WO2013143320A1 - 透镜面板、其制作方法以及3d显示装置 - Google Patents

透镜面板、其制作方法以及3d显示装置 Download PDF

Info

Publication number
WO2013143320A1
WO2013143320A1 PCT/CN2012/086314 CN2012086314W WO2013143320A1 WO 2013143320 A1 WO2013143320 A1 WO 2013143320A1 CN 2012086314 W CN2012086314 W CN 2012086314W WO 2013143320 A1 WO2013143320 A1 WO 2013143320A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent substrate
transparent
liquid
lens panel
electrode
Prior art date
Application number
PCT/CN2012/086314
Other languages
English (en)
French (fr)
Inventor
李明超
柳在健
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US13/824,799 priority Critical patent/US9052515B2/en
Publication of WO2013143320A1 publication Critical patent/WO2013143320A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1089Methods of surface bonding and/or assembly therefor of discrete laminae to single face of additional lamina

Definitions

  • Embodiments of the present invention relate to a lens panel, a method of fabricating the same, and a 3D display device. Background technique
  • the existing 3D display technology is divided into various types according to the principle, such as: polarized glasses type, cylindrical lens grating type, prism type, body three-dimensional, holographic three-dimensional and the like.
  • the 3D display technology based on cylindrical lens grating is widely used because of its strong processability and good stereoscopic display effect.
  • 3D display technology based on cylindrical lens gratings is difficult to achieve conversion between 2D and 3D. Summary of the invention
  • Embodiments of the present invention provide a lens panel, a manufacturing method thereof, and a 3D display device, which can conveniently realize conversion between 2D and 3D.
  • An embodiment of the present invention provides a lens panel, including: a first transparent substrate; a second transparent substrate opposite to the first transparent substrate; strip-shaped positive electrodes and negative electrodes disposed parallel to each other and spaced apart from each other a side of the first transparent substrate opposite to the second transparent substrate; filling the first transparent substrate and the second transparent substrate in order from the second transparent substrate to the first transparent substrate a first transparent liquid and a second transparent liquid, the first transparent liquid and the second transparent liquid are incompatible with each other, and the second transparent liquid has a reflection coefficient greater than that of the first transparent liquid coefficient.
  • the lens panel described above further includes: a dielectric layer disposed between the first transparent substrate and the second transparent liquid.
  • a side of the second transparent substrate opposite to the first substrate is formed with a plate-like common electrode layer, the plate-shaped common electrode layer and the positive electrode or A vertical electric field can be formed between the negative electrodes.
  • the spacing between any two adjacent electrodes on the first transparent substrate is the same.
  • the electrode pitch of the central region on the first transparent substrate is larger than the electrode pitch of the edge region.
  • the first transparent liquid is glycerin, diethylene glycol, ethylene glycol or n-hexanol.
  • the second transparent liquid is an optical fluid.
  • the optical fluid is a liquid crystal or a liquid crystal polymer.
  • An embodiment of the present invention provides a method of fabricating a lens panel, comprising: forming strip-shaped positive electrodes and negative electrodes on an inner surface of a first transparent substrate, wherein the positive electrodes and the negative electrodes are on the first transparent substrate Arranging in parallel at intervals; applying a mixed liquid of the first transparent liquid and the second transparent liquid onto the first transparent substrate on which the positive electrode and the negative electrode are formed; and performing the first transparent substrate and the second transparent substrate In the box process, the lens panel is obtained, wherein the first transparent liquid and the second transparent liquid are provided between the first transparent substrate and the second transparent substrate.
  • the above manufacturing method further includes: after the step of fabricating the positive electrode and the negative electrode and applying a mixed liquid of the first transparent liquid and the second transparent liquid to the positive electrode and Before the first transparent substrate of the negative electrode, a dielectric layer is formed on the first transparent substrate.
  • the manufacturing method further includes: forming a common electrode layer on a surface of the second transparent substrate opposite to the first transparent substrate before the pairing process
  • An embodiment of the present invention provides a 3D display device, including: a display panel; a lens panel as described above attached to a light exiting side of the display panel; and a control unit that controls the lens panel, wherein When the display device displays the 3D image, the control unit applies a voltage to the positive electrode and the negative electrode of the lens panel; when the display device displays a 2D image, the control unit does not face the lens panel The positive electrode and the negative electrode apply a voltage.
  • FIG. 1 is a schematic structural view of a lens panel according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a lens panel according to another embodiment of the present invention.
  • 3 is a schematic view showing formation of positive and negative electrodes and a dielectric layer on a first transparent substrate in a method of fabricating a lens panel
  • 4 is a schematic view showing a mixed liquid of a first transparent liquid and a second transparent liquid in a method of fabricating a lens panel
  • FIG. 5 is a schematic view showing a method of forming a mixed liquid on a first transparent substrate in a method of fabricating a lens panel
  • FIG. 6 is a schematic view showing a distribution of a horizontal electric field in a lens panel according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a distribution of a horizontal electric field and a vertical electric field in a lens panel according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram showing a distribution of electric potential lines of a lens panel according to a horizontal electric field and a vertical electric field according to an embodiment of the present invention
  • FIG. 9 is a schematic view showing a fluid shape distribution in a lens panel according to an embodiment of the present invention.
  • FIG. 10 is a schematic view showing another fluid shape distribution in a lens panel according to an embodiment of the present invention.
  • FIG. 11 is a lens panel according to an embodiment of the present invention; Yet another schematic diagram of the shape distribution of the fluid. detailed description
  • Embodiments of the present invention provide a lens panel.
  • the structure of a lens panel according to an embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
  • the lens panel includes:
  • a first transparent substrate 1 disposed on an inner surface of the first transparent substrate 1, that is, a strip-shaped positive electrode 7 and a negative electrode which are arranged in parallel with each other on a side of the first transparent substrate 1 opposite to the second transparent substrate 2 8;
  • the second transparent liquid 5 and the first transparent liquid 4 are filled between the first transparent substrate 1 and the second transparent substrate 2 in this order from the second transparent substrate to the first transparent substrate.
  • the spacing between any two adjacent electrodes on the first transparent substrate 1 may be the same, as shown in FIGS. 9 and 10.
  • the appropriate electrode spacing can be selected according to different viewing distances.
  • the electrode pitch is SI
  • the electrode pitch is S2.
  • the spacing between adjacent electrodes on the first transparent substrate 1 may also be different.
  • the electrode spacing of the central region on the first transparent substrate 1 is greater than the electrode spacing of the edge region, and may be selected by different The driving voltage is driven in a sub-region, so that the anisotropy of the liquid crystal changes differently, so that the refracted light reaches a different position, so that a high-quality picture can be seen in different viewing angle regions.
  • the electrode spacing in the edge region is S3
  • the electrode spacing in the center region is S4, and S3 ⁇ S4.
  • the first transparent liquid 4 (shown in FIG. 4) and the second transparent liquid 5 (shown in FIG. 4) have similar densities, are incompatible with each other, and have a large difference in dielectric constant, and The density of the first transparent liquid 4 is slightly larger than that of the second transparent liquid 5. Further, the reflection coefficients of the two transparent liquids are different from each other, and the reflection coefficient of the first transparent liquid 4 is larger than the reflection coefficient of the second transparent liquid 5.
  • the second transparent liquid 5 may be selected, for example, a similar alcohol structure such as glycerol (Glycerol), diethylene glycol, ethylene glycol or n-hexanol, having a dielectric constant of approximately 42, a reflection coefficient of approximately 1.47, and a density of approximately 1.26. g/cm 3 .
  • the first transparent liquid 4 may be selected, for example, as optical fluids, which are fluids having optical anisotropy, and other materials having optical anisotropy such as liquid crystals or liquid crystal polymers may be selected.
  • the positive electrode 7 and the negative electrode 8 are arranged at intervals on the inner surface of the first transparent substrate 1. As shown in FIG. 6, a horizontal electric field is formed between the positive electrode 7 and the negative electrode 8 by applying a voltage between the positive electrode 7 and the negative electrode 8, and the horizontal electric field can change the first
  • the shape of a transparent liquid 4 changes the shape of the interface between the first transparent liquid 4 and the second transparent liquid 5.
  • the voltage applied between the positive and negative electrodes is a fixed value which is related to the liquid crystal parameter, and the voltage can drive the first transparent liquid 4, and the voltage is maintained when the lens panel is operated.
  • the inner surface of the second transparent substrate 2 (the side opposite to the first transparent substrate 1) is formed with a transparent electrode layer (common electrode) 6, such as a tantalum or tantalum layer.
  • a transparent electrode layer (common electrode) 6 such as a tantalum or tantalum layer.
  • the transparent electrode layer 6 and the positive electrode 7 or the negative electrode 8 can be shaped A vertical electric field. Since the positive and negative electrodes are capable of generating a horizontal electric field, the fluid shape in the liquid lens can be conveniently controlled by the interaction of the horizontal electric field and the vertical electric field, so that each liquid lens unit can exhibit a parabolic arrangement.
  • the switching between 2D and 3D can be conveniently realized by controlling the voltage of the electrode and controlling the shape of the optical fluid by the potential line specification so as to have the effect of forming or not forming a lens.
  • a dielectric layer may be disposed between the first transparent substrate 1 and the first transparent liquid 4. 3.
  • the first transparent liquid 4 and the second transparent liquid 5 can be made to have a perfectly circular arc-shaped electric field region on the electric field lines.
  • strip-shaped positive and negative electrodes are spaced apart from each other on the inner surface of the first transparent substrate, and when a 3D display is required, by applying a voltage between the positive electrode and the negative electrode, An interface shape between the first transparent liquid and the second transparent liquid can be changed to form an effect of a lens, and if a voltage is not applied to each electrode, an interface between the first transparent liquid and the second transparent liquid The shape does not change.
  • the display device performs 2D display, so that the conversion between 2D and 3D can be easily realized.
  • Another embodiment of the present invention provides a method of manufacturing the above lens panel.
  • a method of manufacturing a transparent panel according to an embodiment of the present invention is described in detail below.
  • Step 201 forming a strip-shaped positive electrode and a negative electrode on an inner surface of the first transparent substrate; the positive electrode and the negative electrode are arranged in parallel on the first transparent substrate.
  • the length and width of the positive and negative electrodes are equal, and the spacing between adjacent electrodes is also equal.
  • the length and width values of the electrodes can be set according to requirements, and the spacing between the electrodes and the electrodes can also be set according to requirements.
  • the best effect of setting the electrode distance and width values should be such that the electric field lines are arranged in a perfect circular arc shape.
  • Step 202 fabricating a dielectric layer on the first transparent substrate on which the positive electrode and the negative electrode are formed.
  • the first transparent liquid 4 and the second transparent liquid 5 can be made to have a perfectly circular arc shape on the electric field line. Electric field area. See Figure 3 for the panel structure after completing steps 201 and 202.
  • Step 203 Apply a mixed liquid of the second transparent liquid and the first transparent liquid to the first transparent substrate obtained in step 202 by a conventional process such as coating, dripping, or the like (as shown in FIG. 5).
  • the first transparent liquid and the second transparent liquid have similar densities, are incompatible with each other, have a large difference in dielectric constant, and the first transparent liquid has a density slightly larger than the second transparent liquid;
  • the reflection coefficients of the two transparent liquids are different from each other, and the reflection coefficient of the second transparent liquid is greater than the reflection coefficient of the first transparent liquid.
  • the first transparent liquid may be selected from a similar alcohol structure such as glycerol (Glycerol), diethylene glycol, ethylene glycol or n-hexanol, and has a dielectric constant of approximately 42, a reflection coefficient of approximately 1.47, and a density of approximately 1.26 g. /cm 3 .
  • the second transparent liquid may be selected from materials such as optical fluids, liquid crystals or liquid crystal polymers.
  • the two layers are mixed to form a layered structure as shown in FIG. 4, wherein the second transparent liquid 5 is located in the first transparent liquid. Above 4.
  • Step 204 The first transparent substrate obtained in step 203 and the second transparent substrate are subjected to a process of boxing, and the lens panel shown in FIG. 1 is obtained.
  • an inner surface of the second transparent substrate (on a side opposite to the first transparent substrate) is formed with a transparent electrode layer such as a layer of ITO or IZO.
  • the lens panel is bonded to the display panel to obtain a 3D display device capable of stereoscopic display, wherein the lens panel is bonded to the light-emitting side of the display panel.
  • the display panel in the embodiment of the present invention may be: a display panel such as a liquid crystal panel, a plasma display panel, an OLED display panel, or an electronic paper, which is not limited herein.
  • the display panel is a liquid crystal panel
  • the TFT array substrate and the counter substrate are opposed to each other to form a liquid crystal cell, and the liquid crystal cell is filled with a liquid crystal material.
  • the opposite substrate is, for example, a color filter substrate.
  • the pixel electrode of each pixel unit of the TFT array substrate is used to apply an electric field to control the degree of rotation of the liquid crystal material to perform a display operation.
  • the liquid crystal display further includes a backlight that provides backlighting for the array substrate.
  • a control unit is disposed in the lens panel, or a control unit is provided in the 3D display device provided with the lens panel, and the control unit can be at the positive electrode and Applying a voltage between the negative electrodes, and applying a voltage between the transparent electrode layer and the positive electrode or the negative electrode, the voltage capable of driving the first transparent liquid, the first transparent liquid being The shape of the voltage is changed under driving (ie, the first transparent liquid The shape of the interface between the body and the second transparent liquid changes), and a liquid lens unit is formed, at which time the display device performs 3D display.
  • the display device performs 2D display, and thus, the conversion between 2D and 3D can be conveniently realized.
  • the lens panel of the embodiment of the present invention is provided with positive and negative electrodes spaced apart in parallel on the inner surface of the first transparent substrate, and the horizontal electric field generated by the positive and negative electrodes makes the shape of the fluid in the liquid lens easy to control.
  • a transparent electrode layer may be formed on a side of the second transparent substrate with respect to the first transparent substrate, and a vertical electric field may be formed between the transparent electrode layer and the positive electrode or the negative electrode.
  • FIG. 7 The distribution of the horizontal electric field and the vertical electric field in the lens panel of the embodiment of the present invention is shown in FIG. 7.
  • the distribution of the potential line under the action of the horizontal electric field and the vertical electric field of the lens panel of the embodiment of the present invention is as follows. See Figure 8.
  • the first transparent liquid 4 (not shown) and the second transparent layer can be made due to the presence of the dielectric layer 3 between the first transparent substrate and the first transparent liquid.
  • the liquid 5 (not shown) is in an electric field region where the electric field lines exhibit a perfect arc shape.
  • the spacing between any two adjacent electrodes on the first transparent substrate may be the same.
  • the electrode spacing is S1.
  • the electrode spacing is S2.
  • the spacing between adjacent electrodes on the first transparent substrate may also be different.
  • the electrode spacing of the central region on the first transparent substrate is greater than the electrode spacing of the edge region, so that different viewing angle regions can be viewed. To the quality of the picture.
  • the electrode spacing in the edge region is S3
  • the electrode spacing in the central region is S4, and S3 ⁇ S4.
  • the lens panel of the embodiment of the present invention can be used as a transfer switch for 3D display.
  • the lens panel provided by the embodiment of the present invention controls the shape of the optical fluid by using a potential line specification to control the voltage of the electrode to have the effect of forming or not forming a lens, and is used in a 3D display device. Conversion between 2D and 3D can be easily implemented.
  • the manufacturing process of the embodiment of the present invention is simple and operability is strong.

Abstract

一种透镜面板,包括:第一透明基板(1),与第一透明基板(1)对置的第二透明基板(2),以及条状的正电极(7)和负电极(8),其平行且间隔地设置在第一透明基板(1)的与第二透明基板(2)相对的一侧。按照从第二透明基板(2)到第一透明基板(1)的顺序在第一透明基板(1)和第二透明基板(2)之间填充第一透明液体(4)和第二透明液体(5),第一透明液体(4)和第二透明液体(5)互不相溶,且第二液体(5)的反射系数大于第一透明液体(4)的反射系数。另有一种该透明面板的制作方法以及使用该透明面板的3D显示装置。

Description

透镜面板、 其制作方法以及 3D显示装置 技术领域
本发明的实施例涉及一种透镜面板、 其制作方法以及 3D显示装置。 背景技术
现有的 3D显示技术依据原理分为多种, 例如: 偏振眼镜式、 柱透镜光 栅式、 棱镜式、 体三维、 全息立体等。 其中, 基于柱透镜光栅的 3D显示技 术因柱透镜光栅可加工性强、立体显示效果较好的特点而被广泛应用。但是, 基于柱透镜光栅的 3D显示技术难以实现 2D和 3D之间的转换。 发明内容
本发明实施例提供一种透镜面板、 其制作方法以及 3D显示装置, 能够 方便的实现 2D和 3D之间的转换。
本发明的实施例提供一种透镜面板, 包括: 第一透明基板; 第二透明基 板, 与所述第一透明基板对置; 条状的正电极和负电极, 彼此平行且间隔地 设置在所述第一透明基板的与所述第二透明基板相对的一侧; 按照从所述第 二透明基板到所述第一透明基板的顺序填充在所述第一透明基板和所述第二 透明基板之间的第一透明液体和第二透明液体, 所述第一透明液体与所述第 二透明液体互不相溶, 且所述第二透明液体的反射系数大于所述第一透明液 体的反射系数。 备选地, 上述的透镜面板, 还包括: 设置在所述第一透明基 板与所述第二透明液体之间的电介质层。
备选地, 在上述的透镜面板中, 所述第二透明基板的与所述第一基板相 对的一侧形成有板状公共电极层, 所述板状公共电极层与所述正电极或所述 负电极之间能够形成竖直电场。
备选地, 在上述的透镜面板中, 所述第一透明基板上的任意相邻的两条 电极之间的间距相同。
备选地, 在上述的透镜面板中, 所述第一透明基板上中心区域的电极间 距大于边缘区域的电极间距。 备选地, 在上述的透镜面板中, 所述第一透明液体为甘油、 二甘醇、 乙 二醇或正己醇。
备选地, 在上述的透镜面板中, 所述第二透明液体为光学流体。
备选地, 在上述的透镜面板中, 所述光学流体为液晶或者液晶聚合物。 本发明的实施例提供一种透镜面板的制作方法, 包括: 在第一透明基板 的内表面制作条状的正电极和负电极, 所述正电极和所述负电极在所述第一 透明基板上平行间隔排列; 将第一透明液体和第二透明液体的混合液体涂敷 在制作有正电极和负电极的所述第一透明基板上; 将所述第一透明基板与第 二透明基板进行对盒工艺, 得到所述透镜面板, 其中所述第一透明基板与所 述第二透明基板之间具有所述第一透明液体和所述第二透明液体。
备选地, 上述的制作方法, 还包括: 在制作完所述正电极和所述负电极 的步骤之后且在将第一透明液体和第二透明液体的混合液体涂敷在制作有正 电极和负电极的所述第一透明基板上之前, 在所述第一透明基板上制作电介 质层。
备选地, 上述的制作方法, 还包括:在所述对盒工艺前, 在所述第二透明 基板的与所述第一透明基板相对的表面形成公共电极层
本发明的实施例提供一种 3D显示装置, 包括: 显示面板; 如以上所述 的透镜面板, 贴合在所述显示面板的出光侧; 以及控制单元, 控制所述透镜 面板, 其中当所述显示装置显示 3D图像时, 所述控制单元向所述透镜面板 的所述正电极和所述负电极施加电压; 当所述显示装置显示 2D图像时, 所 述控制单元不向所述透镜面板的所述正电极和所述负电极施加电压。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为根据本发明实施例的透镜面板的结构示意图;
图 2为根据本发明另一实施例的透镜面板的结构示意图;
图 3为透镜面板的制作方法中在第一透明基板上形成正负电极和电介质 层的示意图; 图 4为透镜面板的制作方法中第一透明液体与第二透明液体的混合液体 示意图;
图 5为透镜面板的制作方法中将混合液体形成在第一透明基板上的示意 图;
图 6为本发明实施例的透镜面板中水平电场的分布示意图;
图 7为本发明实施例的透镜面板中水平电场和竖直电场的分布示意图; 图 8为本发明实施例的透镜面板在水平电场和竖直电场的共同作用下电 势线的分布示意图;
图 9为本发明实施例的透镜面板中的一种流体形状分布示意图; 图 10为本发明实施例的透镜面板中的另一种流体形状分布示意图; 图 11为本发明实施例的透镜面板中的又一种流体形状分布示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明的实施例提供一种透镜面板。 以下参考附图对根据本发明实施例 的透镜面板的结构进行详细说明。
图 1为根据本发明实施例的透镜面板的结构示意图。 参照图 1 , 所述透 镜面板包括:
第一透明基板 1 , 设置在所述第一透明基板 1 内表面, 即, 第一透明基 板 1的与第二透明基板 2相对的一侧且平行间隔排列的条状的正电极 7和负 电极 8;
第二透明基板 2, 与所述第一透明基板 1对置;
按照从第二透明基板到第一透明基板的顺序填充在所述第一透明基板 1 和所述第二透明基板 2之间的第二透明液体 5和第一透明液体 4。
示例性地, 所述第一透明基板 1上的任意两个相邻电极之间的间距可以 相同,如图 9和图 10所示。可以根据不同的观看距离来选择合适的电极间距, 例如, 在图 9中, 电极间距为 SI , 在图 10中, 电极间距为 S2。
示例性地, 电极间距可以根据公式 d=(N2*E*P)/8D*delt n计算获得, 其 中 D为观测距离, P为液晶面板的像素间距, N为画面数, E为眼睛距离(约 65mm ) , delt n为液晶各向异性系数,例如,当 Ρ=5μπι , D=2m, N=4, E=65mm, Delt n=0.1时, 则电极间距 d=l .7μπι。
备选地, 所述第一透明基板 1上的相邻电极之间的间距也可以不同, 例 如所述第一透明基板 1上中心区域的电极间距大于边缘区域的电极间距, 可 以通过选择不同的驱动电压分区域驱动, 使得液晶各向异性变化不同, 从而 折射光线到达位置不同, 这样不同视角区域都可看到优质的画面。 如图 11 所示, 边缘区域的电极间距为 S3, 中心区域的电极间距为 S4, 且 S3<S4。
其中, 所述第一透明液体 4 (如图 4所示)与所述第二透明液体 5 (如图 4所示)的密度相近、 互不相溶、 介电常数相差较大, 且所述第一透明液体 4 的密度稍大于所述第二透明液体 5。 另外, 这两种透明液体的反射系数互不 相同, 且所述第一透明液体 4的反射系数大于所述第二透明液体 5的反射系 数。
第二透明液体 5可以选用, 例如, 甘油(Glycerol )、 二甘醇、 乙二醇或 正己醇等类似的醇类结构, 其介电常数大致为 42, 反射系数大致为 1.47, 密 度大致为 1.26g/cm3。第一透明液体 4可以选用例如光学流体 ( optical fluids ) , 所述光学流体为具有光学各向异性的流体, 可以选用例如液晶或液晶聚合物 等其它具有光学各向异性的材料。
其中, 所述正电极 7和所述负电极 8在所述第一透明基板 1内表面间隔 排列。 如图 6所示, 通过在所述正电极 7和所述负电极 8之间施加电压, 在 所述正电极 7和所述负电极 8之间形成水平电场, 该水平电场能够改变所述 第一透明液体 4的形状, 即改变所述第一透明液体 4与所述第二透明液体 5 之间的界面形状。 正负电极间施加的电压为一固定值, 该电压与液晶参数有 关, 该电压能够驱动第一透明液体 4即可, 透镜面板工作时, 维持该电压不 变。
备选地, 如图 2所示, 所述第二透明基板 2的内表面 (相对于所述第一 透明基板 1的一侧 )形成有透明电极层 (公共电极 ) 6, 例如 ΙΤΟ或 ΙΖΟ层。 如图 7所示, 所述透明电极层 6与所述正电极 7或所述负电极 8之间能够形 成竖直电场。 由于所述正负电极能够产生水平电场, 这样, 利用水平电场与 竖直电场的相互作用, 可以方便控制液体透镜中的流体形状, 使得各液体透 镜单元能够呈现抛物线形排列。 将该液体透镜应用于 3D显示中时, 通过控 制电极的电压, 利用电势线规范控制光学流体的形状, 以便具有形成或者不 形成透镜的效果, 可以方便的实现 2D和 3D之间的转换。
备选地,为使得所述第一透明液体 4的形状更为理想,如图 2和 3所示, 还可以在所述第一透明基板 1与所述第一透明液体 4之间设置电介质层 3。 通过设置电介质层 3 , 从而通过电介质层遮挡部分电场线, 能够使得第一透 明液体 4与第二透明液体 5处于电场线呈现比较完美的圓弧形的电场区域。
这样, 根据本发明实施例的透镜面板, 在第一透明基板内表面间隔设置 有条状的正负电极, 需要进行 3D显示时, 通过在所述正电极和所述负电极 之间施加电压, 能够改变所述第一透明液体与所述第二透明液体之间的界面 形状, 从而形成透镜的效果, 如果不对各电极施加电压, 则第一透明液体与 所述第二透明液体之间的界面形状不会发生改变, 此时, 显示装置进行 2D 显示, 如此, 能够方便的实现 2D和 3D之间的转换。
本发明的另一实施例提供了上述透镜面板的制造方法。 以下详细描述根 据本发明实施例的透明面板的制造方法。
根据本发明实施例的透镜面板的制造方法包括如下步骤:
步骤 201 : 在第一透明基板的内表面制作条状的正电极和负电极; 所述正电极和所述负电极在所述第一透明基板上平行间隔排列。可选地, 正负电极的长度和宽度均相等, 相邻电极之间的间距也相等。
另外, 电极的长度值和宽度值可根据需求设置, 电极与电极之间的间距 也可以根据需求设置。 电极距离和宽度值设置的最佳效果应当是使得电场线 排布形状为完美的圓弧形。
步骤 202: 在制作有正电极和负电极的第一透明基板上制作电介质层; 通过设置电介质层, 能够使得第一透明液体 4与第二透明液体 5处于电 场线呈现比较完美的圓弧形的电场区域。 完成步骤 201和步骤 202后的面板 结构请参见图 3所示。
步骤 203: 通过涂布、 滴注等常规工艺将第二透明液体和第一透明液体 的混合液体涂敷在步骤 202中所得的第一透明基板上(如图 5所示) 。 其中, 所述第一透明液体与所述第二透明液体的密度相近、 互不相溶、 介电常数相差较大, 且所述第一透明液体的密度稍大于所述第二透明液体; 另外, 这两种透明液体的反射系数互不相同, 且所述第二透明液体的反射系 数大于所述第一透明液体的反射系数。
所述第一透明液体可以选用例如甘油(Glycerol )、 二甘醇、 乙二醇或正 己醇等类似的醇类结构, 其介电常数大致为 42, 反射系数大致为 1.47, 密度 大致为 1.26g/cm3。所述第二透明液体可以选用例如光学流体(optical fluids ) , 液晶或液晶聚合物等材料。
由于所述第一透明液体与所述第二透明液体互不相溶, 因此, 二者混合 后便形成图 4所示的分层结构, 其中, 第二透明液体 5位于所述第一透明液 体 4之上。
步骤 204: 将步骤 203所得的第一透明基板与第二透明基板进行对盒工 艺, 并得到图 1所示的透镜面板。
优选地,所述第二透明基板的内表面(相对于所述第一透明基板的一侧 ) 形成有透明电极层, 例如 ITO或 IZO等层。
之后, 将该透镜面板与显示面板进行贴合, 便可得到能够进行立体显示 的 3D显示装置, 其中透镜面板贴合在显示面板的出光侧。
需要说明的是, 本发明实施例中的所述显示面板可以为: 液晶面板、 等 离子体显示面板、 OLED显示面板、 电子纸等显示面板, 在此不做限定。
如果所述显示面板是液晶面板, 则在所述显示面板中, TFT阵列基板与 对置基板彼此对置以形成液晶盒, 在液晶盒中填充有液晶材料。 该对置基板 例如为彩膜基板。 TFT阵列基板的每个像素单元的像素电极用于施加电场对 液晶材料的旋转的程度进行控制从而进行显示操作。 在一些示例例中, 该液 晶显示器还包括为阵列基板提供背光的背光源。
以下对本发明实施例的透镜面板的工作原理进行介绍。
为了对第一透明液体的形状进行控制,所述透镜面板中设置有控制单元, 或者, 设置有所述透镜面板的 3D显示装置中设置有控制单元, 所述控制单 元能够在所述正电极和所述负电极之间施加电压, 以及, 在所述透明电极层 与所述正电极或所述负电极之间施加电压, 该电压能够驱动所述第一透明液 体, 所述第一透明液体在该电压的驱动下形状发生改变(即所述第一透明液 体与所述第二透明液体之间的界面形状发生改变) , 于是便形成了液体透镜 单元, 此时, 显示装置进行 3D显示。 如果不对各电极施加电压, 由于没有 电场的驱动, 则所述第一透明液体的形状不会发生改变(即第一透明液体与 所述第二透明液体之间的界面形状不会发生改变), 此时, 显示装置进行 2D 显示, 如此, 能够方便的实现 2D和 3D之间的转换。
本发明实施例的透镜面板在第一透明基板内表面平行间隔设置有正负电 极, 通过所述正负电极产生的水平电场, 使得液体透镜中的流体形状易于控 制。 而且, 所述第二透明基板相对于所述第一透明基板的一侧还可形成透明 电极层,所述透明电极层与所述正电极或所述负电极之间能够形成竖直电场。 这样, 利用水平电场与竖直电场的相互作用, 可以更加方便控制液体透镜中 的流体形状, 使得各液体透镜单元能够呈现抛物线形排列。 将该液体透镜应 用于 3D显示中时, 通过对电极的电压控制, 利用电势线规范控制光学流体 的形状, 以使其形成或者不形成透镜的效果,可以方便的实现 2D和 3D之间 的转换。
其中, 本发明实施例的透镜面板中水平电场和竖直电场的分布情况请参 见图 7所示, 本发明实施例的透镜面板在水平电场和竖直电场的共同作用下 电势线的分布情况请参见图 8所示。
另外, 从图 8可以看出, 由于所述第一透明基板与所述第一透明液体之 间的电介质层 3的存在, 能够使得第一透明液体 4 (图中未示出)与第二透 明液体 5 (图中未示出)处于电场线呈现比较完美的圓弧形的电场区域。
备选地,所述第一透明基板上的任意两个相邻电极之间的间距可以相同 , 在此种方式下, 对各电极施加电压后, 所形成的流体形状的分布情况请参见 图 9所示。 在图 9中, 电极间距为 S1 , 将电极间距增大后, 所形成的流体形 状的分布情况请参见图 10所示, 在图 10中, 电极间距为 S2。
备选地, 所述第一透明基板上的相邻电极之间的间距也可以不同, 例如 所述第一透明基板上中心区域的电极间距大于边缘区域的电极间距, 这样不 同视角区域都可看到优质的画面。 在此种方式下, 对各电极施加电压后, 所 形成的流体形状的分布情况请参见图 11所示, 在图 11中, 边缘区域的电极 间距为 S3 , 中心区域的电极间距为 S4, 且 S3<S4。
如果不对各电极施加电压, 则第一透明液体的形状不会发生改变, 显示 装置显示的便是 2D图像, 因此,本发明实施例的透镜面板可用作 3D显示的 转换开关。
综上所述, 本发明实施例提供的透镜面板, 通过对电极的电压控制, 利 用电势线规范控制光学流体的形状,以使其具有形成或者不形成透镜的效果, 用于 3D显示器件中, 可以方便的实现 2D和 3D之间的转换。 另外, 本发明 实施例的制作工艺简单, 可操作性强。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非限制, 本领域的普通技术人员应当理解, 可以对本发明的技术方案进行修改或者等 同替换, 而不脱离本发明技术方案的精神范围, 其均应涵盖在本发明的权利 要求范围当中。

Claims

权利要求书
1. 一种透镜面板, 包括:
第一透明基板;
第二透明基板, 与所述第一透明基板对置;
条状的正电极和负电极, 彼此平行且间隔地设置在所述第一透明基板与 所述第二透明基板相对的一侧;
按照从所述第二透明基板到所述第一透明基板的顺序填充在所述第一透 明基板和所述第二透明基板之间的第一透明液体和第二透明液体, 所述第一 透明液体与所述第二透明液体互不相溶, 且所述第二透明液体的反射系数大 于所述第一透明液体的反射系数。
2. 如权利要求 1所述的透镜面板, 还包括:
设置在所述第一透明基板与所述第二透明液体之间的电介质层。
3. 如权利要求 1所述的透镜面板, 其中
所述第二透明基板的与所述第一透明基板相对的一侧, 形成有板状公共 电极层。
4. 如权利要求 1所述的透镜面板, 其中
所述第一透明基板上的任意相邻的两条电极之间的间距相同。
5. 如权利要求 1所述的透镜面板, 其中
所述第一透明基板上中心区域的电极间距大于边缘区域的电极间距。
6. 如权利要求 1所述的透镜面板, 其中
所述第一透明液体为甘油、 二甘醇、 乙二醇或正己醇。
7. 如权利要求 1所述的透镜面板, 其中
所述第二透明液体为光学流体。
8. 如权利要求 7所述的透镜面板, 其中
所述光学流体为液晶或者液晶聚合物。
9. 一种权利要求 1所述的透镜面板的制作方法, 包括:
在第一透明基板的内表面制作条状的正电极和负电极, 所述正电极和所 述负电极在所述第一透明基板上平行间隔排列;
将第一透明液体和第二透明液体的混合液体涂敷在制作有正电极和负电 极的所述第一透明基板上;
将所述第一透明基板与第二透明基板进行对盒工艺,得到所述透镜面板, 其中所述第一透明基板与所述第二透明基板之间具有所述第一透明液体和所 述第二透明液体。
10. 如权利要求 9所述的制作方法, 还包括:
在制作完所述正电极和所述负电极的步骤之后且在将第一透明液体和第 二透明液体的混合液体涂敷在制作有正电极和负电极的所述第一透明基板上 之前, 在所述第一透明基板上制作电介质层。
11. 如权利要求 9所述的制作方法, 还包括:
在所述对盒工艺前, 在所述第二透明基板的与所述第一透明基板相对的 表面形成公共电极层。
12. 一种 3D显示装置, 包括:
显示面板;
如权利要求 1至 8中任一项所述的透镜面板, 贴合在所述显示面板的出 光侧; 以及
控制单元, 控制所述透镜面板,
其中当所述显示装置显示 3D图像时, 所述控制单元向所述透镜面板的 所述正电极和所述负电极施加电压; 当所述显示装置显示 2D图像时, 所述 控制单元不向所述透镜面板的所述正电极和所述负电极施加电压。
PCT/CN2012/086314 2012-03-26 2012-12-10 透镜面板、其制作方法以及3d显示装置 WO2013143320A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/824,799 US9052515B2 (en) 2012-03-26 2012-12-10 Lens panel, method for manufacturing the same and 3D display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100824267A CN102707344A (zh) 2012-03-26 2012-03-26 一种3d显示装置、透镜面板及其制作方法
CN201210082426.7 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013143320A1 true WO2013143320A1 (zh) 2013-10-03

Family

ID=46900273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086314 WO2013143320A1 (zh) 2012-03-26 2012-12-10 透镜面板、其制作方法以及3d显示装置

Country Status (3)

Country Link
US (1) US9052515B2 (zh)
CN (1) CN102707344A (zh)
WO (1) WO2013143320A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707344A (zh) * 2012-03-26 2012-10-03 京东方科技集团股份有限公司 一种3d显示装置、透镜面板及其制作方法
WO2019185510A1 (de) * 2018-03-26 2019-10-03 Seereal Technologies S.A. Anzeigevorrichtung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013306A (ja) * 1999-06-28 2001-01-19 Canon Inc 可変焦点レンズ装置
CN1930496A (zh) * 2004-03-04 2007-03-14 皇家飞利浦电子股份有限公司 用于将光学像差引入到光束的光学部件
CN101097264A (zh) * 2006-06-26 2008-01-02 叶哲良 可调焦距的透镜
CN102231033A (zh) * 2011-05-27 2011-11-02 深圳超多维光电子有限公司 液晶透镜及其控制方法、3d显示装置以及计算机系统
CN102338895A (zh) * 2011-09-28 2012-02-01 电子科技大学 一种焦距可调的双焦点非球面微透镜
CN102341743A (zh) * 2009-09-28 2012-02-01 株式会社东芝 立体图像显示装置
CN102707344A (zh) * 2012-03-26 2012-10-03 京东方科技集团股份有限公司 一种3d显示装置、透镜面板及其制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005005933A1 (de) * 2005-02-09 2006-08-17 Carl Zeiss Meditec Ag Variable Optik
JP5089116B2 (ja) 2005-09-21 2012-12-05 國立清華大学 レンズ装置
CN101395523B (zh) * 2006-03-03 2010-11-03 拉瓦尔大学 用于空间调制的电场的生成以及使用液晶的电光调谐的方法和设备
JP5396944B2 (ja) * 2008-12-22 2014-01-22 ソニー株式会社 レンズアレイ素子および画像表示装置
KR101585003B1 (ko) * 2009-11-27 2016-01-14 엘지디스플레이 주식회사 액정 전계 렌즈 및 이를 이용한 입체 영상 표시 장치
KR20110078788A (ko) * 2009-12-31 2011-07-07 엘지디스플레이 주식회사 액정 전계 렌즈 및 이를 이용한 입체 표시 장치
TWI452396B (zh) * 2011-10-06 2014-09-11 Univ Nat Chiao Tung 可電壓控制之光學元件及其製備方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013306A (ja) * 1999-06-28 2001-01-19 Canon Inc 可変焦点レンズ装置
CN1930496A (zh) * 2004-03-04 2007-03-14 皇家飞利浦电子股份有限公司 用于将光学像差引入到光束的光学部件
CN101097264A (zh) * 2006-06-26 2008-01-02 叶哲良 可调焦距的透镜
CN102341743A (zh) * 2009-09-28 2012-02-01 株式会社东芝 立体图像显示装置
CN102231033A (zh) * 2011-05-27 2011-11-02 深圳超多维光电子有限公司 液晶透镜及其控制方法、3d显示装置以及计算机系统
CN102338895A (zh) * 2011-09-28 2012-02-01 电子科技大学 一种焦距可调的双焦点非球面微透镜
CN102707344A (zh) * 2012-03-26 2012-10-03 京东方科技集团股份有限公司 一种3d显示装置、透镜面板及其制作方法

Also Published As

Publication number Publication date
US20140055694A1 (en) 2014-02-27
CN102707344A (zh) 2012-10-03
US9052515B2 (en) 2015-06-09

Similar Documents

Publication Publication Date Title
JP5993595B2 (ja) 無メガネ方式の2次元/3次元ディスプレイ用レンチキュラーユニット
JP5877979B2 (ja) 回折素子を用いた映像表示装置
US8659739B2 (en) Liquid crystal lens and display including the same
JP2016106248A (ja) 回折レンズを利用した画像表示装置
WO2015070585A1 (zh) 液晶棱镜及其制作方法、显示装置
TW201030378A (en) Lens array device and image display
WO2013181910A1 (zh) 液晶透镜及2d-3d可切换立体显示装置
TWI797115B (zh) 多視域顯示裝置與方法
WO2015035726A1 (zh) 电驱动液晶透镜、显示设备和3d液晶显示方法
US20120293735A1 (en) Display devices and methods of manufacturing the same
US8964139B2 (en) Multifunctional optical filter for stereoscopic display device and stereoscopic display device comprising the same
CN104049433B (zh) 立体显示装置的驱动方法
US9442298B2 (en) Liquid crystal display panel and method for manufacturing the same
TWI449962B (zh) 用於三維顯示之液晶透鏡
CN104020624A (zh) 裸眼3d立体显示装置
WO2015103870A1 (zh) 显示基板和显示装置
WO2018166207A1 (zh) 显示切换装置、显示器和电子设备
CN103941469A (zh) 显示面板及其制作方法、显示装置
US20160091726A1 (en) Polarization control unit and 2d and 3d image display device having the same
WO2015100918A1 (zh) 一种显示装置及其制备方法
CN204009309U (zh) 裸眼3d立体显示装置
JP2015082115A (ja) 表示装置
TWI456447B (zh) 具觸碰感應機制之自動立體顯示裝置及其驅動方法
WO2013143320A1 (zh) 透镜面板、其制作方法以及3d显示装置
CN104020625A (zh) 3d分光器及立体显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13824799

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04.12.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12873001

Country of ref document: EP

Kind code of ref document: A1