WO2013137179A1 - Eyeglass lens and bifocal eyeglasses - Google Patents

Eyeglass lens and bifocal eyeglasses Download PDF

Info

Publication number
WO2013137179A1
WO2013137179A1 PCT/JP2013/056603 JP2013056603W WO2013137179A1 WO 2013137179 A1 WO2013137179 A1 WO 2013137179A1 JP 2013056603 W JP2013056603 W JP 2013056603W WO 2013137179 A1 WO2013137179 A1 WO 2013137179A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens element
astigmatism
lens elements
prism
Prior art date
Application number
PCT/JP2013/056603
Other languages
French (fr)
Japanese (ja)
Inventor
恵介 太田
Original Assignee
東海光学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海光学株式会社 filed Critical 東海光学株式会社
Publication of WO2013137179A1 publication Critical patent/WO2013137179A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/081Ophthalmic lenses with variable focal length

Definitions

  • the present invention relates to a spectacle lens in which two lens elements are overlapped in the front-rear direction and the S power can be changed by relatively shifting the lens elements, and a bifocal spectacle equipped with such a lens. .
  • Non-Patent Document 1 discloses spectacles using an Alvarez lens developed as spectacles at the time of disaster or emergency.
  • the spectacles are spectacles composed of two lens elements on the left and right sides, and the knobs are rotated to slide the lenses, and the degree of overlapping of the lenses is adjusted to change the spherical power.
  • the spectacle lens of Non-Patent Document 1 is supposed to be used when the original spectacles are lost in a disaster or emergency, and is not necessarily easy to use.
  • the S power variable region covers from ⁇ 6D (diopter, hereinafter abbreviated) to + 3D, and since the aberration is not corrected, the clear vision region is narrow and the performance is not satisfactory as a spectacle lens.
  • the spectacles can be used for presbyopia by changing the spherical power during near vision and near vision while using as a single focus lens.
  • a lens can be expected to be in sufficient demand by applying it to bifocal glasses.
  • this type of spectacle lens has been required to be applicable to bifocal glasses that can be used in daily life other than disasters and emergencies that have a wider clear visual field and are easier to use.
  • the present invention has been made paying attention to such problems existing in the prior art. It is an object of the present invention to provide a spectacle lens that can change the spherical power by overlapping two lens elements in the front-rear direction and relatively shifting the spectacle lens, and a spectacle lens that has a wider clear visual field and is easy to use.
  • the object is to provide bifocal glasses equipped with a lens.
  • the first and second lens elements are arranged in parallel in the front-rear direction so that the optical axes are parallel, and relatively in a direction approximately orthogonal to the optical axis.
  • the object-side surface of the first lens element arranged outside and the eyeball-side surface of the second lens element arranged inside Are combined as an additional sag amount with a function g (x, y) of the same or different curved surface such that the partial derivative g xy obtained by partial differentiation with x and y is a function or constant only of y.
  • the gist of the invention is that both lens elements can be moved in the opposite direction only in the x-axis direction, and at least one surface of the both lens elements is aspherical to reduce aberrations. To do.
  • a function g (x, y) of a cubic surface synthesized as an additional sag amount in the first and second lens elements is defined by the following expression. To do.
  • the reference surface for synthesizing the additional sag amount with the first and second lens elements has a spherical shape, a flat surface, or an astigmatic surface. Is the gist. Further, the gist of the means 4 is that the variable range of the S frequency is within 4D in addition to the structure described in any of the means 1 to 3.
  • the gist of the means 5 is that, in addition to the structure described in any one of the means 1 to 4, one of the first and second lens elements is fixed and only the other is movable.
  • the gist of the means 6 is that, in addition to the configuration described in the means 5, the aspherical design is performed only on the lens element on the fixing side among the first and second lens elements.
  • the gist of the means 7 is that, in addition to the configuration described in the means 5 or 6, the astigmatism correction design is performed only on the fixed lens element among the first and second lens elements. .
  • the first or second lens that shifts the refractive power related to the light beam transmitted through the first and second lens elements to the plus side.
  • the gist is that the prism change due to the movement of the element is an increase in the in-prism or a decrease in the out-prism.
  • the gist of the means 9 is that, in addition to the configuration described in any one of the means 5 to 8, the second lens element side is fixed and only the first lens element side is movable.
  • the gist of the means 10 is that, in addition to the configuration described in any one of the means 1 to 9, a spectacle lens is mounted on the bifocal glasses described in any of the means 1 to 11.
  • the first and second lens elements are arranged in parallel in the front-rear direction so that the optical axes are parallel, and are relatively opposite to the direction approximately orthogonal to the optical axis. It is possible to provide a spectacle lens having a small clear astigmatism and a wide clear viewing area, in which the spherical power can be changed by moving the lens to.
  • the object-side surface of the first lens element arranged outside and the eyeball of the second lens element arranged inside It is necessary to synthesize a cubic surface function g (x, y) such that the partial derivative g xy (x, y) is represented by a function of y only or a constant on the side surface as an additional sag amount. is there.
  • the partial derivative g xy (x, y) is a derivative obtained by partial differentiation of the function g (x, y) with x and y.
  • Each of the three-dimensional curved surface is required to have the property that the value of J 00 component and J 45 component surface astigmatism in everywhere is determined only by the y coordinate regardless of the x coordinate. This is because the two lens elements are used while being relatively moved in the x-axis direction. And it is necessary not to generate astigmatism when the two lens elements are relatively moved in the x-axis direction. Assuming that the value of J 00 component or J 45 component was different values by the x-coordinate, the value of J 00 component or J 45 components of power related to light transmitted through the two lens elements are lens elements x axis direction It will change by moving to.
  • the astigmatism power generated in the transmitted light beam by the corresponding two-point surface astigmatism does not change even if the lens element is moved in the x-axis direction. It is constant.
  • the J 00 component surface astigmatism which is the difference in the refractive power in the horizontal direction of the refractive power and the vertical direction. It is proportional to the difference between the value of the derivative that is second-order partial differentiated by x and the value of the derivative that is second-order partially differentiated by y, so that the value of the difference is determined only by the y coordinate regardless of the x coordinate.
  • the J 45 component of surface astigmatism is the difference between the refractive power in the oblique 45 degree direction and the refractive power in the oblique 135 degree direction. It is proportional to the value of the derivative obtained by partial differentiation with respect to x and y, and the value is determined only by the y coordinate, not by the x coordinate.
  • Such a surface has an average value of surface refractive power of 0, and has an astigmatism in which the axis is oblique.
  • the strength of the surface astigmatism is proportional to A.
  • the partial derivatives of each of the three-dimensional curved surface ⁇ 2 g (x, y) / ⁇ x 2 - ⁇ 2 g (x, y) / ⁇ y 2 And ⁇ 2 g (x, y) / ⁇ x ⁇ y Is a function or constant that is only y.
  • “unrelated to the x coordinate and determined only by the y coordinate” and “constant everywhere” are approximate meanings, and an allowable error may occur in the lens peripheral region.
  • the cubic surface function g (x, y) specifically, for example, the one represented by the above equation (1) can be considered.
  • the cubic surface of the first lens is a curved surface with the ear side convex forward with respect to the pupil position.
  • the third curved surface of the second lens is convex rearward on the nose side. Further, it is necessary to slide both the first and second lens elements facing each other while completely contacting each other. For this reason, the facing surfaces must be formed of a flat surface or a spherical surface having the same curve.
  • the reference surface for synthesizing the additional sag amount with the first and second lens elements is preferably a spherical surface, a flat surface, or an astigmatic surface in terms of ease of lens design. If the base shape of either of the two lens elements produces a refracting power with respect to light rays that pass through it, this is referred to as the base refracting power.
  • the base refractive power is not constant depending on the location on the lens surface, the distribution of the base refractive power changes as the lens element moves. If the refractive power for each cross-sectional direction changes at each point on the lens surface, the astigmatism power at that point changes, but in the present invention, it is not preferable that the astigmatism power change as the lens element moves.
  • the distribution of the base refractive power changes greatly with the movement of the lens element. From the above, it is preferable that the base refractive power is as constant as possible in each cross-sectional direction. However, it does not matter that the refractive powers are different for different cross-sectional directions.
  • an astigmatic lens having both sides as a trick surface, or a single-sided spherical surface and a one-sided trick surface can have such a base shape.
  • a shape obtained by adding an element of inclination represented by the x1st order and y1th order equations to these surfaces can also be a base shape.
  • the shapes (base shapes) before the addition sag amounts of the first and second lens elements are combined may be the same or different.
  • the base shape is naturally different.
  • variable range of the S power is within 4D.
  • the lens element on the fixing side it is necessary to suppress the prism small.
  • the function g (x, y) of the cubic surface so that the prism becomes small.
  • the refractive power of the lens element on the fixing side it is conceivable to set the refractive power of the lens element on the fixing side to be larger than the refractive power of the lens element on the moving side as the prism suppressing means. This is for the following reason.
  • the fact that the lens has refractive power corresponds to having a prism distribution. For example, if the central prism is 0 in a lens having a minus power, there is a prism having a lens peripheral direction as a base direction (a thicker lens peripheral direction) at a position away from the center.
  • the amount of prism increases as the distance from the center of the lens increases.
  • the amount of prism generated is proportional to the lens power.
  • the lens element on the fixing side is the second lens element side on the eyeball side (rear side). This is because if the lens to be moved is on the object side, it does not hit the temple of the spectacle frame.
  • the aspherical design and the astigmatism correction design are performed only on the lens element on the fixed side. This is because these designs are designed on the assumption that the pupil position is fixed. For example, in the astigmatism correction design, the astigmatism axis direction is determined. The distribution of the optical effect due to the aspherical surface is shifted with respect to the eye. Furthermore, the fact that the power of astigmatism moves with respect to the eye means that the “prism at a position away from the center” that exists accompanying the cross-sectional refractive power in a certain direction moves. Further, it is preferable that the first and second lens elements are arranged so that a prism generated by the movement of the moving lens element becomes an in-prism.
  • the cubic curved surface formed on the object side surface of the first lens element that is outside the left eye is a curved surface that is thick on the ear side and thin on the nose side.
  • the cubic curved surface formed on the eyeball side surface of the second lens element is a curved surface that is thick on the nose side and thin on the ear side.
  • the in-prism has an effect of easily performing convergence in near vision, and thus is not necessarily disadvantageous as a spectacle lens. Therefore, if the generation of a prism is unavoidable when one lens element is fixed, it is preferable to move the first and second lens elements so as to be an in-prism. In that case, the second lens element side is preferably fixed. In FIGS. 20A and 20B, the first lens element is moved into the in-prism when moved to the ear side. However, if the curve characteristic of the cubic surface is reversed, it is moved to the nose side. It becomes a prism.
  • the clear vision range is wide and easy to use in the bifocal glasses equipped with the spectacle lens in which the spherical power can be changed by overlapping and shifting the two lens elements in the front-rear direction.
  • (a) And (b) is a distribution map of the average power and astigmatism in Example 1, respectively.
  • (a) And (b) is a distribution map of the average power and astigmatism in Example 2, respectively.
  • (a) And (b) is a distribution map of the average power and astigmatism in Example 3, respectively.
  • (a) And (b) is a distribution map of the average power and astigmatism in Example 4, respectively.
  • (a) And (b) is a distribution map of the average power and astigmatism in the comparative example 1, respectively.
  • (a) And (b) is a distribution map of the average power and astigmatism in the comparative example 2, respectively.
  • 6 is a distribution diagram of average power and astigmatism at a reference position in Example 5.
  • FIG. 10 is a distribution diagram of average power and astigmatism when both lens elements in Example 5 are moved equidistantly.
  • FIG. 10 is a distribution diagram of average power and astigmatism when the second lens element in Example 5 is fixed.
  • 10 is a distribution diagram of average power and astigmatism at a reference position in Example 6.
  • FIG. 10 is a distribution diagram of average power and astigmatism in a state where both lens elements in Example 6 are moved equidistantly.
  • FIG. 10 is a distribution diagram of average power and astigmatism in a state where the second lens element in Example 6 is fixed.
  • 10 is a distribution diagram of average power and astigmatism at a reference position in Comparative Example 3.
  • FIG. 10 is a distribution diagram of average power and astigmatism when both lens elements in Comparative Example 3 are moved by an equal distance.
  • FIG. 10 is a distribution diagram of average power and astigmatism in a state where the second lens element is fixed in an actual comparative example 3.
  • 10 is a distribution diagram of average power and astigmatism at a reference position in Comparative Example 4.
  • FIG. 10 is a distribution diagram of average power and astigmatism when both lens elements in Comparative Example 4 are moved equidistantly.
  • FIG. 10 is a distribution diagram of average power and astigmatism in a state where the second lens element in an actual comparative example 4 is fixed.
  • (A) is explanatory drawing explaining the case where the lens element of the same refractive power which has a curved surface of the same characteristic is moved by an equal amount in the reverse direction before the movement, (b).
  • (A) is explanatory drawing explaining the case where only one of the lens elements of the same refractive power which have the curved surface of the same characteristic after movement and (b) after movement is moved. Explanatory drawing explaining that transmitted light is refracted inside by generation
  • the eyeglass lens of the embodiment is actually mounted on a frame and used as bifocal glasses.
  • the spectacle lens had a meniscus lens shape, and in all the following examples, a lens having a diameter of 50 mm and a material refractive index of 1.600 was used.
  • the first lens element arranged on the outside and the second lens element arranged on the inside are in surface contact with a base curve surface having a predetermined spherical shape (which must not be an aspheric surface). Both lens elements are mounted on the frame so that the x-axis direction is horizontal.
  • Equation 3 is a functional equation that gives an aspherical sag of a rotationally asymmetric aspheric surface
  • Equation 4 is a functional equation that gives an aspherical sag of a rotationally symmetric aspheric surface.
  • the result of both equations is added to give an aspherical sag.
  • the aspherical sag function in Examples 5 and 6 is expressed by the following equations 5 to 7. In Examples 5 and 6, the results of the three expressions are added to give an aspherical sag.
  • the coefficient A is referred to as an Alvarez coefficient.
  • a lens was designed by adding a synthetic curved surface given by these functions to the base shape, and the average power and astigmatism were calculated.
  • Example 1 In Example 1, it is assumed that the second lens element is fixed and only the first lens element is moved. The moving direction of the first lens element during the transition from the far vision state to the near vision state is the ear side direction.
  • the setting conditions of the eyeglass lens of Example 1 are as follows. The cubic curved surface is arranged so that the ear side is convex forward with respect to the pupil position in the first lens element. The following examples and comparative examples are the same. In Example 1, the aspherical sag is provided only on the back surface side of the second lens element.
  • FIG. 1A is a distribution diagram based on the average power and astigmatism values in the distance vision state in which the first lens element is moved 13.5 mm in the horizontal direction in the eyeglass lens of the first embodiment. Thick contour lines are in 1D increments, and thin contour lines are in 0.25D increments (the same applies to the following examples and comparative examples).
  • the S frequency was ⁇ 4.00 D
  • the prism was 2.73 on the in side. It is a slightly higher prism.
  • FIG. 1B is a distribution diagram based on the average power and astigmatism values in a state where the first lens element is moved 6.70 mm in the horizontal direction. In this state, the S frequency was ⁇ 2.00 D, and the prism was 0.67 on the in side.
  • Example 2 In the second embodiment, both lens elements are moved equidistantly in opposite directions. Further, the aspherical sag is given only to the back side of the second lens element.
  • the setting conditions of the spectacle lens of Example 2 are as follows.
  • Second lens element Front curve 0 (1.523 conversion) Alvarez coefficient (A) 0.0005 Second lens element Front curve 0, back curve 2 (1.523 equivalent) Alvarez coefficient (A) 0.0005 Aspheric coefficient of each term of hA (r) 4th order term: 4 ⁇ 10 ⁇ 7 , 5th order term: ⁇ 4 ⁇ 10 ⁇ 9 , 6th order term: 1 ⁇ 10 ⁇ 12 , 8th order term: 1 ⁇ 10 ⁇ 15 Aspherical coefficient of each term of hB (r) 4th order term: 1 ⁇ 10 ⁇ 7 , 5th order term: 1 ⁇ 10 ⁇ 9 , 6th order term: 0, 8th order term 0
  • FIG. 2A is a distribution diagram based on the average power and astigmatism values in the distance vision state in which both lens elements are moved in the horizontal direction by 3.36 mm (totally less than 6.70 mm), respectively.
  • the S frequency was ⁇ 4.00 D
  • the prism was 0.67 on the out side.
  • FIG. 2B is a distribution diagram based on the average power in the near vision state and the numerical value of astigmatism at the reference position in which the both lens elements are matched without shifting in the spectacle lens of the second embodiment.
  • Example 2 the refractive power of the first lens element is 0D, and the refractive power of the second lens element is 2D.
  • the S frequency is set to -2.00 D when both lens elements are not shifted.
  • the prism was zero. The prism is generated even though both lens elements are moved by the same distance because the refractive powers of both lens elements are unbalanced.
  • Example 2 since both lens elements are moved by the same distance, the astigmatism generated when the second lens element as in Example 1 is fixed is improved, but the refractive power of both lens elements is improved. Astigmatism resulting from imbalance occurs. However, astigmatism is improved as a total due to the aspherical shape.
  • Example 3 In Example 3, the second lens element is fixed and only the first lens element is moved. The moving direction of the first lens element during the transition from the far vision state to the near vision state is the ear side direction. Further, the aspherical sag is given only to the surface side of the second lens element.
  • the setting conditions of the spectacle lens of Example 3 are as follows.
  • Second lens element Front curve 0 (1.523 conversion) Alvarez coefficient (A) 0.0005 Second lens element Front curve 0, back curve 2 (1.523 equivalent) Alvarez coefficient (A) 0.0005 Aspherical coefficient of each term of hA (r) 4th order term: ⁇ 2 ⁇ 10 ⁇ 7 , 5th order term: 4 ⁇ 10 ⁇ 9 , 6th order term: ⁇ 1 ⁇ 10 ⁇ 12 , 8th order term : -1 ⁇ 10 ⁇ 15 Aspherical coefficient of each term of hB (r): Fourth-order term: ⁇ 1 ⁇ 10 ⁇ 7 , fifth-order term: ⁇ 1 ⁇ 10 ⁇ 9 , sixth-order term: 0, eighth-order term 0
  • FIG. 3A is a distribution diagram based on the average power and astigmatism values in the distance vision state in which the first lens element is moved by 6.54 mm in the horizontal direction. In this state, the S frequency was ⁇ 4.00 D and the prism was 0.
  • FIG. 3B is a distribution diagram based on the average power of the near vision state and the numerical value of astigmatism at the reference position in which the both lens elements are matched without shifting in the spectacle lens of the third embodiment.
  • the refractive power of the first lens element is 0D
  • the refractive power of the second lens element is 2D.
  • the S frequency is set to -2.00 D when both lens elements are not shifted. It was 0.66 on the in side.
  • Example 3 Astigmatism easily occurs because the second lens element is fixed, but the astigmatism is improved because the refractive power is given only to the second lens element side. . Further, by providing refractive power only to the second lens element side, for example, the prism is also smaller than in the first embodiment. In addition, astigmatism is improved as a total because it is aspherical.
  • Example 4 In Example 4, the second lens element is fixed, and only the first lens element is moved. The moving direction of the first lens element during the transition from the far vision state to the near vision state is the ear side direction. An aspherical sag is provided on the back surface of the second lens element.
  • the setting conditions of the spectacle lens of Example 3 are as follows.
  • Second lens element Front curve 0 (1.523 conversion) Alvarez coefficient (A) 0.0005 Second lens element Front curve 0, back curve 2 (1.523 equivalent) Alvarez coefficient (A) 0.0005 Aspherical coefficient of each term of hA (r) 4th order term: 3 ⁇ 10 ⁇ 7 , 5th order term: ⁇ 4 ⁇ 10 ⁇ 9 , 6th order term: 1 ⁇ 10 ⁇ 12 , 8th order term: 1 ⁇ 10 ⁇ 15 Aspherical coefficient of each term of hB (r) 4th order term: 1 ⁇ 10 ⁇ 7 , 5th order term: 1 ⁇ 10 ⁇ 9 , 6th order term: 0, 8th order term 0
  • FIG. 4A is a distribution diagram based on the average power and astigmatism values in the distance vision state in which the first lens element is moved 6.54 mm in the horizontal direction. In this state, the S frequency was ⁇ 4.00 D, and the prism was 0.
  • FIG. 4B is a distribution diagram based on the average power in the near vision state and the numerical value of astigmatism at the reference position where the lens elements of the spectacle lens of Example 4 are matched without shifting.
  • the refractive power of the first lens element is 0D
  • the refractive power of the second lens element is 2D.
  • the S frequency is set to -2.00 D when both lens elements are not shifted. It was 0.68 on the in side.
  • Example 4 since the second lens element is fixed, astigmatism is likely to occur. However, since the refractive power is applied only to the second lens element side, the astigmatism is improved. ing. Moreover, the prism is also made small by giving refractive power only to the second lens element side. In addition, astigmatism is improved as a total because it is aspherical. Although the improvement tendency was the same as that of Example 3, since the aspherical sag was given to the back side of the second lens element, the whole given to the front side was better than Example 3.
  • FIG. 5A is a distribution diagram based on the average power and astigmatism values in the distance vision state in which the first lens element is moved 6.68 mm (totally less than 13.5 mm) in the horizontal direction. . In this state, the S frequency is ⁇ 4.00 D and the prism is 0.
  • FIG. 5A is a distribution diagram based on the average power and astigmatism values in the distance vision state in which the first lens element is moved 6.68 mm (totally less than 13.5 mm) in the horizontal direction. . In this state, the S frequency is ⁇ 4.00 D and the prism is 0.
  • FIG. 6A is a distribution diagram based on the average power and astigmatism values in the distance vision state in which the first lens element is moved 6.70 mm in the horizontal direction. In this state, the S frequency was ⁇ 4.00 D, and the prism was 2.73 on the in side.
  • FIG. 6B is a distribution diagram based on the average power and astigmatism values in the near vision state in which the first lens element is moved 6.70 mm in the horizontal direction in the eyeglass lens of Comparative Example 1.
  • Example 1 In this state, the S frequency was ⁇ 2.00 D, and the prism was 0.67 on the in side.
  • This comparative example 1 is different only in that it is not aspherical. Also in Example 1, astigmatism is not suppressed so much because the refractive powers of both lens elements are equal, but astigmatism does not occur largely because it is aspherical, and astigmatism in Comparative Example 2 does not occur. Is larger, and Example 1 is better in terms of astigmatism.
  • FIG. 7 is a distribution diagram based on the average power in the distance vision state at the reference position and the numerical value of astigmatism. In this state, the S frequency was ⁇ 4.00 D and the prism amount was 0.
  • FIG. 8 is a distribution diagram based on the average power and astigmatism values in the distance vision state in which each lens element is moved 6.70 mm in the horizontal direction. In this state, the S frequency was -2.00 D, and the prism was 0.02 on the in side.
  • FIG. 7 is a distribution diagram based on the average power in the distance vision state at the reference position and the numerical value of astigmatism. In this state, the S frequency was ⁇ 4.00 D and the prism amount was 0.
  • FIG. 8 is a distribution diagram based on the average power and astigmatism values in the distance vision state in which each lens element is moved 6.70 mm in the horizontal direction. In this state, the S frequency was -2.00 D, and the prism was 0.02 on the in side.
  • FIG. 7 is a distribution diagram
  • FIG. 9 is a distribution diagram based on the average power and astigmatism values in the distance vision state in which only the first lens element is moved 13.30 mm in the horizontal direction.
  • the S frequency was ⁇ 2.00 D
  • the prism was 1.34 on the in side.
  • the Alvarez coefficient (A) of the first and second lens elements is set to 0.00025 (that is, twice that of the fifth embodiment) in the setting conditions of the fifth embodiment.
  • the distance vision state at each of 1) the reference position, 2) both movements, and 3) the back fixed position was examined.
  • FIG. 10 is a distribution diagram based on the average power in the distance vision state at the reference position and the numerical value of astigmatism. In this state, the S frequency was ⁇ 4.00 D and the prism amount was 0.
  • FIG. 11 is a distribution diagram based on the average power and astigmatism values in the distance vision state in which each lens element is moved by 3.27 mm in the horizontal direction.
  • FIG. 12 is a distribution diagram based on the average power and astigmatism values in the distance vision state in which only the first lens element is moved 6.60 mm in the horizontal direction.
  • the S frequency was -2.00 D
  • the prism was 0.66 on the in side.
  • the movement amount in the sixth embodiment is half that of the fifth embodiment because the Alvarez coefficient is twice that of the fifth embodiment so that the lens power is the same as that in the fifth embodiment (here, -2D). This is because the amount of movement may be half. That is, here, if the movement amount is to be reduced, it can be realized by relatively increasing the Alvarez coefficient. In this case, since the movement amount is small, the prism amount is also reduced. However, increasing the Alvarez coefficient is disadvantageous in terms of astigmatism.
  • FIG. 13 is a distribution diagram based on the average power in the distance vision state at the reference position and the numerical value of astigmatism. In this state, the S frequency was ⁇ 4.00 D and the prism amount was 0.
  • FIG. 14 is a distribution diagram based on the average power and astigmatism values in the distance vision state in which each lens element is moved 6.60 mm in the horizontal direction.
  • FIG. 15 is a distribution diagram based on the average power and astigmatism values in the distance vision state in which only the first lens element is moved 13.30 mm in the horizontal direction. In this state, the S frequency was ⁇ 2.00 D, and the prism was 1.34 on the in side.
  • Comparative Example 4 In Comparative Example 4, the first lens element and the second lens element are not subjected to aspherical processing with the same curve size, Alvarez coefficient, and aspherical coefficient as in Example 6 as setting conditions.
  • the distance vision state at each of 1) the reference position, 2) both movements, and 3) the back fixed position was examined.
  • FIG. 16 is a distribution diagram based on the average power in the distance vision state at the reference position and the numerical value of astigmatism. In this state, the S frequency was ⁇ 4.00 D and the prism amount was 0.
  • FIG. 17 is a distribution diagram based on the average power and astigmatism values in the distance vision state in which each lens element is moved 3.30 mm in the horizontal direction.
  • FIG. 18 is a distribution diagram based on the average power and astigmatism values in the distance vision state in which only the first lens element is moved 6.50 mm in the horizontal direction. In this state, the S frequency was -2.00 D, and the prism was 0.66 on the in side.
  • the present invention can be modified and embodied as follows.
  • the simulation is performed in the case where there is no astigmatism power.
  • the astigmatism power is set, it is preferable to set the second lens element side in order to reduce astigmatism.
  • the above is an example of the sag function of the cubic surface and the aspherical sag function of the above embodiment, and other function expressions can be freely used.
  • An aspherical sag may be given only to the first lens element, or an aspherical sag may be given to both the first lens element and the second lens element.
  • the down prism may be increased when the lens element is moved from the distance power state to the near power state.
  • the direction in which the lens element is moved is the vertical direction. Further, both the in-prism and the down-prism may be increased. At this time, the direction in which the lens element is moved is an oblique direction. In addition, you may make it implement this Embodiment in another aspect.

Abstract

[Problem] To provide: an eyeglass lens that has a wider range of clear vision and is easier to use in relation to an eyeglass lens in which the spherical power can be changed by arranging two lens elements so as to overlap each other in the front-to-rear direction and by relatively sliding the lens elements with respect to each other; and bifocal eyeglasses equipped with such lenses. [Solution] Disclosed is an eyeglass lens in which a first lens element and a second lens element are arranged in parallel in the front-to-rear direction such that the optical axes thereof are parallel, and in which the S power can be changed by relatively moving the lens elements in opposite directions along a direction approximately orthogonal to the optical axes thereof. In this eyeglass lens: a curve expressed by the equation below is compounded, as an additional amount of sag, onto the object-side surface of the first lens element, which is arranged on the outside, and the eyeball-side surface of the second lens element, which is arranged on the inside; the two lens elements are arranged in parallel so as to match the x axis direction and the y axis direction of each lens element; the two lens elements can relatively move in opposite directions only along the x axis direction; and the front surface and/or the back surface of the respective lens elements are/is made aspherical. g(x,y)=(A/6)x3+(A/2)xy2 (wherein A≠0)

Description

眼鏡レンズ及び遠近両用眼鏡Eyeglass lenses and bifocal glasses
 本発明は2枚のレンズ素子を前後方向に重ね、それらレンズ素子を相対的にずらすことでS度数を変更することが可能な眼鏡レンズ及びそのようなレンズを搭載した遠近両用眼鏡に関するものである。 The present invention relates to a spectacle lens in which two lens elements are overlapped in the front-rear direction and the S power can be changed by relatively shifting the lens elements, and a bifocal spectacle equipped with such a lens. .
 従来から2枚のレンズ素子を組み合わせてユーザーの任意のS度数(球面度数)を設定する眼鏡が提案されている。例えば、下記非特許文献1には災害時や緊急時における眼鏡として開発されたアルバレスレンズを利用した眼鏡が開示されている。この眼鏡は左右それぞれ2枚のレンズ素子で構成された眼鏡であってツマミを回してそれらレンズをスライド移動させ、レンズの重なり度合いを調節して球面度数を変化させるものである。 Conventionally, spectacles for setting an arbitrary S power (spherical power) of a user by combining two lens elements have been proposed. For example, the following Non-Patent Document 1 discloses spectacles using an Alvarez lens developed as spectacles at the time of disaster or emergency. The spectacles are spectacles composed of two lens elements on the left and right sides, and the knobs are rotated to slide the lenses, and the degree of overlapping of the lenses is adjusted to change the spherical power.
 しかしながら、この非特許文献1の眼鏡レンズはあくまでも災害時や緊急時において本来の自分の眼鏡を紛失した場合等を想定しており、必ずしも使い勝手がよいとはいえないものである。この例ではS度数可変領域は-6D(ディオプター、以下略)から+3Dまでをカバーしており、収差補正もしていないため明視域が狭く眼鏡レンズとして満足できる性能ではない。しかし、このように2枚のレンズ素子をスライド移動させることで単焦点レンズとして使用しつつ遠用視する際と近用視する際に球面度数を変更して老視に対応することができる眼鏡レンズは遠近両用眼鏡に応用することで十分な需要を見込むことができるものである。そのため、この種の眼鏡レンズにおいて、より明視域が広くて使いやすい災害時や緊急時以外の日常においても十分使用可能な遠近両用眼鏡に適用できるものが求められていた。
 本発明は、このような従来の技術に存在する問題点に着目してなされたものである。本発明の目的は、2枚のレンズ素子を前後方向に重ねて相対的にずらすことで球面度数を変更することが可能な眼鏡レンズにおいて、より明視域が広く使いやすい眼鏡レンズ及びそのようなレンズを搭載した遠近両用眼鏡を提供することにある。
However, the spectacle lens of Non-Patent Document 1 is supposed to be used when the original spectacles are lost in a disaster or emergency, and is not necessarily easy to use. In this example, the S power variable region covers from −6D (diopter, hereinafter abbreviated) to + 3D, and since the aberration is not corrected, the clear vision region is narrow and the performance is not satisfactory as a spectacle lens. However, by sliding the two lens elements in this way, the spectacles can be used for presbyopia by changing the spherical power during near vision and near vision while using as a single focus lens. A lens can be expected to be in sufficient demand by applying it to bifocal glasses. For this reason, this type of spectacle lens has been required to be applicable to bifocal glasses that can be used in daily life other than disasters and emergencies that have a wider clear visual field and are easier to use.
The present invention has been made paying attention to such problems existing in the prior art. It is an object of the present invention to provide a spectacle lens that can change the spherical power by overlapping two lens elements in the front-rear direction and relatively shifting the spectacle lens, and a spectacle lens that has a wider clear visual field and is easy to use. The object is to provide bifocal glasses equipped with a lens.
 上記課題を解決するために手段1では、第1及び第2のレンズ素子を光軸が平行となるように前後方向に並列配置させ、光軸に対して近似的に直交する方向に相対的に逆方向に移動させてS度数を変更可能とした眼鏡レンズにおいて、外側に配置された前記第1のレンズ素子の物体側の面及び内側に配置された前記第2のレンズ素子の眼球側の面にはそれぞれxとyによって偏微分して得られる偏導関数gxyがyのみの関数または定数で表されるような同一又は異なる曲面の関数g(x、y)を付加サグ量として合成し、前記両レンズ素子をx軸方向にのみ相対的に逆方向に移動可能とするとともに、前記両レンズ素子の表裏少なくとも1つの面を非球面化して収差を低減させるようにしたことをその要旨とする。 In order to solve the above-described problem, in the first means, the first and second lens elements are arranged in parallel in the front-rear direction so that the optical axes are parallel, and relatively in a direction approximately orthogonal to the optical axis. In a spectacle lens that can be moved in the reverse direction to change the S power, the object-side surface of the first lens element arranged outside and the eyeball-side surface of the second lens element arranged inside Are combined as an additional sag amount with a function g (x, y) of the same or different curved surface such that the partial derivative g xy obtained by partial differentiation with x and y is a function or constant only of y. The gist of the invention is that both lens elements can be moved in the opposite direction only in the x-axis direction, and at least one surface of the both lens elements is aspherical to reduce aberrations. To do.
 また手段2では手段1の構成に加え前記第1及び第2のレンズ素子に付加サグ量として合成される3次曲面の関数g(x、y)は下記式で定義されることをその要旨とする。 Further, in the means 2, in addition to the structure of the means 1, a function g (x, y) of a cubic surface synthesized as an additional sag amount in the first and second lens elements is defined by the following expression. To do.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また手段3では手段1又は2の構成に加え、前記第1及び第2のレンズ素子に付加サグ量を合成するための基準となる面は球面、平面又は乱視面のいずれかの形状としたことをその要旨とする。
 また手段4では手段1~3のいずれかに記載の構成に加え、前記S度数の可変範囲は4D以内であることをその要旨とする。
Further, in the means 3, in addition to the structure of the means 1 or 2, the reference surface for synthesizing the additional sag amount with the first and second lens elements has a spherical shape, a flat surface, or an astigmatic surface. Is the gist.
Further, the gist of the means 4 is that the variable range of the S frequency is within 4D in addition to the structure described in any of the means 1 to 3.
 また手段5では手段1~4のいずれかに記載の構成に加え、前記第1及び第2のレンズ素子のいずれか一方を固定し、いずれか他方のみを移動可能としたことをその要旨とする。
 また手段6では手段5に記載の構成に加え、非球面設計は前記第1及び第2のレンズ素子のうち、固定する側の前記レンズ素子のみに実行されていることをその要旨とする。
 また手段7では手段5又は6に記載の構成に加え、乱視矯正設計は前記第1及び第2のレンズ素子のうち、固定する側の前記レンズ素子のみに実行されていることをその要旨とする。
 また手段8では手段5~7のいずれかに記載の構成に加え、前記第1及び第2のレンズ素子を透過する光線に関する屈折力をプラス側にシフトさせるような前記第1又は第2のレンズ素子の移動によるプリズム変化が、インプリズムの増加またはアウトプリズムの減少であることをその要旨とする。
 また手段9では手段5~8のいずれかに記載の構成に加え、前記第2のレンズ素子側を固定し、前記第1のレンズ素子側のみを移動可能としたことをその要旨とする。
 また手段10では手段1~9のいずれかに記載の構成に加え、上記手段1~11のいずれかに記載の遠近両用眼鏡に眼鏡レンズ搭載するようにしたことをその要旨とする。
Further, the gist of the means 5 is that, in addition to the structure described in any one of the means 1 to 4, one of the first and second lens elements is fixed and only the other is movable. .
Further, the gist of the means 6 is that, in addition to the configuration described in the means 5, the aspherical design is performed only on the lens element on the fixing side among the first and second lens elements.
Further, the gist of the means 7 is that, in addition to the configuration described in the means 5 or 6, the astigmatism correction design is performed only on the fixed lens element among the first and second lens elements. .
Further, in the means 8, in addition to the structure described in any one of means 5 to 7, the first or second lens that shifts the refractive power related to the light beam transmitted through the first and second lens elements to the plus side. The gist is that the prism change due to the movement of the element is an increase in the in-prism or a decrease in the out-prism.
Further, the gist of the means 9 is that, in addition to the configuration described in any one of the means 5 to 8, the second lens element side is fixed and only the first lens element side is movable.
The gist of the means 10 is that, in addition to the configuration described in any one of the means 1 to 9, a spectacle lens is mounted on the bifocal glasses described in any of the means 1 to 11.
 上記のように構成することで、第1及び第2のレンズ素子を光軸が平行となるように前後方向に並列配置させ、光軸に対して近似的に直交する方向に相対的に逆方向に移動させることで球面度数を変更することを可能とした眼鏡レンズにおいて、非点収差が少なく明視域が広いものを提供することが可能となる。
 ここに、水平方向をx軸方向、垂直方向をy軸方向として設定した際に、外側に配置された第1のレンズ素子の物体側の面及び内側に配置された第2のレンズ素子の眼球側の面にそれぞれ偏導関数gxy(x、y)がyのみの関数または定数で表されるような3次曲面の関数g(x、y)を付加サグ量として合成することが必要である。偏導関数gxy(x、y)とは、関数g(x、y)をxとyによって偏微分して得られる導関数である。
By configuring as described above, the first and second lens elements are arranged in parallel in the front-rear direction so that the optical axes are parallel, and are relatively opposite to the direction approximately orthogonal to the optical axis. It is possible to provide a spectacle lens having a small clear astigmatism and a wide clear viewing area, in which the spherical power can be changed by moving the lens to.
Here, when the horizontal direction is set as the x-axis direction and the vertical direction is set as the y-axis direction, the object-side surface of the first lens element arranged outside and the eyeball of the second lens element arranged inside It is necessary to synthesize a cubic surface function g (x, y) such that the partial derivative g xy (x, y) is represented by a function of y only or a constant on the side surface as an additional sag amount. is there. The partial derivative g xy (x, y) is a derivative obtained by partial differentiation of the function g (x, y) with x and y.
 ここで、偏導関数gxy(x、y)がyのみの関数または定数で表されることが条件になる理由を説明する。
S度数・C度数・乱視軸で表されるすべての度数は、平均度数をあらわすmdp成分と、水平垂直方向の乱視度数であり平均度数が0DであるJ00成分と、45度斜め方向の乱視度数であり平均度数が0DであるJ45成分の、ジャクソンクロスシリンダの3成分に分離して表すことができる。
 ここで、2つのレンズ素子に配置された3次曲面によって生ずるJ00成分とJ45成分について説明する。それぞれの3次曲面は、いたるところにおいて面乱視のJ00成分とJ45成分の値がx座標によらずy座標のみによって定まるという特性を持つ必要がある。それは、2つのレンズ素子を相対的にx軸方向に移動させて利用するからである。そして、2つのレンズ素子を相対的にx軸方向に移動させるときに乱視を発生させないことが必要である。
 仮にJ00成分またはJ45成分の値がx座標によって異なる値であったとすると、2つのレンズ素子を透過する光線に関する屈折力のJ00成分またはJ45成分の値が、レンズ素子をx軸方向に移動することによって変化してしまう。これは乱視度数の変動を意味するので、レンズ素子がそのような曲面をもつ場合は本発明から排除される。
 一方、面乱視のJ00成分とJ45成分の値がy座標によって異なっていても、ある光線が2つの面を透過するときの対応する2点はy座標が近似的に等しい(光線が光軸に対して傾いていても、レンズ素子の厚さが十分に薄ければ対応する2点のy座標の差は小さい)ので、面乱視は相殺される。仮に2つのレンズ素子の3次曲面の式が異なっていた場合であっても、対応する2点の面乱視によって透過光線に生じる乱視度数は、レンズ素子をx軸方向に移動しても変化せず一定である。
 面乱視のJ00成分とは、水平方向の屈折力と垂直方向の屈折力の差である。それはxで2階偏微分した導関数の値とyで2階偏微分した導関数の値との差に比例するものであり、その差の値がx座標によらずy座標のみによって定まるようにする。
 面乱視のJ45成分とは、斜め45度方向の屈折力と斜め135度方向の屈折力の差である。それはxとyで偏微分した導関数の値に比例するものであり、その値がx座標によらずy座標のみによって定まるようにする。
 ここで、J45成分がxとyで偏微分した導関数の値に比例する理由を説明する。面形状を表すある関数f(x、y)=Axy、A>0を想定すると、関数fの値はy=xの直線上においてx=y=0の原点から離れるに従って距離の2乗に比例して増大する正の値となり、y=-xの直線上においてx=y=0の原点から離れるに従って距離の2乗に比例して減少する負の値となる。このような面は面屈折力の平均値は0であり、軸が斜め方向の面乱視をもつ。その面乱視の強さはAに比例する。
 具体的には、それぞれの3次曲面の偏導関数
g(x、y)/∂x-∂g(x、y)/∂y
及び
g(x、y)/∂x∂y
がyのみの関数又は定数であることが必要な条件である。但し、ここで「x座標と無関係でy座標のみによって定まる」「いたるところで一定である」とは近似的な意味であり、レンズ周辺領域において許容できる程度の誤差が発生することは構わない。
Here, the reason why the partial derivative g xy (x, y) is expressed by a function or constant only of y will be described.
All power represented by S degrees · C power-astigmatic axis, and mdp component representing the mean power, and J 00 component is the average power is an astigmatic power in the horizontal vertical 0D, 45 ° oblique astigmatism mean power is power is J 45 component is 0D, can be represented is separated into three components of Jackson cross cylinder.
Here, J 00 component and J 45 component caused by 3-dimensional curved surface which is arranged in two lens elements will be described. Each of the three-dimensional curved surface is required to have the property that the value of J 00 component and J 45 component surface astigmatism in everywhere is determined only by the y coordinate regardless of the x coordinate. This is because the two lens elements are used while being relatively moved in the x-axis direction. And it is necessary not to generate astigmatism when the two lens elements are relatively moved in the x-axis direction.
Assuming that the value of J 00 component or J 45 component was different values by the x-coordinate, the value of J 00 component or J 45 components of power related to light transmitted through the two lens elements are lens elements x axis direction It will change by moving to. This means a variation in the power of astigmatism and is excluded from the present invention when the lens element has such a curved surface.
On the other hand, even if the value of J 00 component and J 45 component of the surface astigmatism differ by y coordinate, corresponding two points y coordinates are equal to approximately (rays of light when there light passes through the two surfaces Even if the lens element is tilted with respect to the axis, if the lens element is sufficiently thin, the difference between the y-coordinates of the two corresponding points is small. Even if the expressions of the cubic surfaces of the two lens elements are different, the astigmatism power generated in the transmitted light beam by the corresponding two-point surface astigmatism does not change even if the lens element is moved in the x-axis direction. It is constant.
The J 00 component surface astigmatism, which is the difference in the refractive power in the horizontal direction of the refractive power and the vertical direction. It is proportional to the difference between the value of the derivative that is second-order partial differentiated by x and the value of the derivative that is second-order partially differentiated by y, so that the value of the difference is determined only by the y coordinate regardless of the x coordinate. To.
The J 45 component of surface astigmatism is the difference between the refractive power in the oblique 45 degree direction and the refractive power in the oblique 135 degree direction. It is proportional to the value of the derivative obtained by partial differentiation with respect to x and y, and the value is determined only by the y coordinate, not by the x coordinate.
Here, the reason why the J45 component is proportional to the derivative value obtained by partial differentiation with respect to x and y will be described. Assuming a certain function f (x, y) = Axy, A> 0 representing the surface shape, the value of the function f is proportional to the square of the distance as the distance from the origin of x = y = 0 on the straight line y = x. It becomes a positive value that increases and becomes a negative value that decreases in proportion to the square of the distance as it moves away from the origin of x = y = 0 on the line y = −x. Such a surface has an average value of surface refractive power of 0, and has an astigmatism in which the axis is oblique. The strength of the surface astigmatism is proportional to A.
Specifically, the partial derivatives of each of the three-dimensional curved surface ∂ 2 g (x, y) / ∂x 2 -∂ 2 g (x, y) / ∂y 2
And ∂ 2 g (x, y) / ∂x∂y
Is a function or constant that is only y. However, “unrelated to the x coordinate and determined only by the y coordinate” and “constant everywhere” are approximate meanings, and an allowable error may occur in the lens peripheral region.
 3次曲面の関数g(x、y)として、具体的には例えば上記数1の式で示すものが考えられる。数1では導関数は、
g(x、y)/∂x-∂g(x、y)/∂y=0
g(x、y)/∂x∂y=Ay
であり、上記の条件を満たす。
 また、第1のレンズを固定して第2のレンズを耳側に移動させる場合には第1のレンズにおいて3次曲面は瞳位置を基準に耳側が前方に凸となるような曲面であることがよい(例えば図19(a)~図20(b)の説明図のようなイメージ)。この場合には当然第2のレンズにおいて3次曲面面は鼻側が後方に凸となる。
 また、第1及び第2のレンズ素子の向かい合った面を完全に密着させながら両者をスライド移動させる必要があり、そのため向かい合った面は平面あるいは同カーブの球面で構成されなければならない。
As the cubic surface function g (x, y), specifically, for example, the one represented by the above equation (1) can be considered. In equation 1, the derivative is
2 g (x, y) / ∂ x 2 −∂ 2 g (x, y) / ∂ y 2 = 0
2 g (x, y) / ∂x∂y = Ay
And satisfies the above conditions.
Further, when the first lens is fixed and the second lens is moved to the ear side, the cubic surface of the first lens is a curved surface with the ear side convex forward with respect to the pupil position. (For example, an image like the explanatory diagram of FIGS. 19A to 20B). In this case, of course, the third curved surface of the second lens is convex rearward on the nose side.
Further, it is necessary to slide both the first and second lens elements facing each other while completely contacting each other. For this reason, the facing surfaces must be formed of a flat surface or a spherical surface having the same curve.
 前記第1及び第2のレンズ素子に付加サグ量を合成するための基準となる面は球面、平面又は乱視面のいずれかの形状であることがレンズ設計上の容易性から好ましい。
 2つのレンズ素子のどちらかのベース形状が、それを透過する光線に関して屈折力を生じる場合、これをベース屈折力と呼ぶこととする。ベース屈折力がレンズ面上の場所によって一定でない場合には、そのレンズ素子の移動にともなってベース屈折力の分布が変化する。レンズ面上の各点において断面方向別の屈折力が変化すると、その点における乱視度数が変化することになるが、本発明ではレンズ素子の移動にともなって乱視度数が変化することは好ましくないので、レンズ素子の移動にともなってベース屈折力の分布が大きく変わることは好ましくない。以上のことから、ベース屈折力は各断面方向それぞれについてできるだけ一定であることが好ましい。ただし、異なる断面方向に関して屈折力が異なることは構わない。たとえば両面がトリック面、あるいは片面球面で片面トリック面であるような乱視レンズはそのようなベース形状になりうる。
 また、これらの面にx1次、y1次の式で表される傾きの要素を加えたものもベース形状になりうる。
 また、y座標が一定でx軸方向に沿った方向、すなわちy=定数で表される直線上においてベース屈折力が各断面方向それぞれについて一定であれば、y座標が異なる点同士では各断面方向のベース屈折力が異なっても、2つのレンズ素子をx軸方向に相対移動したときに屈折力の変化を生じない。したがって、x0次であれば、y3次以上のいかなる項も、またxを含まないyだけの特殊関数であっても、滑らかでありさえすればベース形状に加えることができる。
 また、第1及び第2のレンズ素子の付加サグ量を合成する前の形状(ベース形状)は同一でも異なっていても構わない。第2のレンズ素子の屈折力を第1のレンズ素子の屈折力よりも大きくするような場合ではベース形状は自ずと異なることとなる。
The reference surface for synthesizing the additional sag amount with the first and second lens elements is preferably a spherical surface, a flat surface, or an astigmatic surface in terms of ease of lens design.
If the base shape of either of the two lens elements produces a refracting power with respect to light rays that pass through it, this is referred to as the base refracting power. When the base refractive power is not constant depending on the location on the lens surface, the distribution of the base refractive power changes as the lens element moves. If the refractive power for each cross-sectional direction changes at each point on the lens surface, the astigmatism power at that point changes, but in the present invention, it is not preferable that the astigmatism power change as the lens element moves. It is not preferable that the distribution of the base refractive power changes greatly with the movement of the lens element. From the above, it is preferable that the base refractive power is as constant as possible in each cross-sectional direction. However, it does not matter that the refractive powers are different for different cross-sectional directions. For example, an astigmatic lens having both sides as a trick surface, or a single-sided spherical surface and a one-sided trick surface can have such a base shape.
Further, a shape obtained by adding an element of inclination represented by the x1st order and y1th order equations to these surfaces can also be a base shape.
Also, if the y-coordinate is constant and the base refractive power is constant for each cross-sectional direction on the direction along the x-axis direction, i.e., on the straight line represented by y = constant, the cross-sectional directions are different at points where the y-coordinate is different Even if the base refractive powers of the two lenses are different, the refractive power does not change when the two lens elements are relatively moved in the x-axis direction. Therefore, if it is the x0th order, any term higher than the y3th order can be added to the base shape as long as it is smooth even if it is a special function of only y not including x.
Further, the shapes (base shapes) before the addition sag amounts of the first and second lens elements are combined may be the same or different. In the case where the refractive power of the second lens element is larger than the refractive power of the first lens element, the base shape is naturally different.
 また、S度数を変更させる場合には無限遠方から手前25cm程度の間をカバーする屈折力の変化に限定するほうがレンズ設計において無理が生じずに収差発生を抑制することができる。そのような屈折力とするためにS度数の可変範囲を4D以内とすることが好ましい。 In addition, when changing the S power, it is possible to suppress the occurrence of aberrations without causing unreasonableness in the lens design by limiting to the change of the refractive power covering from about infinity to about 25 cm in front. In order to obtain such refractive power, it is preferable that the variable range of the S power is within 4D.
 S度数を変化させる際には前記第1及び第2のレンズ素子のいずれか一方を固定し、いずれか他方のみを移動させるようにすることが好ましい。眼鏡フレームに保持させる際に両方移動させるよりも片方を固定しておくほうが機構的にシンプルとなるからである。
 しかし、片方のレンズ素子のみの移動をさせる場合にはいくつかの問題がある。まず、両方のレンズ素子を均等に移動させる場合に比べて、非点収差が大きくなる傾向となる。片方のレンズ素子のみの移動をさせる場合は、移動前に光学的に使用していなかった領域から大きく離れた部位を使用することになり、離れた領域においては付加する3次曲面のサグ量が大きくなるため、その面を透過する光線が近似的なふるまいをする状態から離れ、非点収差を含む高次収差が大きくなる傾向となるためである。
しかし、本発明では上記のように非球面化をおこなっているため、非点収差は緩和される。
 また、片方のレンズ素子のみの移動をさせる場合にはプリズム発生の問題がある。今、図19(a)の状態から図19(b)のように、眼の瞳孔位置において同じ曲面形状の第1及び第2のレンズ素子を等量移動させたとする。この場合では両レンズ素子の曲面の傾斜が平行に配置されるため、理論的にはプリズムは生じない。
 しかし、図20(a)及び(b)のように一方のレンズ素子を固定し(ここでは眼球側)、他方のレンズ素子(ここでは物体側)のみを移動させた場合には対応する両レンズ素子の曲面の傾斜が一致しないため、プリズムが発生することとなる。そのため、一方のレンズ素子を固定する場合にはプリズムを小さく抑制する必要がある。例えば、プリズムが小さくなるように3次曲面の関数g(x、y)を設計する必要がある。
 また、プリズムの抑制手段として、固定する側のレンズ素子の屈折力を移動させる側のレンズ素子の屈折力よりも大きく設定することが考えられる。これは次のような理由からである。
 レンズが屈折力をもつということは、プリズムの分布をもつことに相当する。例えばマイナス度数をもつレンズにおいて中心のプリズムが0であったとすると、その中心から離れた位置においてはレンズ周辺方向をベース方向とする(レンズ周辺方向がより厚い形状の)プリズムがある。そのプリズム量はレンズの中心から離れるほうど大きくなる。また、発生するプリズム量はレンズの度数に比例する。そのようなレンズを眼に対して移動させると、装用者の眼に感じられるプリズム量が変化する。従って、片方のレンズ素子のみを移動するのであれば、移動させるほうのレンズ素子が中心以外の領域においてできるだけプリズム量を小さい状態にすることが好ましい。
 また、固定する側のレンズ素子は眼球側(後ろ側)の第2のレンズ素子側であることが好ましい。移動させる側のレンズが物体側であれば眼鏡フレームのツルに当たらないからである。
When changing the S power, it is preferable to fix one of the first and second lens elements and move only the other. This is because it is mechanically simple to fix one rather than move both when it is held on the spectacle frame.
However, there are some problems when only one lens element is moved. First, astigmatism tends to be larger than when both lens elements are moved uniformly. When only one lens element is moved, a part far away from the optically unused area before the movement is used, and the sag amount of the cubic curved surface to be added in the separated area is This is because the light beam transmitted through the surface tends to move away from an approximate behavior, and higher-order aberrations including astigmatism tend to increase.
However, in the present invention, astigmatism is mitigated because the aspherical surface is formed as described above.
Also, when only one lens element is moved, there is a problem of prism generation. Now, assume that the same amount of the first and second lens elements having the same curved shape are moved from the state of FIG. 19A to the pupil position of the eye as shown in FIG. 19B. In this case, since the slopes of the curved surfaces of both lens elements are arranged in parallel, no prism is theoretically generated.
However, when one lens element is fixed (here, the eyeball side) and only the other lens element (here, the object side) is moved as shown in FIGS. Since the slopes of the curved surfaces of the elements do not match, prisms are generated. Therefore, when fixing one lens element, it is necessary to suppress the prism small. For example, it is necessary to design the function g (x, y) of the cubic surface so that the prism becomes small.
Further, it is conceivable to set the refractive power of the lens element on the fixing side to be larger than the refractive power of the lens element on the moving side as the prism suppressing means. This is for the following reason.
The fact that the lens has refractive power corresponds to having a prism distribution. For example, if the central prism is 0 in a lens having a minus power, there is a prism having a lens peripheral direction as a base direction (a thicker lens peripheral direction) at a position away from the center. The amount of prism increases as the distance from the center of the lens increases. The amount of prism generated is proportional to the lens power. When such a lens is moved with respect to the eye, the amount of prism felt by the wearer's eyes changes. Therefore, if only one lens element is moved, it is preferable to make the amount of prism as small as possible in a region other than the center of the lens element to be moved.
Further, it is preferable that the lens element on the fixing side is the second lens element side on the eyeball side (rear side). This is because if the lens to be moved is on the object side, it does not hit the temple of the spectacle frame.
 また、非球面設計や乱視矯正設計は固定する側のレンズ素子のみに実行されることが好ましい。これらの設計は瞳孔位置が固定されていることを前提に設計されるものであるためである。例えば乱視矯正設計においては乱視軸方向が決められるが、そもそも乱視軸は必ずレンズの幾何中心を通過することを前提とするにも関わらず、移動する側のレンズ素子に乱視軸を設定した場合、非球面による光学的な効果の分布が眼に対してずれてしまうこととなる。更に乱視の度数が眼に対して移動するということは、ある方向の断面屈折力に随伴して存在する「中心から離れた位置におけるプリズム」が移動することとなってしまうからである。
 また、移動する側の前記レンズ素子の移動によって発生するプリズムがインプリズムとなるように第1及び第2のレンズ素子が配置されることが好ましい。これを図20(a)及び(b)並びに図21に基づいて説明する。図20(a)及び(b)では左眼に対して外側となる第1のレンズ素子の物体側の面に形成された3次曲面は耳側が厚く、鼻側が薄くなるようなカーブ面である。一方、第2のレンズ素子の眼球側の面に形成された3次曲面は逆に鼻側が厚く、耳側が薄くなるようなカーブ面である。このような配置状態で図20(a)から第1のレンズ素子を耳側に移動させると(図20(b)の状態)、左眼に対するインプリズムが発生することとなる。基本的にはプリズムは抑制されるべきであるが、図21のようにインプリズムは近用視の際の輻輳を楽に行わせる作用があるため、必ずしも眼鏡レンズとして不利なわけではない。そのため、一方のレンズ素子を固定する場合にプリズムの発生が避けられないならば、このようにインプリズムとなるように第1及び第2のレンズ素子を移動させることが好ましい。その場合には第2のレンズ素子側固定することがよい。図20(a)及び(b)においては第1のレンズ素子を耳側に移動させるとインプリズムとなったが、もちろん3次曲面のカーブ特性が逆になれば鼻側に移動させることでインプリズムとなる。
Further, it is preferable that the aspherical design and the astigmatism correction design are performed only on the lens element on the fixed side. This is because these designs are designed on the assumption that the pupil position is fixed. For example, in the astigmatism correction design, the astigmatism axis direction is determined. The distribution of the optical effect due to the aspherical surface is shifted with respect to the eye. Furthermore, the fact that the power of astigmatism moves with respect to the eye means that the “prism at a position away from the center” that exists accompanying the cross-sectional refractive power in a certain direction moves.
Further, it is preferable that the first and second lens elements are arranged so that a prism generated by the movement of the moving lens element becomes an in-prism. This will be described with reference to FIGS. 20A and 20B and FIG. In FIGS. 20A and 20B, the cubic curved surface formed on the object side surface of the first lens element that is outside the left eye is a curved surface that is thick on the ear side and thin on the nose side. . On the other hand, the cubic curved surface formed on the eyeball side surface of the second lens element is a curved surface that is thick on the nose side and thin on the ear side. When the first lens element is moved to the ear side from FIG. 20A in such an arrangement state (state of FIG. 20B), an in-prism for the left eye is generated. Basically, the prism should be suppressed. However, as shown in FIG. 21, the in-prism has an effect of easily performing convergence in near vision, and thus is not necessarily disadvantageous as a spectacle lens. Therefore, if the generation of a prism is unavoidable when one lens element is fixed, it is preferable to move the first and second lens elements so as to be an in-prism. In that case, the second lens element side is preferably fixed. In FIGS. 20A and 20B, the first lens element is moved into the in-prism when moved to the ear side. However, if the curve characteristic of the cubic surface is reversed, it is moved to the nose side. It becomes a prism.
 本発明では、2枚のレンズ素子を前後方向に重ねて相対的にずらすことで球面度数を変更することが可能な眼鏡レンズを搭載した遠近両用眼鏡において明視域が広く使いやすくなる。 In the present invention, the clear vision range is wide and easy to use in the bifocal glasses equipped with the spectacle lens in which the spherical power can be changed by overlapping and shifting the two lens elements in the front-rear direction.
(a)及び(b)はそれぞれ実施例1における平均度数と非点収差の分布図である。(a) And (b) is a distribution map of the average power and astigmatism in Example 1, respectively. (a)及び(b)はそれぞれ実施例2における平均度数と非点収差の分布図である。(a) And (b) is a distribution map of the average power and astigmatism in Example 2, respectively. (a)及び(b)はそれぞれ実施例3における平均度数と非点収差の分布図である。(a) And (b) is a distribution map of the average power and astigmatism in Example 3, respectively. (a)及び(b)はそれぞれ実施例4における平均度数と非点収差の分布図である。(a) And (b) is a distribution map of the average power and astigmatism in Example 4, respectively. (a)及び(b)はそれぞれ比較例1における平均度数と非点収差の分布図である。(a) And (b) is a distribution map of the average power and astigmatism in the comparative example 1, respectively. (a)及び(b)はそれぞれ比較例2における平均度数と非点収差の分布図である。(a) And (b) is a distribution map of the average power and astigmatism in the comparative example 2, respectively. 実施例5における基準位置での平均度数と非点収差の分布図である。6 is a distribution diagram of average power and astigmatism at a reference position in Example 5. FIG. 実施例5における両方のレンズ素子を等距離移動させた状態の平均度数と非点収差の分布図である。FIG. 10 is a distribution diagram of average power and astigmatism when both lens elements in Example 5 are moved equidistantly. 実施例5における第2のレンズ素子を固定した状態の平均度数と非点収差の分布図である。FIG. 10 is a distribution diagram of average power and astigmatism when the second lens element in Example 5 is fixed. 実施例6における基準位置での平均度数と非点収差の分布図である。10 is a distribution diagram of average power and astigmatism at a reference position in Example 6. FIG. 実施例6における両方のレンズ素子を等距離移動させた状態の平均度数と非点収差の分布図である。FIG. 10 is a distribution diagram of average power and astigmatism in a state where both lens elements in Example 6 are moved equidistantly. 実施例6における第2のレンズ素子を固定した状態の平均度数と非点収差の分布図である。FIG. 10 is a distribution diagram of average power and astigmatism in a state where the second lens element in Example 6 is fixed. 比較例3における基準位置での平均度数と非点収差の分布図である。10 is a distribution diagram of average power and astigmatism at a reference position in Comparative Example 3. FIG. 比較例3における両方のレンズ素子を等距離移動させた状態の平均度数と非点収差の分布図である。FIG. 10 is a distribution diagram of average power and astigmatism when both lens elements in Comparative Example 3 are moved by an equal distance. 実比較例3における第2のレンズ素子を固定した状態の平均度数と非点収差の分布図である。FIG. 10 is a distribution diagram of average power and astigmatism in a state where the second lens element is fixed in an actual comparative example 3. 比較例4における基準位置での平均度数と非点収差の分布図である。10 is a distribution diagram of average power and astigmatism at a reference position in Comparative Example 4. FIG. 比較例4における両方のレンズ素子を等距離移動させた状態の平均度数と非点収差の分布図である。FIG. 10 is a distribution diagram of average power and astigmatism when both lens elements in Comparative Example 4 are moved equidistantly. 実比較例4における第2のレンズ素子を固定した状態の平均度数と非点収差の分布図である。FIG. 10 is a distribution diagram of average power and astigmatism in a state where the second lens element in an actual comparative example 4 is fixed. (a)は移動前、(b)は移動後において同じ特性の曲面を有する同じ屈折力のレンズ素子を逆方向に等量移動させる場合を説明する説明図。(A) is explanatory drawing explaining the case where the lens element of the same refractive power which has a curved surface of the same characteristic is moved by an equal amount in the reverse direction before the movement, (b). (a)は移動前、(b)は移動後において同じ特性の曲面を有する同じ屈折力のレンズ素子の一方のみを移動させる場合を説明する説明図。(A) is explanatory drawing explaining the case where only one of the lens elements of the same refractive power which have the curved surface of the same characteristic after movement and (b) after movement is moved. インプリズムの発生によって透過光が内側に屈折することを説明する説明図。Explanatory drawing explaining that transmitted light is refracted inside by generation | occurrence | production of an in prism.
 1.眼鏡の構造について
 実施の形態の眼鏡レンズは実際にはフレームに搭載して遠近両用眼鏡として使用するものである。眼鏡レンズはメニスカスレンズ形状であって、以下のすべての実施例で直径50mmで素材屈折率1.600のものを使用した。外側に配置された第1のレンズ素子と内側に配置された第2のレンズ素子は所定の球面形状の(非球面であってはいけない)ベースカーブ面で面接触されている。両レンズ素子は共にx軸方向が水平となるようにフレームに搭載されている。レンズ素子の移動手段としては、例えばレンズに固定されたラックに対してギア(ピニオン)を手動で回動させてフレームに対して左右に移動させるような方法が考えられる。以下の実施例及び比較例ではいずれも第1及び第2のレンズ素子のx軸方向及びy軸方向を一致させ、更に第1及び第2のレンズ素子の外周が一致する位置を基準位置としてx軸方向に移動させる場合についての光学特性を検証した。
 2.実施例
 以下、本発明の具体的な実施例を図面に基づいて説明する。以下の各実施例は球面サグ関数として、
1. Regarding the structure of eyeglasses The eyeglass lens of the embodiment is actually mounted on a frame and used as bifocal glasses. The spectacle lens had a meniscus lens shape, and in all the following examples, a lens having a diameter of 50 mm and a material refractive index of 1.600 was used. The first lens element arranged on the outside and the second lens element arranged on the inside are in surface contact with a base curve surface having a predetermined spherical shape (which must not be an aspheric surface). Both lens elements are mounted on the frame so that the x-axis direction is horizontal. As a means for moving the lens element, for example, a method is conceivable in which a gear (pinion) is manually rotated with respect to a rack fixed to the lens and moved left and right with respect to the frame. In the following examples and comparative examples, the x-axis direction and the y-axis direction of the first and second lens elements are made to coincide with each other, and the position where the outer peripheries of the first and second lens elements coincide with each other is set as the reference position The optical characteristics in the case of moving in the axial direction were verified.
2. EXAMPLES Hereinafter, specific examples of the present invention will be described with reference to the drawings. Each of the following examples is a spherical sag function.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
とし、第1のレンズ素子の物体側の面及び内側に配置された第2のレンズ素子の眼球側の面に与える3次曲面のサグ関数を上記数1の式とする。
 また、実施例1~4における非球面化のサグ関数を以下の数3の式と数4の式とする。数3の式は回転非対称非球面の非球面サグを与える関数式であり、数4の式は回転対称非球面の非球面サグを与える関数式である。実施例1~4では両方の式の結果を加算して非球面サグを与えるものとする。
 また、実施例5及び6における非球面化のサグ関数を以下の数5~数7の式とする。実施例5及び6では3つの式の結果を加算して非球面サグを与えるものとする。
And a sag function of a cubic surface given to the object-side surface of the first lens element and the eyeball-side surface of the second lens element arranged on the inner side is represented by the above equation (1).
In addition, the aspherical sag functions in Examples 1 to 4 are represented by the following equations (3) and (4). Equation 3 is a functional equation that gives an aspherical sag of a rotationally asymmetric aspheric surface, and Equation 4 is a functional equation that gives an aspherical sag of a rotationally symmetric aspheric surface. In Examples 1 to 4, the result of both equations is added to give an aspherical sag.
In addition, the aspherical sag function in Examples 5 and 6 is expressed by the following equations 5 to 7. In Examples 5 and 6, the results of the three expressions are added to give an aspherical sag.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 尚、以下では係数Aをアルバレス係数と呼ぶこととする。
 以下の実施例ではこれらの関数で与えられる合成曲面をベース形状に付加するシミュレーションを行いレンズを設計し、平均度数と非点収差を算出した。
Hereinafter, the coefficient A is referred to as an Alvarez coefficient.
In the following example, a lens was designed by adding a synthetic curved surface given by these functions to the base shape, and the average power and astigmatism were calculated.
(実施例1)
 実施例1では第2のレンズ素子を固定して、第1のレンズ素子のみを移動させるものとする。また、遠用視状態から近用視状態への移行の際の第1のレンズ素子の移動方向は耳側方向とする。
 実施例1の眼鏡レンズの設定条件は以下の通りである。3次曲面は第1のレンズ素子において瞳位置を基準に耳側が前方に凸となるように配置する。以下の各実施例及び比較例も同様である。実施例1では非球面のサグは第2のレンズ素子の裏面側にのみ与えている。
 第1のレンズ素子
 表カーブ0、裏カーブ0(1.523換算)
 アルバレス係数(A)0.0005
 第2のレンズ素子
 表カーブ0、裏カーブ0(1.523換算)
 アルバレス係数(A)0.0005
 hA(r)の各項の非球面係数
4次の項:4×10-7、5次の項:-4×10-9、6次の項:1×10-12、8次の項:1×10-15
 hB(r)の各項の非球面係数
4次の項:1.5×10-7、5次の項:1.5×10-9、6次の項:0、8次の項0
(Example 1)
In Example 1, it is assumed that the second lens element is fixed and only the first lens element is moved. The moving direction of the first lens element during the transition from the far vision state to the near vision state is the ear side direction.
The setting conditions of the eyeglass lens of Example 1 are as follows. The cubic curved surface is arranged so that the ear side is convex forward with respect to the pupil position in the first lens element. The following examples and comparative examples are the same. In Example 1, the aspherical sag is provided only on the back surface side of the second lens element.
First lens element Front curve 0, back curve 0 (1.523 conversion)
Alvarez coefficient (A) 0.0005
Second lens element Front curve 0, back curve 0 (1.523 conversion)
Alvarez coefficient (A) 0.0005
Aspheric coefficient of each term of hA (r) 4th order term: 4 × 10 −7 , 5th order term: −4 × 10 −9 , 6th order term: 1 × 10 −12 , 8th order term: 1 × 10 −15
Aspheric coefficient of each term of hB (r) 4th order term: 1.5 × 10 −7 , 5th order term: 1.5 × 10 −9 , 6th order term: 0, 8th order term 0
 図1(a)は実施例1の眼鏡レンズにおいて第1のレンズ素子を水平方向に13.5mm移動させた遠用視状態の平均度数と非点収差の数値に基づく分布図である。太い等高線は1D刻みで、細い等高線は0.25D刻みである(以下の実施例、比較例でも同様)。この状態でS度数は-4.00Dとされ、プリズムはイン側に2.73であった。若干高めのプリズムである。
 また、図1(b)は同じく第1のレンズ素子を水平方向に6.70mm移動させた状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-2.00Dとされ、プリズムはイン側に0.67であった。イン側にこの程度のプリズムが発生することは問題がない。第2のレンズ素子を固定しているため、非点収差が大きくなる傾向になるのであるが、この実施例1では第2のレンズ素子を非球面化しているため後述する比較例2に対して平均度数も非点収差もいずれ好結果が得られた。
FIG. 1A is a distribution diagram based on the average power and astigmatism values in the distance vision state in which the first lens element is moved 13.5 mm in the horizontal direction in the eyeglass lens of the first embodiment. Thick contour lines are in 1D increments, and thin contour lines are in 0.25D increments (the same applies to the following examples and comparative examples). In this state, the S frequency was −4.00 D, and the prism was 2.73 on the in side. It is a slightly higher prism.
FIG. 1B is a distribution diagram based on the average power and astigmatism values in a state where the first lens element is moved 6.70 mm in the horizontal direction. In this state, the S frequency was −2.00 D, and the prism was 0.67 on the in side. It is not a problem that such a prism is generated on the in side. Since the second lens element is fixed, the astigmatism tends to increase. However, in Example 1, since the second lens element is aspherical, the second lens element is compared with Comparative Example 2 described later. Good results were obtained for both the average power and astigmatism.
(実施例2)
 実施例2では両方のレンズ素子を互いに逆方向に等距離移動させるものとする。また、非球面のサグは第2のレンズ素子の裏面側にのみ与えている。
 実施例2の眼鏡レンズの設定条件は次の通りである。
 第1のレンズ素子
 表カーブ0、裏カーブ0(1.523換算)
 アルバレス係数(A)0.0005
 第2のレンズ素子
 表カーブ0、裏カーブ2(1.523換算)
 アルバレス係数(A)0.0005
 hA(r)の各項の非球面係数
4次の項:4×10-7、5次の項:-4×10-9、6次の項:1×10-12、8次の項:1×10-15
 hB(r)の各項の非球面係数
4次の項:1×10-7、5次の項:1×10-9、6次の項:0、8次の項0
(Example 2)
In the second embodiment, both lens elements are moved equidistantly in opposite directions. Further, the aspherical sag is given only to the back side of the second lens element.
The setting conditions of the spectacle lens of Example 2 are as follows.
First lens element Front curve 0, back curve 0 (1.523 conversion)
Alvarez coefficient (A) 0.0005
Second lens element Front curve 0, back curve 2 (1.523 equivalent)
Alvarez coefficient (A) 0.0005
Aspheric coefficient of each term of hA (r) 4th order term: 4 × 10 −7 , 5th order term: −4 × 10 −9 , 6th order term: 1 × 10 −12 , 8th order term: 1 × 10 −15
Aspherical coefficient of each term of hB (r) 4th order term: 1 × 10 −7 , 5th order term: 1 × 10 −9 , 6th order term: 0, 8th order term 0
 図2(a)は両方のレンズ素子を水平方向にそれぞれ3.36mm(トータルで6.70mm弱)移動させた遠用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-4.00Dとされ、プリズムはアウト側に0.67であった。アウトプリズムは好ましくないがこの場合には両レンズ素子を互いに逆方向に180度回転させて使用すればカーブの向きが逆になってプリズムはイン側に発生するので問題はない。
 また、図2(b)は実施例2の眼鏡レンズにおいて両レンズ素子をずらさずに一致させた基準位置における近用視状態の平均度数と非点収差の数値に基づく分布図である。実施例2では第1のレンズ素子の屈折力を0Dとし第2のレンズ素子の屈折力を2Dとしている。つまり、両レンズ素子をずらしていない状態でS度数は-2.00Dとされる。プリズムは0であった。
 両方のレンズ素子を等距離移動させているにもかかわらずプリズムが発生するのは両レンズ素子の屈折力が不均衡だからである。
 この実施例2では両レンズ素子を等距離移動させているため実施例1のような第2のレンズ素子を固定した場合に発生する非点収差は改善されるものの、両レンズ素子の屈折力が不均衡性から生じる非点収差が発生することとなる。しかし、非球面化しているためトータルとして非点収差が改善されている。
FIG. 2A is a distribution diagram based on the average power and astigmatism values in the distance vision state in which both lens elements are moved in the horizontal direction by 3.36 mm (totally less than 6.70 mm), respectively. In this state, the S frequency was −4.00 D, and the prism was 0.67 on the out side. Although an out prism is not preferable, in this case, if both lens elements are rotated 180 degrees in opposite directions, the direction of the curve is reversed and the prism is generated on the in side, so there is no problem.
FIG. 2B is a distribution diagram based on the average power in the near vision state and the numerical value of astigmatism at the reference position in which the both lens elements are matched without shifting in the spectacle lens of the second embodiment. In Example 2, the refractive power of the first lens element is 0D, and the refractive power of the second lens element is 2D. In other words, the S frequency is set to -2.00 D when both lens elements are not shifted. The prism was zero.
The prism is generated even though both lens elements are moved by the same distance because the refractive powers of both lens elements are unbalanced.
In Example 2, since both lens elements are moved by the same distance, the astigmatism generated when the second lens element as in Example 1 is fixed is improved, but the refractive power of both lens elements is improved. Astigmatism resulting from imbalance occurs. However, astigmatism is improved as a total due to the aspherical shape.
(実施例3)
 実施例3では第2のレンズ素子を固定して、第1のレンズ素子のみを移動させるものとする。また、遠用視状態から近用視状態への移行の際の第1のレンズ素子の移動方向は耳側方向とする。また、非球面のサグは第2のレンズ素子の表面側のみに与えている。
 実施例3の眼鏡レンズの設定条件は次の通りである。
 第1のレンズ素子
 表カーブ0、裏カーブ0(1.523換算)
 アルバレス係数(A)0.0005
 第2のレンズ素子
 表カーブ0、裏カーブ2(1.523換算)
 アルバレス係数(A)0.0005
 hA(r)の各項の非球面係数
4次の項:-2×10-7、5次の項:4×10-9、6次の項:-1×10-12、8次の項:-1×10-15
 hB(r)の各項の非球面係数
4次の項:-1×10-7、5次の項:-1×10-9、6次の項:0、8次の項0
(Example 3)
In Example 3, the second lens element is fixed and only the first lens element is moved. The moving direction of the first lens element during the transition from the far vision state to the near vision state is the ear side direction. Further, the aspherical sag is given only to the surface side of the second lens element.
The setting conditions of the spectacle lens of Example 3 are as follows.
First lens element Front curve 0, back curve 0 (1.523 conversion)
Alvarez coefficient (A) 0.0005
Second lens element Front curve 0, back curve 2 (1.523 equivalent)
Alvarez coefficient (A) 0.0005
Aspherical coefficient of each term of hA (r) 4th order term: −2 × 10 −7 , 5th order term: 4 × 10 −9 , 6th order term: −1 × 10 −12 , 8th order term : -1 × 10 −15
Aspherical coefficient of each term of hB (r): Fourth-order term: −1 × 10 −7 , fifth-order term: −1 × 10 −9 , sixth-order term: 0, eighth-order term 0
 図3(a)は第1のレンズ素子を水平方向に6.54mm移動させた遠用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-4.00Dとされ、プリズムは0であった。
また、図3(b)は実施例3の眼鏡レンズにおいて両レンズ素子をずらさずに一致させた基準位置における近用視状態の平均度数と非点収差の数値に基づく分布図である。実施例3では第1のレンズ素子の屈折力を0Dとし第2のレンズ素子の屈折力を2Dとしている。つまり、両レンズ素子をずらしていない状態でS度数は-2.00Dとされる。イン側に0.66であった。イン側この程度のプリズムが発生することは問題がない。
  この実施例3では第2のレンズ素子を固定しているため非点収差が発生しやすくなるものの、第2のレンズ素子側のみに屈折力を与えたことからその非点収差が改善されている。また、第2のレンズ素子側のみに屈折力を与えることによって例えば実施例1と比較してプリズムも小さくなっている。また、非球面化しているためトータルとして非点収差が改善されている。
FIG. 3A is a distribution diagram based on the average power and astigmatism values in the distance vision state in which the first lens element is moved by 6.54 mm in the horizontal direction. In this state, the S frequency was −4.00 D and the prism was 0.
FIG. 3B is a distribution diagram based on the average power of the near vision state and the numerical value of astigmatism at the reference position in which the both lens elements are matched without shifting in the spectacle lens of the third embodiment. In Example 3, the refractive power of the first lens element is 0D, and the refractive power of the second lens element is 2D. In other words, the S frequency is set to -2.00 D when both lens elements are not shifted. It was 0.66 on the in side. The occurrence of such a prism on the in side is not a problem.
In Example 3, astigmatism easily occurs because the second lens element is fixed, but the astigmatism is improved because the refractive power is given only to the second lens element side. . Further, by providing refractive power only to the second lens element side, for example, the prism is also smaller than in the first embodiment. In addition, astigmatism is improved as a total because it is aspherical.
(実施例4)
 実施例4では第2のレンズ素子を固定して、第1のレンズ素子のみを移動させるものとする。また、遠用視状態から近用視状態への移行の際の第1のレンズ素子の移動方向は耳側方向とする。また、非球面のサグは第2のレンズ素子の裏面に与えている。
 実施例3の眼鏡レンズの設定条件は次の通りである。
 第1のレンズ素子
 表カーブ0、裏カーブ0(1.523換算)
 アルバレス係数(A)0.0005
 第2のレンズ素子
 表カーブ0、裏カーブ2(1.523換算)
 アルバレス係数(A)0.0005
 hA(r)の各項の非球面係数
4次の項:3×10-7、5次の項:-4×10-9、6次の項:1×10-12、8次の項:1×10-15
 hB(r)の各項の非球面係数
4次の項:1×10-7、5次の項:1×10-9、6次の項:0、8次の項0
(Example 4)
In Example 4, the second lens element is fixed, and only the first lens element is moved. The moving direction of the first lens element during the transition from the far vision state to the near vision state is the ear side direction. An aspherical sag is provided on the back surface of the second lens element.
The setting conditions of the spectacle lens of Example 3 are as follows.
First lens element Front curve 0, back curve 0 (1.523 conversion)
Alvarez coefficient (A) 0.0005
Second lens element Front curve 0, back curve 2 (1.523 equivalent)
Alvarez coefficient (A) 0.0005
Aspherical coefficient of each term of hA (r) 4th order term: 3 × 10 −7 , 5th order term: −4 × 10 −9 , 6th order term: 1 × 10 −12 , 8th order term: 1 × 10 −15
Aspherical coefficient of each term of hB (r) 4th order term: 1 × 10 −7 , 5th order term: 1 × 10 −9 , 6th order term: 0, 8th order term 0
 図4(a)は第1のレンズ素子を水平方向に6.54mm移動させた遠用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-4.00Dとされ、プリズムはプリズムは0であった。
また、図4(b)は実施例4の眼鏡レンズにおいて両レンズ素子をずらさずに一致させた基準位置における近用視状態の平均度数と非点収差の数値に基づく分布図である。実施例4では第1のレンズ素子の屈折力を0Dとし第2のレンズ素子の屈折力を2Dとしている。つまり、両レンズ素子をずらしていない状態でS度数は-2.00Dとされる。イン側に0.68であった。イン側この程度のプリズムが発生することは問題がない。
 この実施例4では第2のレンズ素子を固定しているため非点収差が発生しやすくなるものの、第2のレンズ素子側のみに屈折力を与えるようにしたことからその非点収差が改善されている。また、第2のレンズ素子側のみに屈折力を与えることによってプリズムも小さくなっている。また、非球面化しているためトータルとして非点収差が改善されている。実施例3と同様の改善傾向であるが、非球面のサグを第2のレンズ素子の裏面側に与えているために表側に与えた全体に実施例3よりも好結果であった。
FIG. 4A is a distribution diagram based on the average power and astigmatism values in the distance vision state in which the first lens element is moved 6.54 mm in the horizontal direction. In this state, the S frequency was −4.00 D, and the prism was 0.
FIG. 4B is a distribution diagram based on the average power in the near vision state and the numerical value of astigmatism at the reference position where the lens elements of the spectacle lens of Example 4 are matched without shifting. In Example 4, the refractive power of the first lens element is 0D, and the refractive power of the second lens element is 2D. In other words, the S frequency is set to -2.00 D when both lens elements are not shifted. It was 0.68 on the in side. The occurrence of such a prism on the in side is not a problem.
In Example 4, since the second lens element is fixed, astigmatism is likely to occur. However, since the refractive power is applied only to the second lens element side, the astigmatism is improved. ing. Moreover, the prism is also made small by giving refractive power only to the second lens element side. In addition, astigmatism is improved as a total because it is aspherical. Although the improvement tendency was the same as that of Example 3, since the aspherical sag was given to the back side of the second lens element, the whole given to the front side was better than Example 3.
 以下、第1及び第2のレンズ素子について実施例1と同じカーブの大きさ、アルバレス係数、非球面係数を設定条件として非球面処理を行っていない比較例について、実施例1との違いを説明する。
(比較例1)
 比較例1では両方のレンズ素子を互いに逆方向に等距離移動させるものとする。
 図5(a)は第1のレンズ素子を水平方向にそれぞれ6.68mmずつ(トータルで13.5mm弱)移動させた遠用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-4.00Dとされ、プリズムは0である。
また、図5(b)は同じく比較例1の眼鏡レンズにおいて両方のレンズ素子を水平方向にそれぞれ3.34mmずつ(トータルで6.70mm弱)移動させた近用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-2.00Dとされ、プリズムは屈折力の同じレンズを等量動かしているため0である。
 比較例1では両方のレンズ素子を等距離移動させているため、例えば上記実施例1と比較するとあまり大差を感じない。しかし、実施例1では第2のレンズ素子を固定しているため非点収差の発生する要素が多いのであるが、非球面化を行っているためそれが緩和されて両方のレンズ素子を等距離移動させた場合に匹敵する好結果が得られている。
Hereinafter, the difference between the first lens element and the second lens element in comparison with the first embodiment will be described for a comparative example in which aspherical processing is not performed using the same curve size, Alvarez coefficient, and aspheric coefficient as the first embodiment. To do.
(Comparative Example 1)
In Comparative Example 1, both lens elements are moved equidistantly in opposite directions.
FIG. 5A is a distribution diagram based on the average power and astigmatism values in the distance vision state in which the first lens element is moved 6.68 mm (totally less than 13.5 mm) in the horizontal direction. . In this state, the S frequency is −4.00 D and the prism is 0.
FIG. 5B shows the average power and astigmatism in the near vision state in which both lens elements are moved by 3.34 mm (totally less than 6.70 mm) in the horizontal direction in the eyeglass lens of Comparative Example 1 as well. It is a distribution map based on the numerical value of an aberration. In this state, the S frequency is -2.00 D, and the prism is 0 because the lens having the same refractive power is moved by an equal amount.
In Comparative Example 1, since both lens elements are moved by the same distance, for example, compared with Example 1 above, there is not much difference. However, in Example 1, since the second lens element is fixed, there are many elements that generate astigmatism. However, since the aspherical surface is used, it is alleviated and both lens elements are equidistant. Good results comparable to those obtained when moved.
(比較例2)
 比較例2では第2のレンズ素子を固定して、第1のレンズ素子のみを移動させるものとする。また、遠用視状態から近用視状態への移行の際の第1のレンズ素子の移動方向は耳側方向とする。
 図6(a)は同じく第1のレンズ素子を水平方向に6.70mm移動させた遠用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-4.00Dとされ、プリズムはイン側に2.73であった。
また、図6(b)は比較例1の眼鏡レンズにおいて第1のレンズ素子を水平方向に6.70mm移動させた近用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-2.00Dとされ、プリズムはイン側に0.67であった。
 この比較例1は非球面化していない点が異なるだけである。実施例1も両レンズ素子の屈折力が均等なので非点収差があまり抑制されていないが、非球面化されているため大きくは非点収差は発生しておらず、比較例2の非点収差は大きくなっており、非点収差の点で実施例1のほうが良好である。
(Comparative Example 2)
In Comparative Example 2, it is assumed that the second lens element is fixed and only the first lens element is moved. The moving direction of the first lens element during the transition from the far vision state to the near vision state is the ear side direction.
FIG. 6A is a distribution diagram based on the average power and astigmatism values in the distance vision state in which the first lens element is moved 6.70 mm in the horizontal direction. In this state, the S frequency was −4.00 D, and the prism was 2.73 on the in side.
FIG. 6B is a distribution diagram based on the average power and astigmatism values in the near vision state in which the first lens element is moved 6.70 mm in the horizontal direction in the eyeglass lens of Comparative Example 1. In this state, the S frequency was −2.00 D, and the prism was 0.67 on the in side.
This comparative example 1 is different only in that it is not aspherical. Also in Example 1, astigmatism is not suppressed so much because the refractive powers of both lens elements are equal, but astigmatism does not occur largely because it is aspherical, and astigmatism in Comparative Example 2 does not occur. Is larger, and Example 1 is better in terms of astigmatism.
(実施例5)
 実施例5の眼鏡レンズの設定条件は以下の通りである。実施例5では非球面のサグは第2のレンズ素子の裏面側にのみ与えている。
 第1のレンズ素子
 表カーブ2、裏カーブ2(1.523換算)
 アルバレス係数(A)0.00025
 第2のレンズ素子
 表カーブ2、裏カーブ4(1.523換算)
 アルバレス係数(A)0.00025
 ASc(非球面係数)=4×10-9
 ASd(非球面係数)=1.5×10-8
 ASe(非球面係数)=1.5×10-9
 ASf(非球面係数)=6.0×10-14
(Example 5)
The setting conditions of the spectacle lens of Example 5 are as follows. In Example 5, the aspherical sag is given only to the back surface side of the second lens element.
First lens element Front curve 2, back curve 2 (1.523 conversion)
Alvarez coefficient (A) 0.00025
Second lens element Front curve 2, back curve 4 (1.523 equivalent)
Alvarez coefficient (A) 0.00025
ASc (aspheric coefficient) = 4 × 10 −9
ASd (aspheric coefficient) = 1.5 × 10 −8
ASe (aspheric coefficient) = 1.5 × 10 −9
ASf (aspheric coefficient) = 6.0 × 10 −14
 実施例5では、1)基準位置、2)両方のレンズ素子を互いに逆方向に等距離移動させる(以下、両方移動)、3)第2のレンズ素子を固定する(以下、裏固定)のそれぞれの位置における遠用視状態を検討した。
 図7は基準位置における遠用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-4.00Dとされ、プリズム量は0であった。図8はそれぞれのレンズ素子を水平方向に6.70mm移動させた遠用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-2.00Dとされ、プリズムはイン側に0.02であった。図9は第1のレンズ素子のみを水平方向に13.30mm移動させた遠用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-2.00Dとされ、プリズムはイン側に1.34であった。
In the fifth embodiment, 1) a reference position, 2) both lens elements are moved in the opposite directions by equal distances (hereinafter both moved), and 3) the second lens element is fixed (hereinafter fixed back). We examined the distance vision state at the position.
FIG. 7 is a distribution diagram based on the average power in the distance vision state at the reference position and the numerical value of astigmatism. In this state, the S frequency was −4.00 D and the prism amount was 0. FIG. 8 is a distribution diagram based on the average power and astigmatism values in the distance vision state in which each lens element is moved 6.70 mm in the horizontal direction. In this state, the S frequency was -2.00 D, and the prism was 0.02 on the in side. FIG. 9 is a distribution diagram based on the average power and astigmatism values in the distance vision state in which only the first lens element is moved 13.30 mm in the horizontal direction. In this state, the S frequency was −2.00 D, and the prism was 1.34 on the in side.
(実施例6)
 実施例6は実施例5の設定条件において、第1及び第2のレンズ素子のアルバレス係数(A)を0.00025(つまり、実施例5の倍)に設定したものであって、他の条件は同じである。実施例6でも、1)基準位置、2)両方移動、3)裏固定のそれぞれの位置における遠用視状態を検討した。
 図10は基準位置における遠用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-4.00Dとされ、プリズム量は0であった。図11はそれぞれのレンズ素子を水平方向に3.27mm移動させた遠用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-2.00Dとされ、プリズム量は0であった。図12は第1のレンズ素子のみを水平方向に6.60mm移動させた遠用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-2.00Dとされ、プリズムはイン側に0.66であった。
 ここで、実施例6で実施例5に対して移動量が半分であるのは、アルバレス係数が実施例5の倍であるため実施例5と同じレンズ度数(ここでは-2D)とするためには移動量は半分でよいためである。つまり、ここでは移動量を少なくしたければアルバレス係数を相対的に大きくすることで実現でき、その場合には移動量が少ないためプリズム量も少なくなる。但し、アルバレス係数を大きくすることは非点収差の点では不利となる。
(Example 6)
In the sixth embodiment, the Alvarez coefficient (A) of the first and second lens elements is set to 0.00025 (that is, twice that of the fifth embodiment) in the setting conditions of the fifth embodiment. Are the same. In Example 6, the distance vision state at each of 1) the reference position, 2) both movements, and 3) the back fixed position was examined.
FIG. 10 is a distribution diagram based on the average power in the distance vision state at the reference position and the numerical value of astigmatism. In this state, the S frequency was −4.00 D and the prism amount was 0. FIG. 11 is a distribution diagram based on the average power and astigmatism values in the distance vision state in which each lens element is moved by 3.27 mm in the horizontal direction. In this state, the S frequency was −2.00 D, and the prism amount was 0. FIG. 12 is a distribution diagram based on the average power and astigmatism values in the distance vision state in which only the first lens element is moved 6.60 mm in the horizontal direction. In this state, the S frequency was -2.00 D, and the prism was 0.66 on the in side.
Here, the movement amount in the sixth embodiment is half that of the fifth embodiment because the Alvarez coefficient is twice that of the fifth embodiment so that the lens power is the same as that in the fifth embodiment (here, -2D). This is because the amount of movement may be half. That is, here, if the movement amount is to be reduced, it can be realized by relatively increasing the Alvarez coefficient. In this case, since the movement amount is small, the prism amount is also reduced. However, increasing the Alvarez coefficient is disadvantageous in terms of astigmatism.
(比較例3)
 比較例3は第1及び第2のレンズ素子について実施例5と同じカーブの大きさ、アルバレス係数、非球面係数を設定条件として非球面処理を行っていないものである。
 比較例3でも、1)基準位置、2)両方移動、3)裏固定のそれぞれの位置における遠用視状態を検討した。
 図13は基準位置における遠用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-4.00Dとされ、プリズム量は0であった。図14はそれぞれのレンズ素子を水平方向に6.60mm移動させた遠用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-2.00Dとされプリズム量は0であった。図15は第1のレンズ素子のみを水平方向に13.30mm移動させた遠用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-2.00Dとされ、プリズムはイン側に1.34であった。
(Comparative Example 3)
In the third comparative example, the first lens element and the second lens element are not subjected to the aspheric process with the same curve size, Alvarez coefficient, and aspheric coefficient as those in the fifth embodiment.
Also in Comparative Example 3, the distance vision state at each of 1) the reference position, 2) both movements, and 3) the back fixed position was examined.
FIG. 13 is a distribution diagram based on the average power in the distance vision state at the reference position and the numerical value of astigmatism. In this state, the S frequency was −4.00 D and the prism amount was 0. FIG. 14 is a distribution diagram based on the average power and astigmatism values in the distance vision state in which each lens element is moved 6.60 mm in the horizontal direction. In this state, the S frequency was -2.00 D and the prism amount was 0. FIG. 15 is a distribution diagram based on the average power and astigmatism values in the distance vision state in which only the first lens element is moved 13.30 mm in the horizontal direction. In this state, the S frequency was −2.00 D, and the prism was 1.34 on the in side.
(比較例4)
 比較例4は第1及び第2のレンズ素子について実施例6と同じカーブの大きさ、アルバレス係数、非球面係数を設定条件として非球面処理を行っていないものである。
 比較例4でも、1)基準位置、2)両方移動、3)裏固定のそれぞれの位置における遠用視状態を検討した。
 図16は基準位置における遠用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-4.00Dとされ、プリズム量は0であった。図17はそれぞれのレンズ素子を水平方向に3.30mm移動させた遠用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-2.00Dとされプリズム量は0であった。図18は第1のレンズ素子のみを水平方向に6.50mm移動させた遠用視状態の平均度数と非点収差の数値に基づく分布図である。この状態でS度数は-2.00Dとされ、プリズムはイン側に0.66であった。
(Comparative Example 4)
In Comparative Example 4, the first lens element and the second lens element are not subjected to aspherical processing with the same curve size, Alvarez coefficient, and aspherical coefficient as in Example 6 as setting conditions.
In Comparative Example 4, the distance vision state at each of 1) the reference position, 2) both movements, and 3) the back fixed position was examined.
FIG. 16 is a distribution diagram based on the average power in the distance vision state at the reference position and the numerical value of astigmatism. In this state, the S frequency was −4.00 D and the prism amount was 0. FIG. 17 is a distribution diagram based on the average power and astigmatism values in the distance vision state in which each lens element is moved 3.30 mm in the horizontal direction. In this state, the S frequency was -2.00 D and the prism amount was 0. FIG. 18 is a distribution diagram based on the average power and astigmatism values in the distance vision state in which only the first lens element is moved 6.50 mm in the horizontal direction. In this state, the S frequency was -2.00 D, and the prism was 0.66 on the in side.
(実施例5及び6並びに比較例3及び4の対比)
 さて、非点収差の点から見ると、対応関係にある実施例5は比較例3とでは明らかに非球面処理をされている実施例5のほうが良好である。また、同様に対応関係にある実施例6は比較例4とでも明らかに非球面処理をされている実施例6のほうが良好である。
 一方、実施例5及び6、比較例3及び4の全体で検討した場合では移動量の少ない実施例6が収差が少なく、移動させた場合では実施例6において裏固定した場合が最もよい結果であった。
(Contrast of Examples 5 and 6 and Comparative Examples 3 and 4)
From the viewpoint of astigmatism, the fifth embodiment having a corresponding relationship is clearly better than the fifth embodiment in which the aspherical processing is clearly performed. Similarly, the sixth embodiment, which has a corresponding relationship, is better than the sixth embodiment, which is clearly aspherical even with the fourth comparative example.
On the other hand, when Example 5 and 6 and Comparative Example 3 and 4 are examined as a whole, Example 6 with a small amount of movement has little aberration, and when moved, the best result is when the back is fixed in Example 6. there were.
 尚、この発明は、次のように変更して具体化することも可能である。
・上記実施例ではすべて乱視度数のないケースでシミュレーションしたが、乱視度数を設定する場合には第2のレンズ素子側に設定することが非点収差の軽減のために好ましい。
・上記実施例の3次曲面のサグ関数や非球面化のサグ関数について上記は一例であって、他の関数式を使用することも自由である。
・第1のレンズ素子だけに非球面サグを与えたり、第1のレンズ素子と第2のレンズ素子の両方にそれぞれ非球面サグを与えるようにしてもよい。
・レンズ素子を遠用度数の状態→近用度数の状態に移動したときに、ダウンプリズムが増加するものであっても良い。このとき、レンズ素子を移動させる方向は垂直方向である。また、インプリズムとダウンプリズムの両方が増加するものであっても良い。このとき、レンズ素子を移動させる方向は斜め方向である。
 その他、本実施の形態は他の態様で実施するようにしても構わない。
It should be noted that the present invention can be modified and embodied as follows.
In the above-described embodiments, the simulation is performed in the case where there is no astigmatism power. However, when the astigmatism power is set, it is preferable to set the second lens element side in order to reduce astigmatism.
The above is an example of the sag function of the cubic surface and the aspherical sag function of the above embodiment, and other function expressions can be freely used.
An aspherical sag may be given only to the first lens element, or an aspherical sag may be given to both the first lens element and the second lens element.
The down prism may be increased when the lens element is moved from the distance power state to the near power state. At this time, the direction in which the lens element is moved is the vertical direction. Further, both the in-prism and the down-prism may be increased. At this time, the direction in which the lens element is moved is an oblique direction.
In addition, you may make it implement this Embodiment in another aspect.

Claims (10)

  1.  第1及び第2のレンズ素子を光軸が平行となるように前後方向に並列配置させ、光軸に対して近似的に直交する方向に相対的に逆方向に移動させてS度数を変更可能とした眼鏡レンズにおいて、
     外側に配置された前記第1のレンズ素子の物体側の面及び内側に配置された前記第2のレンズ素子の眼球側の面にはそれぞれxとyによって偏微分して得られる偏導関数gxyがyのみの関数または定数で表されるような同一又は異なる曲面の関数g(x、y)を付加サグ量として合成し、前記両レンズ素子をx軸方向にのみ相対的に逆方向に移動可能とするとともに、前記両レンズ素子の表裏少なくとも1つの面を非球面化して収差を低減させるようにしたことを特徴とする眼鏡レンズ。
    The first and second lens elements can be arranged in parallel in the front-rear direction so that the optical axes are parallel, and moved in the opposite direction in a direction approximately orthogonal to the optical axis to change the S frequency. In the spectacle lens,
    A partial derivative g obtained by partial differentiation with respect to x and y on the object side surface of the first lens element arranged on the outer side and the eyeball side surface of the second lens element arranged on the inner side, respectively. A function g (x, y) of the same or different curved surface such that xy is represented by a function or constant only of y is synthesized as an additional sag amount, and both lens elements are relatively opposite only in the x-axis direction. An eyeglass lens characterized in that it is movable, and at least one surface of both lens elements is aspherical to reduce aberrations.
  2.  前記第1及び第2のレンズ素子に付加サグ量として合成される3次曲面の関数g(x、y)は下記式で定義されることを特徴とする請求項1に記載の眼鏡レンズ。
    Figure JPOXMLDOC01-appb-M000001
    The spectacle lens according to claim 1, wherein a function g (x, y) of a cubic curved surface synthesized as an additional sag amount in the first and second lens elements is defined by the following equation.
    Figure JPOXMLDOC01-appb-M000001
  3.  前記第1及び第2のレンズ素子に付加サグ量を合成するための基準となる面は球面、平面又は乱視面のいずれかの形状であることを特徴とする請求項1又は2に記載の眼鏡レンズ。 The spectacles according to claim 1 or 2, wherein a surface serving as a reference for synthesizing the additional sag amount with the first and second lens elements is any one of a spherical surface, a flat surface, and an astigmatic surface. lens.
  4.  前記S度数の可変範囲は4ディオプター以内であることを特徴とする請求項1~3のいずれかに記載の眼鏡レンズ。 The spectacle lens according to any one of claims 1 to 3, wherein the variable range of the S power is within 4 diopters.
  5.  前記第1及び第2のレンズ素子のいずれか一方を固定し、いずれか他方のみを移動可能としたことを特徴とする請求項1~4のいずれかに記載の眼鏡レンズ。 The spectacle lens according to any one of claims 1 to 4, wherein one of the first and second lens elements is fixed and only the other is movable.
  6.  非球面設計は前記第1及び第2のレンズ素子のうち、固定する側の前記レンズ素子のみに実行されていることを特徴とする請求項5に記載の眼鏡レンズ。 The spectacle lens according to claim 5, wherein the aspherical design is performed only on the lens element on the fixing side among the first and second lens elements.
  7.  乱視矯正設計は前記第1及び第2のレンズ素子のうち、固定する側の前記レンズ素子のみに実行されていることを特徴とする請求項5又は6に記載の眼鏡レンズ。 7. The spectacle lens according to claim 5, wherein the astigmatism correction design is performed only on the lens element on the fixing side among the first and second lens elements.
  8.  前記第2のレンズ素子を固定し、前記第1のレンズ素子のみを移動可能とするとともに、前記第1及び第2のレンズ素子を透過する光線に関する屈折力をプラス側にシフトさせるような前記第1又は第2のレンズ素子の移動によるプリズム変化が、インプリズムの増加またはアウトプリズムの減少であることを特徴とする請求項5~7のいずれかに記載の眼鏡レンズ。 The second lens element is fixed, only the first lens element is movable, and the refracting power relating to the light transmitted through the first and second lens elements is shifted to the plus side. The spectacle lens according to any one of claims 5 to 7, wherein the prism change caused by the movement of the first or second lens element is an increase in in-prism or a decrease in out-prism.
  9.  前記第2のレンズ素子側を固定し、前記第1のレンズ素子側のみを移動可能としたことを特徴とする請求項5~8のいずれかに記載の眼鏡レンズ。 The spectacle lens according to claim 5, wherein the second lens element side is fixed and only the first lens element side is movable.
  10.  請求項1~9のいずれかに記載の眼鏡レンズを搭載した遠近両用眼鏡。 Peripheral glasses equipped with the spectacle lens according to any one of claims 1 to 9.
PCT/JP2013/056603 2012-03-14 2013-03-11 Eyeglass lens and bifocal eyeglasses WO2013137179A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012056770 2012-03-14
JP2012-056770 2012-03-14

Publications (1)

Publication Number Publication Date
WO2013137179A1 true WO2013137179A1 (en) 2013-09-19

Family

ID=49161088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056603 WO2013137179A1 (en) 2012-03-14 2013-03-11 Eyeglass lens and bifocal eyeglasses

Country Status (2)

Country Link
JP (1) JPWO2013137179A1 (en)
WO (1) WO2013137179A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106662760A (en) * 2014-05-21 2017-05-10 泰克年研究发展基金会公司 Optical elements for power adjustable spectacles
WO2017144841A1 (en) * 2016-02-22 2017-08-31 Adlens Ltd Improvements in or relating to glasses with selectively adjustable optical power lenses
CN108121084A (en) * 2018-02-11 2018-06-05 深圳不虚科技有限公司 Myopia eyeglass, myopia eyeglass group and physical treatment glasses for treating myopia
CN110573937A (en) * 2017-04-19 2019-12-13 卡尔蔡司光学国际有限公司 Adjustable progressive lens and design method
JP7356743B2 (en) 2020-02-03 2023-10-05 東海光学株式会社 Eyeglass lens performance evaluation method and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305294A (en) * 1964-12-03 1967-02-21 Optical Res & Dev Corp Two-element variable-power spherical lens
US3507565A (en) * 1967-02-21 1970-04-21 Optical Res & Dev Corp Variable-power lens and system
US3617116A (en) * 1969-01-29 1971-11-02 American Optical Corp Method for producing a unitary composite ophthalmic lens
JPS63254415A (en) * 1987-04-13 1988-10-21 Seiko Epson Corp Visual acuity remedying device using two progressive multifocus lenses
WO1993015432A1 (en) * 1992-02-03 1993-08-05 Seiko Epson Corporation Variable focus visual power correction apparatus
WO1997019383A1 (en) * 1995-11-24 1997-05-29 Seiko Epson Corporation Multifocal lens for eyeglasses and eyeglass lens
US20070091257A1 (en) * 2005-03-21 2007-04-26 Gofxta, Inc. Adjustable focus eyeglasses

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305294A (en) * 1964-12-03 1967-02-21 Optical Res & Dev Corp Two-element variable-power spherical lens
US3507565A (en) * 1967-02-21 1970-04-21 Optical Res & Dev Corp Variable-power lens and system
US3617116A (en) * 1969-01-29 1971-11-02 American Optical Corp Method for producing a unitary composite ophthalmic lens
JPS63254415A (en) * 1987-04-13 1988-10-21 Seiko Epson Corp Visual acuity remedying device using two progressive multifocus lenses
WO1993015432A1 (en) * 1992-02-03 1993-08-05 Seiko Epson Corporation Variable focus visual power correction apparatus
WO1997019383A1 (en) * 1995-11-24 1997-05-29 Seiko Epson Corporation Multifocal lens for eyeglasses and eyeglass lens
US20070091257A1 (en) * 2005-03-21 2007-04-26 Gofxta, Inc. Adjustable focus eyeglasses

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106662760A (en) * 2014-05-21 2017-05-10 泰克年研究发展基金会公司 Optical elements for power adjustable spectacles
EP3146384A4 (en) * 2014-05-21 2018-01-24 Technion Research & Development Foundation Ltd. Optical elements for power adjustable spectacles
WO2017144841A1 (en) * 2016-02-22 2017-08-31 Adlens Ltd Improvements in or relating to glasses with selectively adjustable optical power lenses
CN108700757A (en) * 2016-02-22 2018-10-23 艾亮有限公司 The improvement of glasses with the refractive power lens selectively adjusted or improvement related with the glasses
JP2021119418A (en) * 2016-02-22 2021-08-12 アドレンズ リミテッドAdlens Limited Improvements in eyeglasses with selectively adjustable optical power lenses
CN113552731A (en) * 2016-02-22 2021-10-26 艾亮有限公司 Glasses
US11194174B2 (en) 2016-02-22 2021-12-07 Adlens Ltd Glasses with selectively adjustable optical power lenses
CN113552731B (en) * 2016-02-22 2023-08-25 艾亮有限公司 Glasses with glasses
CN110573937A (en) * 2017-04-19 2019-12-13 卡尔蔡司光学国际有限公司 Adjustable progressive lens and design method
US11086144B2 (en) 2017-04-19 2021-08-10 Carl Zeiss Vision International Gmbh Adjustable progressive lens and design method
CN108121084A (en) * 2018-02-11 2018-06-05 深圳不虚科技有限公司 Myopia eyeglass, myopia eyeglass group and physical treatment glasses for treating myopia
JP7356743B2 (en) 2020-02-03 2023-10-05 東海光学株式会社 Eyeglass lens performance evaluation method and program

Also Published As

Publication number Publication date
JPWO2013137179A1 (en) 2015-08-03

Similar Documents

Publication Publication Date Title
JP4408112B2 (en) Double-sided aspherical progressive-power lens and design method thereof
JP4437482B2 (en) Double-sided aspherical progressive-power lens and design method thereof
JP3881449B2 (en) Processing method of progressive multifocal lens
JP5969631B2 (en) Eyeglass lenses
CN101114061A (en) Design method for spectacle lens, spectacle lens, and spectacles
JP3617004B2 (en) Double-sided aspherical progressive-power lens
JP5952541B2 (en) Optical lens, optical lens design method, and optical lens manufacturing apparatus
KR20160140602A (en) Multifocal ophthalmic spectacle lens arranged to output a supplementary image
WO2013137179A1 (en) Eyeglass lens and bifocal eyeglasses
JP2012103669A (en) Spectacle lens, spectacles, and manufacturing method of spectacle lens
JP2001356303A (en) Method for manufacturing spectacle lens, spectacle lens and spectacle lens group
JP2012185448A (en) Progressive refractive power lens
JP2012173674A (en) Progressive refractive power lens and designing method thereof
WO2014097852A1 (en) Production method and production device for spectacle lenses
JP2012185449A (en) Progressive refractive power lens
JP5789108B2 (en) Progressive power lens and design method thereof
JP5832765B2 (en) Progressive power lens and design method thereof
JP6095271B2 (en) Lens set, lens design method, and lens manufacturing method
JP4404317B2 (en) Double-sided aspherical progressive-power lens and design method thereof
JP4219148B2 (en) Double-sided aspherical progressive-power lens
JP4530207B2 (en) Design method of spectacle lens used for frame having bending angle and spectacle lens used for frame having bending angle
JP2020024363A (en) Display device
JP2006178245A (en) Spectacle lens for for astigmatism correction
JP5749497B2 (en) Double-sided progressive lens, manufacturing method thereof, and manufacturing apparatus thereof
JP2012083482A (en) Progressive refractive power lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504856

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761327

Country of ref document: EP

Kind code of ref document: A1