometric primitive 104.
  • Figure 9 shows a method 900 extending from method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B.
  • the one or more processors 120 can determine the packaging dimensions and the volume of the first three-dimensional object 102 responsive to receipt of an input indicative of user acceptance of the fitted first three-dimensional packaging wireframe model 106.
  • the calculated packing dimensions are based on dimensional and volumetric information acquired from the fitted first three-dimensional packaging wireframe model 106 and reflect not only the dimensions of the three-dimensional object 102 itself, but also include any additional packaging, boxing, crating, etc., necessary to safely and securely ship the first three-dimensional object 102.
  • the one or more processors 120 receive an input indicative of user acceptance of the first three-dimensional packaging wireframe model 106 fitted to the first three-dimensional object 102 by the one or more processors 120.
  • the one or more processors 120 can generate a video, image, or display data output that includes image data of the three-dimensional packaging wireframe model 106 after scaling and fitting to the first three- dimensional object 102, and after any modifications necessary to accommodate any specialized shipping instructions provided by the user.
  • the video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 including image data depicting a simultaneous or concurrent image of the first three-dimensional object 102 using image data from the camera 152 and the three-dimensional packaging wireframe model 106 fitted to the first three-dimensional object 102 by the one or more processors 120.
  • image data depicting a simultaneous or concurrent image of the first three-dimensional object 102 using image data from the camera 152 and the three-dimensional packaging wireframe model 106 fitted to the first three-dimensional object 102 by the one or more processors 120 may also be provided on the one or more display devices 156.
  • the system 100 may generate a signal output, for example a signal output from the host computer 150 containing a query requesting the user provide an input indicative of an acceptance of the fitting of the first three-dimensional packaging wireframe model 106 to the first three-dimensional object 102.
  • the one or more processors 120 determine the dimensions and calculate the volume of the first three-dimensional object 102 based at least in part on the three-dimensional packaging wireframe model 106. Any of a large variety of techniques or algorithms for determining a volume of a bounded three-dimensional surface may be employed by the system 100 to determine the dimensions or volume of the first three-dimensional object 102.
  • Figure 10 shows a method 1000 extending from method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B.
  • the one or more processors 120 may select one or more inapplicable geometric primitives 104 or improperly fit a first three-dimensional packaging wireframe model 106 about the first three-dimensional object 102.
  • a more expeditious solution may be to delete the first three- dimensional packaging wireframe model 106 fitted by the one or more processors 120 in its entirety and request the one or more processors 120 to select one or more different geometric primitives 104 and fit a second three- dimensional packaging wireframe model 106 about the first three-dimensional object 102.
  • the one or more processors 120 receive an input indicative of a rejection of the first three-dimensional packaging wireframe model 106 fitted by the one or more processors 120 about the first three- dimensional object 102.
  • the one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150.
  • the one or more processors 120 select one or more second geometric primitives 104 and, based on the one or more second selected geometric primitives 104, fit a second three-dimensional packaging wireframe model 106 about the first three-dimensional object 102.
  • the one or more processors 120 can generate a video, image, or display data output that includes image data of the second three- dimensional packaging wireframe model 106 fitted to the first three-dimensional object 102.
  • the video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image contemporaneously or simultaneously depicting the first three-dimensional object 102 using image data from the camera 152 and the second three-dimensional packaging wireframe model 106 fitted by the one or more processors 120.
  • an image concurrently or simultaneously depicting an image of the first three-dimensional object 102 along with the one or more second geometric primitives 104 and the scaled and fitted three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
  • Figure 1 1 shows a method 1 100 extending from method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B.
  • the one or more processors 120 may receive as an input a value indicating a selection of a second three-dimensional packaging wireframe model 106 for fitting about the virtual representation of the first three- dimensional object 104.
  • the one or more processors 120 can fit the second three-dimensional packaging wireframe model about the first three-dimensional object 102.
  • Such an input can be useful in expediting the fitting process when the appropriate geometric primitive or second three-dimensional packaging wireframe model is known in advance.
  • the one or more processors 120 receive an input indicative of a selection of a second geometric primitive 104 as representative of the first three-dimensional object 102 or a second three-dimensional packaging wireframe model 106 for fitting about the first three-dimensional object 102. In some instances, the one or more processors 120 receive an input indicative of one or more second geometric primitives 104 that are different from the one or more first geometric primitives 104 used by the one or more processors 120 to fit the first three-dimensional packaging wireframe model 106.
  • the one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150.
  • the input is provided by selecting a text or graphic icon corresponding to the second geometric primitive 104 or an icon
  • the one or more processors 120 can fit the second three-dimensional packaging wireframe model 106 to the first three-dimensional object 102.
  • the one or more processors 120 can generate a video, image, or display data output that includes image data of the second three- dimensional packaging wireframe model 106 fitted to the first three-dimensional object 102.
  • the video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image concurrently or simultaneously depicting the first three-dimensional object 102 using image data from the camera 152 and the second three-dimensional packaging wireframe model 106 fitted by the one or more processors 120.
  • an image concurrently or simultaneously depicting an image of the first three-dimensional object 102 along with the one or more geometric primitives 104 and the scaled and fitted three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
  • Figure 12 shows a method 1200 extending from method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B.
  • the one or more processors 120 may receive an input indicative of a region of interest containing all or a portion of the first three-dimensional object 102.
  • the one or more processors 120 may ascertain whether the first three-dimensional packaging wireframe model 106 included within the indicated region of interest has been properly fitted about the first three- dimensional object 102.
  • the one or more processors 120 receive an input indicative of a region of interest lying in the field-of-view 1 16 of the image sensor 1 14.
  • the one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150.
  • the one or more CPUs 160 enlarge the indicated region of interest and output a video, image, or display data output including the enlarged region of interest to the one or more display devices 156 on the host computer system 150.
  • the one or more processors 120 may provide the video, image, or display data output including the enlarged region of interest to the one or more display devices 156 on the host computer system 150.
  • the one or more processors 120 automatically select a geometric primitive 104 based upon the features of the first three-dimensional object 102 included in the enlarged region of interest for use in fitting the first three-dimensional packaging wireframe model 106 about all or a portion of the first three-dimensional object 102.
  • the one or more processors 120 may receive an input indicative of a geometric primitive 104 to fit the first three-dimensional packaging wireframe model 106 about all or a portion of the first three-dimensional object 102 depicted in the enlarged region of interest.
  • the one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150.
  • the input is provided to the one or more processors 120 by selecting a text or graphic icon corresponding to the geometric primitive from a menu, list or selection window containing a plurality of such icons.
  • Figure 13 shows a method 1300 depicting the operation of an example volume dimensioning system 100, such as the system depicted in Figure 1 .
  • the first three-dimensional object 102 may have a complex or non-uniform shape that is best represented using two or more geometric primitives 104.
  • a first geometric primitive 104 may be used by the one or more processors 120 to fit a first three- dimensional packaging wireframe model 106 about a first portion of the first three-dimensional object 102.
  • a second geometric primitive 104 may be used by the one or more processors 120 to fit a second three-dimensional packaging wireframe model 106 about a second portion of the first three- dimensional object 102.
  • the first and second geometric primitives 104 may be autonomously selected by the one or more processors 120. Permitting the one or more processors 120 to select two or more geometric primitives 104 and fit a corresponding number of three- dimensional packaging wireframe models 106 about a corresponding number of portions of the three-dimensional object 102 may provide the user with a more accurate estimate of the dimensions or volume of the packaging encompassing the first three-dimensional object 102.
  • the image sensor 1 14 captures or acquires three- dimensional image data which is communicated to the one or more non- transitory, machine-readable storage media 1 18 via one or more data busses 126.
  • the three-dimensional image data captured by the image sensor 1 14 includes a first three-dimensional object 102 disposed within the field-of-view 1 16 of the image sensor 1 14.
  • the three-dimensional image data captured by the image sensor 1 14 may include depth data providing a depth map and intensity data providing an intensity image of the field-of-view 1 16 of the image sensor 1 14.
  • At least a portion of the three-dimensional image data received by the one or more non-transitory, machine-readable storage media 1 18 is communicated to or otherwise accessed by the one or more processors 120 in order to select one or more geometric primitives 104 preparatory to fitting a three-dimensional packaging wireframe model 106 about all or a portion of the first three-dimensional object 104.
  • the one or more processors 120 determine a number of features on the first three-dimensional object 102 that appear in the three-dimensional image data. The features may include any point, edge, or other discernible structure on the first three-dimensional object 102 and detectible in the image represented by the three-dimensional image data.
  • one or more features may correspond to a three- dimensional point on the three-dimensional object 102 that is detectible in a depth map containing the first three-dimensional object, an intensity image in which the three-dimensional object, or both a depth map and an intensity image in which the first three-dimensional object 102 appears as is represented.
  • the identified features may include boundaries or defining edges of the first three- dimensional object, for example corners, arcs, lines, edges, angles, radii, and similar characteristics that define all or a portion of the external boundary of the first three-dimensional object 102.
  • the one or more processors 120 select one or more geometric primitives 104 having the same or differing shapes to encompass substantially all of the identified features of the first three-dimensional object 102.
  • the one or more processors 120 may autonomously determine that a plurality of three-dimensional packaging wireframe models 106 are useful in fitting an overall three-dimensional packaging wireframe model 106 to the relatively complex three-dimensional object 102.
  • the one or more processors 120 may determine that a first three-dimensional packaging wireframe model 106 can be fitted to a first portion of the first three-dimensional object 102 and a second three-dimensional packaging wireframe model 106 can be fitted to a second portion of the first three-dimensional object 102.
  • the one or more processors 120 scale and fit the first three-dimensional packaging wireframe model 106 to the one or more geometric primitives 104 encompassing the first portion of the first three- dimensional object 102.
  • the scaled and fitted first three-dimensional packaging wireframe model 106 encompasses substantially all the first portion of the first three-dimensional object 102.
  • the one or more processors 120 fit the second three- dimensional packaging wireframe model 106 to the one or more geometric primitives 104 encompassing the second portion of the first three-dimensional object 102.
  • the scaled and fitted second three-dimensional packaging wireframe model 106 encompasses substantially all the second portion of the first three-dimensional object 102.
  • the one or more processors 120 can generate a video, image, or display data output that includes image data of the first and second three-dimensional packaging wireframe models 106 as fitted to the first and second portions of the first three-dimensional object 102, respectively.
  • the video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs viewable on the one or more display devices 156 that includes an image simultaneously or contemporaneously depicting the first and second portions of the first three-dimensional object 102 using image data from the camera 152 and the respective first and second three-dimensional packaging wireframe models 106 fitted to each of the first and second portions by the one or more processors 120.
  • an image concurrently or simultaneously depicting an image of the first and second portions of the first three-dimensional object 102 along with the one or more respective first and second geometric primitives 104 and the respective scaled and fitted first and second three-dimensional packaging wireframe models 106 may also be provided on the one or more display devices 156.
  • Figure 14 shows a method 1400 depicting the operation of an example volume dimensioning system 100, such as the system depicted in Figure 1 .
  • the initial or first point of view of the image sensor 1 14 may not provide sufficient feature data to the one or more
  • processors 120 to determine the extent, scope or boundary of the first three- dimensional object 102. For example, if the first three-dimensional object 102 is a cubic box and only the two-dimensional front surface of the cubic box is visible to the image sensor 1 14, the image data provided by the image sensor 1 14 to the one or more processors 120 is insufficient to determine the depth (i.e., the extent) of the cubic box, and therefore the one or more processors 120 do not have sufficient data regarding the features of the three-dimensional object 102 to select one or more geometric primitives 104 as representative of the first three-dimensional object 102. In such instances, it is necessary to provide the one or more processors 120 with additional data gathered from at least a second point of view to enable selection of one or more appropriate geometric primitives 104 for fitting a first three-dimensional packaging
  • wireframe model 106 that encompasses the first three-dimensional object 102.
  • the image sensor 1 14 captures or acquires three- dimensional image data which is communicated to the one or more non- transitory, machine-readable storage media 1 18 via one or more data busses 126.
  • the three-dimensional image data captured by the image sensor 1 14 includes a first three-dimensional object 102 disposed within the field-of-view 1 16 of the image sensor 1 14.
  • the three-dimensional image data captured by the image sensor 1 14 may include depth data providing a depth map and intensity data providing an intensity image of the field-of-view of the image sensor 1 14.
  • At least a portion of the three-dimensional image data received by the one or more non-transitory, machine-readable storage media 1 18 is communicated to or otherwise accessed by the one or more processors 120 in order to select one or more geometric primitives 104 to fit a three-dimensional packaging wireframe model 106 that encompasses the first three-dimensional object 102.
  • the one or more processors 120 determine that an insufficient number of features on the first three-dimensional object 102 are present within the first point of view of the image sensor 1 14 to permit the selection of one or more geometric primitives 104 to fit the first three-dimensional packaging wireframe model 106.
  • the one or more processors 120 At 1406, responsive to the determination that an insufficient number of features are present within the first point of view of the image sensor 1 14, the one or more processors 120 generates an output indicative of the lack of an adequate number of features within the first point of view of the image sensor 1 14.
  • the output provided by the one or more processors 120 can indicate a possible second point of view able to provide a view of a sufficient number of additional features on the first three-dimensional object 102 to permit the selection of one or more appropriate geometric primitives representative of the first three-dimensional object 102.
  • the output generated by the one or more processors 120 may cause a second image sensor positioned remote from the image sensor 1 14 to transmit image data from a second point of view to the one or more non-transitory, machine-readable storage media 1 18.
  • the second image sensor can transmit depth data related to a depth map of first three-dimensional object 102 from the second point of view or intensity data related to an intensity image of the first three-dimensional object 102 from the second point of view.
  • the image data provided by the second image sensor is used by the one or more processors 120 in identifying additional features on the first three-dimensional object 102 that are helpful in selecting one or more appropriate geometric primitives representative of the first three-dimensional object 102.
  • the output generated by the one or more processors 120 may include audio, visual, or audio/visual indicator data used by the host computer 150 to generate an audio output via one or more I/O devices 166 or to generate a visual output on the one or more display devices 156 that designate a direction of movement of the image sensor 1 14 or a direction of movement of the first three-dimensional object 102 that will permit the image sensor 1 14 to obtain a second point of view of the first three- dimensional object 102.
  • the image data provided by the image sensor 1 14 from the second point of view is used by the one or more processors 120 in identifying additional features on the first three-dimensional object 102 that are helpful in selecting one or more appropriate geometric primitives representative of the first three-dimensional object 102.
  • Figure 15 depicts an illustrative volume dimensioning system 1 10 communicably coupled to a host computer 150 via one or more busses 1 12.
  • the volume dimensioning system 1 10 is equipped with an image sensor 1 14 having a field-of-view 1 16.
  • the host computer 150 is equipped with a camera 152 having a field-of-view 154 and a display device 156.
  • An interior space of a partially or completely empty container or trailer 1503 is depicted as forming a three-dimensional void 1502 falling within the field-of-view 1 16 of the image sensor 1 14 and the field-of-view 154 of the camera 152.
  • An image of the three-dimensional void is depicted as an image on the one or more display devices 156.
  • the one or more processors 120 can select one or more geometric primitives 1504 corresponding to the first three- dimensional void 1502 preparatory to scaling and fitting a three-dimensional receiving wireframe 1506 within the first three-dimensional void 1502.
  • the scaled and fitted three-dimensional receiving wireframe model 1506 is depicted within the three-dimensional void 1502. In some embodiments, the scaled and fitted three-dimensional receiving wireframe model 1506 may be shown in a contrasting or bright color on the one or more display devices 156.
  • the scaled, fitted three-dimensional receiving wireframe model 1506 may be generated by the host computer 150 or, more preferably may be generated by the volume dimensioning system 1 10.
  • the image on the display device 156 is a provided in part using the image data acquired by the camera 152 coupled to the host computer system 150 which provides an image of the three-dimensional void 1502, and in part using the scaled and fitted three- dimensional receiving wireframe model 1506 provided by the volume dimensioning system 1 10.
  • Data, including visible image data provided by the camera 152 and depth map data and intensity image data provided by the image sensor 1 14 is exchanged between the host computer 150 and the volume dimensioning system 1 10 via the one or more busses 1 12.
  • the volume dimensioning system 1 10 and the host computer system 150 may be partially or completely incorporated within the same housing, for example a handheld computing device or a self service kiosk.
  • Figure 16 shows a method 1600 depicting the operation of an example volume dimensioning system 1500, such as the system depicted in Figure 15.
  • the first three-dimensional object 102 cannot be constructed based upon the presence of a physical, three-dimensional object, and is instead represented by the absence of one or more physical objects, or alternatively as a three-dimensional void 1502.
  • Such an instance can occur, for example, when the system 100 is used to determine the available dimensions or volume remaining within an empty or partially empty shipping container, trailer, box, receptacle, or the like.
  • the ability to determine with a reasonable degree of accuracy the available dimensions or volume within a particular three-dimensional void 1502 provides the ability to optimize the placement of packaged physical three-dimensional objects 102 within the three- dimensional void 1502.
  • the dimensions or volumes of the packaged three-dimensional objects 102 intended for placement within the three-dimensional void 1502 are known, for example when a volume
  • dimensioning system 100 as depicted in Figure 1 has been used to determine the dimensions or volume of the three-dimensional packaging wireframe models 106 corresponding to packaged three-dimensional objects 102, the ability to determine the dimensions or volume available within a three- dimensional void 1502 can assist in optimizing the load pattern of the three- dimensional objects 102 within the three-dimensional void 1502.
  • the image sensor 1 14 captures or acquires three- dimensional image data of a first three-dimensional void 1502 within the field- of-view of 1 16 of the image sensor 1 14.
  • Image data captured or acquired by the image sensor 1 14 is communicated to the one or more non-transitory, machine-readable storage media 1 18 via one or more data busses 126.
  • the three-dimensional image data captured by the image sensor 1 14 includes a first three-dimensional void 1502 disposed within the field-of-view 1 16 of the image sensor 1 14.
  • the three-dimensional image data captured by the image sensor 1 14 may include depth data providing a depth map and intensity data providing an intensity image of the field-of-view of the image sensor 1 14.
  • At least a portion of the three-dimensional image data received by the one or more non- transitory, machine-readable storage media 1 18 is communicated to or otherwise accessed by the one or more processors 120 in order to select one or more geometric primitives 1504 preparatory to fitting a first three-dimensional receiving wireframe model 1506 within all or a portion of the first three- dimensional void 1502.
  • the one or more processors 120 determine a number of features related to or associated with the first three-dimensional void 1502 present in the image data received by the one or more processors 120.
  • the features may include any point on the first three-dimensional void 1502 detectible in the image data provided by the image sensor 1 14.
  • one or more features may correspond to a point on the first three-dimensional void 1502 that is detectible in a depth map containing the first three-dimensional void 1502, an intensity image containing the three-dimensional void 1502, or both a depth map and an intensity image containing the first three-dimensional void 1502.
  • the identified features include boundaries or defining edges of the first three-dimensional void 1502, for example corners, arcs, lines, edges, angles, radii, and similar characteristics that define all or a portion of one or more boundaries defining the first three-dimensional void 1502.
  • the one or more processors 120 select one or more geometric primitives 1504 and fit the selected geometric primitives 1504 within substantially all of the features identified by the one or more processors 120 as defining all or a portion of one or more boundaries of the first three-dimensional void 1502.
  • the one or more selected geometric primitives 1504 are used by the one or more processors 120 to fit a three-dimensional receiving wireframe model 1506 within all or a portion of the first three-dimensional void 1502.
  • the one or more processors 120 After fitting the first three-dimensional receiving wireframe model 1506 within the three-dimensional void 1502, the one or more processors 120 determine, based on the first three-dimensional receiving wireframe model 1506, the available dimensions or volume within the first three-dimensional void 1502.
  • the one or more processors 120 can generate a video, image, or display data output that includes image data of the first three- dimensional receiving wireframe model 1506 as fitted to the first three- dimensional void 1502.
  • the video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 including an image concurrently or simultaneously depicting the first three-dimensional void 1502 using image data from the camera 152 and the first three-dimensional receiving wireframe model 1506 fitted therein by the one or more processors 120.
  • an image concurrently or simultaneously depicting an image of the first three-dimensional void 1502 along with the one or more geometric primitives 1504 and the scaled and fitted three-dimensional packaging wireframe model 1506 may also be provided on the one or more display devices 156.
  • Figure 17 shows a method 1700 extending from logic flow diagram 1600 and describing one or more additional features of an example volume dimensioning system 1500, such as the system depicted in Figure 15.
  • the one or more processors 120 fit the first three-dimensional receiving wireframe model1506 within the first three-dimensional void 1502 and determine the dimensions or volume available within the first three-dimensional void 1502.
  • the one or more processors 120 can receive data, for example via the host computer 150 that includes volumetric or dimensional data associated with one or more three-dimensional objects 102.
  • the one or more processors 120 may receive volumetric or dimensional data associated with a number of three-dimensional objects 102 for shipment to Seattle using the shipping container 1503.
  • the one or more processors 120 can calculate a load pattern including each of the number of three- dimensional objects 102 that accommodates any user specified specialized shipping requirements and also specifies the placement or orientation of each of the number of three-dimensional objects 102 within the three-dimensional void 1502 such that the use of the available volume within the container 1503 is optimized.
  • the one or more processors 120 can receive an input, for example via the host computer system 150, that contains dimensional or volumetric data associated with each of a number of three-dimensional objects 102 that are intended for placement within the first three-dimensional void 1502.
  • at least a portion of the dimensional or volumetric data associated with each of a number of three-dimensional objects 102 can be provided by the volume dimensioning system 100.
  • at least a portion of the dimensional or volumetric data provided to the one or more processors 120 can be based on three-dimensional packaging wireframe models 106 fitted to each of the three-dimensional objects 102.
  • the dimensional or volumetric data associated with a particular three- dimensional object 102 can include one or more user-supplied specialized shipping requirements (e.g., fragile surfaces, top-load items, "this side up" designation, etc.).
  • the one or more processors 120 can determine the position or orientation for each of the number of three-dimensional objects 102 within the first three-dimensional void 1502.
  • the position or location of each of the number of three-dimensional objects 102 can take into account the dimensions of the object, the volume of the object, any specialized shipping requirements associated with the object, and the available dimensions or volume within the first three-dimensional void 1502.
  • the volume dimensioning system 1500 can position or orient the number of three-dimensional objects 102 within the first three-dimensional void 1502 to minimize empty space within the three-dimensional void 1502.
  • the one or more processors 120 can generate a video, image, or display data output that includes the three-dimensional packaging wireframes 106 fitted to each of the three-dimensional objects 102 intended for placement within the three-dimensional void 1502.
  • the three-dimensional packaging wireframes 106 associated with some or all of the number of three-dimensional objects 102 may be depicted on the one or more display devices 156 in their final positions and orientations within the three-dimensional receiving wireframe 1506.
  • the video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image concurrently or simultaneously depicting the first three- dimensional void 1502 and all or a portion of the three-dimensional packaging wireframe models 106 fitted within the three-dimensional void 1502 by the one or more processors 120.
  • Figure 18 shows a method 1800 depicting the operation of an example volume dimensioning system 100, such as the system depicted in Figure 1 .
  • a user may provide an input to the volume dimensioning system resulting in the changing of one or more three- dimensional packaging wireframe models 106 fitted to the three-dimensional object 102.
  • a user can provide a recommended geometric primitive 104 for use by the one or more processors 120 in fitting a three- dimensional packaging wireframe model 106 about the three-dimensional object 102.
  • a user may provide an input to the volume dimensioning system 100 indicating a single three-dimensional object 102 can be broken into a plurality of portions, each of the portions represented by a different geometric primitive 104 and fitted by the one or more processors 120 with a different three-dimensional packaging wireframe model 106.
  • the volume dimensioning system 1 10 may "learn" to automatically perform one or more functions that previously required initiation based on a user input.
  • a first three-dimensional object 102 provides a particular pattern of feature points to the one or more processors 120 and a user provides an input selecting a particular geometric primitive 104 for use by the one or more processors 120 in fitting a three-dimensional packaging wireframe model 106 to the three-dimensional object 102.
  • the one or more processors 120 may autonomously select the geometric primitive 104 previously selected by the user for fitting a three-dimensional packaging wireframe model 106 about the three-dimensional object 102.
  • a first three-dimensional object 102 provides a particular pattern of feature points to the one or more processors 120 and a user indicates to the one or more processors 120 that the first three- dimensional object 102 should be apportioned into first and second portions about which respective first and second three-dimensional packaging wireframe models 106 can be fitted. If, in the future, a three-dimensional object 102 provides a similar pattern of feature points, the one or more processors 120 may autonomously apportion the three-dimensional object 102 into multiple portions based on the apportioning provided by the former user.
  • the image sensor 1 14 captures or acquires three- dimensional image data which is communicated to the one or more non- transitory, machine-readable storage media 1 18 via one or more data busses 126.
  • the three-dimensional image data captured by the image sensor 1 14 includes a first three-dimensional object 102 disposed within the field-of-view of the image sensor 1 14.
  • the three-dimensional image data captured by the image sensor 1 14 may include depth data providing a depth map and intensity data providing an intensity image of the field-of-view of the image sensor 1 14.
  • At least a portion of the three-dimensional image data received by the one or more non-transitory, machine-readable storage media 1 18 is communicated to or otherwise accessed by the one or more processors 120 in order to select one or more geometric primitives 104 for use in fitting a three-dimensional packaging wireframe model 106 encompassing all or a portion of the three- dimensional object 102.
  • the one or more processors 120 determine a number of features on the first three-dimensional object 102 appearing in the three-dimensional image data.
  • the features may include any point, edge, face, surface, or other discernible structure on the first three- dimensional object 102 and detectible in the image represented by the three- dimensional image data.
  • one or more features may correspond to a three-dimensional point on the three-dimensional object 102 that is detectible in a depth map containing the first three-dimensional object, an intensity image in which the three-dimensional object, or both a depth map and an intensity image in which the first three-dimensional object 102 appears as is represented.
  • the identified features may include boundaries or defining edges of the first three-dimensional object, for example corners, arcs, lines, edges, angles, radii, and similar characteristics that define all or a portion of the external boundary of the first three-dimensional object 102.
  • the one or more processors 120 select one or more geometric primitives 104 from the library.
  • the one or more processors 120 use the selected one or more geometric primitives 104 in constructing a three-dimensional packaging wireframe model 106 that encompasses all or a portion of the first three- dimensional object 102.
  • the three-dimensional packaging wireframe model 106 encompasses substantially all of the features identified in 1804 as defining all or a portion of the first three-dimensional object 102.
  • the one or more processors 120 may search the library for one or more geometric primitives 104 having features, points, or nodes substantially similar to the spatial
  • the one or more processors may use one or more appearance-based or feature-based shape recognition or shape selection methods. For example a large modelbases appearance-based method using eigenfaces may be used to select geometric primitives 104 appropriate for fitting to the first three-dimensional object 102.
  • the one or more processors 120 receives an input indicative of a rejection of the first three-dimensional packaging wireframe model 106 fitted by the one or more processors 120 about the first three- dimensional object 102.
  • the one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150.
  • the one or more processors 120 Responsive to the receipt of the rejection of the first three-dimensional packaging wireframe model 106 fitted about the first three-dimensional object 102, the one or more processors 120 select a second geometric primitive 104 and, based on the second selected geometric primitive 104, fit a second three-dimensional packaging wireframe model 106 about the first three-dimensional object 102.
  • the one or more processors 120 can associate the number, pattern, or spatial relationship of the features identified in 1804 with the second geometric primitive 104 selected by the one or more processors. If, in the future, the one or more processors 120 identify a similar number, pattern, or spatial relationship of the features, the one or more processors 120 can autonomously select the second geometric primitive 104 for use in constructing the first three-dimensional packaging wireframe model 106 about the first three- dimensional object 102.
  • block diagrams, schematics, and examples contain one or more functions and/or operations, it will be understood by those skilled in the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof.
  • the present subject matter may be implemented via Application Specific Integrated Circuits (ASICs) or
  • nontransitory signal bearing media include, but are not limited to, the following: recordable type media such as portable disks and memory, hard disk drives, CD/DVD ROMs, digital tape, computer memory, and other non-transitory computer-readable storage media.

Abstract

Systems and methods for volume dimensioning packages are provided. A method of operating a volume dimensioning system may include the receipt of image data of an area at least a first three-dimensional object to be dimensioned from a first point of view as captured using at least one image sensor. The system can determine from the received image data a number of features in three dimensions of the first three-dimensional object. Based at least on part on the determined features of the first three-dimensional object, the system can fit a first three-dimensional packaging wireframe model about the first three-dimensional object. The system can display of an image of the first three-dimensional packaging wireframe model fitted about an image of the first three-dimensional object on a display device.

Description

VOLUME DIMENSIONING SYSTEMS AND METHODS
BACKGROUND
Field
This disclosure generally relates to non-contact systems and methods for determining dimensions and volume of one or more objects.
Description of the Related Art
Volume dimensioning systems are useful for providing dimensional and volumetric data related to three-dimensional objects disposed within the point of view of the volume dimensioning system. Such dimensional and volumetric information is useful for example, in providing users with accurate shipping rates based on the actual size and volume of the object being shipped. Additionally, the volume dimensioning system's ability to transmit parcel data immediately to a carrier can assist the carrier in selecting and scheduling appropriately sized vehicles based on measured cargo volume and dimensions. Finally, the ready availability of dimensional and volumetric information for all the objects within a carrier's network assists the carrier in ensuring optimal use of available space in the many different vehicles and containers used in local, interstate, and international commerce.
Automating the volume dimensioning process can speed parcel intake, improve the overall level of billing accuracy, and increase the efficiency of cargo handling. Unfortunately, parcels are not confined to a standard size or shape, and may, in fact, have virtually any size or shape. Additionally, parcels may also have specialized handling instructions such as a fragile side that must be protected during shipping or a side that must remain up throughout shipping. Automated systems may struggle with assigning accurate dimensions and volumes to irregularly shaped objects, with a single object that may be represented as a combination of two objects {e.g., a guitar) or with multiple objects that may be better represented as a single object (e.g., a pallet holding multiple boxes that will be shrink-wrapped for transit). Automated systems may also struggle with identifying a particular portion of an object as being "fragile" or a particular portion of an object that should remain "up" while in transit.
Providing users with the ability to identify and/or confirm the shape and/or numbers of either single objects or individual objects within a group or stack of objects and to identify the boundaries of irregularly shaped objects benefits the user in providing cartage rates that are proportionate to the actual size and/or volume of the parcel being shipped. Involving the user in providing accurate shape and/or volume data for a parcel or in providing an accurate outline of an irregularly shaped parcel also benefits the carrier by providing data that can be used in optimizing transport coordination and planning. Providing the user with the ability to designate one or more special handling instructions provides the user with a sense of security that the parcel will be handled in accordance with their wishes, that fragile objects will be protected and that "up" sides will be maintained on the "top" of the parcel during transport. The special handling instructions also benefit the transporter by providing information that can be useful in load planning (ensuring, for example, "fragile" sides remain protected and "up" sides remain "up" in load planning) and in reducing liability for mishandled parcels that are damaged in transit. BRIEF SUMMARY
A method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determining from the received image data a number of features in three dimensions of the first three-dimensional object by at least one processor communicatively coupled to the at least one nontransitory processor-readable medium; based at least on part on the determined features of the first three- dimensional object, fitting a first three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor; and causing a displaying of an image of the first three-dimensional packaging wireframe model fitted about an image of the first three-dimensional object on a display on which the image of the first three-dimensional object is displayed.
The method may further include receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of the first three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; and causing a displaying of an updated image of the first three- dimensional packaging wireframe model fitted about the image of the first three- dimensional object on the display. The method may further include receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of the three-dimensional packaging wireframe model relative to the displayed image of the first three- dimensional object; based at least in part on the received user input, fitting a second three-dimensional packaging wireframe model about the first three- dimensional object by the at least one processor, the second three-dimensional packaging wireframe model having a different geometrical shape than the first three-dimensional wireframe model; and causing a displaying of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display. The method may further include receiving at least one user input via a user interface, the user input indicative of an identification of a second three-dimensional object, the second three-dimensional object different from the first three-dimensional object; based at least in part on the received user input, fitting a second three- dimensional packaging wireframe model about the second three-dimensional object by the at least one processor, the second three-dimensional wireframe model; and causing a displaying of an image of the second three-dimensional packaging wireframe model fitted about the image of the second three- dimensional object on the display. The at least one processor may cause the concurrent displaying of the image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display and the image of the second three-dimensional packaging wireframe model fitted about the image of the second three-dimensional object on the display. The method may further include receiving at least one user input via a user interface, the user input indicative of an identification of at least one portion of the first three-dimensional object; based at least in part on the received user input, fitting one three-dimensional packaging wireframe model about a first portion of the first three-dimensional object by the at least one processor; based at least in part on the received user input, fitting one three- dimensional packaging wireframe model about a second portion of the first three-dimensional object by the at least one processor; and causing a concurrent displaying of an image of the three-dimensional wireframe models respectively fitted about the image of the first and the second portions of the first three-dimensional object on the display. The at least one processor may cause the displaying of the image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display to rotate about an axis. The method may further include receiving image data of the area from a second point of view by at least one nontransitory processor-readable medium from at least one image sensor, the second point of view different from the first point of view; determining from the received image data at least one additional feature in three dimensions of the first three- dimensional object by at least one processor; based on the determined features of the first three-dimensional object, at least one of adjusting the first three- dimensional packaging wireframe model or fitting a second three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor; and causing a displaying of an image of at least one of the adjusted first three-dimensional packaging wireframe model or the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display. Fitting a first three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor may include selecting from a number of defined geometric primitives that define respective volumes and sizing at least one dimension of the selected geometric primitive based on a corresponding dimension of the first three-dimensional object such that the first three-dimensional object is completely encompassed by the selected and sized geometric primitive. The method may further include producing a wireframe model of the first three- dimensional object; and causing a concurrently displaying of the wireframe model of the first three-dimensional object along with the three-dimensional packaging wireframe model. The method may further include receiving at least one user input via a user interface, the user input indicative of a geometric primitive of the first three-dimensional object; and selecting the first three- dimensional object from a plurality of three-dimensional objects represented in the image data by at least one processor, based at least in part on the user input indicative of the geometric primitive of the first three-dimensional object. Selecting the first three-dimensional object from a plurality of three-dimensional objects represented in the image data based at least in part on the user input indicative of the geometric primitive of the first three-dimensional object includes determining which of the three-dimensional objects has a geometric primitive that most closely matches the geometric primitive indicated by the received user input. The method may further include receiving at least one user input via a user interface, the user input indicative of an acceptance of the first three-dimensional packaging wireframe model; and performing at least a volumetric calculation using a number of dimensions of the selected three- dimensional packaging wireframe model. The method may further include receiving at least one user input via a user interface, the user input indicative of a rejection of the first three-dimensional packaging wireframe model; and in response to the received user input, fitting a second three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor, the second three-dimensional packaging wireframe model having a different geometric primitive than the first three-dimensional wireframe model; and causing a displaying of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display. The method may further include receiving at least one user input via a user interface, the user input indicative of a second three- dimensional packaging wireframe model, the second three-dimensional packaging wireframe model having a different geometric primitive than the first three-dimensional wireframe model; in response to the received user input, fitting the second three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor; and causing a displaying of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display by the at least one processor. The method may further include causing by the at least one processor a displaying of a plurality of user selectable icons, each corresponding to a respective one of a plurality of three-dimensional packaging wireframe model and selectable by a user to be fitted to the first three- dimensional object. The method may further include receiving at least one user input via a user interface, the user input indicative of a region of interest of the displayed image of the first three-dimensional object; and in response to the received user input, causing by the at least one processor a displaying of an enlarged image of a portion of the first three-dimensional object corresponding to the region of interest by the display. The method may further include causing by the at least one processor a displaying of a plurality of user selectable icons, each corresponding to a respective one of a plurality of three-dimensional packaging wireframe model and selectable by a user to be fitted to the first three-dimensional object. 19. The method of claim 1 wherein the volume dimensioning system comprises a computer having a first processor, a camera and the display, and the volume dimensioning system further comprises a volume dimensioning system having a second processor, the volume
dimensioning system selectively detachably coupleable to the computer, and causing a displaying of an image of the first three-dimensional packaging wireframe model fitted about an image of the first three-dimensional object on a display on which the image of the first three-dimensional object is displayed includes the second processor causing the first processor to display the image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display of the first computer.
A volume dimensioning system may be summarized as including at least one image sensor communicably coupled to at least one nontransitory processor-readable medium; at least one processor communicably coupled to the at least one nontransitory processor-readable medium; a machine executable instruction set stored within at least one nontransitory processor- readable medium, that when executed by the at least one processor causes the at least one processor to: read image data from the at least one nontransitory processor-readable medium, the image data associated with a first point of view of an area sensed by the at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determine from the received image data a number of features in three dimensions of the first three- dimensional object; based at least on part on the determined features of the first three-dimensional object, fit a first three-dimensional packaging wireframe model about the first three-dimensional object; and cause a display of an image of the first three-dimensional packaging wireframe model fitted about an image of the first three-dimensional object on a display device.
The machine executable instruction set may further include instructions, that when executed by the at least one processor cause the at least one processor to: select from a number of defined geometric primitives that define respective volumes and sizing at least one dimension of the selected geometric primitive based on a corresponding dimension of the first three-dimensional object such that the first three-dimensional object is completely encompassed by the selected and sized geometric primitive;
produce a wireframe model of the first three-dimensional object; and cause a concurrent display of the wireframe model of the first three-dimensional object along with the three-dimensional packaging wireframe model. The machine executable instruction set stored within at least one nontransitory processor- readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: responsive to a user input received by the at least one processor, change a position of at least a portion of the displayed image of the first three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; and cause a display of an updated image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display device. The machine executable instruction set stored within at least one nontransitory processor-readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: responsive to a user input received by the at least one processor, change a position of at least a portion of the displayed image of the three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; responsive to a user input received by the at least one processor, fit a second three-dimensional packaging wireframe model about the first three-dimensional object, the second three- dimensional packaging wireframe model having a different geometrical shape than the first three-dimensional wireframe model; and cause a display of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display device. The machine executable instruction set stored within at least one nontransitory processor-readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: responsive to a user input received by the at least one processor, the user input indicative of an identification of a second three-dimensional object different from the first three-dimensional object, fit a second three-dimensional packaging wireframe model about the second three-dimensional object; and cause a display of an image of the second three-dimensional packaging wireframe model fitted about the image of the second three-dimensional object on the display. The machine executable instruction set stored within at least one nontransitory processor-readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: responsive to a user input received by the at least one processor, the user input indicative of an identification of at least one portion of the first three- dimensional object, fit a three-dimensional packaging wireframe model about a first portion of the first three-dimensional object; responsive to a user input received by the at least one processor, the user input indicative of an
identification of at least one portion of the first three-dimensional object, fit a three-dimensional packaging wireframe model about a second portion of the first three-dimensional object; and cause a display of an image of the three- dimensional wireframe models fitted about the image of the first and the second portions of the first three-dimensional object on the display device. The machine executable instruction set stored within at least one nontransitory processor-readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: responsive to a user input received by the at least one processor, the user input indicative of a second three-dimensional packaging wireframe model having a different geometric primitive than the first three-dimensional wireframe model, fit the second three-dimensional packaging wireframe model about the first three- dimensional object by the at least one processor; and cause a display of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display. The machine executable instruction set stored within at least one nontransitory processor- readable medium may further include instructions, that when executed by the at least one processor cause the at least one processor to: cause a display of a plurality of user selectable icons on the display device, each user selectable icon corresponding to a respective one of a plurality of three-dimensional packaging wireframe models and selectable by a user to be fitted to the first three-dimensional object.
A method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determining from the received image data a number of features in three dimensions of the first three-dimensional object by at least one processor communicatively coupled to the at least one nontransitory processor-readable medium; based at least in part on the determined features of the first three- dimensional object, identifying a first portion and at least a second portion of the first three-dimensional object by the at least one processor; based on the determined features of the first three-dimensional object, fitting a first three- dimensional packaging wireframe model about the first portion of the first three- dimensional object by the at least one processor; based on the determined features of the first three-dimensional object, fitting a second three-dimensional packaging wireframe model about the second portion of the first three- dimensional object by the at least one processor; and causing a concurrent displaying of an image of the first and the second three-dimensional wireframe models respectively fitted about the image of the first and the second portions of the first three-dimensional object on the display.
The method may further include receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of at least one of the first three-dimensional packaging wireframe model or the second three-dimensional packaging wireframe model relative to the displayed image of the first and second portions of the first three-dimensional object, respectively; and causing a displaying of an updated image of the first and second three-dimensional packaging wireframe models fitted about the image of the first and second portions of the first three-dimensional object on the display. The method may further include receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of at least one of the first three-dimensional packaging wireframe model or the second three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; based at least in part on the received user input, fitting a replacement three-dimensional packaging wireframe model about at least one of the first or second portions of the first three-dimensional object by the at least one processor, the replacement three-dimensional packaging wireframe model having a different geometric primitive than the first or second three-dimensional wireframe model that it replaces; and causing a displaying of an image of at least the replacement three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display. The at least one processor may cause the displaying of the image of the first and the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display to rotate about an axis. The method may further include receiving image data of the area from a second point of view by at least one nontransitory processor-readable medium from at least one image sensor, the second point of view different from the first point of view; determining from the received image data at least one additional feature in three dimensions of the first three-dimensional object by at least one processor; based on the determined features of the first three-dimensional object, performing at least one of adjusting the first or second three-dimensional packaging wireframe model or fitting a third three-dimensional packaging wireframe model about at least a portion of the first three-dimensional object not discernible from the first point of view by the at least one processor; and causing a displaying of an image of at least one of the adjusted first or second three-dimensional packaging wireframe model or the first, second, and third three-dimensional packaging wireframe models fitted about the image of the first three-dimensional object on the display. Fitting a first three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor may include selecting the first three-dimensional packaging wireframe model from a number of defined geometric primitives that define respective volumes and sizing at least one dimension of the selected geometric primitive based on a corresponding dimension of the first portion of the first three-dimensional object such that the first portion of the first three-dimensional object is completely encompassed by the selected and sized geometric primitive; and wherein fitting a second three-dimensional packaging wireframe model about the second portion of the first three-dimensional object by the at least one processor may include selecting the second three-dimensional packaging wireframe model from the number of defined geometric primitives that define respective volumes and sizing at least one dimension of the selected geometric primitive based on a corresponding dimension of the second portion of the first three-dimensional object such that the second portion of the first three-dimensional object is completely encompassed by the selected and sized geometric primitive. The method may further include producing a wireframe model of the first three-dimensional object; and causing a
concurrently displaying of the wireframe model of the first three-dimensional object along with the first and second three-dimensional packaging wireframe models by the display. The method may further include receiving at least one user input via a user interface, the user input indicative of a geometric primitive of at least the first portion or the second portion of the first three-dimensional object; and selecting the first three-dimensional object from a plurality of three- dimensional objects represented in the image data by at least one processor, based at least in part on the user input indicative of the geometric primitive of at least a portion of the first three-dimensional object. Selecting the first three- dimensional object from a plurality of three-dimensional objects represented in the image data by at least one processor, based at least in part on the user input indicative of the geometric primitive of at least a portion of the first three- dimensional object may include determining which of the three-dimensional objects contains a portion having a geometric primitive that most closely matches the geometric primitive indicated by the received user input. The method may further include receiving at least one user input via a user interface, the user input indicative of an acceptance of the first three- dimensional packaging wireframe model and the second three-dimensional packaging wireframe model; and performing at least a volumetric calculation using a number of dimensions of the selected first and second three- dimensional packaging wireframe models. The method may further include receiving at least one user input via a user interface, the user input indicative of a rejection of at least one of the first three-dimensional packaging wireframe model or the second three-dimensional packaging wireframe model; and in response to the received user input, fitting a replacement three-dimensional packaging wireframe model about the first or second portion of the first three- dimensional object by the at least one processor, the replacement three- dimensional packaging wireframe model having a different geometric primitive than the first or second three-dimensional wireframe model that it replaces; and causing a displaying of an image of the replacement three-dimensional packaging wireframe model fitted about at least a portion of the image of the first three-dimensional object on the display. The method may further include receiving at least one user input via a user interface, the user input indicative of a replacement three-dimensional packaging wireframe model, the replacement three-dimensional packaging wireframe model having a different geometric primitive than at least one of the first three-dimensional wireframe model and the second three-dimensional wireframe model; in response to the received user input, fitting the replacement three-dimensional packaging wireframe model about either the first or second portion of the first three-dimensional object by the at least one processor; and causing a displaying of an image of the replacement three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display by the at least one processor. The method may further include causing by the at least one processor a displaying of a plurality of user selectable options, each user selectable option corresponding to a respective one of a plurality of three- dimensional packaging wireframe model and selectable by a user to be fitted to either the first or second portion of the first three-dimensional object.
A volume dimensioning system may be summarized as including at least one image sensor communicably coupled to at least one nontransitory processor-readable medium; at least one processor communicably coupled to the at least one nontransitory processor-readable medium; and a machine executable instruction set stored within at least one nontransitory processor- readable medium, that when executed by the at least one processor causes the at least one processor to: read image data from the at least one nontransitory processor-readable medium, the image data associated with a first point of view of an area sensed by the at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determine from the received image data a number of features in three dimensions of the first three- dimensional object; based at least in part on the determined features of the first three-dimensional object, identify a first portion and at least a second portion of the first three-dimensional object; based on the determined features of the first three-dimensional object, fit a first three-dimensional packaging wireframe model about the first portion of the first three-dimensional object; based on the determined features of the first three-dimensional object, fit a second three- dimensional packaging wireframe model about the second portion of the first three-dimensional object; and cause a concurrent display of an image of the first and the second three-dimensional wireframe models fitted about the image of the first and the second portions of the first three-dimensional object.
The first three-dimensional wireframe model may be a first geometric primitive; and wherein the second three-dimensional wireframe model may be a second geometric primitive.
A method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determining that there are insufficient features in the image data to determine a three-dimensional volume occupied by the first three- dimensional object; in response to the determination, generating an output to change at least one of a relative position or orientation of at least one image sensor with respect to at least the first three-dimensional object to obtain image data from a second point of view, the second point of view different from the first point of view.
Generating an output to change at least one of a relative position or orientation of at least one image sensor with respect to at least the first three-dimensional object to obtain image data from a second point of view may include generating at least one output, including at least one of an audio output or a visual output that is perceivable by a user. The at least one output may indicate to the user a direction of movement to change at least one of a relative position or orientation of the at least one sensor with respect to the first three- dimensional object. The method may further include causing a displaying of an image of a two-dimensional packaging wireframe model fitted about a portion of an image of the first three-dimensional object on a display on which the image of the first three-dimensional object is displayed. The causing of the displaying of the image of the two-dimensional packaging wireframe model fitted about the portion of the image of the first three-dimensional object may occur before generating the output.
A volume dimensioning system may be summarized as including at least one image sensor communicably coupled to at least one nontransitory processor-readable medium; at least one processor communicably coupled to the at least one nontransitory processor-readable medium; and a machine executable instruction set stored within at least one nontransitory processor- readable medium, that when executed by the at least one processor causes the at least one processor to: read image data from the at least one nontransitory processor-readable medium, the image data associated with a first point of view of an area sensed by the at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determine from the received image data that there are an insufficient number of features in the image data to determine a three-dimensional volume occupied by the first three-dimensional object; responsive to the determination of an insufficient number of features in the image data, generate an output to change at least one of a relative position or orientation of at least one image sensor with respect to at least the first three-dimensional object to obtain image data from a second point of view, the second point of view different from the first point of view.
The machine executable instruction set may further include instructions that when executed by the at least one processor further cause the at least one processor to: generate at least one output, including at least one of an audio output or a visual output that is perceivable by a user. The at least one output may indicate to the user a direction of movement to change at least one of a relative position or orientation of the at least one sensor with respect to the first three-dimensional object.
A method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; receiving at least one user input via a user interface
communicably coupled to at least one processor, the user input indicative of at least a portion of the three-dimensional packaging wireframe model of the first three-dimensional object; in response to the received user input, fitting the user inputted three-dimensional packaging wireframe model to at least a portion of one or more edges of the first three-dimensional object by the at least one processor; and causing a displaying of an image of the user inputted three- dimensional packaging wireframe model fitted about the image of the first three- dimensional object on the display by the at least one processor.
The at least one processor may cause the displaying of the image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display to rotate about an axis. The method may further include receiving image data of the area from a second point of view by at least one nontransitory processor-readable medium from at least one image sensor, the second point of view different from the first point of view; determining from the received image data at least one additional feature in three dimensions of the first three-dimensional object by at least one processor; based on the determined features of the first three-dimensional object, performing at least one of adjusting the three-dimensional packaging wireframe model by accepting additional user input via the user interface communicably coupled to at least one processor, the additional user input indicative the first three-dimensional packaging wireframe model; and causing a displaying of an image of at least one of the adjusted first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display. The method may further include receiving at least one user input via a user interface, the user input indicative of an acceptance of the first three-dimensional packaging wireframe model; and performing at least a volumetric calculation using a number of dimensions of the selected three- dimensional packaging wireframe model.
A method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional void to be dimensioned; determining from the received image data a number of features in three dimensions of the first three-dimensional void by at least one processor communicatively coupled to the at least one nontransitory processor-readable medium; based at least on part on the determined features of the first three- dimensional void, fitting a first three-dimensional receiving wireframe model within the first three-dimensional void by the at least one processor; and causing a displaying of an image of the first three-dimensional receiving wireframe model fitted within an image of the first three-dimensional void on a display on which the image of the first three-dimensional void is displayed.
The method may further include calculating by the at least one processor, at least one of an available receiving dimension and an available receiving volume encompassed by the first three-dimensional receiving wireframe model. The method may further include receiving by the at least one nontransitory processor-readable medium at least one of dimensional data and volume data for each of a plurality of three-dimensional objects, the
dimensional data and volume data determined based upon a respective three- dimensional packaging wireframe model fitted to each of the plurality of three- dimensional objects and corresponding to at least one of the respective dimensions and volume of each of the plurality of three-dimensional objects; and determining by the at least one processor communicably coupled to the at least one nontransitory processor-readable medium based at least in part on at least one of the available receiving dimension and an available receiving volume encompassed by the first three-dimensional receiving wireframe model at least one of a position and an orientation of at least a portion of the plurality of three-dimensional objects within the first three-dimensional void; wherein at least one of the position and the orientation of at least a portion of the plurality of three-dimensional objects within the first three-dimensional void minimizes at least one of: at least one dimension occupied by at least a portion of the plurality of three-dimensional objects within the first three-dimensional void, or a volume occupied by at least a portion of the plurality of three-dimensional objects within the first three-dimensional void. The method may further include indicating at least one of the position and the orientation of each of the three- dimensional packaging wireframes associated with each of the plurality of three-dimensional objects within the first three-dimensional void on the display.
A volume dimensioning system may be summarized as including at least one image sensor communicably coupled to at least one nontransitory processor-readable medium; at least one processor communicably coupled to the at least one nontransitory processor-readable medium; and a machine executable instruction set stored within at least one nontransitory processor- readable medium, that when executed by the at least one processor causes the at least one processor to: read image data from the at least one nontransitory processor-readable medium, the image data associated with a first point of view of an area sensed by the at least one image sensor, the area including at least a first three-dimensional void to be dimensioned; determine from the received image data a number of features in three dimensions of the first three- dimensional void; based at least on part on the determined features of the first three-dimensional void, fit a first three-dimensional receiving wireframe model within the first three-dimensional void; and cause a display of an image of the first three-dimensional receiving wireframe model fitted within an image of the first three-dimensional void on the display device.
The machine executable instruction set may further include instructions, that when executed by the at least one processor further cause the at least one processor to: determine at least one of an available receiving dimension and an available receiving volume encompassed by the first three- dimensional receiving wireframe model; receive from the at least one
nontransitory processor-readable medium at least one of dimensional data and volume data for each of a plurality of three-dimensional objects, the
dimensional data and volume data determined based upon a respective three- dimensional packaging wireframe model fitted to each of the plurality of three- dimensional objects and corresponding to at least one of the respective dimensions and volume of each of the plurality of three-dimensional objects; and determine based at least in part on at least one of the available receiving dimension and the available receiving volume encompassed by the first three- dimensional receiving wireframe model at least one of a position and an orientation of at least a portion of the plurality of three-dimensional objects within the first three-dimensional void; wherein at least one of the position and the orientation of at least a portion of the plurality of three-dimensional objects within the first three-dimensional void minimizes at least one of: at least one dimension occupied by at least a portion of the plurality of three-dimensional objects within the first three-dimensional void, or a volume occupied by at least a portion of the plurality of three-dimensional objects within the first three- dimensional void.
A method of operation of a volume dimensioning system may be summarized as including receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determining from the received image data a number of features in three dimensions of the first three-dimensional object by at least one processor communicatively coupled to the at least one nontransitory processor-readable medium; based at least on part on the determined features of the first three- dimensional object, fitting a first three-dimensional packaging wireframe model selected from a wireframe library stored within the at least one nontransitory processor-readable medium about the first three-dimensional object by the at least one processor; receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of the first three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; associating via the processor, a plurality of points differentiating the changed first three- dimensional packaging wireframe model from all existing wireframe models within the wireframe library, and the storing the changed first three-dimensional packaging wireframe model in the wireframe library; and reviewing via the processor, the wireframe model stored within the wireframe library and associated with the changed first three-dimensional packaging wireframe model for subsequent fitting about a new three-dimensional object based at least in part on the plurality of points differentiating the changed first three-dimensional packaging wireframe model from all existing wireframe models within the wireframe library.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.
Figure 1 A is a schematic diagram of an example volume dimensioning system coupled to a host computer, with two three-dimensional objects disposed within the field-of-view of the host system camera and the field-of-view of the volume dimensioning system image sensor.
Figure 1 B is a block diagram of the example volume dimensioning system and host computer depicted in Figure 1A. Figure 2 is an example volume dimensioning method using a volume dimensioning system including an image sensor, a non-transitory, machine-readable storage, a processor, a camera, and a display device.
Figure 3 is an example volume dimensioning method based on the method depicted in Figure 2 and including receipt of a corrected first three- dimensional packaging wireframe model.
Figure 4 is an example volume dimensioning method based on the method depicted in Figure 2 and including selection of a second three- dimensional packaging wireframe model to replace the first three-dimensional packaging wireframe model.
Figure 5 is an example volume dimensioning method based on the method depicted in Figure 2 and including fitting a first three-dimensional packaging wireframe model about a first three-dimensional object and fitting a second three-dimensional packaging wireframe model about a second three- dimensional object.
Figure 6 is an example volume dimensioning method based on the method depicted in Figure 2 and including fitting a three-dimensional packaging wireframe model about a first portion of a first three-dimensional object and fitting a three-dimensional packaging wireframe model about a second portion of the first three-dimensional object.
Figure 7 is an example volume dimensioning method based on the method depicted in Figure 2 and including rotation of the first three- dimensional packaging wireframe model to detect the existence of additional three-dimensional features of the three-dimensional object and adjustment of the first three-dimensional packaging wireframe model or addition of a second three-dimensional packaging wireframe model to encompass the additional three-dimensional features.
Figure 8 is an example volume dimensioning method based on the method depicted in Figure 2 and including receipt of an input including a geometric primitive and selection of three-dimensional objects within the point of view of the image sensor that are substantially similar to or match the received geometric primitive input.
Figure 9 is an example volume dimensioning method based on the method depicted in Figure 2 and including acceptance of the fitted first three-dimensional packaging wireframe model and calculation of the
dimensions and the volume of the first three-dimensional packaging wireframe model.
Figure 10 is an example volume dimensioning method based on the method depicted in Figure 2 and including receipt of an input rejecting the first three-dimensional packaging wireframe model fitted to the three- dimensional object and selection and fitting of a second three-dimensional packaging wireframe model to the first three-dimensional object.
Figure 1 1 is an example volume dimensioning method based on the method depicted in Figure 2 and including receipt of an input selecting a second three-dimensional packaging wireframe model and fitting of the second three-dimensional packaging wireframe model to the first three-dimensional object.
Figure 12 is an example volume dimensioning method based on the method depicted in Figure 2 and including receipt of an input indicating a region of interest within the first point of view and the display of an enlarged view of the region of interest.
Figure 13 is an example volume dimensioning method including autonomous identification of first and second portions of a first three- dimensional object and fitting three-dimensional packaging wireframe models about each of the respective first and second portions of the three-dimensional object.
Figure 14 is an example volume dimensioning method including the determination that an insufficient number of three-dimensional features are visible within the first point of view to permit the fitting of a first three- dimensional packaging wireframe model about the three-dimensional object. Figure 15 is a schematic diagram of an example volume dimensioning system coupled to a host computer, with a three-dimensional void disposed within the field-of-view of the host system camera and the field-of- view of the volume dimensioning system image sensor.
Figure 16 is an example volume dimensioning method including the fitting of a first three-dimensional receiving wireframe model within a first three-dimensional void, for example an empty container to receive one or more three-dimensional objects.
Figure 17 is an example volume dimensioning method based on the method depicted in Figure 15 and including the receipt of dimensional or volumetric data associated with one or more three-dimensional packaging wireframe models and the determining of positions or orientations of the one or more three-dimensional packaging wireframe models within the three- dimensional void.
Figure 18 is an example volume dimensioning method including the selection of a first geometric primitive based on a pattern of feature points, the rejection of the first three-dimensional packaging wireframe model, the selection of a second geometric primitive based on the pattern of feature points, and the future selection of the second geometric primitive for a similar pattern of feature points.
DETAILED DESCRIPTION
In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with sources of electromagnetic energy, operative details
concerning image sensors and cameras and detailed architecture and operation of the host computer system have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments. Unless the context requires otherwise, throughout the
specification and claims which follow, the word "comprise" and variations thereof, such as, "comprises" and "comprising" are to be construed in an open, inclusive sense, that is, as "including, but not limited to."
Reference throughout this specification to "one embodiment" or
"an embodiment" means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases "in one embodiment" or "in an embodiment" in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As used in this specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the content clearly dictates otherwise. It should also be noted that the term "or" is generally employed in its sense including "and/or" unless the content clearly dictates otherwise.
The headings and Abstract of the Disclosure provided herein are for convenience only and do not interpret the scope or meaning of the embodiments.
Volume dimensioning systems provide dimensional and
volumetric data for one or more three-dimensional objects located within a given point of view without requiring the laborious and time-consuming task of hand measuring and calculating the volume of each individual object. Volume dimensioning systems typically employ one or more image sensors to obtain or otherwise capture an image containing the one or more three-dimensional objects located within the field-of-view of the image sensor. Based on the shape, overall complexity, or surface contours of each of the three-dimensional objects, the volume dimensioning system can select one or more geometric primitives from a library to serve as a model of the three-dimensional object. A wireframe packaging model based, at least in part, on the selected one or more geometric primitives can then be scaled or fitted to encompass the image of each respective three-dimensional object. The scaled and fitted wireframe provides a packaging wireframe that includes sufficient t space about the three- dimensional to include an estimate of the packaging, blocking, padding, and wrapping used to ship the three-dimensional object. Thus, the three- dimensional packaging wireframe model generated by the system can be used to provide shipping data such as the dimensions and volume of not just the three-dimensional object itself, but also any additional packaging or boxing necessary to ship the three-dimensional object.
For example, a box shaped three-dimensional object may result in the selection of a single, cubic, geometric primitive by the volume dimensioning system as approximating the packaging of the actual three-dimensional object. The three-dimensional packaging wireframe model associated with a cubic geometric primitive can then be scaled and fitted to the image of the actual three-dimensional object within the volume dimensioning system to provide a model approximating the size and shape of the packaging of the actual three- dimensional object. From the virtual representation of the three-dimensional object provided by the three-dimensional packaging wireframe model, the length, width, height, and volume of the packaging can be determined by the volume dimensioning system.
In a more complex example, an obelisk shaped three-dimensional object may result in the selection of two geometric primitives by the volume dimensioning system, a rectangular prism representing the body of the obelisk and a four-sided pyramid representing the top of the obelisk. The three- dimensional packaging wireframe models associated with each of these geometric primitives can then be scaled and fitted to the image of the actual three-dimensional object within the volume dimensioning system to provide a model approximating the size, shape, and proportions of the actual, packaged, three-dimensional object. From the virtual representation of the three- dimensional object provided by the three-dimensional packaging wireframe model, the length, width, height, and volume of the packaged obelisk can be determined by the volume dimensioning system. By fitting one or more geometric primitives about three-dimensional objects having even highly complex surface features can be encompassed by the one or more relatively simple geometric primitives to provide a three-dimensional packaging wireframe model of the packaged three-dimensional object that includes allowances for packing, padding, bracing, and boxing of the three-dimensional object.
Advantageously, the volume dimensioning system can permit a user to identify special handling instructions, fragile surfaces, shipping orientation, and the like on the three-dimensional packaging wireframe model. Such handling instructions can then be associated with a given object and where the volume dimensioning system is used to perform load planning, objects can be positioned and oriented within the load plan in accordance with the handling instructions.
Additionally, the interactive nature of the volume dimensioning system can advantageously permit a user to enter, select, or modify the three- dimensional packaging wireframe model fitted to a particular three-dimensional object to more closely follow the actual outline, shape, contours, or surfaces of the object. In some instances, the system can "learn" new geometric primitives or wireframe models based on received user input, for example user input altering or modifying the three-dimensional packaging wireframe model fitted by the volume dimensioning system about three-dimensional objects having a characteristic size or shape.
Figure 1 A depicts an illustrative volume dimensioning system 1 10 physically and communicably coupled to a host computer 150 using one or more data busses 1 12. The volume dimensioning system 1 10 is equipped with an image sensor 1 14 having a field-of-view 1 16. The host computer 150 is equipped with a camera 152 having a field-of-view 154 and a display device 156.
Two three-dimensional objects, a pyramidal three-dimensional object 102a and a cubic three-dimensional object 102b (collectively 102) appear within the field-of-view 1 16 of the image sensor 1 14 and the field-of- view 154 of the camera 152. The three-dimensional objects 102 are depicted as surrounded by a scaled and fitted pyramidal geometric primitive 104a and a scaled and fitted cubic geometric primitive 104b (collectively 104) as displayed upon on the one or more display devices 156. Scaled, fitted, three-dimensional packaging wireframe models 106a, 106b (collectively 106) are depicted as encompassing the scaled and fitted geometric primitives 104a, 104b, respectively.
The scaled, fitted three-dimensional packaging wireframe models 106 may be generated by the host computer 150 or, more preferably by the volume dimensioning system 1 10. The image on the display device 156 is a provided in part using the image data acquired by the camera 152 coupled to the host computer system 150 which provides the virtual representation of the three-dimensional objects 104, and in part using the scaled and fitted three- dimensional packaging wireframe models 106 provided by the volume dimensioning system 1 10. Data, including visible image data provided by the camera 152 and depth map data and intensity image data provided by the image sensor 1 14 is exchanged between the host computer 150 and the volume dimensioning system 1 10 via the one or more data busses 1 12. In some instances, the volume dimensioning system 1 10 and the host computer system 150 may be partially or completely incorporated within the same housing, for example a self service kiosk or a handheld computing device.
Figure 1 B depicts an operational level block diagram of the volume dimensioning system 1 10 and the host computer 150. The volume dimensioning system 1 10 can include the image sensor 1 14 communicably coupled to one or more non-transitory, machine-readable storage media 1 18 and one or more processors 120 that are also communicably coupled to the one or more non-transitory, machine-readable storage media 1 18. The one or more processors 120 includes an interface 122 used to exchange data between the volume dimensioning system 1 10 and the host computer system 150 via the one or more data busses 1 12. The interface 122 can include an I/O controller, serial port, a parallel port, or a network suitable for receipt of the one or more data busses 1 12. In one preferred embodiment, the interface 122 can be an I/O controller having at least one universal serial bus ("USB") connector, and the one or more data busses 1 12 can be a USB cable. The volume
dimensioning system 1 10 can be at least partially enclosed within a housing 124. In a preferred embodiment, the housing 124 can be detachably attached to the host computer system 150 using one or more attachment features on the exterior surface of the housing 124, the exterior surface of the host computer 150, or exterior surfaces of both the housing 124 and the host computer 150.
The host computer system 150 can include the camera 152 which is communicably coupled to a first bridge processor (e.g., a southbridge processor) 162 via one or more serial or parallel data buses, for example a universal serial bus ("USB"), a small computer serial interface ("SCSI") bus, a peripheral component interconnect ("PCI") bus, an integrated drive electronics ("IDE") bus or similar. One or more local busses 164 communicably couple the first bridge processor 162 to a second bridge processor (e.g., a northbridge processor) 176. The one or more non-transitory, machine-readable storage medium 158 and central processing units ("CPUs") 160 are communicably coupled to the second bridge processor 176 via one or more high-speed or high bandwidth busses 168. The one or more display devices 156 are coupled to the second bridge processor 176 via an interface 170 such as a Digital Visual Interface ("DVI") or a High Definition Multimedia Interface ("HDMI"). In some instances, for example where the one or more display devices 156 include at least one touch-screen display device capable of receiving user input to the host computer 150, some or all of the one or more display devices 156 may also be communicably coupled to the first bridge processor 162 via one or more USB interfaces 172.
The volume dimensioning system 1 10 is communicably coupled to the host computer 150 via one or more communication or data interfaces, for example one or more USB interfaces coupled to a USB bus 174 within the host computer. The USB bus 174 may also be shared with other peripheral devices, such as one or more I/O devices 166, for example one or more keyboards, pointers, touchpads, trackballs, or the like. The host computer 150 can be of any size, structure, or form factor, including, but not limited to a rack mounted kiosk system, a desktop computer, a laptop computer, a netbook computer, a handheld computer, or a tablet computer. Although for clarity and brevity one specific host computer architecture was presented in detail, those of ordinary skill in the art will appreciate that any host computer architecture may be used or substituted with equal effectiveness.
Referring now in detail to the volume dimensioning system 1 10, the image sensor 1 14 includes any number of devices, systems, or
apparatuses suitable for obtaining three-dimensional image data from the scene within the field-of-view 1 16 of the image sensor 1 14. Although referred to herein as a "three-dimensional image data" it should be understood by one of ordinary skill in the art that the term may apply to more than one three- dimensional image and therefore would equally apply to "three-dimensional video images" which may be considered to comprise a series or time-lapse sequence including a plurality of "three-dimensional images." The three- dimensional image data acquired or captured by the image sensor 1 14 can include data collected using electromagnetic radiation either falling within the visible spectrum {e.g., wavelengths in the range of about 360 nm to about 750 nm) or falling outside of the visible spectrum {e.g., wavelengths below about 360 nm or above about 750 nm). For example, three-dimensional image data may be collected using infrared, near-infrared, ultraviolet, or near-ultraviolet light. The three-dimensional image data acquired or captured by the image sensor 1 14 can include data collected using laser or ultrasonic based imaging technology. In some embodiments, a visible, ultraviolet, or infrared
supplemental lighting system (not shown) may be synchronized to and used in conjunction with the volume dimensioning system 100. For example, a supplemental lighting system providing one or more structured light patterns or a supplemental lighting system providing one or more gradient light patterns may be used to assist in acquiring, capturing, or deriving three-dimensional image data from the scene within the field-of-view 1 16 of the image sensor 1 14. In a preferred embodiment, the image sensor 1 14 includes a single sensor capable of acquiring both depth data providing a three- dimensional depth map and intensity data providing an intensity image for objects within the field-of-view 1 16 of the image sensor 1 14. The acquisition of depth and intensity data using a single image sensor 1 14 advantageously eliminates parallax and provides a direct mapping between the depth map and the intensity image. The depth map and intensity image may be collected in an alternating sequence by the image sensor 1 14 and the resultant depth data and intensity data stored within the one or more non-transitory, machine-readable storage media 1 18.
The three-dimensional image data captured or acquired by the image sensor 1 14 may be in the form of an analog signal that is converted to digital data using one or more analog-to-digital ("A/D") converters (not shown) within the image sensor 1 14 or within the volume dimensioning system 1 10 prior to storage within the one or more non-transitory, machine-readable, storage media 1 18. Alternatively, the three-dimensional image data captured or acquired by the image sensor 1 14 may be in the form of one or more digital data groups, structures, or files comprising digital data supplied directly by the image sensor 1 14.
The image sensor 1 14 can be formed from or contain any number of image capture elements, for example picture elements or "pixels." For example, the image sensor 1 14 can have between 1 ,000,000 pixels (1 MP) and 100,000,000 pixels (100 MP). The image sensor 1 14 can include any number of current or future developed image sensing devices or systems, including, but not limited to, one or more complementary metal-oxide semiconductor
("CMOS") sensors or one or more charge-coupled device ("CCD") sensors.
In some embodiments, the three-dimensional image data captured by the image sensor 1 14 can include more than one type of data associated with or collected by each image capture element. For example, in some embodiments, the image sensor 1 14 may capture depth data related to a depth map of the three-dimensional objects within the point of view of the image sensor 1 14 and may also capture intensity data related to an intensity image of the three-dimensional objects in the field-of-view of the image sensor 1 14. Where the image sensor 1 14 captures or otherwise acquires more than one type of data, the data in the form of data groups, structures, files or the like may be captured either simultaneously or in an alternating sequence by the image sensor 1 14.
In some embodiments, the image sensor 1 14 may also provide visible image data capable of providing a visible black and white, grayscale, or color image of the three-dimensional objects 102 within the field-of-view 1 16 of the image sensor 1 14. Where the image sensor 1 14 is able to provide visible image data, the visible image data may be communicated to the host computer 150 for display on the one or more display devices 156. In some instances, where the image sensor 1 14 is able to provide visible image data, the host computer system camera 152 may be considered optional and may be eliminated.
Data is communicated from the image sensor 1 14 to the one or more non-transitory machine readable storage media 1 18 via one or more serial or parallel data busses 126. The one or more non-transitory, machine- readable storage media 1 18 can be any form of data storage device including, but not limited to, optical data storage, electrostatic data storage,
electroresistive data storage, magnetic data storage, and molecular data storage. In some embodiments, all or a portion of the one or more non- transitory, machine-readable storage media 1 18 may be disposed within the one or more processors 120, for example in the form of a cache or similar non- transitory memory structure capable of storing data or machine-readable instructions executable by the one or more processors 120.
In at least some embodiments, the volume dimensioning system 1 10 including the image sensor 1 14, the communicably coupled one or more non-transitory, machine-readable storage media 1 18, and the communicably coupled one or more processors 120 are functionally combined to provide a system capable of selecting one or more geometric primitives 104 to virtually represent each of the one or more three-dimensional objects 102 appearing in the field-of-view 1 16 of the image sensor 1 14. Using the selected one or more geometric primitives 104, the system can then fit a three-dimensional packaging wireframe model 106 about each of the respective three-dimensional objects 102.
The one or more non-transitory, machine-readable storage media 1 18 can have any data storage capacity from about 1 megabyte (1 MB) to about 3 terabytes (3 TB). In some embodiments two or more devices or data structures may form all or a portion of the one or more non-transitory, machine- readable storage media 1 18. For example, in some embodiments, the one or more non-transitory, machine-readable storage media 1 18 can include an nonremovable portion including a non-transitory, electrostatic, storage medium and a removable portion such as a Secure Digital (SD) card, a compact flash (CF) card, a Memory Stick, or a universal serial bus ("USB") storage device.
The one or more processors 120 can execute one or more instruction sets that are stored in whole or in part in the one or more non- transitory, machine-readable storage media 1 18. The machine executable instruction set can include instructions related to basic functional aspects of the one or more processors 120, for example data transmission and storage protocols, communication protocols, input/output ("I/O") protocols, USB protocols, and the like. Machine executable instruction sets related to all or a portion of the volume dimensioning functionality of the volume dimensioning system 1 10 and intended for execution by the one or more processors 120 may also be stored within the one or more non-transitory, machine-readable storage media 1 18, within the one or more processors 120, or within both the one or more non-transitory, machine-readable storage media 1 18 and the one or more processors 120. Additional volume dimensioning system 1 10 functionality may also be stored in the form of one or more machine executable instruction sets within the one or more non-transitory, machine-readable storage media 1 18. Such functionality may include system security settings, system configuration settings, language preferences, dimension and volume preferences, and the like.
The one or more non-transitory, machine-readable storage media 1 18 may also store a library containing a number of geometric primitives useful in the construction of three-dimensional packaging wireframe models by the one or more processors 120. As used herein, the term "geometric primitive" refers to a simple three-dimensional geometric shape such as a cube, cylinder, sphere, cone, pyramid, torus, prism, and the like that may be used individually or combined to provide a virtual representation of more complex three- dimensional geometric shapes or structures. The geometric primitives stored within the one or more non-transitory, machine-readable storage media 1 18 are selected by the one or more processors 120 as basic elements in the construction of a virtual representation 104 of each of the three-dimensional objects 102 appearing within the field-of-view 1 16 of the image sensor 1 14. The construction of the virtual representation 104 by the one or more
processors 120 is useful in fitting properly scaled three-dimensional packaging wireframe models 106 to each of the three-dimensional objects 102 appearing in the field-of-view 1 16 of the image sensor 1 14. A properly scaled three- dimensional packaging wireframe model 106 permits the accurate
determination of dimensional and volumetric data for each of the three- dimensional objects 102 appearing in the field-of-view 1 16 of the image sensor 1 14. A properly scaled and fitted three-dimensional packaging wireframe model 106 will fall on the boundaries of the geometric primitive 104 fitted to the three-dimensional object 102 by the one or more processors 120 as viewed on the one or more display devices 156 as depicted in Figure 1A.
Data is transferred between the one or more non-transitory, machine-readable storage media 1 18 and the one or more processors 120 via one or more serial or parallel bi-directional data busses 128. The one or more processors 120 can include any device comprising one or more cores or independent central processing units that are capable of executing one or more machine executable instruction sets. The one or more processors 120 can, in some embodiments, include a general purpose processor such as a central processing unit ("CPU") including, but not limited to, an Intel® Atom® processor, an Intel® Pentium®, Celeron®, or Core 2® processor, and the like. In other embodiments the one or more processors 120 can include a system-on-chip ("SoC") architecture, including, but not limited to, the Intel® Atom® System on Chip ("Atom SoC") and the like. In other embodiments, the one or more processors 120 can include a dedicated processor such as an application specific integrated circuit ("ASIC"), a programmable gate array ("PGA" or "FPGA"), a digital signal processor ("DSP"), or a reduced instruction set computer ("RISC") based processor. Where the volume dimensioning system 1 10 is a battery-powered portable system, the one or more processors 120 can include one or more low power consumption processors, for example Intel® Pentium M®, or Celeron M® mobile system processors or the like, to extend the system battery life.
Data in the form of three-dimensional image data, three- dimensional packaging wireframe model data, instructions, input/output requests and the like may be bi-directionally transferred from the volume dimensioning system 1 10 to the host computer 150 via the one or more data busses 1 12. Within the host computer 150, the three-dimensional packaging wireframe model 106 data can, for example, be combined with visual image data captured or acquired by the camera 152 to provide a display output including a visual image of one or more three-dimensional objects 102 appearing in both the camera 152 field-of-view 154 and the image sensor 1 14 field-of-view 1 16 encompassed by the geometric primitive 104 and the fitted three-dimensional packaging wireframe models 106 provided by the volume dimensioning system 1 10.
Referring now in detail to the host computer system 150, the camera 152 can acquire or capture visual image data of the scene within the field-of-view 154 of the camera 152. As a separate device that is discrete from the image sensor 1 14, the camera 152 will have a field-of-view 154 than differs from the image sensor 1 14 field-of-view 1 16. In at least some embodiments, the one or more CPUs 160, the one or more processors 120, or a combination of the one or more CPUs 160 and the one or more processors 120 will calibrate, align, map, or otherwise relate the field-of-view 154 of the camera 152 to the field-of-view 1 16 of the image sensor 1 14 thereby linking or spatially mapping in two-dimensional space or three-dimensional space the visual image data captured or acquired by the camera 152 to the three-dimensional image data captured or acquired by the image sensor 1 14. In a preferred
embodiment, when the volume dimensioning system 1 10 is initially
communicably coupled to the host computer 150, the one or more processors 120 in the volume dimensioning system 1 10 are used to calibrate, align, or spatially map in three-dimensions the field-of-view 1 16 of the image sensor 1 14 to the field-of-view 154 of the camera 152 such that three-dimensional objects 102 appearing in the field-of-view 1 16 of the image sensor 1 14 are spatially mapped or correlated in three-dimensions to the same three-dimensional objects 102 appearing in the field-of-view 154 of the camera 152.
The camera 152 can be formed from or contain any number of image capture elements, for example picture elements or "pixels." For example, the camera 152 may have between 1 ,000,000 pixels (1 MP) and 100,000,000 pixels (100 MP). In some embodiments, the camera 152 may capture or acquire more than one type of data, for example the camera 152 may acquire visual image data related to the visual image of the scene within the field-of-view 154 of the camera 152 as well as infrared image data related to an infrared image of the scene within the field-of-view 154 of the camera 152. Where the camera 152 captures or otherwise acquires more than one type of image data, the data may be collected into one or more data groups, structures, files, or the like.
In some embodiments, the visual image data captured or acquired by the camera 152 may originate as an analog signal that is converted to digital visual image data using one or more internal or external analog-to-digital ("A/D") converters (not shown). In other embodiments, the visual image data acquired by the camera 152 is acquired in the form of digital image data provided directly from one or more complementary metal-oxide semiconductor ("CMOS") sensors or one or more charge-coupled device ("CCD") sensors disposed at least partially within the camera 152. At least a portion of the visual image data from the camera 152 is stored in the one or more non- transitory, machine-readable storage media 158 in the form of one or more data groups, structures, or files.
Image data is transferred between the camera 152 and the one or more non-transitory, machine-readable storage media 158 via the first bridge processor 162, the second bridge processor 176 and one or more serial or parallel data buses 164, 168. The image data provided by the camera 152 can be stored within the one or more non-transitory, machine-readable storage media 158 in one or more data groups, structures, or files. The one or more non-transitory, machine-readable storage media 158 can have any data storage capacity from about 1 megabyte (1 MB) to about 3 terabytes (3 TB). In some embodiments two or more devices or data structures may form all or a portion of the one or more non-transitory, machine-readable storage media 158. For example, in some embodiments, the one or more non-transitory, machine- readable storage media 158 can include an non-removable portion including a non-transitory, electrostatic, storage medium and a removable portion such as a Secure Digital (SD) card, a compact flash (CF) card, a Memory Stick, or a universal serial bus ("USB") storage device.
Data is transferred between the one or more non-transitory, machine-readable storage media 158 and the one or more CPUs 160 via the second bridge processor 176 and one or more serial or parallel bi-directional data busses 168. The one or more CPUs 160 can include any device comprising one or more cores or independent central processing units that are capable of executing one or more machine executable instruction sets. The one or more CPUs 160 can, in some embodiments, include a general purpose processor including, but not limited to, an Intel® Atom® processor, an Intel® Pentium®, Celeron®, or Core 2® processor, and the like. In other embodiments the one or more CPUs 160 can include a system-on-chip ("SoC") architecture, including, but not limited to, the Intel Atom System on Chip ("Atom SoC") and the like. In other embodiments, the one or more CPUs 160 can include a dedicated processor such as an application specific integrated circuit ("ASIC"), a programmable gate array ("PGA" or "FPGA"), a digital signal processor ("DSP"), or a reduced instruction set computer ("RISC") based processor. Where the host computer 150 is a battery-powered portable system, the one or more CPUs 160 can include one or more low power consumption processors, for example Intel® Pentium M®, or Celeron M® mobile system processors or the like, to extend the system battery life.
Recall, the calibration or alignment process between the camera
152 and the image sensor 1 14 correlated, aligned, or spatially mapped the field-of-view 154 of the camera 152 with the field of view 1 16 of the image sensor 1 14 upon initial coupling of the volume dimensioning system 1 10 to the host computer 150. The image data captured or acquired by the camera 152 will therefore be spatially mapped, aligned, or correlated with the three- dimensional image data captured or acquired by the image sensor 1 14.
Advantageously, the three-dimensional packaging wireframe models 106 fitted by the one or more processors 120 to the three-dimensional objects 102 in the field-of-view 1 16 of the image sensor 1 14 will align with the image of the three- dimensional objects 102 when viewed on the one or more display devices 156. Merging, overlaying, or otherwise combining the three-dimensional packaging wireframe models 106 provided by the one or more processors 120 with the image data captured or acquired by the camera 152 creates a display image on the one or more display devices 156 that contains both an image of the three- dimensional object 102 and the corresponding three-dimensional packaging wireframe model 106.
The host computer 150 may have one or more discrete graphical processing units (GPUs - not shown) or one or more GPUs integrated with the one or more CPUs 160. The one or more CPUs 160 or one or more GPUs can generate a display image output to provide a visible image on the one or more display devices 156. The display image output can be routed through the second bridge processors 176 to the one or more display devices 156 in the host computer system 150. The one or more display devices 156 include at least an output device capable of providing a visible image perceptible to the unaided human eye. In at least some embodiments, the one or more display devices 156 can include one or more input devices, for example a resistive or capacitive touch-screen. The one or more display devices 156 can include any current or future, analog or digital, two-dimensional or three-dimensional display technology, for example cathode ray tube ("CRT"), light emitting diode ("LED"), liquid crystal display ("LCD"), organic LED ("OLED"), digital light processing ("DLP"), elnk, and the like. In at least some embodiments, the one or more display devices 156 may be self-illuminating or provided with a backlight such as a white LED to facilitate use of the system 100 in low ambient light environments.
One or more peripheral I/O devices 166 may be communicably coupled to the host computer system 150 to facilitate the receipt of user input by the host computer 150 via a pointer, a keyboard, a touchpad, or the like. In at least some embodiments the one or more peripheral I/O devices 166 may be USB devices that are communicably coupled to the USB bus 174. In at least some embodiments, the one or more peripheral I/O devices 166 or the one or more display devices 156 may be used by the one or more processors 120 or one or more CPUs 160 to receive specialized shipping instructions associated with one or more three-dimensional objects 102 from a user. Such specialized instructions can include any data provided by the user that is relevant to how a particular three-dimensional object 102 should be handled, and can include, but is not limited to, designation of fragile areas, designation of proper shipping orientation, designation of top-load only or crushable contents, and the like. Upon receipt of the specialized shipping instructions, the one or more
processors 120 or the one or more CPUs 160 can associate the instructions with a particular three-dimensional packaging wireframe model 106 which thereby links the instructions with a particular three-dimensional object 102. Figure 2 shows a method 200 of operation of an example illustrative volume dimensioning system such as the system depicted in Figures 1 A and 1 B. Data captured or acquired by the image sensor 1 14 is used by the one or more processors 120 to select one or more geometric primitives 104, for example from a library in the one or more non-transitory, machine-readable storage media 1 18. The one or more geometric primitives 104 selected by the one or more processors 120 are used to construct a virtual representation of the packaging about the one or more three-dimensional objects 102 appearing in the field-of-view 1 16 of the image sensor 1 14. The one or more processors 120 can therefore use the one or more selected geometric primitives 104 to construct a three-dimensional packaging wireframe model 106 that, when fitted to the three-dimensional object 102, provides a three-dimensional packaging wireframe model 106 that is scaled and fitted to encompass or otherwise contain the three-dimensional object 102.
The one or more processors 120 can use the plurality of features identified on the three-dimensional object 102 in selecting the one or more geometric primitives 104 from the library. The three-dimensional packaging wireframes 106 encompassing each three-dimensional object 102 within the volume dimensioning system 1 10 permit a reasonably accurate determination of the dimensions and volume of each three-dimensional object 102. The user benefits from accurate dimensional and volumetric information by receiving accurate shipping rates based on the object's true size and volume. Carriers benefit from accurate dimensional and volumetric information by having access to data needed to optimize the packing of the objects for transport and the subsequent routing of transportation assets based upon reasonably accurate load data.
At 202, the image sensor 1 14 captures or acquires three- dimensional image data which is communicated to the one or more non- transitory, machine-readable storage media 1 18 via one or more data busses 126. The three-dimensional image data captured by the image sensor 1 14 includes a first three-dimensional object 102 disposed within the field-of-view 1 16 of the image sensor 1 14. The three-dimensional image data captured by the image sensor 1 14 may include depth data providing a depth map and intensity data providing an intensity image of the field-of-view 1 16 of the image sensor 1 14. At least a portion of the three-dimensional image data received by the one or more non-transitory, machine-readable storage media 1 18 is communicated to or otherwise accessed by the one or more processors 120 in order to select one or more geometric primitives 104 preparatory to fitting a first three-dimensional packaging wireframe model 106 about all or a portion of the first three-dimensional object 102.
At 204, based in whole or in part on the three-dimensional image data received from the image sensor 1 14, the one or more processors 120 determine a number of features on the first three-dimensional object 102 contained in the three-dimensional image data. The features may include any point, edge, or other discernible structure on the first three-dimensional object 102 and detectible in the image represented by the three-dimensional image data. For example, one or more features may correspond to a three- dimensional point on the three-dimensional object 102 that is detectible in a depth map containing the first three-dimensional object, an intensity image in which the three-dimensional object, or both a depth map and an intensity image in which the first three-dimensional object 102 appears as is represented. The identified features may include boundaries or defining edges of the first three- dimensional object, for example corners, arcs, lines, edges, angles, radii, and similar characteristics that define all or a portion of the external boundary of the first three-dimensional object 102.
At 206, based at least in part on the features identified in 204 the one or more processors 120 selects one or more geometric primitives 104 from the library. The one or more processors 120 use the selected one or more geometric primitives 104 to roughly represent the packaging encompassing first three-dimensional object 102 making allowances for any specialized packing instructions (e.g., fragile surfaces, extra packing, unusual packing shapes, etc.) that may have been provided by the user. The one or more processors 120 fit a three-dimensional packaging wireframe model 106 about all or a portion of the first three-dimensional object 102 that encompasses substantially all of the processor identified features defining an external boundary of the first three- dimensional object 102 and reflecting any specialized packing instructions provided by the user.
For example, where the first three-dimensional object 102 is a cube, the one or more processors 120 may identify seven or more features {e.g., four defining the corners of one face of the cube, two additional defining the corners of a second face of the cube and one defining the fourth corner of the top of the cube). The user may have identified one surface of the cube as requiring "extra packaging." Based on these indentified features and the user's specialized packing instructions, the one or more processors 120 may select a rectangular prismatic geometric primitive 104 accommodating the cubic three- dimensional object 102 and the extra packaging requirements identified by the user and use the selected rectangular prismatic geometric primitive 104 to fit a first three-dimensional packaging wireframe model 106 that substantially encompasses the cubic first three-dimensional object 102 and the associated packaging surrounding the object.
In another example, the first three-dimensional object 102 may be a cylinder and the one or more processors 120 may identify a number of features about the face and defining the height of the cylinder. Based on these identified features, the one or more processors 120 may select a cylindrical geometric primitive 104 and use the selected geometric primitive to fit a first three-dimensional packaging wireframe model 106 to the cylindrical first three- dimensional object 102 that substantially encompasses the object and includes an allowance for packaging materials about the cylindrical three-dimensional object 102.
Based at least in part on the identified features, the one or more processors 120 may search the library for one or more geometric primitives 104 having features, points, or nodes substantially similar to the spatial
arrangement of the identified features, points, or nodes associated with the first three-dimensional object 102. In searching the library, the one or more processors may use one or more appearance-based or feature-based shape recognition or shape selection methods. For example a "large modelbases" appearance-based method using eigenfaces may be used to select geometric primitives 104 appropriate for fitting to the first three-dimensional object 102.
At 208, the one or more processors 120 can generate a video, image, or display output that includes data providing an image of the first three- dimensional packaging wireframe model 106 as fitted to the first three- dimensional object 102. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes one or more images providing the concurrent or simultaneous depiction of the first three-dimensional object 102 using image data from the camera 152 and the fitted first three-dimensional packaging wireframe model 106. In some instances, an image concurrently or
simultaneously depicting the geometric primitive 104 fitted to the first three- dimensional object 102 along with the first three-dimensional packaging wireframe model 106 fitted thereto may also be provided on the one or more display devices 156.
Figure 3 shows a method 300 extending from the method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B. For various reasons, the first three-dimensional packaging wireframe model 106 fitted by the one or more processors 120 may not properly encompass the first three- dimensional object 102. For example, where the first three-dimensional object is a box, one face of the first three-dimensional packaging wireframe model 106 generated by the one or more processors 120 may be situated in too close proximity to the three-dimensional object 102 to permit the insertion of adequate padding between the three-dimensional object 102 and the shipping box. Such incorrectly positioned or sized three-dimensional packaging wireframe models 106 may result in erroneous shipping rate information or erroneous packing information. Therefore, providing a process to correct the shape, size, or position of all or a portion of the three-dimensional packaging wireframe model 106 is advantageous to both the user and the carrier.
At 302, the one or more processors 120 receive an input indicative of a desired change at least a portion of the first three-dimensional packaging wireframe model 106. The change in position of the first three- dimensional packaging wireframe model 106 may include a change to a single point, multiple points, or even a scalar, arc, curve, face, or line linking two or more points used by the one or more processors 120 to fit the three- dimensional packaging wireframe model 106. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150. The use of a touch-screen display device 1 14 advantageously enables a user to visually align all or a portion of the first three- dimensional packaging wireframe model 106 with all or a corresponding portion of the image of first three-dimensional object 102 in an intuitive and easy to visualize manner. In some embodiments, a prior input received by the one or more processors 120 may be used to place the system 100 in a mode where a subsequent input indicating the desired change to the three-dimensional packaging wireframe model 106 will be provided to the one or more processors 120.
At 304, the one or more processors 120 can generate a video, image, or display data output that includes image data of the modified or updated first three-dimensional packaging wireframe model 106 as fitted to the first three-dimensional object 102. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image contemporaneously or simultaneously depicting the first three-dimensional object 102 using image data from the camera 152 and the first three-dimensional packaging wireframe model 106 data as fitted by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting the first three- dimensional object 102 along with the one or more scaled and fitted geometric primitives 104 and the first three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
Figure 4 shows a method 400 extending from the method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B. For various reasons, the first three-dimensional packaging wireframe model 106 fitted by the one or more processors 120 may not properly encompass the first three- dimensional object 102 and in fact, the first three-dimensional packaging wireframe model 106 as fitted by the one or more processors 120 may require significant modification or replacement to substantially conform to both the first three-dimensional object 102 and any associated specialized shipping requirements provided by the user.
For example, where the first three-dimensional object 102 is a cylindrical object, a cylindrical geometric primitive 104 may be selected by the one or more processors 120, resulting in a cylindrical first three-dimensional packaging wireframe model 106. Perhaps the user has triangular shaped padding that will be used to pad and center the cylindrical object in the center of a rectangular shipping container. In response to an input indicative of a desired change in a position of at least a portion of the first three-dimensional packaging wireframe model 106, the one or more processors 120 may select a second geometric primitive 104, for example a rectangular prismatic geometric primitive, and fit a more appropriate second three-dimensional packaging wireframe model 106 to replace the previously fitted first three-dimensional packaging wireframe model 106.
At 402, the one or more processors 120 receive an input indicative of a desired change to at least a portion of the first three-dimensional packaging wireframe model 106 fitted to the three-dimensional object 102. The input may specify one or more of a single point, multiple points, or even a scalar, arc, curve, face, or line linking two or more points used by the one or more processors 120 to fit the three-dimensional packaging wireframe model 106. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150. The use of a touch-screen display device 1 14 advantageously enables a user to visually align all or a portion of the first three-dimensional packaging wireframe model 106 with all or a corresponding portion of the image of the first three- dimensional object 102 in an intuitive and easy to visualize manner. In some embodiments, a prior input received by the one or more processors 120 may be used to place the system 100 in a mode where a subsequent input indicating the desired change to the three-dimensional packaging wireframe model 106 will be provided to the one or more processors 120.
At 404, responsive to the input the one or more processors 120 may select from the library one or more second geometric primitives 104 that are different from the first geometric primitive 104 and fit the second three- dimensional packaging wireframe 106 model using the second geometric primitive 104 to substantially encompass the first three-dimensional object 102. For example, where the one or more processors 120 detect from the input that a cylindrical three-dimensional packaging wireframe model 106 is being changed to a rectangular prismatic three-dimensional packaging wireframe model 106, the one or more processors 120 may alternatively select a second geometric primitive 104 corresponding to a rectangular prism from the library to fit the second three-dimensional packaging wireframe model 106 to the first three-dimensional object 102.
At 406, the one or more processors 120 can generate a video, image, or display data output that includes image data of the second three- dimensional packaging wireframe model 106 as fitted to the first three- dimensional object 102. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image contemporaneously or
simultaneously depicting the first three-dimensional object 102 using image data from the camera 152 and the second three-dimensional packaging wireframe model 106 data as fitted by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting the first three-dimensional object 102 along with the one or more scaled and fitted second geometric primitives 104 and the first three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
Figure 5 shows a method 500 extending from the method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B. As depicted in Figure 1A, at times a second three-dimensional object 102 may be present in the field-of-view 1 16 of the image sensor 1 14. For various reasons, the second three-dimensional object 102 may not be detected by the one or more processors 120 and consequently a second three-dimensional packaging wireframe model 106 may not be fitted about the second three-dimensional object 102 by the one or more processors 120. In such an instance, one or more second geometric primitives 104 can be selected by the one or more processors 120 and used to fit a second three-dimensional packaging wireframe model 106 to the second three-dimensional object 102 based at least in part upon the receipt of an input by the one or more processors 120 indicating the existence of the second three-dimensional object 102.
At 502, the one or more processors 120 receive an input that indicates a second three-dimensional object 102 exists within the field-of-view 1 16 of the image sensor 1 14. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150. The use of a touch-screen display device 1 14 advantageously enables a user to draw a perimeter around or otherwise clearly delineate the second three-dimensional object 102. In some embodiments, a prior input received by the one or more processors 120 may be used to place the system 100 in a mode where a subsequent input indicating the second three-dimensional object 102 will be provided to the one or more processors 120. Responsive to the input indicating the existence of a second three- dimensional object 102 within the field-of-view 1 16 of the image sensor 1 14, the one or more processors 120 may detect additional three-dimensional features associated with the second three-dimensional object 102.
At 504, based at least in part on the three-dimensional features identified in 502, the one or more processors 120 may select from the library one or more second geometric primitives 104 to provide representation of the packaging encompassing the second three-dimensional object 102. The one or more processors 120 fit a second three-dimensional packaging wireframe model 106 about the second three-dimensional object 102 that is responsive to any specialized instructions received from the user and encompasses substantially all the three-dimensional features of the second three-dimensional object 102 identified by the one or more processors 120 at 502.
At 506, the one or more processors 120 can generate a video, image, or display data output that includes image data of the second three- dimensional packaging wireframe model 106 as fitted to the virtual
representation of the second three-dimensional object 104. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs to the one or more display devices 156 that includes image data depicting an image of the second three-dimensional object 102 using image data from the camera 152 along with the fitted second three-dimensional packaging wireframe model 106 provided by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting the second three-dimensional object 102 along with the one or more scaled and fitted second geometric primitives 104 and the second three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
At 508, the one or more processors 120 can generate a video, image, or display data output that includes image data of the first three- dimensional packaging wireframe model 106 as fitted to the first three- dimensional object 102. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image contemporaneously or
simultaneously depicting images of the first and second three-dimensional objects 102 using image data from the camera 152 along with the respective first and second three-dimensional packaging wireframe models 106 fitted by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting the first and second three-dimensional objects 102 along with the one or more scaled and fitted first and second geometric primitives 104 and the first and second three-dimensional packaging wireframe models 106 may also be provided on the one or more display devices 156.
Figure 6 shows a method 600 extending from method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B. In some situations, the first three-dimensional object 102 may have a complex or nonuniform shape that, when virtually represented as a plurality of geometric primitives 104, is best fitted using a corresponding plurality of three-dimensional packaging wireframe models 106. For instance, one three-dimensional packaging wireframe model 106 may be fitted to a first portion of a three- dimensional object 102 and another three-dimensional packaging wireframe model 106 may be fitted to a second portion of the three-dimensional object 102.
For example, rather than fitting a single three-dimensional packaging wireframe model 106 about a guitar-shaped three-dimensional object 102, a more accurate three-dimensional packaging wireframe model 106 may incorporate a plurality wireframe models 106, such as a first three- dimensional packaging wireframe model 106 fitted to the body portion of the guitar-shaped object and a second three-dimensional packaging wireframe model 106 fitted to the neck portion of the guitar-shaped object may provide a more accurate three-dimensional packaging wireframe model 106 for the entire guitar-shaped object. Fitting of multiple three-dimensional packaging wireframe models 106 may be performed automatically by the one or more processors 120, or performed responsive to the receipt of a user input indicating that a plurality of three-dimensional packaging wireframe models should be used. Providing a user with the ability to designate the use of three-dimensional packaging wireframe models 106 about different portions of a single three- dimensional object 102 may provide the user with a more accurate freight rate estimate based upon the actual configuration of the object and may provide the carrier with a more accurate shipping volume.
At 602, the one or more processors 120 receive an input that identifies a portion of the first three-dimensional object 102 that may be represented using a separate three-dimensional packaging wireframe model 106. Using the example of a guitar, the user may provide an input that when received by the one or more processors 120, indicates the neck of the guitar is best fitted using separate three-dimensional packaging wireframe model 106. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150. The use of a touch-screen display device 1 14 advantageously enables a user to draw a perimeter or otherwise clearly delineate the portion of the first three- dimensional object 102 for which one or more separate geometric primitives 104 may be selected and about which a three-dimensional packaging wireframe model 106 may be fitted by the one or more processors 120. In some embodiments, a prior input received by the one or more processors 120 may be used to place the system 100 in a mode where a subsequent input indicating the portion of the first three-dimensional object 102 suitable for representation by a separate three-dimensional packaging wireframe model 106 will be provided as an input to the one or more processors 120.
At 604, responsive at least in part to the input indicating the portion of the first three-dimensional object 102 suitable for representation as a separate three-dimensional packaging wireframe model 106, the one or more processors 120 can select one or more geometric primitives 104 encompassing the first portion of the first three-dimensional object 102. Based on the one or more selected geometric primitives 104, the one or more processors 120 fit a three-dimensional packaging wireframe model 106 about the first portion of the three-dimensional object 102. Continuing with the illustrative example of a guitar - the one or more processors 120 may receive an input indicating the user's desire to represent the neck portion of the guitar as a first three- dimensional packaging wireframe model 106. Responsive to the receipt of the input selecting the neck portion of the guitar, the one or more processors 120 select one or more appropriate geometric primitives 104, for example a cylindrical geometric primitive, and fit a cylindrical three-dimensional packaging wireframe model 106 that encompasses the first portion of the first three- dimensional object 102 (i.e., the neck portion of the guitar).
At 606, the one or more processors 120 select one or more geometric primitives 104 encompassing the second portion of the first three- dimensional object 102. Based on the one or more selected geometric primitives 104, the one or more processors 120 fit a three-dimensional packaging wireframe model 106 about the second portion of the first three- dimensional object 102. The separate three-dimensional packaging wireframe model 106 fitted to the second portion may be the same as, different from, or a modified version of the three-dimensional packaging wireframe model 106 fitted to the first portion of the three-dimensional object 102.
Continuing with the illustrative example of a guitar the single, three-dimensional packaging wireframe model 106 originally fitted by the one or more processors 120 to the entire guitar may have been in the form of a rectangular three-dimensional packaging wireframe model 106 encompassing both the body portion and the neck portion of the guitar. After fitting the cylindrical three-dimensional packaging wireframe model 106 about the first portion of the first three-dimensional object 102 (i.e., the neck of the guitar), the one or more processors 120 may reduce the size of the originally fitted, rectangular, three-dimensional packaging wireframe model 106 to a rectangular three-dimensional packaging wireframe model 106 fitted about the second portion of the first three-dimensional object 104 (i.e., the body of the guitar).
At 608, the one or more processors 120 can generate a video, image, or display data output that includes image data of the three-dimensional packaging wireframe models 106 fitted to the first and second portions of the first three-dimensional object 102. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 including an image concurrently or simultaneously depicting the first and second portions of the first three-dimensional object 102 using image data from the camera 152 and the respective three-dimensional packaging wireframe models 106 fitted to each of the first and second portions by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting the first and second portions of the first three- dimensional object 102 along with their respective one or more scaled and fitted geometric primitives 104 and their respective three-dimensional packaging wireframe models 106 may also be provided on the one or more display devices 156.
Figure 7 shows a method 700 extending from method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B. In some situations, one or more features present on the first three-dimensional object 102 may not be visible from the point of view of the image sensor 1 14. For example, a protruding feature may lie on a portion of the three-dimensional object 102 facing away from the image sensor 1 14 such that substantially all of the feature is hidden from the image sensor 1 14. In such instances, a failure to incorporate the hidden feature may result in erroneous or inaccurate rate information being provided to a user or erroneous or inaccurate packing dimensions or volumes being provided to the carrier.
In such instances, obtaining image data from a second point of view that includes the previously hidden or obscured feature will permit the one or more processors 120 to select one or more geometric primitives 104 fitting the entire three-dimensional object 102 including the features hidden in the first point of view. By encompassing all or the features within the one or more geometric primitives 104, the one or more processors 120 are able to fit the first three-dimensional packaging wireframe model 106 about the entire first three- dimensional object 102 or alternatively, to add a second three-dimensional packaging wireframe model 106 incorporating the portion of the first three- dimensional object 102 that was hidden in the first point of view of the image sensor 1 14.
At 702, after fitting the first three-dimensional packaging wireframe model 106 to the first three-dimensional object 102, the one or more processors 120 rotate the fitted three-dimensional packaging wireframe model 106 about an axis to expose gaps in the model or to make apparent any features absent from the model but present on the first three-dimensional object 102. In some situations, the volume dimensioning system 1 10 may provide a video, image, or display data output to the host computer 150 providing a sequence or views of the fitted first three-dimensional packaging wireframe model 106 such that the first three-dimensional packaging wireframe model 106 appears to rotate about one or more axes when viewed on the one or more display devices 156.
Responsive to the rotation of the first three-dimensional packaging wireframe model 106 on the one or more display devices 156, the system 100 can generate an output, for example a prompt displayed on the one or more display devices 156, requesting a user to provide an input confirming the accuracy of or noting any deficiencies present in the first three-dimensional packaging wireframe model 106.
At 704, additional image data in the form of a second point of view of the first three-dimensional object 102 that exposes the previously hidden or obscured feature on the first three-dimensional object 102 may be provided to the one or more processors 120. Image data may be acquired or captured from a second point of view in a variety of ways. For example, in some instances, the image sensor 1 14 may be automatically or manually displaced about the first three-dimensional object 102 to provide a second point of view that includes the previously hidden feature. Alternatively or additionally, a second image sensor (not shown in Figures 1 A, 1 B) disposed remote from the system 100 may provide a second point of view of the first three-dimensional object 102. Alternatively or additionally, the system 100 may generate an output, for example an output visible on the one or more display devices 156 providing guidance or directions to the user to physically rotate the first three-dimensional object 102 to provide a second point of view to the image sensor 1 14.
Alternatively or additionally, the system 100 may generate a signal output, for example a signal output from the host computer 150 that contains instructions to automatically rotate a turntable upon which the first three-dimensional object 102 has been placed to provide a second point of view of the first three- dimensional object 102 to the image sensor 1 14.
At 706, responsive to the receipt of image data from the image sensor as viewed from the second point of view of the first three-dimensional object 102, the one or more processors 120 can detect a portion of the first three-dimensional object 102 that was hidden in the first point of view. Such detection can be accomplished, for example by tracking the feature points on the first three-dimensional object 102 visible in the first point of view as the first point of view is transitioned to the second point of view. Identifying new feature points appearing in the second point of view that were absent from the first point of view provide an indication to the one or more processors 120 of the existence of a previously hidden or obscured portion or feature of the first three- dimensional object 102.
At 708, responsive to the detection of the previously hidden or obscured portion or feature of the first three-dimensional object 102, the one or more processors 120 can modify one or more originally selected geometric primitives 140 {e.g., by stretching the geometric primitive 104) to incorporate the previously hidden or obscured feature, or alternatively can select one or more second geometric primitives 104 that when combined with the one or more previously selected geometric primitives 104 encompasses the previously hidden or obscured feature on the first three-dimensional object 102.
In some instances, the one or more processors 120 may modify the one or more originally selected geometric primitives 104 to encompass the feature hidden or obscured in the first point of view, but visible in the second point of view. The three-dimensional packaging wireframe model 106 can then be scaled and fitted to the modified originally selected geometric primitive 104 to encompass the feature present on the first three-dimensional object 102. For example, a first three-dimensional packaging wireframe model 106 may be fitted to a rectangular prismatic three-dimensional object 102, and a hidden feature in the form of a smaller rectangular prismatic solid may be located on the rear face of the rectangular prismatic three-dimensional object 102. The one or more processors 120 may in such a situation, modify the originally selected geometric primitive 104 to encompass the smaller rectangular prismatic solid. The one or more processors 120 can then scale and fit the first three-dimensional packaging wireframe model 106 to encompass the entire first three-dimensional object 102 by simply modifying, by stretching, the originally fitted rectangular three-dimensional packaging wireframe model 106.
In other instances, the one or more processors 120 may alternatively select one or more second geometric primitives 104 to encompass the smaller rectangular solid feature and fit a second three-dimensional packaging wireframe model 106 to the second geometric primitive 104. For example, when the three-dimensional object 102 is a guitar-shaped object, the first point of view, may expose only the body portion of the guitar-shaped object to the image sensor 1 14 while the neck portion remains substantially hidden from the first point of view of the image sensor 1 14. Upon receiving image data from the second point of view, the one or more processors 120 can detect an additional feature that includes the neck portion of the guitar-shaped object. In response, the one or more processors 120 may select a second geometric primitive 104 and use the selected second geometric primitive 104 to fit a second three-dimensional packaging wireframe model 106 about the neck portion of the guitar-shaped object.
At 710, the one or more processors 120 can generate a video, image, or display data output that includes image data of the one or more three- dimensional packaging wireframe models 106 fitted to the first three- dimensional object 102, including features visible from the first and second points of view of the image sensor 1 14. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image concurrently or simultaneously displaying the first three-dimensional object 102 using image data from the camera 152 and the one or more three-dimensional packaging wireframe models 106 fitted to respective portions of the first three-dimensional object 102 by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting the first and second portions of the first three-dimensional object 102 along with one or more geometric primitives 104 and the scaled and fitted three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
Figure 8 shows a method 800 extending from method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B. The field-of- view 1 16 of the image sensor 1 14 may contain a multitude of potential first three-dimensional objects 102, yet the only three-dimensional objects of interest to a user may have a particular size or shape. For example, the field- of-view 1 16 of the image sensor 1 14 may be filled with a three bowling balls and a single box which represents the desired first three-dimensional object 102. In such an instance, the one or more processors 120 may select four geometric primitives 104 - three associated with the bowling balls and one associated with the box and fit three-dimensional packaging wireframe models 106 to each of the three bowling balls and the single box. Rather than laboriously deleting the three spherical wireframes fitted to the bowling balls, in some embodiments, the one or more processors 120 may receive an input designating a particular geometric primitive shape as indicating the desired first three-dimensional object 102 within the field-of-view 1 16 of the image sensor 1 14.
In the previous example, the one or more processors 120 may receive an input indicating a rectangular prismatic geometric primitive as designating the particular shape of the desired first three-dimensional object. This allows the one or more processors 120 to automatically eliminate the three bowling balls within the field-of-view of the image sensor 1 14 as potential first three-dimensional objects 102. Such an input, when received by the one or more processors 120 effectively provides a screen or filter for the one or more processors 120 eliminating those three-dimensional objects 102 having geometric primitives not matching the indicated desired geometric primitive received by the one or more processors 120.
At 802, the one or more processors 120 receive an input indicative of a desired geometric primitive 104 useful in selecting, screening, determining or otherwise distinguishing the first three-dimensional object 102 from other objects that are present in the field-of-view 1 16 of the image sensor 1 14. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150. In some instances, text or graphical icons indicating various geometric primitive shapes may be provided in the form of a list, menu, or selection window to the user.
At 804, responsive to the receipt of the selected geometric primitive 104, the one or more processors 120 search through the three- dimensional objects 102 appearing in the field-of-view 1 16 of the image sensor 1 14 to locate only those first three-dimensional objects 102 having a shape that is substantially similar to or matches the user selected geometric primitive 104.
Figure 9 shows a method 900 extending from method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B. After fitting the first three-dimensional packaging wireframe model 106 to the first three- dimensional object 102, the one or more processors 120 can determine the packaging dimensions and the volume of the first three-dimensional object 102 responsive to receipt of an input indicative of user acceptance of the fitted first three-dimensional packaging wireframe model 106. The calculated packing dimensions are based on dimensional and volumetric information acquired from the fitted first three-dimensional packaging wireframe model 106 and reflect not only the dimensions of the three-dimensional object 102 itself, but also include any additional packaging, boxing, crating, etc., necessary to safely and securely ship the first three-dimensional object 102.
At 902, the one or more processors 120 receive an input indicative of user acceptance of the first three-dimensional packaging wireframe model 106 fitted to the first three-dimensional object 102 by the one or more processors 120. The one or more processors 120 can generate a video, image, or display data output that includes image data of the three-dimensional packaging wireframe model 106 after scaling and fitting to the first three- dimensional object 102, and after any modifications necessary to accommodate any specialized shipping instructions provided by the user.
The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 including image data depicting a simultaneous or concurrent image of the first three-dimensional object 102 using image data from the camera 152 and the three-dimensional packaging wireframe model 106 fitted to the first three-dimensional object 102 by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting the first three- dimensional object 102 along with one or more scaled and fitted geometric primitives 104 and the scaled and fitted three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
Responsive to the display of at least the first three-dimensional object 102 and the first three-dimensional packaging wireframe model 106, the system 100 may generate a signal output, for example a signal output from the host computer 150 containing a query requesting the user provide an input indicative of an acceptance of the fitting of the first three-dimensional packaging wireframe model 106 to the first three-dimensional object 102.
At 904, responsive to user acceptance of the fitting of the first three-dimensional packaging wireframe model 106 to the first three-dimensional object 102, the one or more processors 120 determine the dimensions and calculate the volume of the first three-dimensional object 102 based at least in part on the three-dimensional packaging wireframe model 106. Any of a large variety of techniques or algorithms for determining a volume of a bounded three-dimensional surface may be employed by the system 100 to determine the dimensions or volume of the first three-dimensional object 102.
Figure 10 shows a method 1000 extending from method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B. In some instances, the one or more processors 120 may select one or more inapplicable geometric primitives 104 or improperly fit a first three-dimensional packaging wireframe model 106 about the first three-dimensional object 102. In such an instance, rather than modify the first three-dimensional packaging wireframe model 106, a more expeditious solution may be to delete the first three- dimensional packaging wireframe model 106 fitted by the one or more processors 120 in its entirety and request the one or more processors 120 to select one or more different geometric primitives 104 and fit a second three- dimensional packaging wireframe model 106 about the first three-dimensional object 102.
At 1002, the one or more processors 120 receive an input indicative of a rejection of the first three-dimensional packaging wireframe model 106 fitted by the one or more processors 120 about the first three- dimensional object 102. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150.
At 1004, responsive to the receipt of the rejection of the first three- dimensional packaging wireframe model 106 fitted about the first three- dimensional object 102, the one or more processors 120 select one or more second geometric primitives 104 and, based on the one or more second selected geometric primitives 104, fit a second three-dimensional packaging wireframe model 106 about the first three-dimensional object 102.
At 1006, the one or more processors 120 can generate a video, image, or display data output that includes image data of the second three- dimensional packaging wireframe model 106 fitted to the first three-dimensional object 102. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image contemporaneously or simultaneously depicting the first three-dimensional object 102 using image data from the camera 152 and the second three-dimensional packaging wireframe model 106 fitted by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting an image of the first three-dimensional object 102 along with the one or more second geometric primitives 104 and the scaled and fitted three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
Figure 1 1 shows a method 1 100 extending from method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B. In some instances, the one or more processors 120 may receive as an input a value indicating a selection of a second three-dimensional packaging wireframe model 106 for fitting about the virtual representation of the first three- dimensional object 104. The one or more processors 120 can fit the second three-dimensional packaging wireframe model about the first three-dimensional object 102. Such an input can be useful in expediting the fitting process when the appropriate geometric primitive or second three-dimensional packaging wireframe model is known in advance.
At 1 102, the one or more processors 120 receive an input indicative of a selection of a second geometric primitive 104 as representative of the first three-dimensional object 102 or a second three-dimensional packaging wireframe model 106 for fitting about the first three-dimensional object 102. In some instances, the one or more processors 120 receive an input indicative of one or more second geometric primitives 104 that are different from the one or more first geometric primitives 104 used by the one or more processors 120 to fit the first three-dimensional packaging wireframe model 106. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150. In at least some instances, the input is provided by selecting a text or graphic icon corresponding to the second geometric primitive 104 or an icon
corresponding to the second three-dimensional packaging wireframe model 106 from a list, menu or selection window containing a plurality of such icons.
At 1 104, responsive to the selection of the second geometric primitive 104 or the second three-dimensional packaging wireframe model, the one or more processors 120 can fit the second three-dimensional packaging wireframe model 106 to the first three-dimensional object 102.
At 1 106, the one or more processors 120 can generate a video, image, or display data output that includes image data of the second three- dimensional packaging wireframe model 106 fitted to the first three-dimensional object 102. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image concurrently or simultaneously depicting the first three-dimensional object 102 using image data from the camera 152 and the second three-dimensional packaging wireframe model 106 fitted by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting an image of the first three-dimensional object 102 along with the one or more geometric primitives 104 and the scaled and fitted three-dimensional packaging wireframe model 106 may also be provided on the one or more display devices 156.
Figure 12 shows a method 1200 extending from method 200 and describing one or more additional features of an example volume dimensioning system 100, such as the system depicted in Figures 1A and 1 B. In some instances, all or a portion of the first three-dimensional object 102 may be too small to easily view within the confines of the one or more display devices 156. The one or more processors 120 may receive an input indicative of a region of interest containing all or a portion of the first three-dimensional object 102. In response to the input, the one or more processors 120 may ascertain whether the first three-dimensional packaging wireframe model 106 included within the indicated region of interest has been properly fitted about the first three- dimensional object 102. Such an input can be useful in increasing the accuracy of the three-dimensional packaging wireframe model 106 fitting process, particularly when all or a portion of the first three-dimensional object 102 is small in size and all or a portion of the fitted first three-dimensional packaging wireframe 106 model is difficult to discern. At 1202, the one or more processors 120 receive an input indicative of a region of interest lying in the field-of-view 1 16 of the image sensor 1 14. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150.
At 1204, responsive to the receipt of the input indicative of a region of interest in the field-of-view 1 16 of the image sensor 1 14, the one or more CPUs 160 enlarge the indicated region of interest and output a video, image, or display data output including the enlarged region of interest to the one or more display devices 156 on the host computer system 150. In some situations, the one or more processors 120 may provide the video, image, or display data output including the enlarged region of interest to the one or more display devices 156 on the host computer system 150.
At 1206, the one or more processors 120 automatically select a geometric primitive 104 based upon the features of the first three-dimensional object 102 included in the enlarged region of interest for use in fitting the first three-dimensional packaging wireframe model 106 about all or a portion of the first three-dimensional object 102. Alternatively, the one or more processors 120 may receive an input indicative of a geometric primitive 104 to fit the first three-dimensional packaging wireframe model 106 about all or a portion of the first three-dimensional object 102 depicted in the enlarged region of interest. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150. In at least some instances, the input is provided to the one or more processors 120 by selecting a text or graphic icon corresponding to the geometric primitive from a menu, list or selection window containing a plurality of such icons.
Figure 13 shows a method 1300 depicting the operation of an example volume dimensioning system 100, such as the system depicted in Figure 1 . In some embodiments, the first three-dimensional object 102 may have a complex or non-uniform shape that is best represented using two or more geometric primitives 104. In such instances, a first geometric primitive 104 may be used by the one or more processors 120 to fit a first three- dimensional packaging wireframe model 106 about a first portion of the first three-dimensional object 102. Similarly, a second geometric primitive 104 may be used by the one or more processors 120 to fit a second three-dimensional packaging wireframe model 106 about a second portion of the first three- dimensional object 102. In at least some embodiments, the first and second geometric primitives 104 may be autonomously selected by the one or more processors 120. Permitting the one or more processors 120 to select two or more geometric primitives 104 and fit a corresponding number of three- dimensional packaging wireframe models 106 about a corresponding number of portions of the three-dimensional object 102 may provide the user with a more accurate estimate of the dimensions or volume of the packaging encompassing the first three-dimensional object 102.
At 1302, the image sensor 1 14 captures or acquires three- dimensional image data which is communicated to the one or more non- transitory, machine-readable storage media 1 18 via one or more data busses 126. The three-dimensional image data captured by the image sensor 1 14 includes a first three-dimensional object 102 disposed within the field-of-view 1 16 of the image sensor 1 14. The three-dimensional image data captured by the image sensor 1 14 may include depth data providing a depth map and intensity data providing an intensity image of the field-of-view 1 16 of the image sensor 1 14. At least a portion of the three-dimensional image data received by the one or more non-transitory, machine-readable storage media 1 18 is communicated to or otherwise accessed by the one or more processors 120 in order to select one or more geometric primitives 104 preparatory to fitting a three-dimensional packaging wireframe model 106 about all or a portion of the first three-dimensional object 104. At 1304, based in whole or in part on the three-dimensional image data received from the image sensor 1 14, the one or more processors 120 determine a number of features on the first three-dimensional object 102 that appear in the three-dimensional image data. The features may include any point, edge, or other discernible structure on the first three-dimensional object 102 and detectible in the image represented by the three-dimensional image data. For example, one or more features may correspond to a three- dimensional point on the three-dimensional object 102 that is detectible in a depth map containing the first three-dimensional object, an intensity image in which the three-dimensional object, or both a depth map and an intensity image in which the first three-dimensional object 102 appears as is represented. The identified features may include boundaries or defining edges of the first three- dimensional object, for example corners, arcs, lines, edges, angles, radii, and similar characteristics that define all or a portion of the external boundary of the first three-dimensional object 102.
At 1306, based at least in part on the features identified in 1304, the one or more processors 120 select one or more geometric primitives 104 having the same or differing shapes to encompass substantially all of the identified features of the first three-dimensional object 102. Dependent upon the overall number, arrangement, and complexity of the one or more selected geometric primitives 104, the one or more processors 120 may autonomously determine that a plurality of three-dimensional packaging wireframe models 106 are useful in fitting an overall three-dimensional packaging wireframe model 106 to the relatively complex three-dimensional object 102. The one or more processors 120 may determine that a first three-dimensional packaging wireframe model 106 can be fitted to a first portion of the first three-dimensional object 102 and a second three-dimensional packaging wireframe model 106 can be fitted to a second portion of the first three-dimensional object 102.
At 1308, the one or more processors 120 scale and fit the first three-dimensional packaging wireframe model 106 to the one or more geometric primitives 104 encompassing the first portion of the first three- dimensional object 102. The scaled and fitted first three-dimensional packaging wireframe model 106 encompasses substantially all the first portion of the first three-dimensional object 102.
At 1310 the one or more processors 120 fit the second three- dimensional packaging wireframe model 106 to the one or more geometric primitives 104 encompassing the second portion of the first three-dimensional object 102. The scaled and fitted second three-dimensional packaging wireframe model 106 encompasses substantially all the second portion of the first three-dimensional object 102.
At 1312, the one or more processors 120 can generate a video, image, or display data output that includes image data of the first and second three-dimensional packaging wireframe models 106 as fitted to the first and second portions of the first three-dimensional object 102, respectively. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs viewable on the one or more display devices 156 that includes an image simultaneously or contemporaneously depicting the first and second portions of the first three-dimensional object 102 using image data from the camera 152 and the respective first and second three-dimensional packaging wireframe models 106 fitted to each of the first and second portions by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting an image of the first and second portions of the first three-dimensional object 102 along with the one or more respective first and second geometric primitives 104 and the respective scaled and fitted first and second three-dimensional packaging wireframe models 106 may also be provided on the one or more display devices 156.
Figure 14 shows a method 1400 depicting the operation of an example volume dimensioning system 100, such as the system depicted in Figure 1 . In some embodiments, the initial or first point of view of the image sensor 1 14 may not provide sufficient feature data to the one or more
processors 120 to determine the extent, scope or boundary of the first three- dimensional object 102. For example, if the first three-dimensional object 102 is a cubic box and only the two-dimensional front surface of the cubic box is visible to the image sensor 1 14, the image data provided by the image sensor 1 14 to the one or more processors 120 is insufficient to determine the depth (i.e., the extent) of the cubic box, and therefore the one or more processors 120 do not have sufficient data regarding the features of the three-dimensional object 102 to select one or more geometric primitives 104 as representative of the first three-dimensional object 102. In such instances, it is necessary to provide the one or more processors 120 with additional data gathered from at least a second point of view to enable selection of one or more appropriate geometric primitives 104 for fitting a first three-dimensional packaging
wireframe model 106 that encompasses the first three-dimensional object 102.
At 1402, the image sensor 1 14 captures or acquires three- dimensional image data which is communicated to the one or more non- transitory, machine-readable storage media 1 18 via one or more data busses 126. The three-dimensional image data captured by the image sensor 1 14 includes a first three-dimensional object 102 disposed within the field-of-view 1 16 of the image sensor 1 14. The three-dimensional image data captured by the image sensor 1 14 may include depth data providing a depth map and intensity data providing an intensity image of the field-of-view of the image sensor 1 14. At least a portion of the three-dimensional image data received by the one or more non-transitory, machine-readable storage media 1 18 is communicated to or otherwise accessed by the one or more processors 120 in order to select one or more geometric primitives 104 to fit a three-dimensional packaging wireframe model 106 that encompasses the first three-dimensional object 102.
At 1404, based on the image data received from the image sensor 1 14, the one or more processors 120 determine that an insufficient number of features on the first three-dimensional object 102 are present within the first point of view of the image sensor 1 14 to permit the selection of one or more geometric primitives 104 to fit the first three-dimensional packaging wireframe model 106.
At 1406, responsive to the determination that an insufficient number of features are present within the first point of view of the image sensor 1 14, the one or more processors 120 generates an output indicative of the lack of an adequate number of features within the first point of view of the image sensor 1 14. In some instances, the output provided by the one or more processors 120 can indicate a possible second point of view able to provide a view of a sufficient number of additional features on the first three-dimensional object 102 to permit the selection of one or more appropriate geometric primitives representative of the first three-dimensional object 102.
In some situations, the output generated by the one or more processors 120 may cause a second image sensor positioned remote from the image sensor 1 14 to transmit image data from a second point of view to the one or more non-transitory, machine-readable storage media 1 18. In some instances the second image sensor can transmit depth data related to a depth map of first three-dimensional object 102 from the second point of view or intensity data related to an intensity image of the first three-dimensional object 102 from the second point of view. The image data provided by the second image sensor is used by the one or more processors 120 in identifying additional features on the first three-dimensional object 102 that are helpful in selecting one or more appropriate geometric primitives representative of the first three-dimensional object 102.
In some situations, the output generated by the one or more processors 120 may include audio, visual, or audio/visual indicator data used by the host computer 150 to generate an audio output via one or more I/O devices 166 or to generate a visual output on the one or more display devices 156 that designate a direction of movement of the image sensor 1 14 or a direction of movement of the first three-dimensional object 102 that will permit the image sensor 1 14 to obtain a second point of view of the first three- dimensional object 102. The image data provided by the image sensor 1 14 from the second point of view is used by the one or more processors 120 in identifying additional features on the first three-dimensional object 102 that are helpful in selecting one or more appropriate geometric primitives representative of the first three-dimensional object 102.
Figure 15 depicts an illustrative volume dimensioning system 1 10 communicably coupled to a host computer 150 via one or more busses 1 12. The volume dimensioning system 1 10 is equipped with an image sensor 1 14 having a field-of-view 1 16. The host computer 150 is equipped with a camera 152 having a field-of-view 154 and a display device 156.
An interior space of a partially or completely empty container or trailer 1503 is depicted as forming a three-dimensional void 1502 falling within the field-of-view 1 16 of the image sensor 1 14 and the field-of-view 154 of the camera 152. An image of the three-dimensional void is depicted as an image on the one or more display devices 156. The one or more processors 120 can select one or more geometric primitives 1504 corresponding to the first three- dimensional void 1502 preparatory to scaling and fitting a three-dimensional receiving wireframe 1506 within the first three-dimensional void 1502. The scaled and fitted three-dimensional receiving wireframe model 1506 is depicted within the three-dimensional void 1502. In some embodiments, the scaled and fitted three-dimensional receiving wireframe model 1506 may be shown in a contrasting or bright color on the one or more display devices 156.
The scaled, fitted three-dimensional receiving wireframe model 1506 may be generated by the host computer 150 or, more preferably may be generated by the volume dimensioning system 1 10. The image on the display device 156 is a provided in part using the image data acquired by the camera 152 coupled to the host computer system 150 which provides an image of the three-dimensional void 1502, and in part using the scaled and fitted three- dimensional receiving wireframe model 1506 provided by the volume dimensioning system 1 10. Data, including visible image data provided by the camera 152 and depth map data and intensity image data provided by the image sensor 1 14 is exchanged between the host computer 150 and the volume dimensioning system 1 10 via the one or more busses 1 12. In some instances, the volume dimensioning system 1 10 and the host computer system 150 may be partially or completely incorporated within the same housing, for example a handheld computing device or a self service kiosk.
Figure 16 shows a method 1600 depicting the operation of an example volume dimensioning system 1500, such as the system depicted in Figure 15. In some instances, the first three-dimensional object 102 cannot be constructed based upon the presence of a physical, three-dimensional object, and is instead represented by the absence of one or more physical objects, or alternatively as a three-dimensional void 1502. Such an instance can occur, for example, when the system 100 is used to determine the available dimensions or volume remaining within an empty or partially empty shipping container, trailer, box, receptacle, or the like. For a carrier, the ability to determine with a reasonable degree of accuracy the available dimensions or volume within a particular three-dimensional void 1502 provides the ability to optimize the placement of packaged physical three-dimensional objects 102 within the three- dimensional void 1502. Advantageously, when the dimensions or volumes of the packaged three-dimensional objects 102 intended for placement within the three-dimensional void 1502 are known, for example when a volume
dimensioning system 100 as depicted in Figure 1 has been used to determine the dimensions or volume of the three-dimensional packaging wireframe models 106 corresponding to packaged three-dimensional objects 102, the ability to determine the dimensions or volume available within a three- dimensional void 1502 can assist in optimizing the load pattern of the three- dimensional objects 102 within the three-dimensional void 1502.
At 1602, the image sensor 1 14 captures or acquires three- dimensional image data of a first three-dimensional void 1502 within the field- of-view of 1 16 of the image sensor 1 14. Image data captured or acquired by the image sensor 1 14 is communicated to the one or more non-transitory, machine-readable storage media 1 18 via one or more data busses 126. The three-dimensional image data captured by the image sensor 1 14 includes a first three-dimensional void 1502 disposed within the field-of-view 1 16 of the image sensor 1 14. The three-dimensional image data captured by the image sensor 1 14 may include depth data providing a depth map and intensity data providing an intensity image of the field-of-view of the image sensor 1 14. At least a portion of the three-dimensional image data received by the one or more non- transitory, machine-readable storage media 1 18 is communicated to or otherwise accessed by the one or more processors 120 in order to select one or more geometric primitives 1504 preparatory to fitting a first three-dimensional receiving wireframe model 1506 within all or a portion of the first three- dimensional void 1502.
At 1604, based in whole or in part on the image data captured by the image sensor 1 14, stored in the one or more non-transitory, machine- readable storage media 1 18, and communicated to the one or more processors 120, the one or more processors 120 determine a number of features related to or associated with the first three-dimensional void 1502 present in the image data received by the one or more processors 120. The features may include any point on the first three-dimensional void 1502 detectible in the image data provided by the image sensor 1 14. For example, one or more features may correspond to a point on the first three-dimensional void 1502 that is detectible in a depth map containing the first three-dimensional void 1502, an intensity image containing the three-dimensional void 1502, or both a depth map and an intensity image containing the first three-dimensional void 1502. The identified features include boundaries or defining edges of the first three-dimensional void 1502, for example corners, arcs, lines, edges, angles, radii, and similar characteristics that define all or a portion of one or more boundaries defining the first three-dimensional void 1502.
At 1606, based at least in part on the features identified in 1604, the one or more processors 120 select one or more geometric primitives 1504 and fit the selected geometric primitives 1504 within substantially all of the features identified by the one or more processors 120 as defining all or a portion of one or more boundaries of the first three-dimensional void 1502. The one or more selected geometric primitives 1504 are used by the one or more processors 120 to fit a three-dimensional receiving wireframe model 1506 within all or a portion of the first three-dimensional void 1502.
After fitting the first three-dimensional receiving wireframe model 1506 within the three-dimensional void 1502, the one or more processors 120 determine, based on the first three-dimensional receiving wireframe model 1506, the available dimensions or volume within the first three-dimensional void 1502.
At 1608, the one or more processors 120 can generate a video, image, or display data output that includes image data of the first three- dimensional receiving wireframe model 1506 as fitted to the first three- dimensional void 1502. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 including an image concurrently or simultaneously depicting the first three-dimensional void 1502 using image data from the camera 152 and the first three-dimensional receiving wireframe model 1506 fitted therein by the one or more processors 120. In some instances, an image concurrently or simultaneously depicting an image of the first three-dimensional void 1502 along with the one or more geometric primitives 1504 and the scaled and fitted three-dimensional packaging wireframe model 1506 may also be provided on the one or more display devices 156.
Figure 17 shows a method 1700 extending from logic flow diagram 1600 and describing one or more additional features of an example volume dimensioning system 1500, such as the system depicted in Figure 15. The one or more processors 120 fit the first three-dimensional receiving wireframe model1506 within the first three-dimensional void 1502 and determine the dimensions or volume available within the first three-dimensional void 1502. In some instances, the one or more processors 120 can receive data, for example via the host computer 150 that includes volumetric or dimensional data associated with one or more three-dimensional objects 102. For example, where the first three-dimensional void 1502 corresponds to the available volume in a shipping container 1503 destined for Seattle, the one or more processors 120 may receive volumetric or dimensional data associated with a number of three-dimensional objects 102 for shipment to Seattle using the shipping container 1503. Using the dimensions or volume of the first three-dimensional void 1502, the dimensions of each of the number of three-dimensional objects 102, and any specialized handling instructions {e.g., fragile objects, fragile surfaces, top-load only, etc), the one or more processors 120 can calculate a load pattern including each of the number of three- dimensional objects 102 that accommodates any user specified specialized shipping requirements and also specifies the placement or orientation of each of the number of three-dimensional objects 102 within the three-dimensional void 1502 such that the use of the available volume within the container 1503 is optimized.
At 1702, the one or more processors 120 can receive an input, for example via the host computer system 150, that contains dimensional or volumetric data associated with each of a number of three-dimensional objects 102 that are intended for placement within the first three-dimensional void 1502. In some instances, at least a portion of the dimensional or volumetric data associated with each of a number of three-dimensional objects 102 can be provided by the volume dimensioning system 100. In other instances, at least a portion of the dimensional or volumetric data provided to the one or more processors 120 can be based on three-dimensional packaging wireframe models 106 fitted to each of the three-dimensional objects 102. In some instances, the dimensional or volumetric data associated with a particular three- dimensional object 102 can include one or more user-supplied specialized shipping requirements (e.g., fragile surfaces, top-load items, "this side up" designation, etc.).
At 1704, based in whole or in part upon the received dimensional or volumetric data, the one or more processors 120 can determine the position or orientation for each of the number of three-dimensional objects 102 within the first three-dimensional void 1502. The position or location of each of the number of three-dimensional objects 102 can take into account the dimensions of the object, the volume of the object, any specialized shipping requirements associated with the object, and the available dimensions or volume within the first three-dimensional void 1502. In some instances, the volume dimensioning system 1500 can position or orient the number of three-dimensional objects 102 within the first three-dimensional void 1502 to minimize empty space within the three-dimensional void 1502.
The one or more processors 120 can generate a video, image, or display data output that includes the three-dimensional packaging wireframes 106 fitted to each of the three-dimensional objects 102 intended for placement within the three-dimensional void 1502. The three-dimensional packaging wireframes 106 associated with some or all of the number of three-dimensional objects 102 may be depicted on the one or more display devices 156 in their final positions and orientations within the three-dimensional receiving wireframe 1506. The video, image, or display output data provided by the one or more processors 120 may be used by the one or more CPUs 160 to generate one or more video, image, or display outputs on the one or more display devices 156 that includes an image concurrently or simultaneously depicting the first three- dimensional void 1502 and all or a portion of the three-dimensional packaging wireframe models 106 fitted within the three-dimensional void 1502 by the one or more processors 120.
Figure 18 shows a method 1800 depicting the operation of an example volume dimensioning system 100, such as the system depicted in Figure 1 . Recall that in certain instances, a user may provide an input to the volume dimensioning system resulting in the changing of one or more three- dimensional packaging wireframe models 106 fitted to the three-dimensional object 102. In other instances, a user can provide a recommended geometric primitive 104 for use by the one or more processors 120 in fitting a three- dimensional packaging wireframe model 106 about the three-dimensional object 102. In other instances, a user may provide an input to the volume dimensioning system 100 indicating a single three-dimensional object 102 can be broken into a plurality of portions, each of the portions represented by a different geometric primitive 104 and fitted by the one or more processors 120 with a different three-dimensional packaging wireframe model 106.
Over time, the volume dimensioning system 1 10 may "learn" to automatically perform one or more functions that previously required initiation based on a user input. In one instance, a first three-dimensional object 102 provides a particular pattern of feature points to the one or more processors 120 and a user provides an input selecting a particular geometric primitive 104 for use by the one or more processors 120 in fitting a three-dimensional packaging wireframe model 106 to the three-dimensional object 102. If, in the future, a three-dimensional object 102 provides a similar pattern of feature points, the one or more processors 120 may autonomously select the geometric primitive 104 previously selected by the user for fitting a three-dimensional packaging wireframe model 106 about the three-dimensional object 102.
In another instance, a first three-dimensional object 102 provides a particular pattern of feature points to the one or more processors 120 and a user indicates to the one or more processors 120 that the first three- dimensional object 102 should be apportioned into first and second portions about which respective first and second three-dimensional packaging wireframe models 106 can be fitted. If, in the future, a three-dimensional object 102 provides a similar pattern of feature points, the one or more processors 120 may autonomously apportion the three-dimensional object 102 into multiple portions based on the apportioning provided by the former user.
At 1802 the image sensor 1 14 captures or acquires three- dimensional image data which is communicated to the one or more non- transitory, machine-readable storage media 1 18 via one or more data busses 126. The three-dimensional image data captured by the image sensor 1 14 includes a first three-dimensional object 102 disposed within the field-of-view of the image sensor 1 14. The three-dimensional image data captured by the image sensor 1 14 may include depth data providing a depth map and intensity data providing an intensity image of the field-of-view of the image sensor 1 14. At least a portion of the three-dimensional image data received by the one or more non-transitory, machine-readable storage media 1 18 is communicated to or otherwise accessed by the one or more processors 120 in order to select one or more geometric primitives 104 for use in fitting a three-dimensional packaging wireframe model 106 encompassing all or a portion of the three- dimensional object 102.
At 1804, based in whole or in part on the three-dimensional image data received from the image sensor 1 14, the one or more processors 120 determine a number of features on the first three-dimensional object 102 appearing in the three-dimensional image data. The features may include any point, edge, face, surface, or other discernible structure on the first three- dimensional object 102 and detectible in the image represented by the three- dimensional image data. For example, one or more features may correspond to a three-dimensional point on the three-dimensional object 102 that is detectible in a depth map containing the first three-dimensional object, an intensity image in which the three-dimensional object, or both a depth map and an intensity image in which the first three-dimensional object 102 appears as is represented. The identified features may include boundaries or defining edges of the first three-dimensional object, for example corners, arcs, lines, edges, angles, radii, and similar characteristics that define all or a portion of the external boundary of the first three-dimensional object 102.
At 1806, based at least in part on the features identified in 1804, the one or more processors 120 select one or more geometric primitives 104 from the library. The one or more processors 120 use the selected one or more geometric primitives 104 in constructing a three-dimensional packaging wireframe model 106 that encompasses all or a portion of the first three- dimensional object 102. The three-dimensional packaging wireframe model 106 encompasses substantially all of the features identified in 1804 as defining all or a portion of the first three-dimensional object 102. Based at least in part on the identified features, the one or more processors 120 may search the library for one or more geometric primitives 104 having features, points, or nodes substantially similar to the spatial
arrangement of the identified features, points, or nodes associated with the first three-dimensional object 102. In searching the library, the one or more processors may use one or more appearance-based or feature-based shape recognition or shape selection methods. For example a large modelbases appearance-based method using eigenfaces may be used to select geometric primitives 104 appropriate for fitting to the first three-dimensional object 102.
At 1808 the one or more processors 120 receives an input indicative of a rejection of the first three-dimensional packaging wireframe model 106 fitted by the one or more processors 120 about the first three- dimensional object 102. The one or more processors 120 may receive the input via an I/O device 166 such as a mouse or keyboard, or in a preferred embodiment via a resistive or capacitive touch-based input device which is part of a touch-screen display device 156 communicably connected to the host computer system 150. Responsive to the receipt of the rejection of the first three-dimensional packaging wireframe model 106 fitted about the first three- dimensional object 102, the one or more processors 120 select a second geometric primitive 104 and, based on the second selected geometric primitive 104, fit a second three-dimensional packaging wireframe model 106 about the first three-dimensional object 102.
At 1810 the one or more processors 120 can associate the number, pattern, or spatial relationship of the features identified in 1804 with the second geometric primitive 104 selected by the one or more processors. If, in the future, the one or more processors 120 identify a similar number, pattern, or spatial relationship of the features, the one or more processors 120 can autonomously select the second geometric primitive 104 for use in constructing the first three-dimensional packaging wireframe model 106 about the first three- dimensional object 102. The foregoing detailed description has set forth various
embodiments of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, it will be understood by those skilled in the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, the present subject matter may be implemented via Application Specific Integrated Circuits (ASICs) or
programmable gate arrays. However, those skilled in the art will recognize that the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits, as one or more computer programs running on one or more computers {e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more controllers {e.g., microcontrollers) as one or more programs running on one or more processors {e.g., microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of ordinary skill in the art in light of this disclosure.
Various methods and /or algorithms have been described. Some or all of those methods and/or algorithms may omit some of the described acts or steps, include additional acts or steps, combine acts or steps, and/or may perform some acts or steps in a different order than described. Some of the method or algorithms may be implemented in software routines. Some of the software routines may be called from other software routines. Software routines may execute sequentially or concurrently, and may employ a multithreaded approach.
In addition, those skilled in the art will appreciate that the mechanisms taught herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment applies equally regardless of the particular type of signal bearing media used to actually carry out the distribution. Examples of nontransitory signal bearing media include, but are not limited to, the following: recordable type media such as portable disks and memory, hard disk drives, CD/DVD ROMs, digital tape, computer memory, and other non-transitory computer-readable storage media.
U.S. non-provisional patent application Serial No. 13/464,799 filed
May 4, 2012 is incorporated herein by reference, in its entirety.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific
embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Claims

1 . A method of operation of a volume dimensioning system, the method comprising:
receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned;
determining from the received image data a number of features in three dimensions of the first three-dimensional object by at least one processor
communicatively coupled to the at least one nontransitory processor-readable medium;
based at least on part on the determined features of the first three- dimensional object, fitting a first three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor; and
causing a displaying of an image of the first three-dimensional packaging wireframe model fitted about an image of the first three-dimensional object on a display on which the image of the first three-dimensional object is displayed.
2. The method of claim 1 , further comprising:
receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of the first three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; and
causing a displaying of an updated image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display.
3. The method of claim 1 , further comprising:
receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of the three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object;
based at least in part on the received user input, fitting a second three- dimensional packaging wireframe model about the first three-dimensional object by the at least one processor, the second three-dimensional packaging wireframe model having a different geometrical shape than the first three-dimensional wireframe model; and
causing a displaying of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display.
4. The method of claim 1 , further comprising:
receiving at least one user input via a user interface, the user input indicative of an identification of a second three-dimensional object, the second three- dimensional object different from the first three-dimensional object;
based at least in part on the received user input, fitting a second three- dimensional packaging wireframe model about the second three-dimensional object by the at least one processor, the second three-dimensional wireframe model; and causing a displaying of an image of the second three-dimensional packaging wireframe model fitted about the image of the second three-dimensional object on the display.
5. The method of claim 4 wherein the at least one processor causes the concurrent displaying of the image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display and the image of the second three-dimensional packaging wireframe model fitted about the image of the second three-dimensional object on the display.
6. The method of claim 1 , further comprising:
receiving at least one user input via a user interface, the user input indicative of an identification of at least one portion of the first three-dimensional object;
based at least in part on the received user input, fitting one three- dimensional packaging wireframe model about a first portion of the first three- dimensional object by the at least one processor;
based at least in part on the received user input, fitting one three- dimensional packaging wireframe model about a second portion of the first three- dimensional object by the at least one processor; and
causing a concurrent displaying of an image of the three-dimensional wireframe models respectively fitted about the image of the first and the second portions of the first three-dimensional object on the display.
7. The method of claim 1 wherein the at least one processor causes the displaying of the image of the first three-dimensional packaging
wireframe model fitted about the image of the first three-dimensional object on the display to rotate about an axis.
8. The method of claim 7, further comprising:
receiving image data of the area from a second point of view by at least one nontransitory processor-readable medium from at least one image sensor, the second point of view different from the first point of view;
determining from the received image data at least one additional feature in three dimensions of the first three-dimensional object by at least one processor;
based on the determined features of the first three-dimensional object, at least one of adjusting the first three-dimensional packaging wireframe model or fitting a second three-dimensional packaging wireframe model about the first three- dimensional object by the at least one processor; and causing a displaying of an image of at least one of the adjusted first three-dimensional packaging wireframe model or the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display.
9. The method of claim 1 wherein fitting a first three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor includes selecting from a number of defined geometric primitives that define respective volumes and sizing at least one dimension of the selected geometric primitive based on a corresponding dimension of the first three- dimensional object such that the first three-dimensional object is completely encompassed by the selected and sized geometric primitive.
10. The method of claim 9, further comprising:
producing a wireframe model of the first three-dimensional object; and causing a concurrently displaying of the wireframe model of the first three-dimensional object along with the three-dimensional packaging wireframe model.
1 1 . The method of claim 1 , further comprising:
receiving at least one user input via a user interface, the user input indicative of a geometric primitive of the first three-dimensional object; and
selecting the first three-dimensional object from a plurality of three- dimensional objects represented in the image data by at least one processor, based at least in part on the user input indicative of the geometric primitive of the first three- dimensional object.
12. The method of claim 1 1 wherein selecting the first three- dimensional object from a plurality of three-dimensional objects represented in the image data based at least in part on the user input indicative of the geometric primitive of the first three-dimensional object includes determining which of the three- dimensional objects has a geometric primitive that most closely matches the geometric primitive indicated by the received user input.
13. The method of claim 1 , further comprising:
receiving at least one user input via a user interface, the user input indicative of an acceptance of the first three-dimensional packaging wireframe model; and
performing at least a volumetric calculation using a number of dimensions of the selected three-dimensional packaging wireframe model.
14. The method of claim 1 , further comprising:
receiving at least one user input via a user interface, the user input indicative of a rejection of the first three-dimensional packaging wireframe model; and
in response to the received user input, fitting a second three- dimensional packaging wireframe model about the first three-dimensional object by the at least one processor, the second three-dimensional packaging wireframe model having a different geometric primitive than the first three-dimensional wireframe model; and
causing a displaying of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display.
15. The method of claim 1 , further comprising:
receiving at least one user input via a user interface, the user input indicative of a second three-dimensional packaging wireframe model, the second three-dimensional packaging wireframe model having a different geometric primitive than the first three-dimensional wireframe model;
in response to the received user input, fitting the second three- dimensional packaging wireframe model about the first three-dimensional object by the at least one processor; and causing a displaying of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display by the at least one processor.
16. The method of claim 15, further comprising:
causing by the at least one processor a displaying of a plurality of user selectable icons, each corresponding to a respective one of a plurality of three- dimensional packaging wireframe model and selectable by a user to be fitted to the first three-dimensional object.
17. The method of claim 1 , further comprising:
receiving at least one user input via a user interface, the user input indicative of a region of interest of the displayed image of the first three-dimensional object; and
in response to the received user input, causing by the at least one processor a displaying of an enlarged image of a portion of the first three- dimensional object corresponding to the region of interest by the display.
18. The method of claim 17, further comprising:
causing by the at least one processor a displaying of a plurality of user selectable icons, each corresponding to a respective one of a plurality of three- dimensional packaging wireframe model and selectable by a user to be fitted to the first three-dimensional object.
19. The method of claim 1 wherein the volume dimensioning system comprises a computer having a first processor, a camera and the display, and the volume dimensioning system further comprises a volume dimensioning system having a second processor, the volume dimensioning system selectively detachably coupleable to the computer, and causing a displaying of an image of the first three- dimensional packaging wireframe model fitted about an image of the first three- dimensional object on a display on which the image of the first three-dimensional object is displayed includes the second processor causing the first processor to display the image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display of the first computer.
20. A volume dimensioning system, comprising:
at least one image sensor communicably coupled to at least one nontransitory processor-readable medium;
at least one processor communicably coupled to the at least one nontransitory processor-readable medium;
a machine executable instruction set stored within at least one nontransitory processor-readable medium, that when executed by the at least one processor causes the at least one processor to:
read image data from the at least one nontransitory processor-readable medium, the image data associated with a first point of view of an area sensed by the at least one image sensor, the area including at least a first three-dimensional object to be dimensioned;
determine from the received image data a number of features in three dimensions of the first three-dimensional object;
based at least on part on the determined features of the first three- dimensional object, fit a first three-dimensional packaging wireframe model about the first three-dimensional object; and
cause a display of an image of the first three-dimensional packaging wireframe model fitted about an image of the first three-dimensional object on a display device.
21 . The volume dimensioning system of claim 20 wherein the machine executable instruction set further comprises instructions, that when executed by the at least one processor cause the at least one processor to:
select from a number of defined geometric primitives that define respective volumes and sizing at least one dimension of the selected geometric primitive based on a corresponding dimension of the first three-dimensional object such that the first three-dimensional object is completely encompassed by the selected and sized geometric primitive;
produce a wireframe model of the first three-dimensional object; and cause a concurrent display of the wireframe model of the first three- dimensional object along with the three-dimensional packaging wireframe model.
22. The volume dimensioning system of claim 20, the machine executable instruction set stored within at least one nontransitory processor-readable medium further comprising instructions, that when executed by the at least one processor cause the at least one processor to:
responsive to a user input received by the at least one processor, change a position of at least a portion of the displayed image of the first three- dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object; and
cause a display of an updated image of the first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display device.
23. The volume dimensioning system of claim 20, the machine executable instruction set stored within at least one nontransitory processor-readable medium further comprising instructions, that when executed by the at least one processor cause the at least one processor to:
responsive to a user input received by the at least one processor, change a position of at least a portion of the displayed image of the three- dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object;
responsive to a user input received by the at least one processor, fit a second three-dimensional packaging wireframe model about the first three- dimensional object, the second three-dimensional packaging wireframe model having a different geometrical shape than the first three-dimensional wireframe model; and
cause a display of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display device.
24. The volume dimensioning system of claim 20, the machine executable instruction set stored within at least one nontransitory processor-readable medium further comprising instructions, that when executed by the at least one processor cause the at least one processor to:
responsive to a user input received by the at least one processor, the user input indicative of an identification of a second three-dimensional object different from the first three-dimensional object, fit a second three-dimensional packaging wireframe model about the second three-dimensional object; and
cause a display of an image of the second three-dimensional packaging wireframe model fitted about the image of the second three-dimensional object on the display.
25. The volume dimensioning system of claim 20, the machine executable instruction set stored within at least one nontransitory processor-readable medium further comprising instructions, that when executed by the at least one processor cause the at least one processor to:
responsive to a user input received by the at least one processor, the user input indicative of an identification of at least one portion of the first three- dimensional object, fit a three-dimensional packaging wireframe model about a first portion of the first three-dimensional object;
responsive to a user input received by the at least one processor, the user input indicative of an identification of at least one portion of the first three- dimensional object, fit a three-dimensional packaging wireframe model about a second portion of the first three-dimensional object; and cause a display of an image of the three-dimensional wireframe models fitted about the image of the first and the second portions of the first three- dimensional object on the display device.
26. The volume dimensioning system of claim 20, the machine executable instruction set stored within at least one nontransitory processor-readable medium further comprising instructions, that when executed by the at least one processor cause the at least one processor to:
responsive to a user input received by the at least one processor, the user input indicative of a second three-dimensional packaging wireframe model having a different geometric primitive than the first three-dimensional wireframe model, fit the second three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor; and
cause a display of an image of the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display.
27. The volume dimensioning system of claim 20, the machine executable instruction set stored within at least one nontransitory processor-readable medium further comprising instructions, that when executed by the at least one processor cause the at least one processor to:
cause a display of a plurality of user selectable icons on the display device, each user selectable icon corresponding to a respective one of a plurality of three-dimensional packaging wireframe models and selectable by a user to be fitted to the first three-dimensional object.
28. A method of operation of a volume dimensioning system, the method comprising:
receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determining from the received image data a number of features in three dimensions of the first three-dimensional object by at least one processor
communicatively coupled to the at least one nontransitory processor-readable medium;
based at least in part on the determined features of the first three- dimensional object, identifying a first portion and at least a second portion of the first three-dimensional object by the at least one processor;
based on the determined features of the first three-dimensional object, fitting a first three-dimensional packaging wireframe model about the first portion of the first three-dimensional object by the at least one processor;
based on the determined features of the first three-dimensional object, fitting a second three-dimensional packaging wireframe model about the second portion of the first three-dimensional object by the at least one processor; and
causing a concurrent displaying of an image of the first and the second three-dimensional wireframe models respectively fitted about the image of the first and the second portions of the first three-dimensional object on the display.
29. The method of claim 28, further comprising:
receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of at least one of the first three-dimensional packaging wireframe model or the second three-dimensional packaging wireframe model relative to the displayed image of the first and second portions of the first three-dimensional object, respectively; and
causing a displaying of an updated image of the first and second three- dimensional packaging wireframe models fitted about the image of the first and second portions of the first three-dimensional object on the display.
30. The method of claim 28, further comprising:
receiving at least one user input via a user interface, the user input indicative of a change in a position of at least a portion of the displayed image of at least one of the first three-dimensional packaging wireframe model or the second three-dimensional packaging wireframe model relative to the displayed image of the first three-dimensional object;
based at least in part on the received user input, fitting a replacement three-dimensional packaging wireframe model about at least one of the first or second portions of the first three-dimensional object by the at least one processor, the replacement three-dimensional packaging wireframe model having a different geometric primitive than the first or second three-dimensional wireframe model that it replaces; and
causing a displaying of an image of at least the replacement three- dimensional packaging wireframe model fitted about the image of the first three- dimensional object on the display.
31 . The method of claim 28 wherein the at least one processor causes the displaying of the image of the first and the second three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display to rotate about an axis.
32. The method of claim 31 , further comprising:
receiving image data of the area from a second point of view by at least one nontransitory processor-readable medium from at least one image sensor, the second point of view different from the first point of view;
determining from the received image data at least one additional feature in three dimensions of the first three-dimensional object by at least one processor;
based on the determined features of the first three-dimensional object, performing at least one of adjusting the first or second three-dimensional packaging wireframe model or fitting a third three-dimensional packaging wireframe model about at least a portion of the first three-dimensional object not discernible from the first point of view by the at least one processor; and
causing a displaying of an image of at least one of the adjusted first or second three-dimensional packaging wireframe model or the first, second, and third three-dimensional packaging wireframe models fitted about the image of the first three-dimensional object on the display.
33. The method of claim 28 wherein fitting a first three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor includes:
selecting the first three-dimensional packaging wireframe model from a number of defined geometric primitives that define respective volumes and sizing at least one dimension of the selected geometric primitive based on a corresponding dimension of the first portion of the first three-dimensional object such that the first portion of the first three-dimensional object is completely encompassed by the selected and sized geometric primitive; and
wherein fitting a second three-dimensional packaging wireframe model about the second portion of the first three-dimensional object by the at least one processor includes:
selecting the second three-dimensional packaging wireframe model from the number of defined geometric primitives that define respective volumes and sizing at least one dimension of the selected geometric primitive based on a corresponding dimension of the second portion of the first three-dimensional object such that the second portion of the first three-dimensional object is completely encompassed by the selected and sized geometric primitive.
34. The method of claim 33, further comprising:
producing a wireframe model of the first three-dimensional object; and causing a concurrently displaying of the wireframe model of the first three-dimensional object along with the first and second three-dimensional packaging wireframe models by the display.
35. The method of claim 28, further comprising:
receiving at least one user input via a user interface, the user input indicative of a geometric primitive of at least the first portion or the second portion of the first three-dimensional object; and
selecting the first three-dimensional object from a plurality of three- dimensional objects represented in the image data by at least one processor, based at least in part on the user input indicative of the geometric primitive of at least a portion of the first three-dimensional object.
36. The method of claim 35 wherein selecting the first three- dimensional object from a plurality of three-dimensional objects represented in the image data by at least one processor, based at least in part on the user input indicative of the geometric primitive of at least a portion of the first three-dimensional object includes determining which of the three-dimensional objects contains a portion having a geometric primitive that most closely matches the geometric primitive indicated by the received user input.
37. The method of claim 28, further comprising:
receiving at least one user input via a user interface, the user input indicative of an acceptance of the first three-dimensional packaging wireframe model and the second three-dimensional packaging wireframe model; and
performing at least a volumetric calculation using a number of dimensions of the selected first and second three-dimensional packaging wireframe models.
38. The method of claim 28, further comprising:
receiving at least one user input via a user interface, the user input indicative of a rejection of at least one of the first three-dimensional packaging wireframe model or the second three-dimensional packaging wireframe model; and in response to the received user input, fitting a replacement three- dimensional packaging wireframe model about the first or second portion of the first three-dimensional object by the at least one processor, the replacement three- dimensional packaging wireframe model having a different geometric primitive than the first or second three-dimensional wireframe model that it replaces; and
causing a displaying of an image of the replacement three-dimensional packaging wireframe model fitted about at least a portion of the image of the first three-dimensional object on the display.
39. The method of claim 28, further comprising:
receiving at least one user input via a user interface, the user input indicative of a replacement three-dimensional packaging wireframe model, the replacement three-dimensional packaging wireframe model having a different geometric primitive than at least one of the first three-dimensional wireframe model and the second three-dimensional wireframe model;
in response to the received user input, fitting the replacement three- dimensional packaging wireframe model about either the first or second portion of the first three-dimensional object by the at least one processor; and
causing a displaying of an image of the replacement three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display by the at least one processor.
40. The method of claim 39, further comprising:
causing by the at least one processor a displaying of a plurality of user selectable options, each user selectable option corresponding to a respective one of a plurality of three-dimensional packaging wireframe model and selectable by a user to be fitted to either the first or second portion of the first three-dimensional object.
41 . A volume dimensioning system, comprising:
at least one image sensor communicably coupled to at least one nontransitory processor-readable medium;
at least one processor communicably coupled to the at least one nontransitory processor-readable medium; and a machine executable instruction set stored within at least one nontransitory processor-readable medium, that when executed by the at least one processor causes the at least one processor to:
read image data from the at least one nontransitory processor-readable medium, the image data associated with a first point of view of an area sensed by the at least one image sensor, the area including at least a first three-dimensional object to be dimensioned;
determine from the received image data a number of features in three dimensions of the first three-dimensional object;
based at least in part on the determined features of the first three- dimensional object, identify a first portion and at least a second portion of the first three-dimensional object;
based on the determined features of the first three-dimensional object, fit a first three-dimensional packaging wireframe model about the first portion of the first three-dimensional object;
based on the determined features of the first three-dimensional object, fit a second three-dimensional packaging wireframe model about the second portion of the first three-dimensional object; and
cause a concurrent display of an image of the first and the second three-dimensional wireframe models fitted about the image of the first and the second portions of the first three-dimensional object.
42. The method of claim 41 wherein the first three-dimensional wireframe model is a first geometric primitive; and
wherein the second three-dimensional wireframe model is a second geometric primitive.
43. A method of operation of a volume dimensioning system, the method comprising:
receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned;
determining that there are insufficient features in the image data to determine a three-dimensional volume occupied by the first three-dimensional object;
in response to the determination, generating an output to change at least one of a relative position or orientation of at least one image sensor with respect to at least the first three-dimensional object to obtain image data from a second point of view, the second point of view different from the first point of view.
44. The method of claim 43 wherein generating an output to change at least one of a relative position or orientation of at least one image sensor with respect to at least the first three-dimensional object to obtain image data from a second point of view includes:
generating at least one output, including at least one of an audio output or a visual output that is perceivable by a user.
45. The method of claim 44 wherein the at least one output indicates to the user a direction of movement to change at least one of a relative position or orientation of the at least one sensor with respect to the first three- dimensional object.
46. The method of claim 43, further comprising:
causing a displaying of an image of a two-dimensional packaging wireframe model fitted about a portion of an image of the first three-dimensional object on a display on which the image of the first three-dimensional object is displayed.
47. The method of claim 46 wherein the causing of the displaying of the image of the two-dimensional packaging wireframe model fitted about the portion of the image of the first three-dimensional object occurs before generating the output.
48. A volume dimensioning system, comprising:
at least one image sensor communicably coupled to at least one nontransitory processor-readable medium;
at least one processor communicably coupled to the at least one nontransitory processor-readable medium; and
a machine executable instruction set stored within at least one nontransitory processor-readable medium, that when executed by the at least one processor causes the at least one processor to:
read image data from the at least one nontransitory processor-readable medium, the image data associated with a first point of view of an area sensed by the at least one image sensor, the area including at least a first three-dimensional object to be dimensioned;
determine from the received image data that there are an insufficient number of features in the image data to determine a three-dimensional volume occupied by the first three-dimensional object;
responsive to the determination of an insufficient number of features in the image data, generate an output to change at least one of a relative position or orientation of at least one image sensor with respect to at least the first three- dimensional object to obtain image data from a second point of view, the second point of view different from the first point of view.
49. The volume dimensioning system of claim 48 wherein the machine executable instruction set further comprises instructions that when executed by the at least one processor further cause the at least one processor to:
generate at least one output, including at least one of an audio output or a visual output that is perceivable by a user.
50. The volume dimensioning system of claim 49 wherein the at least one output indicates to the user a direction of movement to change at least one of a relative position or orientation of the at least one sensor with respect to the first three-dimensional object.
51 . A method of operation of a volume dimensioning system, the method comprising:
receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned;
receiving at least one user input via a user interface communicably coupled to at least one processor, the user input indicative of at least a portion of the three-dimensional packaging wireframe model of the first three-dimensional object;
in response to the received user input, fitting the user inputted three- dimensional packaging wireframe model to at least a portion of one or more edges of the first three-dimensional object by the at least one processor; and
causing a displaying of an image of the user inputted three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display by the at least one processor.
52. The method of claim 51 wherein the at least one processor causes the displaying of the image of the first three-dimensional packaging
wireframe model fitted about the image of the first three-dimensional object on the display to rotate about an axis.
53. The method of claim 52, further comprising:
receiving image data of the area from a second point of view by at least one nontransitory processor-readable medium from at least one image sensor, the second point of view different from the first point of view; determining from the received image data at least one additional feature in three dimensions of the first three-dimensional object by at least one processor;
based on the determined features of the first three-dimensional object, performing at least one of adjusting the three-dimensional packaging wireframe model by accepting additional user input via the user interface communicably coupled to at least one processor, the additional user input indicative the first three- dimensional packaging wireframe model; and
causing a displaying of an image of at least one of the adjusted first three-dimensional packaging wireframe model fitted about the image of the first three-dimensional object on the display.
54. The method of claim 51 , further comprising:
receiving at least one user input via a user interface, the user input indicative of an acceptance of the first three-dimensional packaging wireframe model; and
performing at least a volumetric calculation using a number of dimensions of the selected three-dimensional packaging wireframe model.
55. A method of operation of a volume dimensioning system, the method comprising:
receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional void to be dimensioned;
determining from the received image data a number of features in three dimensions of the first three-dimensional void by at least one processor
communicatively coupled to the at least one nontransitory processor-readable medium;
based at least on part on the determined features of the first three- dimensional void, fitting a first three-dimensional receiving wireframe model within the first three-dimensional void by the at least one processor; and causing a displaying of an image of the first three-dimensional receiving wireframe model fitted within an image of the first three-dimensional void on a display on which the image of the first three-dimensional void is displayed.
56. The method of claim 55, further comprising:
calculating by the at least one processor, at least one of an available receiving dimension and an available receiving volume encompassed by the first three-dimensional receiving wireframe model.
57. The method of claim 56, further comprising:
receiving by the at least one nontransitory processor-readable medium at least one of dimensional data and volume data for each of a plurality of three- dimensional objects, the dimensional data and volume data determined based upon a respective three-dimensional packaging wireframe model fitted to each of the plurality of three-dimensional objects and corresponding to at least one of the respective dimensions and volume of each of the plurality of three-dimensional objects; and
determining by the at least one processor communicably coupled to the at least one nontransitory processor-readable medium based at least in part on at least one of the available receiving dimension and an available receiving volume encompassed by the first three-dimensional receiving wireframe model at least one of a position and an orientation of at least a portion of the plurality of three- dimensional objects within the first three-dimensional void;
wherein at least one of the position and the orientation of at least a portion of the plurality of three-dimensional objects within the first three-dimensional void minimizes at least one of: at least one dimension occupied by at least a portion of the plurality of three-dimensional objects within the first three-dimensional void, or a volume occupied by at least a portion of the plurality of three-dimensional objects within the first three-dimensional void.
58. The method of claim 57, further comprising:
indicating at least one of the position and the orientation of each of the three-dimensional packaging wireframes associated with each of the plurality of three-dimensional objects within the first three-dimensional void on the display.
59. A volume dimensioning system, comprising:
at least one image sensor communicably coupled to at least one nontransitory processor-readable medium;
at least one processor communicably coupled to the at least one nontransitory processor-readable medium; and
a machine executable instruction set stored within at least one nontransitory processor-readable medium, that when executed by the at least one processor causes the at least one processor to:
read image data from the at least one nontransitory processor-readable medium, the image data associated with a first point of view of an area sensed by the at least one image sensor, the area including at least a first three-dimensional void to be dimensioned;
determine from the received image data a number of features in three dimensions of the first three-dimensional void;
based at least on part on the determined features of the first three- dimensional void, fit a first three-dimensional receiving wireframe model within the first three-dimensional void; and
cause a display of an image of the first three-dimensional receiving wireframe model fitted within an image of the first three-dimensional void on the display device.
60. The volume dimensioning system of claim 59 wherein the machine executable instruction set further comprises instructions, that when executed by the at least one processor further cause the at least one processor to:
determine at least one of an available receiving dimension and an available receiving volume encompassed by the first three-dimensional receiving wireframe model;
receive from the at least one nontransitory processor-readable medium at least one of dimensional data and volume data for each of a plurality of three- dimensional objects, the dimensional data and volume data determined based upon a respective three-dimensional packaging wireframe model fitted to each of the plurality of three-dimensional objects and corresponding to at least one of the respective dimensions and volume of each of the plurality of three-dimensional objects; and
determine based at least in part on at least one of the available receiving dimension and the available receiving volume encompassed by the first three-dimensional receiving wireframe model at least one of a position and an orientation of at least a portion of the plurality of three-dimensional objects within the first three-dimensional void;
wherein at least one of the position and the orientation of at least a portion of the plurality of three-dimensional objects within the first three-dimensional void minimizes at least one of: at least one dimension occupied by at least a portion of the plurality of three-dimensional objects within the first three-dimensional void, or a volume occupied by at least a portion of the plurality of three-dimensional objects within the first three-dimensional void.
61 . A method of operation of a volume dimensioning system, the method comprising:
receiving image data of an area from a first point of view by at least one nontransitory processor-readable medium from at least one image sensor, the area including at least a first three-dimensional object to be dimensioned; determining from the received image data a number of features in three dimensions of the first three-dimensional object by at least one processor
communicatively coupled to the at least one nontransitory processor-readable medium;
based at least on part on the determined features of the first three- dimensional object, selecting a geometric primitive from a library of geometric primitives stored within the at least one nontransitory processor-readable medium;
fitting a first three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor based at least in part on the selected geometric primitive;
receiving at least one user input via a user interface, the user input indicative of a rejection of the first geometric primitive;
selecting by the at least one processor a second geometric primitive from the library of geometric primitives stored within the at least one nontransitory processor-readable medium, the second geometric primitive different from the first geometric primitive;
fitting a second three-dimensional packaging wireframe model about the first three-dimensional object by the at least one processor based at least in part on the selected second geometric primitive;
storing by the at least one processor in the at least one nontransitory processor-readable medium, an association between at least one of: a number of determined features; a pattern of determined features; or, a three-dimensional spatial arrangement of determined features and the second geometric primitive such that upon determining at least one of: a similar number of determined features; a similar pattern of determined features; or, a similar three-dimensional spatial arrangement of determined features, the one or more processors select the second geometric primitive from the library of geometric primitives stored within the at least one nontransitory processor-readable medium.
PCT/US2013/039438 2012-05-04 2013-05-03 Volume dimensioning systems and methods WO2013166368A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13785171.3A EP2845170B1 (en) 2012-05-04 2013-05-03 Volume dimensioning systems and methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/464,799 US9779546B2 (en) 2012-05-04 2012-05-04 Volume dimensioning systems and methods
US13/464,799 2012-05-04

Publications (1)

Publication Number Publication Date
WO2013166368A1 true WO2013166368A1 (en) 2013-11-07

Family

ID=49512178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/039438 WO2013166368A1 (en) 2012-05-04 2013-05-03 Volume dimensioning systems and methods

Country Status (3)

Country Link
US (2) US9779546B2 (en)
EP (1) EP2845170B1 (en)
WO (1) WO2013166368A1 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9007368B2 (en) 2012-05-07 2015-04-14 Intermec Ip Corp. Dimensioning system calibration systems and methods
US9080856B2 (en) 2013-03-13 2015-07-14 Intermec Ip Corp. Systems and methods for enhancing dimensioning, for example volume dimensioning
US9239950B2 (en) 2013-07-01 2016-01-19 Hand Held Products, Inc. Dimensioning system
US9464885B2 (en) 2013-08-30 2016-10-11 Hand Held Products, Inc. System and method for package dimensioning
US9557166B2 (en) 2014-10-21 2017-01-31 Hand Held Products, Inc. Dimensioning system with multipath interference mitigation
US9752864B2 (en) 2014-10-21 2017-09-05 Hand Held Products, Inc. Handheld dimensioning system with feedback
US9762793B2 (en) 2014-10-21 2017-09-12 Hand Held Products, Inc. System and method for dimensioning
US9779546B2 (en) 2012-05-04 2017-10-03 Intermec Ip Corp. Volume dimensioning systems and methods
US9779276B2 (en) 2014-10-10 2017-10-03 Hand Held Products, Inc. Depth sensor based auto-focus system for an indicia scanner
US9786101B2 (en) 2015-05-19 2017-10-10 Hand Held Products, Inc. Evaluating image values
US9823059B2 (en) 2014-08-06 2017-11-21 Hand Held Products, Inc. Dimensioning system with guided alignment
US9835486B2 (en) 2015-07-07 2017-12-05 Hand Held Products, Inc. Mobile dimensioner apparatus for use in commerce
US9841311B2 (en) 2012-10-16 2017-12-12 Hand Held Products, Inc. Dimensioning system
US9857167B2 (en) 2015-06-23 2018-01-02 Hand Held Products, Inc. Dual-projector three-dimensional scanner
US9897434B2 (en) 2014-10-21 2018-02-20 Hand Held Products, Inc. Handheld dimensioning system with measurement-conformance feedback
US9940721B2 (en) 2016-06-10 2018-04-10 Hand Held Products, Inc. Scene change detection in a dimensioner
US9939259B2 (en) 2012-10-04 2018-04-10 Hand Held Products, Inc. Measuring object dimensions using mobile computer
US10007858B2 (en) 2012-05-15 2018-06-26 Honeywell International Inc. Terminals and methods for dimensioning objects
US10025314B2 (en) 2016-01-27 2018-07-17 Hand Held Products, Inc. Vehicle positioning and object avoidance
US10060729B2 (en) 2014-10-21 2018-08-28 Hand Held Products, Inc. Handheld dimensioner with data-quality indication
US10066982B2 (en) 2015-06-16 2018-09-04 Hand Held Products, Inc. Calibrating a volume dimensioner
US10094650B2 (en) 2015-07-16 2018-10-09 Hand Held Products, Inc. Dimensioning and imaging items
US10134120B2 (en) 2014-10-10 2018-11-20 Hand Held Products, Inc. Image-stitching for dimensioning
US10140724B2 (en) 2009-01-12 2018-11-27 Intermec Ip Corporation Semi-automatic dimensioning with imager on a portable device
US10163216B2 (en) 2016-06-15 2018-12-25 Hand Held Products, Inc. Automatic mode switching in a volume dimensioner
US10203402B2 (en) 2013-06-07 2019-02-12 Hand Held Products, Inc. Method of error correction for 3D imaging device
US10225544B2 (en) 2015-11-19 2019-03-05 Hand Held Products, Inc. High resolution dot pattern
US10247547B2 (en) 2015-06-23 2019-04-02 Hand Held Products, Inc. Optical pattern projector
US10249030B2 (en) 2015-10-30 2019-04-02 Hand Held Products, Inc. Image transformation for indicia reading
US10321127B2 (en) 2012-08-20 2019-06-11 Intermec Ip Corp. Volume dimensioning system calibration systems and methods
US10339352B2 (en) 2016-06-03 2019-07-02 Hand Held Products, Inc. Wearable metrological apparatus
US10393506B2 (en) 2015-07-15 2019-08-27 Hand Held Products, Inc. Method for a mobile dimensioning device to use a dynamic accuracy compatible with NIST standard
US10584962B2 (en) 2018-05-01 2020-03-10 Hand Held Products, Inc System and method for validating physical-item security
US10733748B2 (en) 2017-07-24 2020-08-04 Hand Held Products, Inc. Dual-pattern optical 3D dimensioning
US10775165B2 (en) 2014-10-10 2020-09-15 Hand Held Products, Inc. Methods for improving the accuracy of dimensioning-system measurements
US10909708B2 (en) 2016-12-09 2021-02-02 Hand Held Products, Inc. Calibrating a dimensioner using ratios of measurable parameters of optic ally-perceptible geometric elements
US11029762B2 (en) 2015-07-16 2021-06-08 Hand Held Products, Inc. Adjusting dimensioning results using augmented reality
US11047672B2 (en) 2017-03-28 2021-06-29 Hand Held Products, Inc. System for optically dimensioning
US11301801B1 (en) * 2017-02-03 2022-04-12 Popout, Inc. Cross-account rating system
US11639846B2 (en) 2019-09-27 2023-05-02 Honeywell International Inc. Dual-pattern optical 3D dimensioning

Families Citing this family (362)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8914290B2 (en) 2011-05-20 2014-12-16 Vocollect, Inc. Systems and methods for dynamically improving user intelligibility of synthesized speech in a work environment
US20130308013A1 (en) * 2012-05-18 2013-11-21 Honeywell International Inc. d/b/a Honeywell Scanning and Mobility Untouched 3d measurement with range imaging
EP2864929A4 (en) 2012-06-20 2016-03-30 Metrologic Instr Inc Laser scanning code symbol reading system providing control over length of laser scan line projected onto a scanned object using dynamic range-dependent scan angle control
US8854633B2 (en) 2012-06-29 2014-10-07 Intermec Ip Corp. Volume dimensioning system and method employing time-of-flight camera
CN103780847A (en) 2012-10-24 2014-05-07 霍尼韦尔国际公司 Chip on board-based highly-integrated imager
WO2014110495A2 (en) 2013-01-11 2014-07-17 Hand Held Products, Inc. System, method, and computer-readable medium for managing edge devices
US9070032B2 (en) 2013-04-10 2015-06-30 Hand Held Products, Inc. Method of programming a symbol reading system
US8918250B2 (en) 2013-05-24 2014-12-23 Hand Held Products, Inc. System and method for display of information using a vehicle-mount computer
US9930142B2 (en) 2013-05-24 2018-03-27 Hand Held Products, Inc. System for providing a continuous communication link with a symbol reading device
US9037344B2 (en) 2013-05-24 2015-05-19 Hand Held Products, Inc. System and method for display of information using a vehicle-mount computer
US9141839B2 (en) 2013-06-07 2015-09-22 Hand Held Products, Inc. System and method for reading code symbols at long range using source power control
US20140372182A1 (en) * 2013-06-17 2014-12-18 Motorola Solutions, Inc. Real-time trailer utilization measurement
US20140372183A1 (en) * 2013-06-17 2014-12-18 Motorola Solutions, Inc Trailer loading assessment and training
US9104929B2 (en) 2013-06-26 2015-08-11 Hand Held Products, Inc. Code symbol reading system having adaptive autofocus
US8985461B2 (en) 2013-06-28 2015-03-24 Hand Held Products, Inc. Mobile device having an improved user interface for reading code symbols
US9250652B2 (en) 2013-07-02 2016-02-02 Hand Held Products, Inc. Electronic device case
US9355123B2 (en) 2013-07-19 2016-05-31 Nant Holdings Ip, Llc Fast recognition algorithm processing, systems and methods
US9773142B2 (en) 2013-07-22 2017-09-26 Hand Held Products, Inc. System and method for selectively reading code symbols
US9297900B2 (en) 2013-07-25 2016-03-29 Hand Held Products, Inc. Code symbol reading system having adjustable object detection
US9672398B2 (en) 2013-08-26 2017-06-06 Intermec Ip Corporation Aiming imagers
US9082023B2 (en) 2013-09-05 2015-07-14 Hand Held Products, Inc. Method for operating a laser scanner
US9572901B2 (en) 2013-09-06 2017-02-21 Hand Held Products, Inc. Device having light source to reduce surface pathogens
US8870074B1 (en) 2013-09-11 2014-10-28 Hand Held Products, Inc Handheld indicia reader having locking endcap
US9251411B2 (en) 2013-09-24 2016-02-02 Hand Held Products, Inc. Augmented-reality signature capture
US9639909B2 (en) * 2013-09-30 2017-05-02 At&T Intellectual Property I, L.P. Determining available storage capacity of a vehicle
US9165174B2 (en) 2013-10-14 2015-10-20 Hand Held Products, Inc. Indicia reader
US10275624B2 (en) 2013-10-29 2019-04-30 Hand Held Products, Inc. Hybrid system and method for reading indicia
US9800293B2 (en) 2013-11-08 2017-10-24 Hand Held Products, Inc. System for configuring indicia readers using NFC technology
US9530038B2 (en) 2013-11-25 2016-12-27 Hand Held Products, Inc. Indicia-reading system
CN204009928U (en) 2013-12-12 2014-12-10 手持产品公司 Laser scanner
US9373018B2 (en) 2014-01-08 2016-06-21 Hand Held Products, Inc. Indicia-reader having unitary-construction
US10139495B2 (en) 2014-01-24 2018-11-27 Hand Held Products, Inc. Shelving and package locating systems for delivery vehicles
WO2015123647A1 (en) 2014-02-14 2015-08-20 Nant Holdings Ip, Llc Object ingestion through canonical shapes, systems and methods
US9665757B2 (en) 2014-03-07 2017-05-30 Hand Held Products, Inc. Indicia reader for size-limited applications
US10247541B2 (en) * 2014-03-31 2019-04-02 Gorilla Technology Inc. System and method of estimating the three-dimensional size of an object for packaging or storing the object
US9224027B2 (en) 2014-04-01 2015-12-29 Hand Held Products, Inc. Hand-mounted indicia-reading device with finger motion triggering
US9412242B2 (en) 2014-04-04 2016-08-09 Hand Held Products, Inc. Multifunction point of sale system
US9258033B2 (en) 2014-04-21 2016-02-09 Hand Held Products, Inc. Docking system and method using near field communication
US9224022B2 (en) 2014-04-29 2015-12-29 Hand Held Products, Inc. Autofocus lens system for indicia readers
US9277668B2 (en) 2014-05-13 2016-03-01 Hand Held Products, Inc. Indicia-reading module with an integrated flexible circuit
US9280693B2 (en) 2014-05-13 2016-03-08 Hand Held Products, Inc. Indicia-reader housing with an integrated optical structure
US9301427B2 (en) 2014-05-13 2016-03-29 Hand Held Products, Inc. Heat-dissipation structure for an indicia reading module
US9478113B2 (en) 2014-06-27 2016-10-25 Hand Held Products, Inc. Cordless indicia reader with a multifunction coil for wireless charging and EAS deactivation
US9794392B2 (en) 2014-07-10 2017-10-17 Hand Held Products, Inc. Mobile-phone adapter for electronic transactions
US9443123B2 (en) 2014-07-18 2016-09-13 Hand Held Products, Inc. System and method for indicia verification
US9310609B2 (en) 2014-07-25 2016-04-12 Hand Held Products, Inc. Axially reinforced flexible scan element
US11546428B2 (en) 2014-08-19 2023-01-03 Hand Held Products, Inc. Mobile computing device with data cognition software
US10528961B2 (en) * 2014-08-20 2020-01-07 Virtual Moving Technologies System and method for estimating a move using object measurements
US20160062473A1 (en) 2014-08-29 2016-03-03 Hand Held Products, Inc. Gesture-controlled computer system
EP3001368A1 (en) 2014-09-26 2016-03-30 Honeywell International Inc. System and method for workflow management
US10810530B2 (en) 2014-09-26 2020-10-20 Hand Held Products, Inc. System and method for workflow management
US9626639B2 (en) * 2014-09-26 2017-04-18 Shyp, Inc. Image processing and item transport
US9443222B2 (en) 2014-10-14 2016-09-13 Hand Held Products, Inc. Identifying inventory items in a storage facility
EP3009968A1 (en) 2014-10-15 2016-04-20 Vocollect, Inc. Systems and methods for worker resource management
US10909490B2 (en) 2014-10-15 2021-02-02 Vocollect, Inc. Systems and methods for worker resource management
US10269342B2 (en) 2014-10-29 2019-04-23 Hand Held Products, Inc. Method and system for recognizing speech using wildcards in an expected response
CN204256748U (en) 2014-10-31 2015-04-08 霍尼韦尔国际公司 There is the scanner of illuminator
EP3016023B1 (en) 2014-10-31 2020-12-16 Honeywell International Inc. Scanner with illumination system
US9924006B2 (en) 2014-10-31 2018-03-20 Hand Held Products, Inc. Adaptable interface for a mobile computing device
US10810529B2 (en) 2014-11-03 2020-10-20 Hand Held Products, Inc. Directing an inspector through an inspection
US20160125217A1 (en) 2014-11-05 2016-05-05 Hand Held Products, Inc. Barcode scanning system using wearable device with embedded camera
US9984685B2 (en) 2014-11-07 2018-05-29 Hand Held Products, Inc. Concatenated expected responses for speech recognition using expected response boundaries to determine corresponding hypothesis boundaries
FR3028988B1 (en) * 2014-11-20 2018-01-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD AND APPARATUS FOR REAL-TIME ADAPTIVE FILTERING OF BURNED DISPARITY OR DEPTH IMAGES
US9767581B2 (en) 2014-12-12 2017-09-19 Hand Held Products, Inc. Auto-contrast viewfinder for an indicia reader
US10438409B2 (en) 2014-12-15 2019-10-08 Hand Held Products, Inc. Augmented reality asset locator
US10176521B2 (en) 2014-12-15 2019-01-08 Hand Held Products, Inc. Augmented reality virtual product for display
US10509619B2 (en) 2014-12-15 2019-12-17 Hand Held Products, Inc. Augmented reality quick-start and user guide
US20160180713A1 (en) 2014-12-18 2016-06-23 Hand Held Products, Inc. Collision-avoidance system and method
US9678536B2 (en) 2014-12-18 2017-06-13 Hand Held Products, Inc. Flip-open wearable computer
US10317474B2 (en) 2014-12-18 2019-06-11 Hand Held Products, Inc. Systems and methods for identifying faulty battery in an electronic device
US9761096B2 (en) 2014-12-18 2017-09-12 Hand Held Products, Inc. Active emergency exit systems for buildings
US9743731B2 (en) 2014-12-18 2017-08-29 Hand Held Products, Inc. Wearable sled system for a mobile computer device
US10275088B2 (en) 2014-12-18 2019-04-30 Hand Held Products, Inc. Systems and methods for identifying faulty touch panel having intermittent field failures
US9727769B2 (en) 2014-12-22 2017-08-08 Hand Held Products, Inc. Conformable hand mount for a mobile scanner
US9564035B2 (en) 2014-12-22 2017-02-07 Hand Held Products, Inc. Safety system and method
US10296259B2 (en) 2014-12-22 2019-05-21 Hand Held Products, Inc. Delayed trim of managed NAND flash memory in computing devices
US20160180594A1 (en) 2014-12-22 2016-06-23 Hand Held Products, Inc. Augmented display and user input device
US10635876B2 (en) 2014-12-23 2020-04-28 Hand Held Products, Inc. Method of barcode templating for enhanced decoding performance
US10191514B2 (en) 2014-12-23 2019-01-29 Hand Held Products, Inc. Tablet computer with interface channels
US10049246B2 (en) 2014-12-23 2018-08-14 Hand Held Products, Inc. Mini-barcode reading module with flash memory management
US9679178B2 (en) 2014-12-26 2017-06-13 Hand Held Products, Inc. Scanning improvements for saturated signals using automatic and fixed gain control methods
US10552786B2 (en) 2014-12-26 2020-02-04 Hand Held Products, Inc. Product and location management via voice recognition
US9652653B2 (en) 2014-12-27 2017-05-16 Hand Held Products, Inc. Acceleration-based motion tolerance and predictive coding
US9774940B2 (en) 2014-12-27 2017-09-26 Hand Held Products, Inc. Power configurable headband system and method
US10621538B2 (en) 2014-12-28 2020-04-14 Hand Held Products, Inc Dynamic check digit utilization via electronic tag
US20160189447A1 (en) 2014-12-28 2016-06-30 Hand Held Products, Inc. Remote monitoring of vehicle diagnostic information
US11244264B2 (en) 2014-12-29 2022-02-08 Hand Held Products, Inc. Interleaving surprise activities in workflow
US9843660B2 (en) 2014-12-29 2017-12-12 Hand Held Products, Inc. Tag mounted distributed headset with electronics module
US11443363B2 (en) 2014-12-29 2022-09-13 Hand Held Products, Inc. Confirming product location using a subset of a product identifier
US11328335B2 (en) 2014-12-29 2022-05-10 Hand Held Products, Inc. Visual graphic aided location identification
US11257143B2 (en) 2014-12-30 2022-02-22 Hand Held Products, Inc. Method and device for simulating a virtual out-of-box experience of a packaged product
US9685049B2 (en) 2014-12-30 2017-06-20 Hand Held Products, Inc. Method and system for improving barcode scanner performance
US9230140B1 (en) 2014-12-30 2016-01-05 Hand Held Products, Inc. System and method for detecting barcode printing errors
US10108832B2 (en) 2014-12-30 2018-10-23 Hand Held Products, Inc. Augmented reality vision barcode scanning system and method
US9898635B2 (en) 2014-12-30 2018-02-20 Hand Held Products, Inc. Point-of-sale (POS) code sensing apparatus
US9830488B2 (en) 2014-12-30 2017-11-28 Hand Held Products, Inc. Real-time adjustable window feature for barcode scanning and process of scanning barcode with adjustable window feature
US10152622B2 (en) 2014-12-30 2018-12-11 Hand Held Products, Inc. Visual feedback for code readers
CN204706037U (en) 2014-12-31 2015-10-14 手持产品公司 The reconfigurable slide plate of mobile device and mark reading system
US10049290B2 (en) 2014-12-31 2018-08-14 Hand Held Products, Inc. Industrial vehicle positioning system and method
US9811650B2 (en) 2014-12-31 2017-11-07 Hand Held Products, Inc. User authentication system and method
US9734639B2 (en) 2014-12-31 2017-08-15 Hand Held Products, Inc. System and method for monitoring an industrial vehicle
EP3043235B1 (en) 2014-12-31 2018-06-20 Hand Held Products, Inc. Reconfigurable sled for a mobile device
US9879823B2 (en) 2014-12-31 2018-01-30 Hand Held Products, Inc. Reclosable strap assembly
US10120657B2 (en) 2015-01-08 2018-11-06 Hand Held Products, Inc. Facilitating workflow application development
US10061565B2 (en) 2015-01-08 2018-08-28 Hand Held Products, Inc. Application development using mutliple primary user interfaces
US9997935B2 (en) 2015-01-08 2018-06-12 Hand Held Products, Inc. System and method for charging a barcode scanner
US10262660B2 (en) 2015-01-08 2019-04-16 Hand Held Products, Inc. Voice mode asset retrieval
US20160204623A1 (en) 2015-01-08 2016-07-14 Hand Held Products, Inc. Charge limit selection for variable power supply configuration
US10402038B2 (en) 2015-01-08 2019-09-03 Hand Held Products, Inc. Stack handling using multiple primary user interfaces
US11081087B2 (en) 2015-01-08 2021-08-03 Hand Held Products, Inc. Multiple primary user interfaces
US20160203429A1 (en) 2015-01-09 2016-07-14 Honeywell International Inc. Restocking workflow prioritization
US9861182B2 (en) 2015-02-05 2018-01-09 Hand Held Products, Inc. Device for supporting an electronic tool on a user's hand
US10121466B2 (en) 2015-02-11 2018-11-06 Hand Held Products, Inc. Methods for training a speech recognition system
US9958256B2 (en) * 2015-02-19 2018-05-01 Jason JOACHIM System and method for digitally scanning an object in three dimensions
US9390596B1 (en) 2015-02-23 2016-07-12 Hand Held Products, Inc. Device, system, and method for determining the status of checkout lanes
CN204795622U (en) 2015-03-06 2015-11-18 手持产品公司 Scanning system
US9250712B1 (en) 2015-03-20 2016-02-02 Hand Held Products, Inc. Method and application for scanning a barcode with a smart device while continuously running and displaying an application on the smart device display
US20160292477A1 (en) 2015-03-31 2016-10-06 Hand Held Products, Inc. Aimer for barcode scanning
US9930050B2 (en) 2015-04-01 2018-03-27 Hand Held Products, Inc. Device management proxy for secure devices
US9852102B2 (en) 2015-04-15 2017-12-26 Hand Held Products, Inc. System for exchanging information between wireless peripherals and back-end systems via a peripheral hub
US9521331B2 (en) 2015-04-21 2016-12-13 Hand Held Products, Inc. Capturing a graphic information presentation
US9693038B2 (en) 2015-04-21 2017-06-27 Hand Held Products, Inc. Systems and methods for imaging
US20160314294A1 (en) 2015-04-24 2016-10-27 Hand Held Products, Inc. Secure unattended network authentication
US10038716B2 (en) 2015-05-01 2018-07-31 Hand Held Products, Inc. System and method for regulating barcode data injection into a running application on a smart device
US10401436B2 (en) 2015-05-04 2019-09-03 Hand Held Products, Inc. Tracking battery conditions
US9891612B2 (en) 2015-05-05 2018-02-13 Hand Held Products, Inc. Intermediate linear positioning
US9954871B2 (en) 2015-05-06 2018-04-24 Hand Held Products, Inc. Method and system to protect software-based network-connected devices from advanced persistent threat
US10007112B2 (en) 2015-05-06 2018-06-26 Hand Held Products, Inc. Hands-free human machine interface responsive to a driver of a vehicle
US9978088B2 (en) 2015-05-08 2018-05-22 Hand Held Products, Inc. Application independent DEX/UCS interface
US10360728B2 (en) 2015-05-19 2019-07-23 Hand Held Products, Inc. Augmented reality device, system, and method for safety
USD771631S1 (en) 2015-06-02 2016-11-15 Hand Held Products, Inc. Mobile computer housing
US9507974B1 (en) 2015-06-10 2016-11-29 Hand Held Products, Inc. Indicia-reading systems having an interface with a user's nervous system
US10354449B2 (en) 2015-06-12 2019-07-16 Hand Held Products, Inc. Augmented reality lighting effects
US9892876B2 (en) 2015-06-16 2018-02-13 Hand Held Products, Inc. Tactile switch for a mobile electronic device
US9949005B2 (en) 2015-06-18 2018-04-17 Hand Held Products, Inc. Customizable headset
US10345383B2 (en) 2015-07-07 2019-07-09 Hand Held Products, Inc. Useful battery capacity / state of health gauge
CN115633392A (en) 2015-07-07 2023-01-20 手持产品公司 WIFI enablement based on cell signals
US9488986B1 (en) 2015-07-31 2016-11-08 Hand Held Products, Inc. System and method for tracking an item on a pallet in a warehouse
US9853575B2 (en) 2015-08-12 2017-12-26 Hand Held Products, Inc. Angular motor shaft with rotational attenuation
US10467513B2 (en) 2015-08-12 2019-11-05 Datamax-O'neil Corporation Verification of a printed image on media
US9911023B2 (en) 2015-08-17 2018-03-06 Hand Held Products, Inc. Indicia reader having a filtered multifunction image sensor
US10410629B2 (en) 2015-08-19 2019-09-10 Hand Held Products, Inc. Auto-complete methods for spoken complete value entries
US9781681B2 (en) 2015-08-26 2017-10-03 Hand Held Products, Inc. Fleet power management through information storage sharing
US9798413B2 (en) 2015-08-27 2017-10-24 Hand Held Products, Inc. Interactive display
CN206006056U (en) 2015-08-27 2017-03-15 手持产品公司 There are the gloves of measurement, scanning and display capabilities
US11282515B2 (en) 2015-08-31 2022-03-22 Hand Held Products, Inc. Multiple inspector voice inspection
US9490540B1 (en) 2015-09-02 2016-11-08 Hand Held Products, Inc. Patch antenna
US9781502B2 (en) 2015-09-09 2017-10-03 Hand Held Products, Inc. Process and system for sending headset control information from a mobile device to a wireless headset
US9659198B2 (en) 2015-09-10 2017-05-23 Hand Held Products, Inc. System and method of determining if a surface is printed or a mobile device screen
US9652648B2 (en) 2015-09-11 2017-05-16 Hand Held Products, Inc. Positioning an object with respect to a target location
JP6590609B2 (en) * 2015-09-15 2019-10-16 キヤノン株式会社 Image analysis apparatus and image analysis method
CN205091752U (en) 2015-09-18 2016-03-16 手持产品公司 Eliminate environment light flicker noise's bar code scanning apparatus and noise elimination circuit
US9646191B2 (en) 2015-09-23 2017-05-09 Intermec Technologies Corporation Evaluating images
US10373143B2 (en) 2015-09-24 2019-08-06 Hand Held Products, Inc. Product identification using electroencephalography
US10134112B2 (en) 2015-09-25 2018-11-20 Hand Held Products, Inc. System and process for displaying information from a mobile computer in a vehicle
US9767337B2 (en) 2015-09-30 2017-09-19 Hand Held Products, Inc. Indicia reader safety
US10312483B2 (en) 2015-09-30 2019-06-04 Hand Held Products, Inc. Double locking mechanism on a battery latch
US20170094238A1 (en) 2015-09-30 2017-03-30 Hand Held Products, Inc. Self-calibrating projection apparatus and process
US9844956B2 (en) 2015-10-07 2017-12-19 Intermec Technologies Corporation Print position correction
US9656487B2 (en) 2015-10-13 2017-05-23 Intermec Technologies Corporation Magnetic media holder for printer
US10146194B2 (en) 2015-10-14 2018-12-04 Hand Held Products, Inc. Building lighting and temperature control with an augmented reality system
US9727083B2 (en) 2015-10-19 2017-08-08 Hand Held Products, Inc. Quick release dock system and method
US9876923B2 (en) 2015-10-27 2018-01-23 Intermec Technologies Corporation Media width sensing
US9684809B2 (en) 2015-10-29 2017-06-20 Hand Held Products, Inc. Scanner assembly with removable shock mount
US10395116B2 (en) 2015-10-29 2019-08-27 Hand Held Products, Inc. Dynamically created and updated indoor positioning map
US10397388B2 (en) 2015-11-02 2019-08-27 Hand Held Products, Inc. Extended features for network communication
US10129414B2 (en) 2015-11-04 2018-11-13 Intermec Technologies Corporation Systems and methods for detecting transparent media in printers
US10026377B2 (en) 2015-11-12 2018-07-17 Hand Held Products, Inc. IRDA converter tag
US9680282B2 (en) 2015-11-17 2017-06-13 Hand Held Products, Inc. Laser aiming for mobile devices
US10192194B2 (en) 2015-11-18 2019-01-29 Hand Held Products, Inc. In-vehicle package location identification at load and delivery times
US9940730B2 (en) 2015-11-18 2018-04-10 Symbol Technologies, Llc Methods and systems for automatic fullness estimation of containers
US10713610B2 (en) 2015-12-22 2020-07-14 Symbol Technologies, Llc Methods and systems for occlusion detection and data correction for container-fullness estimation
US9864891B2 (en) 2015-11-24 2018-01-09 Intermec Technologies Corporation Automatic print speed control for indicia printer
US9697401B2 (en) 2015-11-24 2017-07-04 Hand Held Products, Inc. Add-on device with configurable optics for an image scanner for scanning barcodes
WO2017095948A1 (en) * 2015-11-30 2017-06-08 Pilot Ai Labs, Inc. Improved general object detection using neural networks
US10064005B2 (en) 2015-12-09 2018-08-28 Hand Held Products, Inc. Mobile device with configurable communication technology modes and geofences
US10282526B2 (en) 2015-12-09 2019-05-07 Hand Held Products, Inc. Generation of randomized passwords for one-time usage
US9935946B2 (en) 2015-12-16 2018-04-03 Hand Held Products, Inc. Method and system for tracking an electronic device at an electronic device docking station
CN106899713B (en) 2015-12-18 2020-10-16 霍尼韦尔国际公司 Battery cover locking mechanism of mobile terminal and manufacturing method thereof
US9729744B2 (en) 2015-12-21 2017-08-08 Hand Held Products, Inc. System and method of border detection on a document and for producing an image of the document
US10325436B2 (en) 2015-12-31 2019-06-18 Hand Held Products, Inc. Devices, systems, and methods for optical validation
US9727840B2 (en) 2016-01-04 2017-08-08 Hand Held Products, Inc. Package physical characteristic identification system and method in supply chain management
US9805343B2 (en) 2016-01-05 2017-10-31 Intermec Technologies Corporation System and method for guided printer servicing
US11423348B2 (en) 2016-01-11 2022-08-23 Hand Held Products, Inc. System and method for assessing worker performance
US10026187B2 (en) 2016-01-12 2018-07-17 Hand Held Products, Inc. Using image data to calculate an object's weight
US10859667B2 (en) 2016-01-12 2020-12-08 Hand Held Products, Inc. Programmable reference beacons
US9945777B2 (en) 2016-01-14 2018-04-17 Hand Held Products, Inc. Multi-spectral imaging using longitudinal chromatic aberrations
US10235547B2 (en) 2016-01-26 2019-03-19 Hand Held Products, Inc. Enhanced matrix symbol error correction method
CN205880874U (en) 2016-02-04 2017-01-11 手持产品公司 Long and thin laser beam optical components and laser scanning system
US9990784B2 (en) 2016-02-05 2018-06-05 Hand Held Products, Inc. Dynamic identification badge
US9799111B2 (en) 2016-02-11 2017-10-24 Symbol Technologies, Llc Methods and systems for highlighting box surfaces and edges in mobile box dimensioning
US9674430B1 (en) 2016-03-09 2017-06-06 Hand Held Products, Inc. Imaging device for producing high resolution images using subpixel shifts and method of using same
GB2550021B (en) * 2016-03-10 2018-10-17 Walmart Apollo Llc Sensor systems and methods for monitoring unloading of cargo
US11125885B2 (en) 2016-03-15 2021-09-21 Hand Held Products, Inc. Monitoring user biometric parameters with nanotechnology in personal locator beacon
MX2018012005A (en) * 2016-04-01 2019-08-12 Walmart Apollo Llc Store item delivery systems and methods.
US10394316B2 (en) 2016-04-07 2019-08-27 Hand Held Products, Inc. Multiple display modes on a mobile device
US20170299851A1 (en) 2016-04-14 2017-10-19 Hand Held Products, Inc. Customizable aimer system for indicia reading terminal
WO2017181151A1 (en) * 2016-04-14 2017-10-19 Cornell University Methods for incremental 3d printing and 3d printing arbitrary wireframe meshes
EP4006769A1 (en) 2016-04-15 2022-06-01 Hand Held Products, Inc. Imaging barcode reader with color-separated aimer and illuminator
US10055625B2 (en) 2016-04-15 2018-08-21 Hand Held Products, Inc. Imaging barcode reader with color-separated aimer and illuminator
US10185906B2 (en) 2016-04-26 2019-01-22 Hand Held Products, Inc. Indicia reading device and methods for decoding decodable indicia employing stereoscopic imaging
US9727841B1 (en) 2016-05-20 2017-08-08 Vocollect, Inc. Systems and methods for reducing picking operation errors
US10183500B2 (en) 2016-06-01 2019-01-22 Datamax-O'neil Corporation Thermal printhead temperature control
EP3252713A1 (en) * 2016-06-01 2017-12-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for performing 3d estimation based on locally determined 3d information hypotheses
US10791213B2 (en) 2016-06-14 2020-09-29 Hand Held Products, Inc. Managing energy usage in mobile devices
US9990524B2 (en) 2016-06-16 2018-06-05 Hand Held Products, Inc. Eye gaze detection controlled indicia scanning system and method
US9876957B2 (en) 2016-06-21 2018-01-23 Hand Held Products, Inc. Dual mode image sensor and method of using same
US9955099B2 (en) 2016-06-21 2018-04-24 Hand Held Products, Inc. Minimum height CMOS image sensor
US9864887B1 (en) 2016-07-07 2018-01-09 Hand Held Products, Inc. Energizing scanners
US10085101B2 (en) 2016-07-13 2018-09-25 Hand Held Products, Inc. Systems and methods for determining microphone position
US9662900B1 (en) 2016-07-14 2017-05-30 Datamax-O'neil Corporation Wireless thermal printhead system and method
CN107622218A (en) 2016-07-15 2018-01-23 手持产品公司 With the barcode reader for checking framework
CN107622217B (en) 2016-07-15 2022-06-07 手持产品公司 Imaging scanner with positioning and display
US10896403B2 (en) 2016-07-18 2021-01-19 Vocollect, Inc. Systems and methods for managing dated products
US10714121B2 (en) 2016-07-27 2020-07-14 Vocollect, Inc. Distinguishing user speech from background speech in speech-dense environments
US9902175B1 (en) 2016-08-02 2018-02-27 Datamax-O'neil Corporation Thermal printer having real-time force feedback on printhead pressure and method of using same
US9919547B2 (en) 2016-08-04 2018-03-20 Datamax-O'neil Corporation System and method for active printing consistency control and damage protection
US11157869B2 (en) 2016-08-05 2021-10-26 Vocollect, Inc. Monitoring worker movement in a warehouse setting
US10640325B2 (en) 2016-08-05 2020-05-05 Datamax-O'neil Corporation Rigid yet flexible spindle for rolled material
US10372954B2 (en) 2016-08-16 2019-08-06 Hand Held Products, Inc. Method for reading indicia off a display of a mobile device
US9940497B2 (en) 2016-08-16 2018-04-10 Hand Held Products, Inc. Minimizing laser persistence on two-dimensional image sensors
US10685665B2 (en) 2016-08-17 2020-06-16 Vocollect, Inc. Method and apparatus to improve speech recognition in a high audio noise environment
US10384462B2 (en) 2016-08-17 2019-08-20 Datamax-O'neil Corporation Easy replacement of thermal print head and simple adjustment on print pressure
US10158834B2 (en) 2016-08-30 2018-12-18 Hand Held Products, Inc. Corrected projection perspective distortion
US20180057284A1 (en) * 2016-08-31 2018-03-01 Siemens Industry, Inc. Computer Optimized Mixed Parcel Loading Equipment
US10286694B2 (en) 2016-09-02 2019-05-14 Datamax-O'neil Corporation Ultra compact printer
US10042593B2 (en) 2016-09-02 2018-08-07 Datamax-O'neil Corporation Printer smart folders using USB mass storage profile
US9805257B1 (en) 2016-09-07 2017-10-31 Datamax-O'neil Corporation Printer method and apparatus
US9946962B2 (en) 2016-09-13 2018-04-17 Datamax-O'neil Corporation Print precision improvement over long print jobs
US10484847B2 (en) 2016-09-13 2019-11-19 Hand Held Products, Inc. Methods for provisioning a wireless beacon
US9881194B1 (en) 2016-09-19 2018-01-30 Hand Held Products, Inc. Dot peen mark image acquisition
US10375473B2 (en) 2016-09-20 2019-08-06 Vocollect, Inc. Distributed environmental microphones to minimize noise during speech recognition
US9701140B1 (en) 2016-09-20 2017-07-11 Datamax-O'neil Corporation Method and system to calculate line feed error in labels on a printer
US9785814B1 (en) 2016-09-23 2017-10-10 Hand Held Products, Inc. Three dimensional aimer for barcode scanning
US9931867B1 (en) 2016-09-23 2018-04-03 Datamax-O'neil Corporation Method and system of determining a width of a printer ribbon
US10181321B2 (en) 2016-09-27 2019-01-15 Vocollect, Inc. Utilization of location and environment to improve recognition
EP3220369A1 (en) 2016-09-29 2017-09-20 Hand Held Products, Inc. Monitoring user biometric parameters with nanotechnology in personal locator beacon
US9936278B1 (en) 2016-10-03 2018-04-03 Vocollect, Inc. Communication headsets and systems for mobile application control and power savings
US9892356B1 (en) 2016-10-27 2018-02-13 Hand Held Products, Inc. Backlit display detection and radio signature recognition
US10114997B2 (en) 2016-11-16 2018-10-30 Hand Held Products, Inc. Reader for optical indicia presented under two or more imaging conditions within a single frame time
US10022993B2 (en) 2016-12-02 2018-07-17 Datamax-O'neil Corporation Media guides for use in printers and methods for using the same
CN108616148A (en) 2016-12-09 2018-10-02 手持产品公司 Intelligent battery balance system and method
US10395081B2 (en) 2016-12-09 2019-08-27 Hand Held Products, Inc. Encoding document capture bounds with barcodes
CN110637322B (en) * 2016-12-14 2023-08-11 眼睛有限公司 System, method, and computer-readable storage medium for edge detection in digitized images
US10740855B2 (en) 2016-12-14 2020-08-11 Hand Held Products, Inc. Supply chain tracking of farm produce and crops
US10163044B2 (en) 2016-12-15 2018-12-25 Datamax-O'neil Corporation Auto-adjusted print location on center-tracked printers
US10044880B2 (en) 2016-12-16 2018-08-07 Datamax-O'neil Corporation Comparing printer models
US10304174B2 (en) 2016-12-19 2019-05-28 Datamax-O'neil Corporation Printer-verifiers and systems and methods for verifying printed indicia
US10237421B2 (en) 2016-12-22 2019-03-19 Datamax-O'neil Corporation Printers and methods for identifying a source of a problem therein
CN108259702B (en) 2016-12-28 2022-03-11 手持产品公司 Method and system for synchronizing illumination timing in a multi-sensor imager
CN110114803B (en) * 2016-12-28 2023-06-27 松下电器(美国)知识产权公司 Three-dimensional model distribution method, three-dimensional model reception method, three-dimensional model distribution device, and three-dimensional model reception device
CN117556839A (en) 2016-12-28 2024-02-13 手持产品公司 Illuminator for DPM scanner
US9827796B1 (en) 2017-01-03 2017-11-28 Datamax-O'neil Corporation Automatic thermal printhead cleaning system
US10652403B2 (en) 2017-01-10 2020-05-12 Datamax-O'neil Corporation Printer script autocorrect
US11042834B2 (en) 2017-01-12 2021-06-22 Vocollect, Inc. Voice-enabled substitutions with customer notification
CN108304741B (en) 2017-01-12 2023-06-09 手持产品公司 Wakeup system in bar code scanner
US10468015B2 (en) 2017-01-12 2019-11-05 Vocollect, Inc. Automated TTS self correction system
US10263443B2 (en) 2017-01-13 2019-04-16 Hand Held Products, Inc. Power capacity indicator
US9802427B1 (en) 2017-01-18 2017-10-31 Datamax-O'neil Corporation Printers and methods for detecting print media thickness therein
WO2018136377A1 (en) * 2017-01-18 2018-07-26 Sealed Air Corporation (Us) Product shape analyzer for packaging solutions
US9849691B1 (en) 2017-01-26 2017-12-26 Datamax-O'neil Corporation Detecting printing ribbon orientation
US10350905B2 (en) 2017-01-26 2019-07-16 Datamax-O'neil Corporation Detecting printing ribbon orientation
CN108363932B (en) 2017-01-26 2023-04-18 手持产品公司 Method for reading bar code and deactivating electronic anti-theft label of commodity
US10158612B2 (en) 2017-02-07 2018-12-18 Hand Held Products, Inc. Imaging-based automatic data extraction with security scheme
US10984374B2 (en) 2017-02-10 2021-04-20 Vocollect, Inc. Method and system for inputting products into an inventory system
US10252874B2 (en) 2017-02-20 2019-04-09 Datamax-O'neil Corporation Clutch bearing to keep media tension for better sensing accuracy
US9908351B1 (en) 2017-02-27 2018-03-06 Datamax-O'neil Corporation Segmented enclosure
US10195880B2 (en) 2017-03-02 2019-02-05 Datamax-O'neil Corporation Automatic width detection
US10737911B2 (en) 2017-03-02 2020-08-11 Hand Held Products, Inc. Electromagnetic pallet and method for adjusting pallet position
US10105963B2 (en) 2017-03-03 2018-10-23 Datamax-O'neil Corporation Region-of-interest based print quality optimization
CN108537077B (en) 2017-03-06 2023-07-14 手持产品公司 System and method for bar code verification
US10780721B2 (en) 2017-03-30 2020-09-22 Datamax-O'neil Corporation Detecting label stops
US10798316B2 (en) 2017-04-04 2020-10-06 Hand Held Products, Inc. Multi-spectral imaging using longitudinal chromatic aberrations
US10223626B2 (en) 2017-04-19 2019-03-05 Hand Held Products, Inc. High ambient light electronic screen communication method
US9937735B1 (en) 2017-04-20 2018-04-10 Datamax—O'Neil Corporation Self-strip media module
US10288818B2 (en) 2017-04-21 2019-05-14 The Boeing Company Cable bend limiter adapter
US10463140B2 (en) 2017-04-28 2019-11-05 Hand Held Products, Inc. Attachment apparatus for electronic device
US10810541B2 (en) 2017-05-03 2020-10-20 Hand Held Products, Inc. Methods for pick and put location verification
US10549561B2 (en) 2017-05-04 2020-02-04 Datamax-O'neil Corporation Apparatus for sealing an enclosure
CN108859447B (en) 2017-05-12 2021-11-23 大数据奥尼尔公司 Method for medium exchange process of thermal printer, medium adapter and printer
US10438098B2 (en) 2017-05-19 2019-10-08 Hand Held Products, Inc. High-speed OCR decode using depleted centerlines
US10523038B2 (en) 2017-05-23 2019-12-31 Hand Held Products, Inc. System and method for wireless charging of a beacon and/or sensor device
US10732226B2 (en) 2017-05-26 2020-08-04 Hand Held Products, Inc. Methods for estimating a number of workflow cycles able to be completed from a remaining battery capacity
US10592536B2 (en) 2017-05-30 2020-03-17 Hand Held Products, Inc. Systems and methods for determining a location of a user when using an imaging device in an indoor facility
US9984366B1 (en) 2017-06-09 2018-05-29 Hand Held Products, Inc. Secure paper-free bills in workflow applications
US10035367B1 (en) 2017-06-21 2018-07-31 Datamax-O'neil Corporation Single motor dynamic ribbon feedback system for a printer
US10710386B2 (en) 2017-06-21 2020-07-14 Datamax-O'neil Corporation Removable printhead
US10644944B2 (en) 2017-06-30 2020-05-05 Datamax-O'neil Corporation Managing a fleet of devices
US10977594B2 (en) 2017-06-30 2021-04-13 Datamax-O'neil Corporation Managing a fleet of devices
US10778690B2 (en) 2017-06-30 2020-09-15 Datamax-O'neil Corporation Managing a fleet of workflow devices and standby devices in a device network
US10127423B1 (en) 2017-07-06 2018-11-13 Hand Held Products, Inc. Methods for changing a configuration of a device for reading machine-readable code
US10216969B2 (en) 2017-07-10 2019-02-26 Hand Held Products, Inc. Illuminator for directly providing dark field and bright field illumination
US10264165B2 (en) 2017-07-11 2019-04-16 Hand Held Products, Inc. Optical bar assemblies for optical systems and isolation damping systems including the same
US10867141B2 (en) 2017-07-12 2020-12-15 Hand Held Products, Inc. System and method for augmented reality configuration of indicia readers
US10956033B2 (en) 2017-07-13 2021-03-23 Hand Held Products, Inc. System and method for generating a virtual keyboard with a highlighted area of interest
CN116976373A (en) 2017-07-28 2023-10-31 手持产品公司 Decoding color bar codes
US10650631B2 (en) 2017-07-28 2020-05-12 Hand Held Products, Inc. Systems and methods for processing a distorted image
US10255469B2 (en) 2017-07-28 2019-04-09 Hand Held Products, Inc. Illumination apparatus for a barcode reader
US10099485B1 (en) 2017-07-31 2018-10-16 Datamax-O'neil Corporation Thermal print heads and printers including the same
US10373032B2 (en) 2017-08-01 2019-08-06 Datamax-O'neil Corporation Cryptographic printhead
CN109388981B (en) 2017-08-04 2024-03-08 手持产品公司 Indicia reader acoustic enclosure for multiple mounting locations
CN109390994B (en) 2017-08-11 2023-08-11 手持产品公司 Soft power start solution based on POGO connector
CN109424871B (en) 2017-08-18 2023-05-05 手持产品公司 Illuminator for bar code scanner
US10445949B2 (en) * 2017-08-29 2019-10-15 Ncr Corporation Package dimension measurement system
US10399359B2 (en) 2017-09-06 2019-09-03 Vocollect, Inc. Autocorrection for uneven print pressure on print media
US10372389B2 (en) 2017-09-22 2019-08-06 Datamax-O'neil Corporation Systems and methods for printer maintenance operations
US10756900B2 (en) 2017-09-28 2020-08-25 Hand Held Products, Inc. Non-repudiation protocol using time-based one-time password (TOTP)
US10621470B2 (en) 2017-09-29 2020-04-14 Datamax-O'neil Corporation Methods for optical character recognition (OCR)
US10245861B1 (en) 2017-10-04 2019-04-02 Datamax-O'neil Corporation Printers, printer spindle assemblies, and methods for determining media width for controlling media tension
US10728445B2 (en) 2017-10-05 2020-07-28 Hand Held Products Inc. Methods for constructing a color composite image
US10884059B2 (en) 2017-10-18 2021-01-05 Hand Held Products, Inc. Determining the integrity of a computing device
US10654287B2 (en) 2017-10-19 2020-05-19 Datamax-O'neil Corporation Print quality setup using banks in parallel
US10084556B1 (en) 2017-10-20 2018-09-25 Hand Held Products, Inc. Identifying and transmitting invisible fence signals with a mobile data terminal
US10293624B2 (en) 2017-10-23 2019-05-21 Datamax-O'neil Corporation Smart media hanger with media width detection
US10399369B2 (en) 2017-10-23 2019-09-03 Datamax-O'neil Corporation Smart media hanger with media width detection
US10679101B2 (en) 2017-10-25 2020-06-09 Hand Held Products, Inc. Optical character recognition systems and methods
US10210364B1 (en) 2017-10-31 2019-02-19 Hand Held Products, Inc. Direct part marking scanners including dome diffusers with edge illumination assemblies
US11321864B1 (en) * 2017-10-31 2022-05-03 Edge 3 Technologies User guided mode for measurement purposes
US10427424B2 (en) 2017-11-01 2019-10-01 Datamax-O'neil Corporation Estimating a remaining amount of a consumable resource based on a center of mass calculation
US10181896B1 (en) 2017-11-01 2019-01-15 Hand Held Products, Inc. Systems and methods for reducing power consumption in a satellite communication device
US10369823B2 (en) 2017-11-06 2019-08-06 Datamax-O'neil Corporation Print head pressure detection and adjustment
US10369804B2 (en) 2017-11-10 2019-08-06 Datamax-O'neil Corporation Secure thermal print head
US10399361B2 (en) 2017-11-21 2019-09-03 Datamax-O'neil Corporation Printer, system and method for programming RFID tags on media labels
US10654697B2 (en) 2017-12-01 2020-05-19 Hand Held Products, Inc. Gyroscopically stabilized vehicle system
US10232628B1 (en) 2017-12-08 2019-03-19 Datamax-O'neil Corporation Removably retaining a print head assembly on a printer
US10703112B2 (en) 2017-12-13 2020-07-07 Datamax-O'neil Corporation Image to script converter
US10756563B2 (en) 2017-12-15 2020-08-25 Datamax-O'neil Corporation Powering devices using low-current power sources
US10323929B1 (en) 2017-12-19 2019-06-18 Datamax-O'neil Corporation Width detecting media hanger
US10773537B2 (en) 2017-12-27 2020-09-15 Datamax-O'neil Corporation Method and apparatus for printing
US10795618B2 (en) 2018-01-05 2020-10-06 Datamax-O'neil Corporation Methods, apparatuses, and systems for verifying printed image and improving print quality
US10803264B2 (en) 2018-01-05 2020-10-13 Datamax-O'neil Corporation Method, apparatus, and system for characterizing an optical system
US10834283B2 (en) 2018-01-05 2020-11-10 Datamax-O'neil Corporation Methods, apparatuses, and systems for detecting printing defects and contaminated components of a printer
US10546160B2 (en) 2018-01-05 2020-01-28 Datamax-O'neil Corporation Methods, apparatuses, and systems for providing print quality feedback and controlling print quality of machine-readable indicia
US10731963B2 (en) 2018-01-09 2020-08-04 Datamax-O'neil Corporation Apparatus and method of measuring media thickness
US10897150B2 (en) 2018-01-12 2021-01-19 Hand Held Products, Inc. Indicating charge status
US10809949B2 (en) 2018-01-26 2020-10-20 Datamax-O'neil Corporation Removably couplable printer and verifier assembly
US10915290B2 (en) 2018-03-08 2021-02-09 Bose Corporation Augmented reality software development kit
CN108898044B (en) * 2018-04-13 2021-10-29 顺丰科技有限公司 Loading rate obtaining method, device and system and storage medium
US10434800B1 (en) 2018-05-17 2019-10-08 Datamax-O'neil Corporation Printer roll feed mechanism
US10783656B2 (en) 2018-05-18 2020-09-22 Zebra Technologies Corporation System and method of determining a location for placement of a package
US10853946B2 (en) * 2018-05-18 2020-12-01 Ebay Inc. Physical object boundary detection techniques and systems
US10679372B2 (en) * 2018-05-24 2020-06-09 Lowe's Companies, Inc. Spatial construction using guided surface detection
US10930001B2 (en) * 2018-05-29 2021-02-23 Zebra Technologies Corporation Data capture system and method for object dimensioning
CN108776040B (en) * 2018-06-11 2021-11-26 重庆交通大学 Bridge safety inspection system and diagnosis method
KR20210055038A (en) 2018-07-16 2021-05-14 악셀 로보틱스 코포레이션 Autonomous store tracking system
US11379788B1 (en) 2018-10-09 2022-07-05 Fida, Llc Multilayered method and apparatus to facilitate the accurate calculation of freight density, area, and classification and provide recommendations to optimize shipping efficiency
EP3671660A1 (en) * 2018-12-20 2020-06-24 Dassault Systèmes Designing a 3d modeled object via user-interaction
US10937183B2 (en) 2019-01-28 2021-03-02 Cognex Corporation Object dimensioning system and method
JP6923574B2 (en) * 2019-02-01 2021-08-18 ファナック株式会社 3D shape measurement system and 3D shape measurement method
US11883241B2 (en) * 2019-09-30 2024-01-30 Canon Medical Systems Corporation Medical image diagnostic apparatus, ultrasonic diagnostic apparatus, medical imaging system, and imaging control method
US11205094B2 (en) * 2019-10-29 2021-12-21 Accel Robotics Corporation Multi-angle rapid onboarding system for visual item classification
US10621472B1 (en) * 2019-10-29 2020-04-14 Accel Robotics Corporation Rapid onboarding system for visual item classification
US11743418B2 (en) * 2019-10-29 2023-08-29 Accel Robotics Corporation Multi-lighting conditions rapid onboarding system for visual item classification
CN110782464B (en) * 2019-11-04 2022-07-15 浙江大华技术股份有限公司 Calculation method of object accumulation 3D space occupancy rate, coder-decoder and storage device
US11763525B1 (en) * 2020-02-27 2023-09-19 Apple Inc. Blind object tracking using point clouds
JP6867071B1 (en) * 2020-05-08 2021-04-28 アイタックソリューションズ株式会社 Measuring device, measuring program and measuring method
JP6821222B1 (en) * 2020-05-08 2021-01-27 アイタックソリューションズ株式会社 Measuring device, measuring program and measuring method
JP6867070B1 (en) * 2020-05-08 2021-04-28 アイタックソリューションズ株式会社 Measuring device, measuring program and measuring method
US11892338B2 (en) * 2020-06-17 2024-02-06 Sellercloud, Llc Four-dimension (4D) scale for distribution and warehouse management, and associated methods
DE102020127881B3 (en) * 2020-10-22 2022-02-24 IGZ Ingenieurgesellschaft für logistische Informationssysteme mbH Device for installation at a picking and/or packaging workstation
US11568352B2 (en) * 2020-11-10 2023-01-31 Mehwish Aziz Immersive packaging system and method
CN116307985B (en) * 2023-03-06 2024-01-26 北京中天北方建设有限公司 Energy-saving transportation method for building materials, computer equipment and medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060151604A1 (en) * 2002-01-02 2006-07-13 Xiaoxun Zhu Automated method of and system for dimensioning objects over a conveyor belt structure by applying contouring tracing, vertice detection, corner point detection, and corner point reduction methods to two-dimensional range data maps of the space above the conveyor belt captured by an amplitude modulated laser scanning beam
JP2008210276A (en) * 2007-02-27 2008-09-11 Canon Inc Method and device for generating three-dimensional model information
KR20110013200A (en) * 2009-07-31 2011-02-09 삼성전자주식회사 Identifying method of human attitude and apparatus of the same
KR20110117020A (en) * 2010-04-20 2011-10-26 다솔 시스템므 Automatic generation of 3d models from packaged goods product images
KR20120028109A (en) * 2010-09-14 2012-03-22 삼성메디슨 주식회사 3d ultrasound system for 3d modeling of tissue and method for operating 3d ultrasound system

Family Cites Families (1032)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305458A (en) 1963-09-06 1967-02-21 Exxon Research Engineering Co Oxygen diffusion analyzer and method of using same
US3437539A (en) 1965-10-18 1969-04-08 Johnson & Johnson Method of making a non-woven fabric by splitting
US4026031A (en) 1974-09-24 1977-05-31 The Rank Organisation Limited Surface measurement instruments
US3971065A (en) 1975-03-05 1976-07-20 Eastman Kodak Company Color imaging array
SE7804927L (en) 1978-04-28 1979-10-29 Volvo Ab DEVICE FOR ORIENTATING, FOR EXAMPLE, A LIFTING RELATION IN RELATION TO A LOAD
JPS569712A (en) 1979-07-06 1981-01-31 Olympus Optical Co Ltd Visual field direction changing optical system for slender image transmission system
US4495559A (en) * 1981-11-02 1985-01-22 International Business Machines Corporation Optimization of an organization of many discrete elements
DE3335760A1 (en) 1983-10-01 1985-04-25 Sachße, Lothar, 8500 Nürnberg Device in a mobile commissioning system
US4634278A (en) 1984-02-06 1987-01-06 Robotic Vision Systems, Inc. Method of three-dimensional measurement with few projected patterns
US4803639A (en) 1986-02-25 1989-02-07 General Electric Company X-ray inspection system
US4730190A (en) 1986-10-29 1988-03-08 Winlam Company Hand-held measuring device
EP0266203B1 (en) 1986-10-30 1994-07-06 Canon Kabushiki Kaisha An illumination device
US4914460A (en) 1987-05-29 1990-04-03 Harbor Branch Oceanographic Institution Inc. Apparatus and methods of determining distance and orientation
US5220536A (en) 1989-09-01 1993-06-15 Quantronix, Inc. Measuring method and apparatus
US5606534A (en) 1989-09-01 1997-02-25 Quantronix, Inc. Laser-based dimensioning system
US5111325A (en) 1989-10-16 1992-05-05 Eastman Kodak Company F-θ lens
JPH04129902A (en) 1990-09-20 1992-04-30 Nec Software Ltd Merchandise picking system
CH682698A5 (en) 1990-11-01 1993-10-29 Fisba Optik Ag Bystronic Laser Method in which several, arranged in one or more rows of radiation sources are imaged and apparatus therefor.
US5198648A (en) 1990-12-27 1993-03-30 Eastman Kodak Company Code sensor with multi-faceted reflector for sensing plural image distances
IS1666B (en) 1991-02-19 1997-11-14 Marel Hf Method and apparatus for determining the volume, shape and weight of fish or other parts
US20040089482A1 (en) 1991-04-10 2004-05-13 Uship Intellectual Properties, Llc Automated package shipping machine
US5491328A (en) 1991-09-24 1996-02-13 Spectra-Physics Scanning Systems, Inc. Checkout counter scanner having multiple scanning surfaces
US5175601A (en) 1991-10-15 1992-12-29 Electro-Optical Information Systems High-speed 3-D surface measurement surface inspection and reverse-CAD system
US5590060A (en) 1992-03-20 1996-12-31 Metronics, Inc. Apparatus and method for an object measurement system
US5359185A (en) 1992-05-11 1994-10-25 Norand Corporation Chromatic ranging method and apparatus for reading optically readable information over a substantial range of distances
US5384901A (en) 1992-10-22 1995-01-24 Xerox Corporation Method of rendering a color image for an output medium from symbolic image data
US5331118A (en) 1992-11-27 1994-07-19 Soren Jensen Package dimensional volume and weight determination system for conveyors
US5745153A (en) 1992-12-07 1998-04-28 Eastman Kodak Company Optical means for using diode laser arrays in laser multibeam printers and recorders
GB9308952D0 (en) 1993-04-30 1993-06-16 Philips Electronics Uk Ltd Tracking objects in video sequences
US5548707A (en) 1993-11-09 1996-08-20 Adra Systems, Inc. Method and system for design and drafting
US5850490A (en) 1993-12-22 1998-12-15 Xerox Corporation Analyzing an image of a document using alternative positionings of a class of segments
JP3211538B2 (en) 1994-01-13 2001-09-25 キヤノン株式会社 Inspection apparatus and semiconductor device manufacturing method using the same
US7387253B1 (en) 1996-09-03 2008-06-17 Hand Held Products, Inc. Optical reader system comprising local host processor and optical reader
US5561526A (en) 1994-05-26 1996-10-01 Lockheed Missiles & Space Company, Inc. Three-dimensional measurement device and system
JPH07334549A (en) 1994-06-11 1995-12-22 Rohm Co Ltd Method and device for automatically entering size in cad system
JPH10506457A (en) 1994-07-28 1998-06-23 ジェネラル ナノテクノロジー エルエルシー Scanning probe microscope equipment
US5619245A (en) 1994-07-29 1997-04-08 Eastman Kodak Company Multi-beam optical system using lenslet arrays in laser multi-beam printers and recorders
JPH10503856A (en) 1994-07-29 1998-04-07 ポラロイド コーポレイション Device for optically converting multiple beams
US5477622A (en) 1994-08-30 1995-12-26 Skalnik; Dennis A. Electronic hand-held measuring device for obtaining the dimensional weight of a shipment of freight
US5555090A (en) 1994-10-24 1996-09-10 Adaptive Optics Associates System for dimensioning objects
US8280682B2 (en) 2000-12-15 2012-10-02 Tvipr, Llc Device for monitoring movement of shipped goods
FR2730980B1 (en) 1995-02-27 1997-04-04 Oreal ORDER PREPARATION METHOD, COLLECTION TROLLEY FOR IMPLEMENTING THE METHOD AND ORDER PREPARATION SYSTEM
US5661561A (en) 1995-06-02 1997-08-26 Accu-Sort Systems, Inc. Dimensioning system
US5732147A (en) 1995-06-07 1998-03-24 Agri-Tech, Inc. Defective object inspection and separation system using image analysis and curvature transformation
US6069696A (en) 1995-06-08 2000-05-30 Psc Scanning, Inc. Object recognition system and method
US5636028A (en) 1995-06-29 1997-06-03 Quantronix, Inc. In-motion dimensioning system for cuboidal objects
US6049386A (en) 1995-06-29 2000-04-11 Quantronix, Inc. In-motion dimensioning system and method for cuboidal objects
US6067110A (en) 1995-07-10 2000-05-23 Honda Giken Kogyo Kabushiki Kaisha Object recognizing device
US5699161A (en) 1995-07-26 1997-12-16 Psc, Inc. Method and apparatus for measuring dimensions of objects on a conveyor
GB9515311D0 (en) 1995-07-26 1995-09-20 3D Scanners Ltd Stripe scanners and methods of scanning
US5737074A (en) 1995-12-05 1998-04-07 New Creation Co., Ltd. Surface inspection method and apparatus
US20020014533A1 (en) 1995-12-18 2002-02-07 Xiaxun Zhu Automated object dimensioning system employing contour tracing, vertice detection, and forner point detection and reduction methods on 2-d range data maps
US6517004B2 (en) 1995-12-18 2003-02-11 Metrologic Instruments, Inc. Automated system for identifying and dimensioning packages transported through a laser scanning tunnel using laser scanning beam indexing techniques
US6457642B1 (en) 1995-12-18 2002-10-01 Metrologic Instruments, Inc. Automated system and method for identifying and measuring packages transported through a laser scanning tunnel
US6705526B1 (en) 1995-12-18 2004-03-16 Metrologic Instruments, Inc. Automated method of and system for dimensioning objects transported through a work environment using contour tracing, vertice detection, corner point detection, and corner point reduction methods on two-dimensional range data maps captured by an amplitude modulated laser scanning beam
US5748199A (en) 1995-12-20 1998-05-05 Synthonics Incorporated Method and apparatus for converting a two dimensional motion picture into a three dimensional motion picture
WO1997033247A1 (en) 1996-03-07 1997-09-12 Accu-Sort Systems, Inc. Dynamic focusing apparatus for optical imaging systems
DE19613386A1 (en) 1996-04-03 1997-10-09 Fiat Om Carrelli Elevatori Industrial truck, which can be operated either manually or automatically
US5831719A (en) 1996-04-12 1998-11-03 Holometrics, Inc. Laser scanning system
US5988862A (en) 1996-04-24 1999-11-23 Cyra Technologies, Inc. Integrated system for quickly and accurately imaging and modeling three dimensional objects
US5808657A (en) 1996-06-17 1998-09-15 Eastman Kodak Company Laser printer with low fill modulator array and high pixel fill at a media plane
US5959568A (en) 1996-06-26 1999-09-28 Par Goverment Systems Corporation Measuring distance
US5870220A (en) 1996-07-12 1999-02-09 Real-Time Geometry Corporation Portable 3-D scanning system and method for rapid shape digitizing and adaptive mesh generation
US6009189A (en) 1996-08-16 1999-12-28 Schaack; David F. Apparatus and method for making accurate three-dimensional size measurements of inaccessible objects
US6064759A (en) 1996-11-08 2000-05-16 Buckley; B. Shawn Computer aided inspection machine
US5734476A (en) 1996-12-31 1998-03-31 Pitney Bowes Inc. Method for dimensional weighing with optics
US5978512A (en) 1997-01-21 1999-11-02 Daewoo Electronics Co., Ltd Polygonal approximation method and apparatus for use in a contour encoding system
WO1998040704A1 (en) 1997-03-11 1998-09-17 Frama Ag Postbearbeitungssysteme Device for measuring volume
US7304670B1 (en) 1997-03-28 2007-12-04 Hand Held Products, Inc. Method and apparatus for compensating for fixed pattern noise in an imaging system
US5979760A (en) 1997-06-27 1999-11-09 Accu-Sort Systems, Inc. Scanner with linear actuator based lens positioning system
US5900611A (en) 1997-06-30 1999-05-04 Accu-Sort Systems, Inc. Laser scanner with integral distance measurement system
US7028899B2 (en) 1999-06-07 2006-04-18 Metrologic Instruments, Inc. Method of speckle-noise pattern reduction and apparatus therefore based on reducing the temporal-coherence of the planar laser illumination beam before it illuminates the target object by applying temporal phase modulation techniques during the transmission of the plib towards the target
JP3597360B2 (en) * 1997-11-17 2004-12-08 株式会社リコー Modeling method and recording medium
GB2332567B (en) 1997-12-17 2002-09-04 Marconi Gec Ltd Magnetic devices
US6025847A (en) * 1997-12-23 2000-02-15 Auto Desk, Inc. Three dimensional modeling system with visual feedback
US6333749B1 (en) * 1998-04-17 2001-12-25 Adobe Systems, Inc. Method and apparatus for image assisted modeling of three-dimensional scenes
US6912293B1 (en) * 1998-06-26 2005-06-28 Carl P. Korobkin Photogrammetry engine for model construction
US6661521B1 (en) 1998-09-11 2003-12-09 Robotic Vision Systems, Inc. Diffuse surface illumination apparatus and methods
US6781621B1 (en) 1998-09-18 2004-08-24 Acushnet Company Launch monitor system with a calibration fixture and a method for use thereof
US6336587B1 (en) 1998-10-19 2002-01-08 Symbol Technologies, Inc. Optical code reader for producing video displays and measuring physical parameters of objects
US6857572B2 (en) 1998-12-03 2005-02-22 Metrologic Instruments, Inc. Automatically-activated hand-supportable laser scanning bar code symbol reading system with omnidirectional and unidirectional scanning modes in addition to a data transmission activation switch
WO2000059648A2 (en) * 1999-04-07 2000-10-12 Federal Express Corporation System and method for dimensioning objects
US6373579B1 (en) 1999-05-26 2002-04-16 Hand Held Products, Inc. Portable measurement apparatus for determinging the dimensions of an object and associated method
JP2000346634A (en) 1999-06-09 2000-12-15 Minolta Co Ltd Three-dimensionally inputting device
WO2000077726A1 (en) 1999-06-16 2000-12-21 Psc Inc. Method and apparatus for calibration of an image based verification device
US6650413B2 (en) 1999-08-08 2003-11-18 Institut National D'optique Linear spectrometer
CA2280531C (en) 1999-08-19 2008-06-10 Simon Thibault F-sin (.theta.) lens system and method of use of same
US7161688B1 (en) * 1999-08-31 2007-01-09 Brett Bonner Mass scanning and dimensioning system
US6369401B1 (en) 1999-09-10 2002-04-09 Agri-Tech, Inc. Three-dimensional optical volume measurement for objects to be categorized
US6535776B1 (en) 1999-09-20 2003-03-18 Ut-Battelle, Llc Method for localizing and isolating an errant process step
US7270274B2 (en) 1999-10-04 2007-09-18 Hand Held Products, Inc. Imaging module comprising support post for optical reader
US6832725B2 (en) 1999-10-04 2004-12-21 Hand Held Products, Inc. Optical reader comprising multiple color illumination
AU1599801A (en) 1999-11-12 2001-06-06 Brian S. Armstrong Robust landmarks for machine vision and methods for detecting same
JP2003515829A (en) 1999-11-23 2003-05-07 キヤノン株式会社 Image processing device
JP2001166237A (en) 1999-12-10 2001-06-22 Canon Inc Optical scanning optical device
US6674904B1 (en) 1999-12-14 2004-01-06 Intel Corporation Contour tracing and boundary detection for object identification in a digital image
US6252695B1 (en) 1999-12-20 2001-06-26 Xerox Corporation Multiple wobble correction optical elements to reduce height of raster output scanning (ROS) system
EP1176557A1 (en) 2000-07-24 2002-01-30 Setrix AG Method and arrangement for camera calibration
US6535275B2 (en) 2000-08-09 2003-03-18 Dialog Semiconductor Gmbh High resolution 3-D imaging range finder
US6519550B1 (en) 2000-09-11 2003-02-11 Intel Corporation ( A Delaware Corporation) Object scanner
US7058204B2 (en) 2000-10-03 2006-06-06 Gesturetek, Inc. Multiple camera control system
US7085409B2 (en) 2000-10-18 2006-08-01 Sarnoff Corporation Method and apparatus for synthesizing new video and/or still imagery from a collection of real video and/or still imagery
US6858857B2 (en) 2000-11-10 2005-02-22 Perceptron, Inc. Modular non-contact measurement device for quickly and accurately obtaining dimensional measurement data
US7128266B2 (en) 2003-11-13 2006-10-31 Metrologic Instruments. Inc. Hand-supportable digital imaging-based bar code symbol reader supporting narrow-area and wide-area modes of illumination and image capture
US7708205B2 (en) 2003-11-13 2010-05-04 Metrologic Instruments, Inc. Digital image capture and processing system employing multi-layer software-based system architecture permitting modification and/or extension of system features and functions by way of third party code plug-ins
US20090134221A1 (en) 2000-11-24 2009-05-28 Xiaoxun Zhu Tunnel-type digital imaging-based system for use in automated self-checkout and cashier-assisted checkout operations in retail store environments
US8682077B1 (en) 2000-11-28 2014-03-25 Hand Held Products, Inc. Method for omnidirectional processing of 2D images including recognizable characters
US7171331B2 (en) 2001-12-17 2007-01-30 Phatrat Technology, Llc Shoes employing monitoring devices, and associated methods
KR100422370B1 (en) 2000-12-27 2004-03-18 한국전자통신연구원 An Apparatus and Method to Measuring Dimensions of 3D Object on a Moving Conveyor
DE60213559T2 (en) 2001-01-22 2007-10-18 Hand Held Products, Inc. OPTICAL READER WITH PARTICULAR CUT FUNCTION
US7268924B2 (en) 2001-01-22 2007-09-11 Hand Held Products, Inc. Optical reader having reduced parameter determination delay
EP1371019A2 (en) 2001-01-26 2003-12-17 Zaxel Systems, Inc. Real-time virtual viewpoint in simulated reality environment
US7205529B2 (en) 2001-02-01 2007-04-17 Marel Hf Laser mirror vision
DE10104877A1 (en) 2001-02-03 2002-08-14 Bosch Gmbh Robert Method and device for determining length, area and volume
US6704102B2 (en) 2001-02-06 2004-03-09 Metronics, Inc. Calibration artifact and method of using the same
US6853447B2 (en) 2001-02-12 2005-02-08 Analytical Spectral Devices, Inc. System and method for the collection of spectral image data
JP4012710B2 (en) 2001-02-14 2007-11-21 株式会社リコー Image input device
US7320385B2 (en) 2001-02-16 2008-01-22 Kabushiki Kaisha Toyota Jidoshokki Camera lifting apparatus and cargo handling operation aiding apparatus in industrial vehicle and industrial vehicle
US6839144B2 (en) 2001-03-25 2005-01-04 Omron Corporation Optical displacement sensor
KR100386090B1 (en) 2001-04-02 2003-06-02 한국과학기술원 Camera calibration system and method using planar concentric circles
US8897596B1 (en) 2001-05-04 2014-11-25 Legend3D, Inc. System and method for rapid image sequence depth enhancement with translucent elements
US7376234B1 (en) 2001-05-14 2008-05-20 Hand Held Products, Inc. Portable keying device and method
US7111787B2 (en) 2001-05-15 2006-09-26 Hand Held Products, Inc. Multimode image capturing and decoding optical reader
US6804269B2 (en) 2001-06-19 2004-10-12 Hitachi Via Mechanics, Ltd. Laser beam delivery system with trepanning module
US6584339B2 (en) 2001-06-27 2003-06-24 Vanderbilt University Method and apparatus for collecting and processing physical space data for use while performing image-guided surgery
WO2003002935A1 (en) 2001-06-29 2003-01-09 Square D Company Overhead dimensioning system and method
US6834807B2 (en) 2001-07-13 2004-12-28 Hand Held Products, Inc. Optical reader having a color imager
EP1408001B1 (en) 2001-07-17 2014-04-09 Kabushiki Kaisha Toyota Jidoshokki Industrial vehicle equipped with material handling work controller
US6995762B1 (en) 2001-09-13 2006-02-07 Symbol Technologies, Inc. Measurement of dimensions of solid objects from two-dimensional image(s)
GB2381429B (en) * 2001-09-28 2005-07-27 Canon Europa Nv 3D computer model processing apparatus
JP2005505795A (en) 2001-10-17 2005-02-24 リソ ナショナル ラボラトリー Electromagnetic field conversion system
US7307653B2 (en) 2001-10-19 2007-12-11 Nokia Corporation Image stabilizer for a microcamera module of a handheld device, and method for stabilizing a microcamera module of a handheld device
US7046840B2 (en) 2001-11-09 2006-05-16 Arcsoft, Inc. 3-D reconstruction engine
US6641037B2 (en) 2001-12-13 2003-11-04 Peter Williams Method and system for interactively providing product related information on demand and providing personalized transactional benefits at a point of purchase
US6773142B2 (en) 2002-01-07 2004-08-10 Coherent, Inc. Apparatus for projecting a line of light from a diode-laser array
US7748620B2 (en) 2002-01-11 2010-07-06 Hand Held Products, Inc. Transaction terminal including imaging module
WO2003062127A1 (en) 2002-01-23 2003-07-31 Kabushiki Kaisha Toyota Jidoshokki Position control device and position control method of stevedoring apparatus in industrial vehicle
WO2003071410A2 (en) 2002-02-15 2003-08-28 Canesta, Inc. Gesture recognition system using depth perceptive sensors
DE10210813A1 (en) 2002-03-12 2003-10-16 Sartorius Gmbh System for determining an object's dimensions uses optical auxiliary devices to detect a three-dimensional image of the object's dimensions.
JP3704706B2 (en) 2002-03-13 2005-10-12 オムロン株式会社 3D monitoring device
US7242758B2 (en) 2002-03-19 2007-07-10 Nuance Communications, Inc System and method for automatically processing a user's request by an automated assistant
US6959865B2 (en) 2002-03-28 2005-11-01 Hand Held Products, Inc. Customizable optical reader
US20060112023A1 (en) 2002-04-09 2006-05-25 Cube Logic Systems Proprietary Ltd Cubing apparatus and methods
US7310431B2 (en) 2002-04-10 2007-12-18 Canesta, Inc. Optical methods for remotely measuring objects
US7086596B2 (en) 2003-01-09 2006-08-08 Hand Held Products, Inc. Decoder board for an optical reader utilizing a plurality of imaging formats
CA2388895C (en) 2002-06-04 2008-11-18 Global Sensor Systems Inc. A billing system and method for determining transportation charges for packages
US8596542B2 (en) 2002-06-04 2013-12-03 Hand Held Products, Inc. Apparatus operative for capture of image data
US8313380B2 (en) 2002-07-27 2012-11-20 Sony Computer Entertainment America Llc Scheme for translating movements of a hand-held controller into inputs for a system
US7399220B2 (en) 2002-08-02 2008-07-15 Kriesel Marshall S Apparatus and methods for the volumetric and dimensional measurement of livestock
WO2004015369A2 (en) 2002-08-09 2004-02-19 Intersense, Inc. Motion tracking system and method
CA2497219A1 (en) 2002-08-29 2004-03-11 United States Postal Service Systems and methods for re-estimating the postage fee of a mailpiece during processing
US20040155975A1 (en) 2002-09-17 2004-08-12 Hart Douglas P. 3-D imaging system
JP3744002B2 (en) 2002-10-04 2006-02-08 ソニー株式会社 Display device, imaging device, and imaging / display system
US6833811B2 (en) * 2002-10-07 2004-12-21 Harris Corporation System and method for highly accurate real time tracking and location in three dimensions
US7103212B2 (en) 2002-11-22 2006-09-05 Strider Labs, Inc. Acquisition of three-dimensional images by an active stereo technique using locally unique patterns
JP2004198265A (en) 2002-12-18 2004-07-15 Dainippon Printing Co Ltd Visual inspection/selection method of processed product, and visual inspection/selection system of processed product
US7066388B2 (en) 2002-12-18 2006-06-27 Symbol Technologies, Inc. System and method for verifying RFID reads
CN1512298A (en) 2002-12-26 2004-07-14 �ʼҷ����ֵ��ӹɷ����޹�˾ Method for three dimension hand writing identification and its system
DE50308639D1 (en) 2003-02-01 2008-01-03 Sick Ag Method for operating an optical sensor
JP4010254B2 (en) 2003-02-06 2007-11-21 ソニー株式会社 Image recording / reproducing apparatus, image photographing apparatus, and chromatic aberration correction method
US7418016B2 (en) 2003-02-13 2008-08-26 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Method and apparatus for modifying the spread of a laser beam
US20040165090A1 (en) 2003-02-13 2004-08-26 Alex Ning Auto-focus (AF) lens and process
US7063256B2 (en) 2003-03-04 2006-06-20 United Parcel Service Of America Item tracking and processing systems and methods
US7949385B2 (en) 2003-03-11 2011-05-24 Siemens Medical Solutions Usa, Inc. System and method for reconstruction of the human ear canal from optical coherence tomography scans
US20040222954A1 (en) 2003-04-07 2004-11-11 Lueder Ernst H. Methods and apparatus for a display
JP3960602B2 (en) 2003-04-22 2007-08-15 任天堂株式会社 GAME DEVICE AND GAME PROGRAM
US7637430B2 (en) 2003-05-12 2009-12-29 Hand Held Products, Inc. Picture taking optical reader
US8339462B2 (en) 2008-01-28 2012-12-25 DigitalOptics Corporation Europe Limited Methods and apparatuses for addressing chromatic abberations and purple fringing
US7367514B2 (en) 2003-07-03 2008-05-06 Hand Held Products, Inc. Reprogramming system including reprogramming symbol
US7090135B2 (en) 2003-07-07 2006-08-15 Symbol Technologies, Inc. Imaging arrangement and barcode imager for imaging an optical code or target at a plurality of focal planes
US7509529B2 (en) 2003-07-18 2009-03-24 American Power Conversion Corporation System and method for performing user recovery of guided procedures for an uninterruptible power supply
DE10344922B4 (en) 2003-09-25 2008-06-26 Siemens Audiologische Technik Gmbh All-scanner
US7643025B2 (en) 2003-09-30 2010-01-05 Eric Belk Lange Method and apparatus for applying stereoscopic imagery to three-dimensionally defined substrates
US7747067B2 (en) 2003-10-08 2010-06-29 Purdue Research Foundation System and method for three dimensional modeling
EP1711854A4 (en) 2003-10-17 2009-08-19 Explay Ltd Optical system and method for use in projection systems
US9070031B2 (en) 2003-10-24 2015-06-30 Cognex Technology And Investment Llc Integrated illumination assembly for symbology reader
US7841533B2 (en) 2003-11-13 2010-11-30 Metrologic Instruments, Inc. Method of capturing and processing digital images of an object within the field of view (FOV) of a hand-supportable digitial image capture and processing system
US7205526B2 (en) 2003-12-22 2007-04-17 Micron Technology, Inc. Methods of fabricating layered lens structures
US8615487B2 (en) 2004-01-23 2013-12-24 Garrison Gomez System and method to store and retrieve identifier associated information content
FR2865833A1 (en) 2004-01-30 2005-08-05 Neopost Ind METHOD AND DEVICE FOR VERIFYING THE FLIGHT OF THE HEIGHT OF A MAIL ARTICLE FOR POSTAGE PURPOSES
US7366995B2 (en) 2004-02-03 2008-04-29 Roland Wescott Montague Combination tool that zooms in, zooms out, pans, rotates, draws, or manipulates during a drag
GB0405014D0 (en) 2004-03-05 2004-04-07 Qinetiq Ltd Movement control system
WO2005096126A1 (en) 2004-03-31 2005-10-13 Brother Kogyo Kabushiki Kaisha Image i/o device
US7757946B2 (en) 2004-04-16 2010-07-20 Acme Scale Company, Inc. Material transport in-motion product dimensioning system and method
DE102004024109A1 (en) 2004-05-14 2005-12-08 Garvens Automation Gmbh Method for weighing a product, weighing system and equipping device
US7354167B2 (en) 2004-05-27 2008-04-08 Angstrom, Inc. Beam focusing and scanning system using micromirror array lens
WO2006083297A2 (en) 2004-06-10 2006-08-10 Sarnoff Corporation Method and apparatus for aligning video to three-dimensional point clouds
US7233682B2 (en) 2004-08-02 2007-06-19 Levine Michael C Security screening system and method
US20060036556A1 (en) 2004-08-12 2006-02-16 Peter Knispel Postal printing apparatus and method
US20060047704A1 (en) 2004-08-31 2006-03-02 Kumar Chitra Gopalakrishnan Method and system for providing information services relevant to visual imagery
US7715656B2 (en) 2004-09-28 2010-05-11 Qualcomm Incorporated Magnification and pinching of two-dimensional images
JP2006096457A (en) 2004-09-28 2006-04-13 Toyota Industries Corp Forklift work assisting device
US7293712B2 (en) 2004-10-05 2007-11-13 Hand Held Products, Inc. System and method to automatically discriminate between a signature and a dataform
US20060230640A1 (en) 2004-10-07 2006-10-19 Chen Hsin N Shoe having physical measuring device
US7961912B2 (en) 2004-10-14 2011-06-14 Stevick Glen R Method and apparatus for dynamic space-time imaging system
US7219841B2 (en) 2004-11-05 2007-05-22 Hand Held Products, Inc. Device and system for verifying quality of bar codes
US7741575B2 (en) 2004-11-22 2010-06-22 Bowe Bell + Howell Company Mail piece consolidation and accountability using advanced tracking methods
US7227469B2 (en) 2004-11-22 2007-06-05 Sdgi Holdings, Inc. Surgical instrument tray shipping tote identification system and methods of using same
US7086162B2 (en) 2004-12-23 2006-08-08 Dan Tyroler Method and apparatus for distance measurement
US7224540B2 (en) 2005-01-31 2007-05-29 Datalogic Scanning, Inc. Extended depth of field imaging system using chromatic aberration
US8274534B2 (en) 2005-01-31 2012-09-25 Roland Wescott Montague Methods for combination tools that zoom, pan, rotate, draw, or manipulate during a drag
US7865362B2 (en) 2005-02-04 2011-01-04 Vocollect, Inc. Method and system for considering information about an expected response when performing speech recognition
US7827032B2 (en) 2005-02-04 2010-11-02 Vocollect, Inc. Methods and systems for adapting a model for a speech recognition system
US8723804B2 (en) 2005-02-11 2014-05-13 Hand Held Products, Inc. Transaction terminal and adaptor therefor
KR101265358B1 (en) 2005-03-07 2013-05-21 디엑스오 랩스 Method of controlling an action, such as a sharpness modification, using a colour digital image
US7416125B2 (en) 2005-03-24 2008-08-26 Hand Held Products, Inc. Synthesis decoding and methods of use thereof
US7623736B2 (en) 2005-05-06 2009-11-24 Stereotaxis, Inc. Registration of three dimensional image data with patient in a projection imaging system
US8294809B2 (en) 2005-05-10 2012-10-23 Advanced Scientific Concepts, Inc. Dimensioning system
WO2006119583A1 (en) 2005-05-13 2006-11-16 Dspace Pty Ltd Method and system for communicating information in a digital signal
US7849620B2 (en) 2005-05-31 2010-12-14 Hand Held Products, Inc. Bar coded wristband
KR100785594B1 (en) 2005-06-17 2007-12-13 오므론 가부시키가이샤 Image process apparatus
US7609888B2 (en) 2005-07-01 2009-10-27 Microsoft Corporation Separating a video object from a background of a video sequence
DE102005035605A1 (en) 2005-07-29 2007-02-01 Robert Bosch Gmbh Monolithic integrated circuit arrangement, has first temperature sensor and second temperature sensor and has different form of thermal coupling to heat source, evaluation circuit is provided for evaluation of temperature gradient
GB0515915D0 (en) 2005-08-02 2005-09-07 Isis Innovation Method and system for three-dimensional data capture
US7717342B2 (en) 2005-08-26 2010-05-18 Hand Held Products, Inc. Data collection device having dynamic access to multiple wireless networks
US20090195790A1 (en) 2005-09-02 2009-08-06 Neptec Imaging system and method
EP2270833A3 (en) 2005-09-06 2011-01-26 Carl Zeiss SMT AG Particle-optical component
WO2007030026A1 (en) 2005-09-09 2007-03-15 Industrial Research Limited A 3d scene scanner and a position and orientation system
US20070063048A1 (en) 2005-09-14 2007-03-22 Havens William H Data reader apparatus having an adaptive lens
JP4666154B2 (en) 2005-09-20 2011-04-06 株式会社豊田自動織機 Cargo handling support device for forklift
US7463345B2 (en) 2005-09-27 2008-12-09 Chemimage Corporation Method for correlating spectroscopic measurements with digital images of contrast enhanced tissue
US8061610B2 (en) 2005-10-24 2011-11-22 Cognex Technology And Investment Corporation System and method for employing color illumination and color filtration in a symbology reader
US20070116357A1 (en) 2005-11-23 2007-05-24 Agfa-Gevaert Method for point-of-interest attraction in digital images
US7457730B2 (en) 2005-12-15 2008-11-25 Degnan Donald A Method and system for virtual decoration
US7614563B1 (en) 2005-12-29 2009-11-10 Cognex Technology And Investment Corporation System and method for providing diffuse illumination in a symbology reader
US7934660B2 (en) 2006-01-05 2011-05-03 Hand Held Products, Inc. Data collection system having reconfigurable data collection terminal
US7944465B2 (en) 2006-01-13 2011-05-17 Zecotek Display Systems Pte. Ltd. Apparatus and system for reproducing 3-dimensional images
FI20060045A0 (en) 2006-01-19 2006-01-19 Markku Matias Rautiola IP telephone network to constitute a service network in a mobile telephone system
FI20060046A0 (en) 2006-01-19 2006-01-19 Markku Matias Rautiola Connecting a circuit-switched wireless access network to an IP multimedia subsystem
US8035637B2 (en) * 2006-01-20 2011-10-11 3M Innovative Properties Company Three-dimensional scan recovery
US9275388B2 (en) 2006-01-31 2016-03-01 Hand Held Products, Inc. Transaction terminal with signature capture offset correction
US7885419B2 (en) 2006-02-06 2011-02-08 Vocollect, Inc. Headset terminal with speech functionality
US9159059B2 (en) 2006-03-03 2015-10-13 Hand Held Products, Inc. Method of operating a terminal
CN101957994B (en) 2006-03-14 2014-03-19 普莱姆传感有限公司 Depth-varying light fields for three dimensional sensing
US8244025B2 (en) 2006-03-20 2012-08-14 Siemens Energy, Inc. Method of coalescing information about inspected objects
KR101353158B1 (en) 2006-03-30 2014-01-22 캠브리지 메카트로닉스 리미티드 Camera lens actuation apparatus
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
WO2007117535A2 (en) 2006-04-07 2007-10-18 Sick, Inc. Parcel imaging system and method
EP2013117B8 (en) 2006-05-02 2012-07-18 Habitat Italiana S.R.L. Apparatus for storing and picking up articles with different dimensions and weight, particularly books
EP2023795A2 (en) 2006-05-19 2009-02-18 Avantis Medical Systems, Inc. Device and method for reducing effects of video artifacts
US7768527B2 (en) 2006-05-31 2010-08-03 Beihang University Hardware-in-the-loop simulation system and method for computer vision
US7784696B2 (en) 2006-06-09 2010-08-31 Hand Held Products, Inc. Indicia reading apparatus having image sensing and processing circuit
US20070291031A1 (en) 2006-06-15 2007-12-20 Right Hemisphere Limited Three dimensional geometric data correction
US7818084B2 (en) * 2006-06-16 2010-10-19 The Invention Science Fund, I, LLC Methods and systems for making a blood vessel sleeve
US7701439B2 (en) 2006-07-13 2010-04-20 Northrop Grumman Corporation Gesture recognition simulation system and method
US9405372B2 (en) 2006-07-14 2016-08-02 Ailive, Inc. Self-contained inertial navigation system for interactive control using movable controllers
US8944332B2 (en) 2006-08-04 2015-02-03 Intermec Ip Corp. Testing automatic data collection devices, such as barcode, RFID and/or magnetic stripe readers
US20080035390A1 (en) 2006-08-09 2008-02-14 Wurz David A Dimensioning and weighing system
US8406562B2 (en) 2006-08-11 2013-03-26 Geo Semiconductor Inc. System and method for automated calibration and correction of display geometry and color
US7839625B2 (en) 2006-09-04 2010-11-23 Intermec Ip Corp. Tool belt with smart cell technology
EP2099354A2 (en) 2006-09-27 2009-09-16 Georgia Tech Research Corporation Systems and methods for the measurement of surfaces
US8310656B2 (en) 2006-09-28 2012-11-13 Sony Computer Entertainment America Llc Mapping movements of a hand-held controller to the two-dimensional image plane of a display screen
US8374498B2 (en) 2006-09-29 2013-02-12 Microscan Systems, Inc. Systems and/or devices for camera-based inspections
US7576871B2 (en) 2006-10-03 2009-08-18 Storm Thomas W Apparatus and method for measuring volumes
DE102006048725A1 (en) * 2006-10-16 2008-04-17 Robert Bosch Gmbh Method for determining the axis of rotation of a vehicle wheel
US7726206B2 (en) 2006-11-02 2010-06-01 The Regents Of The University Of California Foot pressure alert and sensing system
US9891435B2 (en) 2006-11-02 2018-02-13 Sensics, Inc. Apparatus, systems and methods for providing motion tracking using a personal viewing device
US20080156619A1 (en) 2006-12-01 2008-07-03 Mehul Patel Range finder
US8027096B2 (en) 2006-12-15 2011-09-27 Hand Held Products, Inc. Focus module and components with actuator polymer control
US7813047B2 (en) 2006-12-15 2010-10-12 Hand Held Products, Inc. Apparatus and method comprising deformable lens element
US7912320B1 (en) 2007-01-16 2011-03-22 Paul Minor Method and apparatus for photographic measurement
US8072581B1 (en) 2007-01-19 2011-12-06 Rockwell Collins, Inc. Laser range finding system using variable field of illumination flash lidar
US9047359B2 (en) 2007-02-01 2015-06-02 Hand Held Products, Inc. Apparatus and methods for monitoring one or more portable data terminals
US8792688B2 (en) 2007-03-01 2014-07-29 Titan Medical Inc. Methods, systems and devices for three dimensional input and control methods and systems based thereon
US8915444B2 (en) 2007-03-13 2014-12-23 Hand Held Products, Inc. Imaging module having lead frame supported light source or sources
US8145677B2 (en) 2007-03-27 2012-03-27 Faleh Jassem Al-Shameri Automated generation of metadata for mining image and text data
US8132728B2 (en) 2007-04-04 2012-03-13 Sick, Inc. Parcel dimensioning measurement system and method
US7616817B2 (en) 2007-04-12 2009-11-10 The United States Of America As Represented By The Secretary Of The Navy Three dimensional shape correlator
US8918162B2 (en) 2007-04-17 2014-12-23 Francine J. Prokoski System and method for using three dimensional infrared imaging to provide psychological profiles of individuals
US7974025B2 (en) 2007-04-23 2011-07-05 Cambridge Mechatronics Limited Shape memory alloy actuation apparatus
US8971346B2 (en) 2007-04-30 2015-03-03 Hand Held Products, Inc. System and method for reliable store-and-forward data handling by encoded information reading terminals
US7463342B2 (en) 2007-05-02 2008-12-09 Angstrom, Inc. Optical tracking device using micromirror array lenses
US8630491B2 (en) 2007-05-03 2014-01-14 Andrew Longacre, Jr. System and method to manipulate an image
DE102007021823A1 (en) 2007-05-07 2008-11-13 Vistec Semiconductor Systems Gmbh Improved resolution measurement system for structures on a substrate for semiconductor fabrication and use of apertures in a measurement system
US8638806B2 (en) 2007-05-25 2014-01-28 Hand Held Products, Inc. Wireless mesh point portable data terminal
US7918398B2 (en) 2007-06-04 2011-04-05 Hand Held Products, Inc. Indicia reading terminal having multiple setting imaging lens
US7961332B2 (en) 2007-06-07 2011-06-14 Metrolaser, Inc. Fiber-optic heterodyne imaging vibrometer
US7988290B2 (en) 2007-06-27 2011-08-02 AMO Wavefront Sciences LLC. Systems and methods for measuring the shape and location of an object
US8496177B2 (en) 2007-06-28 2013-07-30 Hand Held Products, Inc. Bar code reading terminal with video capturing mode
US7780084B2 (en) 2007-06-29 2010-08-24 Microsoft Corporation 2-D barcode recognition
US9329052B2 (en) * 2007-08-07 2016-05-03 Qualcomm Incorporated Displaying image data and geographic element data
US20090038182A1 (en) 2007-08-09 2009-02-12 Lans Maris J Footwear with built-in scale
US8635309B2 (en) 2007-08-09 2014-01-21 Hand Held Products, Inc. Methods and apparatus to change a feature set on data collection devices
US7726575B2 (en) 2007-08-10 2010-06-01 Hand Held Products, Inc. Indicia reading terminal having spatial measurement functionality
US7857222B2 (en) 2007-08-16 2010-12-28 Hand Held Products, Inc. Data collection system having EIR terminal interface node
US20090059004A1 (en) 2007-08-31 2009-03-05 Speed Trac Technologies, Inc. System and Method for Monitoring the Handling of a Shipment of Freight
CN101952818B (en) 2007-09-14 2016-05-25 智慧投资控股81有限责任公司 The processing of the user interactions based on attitude
CN101802871B (en) 2007-09-17 2012-09-05 皇家飞利浦电子股份有限公司 A caliper for measuring objects in an image
US7941244B2 (en) 2007-09-25 2011-05-10 Amazon Technologies, Inc. Stow and sortation system
US8548420B2 (en) 2007-10-05 2013-10-01 Hand Held Products, Inc. Panic button for data collection device
US8371507B2 (en) 2007-10-08 2013-02-12 Metrologic Instruments, Inc. Method of selectively projecting scan lines in a multiple-line barcode scanner
WO2009052143A1 (en) 2007-10-16 2009-04-23 Accu-Sort Systems, Inc. Dimensioning and barcode reading system
US7639722B1 (en) 2007-10-29 2009-12-29 The United States Of America As Represented By The Secretary Of The Air Force Multifaceted prism to cause the overlap of beams from a stack of diode laser bars
GB0721475D0 (en) 2007-11-01 2007-12-12 Asquith Anthony Virtual buttons enabled by embedded inertial sensors
US7874483B2 (en) 2007-11-14 2011-01-25 Hand Held Products, Inc. Encoded information reading terminal with wireless path selection capability
JP5349790B2 (en) 2007-11-16 2013-11-20 キヤノン株式会社 Image processing apparatus, image processing method, and program
US8933876B2 (en) 2010-12-13 2015-01-13 Apple Inc. Three dimensional user interface session control
CN201139117Y (en) 2008-01-21 2008-10-29 赵辉 Shoes with electronic weighing scale
US20090189858A1 (en) 2008-01-30 2009-07-30 Jeff Lev Gesture Identification Using A Structured Light Pattern
US11159909B2 (en) 2008-02-05 2021-10-26 Victor Thomas Anderson Wireless location establishing device
US8179859B2 (en) 2008-02-21 2012-05-15 Wang Ynjiun P Roaming encoded information reading terminal
US8107083B2 (en) 2008-03-05 2012-01-31 General Electric Company System aspects for a probe system that utilizes structured-light
US8125481B2 (en) * 2008-03-21 2012-02-28 Google Inc. Lightweight three-dimensional display
US8803878B2 (en) 2008-03-28 2014-08-12 Schlumberger Technology Corporation Visualizing region growing in three dimensional voxel volumes
US20090268023A1 (en) 2008-04-27 2009-10-29 Wen-Hsiung Hsieh Surveillance camera device with a light source
US20090273770A1 (en) 2008-04-30 2009-11-05 Honeywell International Inc. Systems and methods for safe laser imaging, detection and ranging (lidar) operation
US8301027B2 (en) 2008-05-02 2012-10-30 Massachusetts Institute Of Technology Agile-beam laser array transmitter
ATE477876T1 (en) 2008-05-02 2010-09-15 Leister Process Tech METHOD AND LASER DEVICE FOR PROCESSING AND/OR CONNECTING WORKPIECES USING LASER RADIATION WITH POWERFUL AND PILOT LASER AND AT LEAST ONE DIFFRACTIVE OPTICAL ELEMENT
US9361882B2 (en) 2008-05-06 2016-06-07 Vocollect, Inc. Supervisor training terminal and monitor for voice-driven applications
WO2009142758A1 (en) 2008-05-23 2009-11-26 Spectral Image, Inc. Systems and methods for hyperspectral medical imaging
US7788883B2 (en) 2008-06-19 2010-09-07 Xerox Corporation Custom packaging solution for arbitrary objects
US20090323084A1 (en) 2008-06-25 2009-12-31 Joseph Christen Dunn Package dimensioner and reader
US8255225B2 (en) 2008-08-07 2012-08-28 Vocollect Healthcare Systems, Inc. Voice assistant system
KR20100020115A (en) 2008-08-12 2010-02-22 변규석 Weight-measuring scale equipped-footwear
US8794520B2 (en) 2008-09-30 2014-08-05 Hand Held Products, Inc. Method and apparatus for operating indicia reading terminal including parameter determination
US8628015B2 (en) 2008-10-31 2014-01-14 Hand Held Products, Inc. Indicia reading terminal including frame quality evaluation processing
US20100118200A1 (en) 2008-11-10 2010-05-13 Geoffrey Michael Gelman Signage
EP2184254B1 (en) 2008-11-11 2013-01-09 Deutsche Post AG Forklift truck with a guidance and collision warning device
EP3396416A1 (en) 2008-11-25 2018-10-31 Tetravue, Inc. Systems and methods of high resolution three-dimensional imaging
US8783573B2 (en) 2008-12-02 2014-07-22 Hand Held Products, Inc. Indicia reading terminal having plurality of optical assemblies
US8194097B2 (en) * 2008-12-12 2012-06-05 Seiko Epson Corporation Virtual masking using rigid parametric modeling
US8463079B2 (en) 2008-12-16 2013-06-11 Intermec Ip Corp. Method and apparatus for geometrical measurement using an optical device such as a barcode and/or RFID scanner
US8083148B2 (en) 2008-12-16 2011-12-27 Hand Held Products, Inc. Indicia reading terminal including frame processing
US9020846B2 (en) * 2008-12-19 2015-04-28 United Parcel Service Of America, Inc. Trailer utilization systems, methods, computer programs embodied on computer-readable media, and apparatuses
US8908995B2 (en) 2009-01-12 2014-12-09 Intermec Ip Corp. Semi-automatic dimensioning with imager on a portable device
US20100177707A1 (en) 2009-01-13 2010-07-15 Metrologic Instruments, Inc. Method and apparatus for increasing the SNR at the RF antennas of wireless end-devices on a wireless communication network, while minimizing the RF power transmitted by the wireless coordinator and routers
US8457013B2 (en) 2009-01-13 2013-06-04 Metrologic Instruments, Inc. Wireless dual-function network device dynamically switching and reconfiguring from a wireless network router state of operation into a wireless network coordinator state of operation in a wireless communication network
US20100177076A1 (en) 2009-01-13 2010-07-15 Metrologic Instruments, Inc. Edge-lit electronic-ink display device for use in indoor and outdoor environments
US20100177080A1 (en) 2009-01-13 2010-07-15 Metrologic Instruments, Inc. Electronic-ink signage device employing thermal packaging for outdoor weather applications
US20100177749A1 (en) 2009-01-13 2010-07-15 Metrologic Instruments, Inc. Methods of and apparatus for programming and managing diverse network components, including electronic-ink based display devices, in a mesh-type wireless communication network
JP4905541B2 (en) 2009-02-04 2012-03-28 ソニー株式会社 Liquid crystal display device and method for manufacturing liquid crystal display device
US8494909B2 (en) 2009-02-09 2013-07-23 Datalogic ADC, Inc. Automatic learning in a merchandise checkout system with visual recognition
EP2394055B1 (en) 2009-02-09 2013-06-05 Cambridge Mechatronics Limited Shape memory alloy actuation apparatus
US8639455B2 (en) 2009-02-09 2014-01-28 Alterg, Inc. Foot pad device and method of obtaining weight data
EP2216634A1 (en) 2009-02-10 2010-08-11 Designit A/S A one ball of the foot scale
US10244181B2 (en) 2009-02-17 2019-03-26 Trilumina Corp. Compact multi-zone infrared laser illuminator
US8660254B2 (en) 2009-02-27 2014-02-25 Blackberry Limited System and method for call management
US8643717B2 (en) 2009-03-04 2014-02-04 Hand Held Products, Inc. System and method for measuring irregular objects with a single camera
US8004694B2 (en) 2009-03-27 2011-08-23 Gll Acquistion LLC System for indirectly measuring a geometric dimension related to an opening in an apertured exterior surface of a part based on direct measurements of the part when fixtured at a measurement station
DE102009015594B4 (en) 2009-03-30 2015-07-30 Carl Zeiss Sms Gmbh Method and device for subpixel accurate position determination of an edge of a marker structure in a plurality of receiving pixels having recording the marker structure
JP5249114B2 (en) * 2009-04-03 2013-07-31 Kddi株式会社 Image generating apparatus, method and program
US9183425B2 (en) 2009-04-09 2015-11-10 Hand Held Products, Inc. Image sensor pixel array having output response curve including logarithmic pattern for image sensor based terminal
US8424768B2 (en) 2009-04-09 2013-04-23 Metrologic Instruments, Inc. Trigger mechanism for hand held devices
US8212158B2 (en) 2009-04-13 2012-07-03 Wiest Pieter C Weight measuring shoe having a retractable scale
US20100274728A1 (en) 2009-04-24 2010-10-28 Refinement Services, Llc Video Shipment Monitoring
US8149224B1 (en) * 2009-04-28 2012-04-03 Integrated Device Technology, Inc. Computing system with detachable touch screen device
JP2010282610A (en) 2009-05-07 2010-12-16 Canon Inc Network system and management method therefor
US8781159B2 (en) 2009-05-13 2014-07-15 Applied Vision Corporation System and method for dimensioning objects using stereoscopic imaging
US20110040192A1 (en) 2009-05-21 2011-02-17 Sara Brenner Method and a system for imaging and analysis for mole evolution tracking
US9519814B2 (en) 2009-06-12 2016-12-13 Hand Held Products, Inc. Portable data terminal
SG177156A1 (en) 2009-06-16 2012-01-30 Intel Corp Camera applications in a handheld device
US20100315413A1 (en) 2009-06-16 2010-12-16 Microsoft Corporation Surface Computer User Interaction
US20100321482A1 (en) 2009-06-17 2010-12-23 Lc Technologies Inc. Eye/head controls for camera pointing
US8914788B2 (en) 2009-07-01 2014-12-16 Hand Held Products, Inc. Universal connectivity for non-universal devices
US8583924B2 (en) 2009-07-01 2013-11-12 Hand Held Products, Inc. Location-based feature enablement for mobile terminals
RU2496253C1 (en) 2009-07-21 2013-10-20 Кэнон Кабусики Кайся Image processing device and image processing method for correcting chromatic aberration
US8201737B1 (en) 2009-07-21 2012-06-19 Amazon Technologies, Inc. Validating item placement
US8118438B2 (en) 2009-07-24 2012-02-21 Optimet, Optical Metrology Ltd. Method and apparatus for real-time projection onto an object of data obtained from 3-D measurement
US8436893B2 (en) 2009-07-31 2013-05-07 3Dmedia Corporation Methods, systems, and computer-readable storage media for selecting image capture positions to generate three-dimensional (3D) images
WO2011017241A1 (en) 2009-08-05 2011-02-10 Siemens Industry, Inc. System and method for three-dimensional parcel monitoring and analysis
US8256678B2 (en) 2009-08-12 2012-09-04 Hand Held Products, Inc. Indicia reading terminal having image sensor and variable lens assembly
KR101665543B1 (en) 2009-08-12 2016-10-13 삼성전자 주식회사 Tabilization apparatus for humanoid robot and method thereof
US9418269B2 (en) 2009-08-12 2016-08-16 Hand Held Products, Inc. Laser scanning indicia reading terminal having variable lens assembly
WO2011018654A2 (en) 2009-08-13 2011-02-17 Bae Systems Plc Display systems incorporating fourier optics
KR20110018696A (en) 2009-08-18 2011-02-24 주식회사 이턴 Apparatus and method for processing 3d image
US8668149B2 (en) 2009-09-16 2014-03-11 Metrologic Instruments, Inc. Bar code reader terminal and methods for operating the same having misread detection apparatus
US8390909B2 (en) 2009-09-23 2013-03-05 Metrologic Instruments, Inc. Molded elastomeric flexural elements for use in a laser scanning assemblies and scanners, and methods of manufacturing, tuning and adjusting the same
US8294969B2 (en) 2009-09-23 2012-10-23 Metrologic Instruments, Inc. Scan element for use in scanning light and method of making the same
US8723904B2 (en) 2009-09-25 2014-05-13 Intermec Ip Corp. Mobile printer with optional battery accessory
US8761511B2 (en) 2009-09-30 2014-06-24 F. Scott Deaver Preprocessing of grayscale images for optical character recognition
US8587595B2 (en) 2009-10-01 2013-11-19 Hand Held Products, Inc. Low power multi-core decoder system and method
US8867820B2 (en) 2009-10-07 2014-10-21 Microsoft Corporation Systems and methods for removing a background of an image
US8868802B2 (en) 2009-10-14 2014-10-21 Hand Held Products, Inc. Method of programming the default cable interface software in an indicia reading device
US8596543B2 (en) 2009-10-20 2013-12-03 Hand Held Products, Inc. Indicia reading terminal including focus element with expanded range of focus distances
US10387175B2 (en) * 2009-10-23 2019-08-20 Autodesk, Inc. Method and system for providing software application end-users with contextual access to text and video instructional information
US8175617B2 (en) 2009-10-28 2012-05-08 Digimarc Corporation Sensor-based mobile search, related methods and systems
US8819172B2 (en) 2010-11-04 2014-08-26 Digimarc Corporation Smartphone-based methods and systems
JP5637995B2 (en) 2009-10-30 2014-12-10 株式会社オプトエレクトロニクス Optical information reader
US8996384B2 (en) 2009-10-30 2015-03-31 Vocollect, Inc. Transforming components of a web page to voice prompts
US9497092B2 (en) 2009-12-08 2016-11-15 Hand Held Products, Inc. Remote device management interface
GB0921461D0 (en) 2009-12-08 2010-01-20 Qinetiq Ltd Range based sensing
US8320621B2 (en) 2009-12-21 2012-11-27 Microsoft Corporation Depth projector system with integrated VCSEL array
US8698949B2 (en) 2010-01-08 2014-04-15 Hand Held Products, Inc. Terminal having plurality of operating modes
US8302868B2 (en) 2010-01-15 2012-11-06 Metrologic Instruments, Inc. Parallel decoding scheme for an indicia reader
US8588869B2 (en) 2010-01-19 2013-11-19 Hand Held Products, Inc. Power management scheme for portable data collection devices utilizing location and position sensors
CN102203800B (en) 2010-01-21 2015-09-23 计量仪器公司 Comprise the tag reader terminal of optical filter
US8244003B2 (en) 2010-01-25 2012-08-14 Apple Inc. Image preprocessing
US8781520B2 (en) 2010-01-26 2014-07-15 Hand Held Products, Inc. Mobile device having hybrid keypad
US20110188054A1 (en) 2010-02-02 2011-08-04 Primesense Ltd Integrated photonics module for optical projection
US20110187878A1 (en) 2010-02-02 2011-08-04 Primesense Ltd. Synchronization of projected illumination with rolling shutter of image sensor
US9058526B2 (en) 2010-02-11 2015-06-16 Hand Held Products, Inc. Data collection module and system
US20110202554A1 (en) 2010-02-18 2011-08-18 Hand Held Products, Inc. Remote device management system and method
JP5631025B2 (en) 2010-03-10 2014-11-26 キヤノン株式会社 Information processing apparatus, processing method thereof, and program
DE102010013220A1 (en) 2010-03-29 2011-09-29 Siemens Aktiengesellschaft Method and device for transporting an object to be printed
US20110243432A1 (en) 2010-03-30 2011-10-06 Mckesson Financial Holdings Limited Determining the Scale of Images
US9104934B2 (en) 2010-03-31 2015-08-11 Hand Held Products, Inc. Document decoding system and method for improved decoding performance of indicia reading terminal
US9298964B2 (en) 2010-03-31 2016-03-29 Hand Held Products, Inc. Imaging terminal, imaging sensor to determine document orientation based on bar code orientation and methods for operating the same
EP2375227A1 (en) 2010-04-09 2011-10-12 Siemens Aktiengesellschaft Measurement of three-dimensional motion characteristics
US8368762B1 (en) 2010-04-12 2013-02-05 Adobe Systems Incorporated Methods and apparatus for camera calibration based on multiview image geometry
KR101334107B1 (en) 2010-04-22 2013-12-16 주식회사 굿소프트웨어랩 Apparatus and Method of User Interface for Manipulating Multimedia Contents in Vehicle
US8822806B2 (en) 2010-05-04 2014-09-02 New Sensor Corp. Configurable foot-operable electronic control interface apparatus and method
EP2569721A4 (en) 2010-05-14 2013-11-27 Datalogic Adc Inc Systems and methods for object recognition using a large database
US8918209B2 (en) 2010-05-20 2014-12-23 Irobot Corporation Mobile human interface robot
US8615376B2 (en) * 2010-05-21 2013-12-24 Sure-Shot Medical Device Inc. Method and apparatus for dimensional measurement
US8600167B2 (en) 2010-05-21 2013-12-03 Hand Held Products, Inc. System for capturing a document in an image signal
US8134717B2 (en) 2010-05-21 2012-03-13 LTS Scale Company Dimensional detection system and associated method
US9047531B2 (en) 2010-05-21 2015-06-02 Hand Held Products, Inc. Interactive user interface for capturing a document in an image signal
US8594425B2 (en) 2010-05-31 2013-11-26 Primesense Ltd. Analysis of three-dimensional scenes
EP2577260B1 (en) 2010-06-01 2022-08-31 Ackley Machine Corp. Inspection system
US20110301994A1 (en) 2010-06-07 2011-12-08 Tieman James K Wireless put-to-light system and method
US8757490B2 (en) 2010-06-11 2014-06-24 Josef Bigun Method and apparatus for encoding and reading optical machine-readable data codes
US20140142398A1 (en) 2010-06-13 2014-05-22 Angiometrix Corporation Multifunctional guidewire assemblies and system for analyzing anatomical and functional parameters
US20110310227A1 (en) 2010-06-17 2011-12-22 Qualcomm Incorporated Mobile device based content mapping for augmented reality environment
JP5490627B2 (en) 2010-06-17 2014-05-14 株式会社ミツトヨ Image equipment calibration pattern
WO2011160256A1 (en) 2010-06-24 2011-12-29 Metrologic Instruments, Inc. Distinctive notice for different symbology information
JP5660432B2 (en) 2010-06-30 2015-01-28 独立行政法人理化学研究所 Area data editing device, area data editing method, program, and recording medium
US8208704B2 (en) 2010-07-13 2012-06-26 Carestream Health, Inc. Dental shade mapping
US8659397B2 (en) 2010-07-22 2014-02-25 Vocollect, Inc. Method and system for correctly identifying specific RFID tags
JP5042344B2 (en) 2010-07-22 2012-10-03 正▲うえ▼精密工業股▲ふん▼有限公司 Matrix type two-dimensional code identification system and identification method thereof
US9489782B2 (en) 2010-07-28 2016-11-08 Hand Held Products, Inc. Collect vehicle performance with a PDT
BR112013002654A2 (en) * 2010-08-03 2020-10-06 Packsize, Llc on-demand packaging creation based on stored attribute data
US8910870B2 (en) 2010-08-06 2014-12-16 Hand Held Products, Inc. System and method for document processing
US8381976B2 (en) 2010-08-10 2013-02-26 Honeywell International Inc. System and method for object metrology
US8717494B2 (en) 2010-08-11 2014-05-06 Hand Held Products, Inc. Optical reading device with improved gasket
JP5874636B2 (en) 2010-08-27 2016-03-02 コニカミノルタ株式会社 Diagnosis support system and program
US8757495B2 (en) 2010-09-03 2014-06-24 Hand Held Products, Inc. Encoded information reading terminal with multi-band antenna
EP3064895B1 (en) 2010-09-07 2020-04-15 Dai Nippon Printing Co., Ltd. Linear illumination device
US8596823B2 (en) 2010-09-07 2013-12-03 Coherent, Inc. Line-projection apparatus for arrays of diode-laser bar stacks
US20120056982A1 (en) 2010-09-08 2012-03-08 Microsoft Corporation Depth camera based on structured light and stereo vision
DE102010037625A1 (en) * 2010-09-17 2012-03-22 B & W Verpackungstechnologie Gmbh Method and device for filling packages with a padding material in bulk form
BR112013006486A2 (en) 2010-09-20 2016-07-26 Lumidigm Inc machine readable symbols.
US8565107B2 (en) 2010-09-24 2013-10-22 Hand Held Products, Inc. Terminal configurable for use within an unknown regulatory domain
JP5592014B2 (en) 2010-09-30 2014-09-17 エンパイア テクノロジー ディベロップメント エルエルシー Projecting patterns for high resolution texture extraction
EP2439503A1 (en) 2010-09-30 2012-04-11 Neopost Technologies Device for determining the dimensions of a parcel
US8408469B2 (en) 2010-10-07 2013-04-02 Metrologic Instruments, Inc. Laser scanning assembly having an improved scan angle-multiplication factor
US8760563B2 (en) 2010-10-19 2014-06-24 Hand Held Products, Inc. Autofocusing optical imaging device
JP5861122B2 (en) 2010-10-19 2016-02-16 パナソニックIpマネジメント株式会社 Optical multiplexing device and projector
US9240021B2 (en) 2010-11-04 2016-01-19 Digimarc Corporation Smartphone-based methods and systems
US20120113223A1 (en) 2010-11-05 2012-05-10 Microsoft Corporation User Interaction in Augmented Reality
US8322622B2 (en) 2010-11-09 2012-12-04 Metrologic Instruments, Inc. Hand-supportable digital-imaging based code symbol reading system supporting motion blur reduction using an accelerometer sensor
US8517269B2 (en) 2010-11-09 2013-08-27 Hand Held Products, Inc. Using a user'S application to configure user scanner
US20120111946A1 (en) 2010-11-09 2012-05-10 Metrologic Instruments, Inc. Scanning assembly for laser based bar code scanners
US8490877B2 (en) 2010-11-09 2013-07-23 Metrologic Instruments, Inc. Digital-imaging based code symbol reading system having finger-pointing triggered mode of operation
US8982263B2 (en) 2010-11-11 2015-03-17 Hewlett-Packard Development Company, L.P. Blemish detection and notification in an image capture device
US8571307B2 (en) 2010-11-16 2013-10-29 Hand Held Products, Inc. Method and system operative to process monochrome image data
US8600158B2 (en) 2010-11-16 2013-12-03 Hand Held Products, Inc. Method and system operative to process color image data
US8950678B2 (en) 2010-11-17 2015-02-10 Hand Held Products, Inc. Barcode reader with edge detection enhancement
WO2012068353A2 (en) 2010-11-18 2012-05-24 Sky-Trax, Inc. Load tracking utilizing load identifying indicia and spatial discrimination
WO2012066501A1 (en) 2010-11-19 2012-05-24 Primesense Ltd. Depth mapping using time-coded illumination
US9010641B2 (en) 2010-12-07 2015-04-21 Hand Held Products, Inc. Multiple platform support system and method
US8550357B2 (en) 2010-12-08 2013-10-08 Metrologic Instruments, Inc. Open air indicia reader stand
GB2501404A (en) 2010-12-09 2013-10-23 Metrologic Instr Inc Indicia encoding system with integrated purchase and payment information
US8408468B2 (en) 2010-12-13 2013-04-02 Metrologic Instruments, Inc. Method of and system for reading visible and/or invisible code symbols in a user-transparent manner using visible/invisible illumination source switching during data capture and processing operations
US8448863B2 (en) 2010-12-13 2013-05-28 Metrologic Instruments, Inc. Bar code symbol reading system supporting visual or/and audible display of product scan speed for throughput optimization in point of sale (POS) environments
US8500351B2 (en) 2010-12-21 2013-08-06 Datamax-O'neil Corporation Compact printer with print frame interlock
US8939374B2 (en) 2010-12-30 2015-01-27 Hand Held Products, Inc. Terminal having illumination and exposure control
US8996194B2 (en) 2011-01-03 2015-03-31 Ems Technologies, Inc. Vehicle mount computer with configurable ignition switch behavior
US8763909B2 (en) 2011-01-04 2014-07-01 Hand Held Products, Inc. Terminal comprising mount for supporting a mechanical component
TW201228632A (en) 2011-01-07 2012-07-16 Access Business Group Int Llc Health monitoring system
US20120242852A1 (en) 2011-03-21 2012-09-27 Apple Inc. Gesture-Based Configuration of Image Processing Techniques
US8692927B2 (en) 2011-01-19 2014-04-08 Hand Held Products, Inc. Imaging terminal having focus control
JP5905031B2 (en) 2011-01-28 2016-04-20 インタッチ テクノロジーズ インコーポレイテッド Interfacing with mobile telepresence robot
US8520080B2 (en) 2011-01-31 2013-08-27 Hand Held Products, Inc. Apparatus, system, and method of use of imaging assembly on mobile terminal
US9038915B2 (en) 2011-01-31 2015-05-26 Metrologic Instruments, Inc. Pre-paid usage system for encoded information reading terminals
GB2501840A (en) 2011-01-31 2013-11-06 Giovani Pattoli R Indicia reading terminal operable for data input on two sides
US9418270B2 (en) 2011-01-31 2016-08-16 Hand Held Products, Inc. Terminal with flicker-corrected aimer and alternating illumination
US8561903B2 (en) 2011-01-31 2013-10-22 Hand Held Products, Inc. System operative to adaptively select an image sensor for decodable indicia reading
US8678286B2 (en) 2011-01-31 2014-03-25 Honeywell Scanning & Mobility Method and apparatus for reading optical indicia using a plurality of data sources
US8798367B2 (en) 2011-01-31 2014-08-05 Metrologic Instruments, Inc. Optical imager and method for correlating a medication package with a patient
US8879639B2 (en) 2011-01-31 2014-11-04 Hand Held Products, Inc. Adaptive video capture decode system
US8381979B2 (en) 2011-01-31 2013-02-26 Metrologic Instruments, Inc. Bar code symbol reading system employing EAS-enabling faceplate bezel
US20120193423A1 (en) 2011-01-31 2012-08-02 Metrologic Instruments Inc Code symbol reading system supporting operator-dependent system configuration parameters
US8789757B2 (en) 2011-02-02 2014-07-29 Metrologic Instruments, Inc. POS-based code symbol reading system with integrated scale base and system housing having an improved produce weight capturing surface design
US8408464B2 (en) 2011-02-03 2013-04-02 Metrologic Instruments, Inc. Auto-exposure method using continuous video frames under controlled illumination
US8636200B2 (en) 2011-02-08 2014-01-28 Metrologic Instruments, Inc. MMS text messaging for hand held indicia reader
US8928896B2 (en) 2011-02-08 2015-01-06 Quantronix, Inc. Object dimensioning system and related methods
US20120203647A1 (en) 2011-02-09 2012-08-09 Metrologic Instruments, Inc. Method of and system for uniquely responding to code data captured from products so as to alert the product handler to carry out exception handling procedures
US20120224060A1 (en) 2011-02-10 2012-09-06 Integrated Night Vision Systems Inc. Reducing Driver Distraction Using a Heads-Up Display
US8550354B2 (en) 2011-02-17 2013-10-08 Hand Held Products, Inc. Indicia reader system with wireless communication with a headset
US20120223141A1 (en) 2011-03-01 2012-09-06 Metrologic Instruments, Inc. Digital linear imaging system employing pixel processing techniques to composite single-column linear images on a 2d image detection array
US8459557B2 (en) 2011-03-10 2013-06-11 Metrologic Instruments, Inc. Dual laser scanning code symbol reading system employing automatic object presence detector for automatic laser source selection
US8988590B2 (en) 2011-03-28 2015-03-24 Intermec Ip Corp. Two-dimensional imager with solid-state auto-focus
US8469272B2 (en) 2011-03-29 2013-06-25 Metrologic Instruments, Inc. Hybrid-type bioptical laser scanning and imaging system supporting digital-imaging based bar code symbol reading at the surface of a laser scanning window
US8411083B2 (en) 2011-04-06 2013-04-02 General Electric Company Method and device for displaying an indication of the quality of the three-dimensional data for a surface of a viewed object
EP2697149B1 (en) 2011-04-15 2019-06-26 Tamtron Oy A method for estimating volume
US8824692B2 (en) 2011-04-20 2014-09-02 Vocollect, Inc. Self calibrating multi-element dipole microphone
US9501699B2 (en) 2011-05-11 2016-11-22 University Of Florida Research Foundation, Inc. Systems and methods for estimating the geographic location at which image data was captured
US8600194B2 (en) 2011-05-17 2013-12-03 Apple Inc. Positional sensor-assisted image registration for panoramic photography
US9088714B2 (en) 2011-05-17 2015-07-21 Apple Inc. Intelligent image blending for panoramic photography
EP2772676B1 (en) 2011-05-18 2015-07-08 Sick Ag 3D camera and method for three dimensional surveillance of a surveillance area
US8885877B2 (en) 2011-05-20 2014-11-11 Eyefluence, Inc. Systems and methods for identifying gaze tracking scene reference locations
US8914290B2 (en) 2011-05-20 2014-12-16 Vocollect, Inc. Systems and methods for dynamically improving user intelligibility of synthesized speech in a work environment
EP2716026A4 (en) 2011-05-23 2014-12-24 Datamax O Neil Corp Sensing apparatus for detecting and determining the width of media along a feed path
US9547938B2 (en) 2011-05-27 2017-01-17 A9.Com, Inc. Augmenting a live view
US8868519B2 (en) 2011-05-27 2014-10-21 Vocollect, Inc. System and method for generating and updating location check digits
US8687032B2 (en) 2011-06-06 2014-04-01 Datamax-O'neil Corporation Printing ribbon security apparatus and method
US8842163B2 (en) * 2011-06-07 2014-09-23 International Business Machines Corporation Estimation of object properties in 3D world
US9208366B2 (en) 2011-06-08 2015-12-08 Metrologic Instruments, Inc. Indicia decoding device with security lock
US10018467B2 (en) 2011-06-09 2018-07-10 Clark Alexander Bendall System and method for measuring a distance to an object
US9182221B2 (en) 2011-06-13 2015-11-10 Canon Kabushiki Kaisha Information processing apparatus and information processing method
US8824696B2 (en) 2011-06-14 2014-09-02 Vocollect, Inc. Headset signal multiplexing system and method
US8561905B2 (en) 2011-06-15 2013-10-22 Metrologic Instruments, Inc. Hybrid-type bioptical laser scanning and digital imaging system supporting automatic object motion detection at the edges of a 3D scanning volume
US8998091B2 (en) 2011-06-15 2015-04-07 Metrologic Instruments, Inc. Hybrid-type bioptical laser scanning and digital imaging system supporting automatic object motion detection at the edges of a 3D scanning volume
US8794525B2 (en) 2011-09-28 2014-08-05 Metologic Insturments, Inc. Method of and system for detecting produce weighing interferences in a POS-based checkout/scale system
US8376233B2 (en) 2011-06-15 2013-02-19 Metrologic Instruments, Inc. Bar code symbol reading system employing an extremely elongated laser scanning beam capable of reading poor and damaged quality bar code symbols with improved levels of performance
JP5791976B2 (en) 2011-06-16 2015-10-07 オリンパス株式会社 Image processing apparatus, image processing method, and program
US8628016B2 (en) 2011-06-17 2014-01-14 Hand Held Products, Inc. Terminal operative for storing frame of image data
US8657200B2 (en) 2011-06-20 2014-02-25 Metrologic Instruments, Inc. Indicia reading terminal with color frame processing
EP2538242B1 (en) 2011-06-24 2014-07-02 Softkinetic Software Depth measurement quality enhancement.
US9158340B2 (en) 2011-06-27 2015-10-13 Hand Held Products, Inc. Apparatus and method for assembling display of indicia reading terminal
US8640960B2 (en) 2011-06-27 2014-02-04 Honeywell International Inc. Optical filter for image and barcode scanning
US8636215B2 (en) 2011-06-27 2014-01-28 Hand Held Products, Inc. Decodable indicia reading terminal with optical filter
US8534541B2 (en) 2011-06-29 2013-09-17 Hand Held Products, Inc. Devices having an auxiliary electronic paper display for displaying optically scannable indica
US8985459B2 (en) 2011-06-30 2015-03-24 Metrologic Instruments, Inc. Decodable indicia reading terminal with combined illumination
JP5247854B2 (en) 2011-07-06 2013-07-24 株式会社インスピーディア Collection system and collection method
WO2013010097A1 (en) 2011-07-14 2013-01-17 Source Technologies, Llc Automatically adjusting printing parameters using media identification
TWI460606B (en) 2011-07-15 2014-11-11 Ind Tech Res Inst Authentication methods and systems of applying captcha
US20150213590A1 (en) * 2011-07-29 2015-07-30 Google Inc. Automatic Pose Setting Using Computer Vision Techniques
DE102011080180B4 (en) 2011-08-01 2013-05-02 Sirona Dental Systems Gmbh Method for registering a plurality of three-dimensional recordings of a dental object
GB201113715D0 (en) 2011-08-09 2011-09-21 Renishaw Plc Method and apparatus for inspecting workpieces
US10054430B2 (en) 2011-08-09 2018-08-21 Apple Inc. Overlapping pattern projector
US8749796B2 (en) 2011-08-09 2014-06-10 Primesense Ltd. Projectors of structured light
US8908277B2 (en) 2011-08-09 2014-12-09 Apple Inc Lens array projector
US20130043312A1 (en) 2011-08-15 2013-02-21 Metrologic Instruments, Inc. Code symbol reading system employing dynamically-elongated laser scanning beams for improved levels of performance
US8779898B2 (en) 2011-08-17 2014-07-15 Hand Held Products, Inc. Encoded information reading terminal with micro-electromechanical radio frequency front end
US8636212B2 (en) 2011-08-24 2014-01-28 Metrologic Instruments, Inc. Decodable indicia reading terminal with indicia analysis functionality
EP2562715A1 (en) 2011-08-26 2013-02-27 Sony Ericsson Mobile Communications AB Portable electric equipment and method of processing a series of frames
US20140058634A1 (en) 2012-08-24 2014-02-27 Crown Equipment Limited Method and apparatus for using unique landmarks to locate industrial vehicles at start-up
US9367770B2 (en) 2011-08-30 2016-06-14 Digimarc Corporation Methods and arrangements for identifying objects
WO2013033442A1 (en) 2011-08-30 2013-03-07 Digimarc Corporation Methods and arrangements for identifying objects
US9491441B2 (en) 2011-08-30 2016-11-08 Microsoft Technology Licensing, Llc Method to extend laser depth map range
US9111166B2 (en) 2011-08-31 2015-08-18 Metrologic Instruments, Inc. Cluster computing of bar code data
US8822848B2 (en) 2011-09-02 2014-09-02 Metrologic Instruments, Inc. Bioptical point of sale (POS) checkout system employing a retractable weigh platter support subsystem
WO2013033866A1 (en) 2011-09-09 2013-03-14 Metrologic Instruments, Inc. Terminal having image data format conversion
US9111159B2 (en) 2011-09-09 2015-08-18 Metrologic Instruments, Inc. Imaging based barcode scanner engine with multiple elements supported on a common printed circuit board
US8590789B2 (en) 2011-09-14 2013-11-26 Metrologic Instruments, Inc. Scanner with wake-up mode
US8976368B2 (en) 2011-09-15 2015-03-10 Intermec Ip Corp. Optical grid enhancement for improved motor location
US8844823B2 (en) 2011-09-15 2014-09-30 Metrologic Instruments, Inc. Laser scanning system employing an optics module capable of forming a laser beam having an extended depth of focus (DOF) over the laser scanning field
US8678285B2 (en) 2011-09-20 2014-03-25 Metrologic Instruments, Inc. Method of and apparatus for multiplying raster scanning lines by modulating a multi-cavity laser diode
US8873813B2 (en) 2012-09-17 2014-10-28 Z Advanced Computing, Inc. Application of Z-webs and Z-factors to analytics, search engine, learning, recognition, natural language, and other utilities
US9916538B2 (en) 2012-09-15 2018-03-13 Z Advanced Computing, Inc. Method and system for feature detection
US8556176B2 (en) 2011-09-26 2013-10-15 Metrologic Instruments, Inc. Method of and apparatus for managing and redeeming bar-coded coupons displayed from the light emitting display surfaces of information display devices
US20150001301A1 (en) 2011-09-26 2015-01-01 Metrologic Instruments, Inc. Optical indicia reading terminal with combined illumination
US8474712B2 (en) 2011-09-29 2013-07-02 Metrologic Instruments, Inc. Method of and system for displaying product related information at POS-based retail checkout systems
US8646692B2 (en) 2011-09-30 2014-02-11 Hand Held Products, Inc. Devices and methods employing dual target auto exposure
US9317037B2 (en) 2011-10-03 2016-04-19 Vocollect, Inc. Warehouse vehicle navigation system and method
US8539123B2 (en) 2011-10-06 2013-09-17 Honeywell International, Inc. Device management using a dedicated management interface
US9274812B2 (en) 2011-10-06 2016-03-01 Hand Held Products, Inc. Method of configuring mobile computing device
US8621123B2 (en) 2011-10-06 2013-12-31 Honeywell International Inc. Device management using virtual interfaces
KR101942972B1 (en) 2011-10-13 2019-01-29 삼성전자주식회사 Spatial light modulator, Apparatus for holography 3-dimensional display and Method for modulating spatial light
US8608071B2 (en) 2011-10-17 2013-12-17 Honeywell Scanning And Mobility Optical indicia reading terminal with two image sensors
US20130093895A1 (en) 2011-10-17 2013-04-18 Samuel David Palmer System for collision prediction and traffic violation detection
US8934672B2 (en) 2011-10-19 2015-01-13 Crown Equipment Corporation Evaluating features in an image possibly corresponding to an intersection of a pallet stringer and a pallet board
US20130101158A1 (en) 2011-10-21 2013-04-25 Honeywell International Inc. Determining dimensions associated with an object
US9411386B2 (en) 2011-10-31 2016-08-09 Hand Held Products, Inc. Mobile device with tamper detection
US9015513B2 (en) 2011-11-03 2015-04-21 Vocollect, Inc. Receiving application specific individual battery adjusted battery use profile data upon loading of work application for managing remaining power of a mobile device
US8629926B2 (en) 2011-11-04 2014-01-14 Honeywell International, Inc. Imaging apparatus comprising image sensor array having shared global shutter circuitry
US9262660B2 (en) 2011-11-07 2016-02-16 Honeywell Scanning & Mobility Optical indicia reading terminal with color image sensor
JP5659304B2 (en) 2011-11-07 2015-01-28 株式会社ソニー・コンピュータエンタテインメント Image generating apparatus and image generating method
US9224024B2 (en) 2011-11-11 2015-12-29 Honeywell International, Inc. Invariant design image capture device
US8526720B2 (en) 2011-11-17 2013-09-03 Honeywell International, Inc. Imaging terminal operative for decoding
US8485430B2 (en) 2011-12-06 2013-07-16 Honeywell International, Inc. Hand held bar code readers or mobile computers with cloud computing services
US9248640B2 (en) 2011-12-07 2016-02-02 Intermec Ip Corp. Method and apparatus for improving registration and skew end of line checking in production
US8628013B2 (en) 2011-12-13 2014-01-14 Honeywell International Inc. Apparatus comprising image sensor array and illumination control
US8881983B2 (en) 2011-12-13 2014-11-11 Honeywell International Inc. Optical readers and methods employing polarization sensing of light from decodable indicia
US8991704B2 (en) 2011-12-14 2015-03-31 Intermec Ip Corp. Snap-on module for selectively installing receiving element(s) to a mobile device
EP2748744A1 (en) 2011-12-14 2014-07-02 Koninklijke Philips N.V. Real-time feedback for preventing high dose c-arch geometry positions
US9093141B2 (en) 2011-12-16 2015-07-28 Intermec Ip Corp. Phase change memory devices, method for encoding, and methods for storing data
US8695880B2 (en) 2011-12-22 2014-04-15 Honeywell International, Inc. Imaging devices and methods for inhibiting or removing captured aiming pattern
US8602308B2 (en) 2011-12-22 2013-12-10 Symbol Technologies, Inc. Imaging device having light field sensor
US20130175341A1 (en) 2012-01-10 2013-07-11 Sean Philip Kearney Hybrid-type bioptical laser scanning and digital imaging system employing digital imager with field of view overlapping field of field of laser scanning subsystem
US8523076B2 (en) 2012-01-10 2013-09-03 Metrologic Instruments, Inc. Omnidirectional laser scanning bar code symbol reader generating a laser scanning pattern with a highly non-uniform scan density with respect to line orientation
US9934416B2 (en) 2012-01-17 2018-04-03 Honeywell International, Inc. Industrial design for consumer device based scanning and mobility
US8638989B2 (en) 2012-01-17 2014-01-28 Leap Motion, Inc. Systems and methods for capturing motion in three-dimensional space
WO2013106947A1 (en) 2012-01-18 2013-07-25 Metrologic Instruments, Inc. Web-based scan-task enabled system. and method of and apparatus for developing and deploying the same on a client-server network
US8880426B2 (en) 2012-01-30 2014-11-04 Honeywell International, Inc. Methods and systems employing time and/or location data for use in transactions
JP2015513070A (en) 2012-01-31 2015-04-30 スリーエム イノベイティブ プロパティズ カンパニー Method and apparatus for measuring the three-dimensional structure of a surface
US8988578B2 (en) 2012-02-03 2015-03-24 Honeywell International Inc. Mobile computing device with improved image preview functionality
US9294754B2 (en) 2012-02-03 2016-03-22 Lumentum Operations Llc High dynamic range and depth of field depth camera
US8915439B2 (en) 2012-02-06 2014-12-23 Metrologic Instruments, Inc. Laser scanning modules embodying silicone scan element with torsional hinges
US8740085B2 (en) 2012-02-10 2014-06-03 Honeywell International Inc. System having imaging assembly for use in output of image data
US9501700B2 (en) * 2012-02-15 2016-11-22 Xactware Solutions, Inc. System and method for construction estimation using aerial images
US20140374483A1 (en) 2012-02-15 2014-12-25 Honeywell International Inc. Encoded information reading terminal including http server
US8740082B2 (en) 2012-02-21 2014-06-03 Metrologic Instruments, Inc. Laser scanning bar code symbol reading system having intelligent scan sweep angle adjustment capabilities over the working range of the system for optimized bar code symbol reading performance
US9269263B2 (en) 2012-02-24 2016-02-23 Magna Electronics Inc. Vehicle top clearance alert system
US9366861B1 (en) 2012-02-29 2016-06-14 Randy E. Johnson Laser particle projection system
US9378403B2 (en) 2012-03-01 2016-06-28 Honeywell International, Inc. Method of using camera sensor interface to transfer multiple channels of scan data using an image format
WO2013127974A1 (en) 2012-03-01 2013-09-06 Iee International Electronics & Engineering S.A. Spatially coded structured light generator
US8550335B2 (en) 2012-03-09 2013-10-08 Honeywell International, Inc. Encoded information reading terminal in communication with peripheral point-of-sale devices
US9378601B2 (en) 2012-03-14 2016-06-28 Autoconnect Holdings Llc Providing home automation information via communication with a vehicle
US8777108B2 (en) 2012-03-23 2014-07-15 Honeywell International, Inc. Cell phone reading mode using image timer
US9064165B2 (en) 2012-03-28 2015-06-23 Metrologic Instruments, Inc. Laser scanning system using laser beam sources for producing long and short wavelengths in combination with beam-waist extending optics to extend the depth of field thereof while resolving high resolution bar code symbols having minimum code element widths
US20130257744A1 (en) 2012-03-29 2013-10-03 Intermec Technologies Corporation Piezoelectric tactile interface
US9383848B2 (en) 2012-03-29 2016-07-05 Intermec Technologies Corporation Interleaved piezoelectric tactile interface
US8976030B2 (en) 2012-04-24 2015-03-10 Metrologic Instruments, Inc. Point of sale (POS) based checkout system supporting a customer-transparent two-factor authentication process during product checkout operations
US20150062366A1 (en) 2012-04-27 2015-03-05 Honeywell International, Inc. Method of improving decoding speed based on off-the-shelf camera phone
US8608053B2 (en) 2012-04-30 2013-12-17 Honeywell International Inc. Mobile communication terminal configured to display multi-symbol decodable indicia
WO2013163789A1 (en) 2012-04-30 2013-11-07 Honeywell International Inc. Hardware-based image data binarization in an indicia reading terminal
US9779546B2 (en) 2012-05-04 2017-10-03 Intermec Ip Corp. Volume dimensioning systems and methods
US9007368B2 (en) 2012-05-07 2015-04-14 Intermec Ip Corp. Dimensioning system calibration systems and methods
US8752766B2 (en) 2012-05-07 2014-06-17 Metrologic Instruments, Inc. Indicia reading system employing digital gain control
US9098763B2 (en) 2012-05-08 2015-08-04 Honeywell International Inc. Encoded information reading terminal with replaceable imaging assembly
WO2013170260A1 (en) 2012-05-11 2013-11-14 Proiam, Llc Hand held dimension capture apparatus, system, and method
US10007858B2 (en) 2012-05-15 2018-06-26 Honeywell International Inc. Terminals and methods for dimensioning objects
US9158954B2 (en) 2012-05-15 2015-10-13 Intermec Ip, Corp. Systems and methods to read machine-readable symbols
US9558386B2 (en) 2012-05-15 2017-01-31 Honeywell International, Inc. Encoded information reading terminal configured to pre-process images
KR101967169B1 (en) 2012-05-16 2019-04-09 삼성전자주식회사 Synchronization method and apparatus in device to device network
US9064254B2 (en) 2012-05-17 2015-06-23 Honeywell International Inc. Cloud-based system for reading of decodable indicia
US20130308013A1 (en) 2012-05-18 2013-11-21 Honeywell International Inc. d/b/a Honeywell Scanning and Mobility Untouched 3d measurement with range imaging
US8789759B2 (en) 2012-05-18 2014-07-29 Metrologic Instruments, Inc. Laser scanning code symbol reading system employing multi-channel scan data signal processing with synchronized digital gain control (SDGC) for full range scanning
US9016576B2 (en) 2012-05-21 2015-04-28 Metrologic Instruments, Inc. Laser scanning code symbol reading system providing improved control over the length and intensity characteristics of a laser scan line projected therefrom using laser source blanking control
US10083496B2 (en) 2012-05-22 2018-09-25 Cognex Corporation Machine vision systems and methods with predictive motion control
US20150327012A1 (en) 2012-05-23 2015-11-12 Honeywell International Inc. Portable electronic devices having a separate location trigger unit for use in controlling an application unit
US9092682B2 (en) 2012-05-25 2015-07-28 Metrologic Instruments, Inc. Laser scanning code symbol reading system employing programmable decode time-window filtering
US20130317642A1 (en) 2012-05-28 2013-11-28 Well.Ca Inc. Order processing systems using picking robots
US8978983B2 (en) 2012-06-01 2015-03-17 Honeywell International, Inc. Indicia reading apparatus having sequential row exposure termination times
US9367959B2 (en) 2012-06-05 2016-06-14 Apple Inc. Mapping application with 3D presentation
WO2013184340A1 (en) 2012-06-07 2013-12-12 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US20130329012A1 (en) 2012-06-07 2013-12-12 Liberty Reach Inc. 3-d imaging and processing system including at least one 3-d or depth sensor which is continually calibrated during use
US8746563B2 (en) 2012-06-10 2014-06-10 Metrologic Instruments, Inc. Laser scanning module with rotatably adjustable laser scanning assembly
US9270782B2 (en) 2012-06-12 2016-02-23 Intermec Ip Corp. System and method for managing network communications between server plug-ins and clients
US9158000B2 (en) 2012-06-12 2015-10-13 Honeywell International Inc. Enhanced location based services
US20130332524A1 (en) 2012-06-12 2013-12-12 Intermec Ip Corp. Data service on a mobile device
US8993974B2 (en) 2012-06-12 2015-03-31 Nikon Corporation Color time domain integration camera having a single charge coupled device and fringe projection auto-focus system
US9659183B2 (en) 2012-06-18 2017-05-23 Honeywell International Inc. Pattern for secure store
US20130342342A1 (en) 2012-06-20 2013-12-26 Hunter Capital Management Group, LLC Intelligent safety device testing and operation
EP2864929A4 (en) 2012-06-20 2016-03-30 Metrologic Instr Inc Laser scanning code symbol reading system providing control over length of laser scan line projected onto a scanned object using dynamic range-dependent scan angle control
US9053380B2 (en) 2012-06-22 2015-06-09 Honeywell International, Inc. Removeable scanning module for mobile communication terminal
US9501920B2 (en) 2012-06-22 2016-11-22 K.L. Harring Transportation LLC Cargo tracking and monitoring system
US9300841B2 (en) 2012-06-25 2016-03-29 Yoldas Askan Method of generating a smooth image from point cloud data
US8978981B2 (en) 2012-06-27 2015-03-17 Honeywell International Inc. Imaging apparatus having imaging lens
US9245492B2 (en) 2012-06-28 2016-01-26 Intermec Ip Corp. Dual screen display for mobile computing device
US8854633B2 (en) 2012-06-29 2014-10-07 Intermec Ip Corp. Volume dimensioning system and method employing time-of-flight camera
US20140001267A1 (en) 2012-06-29 2014-01-02 Honeywell International Inc. Doing Business As (D.B.A.) Honeywell Scanning & Mobility Indicia reading terminal with non-uniform magnification
US8944313B2 (en) 2012-06-29 2015-02-03 Honeywell International Inc. Computer configured to display multimedia content
US8950671B2 (en) 2012-06-29 2015-02-10 Toshiba Global Commerce Solutions Holdings Corporation Item scanning in a shopping cart
KR102028720B1 (en) 2012-07-10 2019-11-08 삼성전자주식회사 Transparent display apparatus for displaying an information of danger element and method thereof
US9092683B2 (en) 2012-07-10 2015-07-28 Honeywell International Inc. Cloud-based system for processing of decodable indicia
EP2685421B1 (en) 2012-07-13 2015-10-07 ABB Research Ltd. Determining objects present in a process control system
US9286530B2 (en) 2012-07-17 2016-03-15 Cognex Corporation Handheld apparatus for quantifying component features
US20140031665A1 (en) 2012-07-25 2014-01-30 Covidien Lp Telecentric Scale Projection System for Real-Time In-Situ Surgical Metrology
US9519810B2 (en) 2012-07-31 2016-12-13 Datalogic ADC, Inc. Calibration and self-test in automated data reading systems
DE102012106989A1 (en) 2012-07-31 2014-02-06 Linde Material Handling Gmbh Passenger assistance device and industrial truck with driving assistance device
US8576390B1 (en) 2012-07-31 2013-11-05 Cognex Corporation System and method for determining and controlling focal distance in a vision system camera
US9262662B2 (en) 2012-07-31 2016-02-16 Honeywell International, Inc. Optical reading apparatus having variable settings
US9316890B2 (en) 2012-08-01 2016-04-19 Ricoh Company, Ltd. Projector positioning
US20140039693A1 (en) 2012-08-02 2014-02-06 Honeywell Scanning & Mobility Input/output connector contact cleaning
EP2696162A1 (en) 2012-08-08 2014-02-12 Hexagon Technology Center GmbH Handheld measuring Instrument
US9478983B2 (en) 2012-08-09 2016-10-25 Honeywell Scanning & Mobility Current-limiting battery usage within a corded electronic device
US9360304B2 (en) 2012-08-10 2016-06-07 Research Institute Of Innovative Technology For Th Method for measuring volumetric changes of object
US10321127B2 (en) 2012-08-20 2019-06-11 Intermec Ip Corp. Volume dimensioning system calibration systems and methods
US9088281B2 (en) 2012-08-20 2015-07-21 Intermec Ip Corp. Trigger device for mobile computing device
KR101415667B1 (en) 2012-08-27 2014-07-04 한국디지털병원수출사업협동조합 Images from three-dimensional ultrasound scans to determine the devices and methods
US9074923B2 (en) 2012-08-30 2015-07-07 Hyer Industries, Inc. System and methods for belt conveyor weighing based on virtual weigh span
CN103679073B (en) 2012-08-31 2018-09-14 手持产品公司 The method that wireless scanner is matched by RFID
CN110889659A (en) 2012-09-03 2020-03-17 手持产品公司 Method for authenticating parcel recipient by using mark decoding device and decoding device
US9022288B2 (en) 2012-09-05 2015-05-05 Metrologic Instruments, Inc. Symbol reading system having predictive diagnostics
US20140074746A1 (en) 2012-09-07 2014-03-13 Hand Held Products Inc. doing business as (d.b.a) Honeywell Scanning & Mobility Package source verification
CN103679108B (en) 2012-09-10 2018-12-11 霍尼韦尔国际公司 Optical markings reading device with multiple images sensor
US20140071840A1 (en) 2012-09-11 2014-03-13 Hand Held Products, Inc., doing business as Honeywell Scanning & Mobility Mobile computer configured to select wireless communication network
US8916789B2 (en) 2012-09-14 2014-12-23 Intermec Ip Corp. Access door with integrated switch actuator
WO2014045647A1 (en) 2012-09-18 2014-03-27 オリンパスメディカルシステムズ株式会社 Light source device and method for controlling light of light source device
US9033242B2 (en) 2012-09-21 2015-05-19 Intermec Ip Corp. Multiple focusable fields of view, such as a universal bar code symbol scanner
CN103699861B (en) 2012-09-27 2018-09-28 霍尼韦尔国际公司 Coding information reading terminals with multiple image-forming assemblies
US8876005B2 (en) 2012-09-28 2014-11-04 Symbol Technologies, Inc. Arrangement for and method of managing a soft keyboard on a mobile terminal connected with a handheld electro-optical reader via a bluetooth® paired connection
US8777109B2 (en) 2012-10-04 2014-07-15 Hand Held Products, Inc. Customer facing imaging systems and methods for obtaining images
US9939259B2 (en) 2012-10-04 2018-04-10 Hand Held Products, Inc. Measuring object dimensions using mobile computer
US10502870B2 (en) 2012-10-04 2019-12-10 North Inc. Optical assembly
US9002641B2 (en) 2012-10-05 2015-04-07 Hand Held Products, Inc. Navigation system configured to integrate motion sensing device inputs
US9286496B2 (en) 2012-10-08 2016-03-15 Hand Held Products, Inc. Removable module for mobile communication terminal
US20140098244A1 (en) 2012-10-09 2014-04-10 Mansoor Ghazizadeh Calibrated image display
US9410827B2 (en) 2012-10-09 2016-08-09 Pixameter Corp. Measurement using a calibration pattern
US20140108010A1 (en) 2012-10-11 2014-04-17 Intermec Ip Corp. Voice-enabled documents for facilitating operational procedures
US9841311B2 (en) 2012-10-16 2017-12-12 Hand Held Products, Inc. Dimensioning system
US9313377B2 (en) 2012-10-16 2016-04-12 Hand Held Products, Inc. Android bound service camera initialization
US20140104416A1 (en) 2012-10-16 2014-04-17 Hand Held Products, Inc. Dimensioning system
US20140106725A1 (en) 2012-10-16 2014-04-17 Hand Held Products, Inc. Distraction Avoidance System
US9148474B2 (en) 2012-10-16 2015-09-29 Hand Held Products, Inc. Replaceable connector
EP2722656A1 (en) 2012-10-16 2014-04-23 Hand Held Products, Inc. Integrated dimensioning and weighing system
KR102050503B1 (en) 2012-10-16 2019-11-29 삼성전자주식회사 Optically addressed spatial light modulator divided into plurality of segments, and apparatus and method for holography 3-dimensional display
US10674135B2 (en) 2012-10-17 2020-06-02 DotProduct LLC Handheld portable optical scanner and method of using
US9235553B2 (en) 2012-10-19 2016-01-12 Hand Held Products, Inc. Vehicle computer system with transparent display
WO2014064690A1 (en) 2012-10-23 2014-05-01 Sivan Ishay Real time assessment of picture quality
CN103780847A (en) 2012-10-24 2014-05-07 霍尼韦尔国际公司 Chip on board-based highly-integrated imager
US9477312B2 (en) 2012-11-05 2016-10-25 University Of South Australia Distance based modelling and manipulation methods for augmented reality systems using ultrasonic gloves
USD730902S1 (en) 2012-11-05 2015-06-02 Hand Held Products, Inc. Electronic device
US9741071B2 (en) 2012-11-07 2017-08-22 Hand Held Products, Inc. Computer-assisted shopping and product location
JP5549724B2 (en) 2012-11-12 2014-07-16 株式会社安川電機 Robot system
US9147096B2 (en) 2012-11-13 2015-09-29 Hand Held Products, Inc. Imaging apparatus having lens element
US20140136208A1 (en) 2012-11-14 2014-05-15 Intermec Ip Corp. Secure multi-mode communication between agents
US9465967B2 (en) 2012-11-14 2016-10-11 Hand Held Products, Inc. Apparatus comprising light sensing assemblies with range assisted gain control
US9208367B2 (en) 2012-11-15 2015-12-08 Hand Held Products Mobile computer configured to read multiple decodable indicia
US9064168B2 (en) 2012-12-14 2015-06-23 Hand Held Products, Inc. Selective output of decoded message data
US9709387B2 (en) 2012-11-21 2017-07-18 Mitsubishi Electric Corporation Image generation device for acquiring distances of objects present in image space
CN104798271B (en) 2012-11-29 2018-08-28 皇家飞利浦有限公司 Laser equipment for projecting structured light pattern in scene
US9589326B2 (en) 2012-11-29 2017-03-07 Korea Institute Of Science And Technology Depth image processing apparatus and method based on camera pose conversion
US8879050B2 (en) 2012-12-04 2014-11-04 Texas Instruments Incorporated Method for dynamically adjusting the operating parameters of a TOF camera according to vehicle speed
US20140152882A1 (en) 2012-12-04 2014-06-05 Hand Held Products, Inc. Mobile device having object-identification interface
US9892289B2 (en) 2012-12-07 2018-02-13 Hand Held Products, Inc. Reading RFID tags in defined spatial locations
US9061527B2 (en) 2012-12-07 2015-06-23 Datamax-O'neil Corporation Thermal printer with single latch, adjustable media storage and centering assemblies and print assembly
DE202012104890U1 (en) 2012-12-14 2013-03-05 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US20140175165A1 (en) 2012-12-21 2014-06-26 Honeywell Scanning And Mobility Bar code scanner with integrated surface authentication
DE112013006324T5 (en) 2012-12-31 2015-10-15 Iee International Electronics & Engineering S.A. An optical system for generating a structured light field from a series of light sources through a refractive or reflective light structuring element
US9107484B2 (en) 2013-01-08 2015-08-18 Hand Held Products, Inc. Electronic device enclosure
US20140192187A1 (en) 2013-01-08 2014-07-10 Faro Technologies, Inc. Non-contact measurement device
US20140191913A1 (en) 2013-01-09 2014-07-10 Intermec Ip Corp. Techniques for standardizing antenna architecture
USD702237S1 (en) 2013-01-11 2014-04-08 Hand Held Products, Inc. Imaging terminal
WO2014110495A2 (en) 2013-01-11 2014-07-17 Hand Held Products, Inc. System, method, and computer-readable medium for managing edge devices
US9092681B2 (en) 2013-01-14 2015-07-28 Hand Held Products, Inc. Laser scanning module employing a laser scanning assembly having elastomeric wheel hinges
JP6150532B2 (en) 2013-01-22 2017-06-21 オリンパス株式会社 Measuring device and program
US20140214631A1 (en) 2013-01-31 2014-07-31 Intermec Technologies Corporation Inventory assistance device and method
US10133342B2 (en) 2013-02-14 2018-11-20 Qualcomm Incorporated Human-body-gesture-based region and volume selection for HMD
US9304376B2 (en) 2013-02-20 2016-04-05 Hand Held Products, Inc. Optical redirection adapter
US8978984B2 (en) 2013-02-28 2015-03-17 Hand Held Products, Inc. Indicia reading terminals and methods for decoding decodable indicia employing light field imaging
US9679414B2 (en) 2013-03-01 2017-06-13 Apple Inc. Federated mobile device positioning
US9928652B2 (en) 2013-03-01 2018-03-27 Apple Inc. Registration between actual mobile device position and environmental model
US9142035B1 (en) 2013-03-05 2015-09-22 Amazon Technologies, Inc. Item dimension verification at packing
US9076459B2 (en) 2013-03-12 2015-07-07 Intermec Ip, Corp. Apparatus and method to classify sound to detect speech
US9080856B2 (en) 2013-03-13 2015-07-14 Intermec Ip Corp. Systems and methods for enhancing dimensioning, for example volume dimensioning
US9236050B2 (en) 2013-03-14 2016-01-12 Vocollect Inc. System and method for improving speech recognition accuracy in a work environment
US9384374B2 (en) 2013-03-14 2016-07-05 Hand Held Products, Inc. User interface facilitating specification of a desired data format for an indicia reading apparatus
US9301052B2 (en) 2013-03-15 2016-03-29 Vocollect, Inc. Headband variable stiffness
US9196084B2 (en) 2013-03-15 2015-11-24 Urc Ventures Inc. Determining object volume from mobile device images
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9978395B2 (en) 2013-03-15 2018-05-22 Vocollect, Inc. Method and system for mitigating delay in receiving audio stream during production of sound from audio stream
US9100743B2 (en) 2013-03-15 2015-08-04 Vocollect, Inc. Method and system for power delivery to a headset
US9111348B2 (en) 2013-03-15 2015-08-18 Toyota Motor Engineering & Manufacturing North America, Inc. Computer-based method and system of dynamic category object recognition
GB2527993B (en) 2013-03-15 2018-06-27 Faro Tech Inc Three-Dimensional Coordinate Scanner And Method Of Operation
US9102055B1 (en) 2013-03-15 2015-08-11 Industrial Perception, Inc. Detection and reconstruction of an environment to facilitate robotic interaction with the environment
US8810779B1 (en) 2013-03-25 2014-08-19 The United States Of America As Represented By The Secretary Of The Navy Shape matching automatic recognition methods, systems, and articles of manufacture
US20140297058A1 (en) 2013-03-28 2014-10-02 Hand Held Products, Inc. System and Method for Capturing and Preserving Vehicle Event Data
US9070032B2 (en) 2013-04-10 2015-06-30 Hand Held Products, Inc. Method of programming a symbol reading system
US9269022B2 (en) 2013-04-11 2016-02-23 Digimarc Corporation Methods for object recognition and related arrangements
WO2014166709A1 (en) 2013-04-12 2014-10-16 Thomson Licensing Superpixel generation with improved spatial coherency
JP2014210646A (en) 2013-04-18 2014-11-13 三菱化学エンジニアリング株式会社 Commodity check system, commodity check device, and commodity check method
US20140320605A1 (en) 2013-04-25 2014-10-30 Philip Martin Johnson Compound structured light projection system for 3-D surface profiling
US9916009B2 (en) 2013-04-26 2018-03-13 Leap Motion, Inc. Non-tactile interface systems and methods
US9373017B2 (en) 2013-04-26 2016-06-21 Datalogic Automation, Inc. Scanning system
CN105531995B (en) 2013-05-10 2019-01-08 罗伯特·博世有限公司 System and method for using multiple video cameras to carry out object and event recognition
US9195844B2 (en) 2013-05-20 2015-11-24 Hand Held Products, Inc. System and method for securing sensitive data
JP6104049B2 (en) 2013-05-21 2017-03-29 オリンパス株式会社 Image processing apparatus, image processing method, and image processing program
US9930142B2 (en) 2013-05-24 2018-03-27 Hand Held Products, Inc. System for providing a continuous communication link with a symbol reading device
US9037344B2 (en) 2013-05-24 2015-05-19 Hand Held Products, Inc. System and method for display of information using a vehicle-mount computer
US10949804B2 (en) 2013-05-24 2021-03-16 Amazon Technologies, Inc. Tote based item tracking
US20140347553A1 (en) 2013-05-24 2014-11-27 Samsung Electronics Co., Ltd. Imaging devices with light sources for reduced shadow, controllers and methods
US8918250B2 (en) 2013-05-24 2014-12-23 Hand Held Products, Inc. System and method for display of information using a vehicle-mount computer
US9141839B2 (en) 2013-06-07 2015-09-22 Hand Held Products, Inc. System and method for reading code symbols at long range using source power control
US10228452B2 (en) 2013-06-07 2019-03-12 Hand Held Products, Inc. Method of error correction for 3D imaging device
USD762604S1 (en) 2013-06-19 2016-08-02 Hand Held Products, Inc. Electronic device
US20140374485A1 (en) 2013-06-20 2014-12-25 Hand Held Products, Inc. System and Method for Reading Code Symbols Using a Variable Field of View
US20140379613A1 (en) 2013-06-21 2014-12-25 Panasonic Corporation Information processing device, information processing system, information processing method, and computer-readable non-transitory storage medium
US9104929B2 (en) 2013-06-26 2015-08-11 Hand Held Products, Inc. Code symbol reading system having adaptive autofocus
US8985461B2 (en) 2013-06-28 2015-03-24 Hand Held Products, Inc. Mobile device having an improved user interface for reading code symbols
US9239950B2 (en) 2013-07-01 2016-01-19 Hand Held Products, Inc. Dimensioning system
USD747321S1 (en) 2013-07-02 2016-01-12 Hand Held Products, Inc. Electronic device enclosure
US9250652B2 (en) 2013-07-02 2016-02-02 Hand Held Products, Inc. Electronic device case
US20150009100A1 (en) 2013-07-02 2015-01-08 Denso Corporation Projection type image display device
USD730357S1 (en) 2013-07-03 2015-05-26 Hand Held Products, Inc. Scanner
USD723560S1 (en) 2013-07-03 2015-03-03 Hand Held Products, Inc. Scanner
US20150260830A1 (en) 2013-07-12 2015-09-17 Princeton Optronics Inc. 2-D Planar VCSEL Source for 3-D Imaging
EP3022524B1 (en) 2013-07-16 2018-12-12 Polyrix Inc. Inspection system for inspecting an object and inspection method for same
US9773142B2 (en) 2013-07-22 2017-09-26 Hand Held Products, Inc. System and method for selectively reading code symbols
US9297900B2 (en) 2013-07-25 2016-03-29 Hand Held Products, Inc. Code symbol reading system having adjustable object detection
US9305231B2 (en) 2013-08-01 2016-04-05 Cognex Corporation Associating a code with an object
US20150040378A1 (en) 2013-08-07 2015-02-12 Hand Held Products, Inc. Method for manufacturing laser scanners
US20150042791A1 (en) 2013-08-09 2015-02-12 Postea, Inc. Apparatus, systems and methods for enrollment of irregular shaped objects
US9400906B2 (en) 2013-08-26 2016-07-26 Intermec Ip Corp. Automatic data collection apparatus and method
EP2843616A1 (en) 2013-08-29 2015-03-04 Sick Ag Optoelectronic device and method for recording rectified images
US9448689B2 (en) 2013-08-30 2016-09-20 Paypal, Inc. Wearable user device enhanced display system
US9464885B2 (en) 2013-08-30 2016-10-11 Hand Held Products, Inc. System and method for package dimensioning
JP6040897B2 (en) 2013-09-04 2016-12-07 トヨタ自動車株式会社 Attention display device and attention display method
US9082023B2 (en) 2013-09-05 2015-07-14 Hand Held Products, Inc. Method for operating a laser scanner
US9572901B2 (en) 2013-09-06 2017-02-21 Hand Held Products, Inc. Device having light source to reduce surface pathogens
US8870074B1 (en) 2013-09-11 2014-10-28 Hand Held Products, Inc Handheld indicia reader having locking endcap
US20150070489A1 (en) 2013-09-11 2015-03-12 Microsoft Corporation Optical modules for use with depth cameras
US9251411B2 (en) 2013-09-24 2016-02-02 Hand Held Products, Inc. Augmented-reality signature capture
US9171278B1 (en) 2013-09-25 2015-10-27 Amazon Technologies, Inc. Item illumination based on image recognition
USD785636S1 (en) 2013-09-26 2017-05-02 Hand Held Products, Inc. Electronic device case
US9165174B2 (en) 2013-10-14 2015-10-20 Hand Held Products, Inc. Indicia reader
US10275624B2 (en) 2013-10-29 2019-04-30 Hand Held Products, Inc. Hybrid system and method for reading indicia
US9317745B2 (en) 2013-10-29 2016-04-19 Bank Of America Corporation Data lifting for exception processing
US9800293B2 (en) 2013-11-08 2017-10-24 Hand Held Products, Inc. System for configuring indicia readers using NFC technology
US20150134470A1 (en) 2013-11-08 2015-05-14 Hand Held Products, Inc. Self-checkout shopping system
US9470511B2 (en) 2013-11-12 2016-10-18 Trimble Navigation Limited Point-to-point measurements using a handheld device
US20150142492A1 (en) 2013-11-19 2015-05-21 Hand Held Products, Inc. Voice-based health monitor including a vocal energy level monitor
US20150144692A1 (en) 2013-11-22 2015-05-28 Hand Held Products, Inc. System and method for indicia reading and verification
US9530038B2 (en) 2013-11-25 2016-12-27 Hand Held Products, Inc. Indicia-reading system
KR102129968B1 (en) 2013-11-29 2020-07-03 에스케이하이닉스 주식회사 Semiconductor Memory Apparatus and Input / Output Control Circuit Therefor
KR102163728B1 (en) 2013-12-05 2020-10-08 삼성전자주식회사 Camera for depth image measure and method of measuring depth image using the same
USD734339S1 (en) 2013-12-05 2015-07-14 Hand Held Products, Inc. Indicia scanner
US20150161429A1 (en) 2013-12-10 2015-06-11 Hand Held Products, Inc. High dynamic-range indicia reading system
CN204009928U (en) 2013-12-12 2014-12-10 手持产品公司 Laser scanner
KR102192060B1 (en) 2014-01-02 2020-12-16 한국전자통신연구원 Smart shoes and sensor information provide method of smart shoes, smart device and guide program provide method of smart device
US9373018B2 (en) 2014-01-08 2016-06-21 Hand Held Products, Inc. Indicia-reader having unitary-construction
US9578307B2 (en) 2014-01-14 2017-02-21 Toyota Motor Engineering & Manufacturing North America, Inc. Smart necklace with stereo vision and onboard processing
JP6320051B2 (en) 2014-01-17 2018-05-09 キヤノン株式会社 3D shape measuring device, 3D shape measuring method
US10139495B2 (en) 2014-01-24 2018-11-27 Hand Held Products, Inc. Shelving and package locating systems for delivery vehicles
US9547079B2 (en) 2014-02-06 2017-01-17 Fedex Corporate Services, Inc. Object tracking method and system
US9667860B2 (en) 2014-02-13 2017-05-30 Google Inc. Photo composition and position guidance in a camera or augmented reality system
US9158953B2 (en) 2014-02-14 2015-10-13 Intermec Technologies Corproation Method and apparatus for scanning with controlled spherical aberration
WO2015123774A1 (en) 2014-02-18 2015-08-27 Sulon Technologies Inc. System and method for augmented reality and virtual reality applications
DE102014102634B4 (en) 2014-02-27 2019-02-21 Lavision Gmbh Method for calibrating an optical arrangement, method for displaying a periodic calibration pattern and computer program product
US9390314B2 (en) 2014-02-28 2016-07-12 Ncr Corporation Methods and apparatus for determining dimensions of an item using 3-dimensional triangulation
US9665757B2 (en) 2014-03-07 2017-05-30 Hand Held Products, Inc. Indicia reader for size-limited applications
JP6217472B2 (en) 2014-03-13 2017-10-25 株式会社豊田自動織機 Forklift work support device
US9652833B2 (en) 2014-03-18 2017-05-16 Honeywell International, Inc. Point spread function estimation for motion invariant images
US9411999B2 (en) 2014-03-20 2016-08-09 The Code Corporation Barcode reader having multiple sets of imaging optics
US9299013B1 (en) 2014-03-27 2016-03-29 Amazon Technologies, Inc. Visual task feedback for workstations in materials handling facilities
US10247541B2 (en) 2014-03-31 2019-04-02 Gorilla Technology Inc. System and method of estimating the three-dimensional size of an object for packaging or storing the object
US9224027B2 (en) 2014-04-01 2015-12-29 Hand Held Products, Inc. Hand-mounted indicia-reading device with finger motion triggering
US9412242B2 (en) 2014-04-04 2016-08-09 Hand Held Products, Inc. Multifunction point of sale system
GB201406405D0 (en) 2014-04-09 2014-05-21 Jaguar Land Rover Ltd Apparatus and method for displaying information
US9424749B1 (en) 2014-04-15 2016-08-23 Amanda Reed Traffic signal system for congested trafficways
US9258033B2 (en) 2014-04-21 2016-02-09 Hand Held Products, Inc. Docking system and method using near field communication
US9224022B2 (en) 2014-04-29 2015-12-29 Hand Held Products, Inc. Autofocus lens system for indicia readers
US9280693B2 (en) 2014-05-13 2016-03-08 Hand Held Products, Inc. Indicia-reader housing with an integrated optical structure
US9301427B2 (en) 2014-05-13 2016-03-29 Hand Held Products, Inc. Heat-dissipation structure for an indicia reading module
US9277668B2 (en) 2014-05-13 2016-03-01 Hand Held Products, Inc. Indicia-reading module with an integrated flexible circuit
EP3143474B1 (en) 2014-05-15 2020-10-07 Federal Express Corporation Wearable devices for courier processing and methods of use thereof
US9256944B2 (en) 2014-05-19 2016-02-09 Rockwell Automation Technologies, Inc. Integration of optical area monitoring with industrial machine control
US9399557B1 (en) 2014-06-13 2016-07-26 Amazon Technologies, Inc. Sensing conveyor for object characteristic determination
USD730901S1 (en) 2014-06-24 2015-06-02 Hand Held Products, Inc. In-counter barcode scanner
US9478113B2 (en) 2014-06-27 2016-10-25 Hand Held Products, Inc. Cordless indicia reader with a multifunction coil for wireless charging and EAS deactivation
US9794392B2 (en) 2014-07-10 2017-10-17 Hand Held Products, Inc. Mobile-phone adapter for electronic transactions
US9443123B2 (en) 2014-07-18 2016-09-13 Hand Held Products, Inc. System and method for indicia verification
US9310609B2 (en) 2014-07-25 2016-04-12 Hand Held Products, Inc. Axially reinforced flexible scan element
US9423318B2 (en) 2014-07-29 2016-08-23 Honeywell International Inc. Motion detection devices and systems
US20160042241A1 (en) 2014-08-06 2016-02-11 Hand Held Products, Inc. Interactive indicia reader
US9823059B2 (en) 2014-08-06 2017-11-21 Hand Held Products, Inc. Dimensioning system with guided alignment
DE102014011821A1 (en) 2014-08-08 2016-02-11 Cargometer Gmbh Device and method for determining the volume of an object moved by an industrial truck
JP3194297U (en) 2014-08-15 2014-11-13 リープ モーション, インコーポレーテッドLeap Motion, Inc. Motion sensing control device for automobile and industrial use
US11546428B2 (en) 2014-08-19 2023-01-03 Hand Held Products, Inc. Mobile computing device with data cognition software
US20160063429A1 (en) 2014-08-28 2016-03-03 Symbol Technologies, Inc. Apparatus and method for performing an item picking process
US20160062473A1 (en) 2014-08-29 2016-03-03 Hand Held Products, Inc. Gesture-controlled computer system
CN105372269B (en) 2014-09-02 2019-01-15 同方威视技术股份有限公司 X-ray product quality automatic detection device
CN105579883B (en) 2014-09-05 2018-08-10 英特尔公司 Image projector and optical module
US9342724B2 (en) 2014-09-10 2016-05-17 Honeywell International, Inc. Variable depth of field barcode scanner
US10750153B2 (en) 2014-09-22 2020-08-18 Samsung Electronics Company, Ltd. Camera system for three-dimensional video
EP3000771B1 (en) 2014-09-25 2017-11-22 Toyota Material Handling Manufacturing Sweden AB Fork-lift truck
EP3000772B1 (en) 2014-09-25 2017-04-12 Toyota Material Handling Manufacturing Sweden AB Fork-lift truck and method for operating a fork-lift truck
US10810530B2 (en) 2014-09-26 2020-10-20 Hand Held Products, Inc. System and method for workflow management
US20160094016A1 (en) 2014-09-30 2016-03-31 Lawrence Livermore National Security, Llc Increasing the spatial and spectral brightness of laser diode arrays
US9779276B2 (en) 2014-10-10 2017-10-03 Hand Held Products, Inc. Depth sensor based auto-focus system for an indicia scanner
US10775165B2 (en) 2014-10-10 2020-09-15 Hand Held Products, Inc. Methods for improving the accuracy of dimensioning-system measurements
US10810715B2 (en) 2014-10-10 2020-10-20 Hand Held Products, Inc System and method for picking validation
GB2531928B (en) 2014-10-10 2018-12-12 Hand Held Prod Inc Image-stitching for dimensioning
US9443222B2 (en) 2014-10-14 2016-09-13 Hand Held Products, Inc. Identifying inventory items in a storage facility
US10909490B2 (en) 2014-10-15 2021-02-02 Vocollect, Inc. Systems and methods for worker resource management
USD760719S1 (en) 2014-10-20 2016-07-05 Hand Held Products, Inc. Scanner
US9762793B2 (en) 2014-10-21 2017-09-12 Hand Held Products, Inc. System and method for dimensioning
US9557166B2 (en) 2014-10-21 2017-01-31 Hand Held Products, Inc. Dimensioning system with multipath interference mitigation
US9752864B2 (en) 2014-10-21 2017-09-05 Hand Held Products, Inc. Handheld dimensioning system with feedback
US10060729B2 (en) 2014-10-21 2018-08-28 Hand Held Products, Inc. Handheld dimensioner with data-quality indication
US9897434B2 (en) 2014-10-21 2018-02-20 Hand Held Products, Inc. Handheld dimensioning system with measurement-conformance feedback
US20160117631A1 (en) 2014-10-22 2016-04-28 Honeywell International Inc. Orphaned item identification
US20170336870A1 (en) 2014-10-23 2017-11-23 Orpyx Medical Technologies Inc. Foot gesture-based control device
US10269342B2 (en) 2014-10-29 2019-04-23 Hand Held Products, Inc. Method and system for recognizing speech using wildcards in an expected response
CN204256748U (en) 2014-10-31 2015-04-08 霍尼韦尔国际公司 There is the scanner of illuminator
US9924006B2 (en) 2014-10-31 2018-03-20 Hand Held Products, Inc. Adaptable interface for a mobile computing device
US9262633B1 (en) 2014-10-31 2016-02-16 Hand Held Products, Inc. Barcode reader with security features
US10810529B2 (en) 2014-11-03 2020-10-20 Hand Held Products, Inc. Directing an inspector through an inspection
US20160125217A1 (en) 2014-11-05 2016-05-05 Hand Held Products, Inc. Barcode scanning system using wearable device with embedded camera
US9984685B2 (en) 2014-11-07 2018-05-29 Hand Held Products, Inc. Concatenated expected responses for speech recognition using expected response boundaries to determine corresponding hypothesis boundaries
EP3020868B1 (en) 2014-11-14 2020-11-04 Caterpillar Inc. Machine of a kind comprising a body and an implement movable relative to the body with a system for assisting a user of the machine
EP3021178B1 (en) 2014-11-14 2020-02-19 Caterpillar Inc. System using radar apparatus for assisting a user of a machine of a kind comprising a body and an implement
EP3020875A1 (en) 2014-11-14 2016-05-18 Caterpillar Inc. System for improving safety in use of a machine of a kind comprising a body and an implement movable relative to the body
US20160147408A1 (en) 2014-11-25 2016-05-26 Johnathan Bevis Virtual measurement tool for a wearable visualization device
US9767581B2 (en) 2014-12-12 2017-09-19 Hand Held Products, Inc. Auto-contrast viewfinder for an indicia reader
US10509619B2 (en) 2014-12-15 2019-12-17 Hand Held Products, Inc. Augmented reality quick-start and user guide
USD790546S1 (en) 2014-12-15 2017-06-27 Hand Held Products, Inc. Indicia reading device
US10176521B2 (en) 2014-12-15 2019-01-08 Hand Held Products, Inc. Augmented reality virtual product for display
US10438409B2 (en) 2014-12-15 2019-10-08 Hand Held Products, Inc. Augmented reality asset locator
US20160178479A1 (en) 2014-12-17 2016-06-23 Hand Held Products, Inc. Dynamic diagnostic indicator generation
US9678536B2 (en) 2014-12-18 2017-06-13 Hand Held Products, Inc. Flip-open wearable computer
US10275088B2 (en) 2014-12-18 2019-04-30 Hand Held Products, Inc. Systems and methods for identifying faulty touch panel having intermittent field failures
US9761096B2 (en) 2014-12-18 2017-09-12 Hand Held Products, Inc. Active emergency exit systems for buildings
US9743731B2 (en) 2014-12-18 2017-08-29 Hand Held Products, Inc. Wearable sled system for a mobile computer device
US20160180713A1 (en) 2014-12-18 2016-06-23 Hand Held Products, Inc. Collision-avoidance system and method
US10317474B2 (en) 2014-12-18 2019-06-11 Hand Held Products, Inc. Systems and methods for identifying faulty battery in an electronic device
US20160179368A1 (en) 2014-12-19 2016-06-23 Hand Held Products, Inc. Intelligent small screen layout and pop-up keypads for screen-only devices
US9454689B2 (en) 2014-12-19 2016-09-27 Honeywell International, Inc. Rolling shutter bar code imaging
US9727769B2 (en) 2014-12-22 2017-08-08 Hand Held Products, Inc. Conformable hand mount for a mobile scanner
US10296259B2 (en) 2014-12-22 2019-05-21 Hand Held Products, Inc. Delayed trim of managed NAND flash memory in computing devices
US9564035B2 (en) 2014-12-22 2017-02-07 Hand Held Products, Inc. Safety system and method
US20160180594A1 (en) 2014-12-22 2016-06-23 Hand Held Products, Inc. Augmented display and user input device
US10049246B2 (en) 2014-12-23 2018-08-14 Hand Held Products, Inc. Mini-barcode reading module with flash memory management
US10635876B2 (en) 2014-12-23 2020-04-28 Hand Held Products, Inc. Method of barcode templating for enhanced decoding performance
US10191514B2 (en) 2014-12-23 2019-01-29 Hand Held Products, Inc. Tablet computer with interface channels
US9375945B1 (en) 2014-12-23 2016-06-28 Hand Held Products, Inc. Media gate for thermal transfer printers
US9679178B2 (en) 2014-12-26 2017-06-13 Hand Held Products, Inc. Scanning improvements for saturated signals using automatic and fixed gain control methods
US10552786B2 (en) 2014-12-26 2020-02-04 Hand Held Products, Inc. Product and location management via voice recognition
US9774940B2 (en) 2014-12-27 2017-09-26 Hand Held Products, Inc. Power configurable headband system and method
US9652653B2 (en) 2014-12-27 2017-05-16 Hand Held Products, Inc. Acceleration-based motion tolerance and predictive coding
US10621538B2 (en) 2014-12-28 2020-04-14 Hand Held Products, Inc Dynamic check digit utilization via electronic tag
US20160189447A1 (en) 2014-12-28 2016-06-30 Hand Held Products, Inc. Remote monitoring of vehicle diagnostic information
US9843660B2 (en) 2014-12-29 2017-12-12 Hand Held Products, Inc. Tag mounted distributed headset with electronics module
US20160185136A1 (en) 2014-12-29 2016-06-30 Intermec Technologies Corporation Thermal printer including heater for pre-heating print media
US11244264B2 (en) 2014-12-29 2022-02-08 Hand Held Products, Inc. Interleaving surprise activities in workflow
US11443363B2 (en) 2014-12-29 2022-09-13 Hand Held Products, Inc. Confirming product location using a subset of a product identifier
US9685049B2 (en) 2014-12-30 2017-06-20 Hand Held Products, Inc. Method and system for improving barcode scanner performance
US20160189087A1 (en) 2014-12-30 2016-06-30 Hand Held Products, Inc,. Cargo Apportionment Techniques
US11257143B2 (en) 2014-12-30 2022-02-22 Hand Held Products, Inc. Method and device for simulating a virtual out-of-box experience of a packaged product
US9898635B2 (en) 2014-12-30 2018-02-20 Hand Held Products, Inc. Point-of-sale (POS) code sensing apparatus
US9230140B1 (en) 2014-12-30 2016-01-05 Hand Held Products, Inc. System and method for detecting barcode printing errors
US10108832B2 (en) 2014-12-30 2018-10-23 Hand Held Products, Inc. Augmented reality vision barcode scanning system and method
US10152622B2 (en) 2014-12-30 2018-12-11 Hand Held Products, Inc. Visual feedback for code readers
US9830488B2 (en) 2014-12-30 2017-11-28 Hand Held Products, Inc. Real-time adjustable window feature for barcode scanning and process of scanning barcode with adjustable window feature
US9879823B2 (en) 2014-12-31 2018-01-30 Hand Held Products, Inc. Reclosable strap assembly
US20160187187A1 (en) 2014-12-31 2016-06-30 Nate J. Coleman System and method to measure force or location on an l-beam
US10049290B2 (en) 2014-12-31 2018-08-14 Hand Held Products, Inc. Industrial vehicle positioning system and method
US20160187186A1 (en) 2014-12-31 2016-06-30 Nate J. Coleman System and method to measure force or location on an l-beam
US20160187210A1 (en) 2014-12-31 2016-06-30 Nate J. Coleman System and method to measure force or location on an l-beam
CN204706037U (en) 2014-12-31 2015-10-14 手持产品公司 The reconfigurable slide plate of mobile device and mark reading system
US9811650B2 (en) 2014-12-31 2017-11-07 Hand Held Products, Inc. User authentication system and method
US20160185291A1 (en) 2014-12-31 2016-06-30 Hand Held Products, Inc. Speed-limit-compliance system and method
US9734639B2 (en) 2014-12-31 2017-08-15 Hand Held Products, Inc. System and method for monitoring an industrial vehicle
US10120657B2 (en) 2015-01-08 2018-11-06 Hand Held Products, Inc. Facilitating workflow application development
US10262660B2 (en) 2015-01-08 2019-04-16 Hand Held Products, Inc. Voice mode asset retrieval
US20160204638A1 (en) 2015-01-08 2016-07-14 Hand Held Products, Inc. Charger with an energy storage element
US20160204623A1 (en) 2015-01-08 2016-07-14 Hand Held Products, Inc. Charge limit selection for variable power supply configuration
US20160202951A1 (en) 2015-01-08 2016-07-14 Hand Held Products, Inc. Portable dialogue engine
US11081087B2 (en) 2015-01-08 2021-08-03 Hand Held Products, Inc. Multiple primary user interfaces
US9997935B2 (en) 2015-01-08 2018-06-12 Hand Held Products, Inc. System and method for charging a barcode scanner
US10061565B2 (en) 2015-01-08 2018-08-28 Hand Held Products, Inc. Application development using mutliple primary user interfaces
US10402038B2 (en) 2015-01-08 2019-09-03 Hand Held Products, Inc. Stack handling using multiple primary user interfaces
US20160203429A1 (en) 2015-01-09 2016-07-14 Honeywell International Inc. Restocking workflow prioritization
US9646419B2 (en) 2015-01-14 2017-05-09 International Business Machines Corporation Augmented reality device display of image recognition analysis matches
US20160210780A1 (en) 2015-01-20 2016-07-21 Jonathan Paulovich Applying real world scale to virtual content
US9273846B1 (en) 2015-01-29 2016-03-01 Heptagon Micro Optics Pte. Ltd. Apparatus for producing patterned illumination including at least one array of light sources and at least one array of microlenses
US9861182B2 (en) 2015-02-05 2018-01-09 Hand Held Products, Inc. Device for supporting an electronic tool on a user's hand
USD785617S1 (en) 2015-02-06 2017-05-02 Hand Held Products, Inc. Tablet computer
US10121466B2 (en) 2015-02-11 2018-11-06 Hand Held Products, Inc. Methods for training a speech recognition system
US9390596B1 (en) 2015-02-23 2016-07-12 Hand Held Products, Inc. Device, system, and method for determining the status of checkout lanes
US9250712B1 (en) 2015-03-20 2016-02-02 Hand Held Products, Inc. Method and application for scanning a barcode with a smart device while continuously running and displaying an application on the smart device display
US9486921B1 (en) 2015-03-26 2016-11-08 Google Inc. Methods and systems for distributing remote assistance to facilitate robotic object manipulation
US20160292477A1 (en) 2015-03-31 2016-10-06 Hand Held Products, Inc. Aimer for barcode scanning
US9930050B2 (en) 2015-04-01 2018-03-27 Hand Held Products, Inc. Device management proxy for secure devices
USD777166S1 (en) 2015-04-07 2017-01-24 Hand Held Products, Inc. Handle for a tablet computer
US9852102B2 (en) 2015-04-15 2017-12-26 Hand Held Products, Inc. System for exchanging information between wireless peripherals and back-end systems via a peripheral hub
US9693038B2 (en) 2015-04-21 2017-06-27 Hand Held Products, Inc. Systems and methods for imaging
US9521331B2 (en) 2015-04-21 2016-12-13 Hand Held Products, Inc. Capturing a graphic information presentation
US20160314276A1 (en) 2015-04-24 2016-10-27 Hand Held Products, Inc. Medication management system
US20160314294A1 (en) 2015-04-24 2016-10-27 Hand Held Products, Inc. Secure unattended network authentication
USD783601S1 (en) 2015-04-27 2017-04-11 Hand Held Products, Inc. Tablet computer with removable scanning device
US10038716B2 (en) 2015-05-01 2018-07-31 Hand Held Products, Inc. System and method for regulating barcode data injection into a running application on a smart device
US10401436B2 (en) 2015-05-04 2019-09-03 Hand Held Products, Inc. Tracking battery conditions
US9891612B2 (en) 2015-05-05 2018-02-13 Hand Held Products, Inc. Intermediate linear positioning
US9954871B2 (en) 2015-05-06 2018-04-24 Hand Held Products, Inc. Method and system to protect software-based network-connected devices from advanced persistent threat
US10007112B2 (en) 2015-05-06 2018-06-26 Hand Held Products, Inc. Hands-free human machine interface responsive to a driver of a vehicle
US9978088B2 (en) 2015-05-08 2018-05-22 Hand Held Products, Inc. Application independent DEX/UCS interface
TWI687652B (en) 2015-05-10 2020-03-11 美商麥吉克艾公司 Distance sensor (2)
US20170309108A1 (en) 2015-05-18 2017-10-26 Alex Sadovsky Network-implemented methods and systems for authenticating a check
US9595038B1 (en) 2015-05-18 2017-03-14 Amazon Technologies, Inc. Inventory confirmation
US10360728B2 (en) 2015-05-19 2019-07-23 Hand Held Products, Inc. Augmented reality device, system, and method for safety
US9786101B2 (en) 2015-05-19 2017-10-10 Hand Held Products, Inc. Evaluating image values
USD771631S1 (en) 2015-06-02 2016-11-15 Hand Held Products, Inc. Mobile computer housing
US9507974B1 (en) 2015-06-10 2016-11-29 Hand Held Products, Inc. Indicia-reading systems having an interface with a user's nervous system
US9235899B1 (en) 2015-06-12 2016-01-12 Google Inc. Simulating an infrared emitter array in a video monitoring camera to construct a lookup table for depth determination
US10354449B2 (en) 2015-06-12 2019-07-16 Hand Held Products, Inc. Augmented reality lighting effects
US10066982B2 (en) 2015-06-16 2018-09-04 Hand Held Products, Inc. Calibrating a volume dimensioner
US9892876B2 (en) 2015-06-16 2018-02-13 Hand Held Products, Inc. Tactile switch for a mobile electronic device
USD790505S1 (en) 2015-06-18 2017-06-27 Hand Held Products, Inc. Wireless audio headset
US9949005B2 (en) 2015-06-18 2018-04-17 Hand Held Products, Inc. Customizable headset
US9857167B2 (en) 2015-06-23 2018-01-02 Hand Held Products, Inc. Dual-projector three-dimensional scanner
US20160377414A1 (en) 2015-06-23 2016-12-29 Hand Held Products, Inc. Optical pattern projector
US20170010780A1 (en) 2015-07-06 2017-01-12 Hand Held Products, Inc. Programmable touchscreen zone for mobile devices
US9835486B2 (en) 2015-07-07 2017-12-05 Hand Held Products, Inc. Mobile dimensioner apparatus for use in commerce
US10345383B2 (en) 2015-07-07 2019-07-09 Hand Held Products, Inc. Useful battery capacity / state of health gauge
EP3396313B1 (en) 2015-07-15 2020-10-21 Hand Held Products, Inc. Mobile dimensioning method and device with dynamic accuracy compatible with nist standard
US10094650B2 (en) 2015-07-16 2018-10-09 Hand Held Products, Inc. Dimensioning and imaging items
US9488986B1 (en) 2015-07-31 2016-11-08 Hand Held Products, Inc. System and method for tracking an item on a pallet in a warehouse
US9853575B2 (en) 2015-08-12 2017-12-26 Hand Held Products, Inc. Angular motor shaft with rotational attenuation
US10467513B2 (en) 2015-08-12 2019-11-05 Datamax-O'neil Corporation Verification of a printed image on media
US9911023B2 (en) 2015-08-17 2018-03-06 Hand Held Products, Inc. Indicia reader having a filtered multifunction image sensor
US10410629B2 (en) 2015-08-19 2019-09-10 Hand Held Products, Inc. Auto-complete methods for spoken complete value entries
CN205910700U (en) 2015-08-21 2017-01-25 手持产品公司 A equipment that is used for camera that has that accelerated bar code scanning read
US9781681B2 (en) 2015-08-26 2017-10-03 Hand Held Products, Inc. Fleet power management through information storage sharing
US9798413B2 (en) 2015-08-27 2017-10-24 Hand Held Products, Inc. Interactive display
CN206006056U (en) 2015-08-27 2017-03-15 手持产品公司 There are the gloves of measurement, scanning and display capabilities
US11282515B2 (en) 2015-08-31 2022-03-22 Hand Held Products, Inc. Multiple inspector voice inspection
US9490540B1 (en) 2015-09-02 2016-11-08 Hand Held Products, Inc. Patch antenna
US9659198B2 (en) 2015-09-10 2017-05-23 Hand Held Products, Inc. System and method of determining if a surface is printed or a mobile device screen
US9606581B1 (en) 2015-09-11 2017-03-28 Hand Held Products, Inc. Automated contact cleaning system for docking stations
US9652648B2 (en) 2015-09-11 2017-05-16 Hand Held Products, Inc. Positioning an object with respect to a target location
CN205091752U (en) 2015-09-18 2016-03-16 手持产品公司 Eliminate environment light flicker noise's bar code scanning apparatus and noise elimination circuit
US9646191B2 (en) 2015-09-23 2017-05-09 Intermec Technologies Corporation Evaluating images
US10373143B2 (en) 2015-09-24 2019-08-06 Hand Held Products, Inc. Product identification using electroencephalography
US10134112B2 (en) 2015-09-25 2018-11-20 Hand Held Products, Inc. System and process for displaying information from a mobile computer in a vehicle
US20170091706A1 (en) 2015-09-25 2017-03-30 Hand Held Products, Inc. System for monitoring the condition of packages throughout transit
US10312483B2 (en) 2015-09-30 2019-06-04 Hand Held Products, Inc. Double locking mechanism on a battery latch
US9767337B2 (en) 2015-09-30 2017-09-19 Hand Held Products, Inc. Indicia reader safety
US20170094238A1 (en) 2015-09-30 2017-03-30 Hand Held Products, Inc. Self-calibrating projection apparatus and process
US20170098947A1 (en) 2015-10-02 2017-04-06 Hand Held Products, Inc. Battery handling apparatus
US9844956B2 (en) 2015-10-07 2017-12-19 Intermec Technologies Corporation Print position correction
US9656487B2 (en) 2015-10-13 2017-05-23 Intermec Technologies Corporation Magnetic media holder for printer
US10146194B2 (en) 2015-10-14 2018-12-04 Hand Held Products, Inc. Building lighting and temperature control with an augmented reality system
US9727083B2 (en) 2015-10-19 2017-08-08 Hand Held Products, Inc. Quick release dock system and method
CN108604053B (en) 2015-10-21 2021-11-02 普林斯顿光电子股份有限公司 Coding pattern projector
US20170116462A1 (en) 2015-10-22 2017-04-27 Canon Kabushiki Kaisha Measurement apparatus and method, program, article manufacturing method, calibration mark member, processing apparatus, and processing system
TWI578022B (en) 2015-10-23 2017-04-11 中強光電股份有限公司 Head-mounted displays
US10416454B2 (en) 2015-10-25 2019-09-17 Facebook Technologies, Llc Combination prism array for focusing light
US9876923B2 (en) 2015-10-27 2018-01-23 Intermec Technologies Corporation Media width sensing
US10395116B2 (en) 2015-10-29 2019-08-27 Hand Held Products, Inc. Dynamically created and updated indoor positioning map
US9684809B2 (en) 2015-10-29 2017-06-20 Hand Held Products, Inc. Scanner assembly with removable shock mount
US20170123598A1 (en) 2015-10-29 2017-05-04 Hand Held Products, Inc. System and method for focus on touch with a touch sensitive screen display
US10249030B2 (en) 2015-10-30 2019-04-02 Hand Held Products, Inc. Image transformation for indicia reading
US10397388B2 (en) 2015-11-02 2019-08-27 Hand Held Products, Inc. Extended features for network communication
US10129414B2 (en) 2015-11-04 2018-11-13 Intermec Technologies Corporation Systems and methods for detecting transparent media in printers
US10026377B2 (en) 2015-11-12 2018-07-17 Hand Held Products, Inc. IRDA converter tag
US20170139012A1 (en) 2015-11-16 2017-05-18 Hand Held Products, Inc. Expected battery life notification
US9680282B2 (en) 2015-11-17 2017-06-13 Hand Held Products, Inc. Laser aiming for mobile devices
US10192194B2 (en) 2015-11-18 2019-01-29 Hand Held Products, Inc. In-vehicle package location identification at load and delivery times
US10225544B2 (en) 2015-11-19 2019-03-05 Hand Held Products, Inc. High resolution dot pattern
US10546446B2 (en) 2015-11-23 2020-01-28 Igt Canada Solutions Ulc Three-dimensional display for wagering gaming systems with distortion compensation
US9864891B2 (en) 2015-11-24 2018-01-09 Intermec Technologies Corporation Automatic print speed control for indicia printer
US9697401B2 (en) 2015-11-24 2017-07-04 Hand Held Products, Inc. Add-on device with configurable optics for an image scanner for scanning barcodes
US10282526B2 (en) 2015-12-09 2019-05-07 Hand Held Products, Inc. Generation of randomized passwords for one-time usage
US10064005B2 (en) 2015-12-09 2018-08-28 Hand Held Products, Inc. Mobile device with configurable communication technology modes and geofences
US20170171803A1 (en) 2015-12-09 2017-06-15 Hand Held Products, Inc. Mobile device with configurable communication technology modes
US20170171035A1 (en) 2015-12-14 2017-06-15 Hand Held Products, Inc. Easy wi-fi connection system and method
US9935946B2 (en) 2015-12-16 2018-04-03 Hand Held Products, Inc. Method and system for tracking an electronic device at an electronic device docking station
CN106899713B (en) 2015-12-18 2020-10-16 霍尼韦尔国际公司 Battery cover locking mechanism of mobile terminal and manufacturing method thereof
US9729744B2 (en) 2015-12-21 2017-08-08 Hand Held Products, Inc. System and method of border detection on a document and for producing an image of the document
US10325436B2 (en) 2015-12-31 2019-06-18 Hand Held Products, Inc. Devices, systems, and methods for optical validation
US9727840B2 (en) 2016-01-04 2017-08-08 Hand Held Products, Inc. Package physical characteristic identification system and method in supply chain management
US9805343B2 (en) 2016-01-05 2017-10-31 Intermec Technologies Corporation System and method for guided printer servicing
US20170190192A1 (en) 2016-01-05 2017-07-06 Intermec Technologies Corporation Rolled-in media door
US11423348B2 (en) 2016-01-11 2022-08-23 Hand Held Products, Inc. System and method for assessing worker performance
US10026187B2 (en) 2016-01-12 2018-07-17 Hand Held Products, Inc. Using image data to calculate an object's weight
EP3403130A4 (en) 2016-01-12 2020-01-01 eSIGHT CORP. Language element vision augmentation methods and devices
US20180018627A1 (en) 2016-07-15 2018-01-18 Alitheon, Inc. Database records and processes to identify and track physical objects during transportation
US9701140B1 (en) 2016-09-20 2017-07-11 Datamax-O'neil Corporation Method and system to calculate line feed error in labels on a printer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060151604A1 (en) * 2002-01-02 2006-07-13 Xiaoxun Zhu Automated method of and system for dimensioning objects over a conveyor belt structure by applying contouring tracing, vertice detection, corner point detection, and corner point reduction methods to two-dimensional range data maps of the space above the conveyor belt captured by an amplitude modulated laser scanning beam
JP2008210276A (en) * 2007-02-27 2008-09-11 Canon Inc Method and device for generating three-dimensional model information
KR20110013200A (en) * 2009-07-31 2011-02-09 삼성전자주식회사 Identifying method of human attitude and apparatus of the same
KR20110117020A (en) * 2010-04-20 2011-10-26 다솔 시스템므 Automatic generation of 3d models from packaged goods product images
KR20120028109A (en) * 2010-09-14 2012-03-22 삼성메디슨 주식회사 3d ultrasound system for 3d modeling of tissue and method for operating 3d ultrasound system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2845170A4 *

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10140724B2 (en) 2009-01-12 2018-11-27 Intermec Ip Corporation Semi-automatic dimensioning with imager on a portable device
US10845184B2 (en) 2009-01-12 2020-11-24 Intermec Ip Corporation Semi-automatic dimensioning with imager on a portable device
US9779546B2 (en) 2012-05-04 2017-10-03 Intermec Ip Corp. Volume dimensioning systems and methods
US10467806B2 (en) 2012-05-04 2019-11-05 Intermec Ip Corp. Volume dimensioning systems and methods
US9007368B2 (en) 2012-05-07 2015-04-14 Intermec Ip Corp. Dimensioning system calibration systems and methods
US9292969B2 (en) 2012-05-07 2016-03-22 Intermec Ip Corp. Dimensioning system calibration systems and methods
US10007858B2 (en) 2012-05-15 2018-06-26 Honeywell International Inc. Terminals and methods for dimensioning objects
US10635922B2 (en) 2012-05-15 2020-04-28 Hand Held Products, Inc. Terminals and methods for dimensioning objects
US10321127B2 (en) 2012-08-20 2019-06-11 Intermec Ip Corp. Volume dimensioning system calibration systems and methods
US10805603B2 (en) 2012-08-20 2020-10-13 Intermec Ip Corp. Volume dimensioning system calibration systems and methods
US9939259B2 (en) 2012-10-04 2018-04-10 Hand Held Products, Inc. Measuring object dimensions using mobile computer
US10908013B2 (en) 2012-10-16 2021-02-02 Hand Held Products, Inc. Dimensioning system
US9841311B2 (en) 2012-10-16 2017-12-12 Hand Held Products, Inc. Dimensioning system
US9080856B2 (en) 2013-03-13 2015-07-14 Intermec Ip Corp. Systems and methods for enhancing dimensioning, for example volume dimensioning
US9784566B2 (en) 2013-03-13 2017-10-10 Intermec Ip Corp. Systems and methods for enhancing dimensioning
US10203402B2 (en) 2013-06-07 2019-02-12 Hand Held Products, Inc. Method of error correction for 3D imaging device
US10228452B2 (en) 2013-06-07 2019-03-12 Hand Held Products, Inc. Method of error correction for 3D imaging device
US9239950B2 (en) 2013-07-01 2016-01-19 Hand Held Products, Inc. Dimensioning system
US9464885B2 (en) 2013-08-30 2016-10-11 Hand Held Products, Inc. System and method for package dimensioning
US10240914B2 (en) 2014-08-06 2019-03-26 Hand Held Products, Inc. Dimensioning system with guided alignment
US9823059B2 (en) 2014-08-06 2017-11-21 Hand Held Products, Inc. Dimensioning system with guided alignment
US10402956B2 (en) 2014-10-10 2019-09-03 Hand Held Products, Inc. Image-stitching for dimensioning
US9779276B2 (en) 2014-10-10 2017-10-03 Hand Held Products, Inc. Depth sensor based auto-focus system for an indicia scanner
US10859375B2 (en) 2014-10-10 2020-12-08 Hand Held Products, Inc. Methods for improving the accuracy of dimensioning-system measurements
US10121039B2 (en) 2014-10-10 2018-11-06 Hand Held Products, Inc. Depth sensor based auto-focus system for an indicia scanner
US10134120B2 (en) 2014-10-10 2018-11-20 Hand Held Products, Inc. Image-stitching for dimensioning
US10775165B2 (en) 2014-10-10 2020-09-15 Hand Held Products, Inc. Methods for improving the accuracy of dimensioning-system measurements
US10810715B2 (en) 2014-10-10 2020-10-20 Hand Held Products, Inc System and method for picking validation
US10218964B2 (en) 2014-10-21 2019-02-26 Hand Held Products, Inc. Dimensioning system with feedback
US10393508B2 (en) 2014-10-21 2019-08-27 Hand Held Products, Inc. Handheld dimensioning system with measurement-conformance feedback
US9897434B2 (en) 2014-10-21 2018-02-20 Hand Held Products, Inc. Handheld dimensioning system with measurement-conformance feedback
US9762793B2 (en) 2014-10-21 2017-09-12 Hand Held Products, Inc. System and method for dimensioning
US9752864B2 (en) 2014-10-21 2017-09-05 Hand Held Products, Inc. Handheld dimensioning system with feedback
US10060729B2 (en) 2014-10-21 2018-08-28 Hand Held Products, Inc. Handheld dimensioner with data-quality indication
US9557166B2 (en) 2014-10-21 2017-01-31 Hand Held Products, Inc. Dimensioning system with multipath interference mitigation
US11403887B2 (en) 2015-05-19 2022-08-02 Hand Held Products, Inc. Evaluating image values
US9786101B2 (en) 2015-05-19 2017-10-10 Hand Held Products, Inc. Evaluating image values
US11906280B2 (en) 2015-05-19 2024-02-20 Hand Held Products, Inc. Evaluating image values
US10593130B2 (en) 2015-05-19 2020-03-17 Hand Held Products, Inc. Evaluating image values
US10066982B2 (en) 2015-06-16 2018-09-04 Hand Held Products, Inc. Calibrating a volume dimensioner
US10247547B2 (en) 2015-06-23 2019-04-02 Hand Held Products, Inc. Optical pattern projector
US9857167B2 (en) 2015-06-23 2018-01-02 Hand Held Products, Inc. Dual-projector three-dimensional scanner
US10612958B2 (en) 2015-07-07 2020-04-07 Hand Held Products, Inc. Mobile dimensioner apparatus to mitigate unfair charging practices in commerce
US9835486B2 (en) 2015-07-07 2017-12-05 Hand Held Products, Inc. Mobile dimensioner apparatus for use in commerce
US10393506B2 (en) 2015-07-15 2019-08-27 Hand Held Products, Inc. Method for a mobile dimensioning device to use a dynamic accuracy compatible with NIST standard
US11353319B2 (en) 2015-07-15 2022-06-07 Hand Held Products, Inc. Method for a mobile dimensioning device to use a dynamic accuracy compatible with NIST standard
US10094650B2 (en) 2015-07-16 2018-10-09 Hand Held Products, Inc. Dimensioning and imaging items
US11029762B2 (en) 2015-07-16 2021-06-08 Hand Held Products, Inc. Adjusting dimensioning results using augmented reality
US10249030B2 (en) 2015-10-30 2019-04-02 Hand Held Products, Inc. Image transformation for indicia reading
US10225544B2 (en) 2015-11-19 2019-03-05 Hand Held Products, Inc. High resolution dot pattern
US10747227B2 (en) 2016-01-27 2020-08-18 Hand Held Products, Inc. Vehicle positioning and object avoidance
US10025314B2 (en) 2016-01-27 2018-07-17 Hand Held Products, Inc. Vehicle positioning and object avoidance
US10339352B2 (en) 2016-06-03 2019-07-02 Hand Held Products, Inc. Wearable metrological apparatus
US10872214B2 (en) 2016-06-03 2020-12-22 Hand Held Products, Inc. Wearable metrological apparatus
US9940721B2 (en) 2016-06-10 2018-04-10 Hand Held Products, Inc. Scene change detection in a dimensioner
US10417769B2 (en) 2016-06-15 2019-09-17 Hand Held Products, Inc. Automatic mode switching in a volume dimensioner
US10163216B2 (en) 2016-06-15 2018-12-25 Hand Held Products, Inc. Automatic mode switching in a volume dimensioner
US10909708B2 (en) 2016-12-09 2021-02-02 Hand Held Products, Inc. Calibrating a dimensioner using ratios of measurable parameters of optic ally-perceptible geometric elements
US11301801B1 (en) * 2017-02-03 2022-04-12 Popout, Inc. Cross-account rating system
US11047672B2 (en) 2017-03-28 2021-06-29 Hand Held Products, Inc. System for optically dimensioning
US10733748B2 (en) 2017-07-24 2020-08-04 Hand Held Products, Inc. Dual-pattern optical 3D dimensioning
US10584962B2 (en) 2018-05-01 2020-03-10 Hand Held Products, Inc System and method for validating physical-item security
US11639846B2 (en) 2019-09-27 2023-05-02 Honeywell International Inc. Dual-pattern optical 3D dimensioning

Also Published As

Publication number Publication date
EP2845170A1 (en) 2015-03-11
US10467806B2 (en) 2019-11-05
US9779546B2 (en) 2017-10-03
EP2845170B1 (en) 2020-04-29
US20180018820A1 (en) 2018-01-18
US20130293539A1 (en) 2013-11-07
EP2845170A4 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
US10467806B2 (en) Volume dimensioning systems and methods
US9292969B2 (en) Dimensioning system calibration systems and methods
US11709046B2 (en) Systems and methods for volumetric sizing
TWI709919B (en) Auto insurance image processing method, device, server and system
US10452789B2 (en) Efficient packing of objects
EP2966595B1 (en) Systems and methods for enhancing dimensioning, for example volume dimensioning
US11782285B2 (en) Material identification method and device based on laser speckle and modal fusion
CN107750366A (en) Hardware accelerator for histogram of gradients
US20190193956A1 (en) System for dynamic pallet-build
EP2830022A2 (en) Information processing apparatus, and displaying method
US10559086B1 (en) System for volume dimensioning via holographic sensor fusion
EP2691744B1 (en) Three dimensional optical sensing through optical media
WO2023193482A1 (en) Display method and apparatus, electronic device, and computer readable storage medium
TW475155B (en) Method of and apparatus for rendering image, recording medium, and program
CN108510528A (en) A kind of method and device of visible light and infrared image registration fusion
CN107613046A (en) Filter pipe-line system, image processing method, device and electronic equipment
CN211906310U (en) Zynq-based machine vision detection system
US20230303288A1 (en) Packaging box body, information processing apparatus, and program
US10210390B2 (en) Installation of a physical element
US9984436B1 (en) Method and system for real-time equirectangular projection
CN112215935B (en) LOD model automatic switching method and device, electronic equipment and storage medium
KR20150108556A (en) Apparatus for providing a display effect based on posture of object, method thereof and computer readable medium having computer program recorded therefor
CN112069641A (en) Container space distribution method and device and terminal equipment
US11636827B2 (en) Method for managing the display of a least one information item, and associated computer program product, information medium and display system
CN111191551B (en) Commodity detection method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13785171

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013785171

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE