WO2012096102A1 - Probe, optical measurement system, provision method, and packaged article for diagnosis purposes - Google Patents

Probe, optical measurement system, provision method, and packaged article for diagnosis purposes Download PDF

Info

Publication number
WO2012096102A1
WO2012096102A1 PCT/JP2011/079334 JP2011079334W WO2012096102A1 WO 2012096102 A1 WO2012096102 A1 WO 2012096102A1 JP 2011079334 W JP2011079334 W JP 2011079334W WO 2012096102 A1 WO2012096102 A1 WO 2012096102A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
light
correction
measurement
optical
Prior art date
Application number
PCT/JP2011/079334
Other languages
French (fr)
Japanese (ja)
Inventor
祥一 田尾
桂田 弘之
岩坂 喜久男
夏野 靖幸
篤 澤田
新 勇一
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012552652A priority Critical patent/JP5915543B2/en
Publication of WO2012096102A1 publication Critical patent/WO2012096102A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • A61B1/00124Connectors, fasteners and adapters, e.g. on the endoscope handle electrical, e.g. electrical plug-and-socket connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00057Operational features of endoscopes provided with means for testing or calibration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • A61B1/00126Connectors, fasteners and adapters, e.g. on the endoscope handle optical, e.g. for light supply cables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00142Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with means for preventing contamination, e.g. by using a sanitary sheath
    • A61B1/00144Hygienic packaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0615Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for radial illumination

Definitions

  • the present invention relates to a probe for measuring an emitted light having an optical system for irradiating a measurement target site of a living tissue with irradiation light and receiving the emitted light emitted from the measurement target site.
  • a special diagnostic probe that irradiates a measurement target site of biological tissue with irradiation light such as excitation light and detects emitted light such as fluorescence generated from a biological tissue or a drug that has been previously injected into the biological body by this irradiation light.
  • irradiation light such as excitation light
  • emitted light such as fluorescence generated from a biological tissue or a drug that has been previously injected into the biological body by this irradiation light.
  • emitted light such as fluorescence generated from a biological tissue or a drug that has been previously injected into the biological body by this irradiation light.
  • emitted light such as fluorescence generated from a biological tissue or a drug that has been previously injected into the biological body by this irradiation light.
  • the first type of correction it is required to correct variations in light intensity and detection sensitivity for each wavelength due to a combination of a probe, a light source, and a detector.
  • the setting contents of the apparatus related to the optical characteristics are set so that the measurement target is a substance with known optical characteristics such as reflectance spectrum, emission spectrum and Raman scattering spectrum, and the obtained result corresponds to the known optical characteristics.
  • correction is performed by changing a variable in a calculation process for processing a detection signal of a detector or a calculation process content. When performing this measurement, it is necessary to accurately detect the optical response of the measurement target, so it is necessary to prevent room light or the like from entering the detector as stray light.
  • a second type of correction for example, when reflected light or light emission derived from the internal configuration of the probe, such as reflected light or light emission from a lens or an optical fiber end face, is incident on the detector, It is also necessary to distinguish between light emitted from and stray light derived from the internal structure. For this purpose, it is effective to previously acquire the intensity spectrum of stray light derived from the internal structure in advance. In this case, it is necessary to prevent stray light such as room light, and to prevent light emitted from the probe from being reflected or diffused from a substance other than the probe, or light emitted from a substance other than the probe from entering the probe. .
  • the probe, light source, and detector Measure substances with known reflectivity and luminous efficiency in order to adjust the detector gain and transmittance of the neutral density filter appropriately according to fluctuations in detected light intensity due to variations in light intensity and detection sensitivity for each wavelength. It is effective to set the gain of the detector and the transmittance of the neutral density filter so that the obtained result becomes an appropriate value compared with the dynamic range of the detector.
  • the light receiving amount of the detector is monitored and optimized. As described above, it is effective to adjust each movable part to ensure an appropriate amount of received light.
  • the same configurations as those of the first and second types of correction are used, but there is no need to measure the spectrum shape, and only the light intensity is measured, and accordingly, an apparatus related to the optical characteristics.
  • the correction is performed by changing the setting contents or the calculation processing contents for processing the detection signal of the detector. These cases can be regarded as derived from the first and second types of correction measurements, respectively.
  • the above correction measurement is not only used for calibration of the apparatus and correction of the obtained results, but can also be used for the purpose of determining deterioration or failure of the apparatus over time.
  • a probe that performs in-vivo diagnosis by optical measurement needs to perform one or more types of correction as described above.
  • it is desirable that the probe can be easily performed under room illumination, not in a special environment such as a dark room. Such work is performed at a stage prior to treatment, but there is a demand to avoid as much as possible the compulsory, complicated, and troublesome work of the worker in the medical field.
  • Patent Document 1 describes an endoscope color balance adjuster.
  • This endoscope color balance adjuster has an opening communicating with the internal space into which the distal end of the endoscope can be inserted at one end and a closed structure at the other end, and is a tube that blocks light from the outside.
  • An inner member (103c in the same document) provided substantially parallel to the insertion axis of the distal end portion of the endoscope and the distal end portion of the endoscope are inserted into the inner surface of the tubular body.
  • an end face member (102c in the same document) provided so as to fall within the field of view of the objective lens, the inner member has a light absorption surface that absorbs light, and the end face member 102c is fluorescent light that emits fluorescence.
  • Patent Document 2 describes a color adjustment jig for an endoscope.
  • a color adjustment jig for an endoscope.
  • a jig having a columnar shape, a first opening formed at one end of the jig, and a second opening formed at the other end of the jig, A hollow portion that penetrates the first opening and the second opening and into which the distal end portion of the color scope of the electronic endoscope can be inserted, and a lid that is movably supported in the vicinity of the second opening.
  • the lid has a white balance adjustment chart on one side and a color adjustment chart on the other side, and either the white balance adjustment chart or the color adjustment chart is hollowed by the movement of the lid. It is possible to observe from the first opening through the part, and the movement of the lid is proposed by the rotation about the rotation axis that is pivotally supported by the second opening through the center of the lid. Yes.
  • Endoscopes are widely used as devices for observation and optical measurement in the body, and are expensive devices that are generally used for a long period of time.
  • Conventional techniques such as those described above are known as calibration means for image quality calibration / correction.
  • generally used electronic endoscopes aim to improve the contrast between a lesioned part and a normal part by an optical method, and the degree of progression of the lesion is judged by an observer.
  • the necessity of correcting the detection characteristics of the apparatus is higher than that of a widely used electronic endoscope. Contamination of the measurement object or deterioration with time during the correction work may deteriorate the correction accuracy and lead to a misjudgment.
  • the present invention has been made in view of the above problems in the prior art, and includes an optical system for receiving irradiation light emitted from a measurement target site by irradiating the measurement target site of biological tissue with irradiation light.
  • an optical system for receiving irradiation light emitted from a measurement target site by irradiating the measurement target site of biological tissue with irradiation light In providing a measurement environment component for correction (adjustment jig) that gives a known optical environment to the probe tip during measurement for correction to an optical measurement system using a probe for measuring the emitted light. It is an object of the present invention to stably provide the optical environment without incurring complicated handling of the correction measurement environment component.
  • the invention according to claim 1 for solving the above-described problem is provided with an optical system for receiving radiation light emitted from the measurement target part by irradiating the measurement target part of the living tissue with the irradiation light.
  • a probe for measuring light At one end, it has a connector part connected to a base unit having a detector, at the other end, a tip part in which a light receiving optical system including at least an optical fiber or an image sensor is configured, An optical environment holding chamber having an opening portion into which the tip portion is inserted is configured, and the tip portion is inserted into the optical environment holding chamber from the opening portion, so that the tip portion has a known optical environment.
  • a correction measurement environment component for providing an environment is a probe provided in the connector portion.
  • the invention according to claim 2 is characterized in that the measurement environment component for correction has a light shielding member that blocks external light from entering the optical environment in a state where at least the tip portion is inserted.
  • the invention according to claim 3 is the probe according to claim 1 or 2, wherein the measurement environment component for correction has a predetermined measurement target substance in the optical environment holding chamber.
  • the invention according to claim 4 is characterized in that a locking structure for restricting further insertion of the tip portion inserted into the correction measurement environment component with a predetermined insertion length is configured. It is a probe as described in any one of Claim 3.
  • a locking structure that restricts further insertion of the tip portion inserted into the measurement environment component for correction with a predetermined insertion length with a predetermined locking force and prevents the tip portion from being pulled out.
  • the invention according to claim 6 is characterized in that a mark for displaying a length from the tip corresponding to the insertion length to be applied at the time of correction measurement is provided on the outer periphery of the tip.
  • the probe according to any one of Items 5.
  • Invention of Claim 7 is an optical measurement system provided with the probe as described in any one of Claims 1-6, and the base unit to which the said connector part of the said probe is connected,
  • the base unit is A light source device for the irradiation light;
  • the measurement result for correction measured in the optical environment by the measurement environment component for correction is stored and stored, and the measurement result of the living tissue for the living tissue is determined based on the measurement result for correction in accordance with a predetermined algorithm.
  • An optical measurement system having an arithmetic processing unit that corrects the above.
  • Invention of Claim 8 is an optical measurement system provided with the probe as described in any one of Claims 1-6, and the base unit to which the said connector part of the said probe is connected,
  • the base unit is A light source device for the irradiation light;
  • the measurement result for correction measured in the optical environment by the measurement environment component for correction is stored and stored, and based on the measurement result for correction, the gain of the detector or the attenuation filter is determined according to a predetermined algorithm.
  • An optical measurement system having an arithmetic processing unit for setting a transmittance.
  • Invention of Claim 9 is an optical measurement system provided with the probe as described in any one of Claims 1-6, and the base unit to which the said connector part of the said probe is connected,
  • the base unit is A light source device for the irradiation light;
  • the measurement result for correction measured in the optical environment by the measurement environment component for correction is stored and stored, and based on the measurement result for correction, the light source device, the detector, or them according to a predetermined algorithm
  • an arithmetic processing unit that movably adjusts at least one movable part of the mechanism for optically connecting the probe.
  • the invention according to claim 10 has a mechanical structure in which the connector portion is allowed to be connected to the base unit only in a certain orientation, and the tip portion is connected in the state where the connector portion is connected to the base unit.
  • the correction measurement environment component is configured such that the insertion direction of the portion into the correction measurement environment component is regulated vertically downward or obliquely downward. This is an optical measurement system.
  • the invention according to claim 11 is a method for providing a user of the probe according to any one of claims 1 to 6, comprising: A sterilization step of sterilizing the probe including the correction measurement environment component; And a packaging process for packaging the probe in the same package including the correction measurement environment component.
  • the invention according to claim 12 is a tray, A probe housed in the tray for transmitting, projecting and receiving light; A calibration target that is irradiated with light emitted from the probe during calibration of the probe, holding the probe during calibration of the probe, and an adjustment jig housed in the tray; A diagnostic package comprising the probe, the adjustment jig, and a packaging bag enclosing the tray.
  • the tray includes a tray main body, a probe storage recess recessed in the upper surface of the tray main body, and an adjustment jig storage recess recessed in the upper surface of the tray main body.
  • the invention according to claim 14 is characterized in that the probe storage recess is a ring-shaped cable storage portion recessed in the upper surface of the tray main body, and is recessed in the upper surface of the tray main body, connected to the cable storage portion, A connector storage portion extending from the cable storage portion in the tangential direction of the cable storage portion, and recessed in the upper surface of the tray body, connected to the cable storage portion, and extending from the cable storage portion in the tangential direction of the cable storage portion.
  • a distal end storage portion The probe is connected to a cable main body for transmitting light, a connector for inputting / outputting light, and connected to a distal end of the cable main body for light projection and light reception.
  • a light receiving and receiving unit The diagnostic packaging according to claim 13, wherein the light projecting / receiving unit is stored in the tip storage unit, the cable body unit is stored in the cable storage unit, and the connector is stored in a connector storage unit. It is.
  • the invention according to claim 15 is the diagnostic packaging according to claim 14, wherein the cable main body is wound and stored in the cable storage.
  • the invention according to claim 16 is the diagnostic package according to claim 15, wherein the cable main body is spirally wound so that the connector side overlaps the light projecting / receiving portion side.
  • the invention according to claim 17 is the diagnostic package according to claim 15, wherein the cable body is spirally wound so that the light projecting / receiving part side overlaps the connector side.
  • the invention according to claim 18 is characterized in that the adjustment jig includes a jig body housed in the adjustment jig housing recess, an insertion opening opened on a surface of the jig body, and the jig body from the insertion opening.
  • An insertion hole extending in the interior of The diagnostic packaging according to any one of claims 13 to 17, wherein the calibration target is disposed in the insertion hole.
  • the invention according to claim 19 is the diagnostic package according to claim 18, wherein the insertion hole is closed on the opposite side of the insertion port.
  • the invention according to claim 20 is characterized in that the adjustment jig further has a stopper protruding from the inner wall of the insertion hole, 20.
  • the invention according to claim 21 is characterized in that the jig body of the adjustment jig is housed in the jig housing recess with the insertion port facing obliquely upward.
  • the diagnostic packaging according to any one of the above.
  • the invention according to claim 22 is the diagnostic package according to any one of claims 18 to 21, wherein the adjustment jig further includes a light shielding sheet attached to the inner wall of the insertion hole. It is.
  • the adjustment jig further includes a flexible tube attached to the jig body so as to communicate with the insertion hole through the insertion port.
  • the invention according to claim 24 is the invention from claim 18, wherein the insertion port, the insertion hole, and the number of calibration targets are plural, and the calibration target is disposed in the insertion hole. 24.
  • the invention according to claim 25 is the diagnostic packaging according to claim 24, wherein the color is different for each calibration target.
  • the invention according to claim 26 is the diagnostic device according to claim 24 or 25, wherein the color of any one of the calibration targets is white and the color of any other calibration target is black. It is a package.
  • the measurement measurement environment component for correction since the measurement measurement environment component for correction is provided in the connector portion of the probe, one or more measurement environment components for correction can always be provided for one probe, and before the probe is used. Only the correction measurement environment component cannot be lost alone during the correction measurement as preparation, and there is an effect that the correction measurement environment component is not lost. Further, since the measurement environment component for correction is provided integrally with the probe, the troublesome handling and management when the measurement environment component for correction is separate from the probe is drastically eliminated. There is an effect that. When the probe of the present invention is used repeatedly, the probe is cleaned every time it is used, and the correction measurement environment components are simultaneously cleaned by cleaning the probe.
  • the probe of the present invention is used as a disposable specification, the entire clean probe including the measurement environment component for correction is provided, and the user is concerned about the deterioration over time of the measurement environment component for correction and its storage environment. There is no need to consider it, and there is an effect that it is possible to always perform correction measurement that matches the intention of the provider.
  • the diagnostic packaging of the present invention since the probe and the adjustment jig are bundled and wrapped in the packaging bag, there is no need to prepare a large-scale adjustment jig different from the adjustment jig. You can do it. Further, when the user opens the packaging bag, the user notices the presence of the adjusting jig. Therefore, the user must remember to perform calibration using the adjustment jig before making a diagnosis using the probe. Further, since the probe and the adjustment jig are bundled and wrapped in the packaging bag, the new adjustment jig can be used for calibration. Therefore, there is almost no secular change of the calibration target, and accurate calibration can be performed.
  • the application of the present invention can stably give the optical environment at the time of the correction measurement to the probe while greatly reducing the management burden on the user, and the correction measurement intended by the provider is ensured. There is an effect that it is executed.
  • FIG. 6 is a partial cross-sectional view of a tray according to another embodiment of the present invention. It is a disassembled perspective view of the diagnostic packaging which concerns on other embodiment of this invention. It is a perspective view of the base unit which concerns on other embodiment of this invention. It is a block diagram of the base unit which concerns on other embodiment of this invention. It is the perspective view which showed the use condition of the diagnostic packaging which concerns on other embodiment of this invention. It is the flowchart which showed the flow of the process performed by the computer of the base unit which concerns on other embodiment of this invention. It is a disassembled perspective view of the adjustment jig which concerns on a modification. It is sectional drawing of the adjustment jig which concerns on a modification.
  • FIG. 1 shows a probe 10 of this embodiment and a packaging tray 30.
  • 1 and 2 show the main part of the optical measurement system 1 of the present embodiment.
  • the optical measurement system 1 includes an image display device and an operation input device in addition to the probe 10 and the base unit 20.
  • the probe 10 includes a distal end portion 11, a connector portion 12, and a cable portion 13. As shown in FIG. 1, the probe 10 is sterilized and stored in a packaging tray 30. Further, the probe 10 is sealed and packaged by a packaging bag (not shown), and is provided to a user such as a medical site. The user unwraps and connects the connector portion 12 of the probe 10 to the connection portion 21 of the base unit 20 as shown in FIG.
  • the base unit 20 includes a light source device for irradiation light, a detector for detecting the light intensity of emitted light from a living tissue or the like, and an arithmetic processing device.
  • the arithmetic processing device may be provided separately from the base unit, and both may be electrically connected.
  • a probe for performing in-vivo diagnosis by optical measurement has an optical system in which one end thereof is inserted into the body, and the biological tissue is irradiated with light and reflected by the biological tissue or emitted from the biological tissue.
  • the other end is configured to have a mechanism connected to a device (base unit 20 in the present embodiment) having a light source device and a detector.
  • the probe has one or more optical fibers for guiding excitation light for optical measurement and light emitted from living tissue.
  • 3A to 3E show the layout of the optical system. Actually, these optical systems are fixed by a holder, an exterior, or the like to form a probe.
  • the simplest optical system configured in the probe is composed of one light guide optical fiber 14a shown in FIG. 3A.
  • an optical element such as a lens or a prism may be provided.
  • FIGS. 3E and 3B a structure in which a lens 15 is inserted at the tip of the fiber in order to increase the light collection efficiency, or the light traveling direction is changed as shown in FIG.
  • the optical component 16 that is a prism or a mirror is inserted in order to observe and measure the biological tissue 50 that is substantially parallel to the body. As shown in FIG.
  • a probe that emits light in a direction perpendicular to the axis of the light guide optical fiber 14d is generally provided with an optical component 16 that is a prism or a mirror at the tip of the light guide optical fiber 14d.
  • a method of changing the traveling direction by reflecting is applied.
  • the shape of the reflection surface of the optical component 16 that is a prism or a mirror is generally a plane, a paraboloid, and a spherical surface, but is not limited thereto. Further, as shown in FIG.
  • the function is shared between the irradiation light guiding optical fiber 14b for irradiating the living tissue 50 with the irradiation light and the signal light guiding optical fiber 14c for receiving the radiated light from the living tissue 50.
  • a configuration using a plurality of light guiding optical fibers 14e, 14f, 14g,... May be employed for the purpose of increasing the measurement area or increasing the light collection efficiency or the light collection amount.
  • Such probes are broadly classified into those that measure a certain point in living tissue in one measurement and those that measure a plurality of points at the same time, but in this embodiment, the two are not distinguished. It explains according to.
  • Typical typical probe configurations are as shown in FIGS. 3A to 3E.
  • the proximal end side of the probe has a mechanism for connecting and fixing the above-described optical fiber to a device having a light source device and a detector.
  • a mechanism for connecting ordinary optical fibers such as SMA, FC, ST, LC, and SC is used, but is not limited thereto.
  • the individual connectors When there are a plurality of optical fibers and there are a plurality of connectors, the individual connectors are installed and fixed in a case or cover, and the whole corresponds to the connector section 12 shown in FIGS. Become.
  • the measurement environment component for correction can be installed either in the case where the material is filled therein or in the case where the space is not filled. Since the entire probe is provided to the user in a sterilized state, the material used is selected to withstand the required sterilization operation.
  • FIG. 4A to 4C show configuration examples 40A, 40B, and 40C of the correction measurement environment component 40.
  • the correction measurement environment component 40 is configured to hold and fix at least one of the measurement target substance for correction measurement and the light shielding member in the measurement range of the distal end portion 11 of the probe 10.
  • the correction measurement environment component 40 has one of the following configurations in order to ensure light shielding properties. That is, the correction measurement environment component 40 has an opening 41 into which the tip 11 of the probe 10 is inserted, and an optical environment holding chamber that forms a closed space when the tip 11 of the probe 10 is inserted. 42, and a measurement target substance (43 in FIG. 4A or 44 in FIG.
  • the wall 45 constituting the optical environment holding chamber 42 is formed of white resin, and the reflected light from the inner surface of the wall 45 is measured to obtain the spectral shape of the irradiation light itself. be able to.
  • the wall 45 is necessary for the wall 45 to have a thickness sufficient to provide a light shielding property.
  • the optical environment holding chamber 42 of the correction measurement environment component 40 is configured (43, 46, 48 in FIG. 4A, 44, 47, 48 in FIG. 4B, 45, 48 in FIG. 4C). Need not be made of the material to be measured, and the portion not irradiated with the emitted light of the probe 10 may be made of another material having sufficient light shielding properties.
  • the correction measurement environment component 40 When the correction measurement environment component 40 itself has a sufficient light-shielding property against external light intrusion into the optical environment holding chamber 42, the correction measurement environment component 40 is installed or built in.
  • the case member which comprises the exterior of the connector part 12 may be the structure which does not have sufficient light-shielding property. Further, even if the light shielding property of the correction measurement environment component 40 is poor, the case member constituting the exterior of the connector portion 12 in which the correction measurement environment component 40 is built has a sufficient light shielding property. If it is.
  • the degree of sufficient light shielding described here is determined by the performance of the optical measurement system (the light amount of the light source and the ratio of the detected light amount to the irradiation light amount) and the brightness of the indoor lighting in the usage environment.
  • the connector unit 12 and the correction measurement environment component 40 are integrated.
  • the insertion direction of the tip portion 11 of the probe 10 may take any direction with respect to the insertion direction C of the connector portion 12, and a plurality of correction measurement environment components 40 may be used.
  • 40..., 40... May be common as shown in FIGS. 6, 7 and 11, or may be different as shown in FIG.
  • the connector unit 12 is allowed to be connected to the base unit 20 only in a certain orientation.
  • it has a mechanical structure such as a protrusion / groove for reducing the symmetry of the connector cross-sectional shape and an asymmetrical connector cross-sectional shape, and in the state where the connector portion 12 is connected to the base unit 20, the tip portion 11
  • the correction measurement environment component 40 is configured in the connector unit 12 so as to restrict the insertion direction to the correction measurement environment component 40 to be vertically downward or obliquely downward. For example, as shown in FIG.
  • the mechanical structure that is allowed to be connected to the base unit 20 only in the orientation with the surface 12 a of the connector portion 12 facing up is constituted by the connector portion 12 and the connection portion 21 of the base unit 20.
  • the arrangement of the measurement environment component for correction 40 shown in FIGS. 5, 6, and 10 is preferable.
  • the insertion direction of the distal end portion 11 into the correction measurement environment component 40 is regulated to be vertically downward.
  • the insertion direction of the distal end portion 11 into the correction measurement environment component 40 is restricted obliquely downward.
  • Adhesion, fitting, integral molding, screwing, and the like are applied to fix the connector portion 12 and the correction measurement environment component 40, but are not limited thereto.
  • a plurality of types of correction measurements are required, a plurality of correction measurement environment components 40 corresponding to the required types are prepared and similarly installed either outside or inside the connector unit 12.
  • the shape of the optical environment holding chamber 42 partitioned by the wall portion of the correction measurement environment component 40 is a shape composed of a plane such as a rectangular parallelepiped, a shape composed of a plane and a curved surface such as a cylinder, and a curved surface such as a sphere. Any of the shapes can be selected.
  • a standard color chart color chart
  • the measurement target substance 43 or 44
  • the measurement target substance is located at the position facing the tip 11 of the probe 10 as shown in FIG. 4A, or the tip 11 as shown in FIG. It is arranged at a position that surrounds. Since these measurement target substances (43 and 44) are integrated with the probe, it is required to withstand each sterilization process.
  • the optical environment holding chamber 42 is molded either by molding integrally with the outer case of the connector part 12 or by molding alone. Therefore, it is possible to use a material different from the material used for the outer case of the connector portion 12, and a material having an appropriate light shielding property and reflectance can be selected.
  • the opening 41 for inserting the distal end portion 11 of the probe 10 is required to have the functionality of ensuring light shielding and positioning and fixing the probe 10.
  • an opening having the same diameter as the probe outer diameter or an elastic light shielding member 48 such as maltoprene is fixed to the inner periphery of the opening 41 as shown in FIGS. 4A to 4C.
  • an elastic light shielding member 48 such as maltoprene
  • 9A to 9C show an assembly example of the correction measurement environment component 40.
  • an elastic light-shielding member 62 such as maltoprene is attached to the member 61 composed of a rectangular portion 61a and a circular portion 61b connected to one side thereof in the vicinity of the opposite side along the opposite side of the one side.
  • this is assembled by winding so that the one side and the circumference of the circular portion 61b are aligned.
  • the bottomed cylindrical structure 60 thus formed is inserted into the hole 12b provided in the connector portion 12 as shown in FIG. 9C, thereby installing the correction measurement environment component in the connector portion 12.
  • Such assembly examples may also be applied to the configurations shown in FIGS. 5 to 8, 10 and 11.
  • FIGS. 12A and 12B show other configuration examples 40D and 40E of the correction measurement environment component 40.
  • FIG. In order to position and fix the probe 10, as shown in FIGS. 12A and 12B, it is desirable that projections 49 and 51 for positioning the distal end portion 11 of the probe 10 are provided. Unlike other members, the mechanism for positioning does not necessarily have a light shielding property. In addition, in order to fix the angle of the central axis of the probe 10 or to improve the light shielding property of the opening, it is desirable to have a sufficient insertion portion length. In the configuration shown in FIG.
  • the locking structure for restricting further insertion of the distal end portion 11 inserted into the correction measurement environment constituent 40D with a predetermined insertion length L is provided on the distal end surface of the distal end portion 11 and the protrusion. Part 49.
  • the distal end portion 11 inserted into the measurement environment component for correction 40E is locked with a predetermined insertion length L with a predetermined locking force to restrict further insertion and prevent extraction.
  • the structure is constituted by the outer peripheral groove 52 and the protrusion 51 of the tip 11.
  • a mark 53 (see FIG. 12B) for displaying the length from the distal end corresponding to the insertion length L to be applied at the time of the correction measurement is used in place of the above locking structure or together with the above locking structure.
  • the configuration provided in is also effective. By using the mark 53, the user can confirm whether or not the insertion length of the distal end portion 11 is appropriate.
  • the reflectance is sufficiently high as a material constituting the inner wall of the optical environment holding chamber 42. It is required to use a low material. This is to prevent the light emitted from the distal end portion 11 of the probe 10 from entering the distal end portion 11 again.
  • a material having a low reflectance is used, a space in the optical environment holding chamber 42 is increased, and the distance between the inner wall of the optical environment holding chamber 42 and the distal end portion 11 is increased. Is preferably ensured.
  • identification symbols for example, numbers such as 1 and 2, etc., reflection, It is effective to clearly indicate the characters (e.g., light emission) on the case of the connector portion 12 by means such as molding, printing, or labeling. Note that when performing correction measurement a plurality of times, the wavelength used for each measurement may be different.
  • the measurement environment component for correction 40 As described above in the connector portion 12 of the probe 10, the following effects can be expected.
  • the connector portion 12 of the probe 10 is already large enough to be easily handled by the user for the original purpose of connecting to the base unit 20. Therefore, the possibility of contamination due to falling on the floor can be reduced as compared with the case where the correction measurement environment component is configured as a cap or the like independent of the probe. Moreover, since it is integrated with the probe, there is no risk of loss.
  • probes that reach the inside of the body via the forceps channel of the endoscope have an outer diameter of 2.8 mm or less for the general forceps channel (channel) diameter.
  • the opening diameter of the measurement configuration is about the same.
  • the probe 10 connector portion 12 is a part that is always operated and connected by the user when using the optical measurement system 1. Therefore, the correction measurement can be performed by writing a word or a drawing for prompting the correction measurement. It also has the effect of preventing you from forgetting to work.
  • a set of measurement environment components for correction 40 is reliably provided for one probe in a state where the entire probe is sterilized and packed in a sterilization bag. Therefore, in the case of a disposable or one-time use probe, the user does not need to consider the deterioration over time of the correction measurement target and its storage environment, and can always perform correction measurement that matches the intention of the provider. .
  • the probe In the case of a probe that is used repeatedly, the probe is cleaned each time it is used, so that the user does not need to clean the measurement environment component 40 for correction separately, and the correction always matches the intention of the provider only by periodic replacement. Measurement can be performed. In any case, since one or more correction measurement environment components 40 can be simultaneously provided for one probe 10, even if the design of the probe is changed, the correction measurement environment component is correspondingly changed. The design of 40 can be changed, and the measurement environment component 40 for correction suitable for a specific probe can be provided.
  • the user inserts the distal end portion 11 of the probe 10 into the opening 41 of the correction measurement environment component 40 provided in the connector portion 12 according to the guidance. Thereafter, the user inputs a measurement start command to the base unit 20, and light from the light source device of the base unit 20 is guided to the fiber tip and emitted into the optical environment holding chamber 42. At this time, the signal light obtained by the probe 10 is input to the detector in the base unit 20.
  • the arithmetic processing device When the signal light is input to the detector, the arithmetic processing device provided in the base unit 20 compares the obtained output value relating to the light amount and the spectral characteristics with values set in advance. Here, the arithmetic processing unit performs calculation of a correction coefficient for correcting the obtained data to be in an appropriate error range or correcting to an appropriate result. This is stored in a memory in the base unit 20 and used to correct the subsequent measurement result. That is, the arithmetic processing unit holds and stores the correction measurement result measured in the optical environment by the correction measurement environment component 40, and based on the correction measurement result, in accordance with a predetermined algorithm, the biological tissue An arithmetic process for correcting the biological measurement result for the target is executed.
  • the arithmetic processing unit when a mechanism for amplifying the output of the detector or a mechanism for adjusting the amount of light incident on the detector is provided integrally with or separately from the detector, the arithmetic processing unit relates to the obtained light amount and spectral characteristics. The output value is compared with a preset value, and the gain of the detector or the transmittance of the neutral density filter is changed to set the obtained data within an appropriate error range. Alternatively, the arithmetic processing unit compares the obtained light quantity and output value related to the spectral characteristic with a preset value, and at least one of a light source, a detector, and a mechanism for optically connecting them to the probe. One movable part is movably adjusted so that the obtained data is within an appropriate error range.
  • the arithmetic processing unit notifies the user that the correction measurement has not been properly completed. Accordingly, the user performs measurement again or determines that the probe is defective, and prepares a new probe.
  • the system 1 pulls the probe 10 out to the user, clearly displays the identification symbol as described above, and inserts it into the opening 41 of another correction measurement environment component 40. Or prompt by voice display and move to the next correction measurement.
  • the present system 1 displays the completion of the correction measurement by image or sound, and the user inserts the distal end portion 11 of the probe 10 into the forceps channel of the endoscope and enters the body of the subject. Lead.
  • the probe of the present invention may be inserted into the body through a channel formed in the endoscope, or may be inserted into the body independently from the endoscope. It may be.
  • Fluorescence is broadly defined as an object irradiated with X-rays, ultraviolet rays, or visible light absorbs its energy, excites electrons, and releases excess energy as electromagnetic waves when it returns to the ground state.
  • the excitation light reference light
  • the radiated light input in the detector is subjected to wavelength spectroscopy, and this is processed by the arithmetic processing unit as described above. And the amount of fluorescence generated is measured.
  • the arithmetic processing unit performs data processing for recording the fluorescence measurement data in a data recording device or displaying it on an image display device. Also, data processing is performed to synthesize an image obtained by superimposing the surface image of the living tissue imaged by the endoscope and fluorescence measurement data, and this is recorded in a data recording device or displayed on an image display device. Data processing is performed.
  • the excitation light is irradiated to the measurement target site and the fluorescence generated due to the excitation light is received.
  • reflected light, scattered light, Raman generated due to the irradiation light are described. Scattered light or harmonics due to nonlinear optical effects may be received. Even in these cases, it is possible to diagnose a disease state such as degeneration of a living tissue or cancer.
  • an image pickup device is installed at the distal end portion 11, and the received signal light is converted into an electrical signal, which is transmitted from the distal end portion 11 to the probe proximal end and further to the detector of the base unit 20 through an electrical signal cable.
  • this method it is possible to implement this method. In other words, what type of signal is used at which stage does not affect the implementation of the present invention.
  • FIG. 13 is an external perspective view of the diagnostic packaging 1.
  • FIG. 14 is an exploded perspective view of the diagnostic packaging 1. As shown in FIGS. 13 and 14, the diagnostic package 1 includes a probe 10, an adjustment jig 30, a tray 70, a cover 80, a packaging bag 90, and the like.
  • Probe 10 is a cable material that transmits, projects and receives light.
  • the proximal end portion of the probe 10 is a connector 11 for inputting / outputting light
  • the distal end portion of the probe 10 is a light projecting / receiving portion 12 for projecting / receiving light
  • an intermediate portion of the probe 10 is projected with the connector 11.
  • This is a cable body 13 that transmits light between the light receivers 12.
  • the light projecting / receiving unit 12 is connected to the distal end of the cable body 13, and the connector 11 is connected to the proximal end of the cable body 13.
  • the connector 11 When the probe 10 is used, the connector 11 is connected to the base unit 100 (shown in FIGS. 20 and 21; details of the base unit 100 will be described later), and the light projecting / receiving unit 12 is inserted into the lumen.
  • Excitation light emitted from the light source of the base unit 100 is input to the connector 11 at the proximal end portion of the probe 10, and the input excitation light is transmitted to the light projecting / receiving portion 12 at the distal end portion by the cable body portion 13.
  • the excited excitation light is irradiated from the light projecting / receiving unit 12 to the measurement site of the living tissue in the lumen.
  • the measurement site emits fluorescence by excitation light.
  • the fluorescence emitted from the measurement site is received by the light projecting / receiving unit 12, and the received fluorescence is transmitted to the connector 11 at the base end by the cable body 13, and the transmitted fluorescence is transmitted from the connector 11 to the base unit 100. Is output.
  • the base unit 100 performs spectral analysis of the fluorescence input to the base unit 100. Using the probe 10 as described above, an optical diagnosis is performed by the probe 10.
  • This probe 10 is disposable. That is, from the viewpoint of hygiene, the probe 10 that is once inserted into the lumen is not reused.
  • the adjustment jig 30 is used before the probe 10 is inserted into the lumen and used.
  • the light projecting / receiving portion 12 of the probe 10 is held by the adjustment jig 30 and the connector 11 of the probe 10 is connected to the base unit 100.
  • light of known standard intensity emitted from the light source of the base unit 100 is projected from a light projecting / receiving unit 12 of the probe 10 onto a part of the adjustment jig 30 (calibration target), and the reflected light thereof is projected and received. 12, and the received light is transmitted to the base unit 100 by the probe 10.
  • the intensity of the input light is measured, and calibration is performed by taking into account the difference between the measured intensity and the known standard intensity.
  • FIG. 15 is a plan view of the probe 10. As shown in FIG. 15, the probe 10 includes a light projecting optical fiber 14, a light receiving optical fiber 15, an illumination optical fiber 16, a lens 17, an illumination lens 18, a holder 19, a connector housing 21, a tube 25, and the like.
  • the tube 25 is provided in a tubular shape.
  • the tube 25 forms the outer peripheral wall of the probe 10.
  • the tube 25 has water barrier properties and flexibility.
  • the connector housing 21 is connected to the proximal end of the tube 25, and the holder 19 is connected to the distal end of the tube 25.
  • the probe 10 has an identifier 26 attached thereto.
  • the location to which the identifier 26 is attached is, for example, the connector housing 21, the tube 25, or the holder 19.
  • the identifier 26 is, for example, an ID, a serial number, a manufacturing number, or a lot number.
  • connection pins 22 to 24 are projected on the end face of the connector housing 21.
  • the holder 19 has an internal space, and the internal space communicates with the hollow of the tube 25.
  • a light projecting / receiving window 20 is provided on the front end surface of the holder 19.
  • the lens 17 and the illumination lens 18 are accommodated in the internal space of the holder 19 and are fixed to the holder 19.
  • the lens 17 faces the light projecting / receiving window 20 and the illumination lens 18 faces the light projecting / receiving window 20.
  • the light projecting optical fiber 14, the light receiving optical fiber 15, and the illumination optical fiber 16 are passed through the tube 25 from the connector housing 21 to the holder 19.
  • the proximal end portions of the light projecting optical fiber 14, the light receiving optical fiber 15, and the illumination optical fiber 16 are fixed to the connector housing 21 inside the connector housing 21.
  • the portion near the base end of the light projecting optical fiber 14 is passed through the connection pin 22, and the base end of the light projecting optical fiber 14 is exposed at the protruding end of the connection pin 22.
  • the proximal end portions of the light receiving optical fiber 15 and the illumination optical fiber 16 are attached to the connection pins 23 and 24, respectively.
  • the light projecting optical fiber 14 guides the excitation light incident on the proximal end thereof to the distal end.
  • the light receiving optical fiber 15 guides the fluorescence incident on the tip thereof to the base end.
  • the illumination optical fiber 16 guides illumination light (for example, visible light) incident on the proximal end thereof to the distal end.
  • the front end of the light projecting optical fiber 14 is opposed to the lens 17, and the front end of the light receiving optical fiber 15 is also opposed to the lens 17.
  • the lens 17 is a collimating lens. That is, the lens 17 projects the excitation light emitted from the tip of the light projecting optical fiber 14 to the front of the tip of the probe 10 as substantially parallel light. The excitation light projected by the lens 17 passes through the light projection / receiving window 20.
  • a measurement site of biological tissue arranged in front of the tip of the probe 10 is excited by excitation light and emits fluorescence. Fluorescence emitted from the measurement site of the living tissue passes through the light projecting and receiving window 20 and is collected by the lens 17 on the tip of the light receiving optical fiber 15.
  • the tip of the illumination optical fiber 16 is opposed to the illumination lens 18. Illumination light emitted from the tip of the illumination optical fiber 16 is projected forward of the tip of the probe 10 by the illumination lens 18.
  • the portion consisting of the connector housing 21, the connection pins 22 to 24, and the proximal end portions of the optical fibers 14 to 16 corresponds to the connector 11 of the probe 10.
  • a portion including the lens 17, the illumination lens 18, the holder 19, and the light projecting / receiving window 20 corresponds to the light projecting / receiving unit 12 of the probe 10.
  • the central portion of the tube 25 and the optical fibers 14 to 16 corresponds to the cable body 13 that connects the connector 11 and the light projecting / receiving unit 12.
  • the light projecting and receiving window 20 may be provided on the side surface of the holder 19.
  • a mirror is disposed inside the holder 19 and in front of the lens 17, and excitation light projected by the lens 17 is reflected by the mirror toward the light projecting / receiving window 20.
  • the fluorescence emitted from the measurement site of the living tissue and transmitted through the light projecting and receiving window 20 is reflected toward the lens 17 by the mirror.
  • an imaging camera may be built in the holder 19. In that case, the periphery of the holder 19 is photographed by the imaging camera, and an image photographed by the imaging camera is transferred to the base unit 100. Since the probe 10 is disposable, it is preferable that the imaging camera is not incorporated as described above.
  • the number of optical fibers provided in the above probe 10 is 3, but the number of optical fibers may be 1 or 2, or may be 4 or more.
  • the number of optical fibers it is preferable that there is no illumination optical fiber 16 and the light projecting optical fiber 14 is used for both excitation light guiding and illumination light guiding.
  • the number of optical fibers it is preferable that the light projecting optical fiber 14 is also used for exciting light guiding, fluorescence guiding, and illumination light guiding.
  • FIG. 16 is an exploded perspective view of the adjustment jig 30.
  • FIG. 17 is a cross-sectional view of the adjustment jig 30.
  • the adjustment jig 30 includes a jig body 31, a first calibration target 52, a second calibration target 55, a push rod 53, light shielding sheets 50 and 51, and a first light shielding cap 54. And a second light shielding cap 56 and the like.
  • the outer shape of the jig body 31 is a substantially rectangular parallelepiped shape.
  • the jig body 31 has a light shielding property. If the material itself of the jig body 31 is not light-shielded, the surface of the jig body 31 is coated with a light-shielding coating.
  • insertion holes 35 and 41 are opened.
  • a first insertion hole 34 and a second insertion hole 40 that are internal spaces are formed in the jig body 31, and the first insertion hole 34 extends from the insertion port 35 to the inside of the jig body 31.
  • the insertion hole 40 extends from the insertion port 41 into the jig body 31.
  • the center lines of the insertion holes 34 and 40 extend linearly, and the insertion holes 34 and 40 penetrate from the one end surface 32 to the other end surface 33 of the jig body 31.
  • each of the insertion holes 34 and 40 is opened at one end surface 32 as the insertion ports 35 and 41, respectively, and the other end of the insertion holes 34 and 40 is respectively formed as the insertion ports 36 and 42 at the other end surface 33. It is open.
  • the end surface 32 is the front surface of the jig body 31, and the end surface 33 is the rear surface of the jig body 31.
  • the first insertion hole 34 includes a first cavity portion 37 near the insertion port 35, a second cavity portion 38 near the intake port 36, and a third space between the first cavity portion 37 and the second cavity portion 38. It consists of a cavity 39.
  • the first cavity part 37 and the third cavity part 39 are connected, and the second cavity part 38 and the third cavity part 39 are connected.
  • the first cavity portion 37 is formed in a truncated cone shape, and the diameter of the first cavity portion 37 gradually decreases from the insertion port 35 toward the third cavity portion 39.
  • the second cavity portion 38 and the third cavity portion 39 are formed in a columnar shape, and the diameters of the second cavity portion 38 and the third cavity portion 39 are equal to each other.
  • the second insertion hole 40 also includes a first cavity portion 43, a second cavity portion 44, and a third cavity portion 45.
  • the second cavity portion 38 of the first insertion hole 34 is formed in a columnar shape
  • the second cavity portion 44 of the second insertion hole 40 is formed in a truncated cone shape
  • the second cavity portion The diameter of 44 gradually decreases from the intake port 42 toward the third cavity 45.
  • the third cavity 45 is formed in the shape of a truncated cone because the distance from the center line of the third cavity 45 to the inner wall of the third cavity 45 is made as large as possible and propagates in the third cavity 45. This is to make the light to be attenuated easily.
  • a ring-shaped stopper 46 is projected on the inner wall of the first insertion hole 34.
  • the position where the stopper 46 is formed is a boundary portion between the second cavity portion 38 and the third cavity portion 39, and the second cavity portion 38 and the third cavity portion 39 communicate with each other through an opening 47 inside the stopper 46. Yes.
  • a ring-shaped stopper 48 having an opening 49 is also provided on the inner wall of the second insertion hole 40 and at the boundary between the second cavity portion 44 and the third cavity portion 45.
  • Shielding sheets 50 and 51 are attached to the inner walls of the insertion holes 34 and 40, respectively. Specifically, the light shielding sheets 50 and 51 are attached to the inner walls of the third cavities 39 and 45 in the insertion holes 34 and 40, respectively.
  • the light shielding sheets 50 and 51 are made of a polyurethane foam material (maltoprene) having elasticity.
  • the light shielding sheets 50 and 51 may be flocked.
  • the inner wall of the 3rd cavity parts 39 and 45 may be embossed or embossed instead of sticking the light shielding sheets 50 and 51.
  • the inner wall of the second insertion hole 40 is anti-reflection processed.
  • an AR (Anti-Reflection) film is formed on the inner wall of the second insertion hole 40, or an AR film is attached to the second insertion hole 40.
  • the antireflection processing may be applied to the entire inner wall of the second insertion hole 40, or may be applied to the inner wall of the second cavity portion 44 in the second insertion hole 40.
  • the first calibration target 52 is accommodated in the first insertion hole 34.
  • the installation position of the first calibration target 52 is opposite to the insertion port 35 with respect to the stopper 46, and more specifically, is closer to the stopper 46 in the second cavity portion 38.
  • the first calibration target 52 is in contact with the stopper 46, and the opening 47 of the stopper 46 is closed by the first calibration target 52.
  • the push rod 53 is inserted into the first insertion hole 34 from the intake port 36 and is accommodated in the second cavity 38.
  • the first calibration target 52 is inserted into the first insertion hole 34 from the intake port 36 by the push rod 53 and is abutted against the stopper 46 by the push rod 53.
  • a first light shielding cap 54 made of rubber or plastic is fitted into the inlet 36 so as to close the inlet 36 of the first insertion hole 34.
  • the pushing rod 53 is held in a state of being sandwiched between the stopper 46 and the first calibration target 52 and the first light shielding cap 54.
  • the second calibration target 55 is accommodated in the second insertion hole 40.
  • the installation position of the second calibration target 55 is on the opposite side of the insertion port 41 with respect to the stopper 48, and more specifically, closer to the intake port 42 in the second cavity 38.
  • a second calibration target 55 is fitted into the intake port 42.
  • the second calibration target 55 is integrally formed with a second light shielding cap 56 made of rubber or plastic, and the intake port 42 is covered with the second light shielding cap 56.
  • the distance from the second calibration target 55 to the stopper 48 is longer than the distance from the first calibration target 52 to the stopper 46.
  • the second calibration target 55 and the second light shielding cap 56 may be formed separately, and the second calibration target 55 may be attached to the second light shielding cap 56.
  • the light shielding caps 54 and 56 may be hardened adhesive. Further, the light shielding caps 54 and 56 may be bonded to the jig main body 31.
  • the color of the first calibration target 52 and the color of the second calibration target 55 are different.
  • the color of the second calibration target 55 is black
  • the color of the first calibration target 52 is a color other than black (for example, white, red, green, blue, yellow, magenta, cyan, etc.).
  • the color of the first calibration target 52 is white.
  • the first calibration target 52 may be a uniform single color, or may be one in which various colors are arranged as in a so-called color chart.
  • the first calibration target 52 is, for example, a standard color chart such as Munsell color, a standard color plate (for example, a standard white plate), a standard fluorescent sample, or a Raman standard sample.
  • the first calibration target 52 may include a base material and a standard color sheet (for example, Munsell color sheet) attached to the base material.
  • the first calibration target 52 may be made of barium sulfate. Preferably, a barium sulfate molded into a tablet shape is used as the first calibration target 52.
  • the second calibration target 55 is a material that does not reflect light or a material with low light reflectivity. In order to prevent reflection of light at the second calibration target 55, the second calibration target 55 may be anti-reflection coated.
  • the jig body 31, the first calibration target 52, the second calibration target 55, the push rod 53, the first light shielding cap 54, and the second light shielding cap 56 preferably have chemical resistance. That is, the materials of the jig body 31, the first calibration target 52, the second calibration target 55, the push rod 53, the first light shielding cap 54, and the second light shielding cap 56 do not change in properties even in a sterilized gas environment. A material is preferable. This is because the adjustment jig 30 is mainly used as a medical device.
  • the material of the jig body 31, the first calibration target 52, the second calibration target 55, the push rod 53, the first light shielding cap 54, and the second light shielding cap 56 is preferably a heat resistant material.
  • the material of the jig body 31, the first calibration target 52, the second calibration target 55, the push rod 53, the first light shielding cap 54, and the second light shielding cap 56 is preferably a material that does not deform even at high temperatures.
  • the light projecting / receiving part 12 which is the tip of the probe 10
  • the first cavity portion 37 is formed in a truncated cone shape and the insertion port 35 is greatly opened, the light projecting / receiving portion 12 of the probe 10 can be easily inserted into the first insertion hole 34.
  • the first cavity portion 37 is formed in a truncated cone shape, when the light projecting / receiving portion 12 of the probe 10 is pushed into the first insertion hole 34, the light projecting / receiving portion 12 is guided to the center. Therefore, the light projecting / receiving part 12 of the probe 10 can be easily inserted into the third cavity part 39.
  • the light projecting / receiving part 12 of the probe 10 When the light projecting / receiving part 12 of the probe 10 is pushed into the first insertion hole 34 and the tip of the light projecting / receiving part 12 (light projecting / receiving window 20) contacts the stopper 46, the light projecting / receiving part 12 is pushed further. Disappear. As a result, the position of the light projecting / receiving unit 12 is determined, and the front end of the light projecting / receiving unit 12 faces the first calibration target 52 in a light-tight state.
  • the opening 47 of the stopper 46 is blocked by the light projecting / receiving unit 12. Therefore, even if external light enters the insertion port 35, the external light does not reach the first calibration target 52.
  • the first calibration target 52 can be shielded from light.
  • the inner walls of the third cavities 39 and 45 are embossed or embossed instead of attaching the light shielding sheets 50 and 51, the projections or embossed projections are projected and received by the light projecting / receiving unit 12. By contacting the peripheral surface, the first calibration target 52 can be shielded from light.
  • the light projecting / receiving unit 12 is inserted into the second insertion hole 40 from the insertion port 41 in the same manner as the light projecting / receiving unit 12 of the probe 10 is inserted into the first insertion hole 34 from the insertion port 35.
  • tip of the light projection light-receiving part 12 can be directly opposed to the target 52 for 1st calibration in a light-tight state.
  • the order of insertion of the light projecting / receiving unit 12 is the first insertion hole 34 first and the second insertion hole 40 later.
  • the number of insertion holes formed in the jig body 31 is two.
  • the number of the insertion holes may be 1, and only one of the insertion holes 34 and 40 may be formed in the jig body 31.
  • the number of insertion holes formed in the jig body 31 may be three or more. Even when the number of insertion holes is three or more, one or more insertion holes are formed in the jig body 31 in addition to the insertion holes 34 and 40, and these (or this) additional insertion holes
  • the center line is parallel to the center line of the insertion holes 34, 40, and the opening (insertion opening) of these (or this) additional insertion holes opens at one end surface 32 of the jig body 31.
  • Additional calibration targets of different colors are respectively accommodated in these (or this) additional insertion holes. If the number of insertion holes is 3 or more and the colors of the calibration targets 52 and 55 are white and black, respectively, the color of the additional calibration target is other than white and black, and the additional The color is different for each calibration target.
  • the tray 70 will be specifically described. As shown in FIG. 14, the tray 70 has a box-shaped tray body 71 having an open bottom surface.
  • the tray body 71 is obtained by processing a thin plate material made of resin, paper, or metal into a box shape.
  • the tray body 71 has chemical resistance and heat resistance, and the properties of the tray body 71 do not change even under a sterilization gas environment and a high temperature environment.
  • a probe storage recess 72 and an adjustment jig storage recess 76 are provided in the upper surface of the tray body 71.
  • the probe 10 is stored in the probe storage recess 72.
  • the adjustment jig 30 is housed in the adjustment jig housing recess 76.
  • the probe storage recess 72 includes a connector storage portion 73 in which the connector 11 is stored, a cable storage portion 74 in which the cable main body portion 13 is stored, and a tip end storage portion 75 in which the light projecting / receiving portion 12 is stored.
  • the cable storage portion 74 is a ring-shaped recess that is recessed in the upper surface of the tray body 71.
  • the connector storage portion 73 is a concave portion provided in the upper surface of the tray main body 71.
  • the connector housing 73 is connected to the cable housing 74 and extends in the tangential direction of the cable housing 74.
  • the front end storage portion 75 is a recess provided in the tray body 71.
  • the distal end storage portion 75 is connected to the cable storage portion 74 and extends in the tangential direction of the cable storage portion 74.
  • the adjustment jig storage recess 76 is formed in a rectangular shape when viewed from above.
  • the position where the adjustment jig storage recess 76 is formed is in the vicinity of the tip end storage section 75.
  • FIG. 18 is a cross-sectional view of the adjustment jig storage recess 76 viewed from the side.
  • the cross section in FIG. 18 is a plane parallel to the longitudinal direction of the adjustment jig housing recess 76 in plan view, and is a plane perpendicular to the upper surface of the tray body 71.
  • the cross-sectional shape of the adjustment jig storage recess 76 is wedge-shaped, and the bottom surface 77 of the adjustment jig storage recess 76 is inclined with respect to the upper surface of the tray body 71.
  • the bottom surface 77 of the adjustment jig storage recess 76 is inclined downward in the direction toward the tip (butting) of the tip end storage section 75.
  • FIG. 19 is a perspective view showing a state in which the probe 10 and the adjustment jig 30 are stored on the tray 70.
  • the probe 10 is housed in the probe housing recess 72 so as to be fitted into the probe housing recess 72.
  • the light projecting / receiving portion 12 of the probe 10 is stored in the tip portion storage portion 75 so as to be fitted into the tip portion storage portion 75.
  • the cable body 13 of the probe 10 is housed in the cable housing 74 so as to be fitted into the cable housing 74 in a spirally wound state.
  • the cable main body 13 is spirally wound so that the connector 11 side overlaps the light projecting / receiving unit 12 side.
  • the connector 11 of the probe 10 is housed in the connector housing portion 73 so as to be fitted into the connector housing portion 73. As described above, the probe 10 is housed in the probe housing recess 72, so that the connector 11 of the probe 10 can be easily taken out first as described later.
  • the cable main body 13 may be spirally wound so that the light projecting / receiving portion 12 side overlaps the connector 11 side and stored in the cable storage portion 74.
  • the cable main body 13 may protrude from the cable storage portion 74, so that the light projecting / receiving portion 12 side of the cable main body 13 overlaps the connector 11 side, so that the connector 11 It is possible to prevent the cable main body portion 13 from jumping out of the cable storage portion 74 at the time of taking out.
  • the light projecting / receiving part 12 side of the cable body 13 is overlaid on the connector 11 side, or the connector 11 side is projected. Select whether to superimpose on the light receiving unit 12 side.
  • the jig body 31 of the adjustment jig 30 is housed in the adjustment jig housing recess 76 so as to be fitted into the adjustment jig housing recess 76.
  • the surface of the jig body 31 on which the reference numerals 57 and 58 are formed (the upper surface of the jig body 31) faces upward, and the opposite surface (the lower surface of the jig body 31) is the adjustment jig housing recess 76.
  • the adjustment jig is housed in the adjustment jig housing recess 76 in a state facing the bottom surface 77.
  • the adjustment jig storage recess 76 is a substantially rectangular recess, and the jig of the adjustment jig 30 is placed with the rear surface 33 of the jig body 31 facing down and the front surface 32 of the jig body 31 facing up.
  • the main body 31 may be housed in the adjustment jig housing recess 76, and the insertion ports 35 and 41 may face upward.
  • reference numerals 57 and 58 are preferably attached to the front surface 32 of the jig body 31 in the vicinity of the insertion ports 35 and 41, respectively.
  • the probe 10 Since the probe 10 is housed in the probe housing recess 72 as described above, the probe 10 is held by the tray body 71, and the probe 10 can be protected from impact or the like. Similarly, the adjustment jig 30 can be protected. Furthermore, the adjustment jig 30 and the probe 10 do not collide with each other during conveyance of the diagnostic package 1 or the like.
  • One or a plurality of elastic protrusions may be provided on the side surface of the probe storage recess 72, and when the probe 10 is stored in the probe storage recess 72, the elastic protrusion may be compressed by the probe 10. As a result, the probe 10 is supported by the elastic protrusion, and the probe 10 is unlikely to be detached from the probe storage recess 72.
  • one or a plurality of elastic protrusions may be provided on the side surface of the adjustment jig housing recess 76.
  • the cover 80 will be specifically described.
  • the cover 80 covers the upper surface of the tray body 71, and the probe storage recess 72 and the adjustment jig storage recess 76 are covered with the cover 80.
  • the accommodated probe 10 and adjustment jig 30 are covered with a cover 80 to protect the probe 10 and adjustment jig 30.
  • the cover 80 has chemical resistance and heat resistance, and the properties of the cover 80 do not change even under a sterilized gas environment and a high temperature environment.
  • a convex part 81 is formed on the lower surface of the cover 80 so as to overlap the probe accommodating concave part 72, and the convex part 81 enters the probe accommodating concave part 72 from above the probe 10. Thereby, the probe 10 is fixed firmly.
  • a convex portion 82 is formed on the lower surface of the cover 80, and the convex portion 82 enters the adjustment jig housing concave portion 76 from above the adjustment jig 30. Note that the cover 80 may be omitted.
  • the packaging bag 90 will be specifically described. As shown in FIGS. 13, 14, and 19, the packaging bag 90 wraps the probe 10, the adjustment jig 30, the tray 70 and the cover 80, and the probe 10, the adjustment jig 30, the tray 70 and the cover 80 are the packaging bag. 90. Of course, also in the packaging bag 90, the probe 10 is stored in the probe storage recess 72, and the adjustment jig 30 is stored in the adjustment jig storage recess 76.
  • FIG. 13 shows a state where the probe 10, the adjustment jig 30, the tray 70, and the cover 80 are packaged by the packaging bag 90. As shown in FIG. 13, the packaging bag 90 is sealed.
  • the packaging bag 90 preferably has light shielding properties. It is preferable that the packaging bag 90 has airtightness.
  • the packaging bag 90 has chemical resistance, and the properties of the packaging bag 90 do not change even in a sterilized gas environment. Although the packaging bag 90 has gas permeability, micropores formed in the packaging body 90 are very small, and micrometer-order bacteria and dust do not penetrate the packaging body 90.
  • the packaging bag 90 is sterilized. Specifically, the probe 10, the adjustment jig 30, the tray 70 and the cover 80 are packaged by the packaging bag 90, and the packaging bag 90 is sealed, and the packaging bag 90 is heated at a high temperature in a high-temperature furnace. By being exposed to the atmosphere, the packaging bag 90 is sterilized.
  • FIG. 20 is a perspective view of the base unit 100.
  • FIG. 21 is a block diagram of the base unit 100.
  • the base unit 100 includes a housing 101, a CPU 103, a RAM 104, a ROM 105, a signal processing unit 106, a photometry unit 107, light emission control units 108 and 110, an illumination light source 109, a light source 111, and an interface 112. And a sensor 113.
  • the CPU 103, RAM 104, ROM 105, signal processing unit 106, photometry unit 107, light emission control units 108 and 110, illumination light source 109, light source 111, interface 112, and sensor 113 are built in the housing 101.
  • a connecting portion 102 is provided on the front surface of the housing 101.
  • the connector 11 of the probe 10 is connected to the connection unit 102.
  • the base end of the light projecting optical fiber 14 is connected to the light source 111 via the optical waveguide
  • the base end of the light receiving optical fiber 15 is connected to the photometry portion via the optical waveguide.
  • the proximal end of the illumination optical fiber 16 is connected to the illumination light source 109 via an optical waveguide.
  • the sensor 113 is attached to the connection unit 102.
  • the sensor 113 detects that the connector 11 is connected to the connection unit 102 and outputs a detection signal to the CPU 103.
  • the sensor 113 is, for example, an infrared sensor, a micro switch, or a proximity sensor.
  • the ROM 105 stores a program that can be read by the CPU 103.
  • the CPU 103 executes a program stored in the ROM 105, controls the signal processing unit 106, the photometry unit 107, the light emission control units 108 and 110, and the interface 112 according to the program, and transfers signals and data between them.
  • the RAM 104 provides a work area for the CPU 103.
  • the CPU 103 performs a calculation related to the calibration according to the program, and records the calculation result (correction coefficient) in the RAM 104.
  • the CPU 103 causes the photometry unit 107 to reflect the calculation result (correction coefficient).
  • the interface 112 is for transferring data between the CPU 109 and the computer 114 in accordance with a command from the CPU 109.
  • An input device for example, a keyboard and a mouse
  • a display monitor 116 are connected to the computer 114.
  • the light emission control unit 110 controls the light source 111 according to a command from the CPU 103.
  • the light emission control unit 110 controls the light emission timing, the turn-off timing, the light emission intensity, and the like of the light source 111.
  • the light emission control unit 108 controls the illumination light source 109 in accordance with a command from the CPU 103.
  • the light source 111 generates excitation light (for example, X-rays, ultraviolet rays, visible rays, or electromagnetic waves).
  • the illumination light source 109 emits visible light as illumination light.
  • the photometry unit 107 separates the fluorescence input from the light receiving optical fiber 15 of the probe 10 and measures the intensity of the fluorescence for each wavelength. In addition, the photometry unit 107 measures the intensity of the fluorescence without splitting the fluorescence input from the light receiving optical fiber 15 of the probe 10.
  • the intensity for each wavelength measured by the photometric unit 107 is referred to as spectrum data
  • the intensity measured without being spectrally separated by the photometric unit 107 is referred to as intensity data.
  • the photometry unit 107 measures spectral data and intensity data in a state where the calculation result (correction coefficient) input from the CPU 103 is reflected, and measures spectral data and intensity data in a state where the calculation result (correction coefficient) is not reflected.
  • Spectrum data and intensity data measured by the photometry unit 107 are transferred to the signal processing unit 106 by the CPU 103 or transferred to the computer 114 by the CPU 103 and the interface 112.
  • the signal processing unit 106 performs signal processing of spectrum data and intensity data.
  • FIG. 22 is a perspective view showing a usage state of the diagnostic packaging 1.
  • FIG. 23 is a flowchart showing the flow of processing performed by the CPU 103 according to the program.
  • step S1 the CPU 103 waits until a detection signal is input from the sensor 113 (step S1: No).
  • the user opens the packaging bag 90 and removes the probe 10, the adjustment jig 30, and the cover 80 together with the tray 70 from the packaging bag 90.
  • the user removes the cover 80 from the tray 70.
  • the user takes out the connector 11 of the probe 10 from the connector storage portion 73 and connects the connector 11 to the connection portion 102 of the base unit 100. Since the cable body 13 is spirally wound so that the connector 11 side of the cable body 13 overlaps the light projecting / receiving part 12 side of the cable body 13, the user can easily take out the connector 11.
  • the user reads the identifier 26 attached to the probe 10 and inputs the same value as the identifier 26 with the input device 115.
  • the input identifier is transferred from the computer 114 to the CPU 103, and the CPU 103 records the input identifier in the RAM 104.
  • the connector 11 When the connector 11 is connected to the connection unit 102, the connector 11 is detected by the sensor 113, and a detection signal is output from the sensor 113 to the CPU 103.
  • the CPU 103 controls the light emission control unit 110 to cause the light source 111 to emit light (step S2).
  • the excitation light emitted from the light source 111 is guided to the tip by the light projecting optical fiber 14 and projected by the lens 17.
  • the connection of the connector 11 may not be detected by the sensor 113. In this case, the light source 111 is always in a light emitting state, and the CPU 103 recognizes the connection of the connector 11 from the change in the measurement result of the photometry unit 107. This is because when the connector 11 is connected to the connection unit 102, the measurement result of the photometry unit 107 changes.
  • the CPU 103 outputs a display command to the computer 114 via the interface 112 (step S3).
  • the computer 114 causes the display monitor 116 to display a screen for prompting the insertion and reception unit 12 of the probe 10 to be inserted into the insertion port 35 of the adjustment jig 30.
  • the computer 114 causes the display monitor 116 to display the same code as the code 57 attached to the surface of the jig body 31. Since the same symbol as the symbol 57 is displayed on the display monitor 116, the user can intuitively and visually understand the prompt for insertion of the probe 10 into the insertion port 35.
  • the user inserts the light projecting / receiving part 12 of the probe 10 into the first insertion hole 34 from the insertion port 35, and brings the tip of the light projecting / receiving part 12 (light projecting / receiving window 20) into contact with the stopper 46. . Since the insertion port 35 is exposed obliquely upward, the light projecting / receiving portion 12 of the probe 10 can be inserted into the insertion port 35 without removing the adjustment jig 30 from the adjustment jig housing recess 76. Further, since the stopper 46 protrudes from the first insertion hole 34, even if the user cannot look into the first insertion hole 34, the tip of the light projecting / receiving unit 12 is positioned at an appropriate position. The first calibration target 52 can be directly opposed.
  • the distance from the tip of the light projecting / receiving unit 12 to the first calibration target 52 is appropriately set.
  • the tip of the light projecting / receiving unit 12 can be positioned in the immediate vicinity of the first calibration target 52.
  • the excitation light emitted from the leading end of the projecting optical fiber 14 is projected onto the first calibration target 52 by the lens 17.
  • the excitation light is reflected by the first calibration target 52, and the reflected light is condensed by the lens 17 on the tip of the light receiving optical fiber 15.
  • the reflected light received at the tip of the light receiving optical fiber 15 is guided to the photometry unit 107 by the light receiving optical fiber 15. Since the tip of the light projecting / receiving unit 12 is located in the immediate vicinity of the first calibration target 52, excitation light and reflected light are hardly attenuated, and reflected light with high intensity is incident on the tip of the light receiving optical fiber 15. .
  • the user When the tip of the light projecting / receiving unit 12 is inserted to the stopper 46, the user operates the input device 115.
  • the CPU 103 causes the photometry unit 107 to perform photometry processing (step S4). Thereby, spectrum data and intensity data are measured by the photometry unit 107.
  • the CPU 0103 performs a calibration process (step S5). Specifically, the CPU 103 determines whether or not the spectrum data and intensity data measured by the photometry unit 107 are included in an appropriate range. Further, the CPU 013 calculates a correction coefficient from both or one of spectrum data and intensity data measured by the photometry unit 107. If the color of the first calibration target 52 is white, such calibration processing is intended to adjust the white balance, and also adjusts variations based on individual differences and combinations of the probe 10, the light source 111, and the photometry unit 107. With the goal.
  • the CPU 103 records the determination result and the correction coefficient in step S5 in the RAM 104 (step S6). At this time, the CPU 103 associates the determination result and the correction coefficient with the previously recorded input identifier.
  • the CPU 103 outputs a display command to the computer 114 via the interface 112 (step S7).
  • the computer 114 causes the display monitor 116 to display a screen that prompts the user to insert the light projecting / receiving unit 12 of the probe 10 into the insertion port 41 of the adjustment jig 30.
  • the computer 114 causes the display monitor 116 to display the same reference numeral as the reference numeral 58 attached to the surface of the jig main body 31. Thereby, the user can easily understand the insertion prompt to the insertion port 41.
  • the user pulls out the light projecting / receiving portion 12 of the probe 10 from the first insertion hole 34. Then, the user inserts the light projecting / receiving unit 12 of the probe 10 into the second insertion hole 40 from the insertion port 41, and brings the tip of the light projecting / receiving unit 12 into contact with the stopper 48. Further, since the second calibration target 55 is disposed away from the stopper 48, the tip of the light projecting / receiving unit 12 can be disposed away from the second calibration target 55.
  • the CPU 103 controls the photometry unit 107, and the photometry unit 107 measures spectrum data and intensity data (step S8).
  • the CPU 103 may turn on the light source 111 or may turn it off.
  • the CPU 0103 determines whether or not the spectrum data and intensity data measured by the photometry unit 107 are included in an appropriate range, and corrects from both or one of the spectrum data and intensity data measured by the photometry unit 107.
  • a coefficient is calculated (step S9). If the color of the second calibration target 55 is black, the excitation light is hardly reflected by the second calibration target 55. Even if the excitation light is reflected by the second calibration target 55, the reflected light is easily attenuated because the distance from the tip of the light projecting / receiving unit 12 to the second calibration target 55 is large.
  • the third cavity 45 is formed in a truncated cone shape, the light propagating in the third cavity 45 is likely to be attenuated.
  • step S9 aims at grasping the intensity of stray light and the intensity of reflection noise derived from the lens 17 of the probe 10, the optical fibers 14, 15 and the like.
  • the CPU 103 records the determination result in step S9 and the correction coefficient in the RAM 104 in association with the input identifier (step S10). Then, the CPU 103 ends the process with the determination result, the correction coefficient, and the input identifier stored in the RAM 104.
  • the user handles the diagnostic package 1 and the processing of the CPU 103 is performed, whereby calibration is performed.
  • the base unit 100 has a recording medium (for example, a non-volatile memory, a magnetic disk drive, etc.) and the processing shown in FIG. 23 is completed, the CPU 103 records the input identifier, the determination result, and the correction coefficient recorded in the RAM 104. You may record on a medium. By doing so, the input identifier, determination result, and correction coefficient for each probe 10 are accumulated in the recording medium, and it becomes easy to perform feedback such as lot management.
  • a recording medium for example, a non-volatile memory, a magnetic disk drive, etc.
  • the sensor 113 detects that fact. Then, the CPU 103 deletes the input identifier, the determination result, and the correction coefficient stored in the RAM 104.
  • the user pulls out the light projecting / receiving unit 12 of the probe 10 from the second insertion hole 40 without removing the connector 11 from the connection unit 102. Then, if necessary, the light projecting / receiving portion 12 of the probe 10 is inserted into the lumen using the forceps channel of the endoscope. At that time, the illumination light source 109 may be turned on to illuminate the periphery of the light projecting / receiving unit 12.
  • the light source 111 is turned on by the CPU 103. Then, the excitation light is projected from the tip of the light projecting / receiving unit 12 of the probe 10 onto the measurement site of the living tissue by the projecting optical fiber 14 and the lens 17. The measurement site of the living tissue emits fluorescence due to the excitation light, and the fluorescence is received at the tip of the light projecting / receiving unit 12 of the probe 10. The received fluorescence is transmitted to the photometry unit 107 by the light receiving optical fiber 15.
  • the CPU 103 causes the photometric unit 107 to reflect the correction coefficient recorded in the RAM 104. Then, the intensity data and spectrum data of the fluorescence received by the photometry unit 107 are measured, and the intensity data and spectrum data are corrected with a correction coefficient.
  • the intensity data and spectrum data corrected by the correction coefficient are signal processed by the signal processing unit 106 or transferred to the computer 114 by the CPU 103 and the interface 112.
  • the computer 114 causes the display monitor 116 to display the corrected intensity data and spectrum data. Thereby, the measurement site
  • the connector 11 is removed from the connection portion 102 and the probe 10 is discarded.
  • the adjusting jig 30, the tray 70, the cover 80, and the packaging bag 90 are also discarded. Note that the adjustment jig 30 may be reused for calibration of another probe 10.
  • the probe 10 and the adjustment jig 30 are a set, it is not necessary to prepare a large-scale adjustment jig different from the adjustment jig 30.
  • the probe 10 and the adjustment jig 30 are a set, the user notices the presence of the adjustment jig 30 when the packaging bag 90 is opened. Therefore, the user remembers to calibrate the probe 10 using the adjustment jig 30 before performing the fluorescence diagnosis using the probe 10.
  • the probe 10 and the adjustment jig 30 are a set, the new adjustment jig 30 can be used for calibration of the probe 10. There is no deterioration, discoloration, or the like of the calibration targets 52 and 55 of the adjustment jig 30, and accurate calibration can be performed.
  • the diagnostic packaging 1 Since the diagnostic packaging 1 is simply configured, the cost of the diagnostic packaging 1 is low. (5) Since the storage of the probe 10 and the adjustment jig 30 is devised, it is easy to use. Calibration can be performed without taking out the adjustment jig 30. (6) Since the probe 10 and the adjustment jig 30 are disposable, they are convenient and hygienic. (7) Since the adjustment jig 30 is provided with a plurality of insertion holes and a plurality of calibration targets, the calibration can be performed a plurality of times. (8) Since the reference numerals 57 and 58 are attached to the upper surface of the main body 31 of the adjustment jig 30, the order of calibration is not mistaken.
  • the stoppers 46 and 48 By the stoppers 46 and 48, the distance from the tip of the light projecting / receiving unit 12 of the probe 10 to the calibration targets 52 and 55 can be made appropriate. (13) Since the calibration targets 52 and 55 are shielded by the light shielding sheets 50 and 51, the calibration accuracy is high. (14) When the tip of the light projecting / receiving unit 12 of the probe 10 is brought into contact with the stoppers 46 and 48, the calibration targets 52 and 55 are shielded from light so that the calibration accuracy is high. Since the stoppers 46 and 48 are provided in a ring shape, the stoppers 46 and 48 do not hinder light projection and light reception.
  • FIG. 24 is an exploded perspective view of the adjustment jig 30A.
  • FIG. 25 is a cross-sectional view of the adjustment jig 30A. Parts corresponding to each other between the adjustment jig 30 shown in FIGS. 16 and 17 and the adjustment jig 30A shown in FIGS. 24 and 25 are denoted by the same reference numerals.
  • the difference between the adjustment jig 30 shown in FIGS. 16 and 17 and the adjustment jig 30A shown in FIGS. 24 and 25 will be mainly described.
  • the first insertion hole 34 includes the hollow portions 37 to 38, whereas in the adjustment jig 30 A, the first insertion hole 34 includes the hollow portions 38 and 39.
  • the second insertion hole 40 includes the hollow portions 43 to 45, whereas in the adjustment jig 30 A, the second insertion hole 40 includes the hollow portions 44 and 45. That is, there are no frustoconical cavities 37 and 43. Therefore, the length of the adjustment jig 30 ⁇ / b> A from the end surface 32 to the end surface 33 of the jig main body 31 is shorter than that of the adjustment jig 30.
  • the ends of the hollow portions 37 and 43 are opened as the insertion ports 35 and 41 on the end surface 32 of the jig main body 31, whereas in the adjustment jig 30 A, the hollow portions 39 and 43 are formed. 45 ends open on the end face 32 of the jig body 31 as insertion openings 35 and 41, respectively. That is, in this adjustment jig 30A, the insertion ports 35 and 41 are the ends of the insertion holes 34 and 40, respectively.
  • the adjustment jig 30A includes a jig body 31, a first calibration target 52, a second calibration target 55, a push rod 53, light shielding sheets 50 and 51, a first light shielding cap 54, a second light shielding cap 56, and the like.
  • flexible tubes 60 and 61 are provided.
  • One end of the flexible tubes 60 and 61 is attached to the end surface 32 of the jig main body 31, and the flexible tubes 60 and 61 extend in the center line direction of the insertion holes 34 and 40, respectively. Both ends of the flexible tubes 60 and 61 are open. The internal spaces of the flexible tubes 60 and 61 communicate with the insertion holes 34 and 40 through the insertion ports 35 and 41, respectively.
  • Reference numerals 57 and 58 are attached to the peripheral surfaces of the flexible tubes 60 and 61, respectively. Reference numerals 57 and 58 may be attached to the surface of the jig body 31 (particularly, the upper surface of the jig body 31).
  • the adjustment jig 30 ⁇ / b> A is stored in the adjustment jig storage recess 76 of the tray 70 instead of the adjustment jig 30. Since the bottom surface 77 of the adjusting jig housing recess 76 is an inclined surface, the openings at the ends of the flexible tubes 60 and 61 are directed obliquely upward.
  • the prompting screen When the prompting screen is displayed on the display monitor 116 as in step S3 shown in FIG. 23, the user inserts the light projecting / receiving unit 12 of the probe 10 into the flexible tube 60 and the light projecting / receiving unit 12 The tip is brought into contact with the stopper 46.
  • the prompting screen is displayed on the display monitor 116 as in step S7 shown in FIG. 23, the user inserts the light projecting / receiving unit 12 of the probe 10 into the flexible tube 61 and the light projecting / receiving unit 12 The tip is brought into contact with the stopper 48.
  • the flexible tubes 60 and 61 are flexible, the flexible tubes 60 and 61 can be bent and the end openings of the flexible tubes 60 and 61 can be directed upward. Therefore, it is easy to insert the light projecting / receiving portion 12 of the probe 10 into the end openings of the flexible tubes 60 and 61.
  • the present invention can be used for optical measurement of living tissue.
  • FIGS. 1 to 12B ⁇ References in FIGS. 1 to 12B only> DESCRIPTION OF SYMBOLS 1 Optical measuring system 10 Probe 11 Tip part 12 Connector part 12a surface (upper surface at the time of a connection) 12b Hole portion 13 Cable portion 14 (a to g) Light guiding optical fiber 15 Lens 16 Optical component 17 Exterior tube 20 Base unit 21 Connection portion 30 Packaging tray 40 (AE) Correction measurement environment component 41 Opening portion 42 Optical environment holding chambers 43 and 44 Measurement target substances 45 to 47 Wall portion 48 Light shielding member 49 Protruding portion 50 Biological tissue 51 Protruding portion 52 Outer peripheral groove 53 Marking C Connector insertion direction ⁇ reference numerals in FIGS.

Abstract

The purpose of the present invention is to provide a unit for establishing a measurement environment for correction purposes, which can provide a known optical environment to a probe tip during a measurement for correction purposes, whereby it becomes possible to provide the optical environment steadily without making the handling of the unit complicated. A probe (10) is equipped with a tip part (11) which comprises a light-receiving optical system involving an optical fiber or an imaging element and is provided at one end of the probe and a connector part (12) which is to be connected to a base unit (20) equipped with a detector and is provided at the other end of the probe, wherein a unit (40) for establishing a measurement-environment for correction purposes is provided in the connector part. The unit for establishing a measurement-environment for correction purposes constitutes an optical-environment-retaining chamber (42) having an opening (41) to which the tip part is to be inserted, and a known optical environment is applied to the tip part by inserting the tip part to the optical-environment-retaining chamber through the opening. A packaged article for diagnosis purposes comprises a tray, a probe accommodated in the tray, an adjusting jig equipped with a correction target, and a packaging bag in which the aforementioned components are accommodated.

Description

プローブ、光学測定システム、提供方法、及び診断用包装物Probe, optical measurement system, providing method, and diagnostic package
 本発明は、生体組織の測定対象部位に照射光を照射して測定対象部位から放射される放射光を受光するための光学系を備えて当該放射光を測定するためのプローブに関する。 The present invention relates to a probe for measuring an emitted light having an optical system for irradiating a measurement target site of a living tissue with irradiation light and receiving the emitted light emitted from the measurement target site.
 従来、生体組織の測定対象部位へ励起光などの照射光を照射し、この照射光によって生体組織や、予め生体に注入しておいた薬物から発生する蛍光などの放射光を検出する特殊診断プローブが開発されており、生体組織の変性や癌等の疾患状態(例えば、疾患の種類や浸潤範囲)の診断に用いられている。
 このようなプローブには、光源装置からの照射光を導光して生体の測定対象部位に照射し病変部から放射される放射光を受光し、検出器に導光するために光ファイバー、レンズ、プリズム等の光学系が構成される。
Conventionally, a special diagnostic probe that irradiates a measurement target site of biological tissue with irradiation light such as excitation light and detects emitted light such as fluorescence generated from a biological tissue or a drug that has been previously injected into the biological body by this irradiation light. Has been developed and is used for diagnosis of disease states (eg, disease type and infiltration range) such as degeneration of living tissue and cancer.
In such a probe, an optical fiber, a lens, a light guide for guiding the irradiation light from the light source device, irradiating the measurement target site of the living body and receiving the radiated light emitted from the lesioned part, and guiding it to the detector, An optical system such as a prism is configured.
 このようなプローブを用いて正確な光学測定による診断を行うためには、以下に示す数種類の補正のうち適宜必要なものを行う必要がある。 In order to make a diagnosis by an accurate optical measurement using such a probe, it is necessary to appropriately perform necessary corrections among the following several types of corrections.
 まず、第1種の補正として、プローブ、光源及び検出器の組み合わせによる波長ごとの光強度や検出感度のばらつきを補正することが求められる。そのための手法として、反射率スペクトル、発光スペクトルやラマン散乱スペクトルといった光学特性が既知の物質を測定対象とし、取得した結果が既知の光学特性と対応する様に、光学特性に関わる装置の設定内容又は検出器の検出信号を処理する計算処理内の変数または計算処理内容の変更によって補正を行うことが一般的である。
 この測定を行う際には、測定対象の光学応答を正確に検出する必要があるため、室内光等が迷光として検出器に入射することを防ぐことが必要である。
First, as the first type of correction, it is required to correct variations in light intensity and detection sensitivity for each wavelength due to a combination of a probe, a light source, and a detector. As a method for that purpose, the setting contents of the apparatus related to the optical characteristics are set so that the measurement target is a substance with known optical characteristics such as reflectance spectrum, emission spectrum and Raman scattering spectrum, and the obtained result corresponds to the known optical characteristics. In general, correction is performed by changing a variable in a calculation process for processing a detection signal of a detector or a calculation process content.
When performing this measurement, it is necessary to accurately detect the optical response of the measurement target, so it is necessary to prevent room light or the like from entering the detector as stray light.
 第2種の補正として、例えばレンズや光ファイバー端面からの反射光や発光といった、プローブの内部構成に由来する反射光や発光が検出器に入射する場合には、検出した光の中で、生体組織から発せられた光と内部構成由来の迷光とを区別することも必要となる。このためには、あらかじめ内部構成由来の迷光の強度スペクトルを単独で取得しておくことが有効である。
 この場合、室内光等の迷光を防ぐとともに、プローブから出射された光のプローブ以外の物質からの反射光又は拡散光、またはプローブ以外の物質からの発光がプローブに入射することを防ぐ必要がある。
As a second type of correction, for example, when reflected light or light emission derived from the internal configuration of the probe, such as reflected light or light emission from a lens or an optical fiber end face, is incident on the detector, It is also necessary to distinguish between light emitted from and stray light derived from the internal structure. For this purpose, it is effective to previously acquire the intensity spectrum of stray light derived from the internal structure in advance.
In this case, it is necessary to prevent stray light such as room light, and to prevent light emitted from the probe from being reflected or diffused from a substance other than the probe, or light emitted from a substance other than the probe from entering the probe. .
 第3種の補正として、検出器の出力を増幅する機構や検出器に入射する光量を調整する機構が、検出器と一体または別に設けられている場合には、プローブ、光源、及び検出器の組み合わせによる波長毎の光強度や検出感度のばらつきによる検出光量の変動に応じて検出器の利得や減光フィルタの透過率を適切に調整するために、反射率や発光効率が既知の物質を測定対象とし、取得した結果が検出器のダイナミックレンジと比較して適切な値となる様に、検出器の利得や減光フィルタの透過率を設定することが有効である。 As a third type of correction, when a mechanism for amplifying the output of the detector and a mechanism for adjusting the amount of light incident on the detector are provided integrally or separately from the detector, the probe, light source, and detector Measure substances with known reflectivity and luminous efficiency in order to adjust the detector gain and transmittance of the neutral density filter appropriately according to fluctuations in detected light intensity due to variations in light intensity and detection sensitivity for each wavelength. It is effective to set the gain of the detector and the transmittance of the neutral density filter so that the obtained result becomes an appropriate value compared with the dynamic range of the detector.
 第4種の補正として、光源、検出器、及びそれらとプローブを光学的に接続する機構のいずれかが可動に設置されている場合、検出器の受光量をモニターしながら、それを最適化するように、各可動部を調整し、適切な受光量を確保することが有効である。 As a fourth type of correction, if any of the light source, the detector, and the mechanism that optically connects the probe and the probe is movably installed, the light receiving amount of the detector is monitored and optimized. As described above, it is effective to adjust each movable part to ensure an appropriate amount of received light.
 また、これら以外の補正として、第1種および第2種の補正と同様の構成をとるが、スペクトル形状の測定は必要なく、単に光強度のみを測定し、それに応じて、光学特性に関わる装置の設定内容又は検出器の検出信号を処理する計算処理内容の変更によって補正を行う場合もある。これらのケースは、それぞれ第1種、第2種の補正用測定からの派生とみなせる。 In addition to these corrections, the same configurations as those of the first and second types of correction are used, but there is no need to measure the spectrum shape, and only the light intensity is measured, and accordingly, an apparatus related to the optical characteristics. In some cases, the correction is performed by changing the setting contents or the calculation processing contents for processing the detection signal of the detector. These cases can be regarded as derived from the first and second types of correction measurements, respectively.
 上記の補正用測定は、単に装置の校正や得られた結果の訂正のためのみに用いられるものではなく、装置の経時劣化や故障を判定する目的にも利用可能である。 The above correction measurement is not only used for calibration of the apparatus and correction of the obtained results, but can also be used for the purpose of determining deterioration or failure of the apparatus over time.
 光学測定によって体内診断を行うプローブでは、前述のように一種類以上の補正を行うことが必要であり、特に、暗室等の特別な環境ではなく、室内照明下で簡便に行えることが望ましい。このような作業は、処置の前段階で行なわれることになるが、医療現場において、作業者に、複雑、煩雑、面倒な作業を強いる事は出来る限り避けたいという要望がある。 As described above, a probe that performs in-vivo diagnosis by optical measurement needs to perform one or more types of correction as described above. In particular, it is desirable that the probe can be easily performed under room illumination, not in a special environment such as a dark room. Such work is performed at a stage prior to treatment, but there is a demand to avoid as much as possible the compulsory, complicated, and troublesome work of the worker in the medical field.
 特許文献1には、内視鏡用カラーバランス調整具が記載されている。この内視鏡用カラーバランス調整具は、一端に内視鏡の先端部が挿入可能な内部空間に連通する開口部を有し、他端に閉じた構造を有する、外部からの光を遮る管体であって、前記管体の内面は、内視鏡の先端部の挿入軸に略平行に設けられた内側部材(同文献中103c)と、内視鏡の先端部が挿入された際に、対物レンズの視野領域内に入るように設けられた端面部材(同文献中102c)とからなり、内側部材は、光を吸収する光吸収面を有し、端面部材102cは、蛍光を発する蛍光発生面を有する。
 特許文献2には、内視鏡用の色調整治具が記載されている。この色調整治具として、柱状の形状をなす治具であって、治具の一端部に形成された第1開口部と、前記治具の他端部に形成された第2開口部と、記第1開口部と第2開口部とを貫通し、電子内視鏡のカラースコープの先端部が挿入可能な中空部と、記第2開口部近傍に移動可能に支持された蓋体とを備え、蓋体は、一方の面にホワイトバランス調整用チャート、他方の面に色調整用チャートが載置され、蓋体の移動により、ホワイトバランス調整用チャート、または色調整用チャートのいずれかが中空部を介して第1開口部から観察可能であり、蓋体の移動は、蓋体の中心を通り第2開口部に軸支された回動軸を中心とした回動によるものが提案されている。
Patent Document 1 describes an endoscope color balance adjuster. This endoscope color balance adjuster has an opening communicating with the internal space into which the distal end of the endoscope can be inserted at one end and a closed structure at the other end, and is a tube that blocks light from the outside. An inner member (103c in the same document) provided substantially parallel to the insertion axis of the distal end portion of the endoscope and the distal end portion of the endoscope are inserted into the inner surface of the tubular body. And an end face member (102c in the same document) provided so as to fall within the field of view of the objective lens, the inner member has a light absorption surface that absorbs light, and the end face member 102c is fluorescent light that emits fluorescence. Has a generating surface.
Patent Document 2 describes a color adjustment jig for an endoscope. As the color adjusting jig, a jig having a columnar shape, a first opening formed at one end of the jig, and a second opening formed at the other end of the jig, A hollow portion that penetrates the first opening and the second opening and into which the distal end portion of the color scope of the electronic endoscope can be inserted, and a lid that is movably supported in the vicinity of the second opening. The lid has a white balance adjustment chart on one side and a color adjustment chart on the other side, and either the white balance adjustment chart or the color adjustment chart is hollowed by the movement of the lid. It is possible to observe from the first opening through the part, and the movement of the lid is proposed by the rotation about the rotation axis that is pivotally supported by the second opening through the center of the lid. Yes.
特開2006-223591号公報JP 2006-223591 A 特開2005-40210号公報JP 2005-40210 A
 体内で観察及び光学測定を行う装置として、内視鏡(電子内視鏡)が広く普及しており、一般に長期間に渡って使用される高価な機器である。そしてこの画質校正・補正などのためのキャリブレーション手段について、上掲のような従来技術が知られている。
 しかし、一般に普及している電子内視鏡は、光学的な手法によって病変部と正常部のコントラストを改善することが目的であり、病変の進行度の判断は観察者によって行われる。光学測定によって病変の進行度を判断するためには、一般に普及している電子内視鏡と比べて、装置の検出特性の補正の必要度はより高くなる。補正作業の際の測定対象の汚染や経時劣化は補正精度を悪化させ、誤判断につながる恐れがある。
 医療現場では、血液をはじめとした体液による汚染の問題がある。内視鏡プロセッサ等洗浄頻度の低い部分に補正の測定対象を設置又は内蔵する方法では、作業者が補正用測定対象の定期的な清掃や洗浄をする必要があり、煩雑で面倒な作業を強いることとなる。また、補正用測定対象の洗浄程度の管理が作業者に委ねられるため、作業者による不適切な補正作業を防ぐことが困難である。
 特許文献1,2に記載されるような補正用のキャップを取り付ける構成では、キャップが小型な場合には、床への落下等による汚染や紛失といった問題が考えられ、容易に取り扱えるだけの大きさが必要となる。また、繰り返し使うプローブの場合には、やはり洗浄又は交換が必要である点は変わらない。
Endoscopes (electronic endoscopes) are widely used as devices for observation and optical measurement in the body, and are expensive devices that are generally used for a long period of time. Conventional techniques such as those described above are known as calibration means for image quality calibration / correction.
However, generally used electronic endoscopes aim to improve the contrast between a lesioned part and a normal part by an optical method, and the degree of progression of the lesion is judged by an observer. In order to determine the degree of progression of a lesion by optical measurement, the necessity of correcting the detection characteristics of the apparatus is higher than that of a widely used electronic endoscope. Contamination of the measurement object or deterioration with time during the correction work may deteriorate the correction accuracy and lead to a misjudgment.
In the medical field, there is a problem of contamination with body fluids such as blood. In the method of installing or incorporating a correction measurement target in a part where the frequency of cleaning is low, such as an endoscope processor, the operator needs to periodically clean and wash the correction measurement target, which complicates complicated and troublesome work. It will be. In addition, since it is left to the operator to manage the degree of cleaning of the measurement object for correction, it is difficult to prevent inappropriate correction work by the operator.
In a configuration in which a correction cap as described in Patent Documents 1 and 2 is attached, if the cap is small, there may be a problem of contamination or loss due to dropping on the floor, and the size is such that it can be easily handled. Is required. Further, in the case of a probe to be used repeatedly, the point that cleaning or replacement is still necessary remains unchanged.
 本発明は以上の従来技術における問題に鑑みてなされたものであって、生体組織の測定対象部位に照射光を照射して測定対象部位から放射される放射光を受光するための光学系を備えて当該放射光を測定するためのプローブを用いた光学測定システムに、補正用測定時にプローブ先端部に既知の光学的環境を与える補正用測定環境構成物(調整治具)を提供するにあたり、当該補正用測定環境構成物の取り扱いの煩雑を招くことなく、安定的に前記光学的環境を与えられるようにすることを課題とする。 The present invention has been made in view of the above problems in the prior art, and includes an optical system for receiving irradiation light emitted from a measurement target site by irradiating the measurement target site of biological tissue with irradiation light. In providing a measurement environment component for correction (adjustment jig) that gives a known optical environment to the probe tip during measurement for correction to an optical measurement system using a probe for measuring the emitted light. It is an object of the present invention to stably provide the optical environment without incurring complicated handling of the correction measurement environment component.
 以上の課題を解決するための請求項1記載の発明は、生体組織の測定対象部位に照射光を照射して測定対象部位から放射される放射光を受光するための光学系を備えて当該放射光を測定するためのプローブであって、
一端に、少なくとも光ファイバー又は撮像素子を含んだ受光光学系が構成された先端部を、他端に、検出器を有するベースユニットに接続されるコネクタ部を有し、
前記先端部が挿入される開口部を有した光学的環境保持室を構成し、前記先端部が前記開口部から前記光学的環境保持室に挿入されることにより、当該先端部に既知の光学的環境を与える補正用測定環境構成物が前記コネクタ部に備えられたプローブである。
The invention according to claim 1 for solving the above-described problem is provided with an optical system for receiving radiation light emitted from the measurement target part by irradiating the measurement target part of the living tissue with the irradiation light. A probe for measuring light,
At one end, it has a connector part connected to a base unit having a detector, at the other end, a tip part in which a light receiving optical system including at least an optical fiber or an image sensor is configured,
An optical environment holding chamber having an opening portion into which the tip portion is inserted is configured, and the tip portion is inserted into the optical environment holding chamber from the opening portion, so that the tip portion has a known optical environment. A correction measurement environment component for providing an environment is a probe provided in the connector portion.
 請求項2記載の発明は、前記補正用測定環境構成物は、少なくとも前記先端部が挿入された状態にて前記光学的環境への外光の入射を遮る遮光部材を有することを特徴とする請求項1に記載のプローブである。 The invention according to claim 2 is characterized in that the measurement environment component for correction has a light shielding member that blocks external light from entering the optical environment in a state where at least the tip portion is inserted. The probe according to Item 1.
 請求項3記載の発明は、前記補正用測定環境構成物は、前記光学的環境保持室内に所定の測定対象物質を有することを特徴とする請求項1又は請求項2に記載のプローブである。 The invention according to claim 3 is the probe according to claim 1 or 2, wherein the measurement environment component for correction has a predetermined measurement target substance in the optical environment holding chamber.
 請求項4記載の発明は、前記補正用測定環境構成物に挿入された前記先端部を所定の挿入長さでさらなる挿入を規制する係止構造が構成されたことを特徴とする請求項1から請求項3のうちいずれか一に記載のプローブである。 The invention according to claim 4 is characterized in that a locking structure for restricting further insertion of the tip portion inserted into the correction measurement environment component with a predetermined insertion length is configured. It is a probe as described in any one of Claim 3.
 請求項5記載の発明は、前記補正用測定環境構成物に挿入された前記先端部を所定の挿入長さで所定の係止力をもってさらなる挿入を規制するとともに抜き出しを防止する係止構造が構成されたことを特徴とする請求項1から請求項3のうちいずれか一に記載のプローブである。 According to a fifth aspect of the present invention, there is provided a locking structure that restricts further insertion of the tip portion inserted into the measurement environment component for correction with a predetermined insertion length with a predetermined locking force and prevents the tip portion from being pulled out. The probe according to any one of claims 1 to 3, wherein the probe is formed.
 請求項6記載の発明は、補正用測定時に適用すべき挿入長さに相当する先端からの長さを表示する目印が前記先端部の外周に設けられたことを特徴とする請求項1から請求項5のうちいずれか一に記載のプローブである。 The invention according to claim 6 is characterized in that a mark for displaying a length from the tip corresponding to the insertion length to be applied at the time of correction measurement is provided on the outer periphery of the tip. The probe according to any one of Items 5.
 請求項7記載の発明は、請求項1から請求項6のうちいずれか一に記載のプローブと、当該プローブの前記コネクタ部が接続されるベースユニットとを備える光学測定システムであって、
 前記ベースユニットは、
 前記照射光の光源装置と、
 前記放射光の光強度を検出するための検出器と、
 前記補正用測定環境構成物による前記光学的環境で測定した補正用測定結果を保持記憶し、当該補正用測定結果に基づき、あらかじめ定められたアルゴリズムに則って、生体組織を対象とした生体測定結果に補正をかける演算処理装置とを有する光学測定システムである。
Invention of Claim 7 is an optical measurement system provided with the probe as described in any one of Claims 1-6, and the base unit to which the said connector part of the said probe is connected,
The base unit is
A light source device for the irradiation light;
A detector for detecting the light intensity of the emitted light;
The measurement result for correction measured in the optical environment by the measurement environment component for correction is stored and stored, and the measurement result of the living tissue for the living tissue is determined based on the measurement result for correction in accordance with a predetermined algorithm. An optical measurement system having an arithmetic processing unit that corrects the above.
 請求項8記載の発明は、請求項1から請求項6のうちいずれか一に記載のプローブと、当該プローブの前記コネクタ部が接続されるベースユニットとを備える光学測定システムであって、
 前記ベースユニットは、
 前記照射光の光源装置と、
 前記放射光の光強度を検出するための検出器と、
 前記補正用測定環境構成物による前記光学的環境で測定した補正用測定結果を保持記憶し、当該補正用測定結果に基づき、あらかじめ定められたアルゴリズムに則って、検出器の利得または減光フィルタの透過率を設定する演算処理装置とを有する光学測定システムである。
Invention of Claim 8 is an optical measurement system provided with the probe as described in any one of Claims 1-6, and the base unit to which the said connector part of the said probe is connected,
The base unit is
A light source device for the irradiation light;
A detector for detecting the light intensity of the emitted light;
The measurement result for correction measured in the optical environment by the measurement environment component for correction is stored and stored, and based on the measurement result for correction, the gain of the detector or the attenuation filter is determined according to a predetermined algorithm. An optical measurement system having an arithmetic processing unit for setting a transmittance.
 請求項9記載の発明は、請求項1から請求項6のうちいずれか一に記載のプローブと、当該プローブの前記コネクタ部が接続されるベースユニットとを備える光学測定システムであって、
 前記ベースユニットは、
 前記照射光の光源装置と、
 前記放射光の光強度を検出するための検出器と、
 前記補正用測定環境構成物による前記光学的環境で測定した補正用測定結果を保持記憶し、当該補正用測定結果に基づき、あらかじめ定められたアルゴリズムに則って、前記光源装置、検出器、又はそれらと前記プローブを光学的に接続する機構の少なくともいずれか一つの可動部を可動調整する演算処理装置とを有する光学測定システムである。
Invention of Claim 9 is an optical measurement system provided with the probe as described in any one of Claims 1-6, and the base unit to which the said connector part of the said probe is connected,
The base unit is
A light source device for the irradiation light;
A detector for detecting the light intensity of the emitted light;
The measurement result for correction measured in the optical environment by the measurement environment component for correction is stored and stored, and based on the measurement result for correction, the light source device, the detector, or them according to a predetermined algorithm And an arithmetic processing unit that movably adjusts at least one movable part of the mechanism for optically connecting the probe.
 請求項10記載の発明は、前記コネクタ部が一定の配向でのみ前記ベースユニットへの接続が許容される機械的構造を有し、前記コネクタ部が前記ベースユニットに接続された状態において、前記先端部の前記補正用測定環境構成物への挿入方向を鉛直下向き又は斜め下向きに規制するように、前記補正用測定環境構成物が構成されてなる請求項7、請求項8又は請求項9に記載の光学測定システムである。 The invention according to claim 10 has a mechanical structure in which the connector portion is allowed to be connected to the base unit only in a certain orientation, and the tip portion is connected in the state where the connector portion is connected to the base unit. 10. The correction measurement environment component is configured such that the insertion direction of the portion into the correction measurement environment component is regulated vertically downward or obliquely downward. This is an optical measurement system.
 請求項11記載の発明は、請求項1から請求項6のうちいずれか一に記載のプローブの使用者への提供方法であって、
前記補正用測定環境構成物を含めて前記プローブを滅菌処理する滅菌工程と、
前記補正用測定環境構成物を含めて前記プローブを同一の包装体内に包装する包装工程とを備えるプローブの使用者への提供方法である。
The invention according to claim 11 is a method for providing a user of the probe according to any one of claims 1 to 6, comprising:
A sterilization step of sterilizing the probe including the correction measurement environment component;
And a packaging process for packaging the probe in the same package including the correction measurement environment component.
 請求項12記載の発明は、トレイと、
 前記トレイに収納され、光の伝送、投光及び受光をするプローブと、
 前記プローブの校正の際に前記プローブから出射した光が照射される校正用ターゲットを有し、前記プローブの校正の際に前記プローブを保持し、前記トレイに収納された調整治具と、
 前記プローブ、前記調整治具及び前記トレイを包み込んだ包装袋と、を備える、診断用包装物である。
The invention according to claim 12 is a tray,
A probe housed in the tray for transmitting, projecting and receiving light;
A calibration target that is irradiated with light emitted from the probe during calibration of the probe, holding the probe during calibration of the probe, and an adjustment jig housed in the tray;
A diagnostic package comprising the probe, the adjustment jig, and a packaging bag enclosing the tray.
 請求項13記載の発明は、前記トレイが、トレイ本体と、前記トレイ本体の上面に凹設されたプローブ収納凹部と、前記トレイ本体の上面に凹設された調整治具収納凹部と、を有し、
 前記プローブが前記プローブ収納凹部に収納され、前記調整治具が前記調整治具収納凹部に収納される、請求項12に記載の診断用包装物である。
According to a thirteenth aspect of the present invention, the tray includes a tray main body, a probe storage recess recessed in the upper surface of the tray main body, and an adjustment jig storage recess recessed in the upper surface of the tray main body. And
The diagnostic packaging according to claim 12, wherein the probe is stored in the probe storage recess, and the adjustment jig is stored in the adjustment jig storage recess.
 請求項14記載の発明は、前記プローブ収納凹部が、前記トレイ本体の上面に凹設されたリング状のケーブル収納部と、前記トレイ本体の上面に凹設され、前記ケーブル収納部に繋がり、前記ケーブル収納部から前記ケーブル収納部の接線方向に延びたコネクタ収納部と、前記トレイ本体の上面に凹設され、前記ケーブル収納部に繋がり、前記ケーブル収納部から前記ケーブル収納部の接線方向に延びた先端部収納部と、を有し、
 前記プローブが、光の伝送を行うケーブル本体部と、前記ケーブル本体部の基端に連結され、光の入出力を行うコネクタと、前記ケーブル本体部の先端に連結され、投光及び受光を行う投光受光部と、を有し、
 前記投光受光部が前記先端部収納部に収納され、前記ケーブル本体部が前記ケーブル収納部に収納され、前記コネクタがコネクタ収納部に収納されている、請求項13に記載の診断用包装物である。
The invention according to claim 14 is characterized in that the probe storage recess is a ring-shaped cable storage portion recessed in the upper surface of the tray main body, and is recessed in the upper surface of the tray main body, connected to the cable storage portion, A connector storage portion extending from the cable storage portion in the tangential direction of the cable storage portion, and recessed in the upper surface of the tray body, connected to the cable storage portion, and extending from the cable storage portion in the tangential direction of the cable storage portion. A distal end storage portion,
The probe is connected to a cable main body for transmitting light, a connector for inputting / outputting light, and connected to a distal end of the cable main body for light projection and light reception. A light receiving and receiving unit,
The diagnostic packaging according to claim 13, wherein the light projecting / receiving unit is stored in the tip storage unit, the cable body unit is stored in the cable storage unit, and the connector is stored in a connector storage unit. It is.
 請求項15記載の発明は、前記ケーブル本体部が巻かれた状態で前記ケーブル収納部に収納されている、請求項14に記載の診断用包装物である。 The invention according to claim 15 is the diagnostic packaging according to claim 14, wherein the cable main body is wound and stored in the cable storage.
 請求項16記載の発明は、前記ケーブル本体部は前記コネクタ側が前記投光受光部側の上に重なるようにして螺旋状に巻かれている、請求項15に記載の診断用包装物である。 The invention according to claim 16 is the diagnostic package according to claim 15, wherein the cable main body is spirally wound so that the connector side overlaps the light projecting / receiving portion side.
 請求項17記載の発明は、前記ケーブル本体部は前記投光受光部側が前記コネクタ側の上に重なるようにして螺旋状に巻かれている、請求項15に記載の診断用包装物である。 The invention according to claim 17 is the diagnostic package according to claim 15, wherein the cable body is spirally wound so that the light projecting / receiving part side overlaps the connector side.
 請求項18記載の発明は、前記調整治具が、前記調整治具収納凹部に収納された治具本体と、前記治具本体の表面で開口した挿入口と、前記挿入口から前記治具本体の内部に延びた差込孔と、を有し、
 前記校正用ターゲットが前記差込孔内に配置されている、請求項13から請求項17のうちいずれか一に記載の診断用包装物である。
The invention according to claim 18 is characterized in that the adjustment jig includes a jig body housed in the adjustment jig housing recess, an insertion opening opened on a surface of the jig body, and the jig body from the insertion opening. An insertion hole extending in the interior of
The diagnostic packaging according to any one of claims 13 to 17, wherein the calibration target is disposed in the insertion hole.
 請求項19記載の発明は、前記差込孔が前記挿入口の反対側を閉塞されている、請求項18に記載の診断用包装物である。 The invention according to claim 19 is the diagnostic package according to claim 18, wherein the insertion hole is closed on the opposite side of the insertion port.
 請求項20記載の発明は、前記調整治具が、前記差込孔の内壁に凸設されたストッパを更に有し、
 前記校正用ターゲットが前記ストッパに関して前記挿入口の反対側において前記差込孔内に配置されている、請求項18又は請求項19に記載の診断用包装物である。
The invention according to claim 20 is characterized in that the adjustment jig further has a stopper protruding from the inner wall of the insertion hole,
20. The diagnostic package according to claim 18 or 19, wherein the calibration target is disposed in the insertion hole on the opposite side of the insertion port with respect to the stopper.
 請求項21記載の発明は、前記調整治具の前記治具本体が、前記挿入口を斜め上に向けた状態で前記治具収納凹部に収納されている、請求項18から請求項20のうちいずれか一に記載の診断用包装物である。 The invention according to claim 21 is characterized in that the jig body of the adjustment jig is housed in the jig housing recess with the insertion port facing obliquely upward. The diagnostic packaging according to any one of the above.
 請求項22記載の発明は、前記調整治具が、前記差込孔の内壁に貼着された遮光シートを更に有する、請求項18から請求項21のうちいずれか一に記載の診断用包装物である。 The invention according to claim 22 is the diagnostic package according to any one of claims 18 to 21, wherein the adjustment jig further includes a light shielding sheet attached to the inner wall of the insertion hole. It is.
 請求項23記載の発明は、前記調整治具が、前記挿入口を通じて前記差込孔に連通するよう前記治具本体に取り付けられた可撓性チューブを更に有する、請求項18から請求項22のうちいずれか一に記載の診断用包装物である。 23. The invention according to claim 23, wherein the adjustment jig further includes a flexible tube attached to the jig body so as to communicate with the insertion hole through the insertion port. The diagnostic packaging according to any one of the above.
 請求項24記載の発明は、前記挿入口、前記差込孔及び前記校正用ターゲットの数が複数であり、前記校正用ターゲットが前記差込孔内にそれぞれ配置されている、請求項18から請求項23のうちいずれか一に記載の診断用包装物である。 The invention according to claim 24 is the invention from claim 18, wherein the insertion port, the insertion hole, and the number of calibration targets are plural, and the calibration target is disposed in the insertion hole. 24. The diagnostic package according to any one of items 23.
 請求項25記載の発明は、前記校正用ターゲットごとに色が異なる、請求項24に記載の診断用包装物である。 The invention according to claim 25 is the diagnostic packaging according to claim 24, wherein the color is different for each calibration target.
 請求項26記載の発明は、何れかの前記校正用ターゲットの色が白色であり、他の何れかの前記校正用ターゲットの色が黒色である、請求項24又は請求項25に記載の診断用包装物である。 The invention according to claim 26 is the diagnostic device according to claim 24 or 25, wherein the color of any one of the calibration targets is white and the color of any other calibration target is black. It is a package.
 本発明のプローブによれば、プローブのコネクタ部に補正用測定環境構成物が備えられているので、一つのプローブに必ず一つ以上の補正用測定環境構成物を提供できるとともに、プローブの使用前準備としての補正用測定時に補正用測定環境構成物だけが単独で紛失することは有り得ず、補正用測定環境構成物の紛失を招くことがないという効果がある。
 また本発明のプローブによれば、補正用測定環境構成物がプローブに一体に設けられるので、補正用測定環境構成物がプローブと別体である場合における取り扱いや管理の煩雑さが抜本的に解消されるという効果がある。
 また本発明のプローブを繰り返し使用する仕様とする場合にあっては、プローブはその使用の都度に洗浄され、プローブの洗浄によって補正用測定環境構成物も同時に洗浄されるから、別途補正用測定環境構成物を洗浄する必要がなく、定期的な交換のみによって常に提供側の意図に合った補正用測定を実行可能であるという効果がある。
 また本発明のプローブを使い捨て仕様とする場合にあっては、補正用測定環境構成物も含めてクリーンなプローブ全体が提供され、使用者は補正用測定環境構成物の経時劣化やその保管環境について配慮する必要がなく、常に提供側の意図に合った補正用測定を実行可能であるという効果がある。
According to the probe of the present invention, since the measurement measurement environment component for correction is provided in the connector portion of the probe, one or more measurement environment components for correction can always be provided for one probe, and before the probe is used. Only the correction measurement environment component cannot be lost alone during the correction measurement as preparation, and there is an effect that the correction measurement environment component is not lost.
Further, according to the probe of the present invention, since the measurement environment component for correction is provided integrally with the probe, the troublesome handling and management when the measurement environment component for correction is separate from the probe is drastically eliminated. There is an effect that.
When the probe of the present invention is used repeatedly, the probe is cleaned every time it is used, and the correction measurement environment components are simultaneously cleaned by cleaning the probe. There is no need to clean the components, and it is possible to always perform correction measurements that match the intention of the provider only by periodic replacement.
In addition, when the probe of the present invention is used as a disposable specification, the entire clean probe including the measurement environment component for correction is provided, and the user is concerned about the deterioration over time of the measurement environment component for correction and its storage environment. There is no need to consider it, and there is an effect that it is possible to always perform correction measurement that matches the intention of the provider.
 一方、本発明の診断用包装物によれば、プローブと調整治具がセットになって包装袋に包み込まれているから、その調整治具とは別の大規模な調整治具を準備しなくても済む。
 また、ユーザーは包装袋を開封すると、調整治具の存在に気づく。そのため、ユーザーはプローブを用いて診断する前に調整治具を用いてキャリブレーションを忘れずに行うようになる。
 また、プローブと調整治具がセットになって包装袋に包み込まれているから、その新しい調整治具をキャリブレーションに用いることができる。そのため、校正用ターゲットの経年変化がほとんど無く、正確なキャリブレーションを行うことができる。
On the other hand, according to the diagnostic packaging of the present invention, since the probe and the adjustment jig are bundled and wrapped in the packaging bag, there is no need to prepare a large-scale adjustment jig different from the adjustment jig. You can do it.
Further, when the user opens the packaging bag, the user notices the presence of the adjusting jig. Therefore, the user must remember to perform calibration using the adjustment jig before making a diagnosis using the probe.
Further, since the probe and the adjustment jig are bundled and wrapped in the packaging bag, the new adjustment jig can be used for calibration. Therefore, there is almost no secular change of the calibration target, and accurate calibration can be performed.
 したがって、本発明の適用によって、使用者の管理負担を大きく軽減しつつも、プローブに補正用測定時の光学的環境を安定的に与えることができ、提供者の意図した補正用測定が確実に実行されるという効果がある。 Therefore, the application of the present invention can stably give the optical environment at the time of the correction measurement to the probe while greatly reducing the management burden on the user, and the correction measurement intended by the provider is ensured. There is an effect that it is executed.
本発明の一実施形態に係るプローブの収納状態を示す斜視図である。It is a perspective view which shows the accommodation state of the probe which concerns on one Embodiment of this invention. 本発明の一実施形態に係るプローブの接続状態を示す斜視図である。It is a perspective view which shows the connection state of the probe which concerns on one Embodiment of this invention. プローブの基本構成の一例を示す側視模式図である。It is a side view schematic diagram which shows an example of the basic composition of a probe. プローブの基本構成の他の一例を示す側視模式図である。It is a side view schematic diagram which shows another example of the basic composition of a probe. プローブの基本構成の他の一例を示す側視模式図である。It is a side view schematic diagram which shows another example of the basic composition of a probe. プローブの基本構成の他の一例を示す側視模式図である。It is a side view schematic diagram which shows another example of the basic composition of a probe. プローブの基本構成の他の一例を示す側視模式図である。It is a side view schematic diagram which shows another example of the basic composition of a probe. 本発明の一実施形態に係る補正用測定環境構成物の一例に係る断面とプローブの側面を示す図である。It is a figure which shows the cross section which concerns on an example of the measurement environment component for correction | amendment which concerns on one Embodiment of this invention, and the side surface of a probe. 本発明の一実施形態に係る補正用測定環境構成物の他の例に係る断面とプローブの側面を示す図である。It is a figure which shows the cross section and side surface of a probe which concern on the other example of the measurement environment component for a correction | amendment which concerns on one Embodiment of this invention. 本発明の一実施形態に係る補正用測定環境構成物の他の例に係る断面とプローブの側面を示す図である。It is a figure which shows the cross section and side surface of a probe which concern on the other example of the measurement environment component for a correction | amendment which concerns on one Embodiment of this invention. 本発明の一実施形態に係るプローブのコネクタ部の斜視図である。It is a perspective view of the connector part of the probe concerning one embodiment of the present invention. 本発明の一実施形態に係るプローブのコネクタ部の斜視図である。It is a perspective view of the connector part of the probe concerning one embodiment of the present invention. 本発明の一実施形態に係るプローブのコネクタ部の斜視図である。It is a perspective view of the connector part of the probe concerning one embodiment of the present invention. 本発明の一実施形態に係るプローブのコネクタ部の斜視図である。It is a perspective view of the connector part of the probe concerning one embodiment of the present invention. 補正用測定環境構成物の一例に係る構成部材の展開状態斜視図である。It is a development state perspective view of the constituent member concerning an example of the measurement environment constituent for amendment. 補正用測定環境構成物の一例に係る構成部材の組立時斜視図である。It is a perspective view at the time of the assembly of the structural member which concerns on an example of the measurement environment component for correction | amendment. 補正用測定環境構成物の一例に係る組立後の構成部材と本発明の一実施形態に係るプローブのコネクタ部の斜視図である。It is a perspective view of a connector part of a constituent member after an assembly concerning an example of a measurement environment constituent for amendment, and an embodiment of the present invention. 本発明の一実施形態に係るプローブのコネクタ部の斜視図である。It is a perspective view of the connector part of the probe concerning one embodiment of the present invention. 本発明の一実施形態に係るプローブのコネクタ部の斜視図である。It is a perspective view of the connector part of the probe concerning one embodiment of the present invention. 本発明の一実施形態に係る補正用測定環境構成物の他の例に係る断面とプローブの側面を示す図である。It is a figure which shows the cross section and side surface of a probe which concern on the other example of the measurement environment component for a correction | amendment which concerns on one Embodiment of this invention. 本発明の一実施形態に係る補正用測定環境構成物の他の例に係る断面とプローブの側面を示す図である。It is a figure which shows the cross section and side surface of a probe which concern on the other example of the measurement environment component for a correction | amendment which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る診断用包装物の外観斜視図である。It is an external appearance perspective view of the diagnostic packaging which concerns on other embodiment of this invention. 本発明の他の実施形態に係る診断用包装物の分解斜視図である。It is a disassembled perspective view of the diagnostic packaging which concerns on other embodiment of this invention. 本発明の他の実施形態に係るプローブの平面図である。It is a top view of the probe concerning other embodiments of the present invention. 本発明の他の実施形態に係る調整治具の分解斜視図である。It is a disassembled perspective view of the adjustment jig which concerns on other embodiment of this invention. 本発明の他の実施形態に係る調整治具の断面図である。It is sectional drawing of the adjustment jig which concerns on other embodiment of this invention. 本発明の他の実施形態に係るトレイの一部の断面図である。FIG. 6 is a partial cross-sectional view of a tray according to another embodiment of the present invention. 本発明の他の実施形態に係る診断用包装物の分解斜視図である。It is a disassembled perspective view of the diagnostic packaging which concerns on other embodiment of this invention. 本発明の他の実施形態に係るベースユニットの斜視図である。It is a perspective view of the base unit which concerns on other embodiment of this invention. 本発明の他の実施形態に係るベースユニットのブロック図である。It is a block diagram of the base unit which concerns on other embodiment of this invention. 本発明の他の実施形態に係る診断用包装物の使用状態を示した斜視図である。It is the perspective view which showed the use condition of the diagnostic packaging which concerns on other embodiment of this invention. 本発明の他の実施形態に係るベースユニットのコンピュータによって行われる処理の流れを示したフローチャートである。It is the flowchart which showed the flow of the process performed by the computer of the base unit which concerns on other embodiment of this invention. 変形例に係る調整治具の分解斜視図である。It is a disassembled perspective view of the adjustment jig which concerns on a modification. 変形例に係る調整治具の断面図である。It is sectional drawing of the adjustment jig which concerns on a modification.
〈補正用測定環境構成物がコネクタ部に備えられたプローブの実施形態〉
 以下に本発明の一実施形態につき図1から図12Bを参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。以下の実施形態においては、蛍光測定用のプローブを例として説明する。
<Embodiment of a probe in which a measurement environment component for correction is provided in a connector>
An embodiment of the present invention will be described below with reference to FIGS. 1 to 12B. The following is one embodiment of the present invention and does not limit the present invention. In the following embodiments, a fluorescence measurement probe will be described as an example.
 図1に、本実施形態のプローブ10と、包装用トレイ30とが示される。図1及び図2に、本実施形態の光学測定システム1の主要部分が示される。光学測定システム1は、プローブ10と、ベースユニット20のほか、画像表示装置や操作入力装置を含んで構成される。
 プローブ10は、先端部11と、コネクタ部12と、ケーブル部13とから構成される。
 プローブ10は滅菌処理され、図1に示すように、包装用トレイ30に収納され、さらに図示しない包装袋によって密閉されて包装され、医療現場等の使用者に提供される。
 使用者は、包装を解いてプローブ10のコネクタ部12を図2に示すように、ベースユニット20の接続部21に接続する。そして、使用者によってコネクタ部12に備えられた補正用測定環境構成物40に先端部11が挿入された状態にて補正用測定が実行された後、プローブ10を生体組織の測定に使用することができる。
 ベースユニット20には、照射光の光源装置と、生体組織等からの放射光の光強度を検出するための検出器と、演算処理装置とが備えられる。ここで、演算処理装置がベースユニットとは別に設けられ、両者が電気的に接続されている構成でもよい。
FIG. 1 shows a probe 10 of this embodiment and a packaging tray 30. 1 and 2 show the main part of the optical measurement system 1 of the present embodiment. The optical measurement system 1 includes an image display device and an operation input device in addition to the probe 10 and the base unit 20.
The probe 10 includes a distal end portion 11, a connector portion 12, and a cable portion 13.
As shown in FIG. 1, the probe 10 is sterilized and stored in a packaging tray 30. Further, the probe 10 is sealed and packaged by a packaging bag (not shown), and is provided to a user such as a medical site.
The user unwraps and connects the connector portion 12 of the probe 10 to the connection portion 21 of the base unit 20 as shown in FIG. Then, after the measurement for correction is performed in a state where the distal end portion 11 is inserted into the measurement environment component for correction 40 provided in the connector unit 12 by the user, the probe 10 is used for measurement of the living tissue. Can do.
The base unit 20 includes a light source device for irradiation light, a detector for detecting the light intensity of emitted light from a living tissue or the like, and an arithmetic processing device. Here, the arithmetic processing device may be provided separately from the base unit, and both may be electrically connected.
〔プローブの基本構成例〕
 ここで、プローブの基本構成例につき説明する。
 光学測定によって体内診断を行うためのプローブは、その一端が体内に挿入され、生体組織に光を照射して生体組織によって反射された又は生体組織から発せられた光を取り込む光学系を有し、他端が光源装置及び検出器を有する装置(本実施形態においてはベースユニット20)に接続される機構を有する構成をとる。
 プローブは、光学測定用の励起光や生体組織が発した光を導光するための一本以上の光ファイバーを有する。図3Aから図3Eに光学系のレイアウトを示す。実際には、これらの光学系がホルダや外装等によって固定されてプローブを成している。プローブに構成される最も単純な光学系は、図3Aに示した一本の導光用光ファイバー14aから成るものである。これに加えて、レンズやプリズム等の光学素子を有する場合もある。具体的には、図3Eや図3Bのように、集光効率を上げるためにファイバー先端にレンズ15を挿入した構成や、図3Cのように、光の進行方向を変え、導光用光ファイバー14dと略平行な生体組織50を観察・測定するためにプリズム又はミラーである光学部品16を挿入した構成である。図3Cに示すように、導光用光ファイバー14dの軸と垂直な方向に光を出射するプローブには、一般に導光用光ファイバー14dの先にプリズム又はミラーである光学部品16を配置し、光線を反射させてその進行方向を変える方法が適用されている。ここで、プリズム又はミラーである光学部品16の反射面の形状は、平面、放物面および球面が一般的であるが、これらに限らない。
 また、図3Bのように、生体組織50に照射光を照射する照射光導光用光ファイバー14bと生体組織50からの放射光を受光する信号光導光用光ファイバー14cに機能を分担したり、図3Dのように、測定面積を増やす、又は集光効率若しくは集光量を高めたりする目的で、複数本の導光用光ファイバー14e,14f,14g・・・を用いる構成も採用されることがある。
[Example of basic configuration of probe]
Here, a basic configuration example of the probe will be described.
A probe for performing in-vivo diagnosis by optical measurement has an optical system in which one end thereof is inserted into the body, and the biological tissue is irradiated with light and reflected by the biological tissue or emitted from the biological tissue. The other end is configured to have a mechanism connected to a device (base unit 20 in the present embodiment) having a light source device and a detector.
The probe has one or more optical fibers for guiding excitation light for optical measurement and light emitted from living tissue. 3A to 3E show the layout of the optical system. Actually, these optical systems are fixed by a holder, an exterior, or the like to form a probe. The simplest optical system configured in the probe is composed of one light guide optical fiber 14a shown in FIG. 3A. In addition to this, an optical element such as a lens or a prism may be provided. Specifically, as shown in FIGS. 3E and 3B, a structure in which a lens 15 is inserted at the tip of the fiber in order to increase the light collection efficiency, or the light traveling direction is changed as shown in FIG. The optical component 16 that is a prism or a mirror is inserted in order to observe and measure the biological tissue 50 that is substantially parallel to the body. As shown in FIG. 3C, a probe that emits light in a direction perpendicular to the axis of the light guide optical fiber 14d is generally provided with an optical component 16 that is a prism or a mirror at the tip of the light guide optical fiber 14d. A method of changing the traveling direction by reflecting is applied. Here, the shape of the reflection surface of the optical component 16 that is a prism or a mirror is generally a plane, a paraboloid, and a spherical surface, but is not limited thereto.
Further, as shown in FIG. 3B, the function is shared between the irradiation light guiding optical fiber 14b for irradiating the living tissue 50 with the irradiation light and the signal light guiding optical fiber 14c for receiving the radiated light from the living tissue 50. As described above, a configuration using a plurality of light guiding optical fibers 14e, 14f, 14g,... May be employed for the purpose of increasing the measurement area or increasing the light collection efficiency or the light collection amount.
 一般にこのようなプローブでは、一回の測定で生体組織のある一点の測定を行うものと、同時に複数点の測定を行うものとに大別されるが、本実施形態ではその両者を区別せずに合わせて説明する。想定される典型的なプローブ構成例は、図3Aから図3Eに示した通りである。
 プローブの基端側は、前述の光ファイバーを、光源装置及び検出器を有する装置に接続、固定するための機構を有する。例えば、SMA、FC、ST、LC及びSC等の通常光ファイバーを接続するための機構が用いられるが、これらに限らない。光ファイバーが複数本あり、そのコネクタも複数となる場合は、個々のコネクタがケース又はカバーの中に設置されて固定され、その全体が図1及び図2に示したコネクタ部12に相当することとなる。このケースは、中に材料が充填されていても、充填されておらず空間が存在しても、どちらでも補正用測定環境構成物を設置可能である。
 プローブ全体は、滅菌された状態で使用者に提供されるため、用いられる材料は、必要な滅菌作業に耐えるものが選択される。
In general, such probes are broadly classified into those that measure a certain point in living tissue in one measurement and those that measure a plurality of points at the same time, but in this embodiment, the two are not distinguished. It explains according to. Typical typical probe configurations are as shown in FIGS. 3A to 3E.
The proximal end side of the probe has a mechanism for connecting and fixing the above-described optical fiber to a device having a light source device and a detector. For example, a mechanism for connecting ordinary optical fibers such as SMA, FC, ST, LC, and SC is used, but is not limited thereto. When there are a plurality of optical fibers and there are a plurality of connectors, the individual connectors are installed and fixed in a case or cover, and the whole corresponds to the connector section 12 shown in FIGS. Become. In this case, the measurement environment component for correction can be installed either in the case where the material is filled therein or in the case where the space is not filled.
Since the entire probe is provided to the user in a sterilized state, the material used is selected to withstand the required sterilization operation.
〔補正用測定環境構成物の構成例と設置例〕
 図4Aから図4Cに補正用測定環境構成物40の構成例40A,40B,40Cが示される。
 補正用測定環境構成物40は、補正用測定の測定対象物質や遮光用の部材の少なくともいずれか一つをプローブ10の先端部11の測定範囲に保持固定するための構成をとる。補正用測定環境構成物40は、遮光性を確保するために、以下のいずれかの構成をとる。
 すなわち、補正用測定環境構成物40は、プローブ10の先端部11を挿入する開口部41を有し、プローブ10の先端部11が挿入されることにより閉じた空間を構成する光学的環境保持室42を構成し、この光学的環境保持室42に測定対象物質(図4Aの43や、図4Bの44)が設置されるか、図4Cに示すように測定対象物質自体により光学的環境保持室42を構成する壁部45が形成されるかのいずれかである。
 後者の場合、例えば白色の樹脂によって光学的環境保持室42を構成する壁部45が形成され、かつその壁部45の内面からの反射光を測定することで、照射光そのもののスペクトル形状を得ることができる。この際、室内照明光が壁部45を透過してプローブ10の先端部11に入射すると、迷光となり適切な補正が行えない。従って、壁部45に十分な遮光性を有するだけの厚さを持たせることが必要である。
 両者の場合ともに、補正用測定環境構成物40の光学的環境保持室42を構成する構成(図4Aの43,46,48、図4Bの44,47,48や、図4Cの45,48)の全てが測定対象物質からなる必要はなく、プローブ10の出射光が照射されない部分は、十分な遮光性を有する他の物質から成っていてもよい。
[Configuration example and installation example of correction measurement environment components]
4A to 4C show configuration examples 40A, 40B, and 40C of the correction measurement environment component 40. FIG.
The correction measurement environment component 40 is configured to hold and fix at least one of the measurement target substance for correction measurement and the light shielding member in the measurement range of the distal end portion 11 of the probe 10. The correction measurement environment component 40 has one of the following configurations in order to ensure light shielding properties.
That is, the correction measurement environment component 40 has an opening 41 into which the tip 11 of the probe 10 is inserted, and an optical environment holding chamber that forms a closed space when the tip 11 of the probe 10 is inserted. 42, and a measurement target substance (43 in FIG. 4A or 44 in FIG. 4B) is installed in the optical environment holding chamber 42, or the optical environment holding chamber is formed by the measurement target substance itself as shown in FIG. 4C. Either of the wall portions 45 constituting 42 is formed.
In the latter case, for example, the wall 45 constituting the optical environment holding chamber 42 is formed of white resin, and the reflected light from the inner surface of the wall 45 is measured to obtain the spectral shape of the irradiation light itself. be able to. At this time, if the room illumination light passes through the wall portion 45 and enters the distal end portion 11 of the probe 10, it becomes stray light and cannot be corrected appropriately. Therefore, it is necessary for the wall 45 to have a thickness sufficient to provide a light shielding property.
In both cases, the optical environment holding chamber 42 of the correction measurement environment component 40 is configured (43, 46, 48 in FIG. 4A, 44, 47, 48 in FIG. 4B, 45, 48 in FIG. 4C). Need not be made of the material to be measured, and the portion not irradiated with the emitted light of the probe 10 may be made of another material having sufficient light shielding properties.
 補正用測定環境構成物40自体が光学的環境保持室42内への外光侵入に対しての十分な遮光性を有している場合は、補正用測定環境構成物40が設置又は内蔵されるコネクタ部12の外装を構成するケース部材が十分な遮光性を有していない構成であってもよい。
 また、補正用測定環境構成物40の前記遮光性が乏しくても、補正用測定環境構成物40が内蔵されるコネクタ部12の外装を構成するケース部材が十分な遮光性を有している構成であればよい。
 ここで述べた十分な遮光性の程度は、構成される光学測定システムの性能(光源の光量や、照射光量に対する検出光量の比率)や、使用環境の室内照明の明るさによって決まるものである。従って、プローブが挿入された光学的環境保持室42内部が光密に保たれていることは、測定を行う上で必ずしも必要ではない。しかし、作業者や使用環境に依らずに正確な補正測定を実現する目的のためには、プローブ10の先端部11を挿入するだけで、光密に保たれる構成を提供することが望ましい。
When the correction measurement environment component 40 itself has a sufficient light-shielding property against external light intrusion into the optical environment holding chamber 42, the correction measurement environment component 40 is installed or built in. The case member which comprises the exterior of the connector part 12 may be the structure which does not have sufficient light-shielding property.
Further, even if the light shielding property of the correction measurement environment component 40 is poor, the case member constituting the exterior of the connector portion 12 in which the correction measurement environment component 40 is built has a sufficient light shielding property. If it is.
The degree of sufficient light shielding described here is determined by the performance of the optical measurement system (the light amount of the light source and the ratio of the detected light amount to the irradiation light amount) and the brightness of the indoor lighting in the usage environment. Therefore, it is not always necessary to perform the measurement that the inside of the optical environment holding chamber 42 in which the probe is inserted is kept light-tight. However, for the purpose of realizing accurate correction measurement regardless of the operator or the usage environment, it is desirable to provide a configuration that is kept light tight by simply inserting the tip 11 of the probe 10.
 このような補正用測定環境構成物40を、図5、図11に示すようにコネクタ部12の外側に設置するか、図6~図10に示すようにコネクタ部12の内部に設置するかのいずれかの構造により、コネクタ部12と補正用測定環境構成物40が一体となった構成を形成する。
 プローブ10の先端部11の挿入方向は、図5~図11に示すように、コネクタ部12の差し込み方向Cに対してどの向きを取ってもよく、また複数個の補正用測定環境構成物40,40・・・を有する場合には、図6,図7,図11に示すように先端部11の挿入方向が共通であっても、図8に示すように異なっていてもよい。
 但し、補正用測定環境構成物40に挿入したプローブ10の先端部11が自重によって抜けることを防止するために、本システムをコネクタ部12が一定の配向でのみベースユニット20への接続が許容される、例えばコネクタ断面形状の対称性を下げるための突起・溝や非対称なコネクタ断面形状等の機機械的構造を有するものとし、コネクタ部12がベースユニット20に接続された状態において、先端部11の補正用測定環境構成物40への挿入方向を鉛直下向き又は斜め下向きに規制するように、補正用測定環境構成物40がコネクタ部12に構成されることが好ましい。例えば、図2に示すようにコネクタ部12の面12aを上にした配向でのみベースユニット20への接続が許容される機械的構造が、コネクタ部12とベースユニット20の接続部21とで構成される場合においては、図5、図6、図10に示す補正用測定環境構成物40の配置が好ましい。図5及び図6に示す構成にあっては、先端部11の補正用測定環境構成物40への挿入方向を鉛直下向きに規制する。図10に示す構成にあっては、先端部11の補正用測定環境構成物40への挿入方向を斜め下向きに規制する。
Whether such a measurement environment component for correction 40 is installed outside the connector unit 12 as shown in FIGS. 5 and 11 or inside the connector unit 12 as shown in FIGS. With either structure, the connector unit 12 and the correction measurement environment component 40 are integrated.
As shown in FIGS. 5 to 11, the insertion direction of the tip portion 11 of the probe 10 may take any direction with respect to the insertion direction C of the connector portion 12, and a plurality of correction measurement environment components 40 may be used. , 40..., 40... May be common as shown in FIGS. 6, 7 and 11, or may be different as shown in FIG.
However, in order to prevent the distal end portion 11 of the probe 10 inserted into the measurement environment component for correction 40 from being pulled out by its own weight, the connector unit 12 is allowed to be connected to the base unit 20 only in a certain orientation. For example, it has a mechanical structure such as a protrusion / groove for reducing the symmetry of the connector cross-sectional shape and an asymmetrical connector cross-sectional shape, and in the state where the connector portion 12 is connected to the base unit 20, the tip portion 11 It is preferable that the correction measurement environment component 40 is configured in the connector unit 12 so as to restrict the insertion direction to the correction measurement environment component 40 to be vertically downward or obliquely downward. For example, as shown in FIG. 2, the mechanical structure that is allowed to be connected to the base unit 20 only in the orientation with the surface 12 a of the connector portion 12 facing up is constituted by the connector portion 12 and the connection portion 21 of the base unit 20. In such a case, the arrangement of the measurement environment component for correction 40 shown in FIGS. 5, 6, and 10 is preferable. In the configuration shown in FIGS. 5 and 6, the insertion direction of the distal end portion 11 into the correction measurement environment component 40 is regulated to be vertically downward. In the configuration shown in FIG. 10, the insertion direction of the distal end portion 11 into the correction measurement environment component 40 is restricted obliquely downward.
 コネクタ部12と補正用測定環境構成物40との固定には、接着、はめ込み、一体成形、ねじ止め等が適用されるが、これらに限らない。複数種類の補正用測定が必要な場合は、補正用測定環境構成物40を必要種類に応じた複数個用意し、同様にコネクタ部12の外側か内部かのいずれかに設置する。 接着 Adhesion, fitting, integral molding, screwing, and the like are applied to fix the connector portion 12 and the correction measurement environment component 40, but are not limited thereto. When a plurality of types of correction measurements are required, a plurality of correction measurement environment components 40 corresponding to the required types are prepared and similarly installed either outside or inside the connector unit 12.
 補正用測定環境構成物40の壁部によって区切られる光学的環境保持室42の形状は、直方体のような平面から成る形状、円柱のような平面と曲面から成る形状、及び球のような曲面から成る形状のいずれも選択可能である。
 補正用測定対象としては、前述の第1種の補正においては、既知の光学特性を持つマンセルカラーシート等の標準色票(カラーチャート)や適当な蛍光標準、ラマン標準試料を用いる。測定対象物質(43や44)は、プローブ10の光出射方向に応じて、図4Aに示すようにプローブ10の先端部11と正対する位置や、図4(b)に示すように先端部11を取り囲む位置に配置される。これらの測定対象物質(43や44)は、プローブと一体となっているため、各々の滅菌工程に耐えることが求められる。
The shape of the optical environment holding chamber 42 partitioned by the wall portion of the correction measurement environment component 40 is a shape composed of a plane such as a rectangular parallelepiped, a shape composed of a plane and a curved surface such as a cylinder, and a curved surface such as a sphere. Any of the shapes can be selected.
As the measurement object for correction, in the first type of correction described above, a standard color chart (color chart) such as a Munsell color sheet having known optical characteristics, an appropriate fluorescent standard, and a Raman standard sample are used. Depending on the light emission direction of the probe 10, the measurement target substance (43 or 44) is located at the position facing the tip 11 of the probe 10 as shown in FIG. 4A, or the tip 11 as shown in FIG. It is arranged at a position that surrounds. Since these measurement target substances (43 and 44) are integrated with the probe, it is required to withstand each sterilization process.
 光学的環境保持室42は、コネクタ部12の外装ケースと一体に成形するか、単独で成形するかのどちらかによって成形される。そのため、コネクタ部12の外装ケースに用いた材料とは異なる材料を使用することも可能であり、適切な遮光性と反射率を有した材料を選択できる。 The optical environment holding chamber 42 is molded either by molding integrally with the outer case of the connector part 12 or by molding alone. Therefore, it is possible to use a material different from the material used for the outer case of the connector portion 12, and a material having an appropriate light shielding property and reflectance can be selected.
 プローブ10の先端部11を挿入するための開口部41は、遮光性の確保とプローブ10の位置決め固定という機能性が求められる。遮光性の確保のために、プローブ外径と同程度の開口径を有するか、図4Aから図4Cに示すようにモルトプレン等の弾性のある遮光部材48を開口部41の内周に固定することで適切な挿入口径とプローブ保持性を得るとともに、先端部11が挿入された光学的環境保持室42の遮光性を確保する。
 図9Aから図9Cには、補正用測定環境構成物40の組立例が示される。図9Aに示すように、長方形部61aとその一辺に連結された円形部61bとからなる部材61に、モルトプレン等の弾性のある遮光部材62を、前記一辺の対辺に沿って当該対辺付近に付設する。これを図9Bに示すように、前記一辺と円形部61bの円周とを合わせるように巻いて組立てる。これによりできた有底筒構造60を、図9Cに示すように、コネクタ部12に設けたれた孔部12bに挿入することで、補正用測定環境構成物をコネクタ部12に設置する。図5~図8及び図10、図11に示した構成においても、かかる組立例を適用しても良い。
The opening 41 for inserting the distal end portion 11 of the probe 10 is required to have the functionality of ensuring light shielding and positioning and fixing the probe 10. In order to ensure the light shielding property, an opening having the same diameter as the probe outer diameter or an elastic light shielding member 48 such as maltoprene is fixed to the inner periphery of the opening 41 as shown in FIGS. 4A to 4C. Thus, it is possible to obtain an appropriate insertion aperture and probe holding property, and to secure the light shielding property of the optical environment holding chamber 42 in which the tip portion 11 is inserted.
9A to 9C show an assembly example of the correction measurement environment component 40. FIG. As shown in FIG. 9A, an elastic light-shielding member 62 such as maltoprene is attached to the member 61 composed of a rectangular portion 61a and a circular portion 61b connected to one side thereof in the vicinity of the opposite side along the opposite side of the one side. To do. As shown in FIG. 9B, this is assembled by winding so that the one side and the circumference of the circular portion 61b are aligned. The bottomed cylindrical structure 60 thus formed is inserted into the hole 12b provided in the connector portion 12 as shown in FIG. 9C, thereby installing the correction measurement environment component in the connector portion 12. Such assembly examples may also be applied to the configurations shown in FIGS. 5 to 8, 10 and 11.
 図12A、図12Bに補正用測定環境構成物40の他の構成例40D,40Eが示される。プローブ10の位置決め固定のために、図12A、図12Bに示すように、プローブ10の先端部11の位置決めを行うための突起部49や51が設けられていることが望ましい。位置決めを行うための機構は、他の部材とは異なり、必ずしも遮光性を有している必要はない。加えて、プローブ10の中心軸の角度を固定するため、又は開口部の遮光性を高めるために、十分な挿入部長を有することが望ましい。
 図12Aに示す構成にあっては、補正用測定環境構成物40Dに挿入された先端部11を所定の挿入長さLでさらなる挿入を規制する係止構造が、先端部11の先端面と突起部49とで構成される。
 図12Bに示す構成にあっては、補正用測定環境構成物40Eに挿入された先端部11を所定の挿入長さLで所定の係止力をもってさらなる挿入を規制するとともに抜き出しを防止する係止構造が、先端部11の外周溝52と突起部51とで構成される。
 以上の係止構造に代え又は以上の係止構造とともに、補正用測定時に適用すべき挿入長さLに相当する先端からの長さを表示する目印53(図12B参照)が先端部11の外周に設けられた構成も有効である。目印53によって使用者は先端部11の挿入長さが適切であるか確認することができる。
12A and 12B show other configuration examples 40D and 40E of the correction measurement environment component 40. FIG. In order to position and fix the probe 10, as shown in FIGS. 12A and 12B, it is desirable that projections 49 and 51 for positioning the distal end portion 11 of the probe 10 are provided. Unlike other members, the mechanism for positioning does not necessarily have a light shielding property. In addition, in order to fix the angle of the central axis of the probe 10 or to improve the light shielding property of the opening, it is desirable to have a sufficient insertion portion length.
In the configuration shown in FIG. 12A, the locking structure for restricting further insertion of the distal end portion 11 inserted into the correction measurement environment constituent 40D with a predetermined insertion length L is provided on the distal end surface of the distal end portion 11 and the protrusion. Part 49.
In the configuration shown in FIG. 12B, the distal end portion 11 inserted into the measurement environment component for correction 40E is locked with a predetermined insertion length L with a predetermined locking force to restrict further insertion and prevent extraction. The structure is constituted by the outer peripheral groove 52 and the protrusion 51 of the tip 11.
A mark 53 (see FIG. 12B) for displaying the length from the distal end corresponding to the insertion length L to be applied at the time of the correction measurement is used in place of the above locking structure or together with the above locking structure. The configuration provided in is also effective. By using the mark 53, the user can confirm whether or not the insertion length of the distal end portion 11 is appropriate.
 ところで、導光用光ファイバー14から光が出射すると、そのファイバー端面、レンズ15や光学部品16、外装チューブ17の光通過部で光が反射・拡散され、一部が導光用光ファイバー14に入射する。
 前述したように、第2種の補正にあっては、これらのプローブ10の内部構成に由来する迷光のスペクトル強度を単独で取り出すように測定するものある。そのために、プローブ10から光学的環境保持室42に出た光が再びプローブ10に戻らないように補正用測定環境構成物40を構成する必要がある。
 したがって、プローブ10の内部構成に由来する迷光のスペクトル強度を測定する第2種の補正が適用されるプローブにあっては、光学的環境保持室42の内壁を構成する材料として十分に反射率の低い材料を用いることが求められる。これは、プローブ10の先端部11から出射した光が再び先端部11に入射することを防ぐためである。この目的をより効果的に達成するためには、反射率の低い材料を用いるとともに、光学的環境保持室42内の空間を大きくとり、光学的環境保持室42の内壁と先端部11との距離を確保することが好ましい。
By the way, when light is emitted from the light guide optical fiber 14, the light is reflected and diffused at the fiber end face, the light passing portion of the lens 15, the optical component 16, and the outer tube 17, and a part of the light enters the light guide optical fiber 14. .
As described above, in the second type of correction, measurement is performed so that the spectral intensity of stray light derived from the internal configuration of these probes 10 is extracted alone. Therefore, it is necessary to configure the correction measurement environment component 40 so that the light emitted from the probe 10 to the optical environment holding chamber 42 does not return to the probe 10 again.
Therefore, in the probe to which the second type of correction for measuring the spectral intensity of stray light derived from the internal configuration of the probe 10 is applied, the reflectance is sufficiently high as a material constituting the inner wall of the optical environment holding chamber 42. It is required to use a low material. This is to prevent the light emitted from the distal end portion 11 of the probe 10 from entering the distal end portion 11 again. In order to achieve this purpose more effectively, a material having a low reflectance is used, a space in the optical environment holding chamber 42 is increased, and the distance between the inner wall of the optical environment holding chamber 42 and the distal end portion 11 is increased. Is preferably ensured.
 複数種類の補正用測定環境構成物40がコネクタ部12に設置される場合には、図6~図8に示すように種類の別を示す識別記号(例えば1、2等の番号や、反射、発光等の文字)をコネクタ部12のケースに成形、印刷、ラベルといった手段で明示することが有効である。
 なお、複数回の補正測定を行う際には、測定ごとに使用する波長を異ならしめてもよい。
When a plurality of types of correction measurement environment components 40 are installed in the connector section 12, as shown in FIGS. 6 to 8, identification symbols (for example, numbers such as 1 and 2, etc., reflection, It is effective to clearly indicate the characters (e.g., light emission) on the case of the connector portion 12 by means such as molding, printing, or labeling.
Note that when performing correction measurement a plurality of times, the wavelength used for each measurement may be different.
 以上のような補正用測定環境構成物40をプローブ10のコネクタ部12に形成することによって、以下の効果が期待できる。
 プローブ10のコネクタ部12は、ベースユニット20に接続するという元来の目的により、使用者が容易に取り扱うのには十分な大きさを既に有している。したがって、床への落下による汚染の可能性を、補正用測定環境構成物をプローブとは独立したキャップ等の構成とする場合に比べて低減できる。また、プローブと一体となっているため、紛失の恐れはない。
 特に測定によって体内診断を行うプローブのなかで、内視鏡の鉗子チャネルを経由して体内に到達するようなプローブでは、その外径は一般的な鉗子チャネル(チャンネル)径2.8 mm以下となり、補正測定構成の開口部径も同程度となる。しかし、このような細い径のキャップは、大きさや強度の観点から取り扱いが容易とは言えず、取り扱いが容易なキャップを提供するためには、自ずとキャップ自体を大きくせざるを得ない。
 これに対して、プローブ10のコネクタ部12に補正用測定環境構成物40を設置する場合は、元々一定の大きさを有するコネクタ部にわずかな外形的な追加構成が加わるか、コネクタ部に内装する場合はコネクタ部の大きさを変化させずに補正用測定環境構成物40を追加することが可能となる。
By forming the measurement environment component for correction 40 as described above in the connector portion 12 of the probe 10, the following effects can be expected.
The connector portion 12 of the probe 10 is already large enough to be easily handled by the user for the original purpose of connecting to the base unit 20. Therefore, the possibility of contamination due to falling on the floor can be reduced as compared with the case where the correction measurement environment component is configured as a cap or the like independent of the probe. Moreover, since it is integrated with the probe, there is no risk of loss.
In particular, among probes that perform in-vivo diagnosis by measurement, probes that reach the inside of the body via the forceps channel of the endoscope have an outer diameter of 2.8 mm or less for the general forceps channel (channel) diameter. The opening diameter of the measurement configuration is about the same. However, such a small-diameter cap cannot be said to be easy to handle from the viewpoint of size and strength, and the cap itself must be enlarged in order to provide a cap that is easy to handle.
On the other hand, when the correction measurement environment component 40 is installed in the connector portion 12 of the probe 10, a slight external additional configuration is added to the connector portion that originally has a constant size, or the connector portion is internally provided. In this case, the correction measurement environment component 40 can be added without changing the size of the connector portion.
 プローブ10コネクタ部12は、本光学測定システム1を使用する際に、使用者が必ず操作・接続する部分であるため、そこに補正用測定を促す文言又は図を記載することで、補正用測定作業のし忘れを防ぐ効果も奏される。
 本実施形態では、プローブ全体が滅菌された状態で滅菌袋に梱包された状態で、一本のプローブに対して一セットの補正用測定環境構成物40が確実に提供される。したがって、使い捨て又は一回のみ使用のプローブの場合、使用者は補正用測定対象の経時劣化やその保管環境について配慮する必要がなく、常に提供側の意図に合った補正用測定を実行可能である。
 繰り返し使うプローブの場合、プローブは使用の都度に洗浄されるため、使用者は別途補正用測定環境構成物40を洗浄する必要がなく、定期的な交換のみによって常に提供側の意図に合った補正用測定を実行可能である。
 いずれの場合にも、一つのプローブ10に対して一つ以上の補正用測定環境構成物40を同時に提供できるため、プローブの設計が変更された場合にも、それに応じて補正用測定環境構成物40の設計を変更でき、特定のプローブに適した補正用測定環境構成物40を提供することができる。
The probe 10 connector portion 12 is a part that is always operated and connected by the user when using the optical measurement system 1. Therefore, the correction measurement can be performed by writing a word or a drawing for prompting the correction measurement. It also has the effect of preventing you from forgetting to work.
In the present embodiment, a set of measurement environment components for correction 40 is reliably provided for one probe in a state where the entire probe is sterilized and packed in a sterilization bag. Therefore, in the case of a disposable or one-time use probe, the user does not need to consider the deterioration over time of the correction measurement target and its storage environment, and can always perform correction measurement that matches the intention of the provider. .
In the case of a probe that is used repeatedly, the probe is cleaned each time it is used, so that the user does not need to clean the measurement environment component 40 for correction separately, and the correction always matches the intention of the provider only by periodic replacement. Measurement can be performed.
In any case, since one or more correction measurement environment components 40 can be simultaneously provided for one probe 10, even if the design of the probe is changed, the correction measurement environment component is correspondingly changed. The design of 40 can be changed, and the measurement environment component 40 for correction suitable for a specific probe can be provided.
〔補正用測定の手順〕
 次に、本実施形態の補正用測定環境構成物40を用いた補正用測定の手順につき説明する。なお、以下では、一回のみ使用の使い捨てプローブについて説明する。
 使用者は、本プローブ10を使用する際には、まず滅菌された包装からプローブ10を取り出す。その後、プローブ10のコネクタ部12をベースユニット20に接続する。
 ベースユニット20の接続部21に、スイッチやセンサーなどの検出手段を設けておくことで、ベースユニット20は、プローブ10が接続されたことを自動検知し、又は作業者がプローブ10を接続したことをベースユニットに入力し、補正用測定手順が実行される。ここで、本システム1は、音声や画面表示の少なくともいずれか一つによって、使用者に補正用測定の手順を案内する。
 使用者は、その案内に従って、プローブ10の先端部11を、コネクタ部12に備えられた補正用測定環境構成物40の開口部41に挿入する。その後、使用者はベースユニット20に測定開始の命令を入力し、ベースユニット20の光源装置からの光がファイバー先端部まで導光され、光学的環境保持室42内に出射される。このときプローブ10に得られた信号光がベースユニット20内の検出器に入力される。
[Measurement procedure for correction]
Next, a correction measurement procedure using the correction measurement environment component 40 of the present embodiment will be described. In the following, a disposable probe that is used only once will be described.
When using the probe 10, the user first takes out the probe 10 from the sterilized package. Thereafter, the connector portion 12 of the probe 10 is connected to the base unit 20.
By providing detection means such as a switch or a sensor in the connection portion 21 of the base unit 20, the base unit 20 automatically detects that the probe 10 is connected, or that the operator has connected the probe 10. Is input to the base unit, and the correction measurement procedure is executed. Here, the present system 1 guides the correction measurement procedure to the user by at least one of voice and screen display.
The user inserts the distal end portion 11 of the probe 10 into the opening 41 of the correction measurement environment component 40 provided in the connector portion 12 according to the guidance. Thereafter, the user inputs a measurement start command to the base unit 20, and light from the light source device of the base unit 20 is guided to the fiber tip and emitted into the optical environment holding chamber 42. At this time, the signal light obtained by the probe 10 is input to the detector in the base unit 20.
 検出器に信号光が入力されると、ベースユニット20に備えられる演算処理装置は、得られた光量、分光特性に関する出力値を、あらかじめ設定されている値と比較する。ここで、同演算処理装置は、得られたデータが適正な誤差範囲に入っているか、または適正な結果に補正するための補正係数の算出などを行う。これをベースユニット20内のメモリに保管しておき、その後の測定結果を補正するために用いる。すなわち、同演算処理装置は、補正用測定環境構成物40による光学的環境で測定した補正用測定結果を保持記憶し、当該補正用測定結果に基づき、あらかじめ定められたアルゴリズムに則って、生体組織を対象とした生体測定結果に補正をかける演算処理を実行する。
 または、検出器の出力を増幅する機構や検出器に入射する光量を調整する機構が、検出器と一体または別に設けられている場合に、同演算処理装置は、得られた光量、分光特性に関する出力値を、あらかじめ設定されている値と比較し、検出器の利得または減光フィルタの透過率を変化させることで、得られたデータが適正な誤差範囲内に収まるように設定する。
 または同演算処理装置は、得られた光量、分光特性に関する出力値を、あらかじめ設定されている値と比較し、光源、検出器、及びそれらとプローブとを光学的に接続する機構の少なくともいずれか一つの可動部を、得られたデータが適正な誤差範囲内に収まるように可動調整する。
 また、同演算処理装置は、得られた補正用測定時の出力値があらかじめ設定されている値と大きく異なる場合に、使用者に補正用測定が適切に完結しなかった旨を伝える。これにより、使用者は再度測定を行うか、そのプローブが不良であると判断し、新しいプローブを準備する。
 複数種類の補正用測定を実行する場合、本システム1は使用者にプローブ10を抜き、上述した識別記号により明示して別の補正用測定環境構成物40の開口部41に挿入するように画像又は音声表示により促し、次の補正用測定へと移行する。
 すべての補正用測定が終了したら、本システム1は補正用測定の完了を画像又は音声により表示し、使用者はプローブ10の先端部11を内視鏡の鉗子チャンネルに挿入し、被験者の体内へ導く。
When the signal light is input to the detector, the arithmetic processing device provided in the base unit 20 compares the obtained output value relating to the light amount and the spectral characteristics with values set in advance. Here, the arithmetic processing unit performs calculation of a correction coefficient for correcting the obtained data to be in an appropriate error range or correcting to an appropriate result. This is stored in a memory in the base unit 20 and used to correct the subsequent measurement result. That is, the arithmetic processing unit holds and stores the correction measurement result measured in the optical environment by the correction measurement environment component 40, and based on the correction measurement result, in accordance with a predetermined algorithm, the biological tissue An arithmetic process for correcting the biological measurement result for the target is executed.
Alternatively, when a mechanism for amplifying the output of the detector or a mechanism for adjusting the amount of light incident on the detector is provided integrally with or separately from the detector, the arithmetic processing unit relates to the obtained light amount and spectral characteristics. The output value is compared with a preset value, and the gain of the detector or the transmittance of the neutral density filter is changed to set the obtained data within an appropriate error range.
Alternatively, the arithmetic processing unit compares the obtained light quantity and output value related to the spectral characteristic with a preset value, and at least one of a light source, a detector, and a mechanism for optically connecting them to the probe. One movable part is movably adjusted so that the obtained data is within an appropriate error range.
In addition, when the output value at the time of the obtained correction measurement is greatly different from a preset value, the arithmetic processing unit notifies the user that the correction measurement has not been properly completed. Accordingly, the user performs measurement again or determines that the probe is defective, and prepares a new probe.
When performing a plurality of types of correction measurements, the system 1 pulls the probe 10 out to the user, clearly displays the identification symbol as described above, and inserts it into the opening 41 of another correction measurement environment component 40. Or prompt by voice display and move to the next correction measurement.
When all the correction measurements are completed, the present system 1 displays the completion of the correction measurement by image or sound, and the user inserts the distal end portion 11 of the probe 10 into the forceps channel of the endoscope and enters the body of the subject. Lead.
 なお、本発明のプローブの体内への挿入形態は、内視鏡に形成されたチャネルを通して行う形態のものであっても良いし、内視鏡とは独立して単体で体内に挿入される形態であってもよい。 The probe of the present invention may be inserted into the body through a channel formed in the endoscope, or may be inserted into the body independently from the endoscope. It may be.
 蛍光は、広義には、X線や紫外線、可視光線が照射された被照射物が、そのエネルギーを吸収することで電子が励起し、それが基底状態に戻る際に余分なエネルギーを電磁波として放出するものである。ここでは、励起光(参照光)によって、その波長とは異なった波長の蛍光が戻り光として生じるので、検出器において入力された放射光を波長分光して、これを演算処理装置が上述したように補正し、解析して、発生した蛍光量を測定する。演算処理装置は、この蛍光測定データをデータ記録装置に記録したり、画像表示装置に表示したりするデータ処理を行う。また、内視鏡で撮像された生体組織の表面画像と蛍光測定データとを重ね合わせた画像を合成するデータ処理を行い、またこれをデータ記録装置に記録したり、画像表示装置に表示したりするデータ処理を行う。 Fluorescence is broadly defined as an object irradiated with X-rays, ultraviolet rays, or visible light absorbs its energy, excites electrons, and releases excess energy as electromagnetic waves when it returns to the ground state. To do. Here, the excitation light (reference light) causes fluorescence having a wavelength different from that of the light to be generated as the return light. Therefore, the radiated light input in the detector is subjected to wavelength spectroscopy, and this is processed by the arithmetic processing unit as described above. And the amount of fluorescence generated is measured. The arithmetic processing unit performs data processing for recording the fluorescence measurement data in a data recording device or displaying it on an image display device. Also, data processing is performed to synthesize an image obtained by superimposing the surface image of the living tissue imaged by the endoscope and fluorescence measurement data, and this is recorded in a data recording device or displayed on an image display device. Data processing is performed.
 以上の実施形態においては、励起光を測定対象部位へ照射するとともに、この励起光に起因して生じる蛍光を受光することとして説明したが、照射光に起因して生じる反射光、散乱光、ラマン散乱光、または非線形光学効果による高調波を受光することとしてもよい。これらの場合であっても、生体組織の変性や癌などの疾患状態の診断を行うことができる。
 また、先端部11に、撮像素子を設置して、受光した信号光を電気信号に変換して、先端部11からプローブ基端まで、さらにベースユニット20の検出器まで電気信号ケーブルにより伝送する構成を採用しても、実施可能であることは勿論である。すなわち、どの段階でどのような形態の信号にされるかは本発明の実施に影響する事項ではない。
In the above embodiments, the excitation light is irradiated to the measurement target site and the fluorescence generated due to the excitation light is received. However, reflected light, scattered light, Raman generated due to the irradiation light are described. Scattered light or harmonics due to nonlinear optical effects may be received. Even in these cases, it is possible to diagnose a disease state such as degeneration of a living tissue or cancer.
Also, an image pickup device is installed at the distal end portion 11, and the received signal light is converted into an electrical signal, which is transmitted from the distal end portion 11 to the probe proximal end and further to the detector of the base unit 20 through an electrical signal cable. Of course, it is possible to implement this method. In other words, what type of signal is used at which stage does not affect the implementation of the present invention.
〈プローブ、調整治具、トレイ及び包装袋を備えた診断用包装物の実施形態〉
 以下に、本発明を実施するための形態について図13から図25を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、本発明の範囲を以下の実施形態及び図示例に限定するものではない。また、図13から図25に用いられる符号は、図1から図12Bに用いられる符号と共通でない。
<Embodiment of Diagnostic Package with Probe, Adjustment Jig, Tray, and Packaging Bag>
Hereinafter, embodiments for carrying out the present invention will be described with reference to FIGS. However, the embodiments described below are given various technically preferable limitations for carrying out the present invention, but the scope of the present invention is not limited to the following embodiments and illustrated examples. Moreover, the code | symbol used for FIGS. 13-25 is not common with the code | symbol used for FIGS. 1-12B.
〔診断用包装物の概要〕
 図13は、診断用包装物1の外観斜視図である。図14は、診断用包装物1の分解斜視図である。図13及び図14に示すように、診断用包装物1は、プローブ10、調整治具30、トレイ(tray)70、カバー80及び包装袋90等を備える。
[Outline of diagnostic packaging]
FIG. 13 is an external perspective view of the diagnostic packaging 1. FIG. 14 is an exploded perspective view of the diagnostic packaging 1. As shown in FIGS. 13 and 14, the diagnostic package 1 includes a probe 10, an adjustment jig 30, a tray 70, a cover 80, a packaging bag 90, and the like.
 プローブ10は、光の伝送、投光及び受光をするケーブル材である。プローブ10の基端部分が光を入出力するコネクタ11であり、プローブ10の先端部分が光の投光・受光をする投光受光部12であり、プローブ10の中間部分がコネクタ11と投光受光部12の間の光の伝送を行うケーブル本体部13である。投光受光部12がケーブル本体部13の先端に連結され、コネクタ11がケーブル本体部13の基端に連結されている。 Probe 10 is a cable material that transmits, projects and receives light. The proximal end portion of the probe 10 is a connector 11 for inputting / outputting light, the distal end portion of the probe 10 is a light projecting / receiving portion 12 for projecting / receiving light, and an intermediate portion of the probe 10 is projected with the connector 11. This is a cable body 13 that transmits light between the light receivers 12. The light projecting / receiving unit 12 is connected to the distal end of the cable body 13, and the connector 11 is connected to the proximal end of the cable body 13.
 プローブ10の使用時には、コネクタ11をベースユニット100(図20、図21に図示。ベースユニット100の詳細は後述する。)に接続し、投光受光部12を管腔に挿入する。ベースユニット100の光源から発した励起光がプローブ10の基端部分のコネクタ11に入力され、その入力された励起光がケーブル本体部13によって先端部分の投光受光部12に伝送され、その伝送された励起光が投光受光部12から管腔内の生体組織の測定部位に照射される。その測定部位は励起光によって蛍光を発する。その測定部位から発した蛍光が投光受光部12によって受光され、その受光された蛍光がケーブル本体部13によって基端部分のコネクタ11に伝送され、その伝送された蛍光がコネクタ11からベースユニット100に出力される。ベースユニット100に入力された蛍光のスペクトル解析等がベースユニット100によって行われる。以上のようにプローブ10を使用して、プローブ10によって光学的診断が行われる。 When the probe 10 is used, the connector 11 is connected to the base unit 100 (shown in FIGS. 20 and 21; details of the base unit 100 will be described later), and the light projecting / receiving unit 12 is inserted into the lumen. Excitation light emitted from the light source of the base unit 100 is input to the connector 11 at the proximal end portion of the probe 10, and the input excitation light is transmitted to the light projecting / receiving portion 12 at the distal end portion by the cable body portion 13. The excited excitation light is irradiated from the light projecting / receiving unit 12 to the measurement site of the living tissue in the lumen. The measurement site emits fluorescence by excitation light. The fluorescence emitted from the measurement site is received by the light projecting / receiving unit 12, and the received fluorescence is transmitted to the connector 11 at the base end by the cable body 13, and the transmitted fluorescence is transmitted from the connector 11 to the base unit 100. Is output. The base unit 100 performs spectral analysis of the fluorescence input to the base unit 100. Using the probe 10 as described above, an optical diagnosis is performed by the probe 10.
 このプローブ10は使い捨てである。つまり、衛生上の観点から、一旦管腔に挿入して使用したプローブ10は再使用することはない。 This probe 10 is disposable. That is, from the viewpoint of hygiene, the probe 10 that is once inserted into the lumen is not reused.
 調整治具30は、プローブ10を管腔に挿入して使用する前に用いられるものである。調整治具30の使用時には、プローブ10の投光受光部12を調整治具30に保持し、プローブ10のコネクタ11をベースユニット100に接続する。そして、ベースユニット100の光源から発した既知の標準強度の光がプローブ10の投光受光部12から調整治具30の一部(校正用ターゲット)に投射され、その反射光が投光受光部12によって受光され、その受光された光がプローブ10によってベースユニット100に伝送される。ベースユニット100では、入力された光の強度が測定され、その測定強度と既知の標準強度の差を加味することで、校正(キャリブレーション)が行われる。 The adjustment jig 30 is used before the probe 10 is inserted into the lumen and used. When the adjustment jig 30 is used, the light projecting / receiving portion 12 of the probe 10 is held by the adjustment jig 30 and the connector 11 of the probe 10 is connected to the base unit 100. Then, light of known standard intensity emitted from the light source of the base unit 100 is projected from a light projecting / receiving unit 12 of the probe 10 onto a part of the adjustment jig 30 (calibration target), and the reflected light thereof is projected and received. 12, and the received light is transmitted to the base unit 100 by the probe 10. In the base unit 100, the intensity of the input light is measured, and calibration is performed by taking into account the difference between the measured intensity and the known standard intensity.
〔プローブ〕
 プローブ10について具体的に説明する。
 図15は、プローブ10の平面図である。図15に示すように、プローブ10は、投光用光ファイバー14、受光用光ファイバー15、照明用光ファイバー16、レンズ17、照明用レンズ18、ホルダ19、コネクタ筐体21及びチューブ25等を備える。
〔probe〕
The probe 10 will be specifically described.
FIG. 15 is a plan view of the probe 10. As shown in FIG. 15, the probe 10 includes a light projecting optical fiber 14, a light receiving optical fiber 15, an illumination optical fiber 16, a lens 17, an illumination lens 18, a holder 19, a connector housing 21, a tube 25, and the like.
 チューブ25は管状に設けられている。チューブ25はプローブ10の外周壁を形成する。チューブ25は遮水性及び可撓性を有する。コネクタ筐体21がチューブ25の基端に連結され、ホルダ19がチューブ25の先端に連結されている。 The tube 25 is provided in a tubular shape. The tube 25 forms the outer peripheral wall of the probe 10. The tube 25 has water barrier properties and flexibility. The connector housing 21 is connected to the proximal end of the tube 25, and the holder 19 is connected to the distal end of the tube 25.
 プローブ10には、識別子26が付されている。識別子26が付される箇所は、例えば、コネクタ筐体21、チューブ25又はホルダ19である。識別子26は、例えば、ID、シリアル番号、製造番号又はロット番号である。 The probe 10 has an identifier 26 attached thereto. The location to which the identifier 26 is attached is, for example, the connector housing 21, the tube 25, or the holder 19. The identifier 26 is, for example, an ID, a serial number, a manufacturing number, or a lot number.
 コネクタ筐体21の端面には接続ピン22~24が凸設されている。ホルダ19は内部空間を有し、その内部空間がチューブ25の中空に連通している。ホルダ19の先端面には投光受光窓20が設けられている。レンズ17及び照明用レンズ18はホルダ19の内部空間に収容されて、そのホルダ19に固定されている。レンズ17が投光受光窓20に対向するとともに、照明用レンズ18が投光受光窓20に対向する。 The connection pins 22 to 24 are projected on the end face of the connector housing 21. The holder 19 has an internal space, and the internal space communicates with the hollow of the tube 25. A light projecting / receiving window 20 is provided on the front end surface of the holder 19. The lens 17 and the illumination lens 18 are accommodated in the internal space of the holder 19 and are fixed to the holder 19. The lens 17 faces the light projecting / receiving window 20 and the illumination lens 18 faces the light projecting / receiving window 20.
 投光用光ファイバー14、受光用光ファイバー15及び照明用光ファイバー16が、コネクタ筐体21からホルダ19にかけてチューブ25内に通されている。
 投光用光ファイバー14、受光用光ファイバー15及び照明用光ファイバー16の基端寄り部分がコネクタ筐体21の内側においてコネクタ筐体21に固定されている。投光用光ファイバー14の基端寄り部分が接続ピン22の中に通されて、投光用光ファイバー14の基端が接続ピン22の突端において露出している。同様にして、受光用光ファイバー15及び照明用光ファイバー16の基端寄り部分が接続ピン23,24にそれぞれ取り付けられている。投光用光ファイバー14は、その基端に入射した励起光をその先端まで導光するものである。受光用光ファイバー15は、その先端に入射した蛍光をその基端まで導光するものである。照明用光ファイバー16は、その基端に入射した照明光(例えば、可視光)をその先端まで導光するものである。
The light projecting optical fiber 14, the light receiving optical fiber 15, and the illumination optical fiber 16 are passed through the tube 25 from the connector housing 21 to the holder 19.
The proximal end portions of the light projecting optical fiber 14, the light receiving optical fiber 15, and the illumination optical fiber 16 are fixed to the connector housing 21 inside the connector housing 21. The portion near the base end of the light projecting optical fiber 14 is passed through the connection pin 22, and the base end of the light projecting optical fiber 14 is exposed at the protruding end of the connection pin 22. Similarly, the proximal end portions of the light receiving optical fiber 15 and the illumination optical fiber 16 are attached to the connection pins 23 and 24, respectively. The light projecting optical fiber 14 guides the excitation light incident on the proximal end thereof to the distal end. The light receiving optical fiber 15 guides the fluorescence incident on the tip thereof to the base end. The illumination optical fiber 16 guides illumination light (for example, visible light) incident on the proximal end thereof to the distal end.
 投光用光ファイバー14の先端がレンズ17に相対し、受光用光ファイバー15の先端もレンズ17に相対する。レンズ17はコリメートレンズである。つまり、レンズ17は、投光用光ファイバー14の先端から出射した励起光を略平行光としてプローブ10の先端の前方へ投射する。レンズ17によって投射される励起光は、投光受光窓20を透過する。プローブ10の先端の前方に配置された生体組織の測定部位が励起光によって励起されて、蛍光を発する。生体組織の測定部位から発した蛍光は、投光受光窓20を透過して、レンズ17によって受光用光ファイバー15の先端に集光される。 The front end of the light projecting optical fiber 14 is opposed to the lens 17, and the front end of the light receiving optical fiber 15 is also opposed to the lens 17. The lens 17 is a collimating lens. That is, the lens 17 projects the excitation light emitted from the tip of the light projecting optical fiber 14 to the front of the tip of the probe 10 as substantially parallel light. The excitation light projected by the lens 17 passes through the light projection / receiving window 20. A measurement site of biological tissue arranged in front of the tip of the probe 10 is excited by excitation light and emits fluorescence. Fluorescence emitted from the measurement site of the living tissue passes through the light projecting and receiving window 20 and is collected by the lens 17 on the tip of the light receiving optical fiber 15.
 照明用光ファイバー16の先端が照明用レンズ18に相対している。照明用光ファイバー16の先端から出射した照明光が照明用レンズ18によってプローブ10の先端の前方へ投射される。 The tip of the illumination optical fiber 16 is opposed to the illumination lens 18. Illumination light emitted from the tip of the illumination optical fiber 16 is projected forward of the tip of the probe 10 by the illumination lens 18.
 コネクタ筐体21、接続ピン22~24及び光ファイバー14~16の基端寄り部分からなる部分が、プローブ10のコネクタ11に相当する。レンズ17、照明用レンズ18、ホルダ19及び投光受光窓20からなる部分が、プローブ10の投光受光部12に相当する。チューブ25及び光ファイバー14~16の中央部分が、コネクタ11と投光受光部12を繋ぐケーブル本体部13に相当する。 The portion consisting of the connector housing 21, the connection pins 22 to 24, and the proximal end portions of the optical fibers 14 to 16 corresponds to the connector 11 of the probe 10. A portion including the lens 17, the illumination lens 18, the holder 19, and the light projecting / receiving window 20 corresponds to the light projecting / receiving unit 12 of the probe 10. The central portion of the tube 25 and the optical fibers 14 to 16 corresponds to the cable body 13 that connects the connector 11 and the light projecting / receiving unit 12.
 なお、投光受光窓20がホルダ19の側面に設けられていてもよい。その場合、ホルダ19の内側であってレンズ17の前にミラーが配置され、レンズ17によって投射される励起光がそのミラーによって投光受光窓20に向けて反射される。生体組織の測定部位から発して投光受光窓20を透過した蛍光は、ミラーによってレンズ17に向けて反射される。 Note that the light projecting and receiving window 20 may be provided on the side surface of the holder 19. In that case, a mirror is disposed inside the holder 19 and in front of the lens 17, and excitation light projected by the lens 17 is reflected by the mirror toward the light projecting / receiving window 20. The fluorescence emitted from the measurement site of the living tissue and transmitted through the light projecting and receiving window 20 is reflected toward the lens 17 by the mirror.
 また、ホルダ19の内部に撮像カメラが内蔵されていてもよい。その場合、ホルダ19の周囲が撮像カメラによって撮影され、撮像カメラによって撮影された像がベースユニット100に転送される。プローブ10が使い捨てであるため、上述したように撮像カメラが内蔵されていないことが好ましい。 In addition, an imaging camera may be built in the holder 19. In that case, the periphery of the holder 19 is photographed by the imaging camera, and an image photographed by the imaging camera is transferred to the base unit 100. Since the probe 10 is disposable, it is preferable that the imaging camera is not incorporated as described above.
 以上のプローブ10に設けられた光ファイバーの本数が3であるが、光ファイバーの本数が1又は2でもよいし、4以上であってもよい。光ファイバーの本数が2である場合、照明用光ファイバー16が無く、投光用光ファイバー14を励起光導光用と照明光導光用に兼用することが好ましい。光ファイバーの本数が1である場合、投光用光ファイバー14を励起光導光用、蛍光導光用及び照明光導光用に兼用することが好ましい。 The number of optical fibers provided in the above probe 10 is 3, but the number of optical fibers may be 1 or 2, or may be 4 or more. When the number of optical fibers is 2, it is preferable that there is no illumination optical fiber 16 and the light projecting optical fiber 14 is used for both excitation light guiding and illumination light guiding. When the number of optical fibers is 1, it is preferable that the light projecting optical fiber 14 is also used for exciting light guiding, fluorescence guiding, and illumination light guiding.
〔調整治具〕
 調整治具30について具体的に説明する。
 図16は、調整治具30の分解斜視図である。図17は、調整治具30の断面図である。図16及び図17に示すように、調整治具30は、治具本体31、第一校正用ターゲット52、第二校正用ターゲット55、押込棒53、遮光シート50,51、第一遮光キャップ54及び第二遮光キャップ56等を有する。
[Adjustment jig]
The adjustment jig 30 will be specifically described.
FIG. 16 is an exploded perspective view of the adjustment jig 30. FIG. 17 is a cross-sectional view of the adjustment jig 30. As shown in FIGS. 16 and 17, the adjustment jig 30 includes a jig body 31, a first calibration target 52, a second calibration target 55, a push rod 53, light shielding sheets 50 and 51, and a first light shielding cap 54. And a second light shielding cap 56 and the like.
 治具本体31の外形は略直方体状である。治具本体31は遮光性を有する。治具本体31の素材自体が遮光しないものであれば、治具本体31の表面に遮光性のコーティングが施されている。 The outer shape of the jig body 31 is a substantially rectangular parallelepiped shape. The jig body 31 has a light shielding property. If the material itself of the jig body 31 is not light-shielded, the surface of the jig body 31 is coated with a light-shielding coating.
 治具本体31の一端面32には、挿入口35,41が開口している。治具本体31には、内部空間である第一差込孔34及び第二差込孔40が形成され、第一差込孔34が挿入口35から治具本体31の内部に延び、第二差込孔40が挿入口41から治具本体31の内部に延びている。これら差込孔34,40の中心線が直線状に延び、差込孔34,40は治具本体31の一端面32から他端面33にかけて貫通する。そのため、差込孔34,40の一方の端がそれぞれ挿入口35,41として一端面32で開口し、差込孔34,40の他方の端がそれぞれ取込口36,42として他端面33で開口している。なお、端面32が治具本体31の前面であり、端面33が治具本体31の後面である。 挿入 In the end face 32 of the jig body 31, insertion holes 35 and 41 are opened. A first insertion hole 34 and a second insertion hole 40 that are internal spaces are formed in the jig body 31, and the first insertion hole 34 extends from the insertion port 35 to the inside of the jig body 31. The insertion hole 40 extends from the insertion port 41 into the jig body 31. The center lines of the insertion holes 34 and 40 extend linearly, and the insertion holes 34 and 40 penetrate from the one end surface 32 to the other end surface 33 of the jig body 31. Therefore, one end of each of the insertion holes 34 and 40 is opened at one end surface 32 as the insertion ports 35 and 41, respectively, and the other end of the insertion holes 34 and 40 is respectively formed as the insertion ports 36 and 42 at the other end surface 33. It is open. Note that the end surface 32 is the front surface of the jig body 31, and the end surface 33 is the rear surface of the jig body 31.
 第一差込孔34は、挿入口35寄りの第一空洞部37と、取込口36寄りの第二空洞部38と、第一空洞部37と第二空洞部38との間の第三空洞部39とからなる。第一空洞部37と第三空洞部39が連なり、第二空洞部38と第三空洞部39が連なる。第一空洞部37は円錐台状に形成され、第一空洞部37の径が挿入口35から第三空洞部39に向かって漸減する。第二空洞部38及び第三空洞部39は円柱状に形成され、第二空洞部38及び第三空洞部39の径が互いに等しい。 The first insertion hole 34 includes a first cavity portion 37 near the insertion port 35, a second cavity portion 38 near the intake port 36, and a third space between the first cavity portion 37 and the second cavity portion 38. It consists of a cavity 39. The first cavity part 37 and the third cavity part 39 are connected, and the second cavity part 38 and the third cavity part 39 are connected. The first cavity portion 37 is formed in a truncated cone shape, and the diameter of the first cavity portion 37 gradually decreases from the insertion port 35 toward the third cavity portion 39. The second cavity portion 38 and the third cavity portion 39 are formed in a columnar shape, and the diameters of the second cavity portion 38 and the third cavity portion 39 are equal to each other.
 第二差込孔40も、第一差込孔34と同様に、第一空洞部43、第二空洞部44及び第三空洞部45とからなる。但し、第一差込孔34の第二空洞部38が円柱状に形成されているのに対し、第二差込孔40の第二空洞部44は円錐台状に形成され、第二空洞部44の径が取込口42から第三空洞部45に向かって漸減する。第三空洞部45が円錐台状に形成されているのは、第三空洞部45の中心線から第三空洞部45の内壁までの距離をできる限り大きくし、第三空洞部45内で伝播する光が減衰しやすいようにするためである。 Similarly to the first insertion hole 34, the second insertion hole 40 also includes a first cavity portion 43, a second cavity portion 44, and a third cavity portion 45. However, the second cavity portion 38 of the first insertion hole 34 is formed in a columnar shape, whereas the second cavity portion 44 of the second insertion hole 40 is formed in a truncated cone shape, and the second cavity portion The diameter of 44 gradually decreases from the intake port 42 toward the third cavity 45. The third cavity 45 is formed in the shape of a truncated cone because the distance from the center line of the third cavity 45 to the inner wall of the third cavity 45 is made as large as possible and propagates in the third cavity 45. This is to make the light to be attenuated easily.
 第一差込孔34の内壁には、リング状のストッパ46が凸設されている。ストッパ46が形成された位置は第二空洞部38と第三空洞部39の境界部分であり、第二空洞部38と第三空洞部39がストッパ46の内側の開口47を介して互いに通じている。第二差込孔40の内壁であって第二空洞部44と第三空洞部45の境界部分にも、開口49を有したリング状のストッパ48が凸設されている。なお、治具本体31を射出成形により作成する場合、金型の合わせ目によってストッパ46,48に相当する内部領域を囲うようにして、パーティングラインがストッパ46,48に形成されるようにすることが好ましい。 A ring-shaped stopper 46 is projected on the inner wall of the first insertion hole 34. The position where the stopper 46 is formed is a boundary portion between the second cavity portion 38 and the third cavity portion 39, and the second cavity portion 38 and the third cavity portion 39 communicate with each other through an opening 47 inside the stopper 46. Yes. A ring-shaped stopper 48 having an opening 49 is also provided on the inner wall of the second insertion hole 40 and at the boundary between the second cavity portion 44 and the third cavity portion 45. When the jig body 31 is formed by injection molding, the parting line is formed on the stoppers 46 and 48 so as to surround the inner region corresponding to the stoppers 46 and 48 by the joint of the mold. It is preferable.
 差込孔34,40の内壁には遮光シート50,51がそれぞれ貼着されている。具体的には、差込孔34,40のうち第三空洞部39,45の内壁に遮光シート50,51がそれぞれ貼着されている。遮光シート50,51は、弾性を有するポリウレタンフォーム材(モルトプレン)からなる。遮光シート50,51に植毛が施されていてもよい。なお、遮光シート50,51が貼着される代わりに、第三空洞部39,45の内壁がシボ加工又はエンボス加工されていてもよい。 Shielding sheets 50 and 51 are attached to the inner walls of the insertion holes 34 and 40, respectively. Specifically, the light shielding sheets 50 and 51 are attached to the inner walls of the third cavities 39 and 45 in the insertion holes 34 and 40, respectively. The light shielding sheets 50 and 51 are made of a polyurethane foam material (maltoprene) having elasticity. The light shielding sheets 50 and 51 may be flocked. In addition, the inner wall of the 3rd cavity parts 39 and 45 may be embossed or embossed instead of sticking the light shielding sheets 50 and 51. FIG.
 第二差込孔40の内壁が反射防止加工されていることが好ましい。例えば、AR(Anti-Reflection)膜が第二差込孔40の内壁に成膜されていたり、ARフィルムが第二差込孔40に貼着されていたりする。反射防止加工は第二差込孔40の内壁全体に施されていてもよいし、第二差込孔40のうち第二空洞部44の内壁に施されていてもよい。 It is preferable that the inner wall of the second insertion hole 40 is anti-reflection processed. For example, an AR (Anti-Reflection) film is formed on the inner wall of the second insertion hole 40, or an AR film is attached to the second insertion hole 40. The antireflection processing may be applied to the entire inner wall of the second insertion hole 40, or may be applied to the inner wall of the second cavity portion 44 in the second insertion hole 40.
 第一差込孔34内には、第一校正用ターゲット52が収容されている。第一校正用ターゲット52の設置位置は、ストッパ46に関して挿入口35の反対側であり、より具体的には、第二空洞部38のうちストッパ46寄りである。第一校正用ターゲット52がストッパ46に当接して、ストッパ46の開口47が第一校正用ターゲット52によって閉塞されている。 The first calibration target 52 is accommodated in the first insertion hole 34. The installation position of the first calibration target 52 is opposite to the insertion port 35 with respect to the stopper 46, and more specifically, is closer to the stopper 46 in the second cavity portion 38. The first calibration target 52 is in contact with the stopper 46, and the opening 47 of the stopper 46 is closed by the first calibration target 52.
 押込棒53が取込口36から第一差込孔34に挿入されて、第二空洞部38内に収容されている。第一校正用ターゲット52は、押込棒53によって取込口36から第一差込孔34に入れられて、押込棒53によってストッパ46に突き当てられている。 The push rod 53 is inserted into the first insertion hole 34 from the intake port 36 and is accommodated in the second cavity 38. The first calibration target 52 is inserted into the first insertion hole 34 from the intake port 36 by the push rod 53 and is abutted against the stopper 46 by the push rod 53.
 ゴム製又はプラスチック製の第一遮光キャップ54が、第一差込孔34の取込口36を閉塞するようにしてその取込口36に嵌め込まれている。押込棒53が、ストッパ46及び第一校正用ターゲット52と第一遮光キャップ54の間に挟まれた状態で保持されている。 A first light shielding cap 54 made of rubber or plastic is fitted into the inlet 36 so as to close the inlet 36 of the first insertion hole 34. The pushing rod 53 is held in a state of being sandwiched between the stopper 46 and the first calibration target 52 and the first light shielding cap 54.
 第二差込孔40内には、第二校正用ターゲット55が収容されている。第二校正用ターゲット55の設置位置は、ストッパ48に関して挿入口41の反対側であり、より具体的には、第二空洞部38のうち取込口42寄りである。そして、第二校正用ターゲット55が取込口42に嵌め込まれている。第二校正用ターゲット55はゴム製又はプラスチック製の第二遮光キャップ56に一体形成され、第二遮光キャップ56によって取込口42が蓋をされている。第二校正用ターゲット55からストッパ48までの距離は、第一校正用ターゲット52からストッパ46までの距離よりも長い。なお、第二校正用ターゲット55と第二遮光キャップ56が別体に形成され、第二校正用ターゲット55が第二遮光キャップ56に貼着されてもよい。 The second calibration target 55 is accommodated in the second insertion hole 40. The installation position of the second calibration target 55 is on the opposite side of the insertion port 41 with respect to the stopper 48, and more specifically, closer to the intake port 42 in the second cavity 38. A second calibration target 55 is fitted into the intake port 42. The second calibration target 55 is integrally formed with a second light shielding cap 56 made of rubber or plastic, and the intake port 42 is covered with the second light shielding cap 56. The distance from the second calibration target 55 to the stopper 48 is longer than the distance from the first calibration target 52 to the stopper 46. The second calibration target 55 and the second light shielding cap 56 may be formed separately, and the second calibration target 55 may be attached to the second light shielding cap 56.
 遮光キャップ54,56は接着剤が硬化したものでもよい。また、遮光キャップ54、56が治具本体31に接着されていてもよい。 The light shielding caps 54 and 56 may be hardened adhesive. Further, the light shielding caps 54 and 56 may be bonded to the jig main body 31.
 第一校正用ターゲット52の色と第二校正用ターゲット55の色は異なるものである。具体的には、第二校正用ターゲット55の色が黒色であり、第一校正用ターゲット52の色が黒以外の色(例えば、白、赤、緑、青、黄、マゼンタ、シアン等)であり、特に好ましくは、第一校正用ターゲット52の色が白色である。なお、第一校正用ターゲット52は一様な単一色であってもよいし、いわゆるカラーチャートのように様々な色を配列したものでもよい。 The color of the first calibration target 52 and the color of the second calibration target 55 are different. Specifically, the color of the second calibration target 55 is black, and the color of the first calibration target 52 is a color other than black (for example, white, red, green, blue, yellow, magenta, cyan, etc.). Yes, and particularly preferably, the color of the first calibration target 52 is white. The first calibration target 52 may be a uniform single color, or may be one in which various colors are arranged as in a so-called color chart.
 第一校正用ターゲット52は、例えば、マンセルカラー等の標準色票、標準色板(例えば、標準白色板)、標準蛍光試料又はラマン標準試料である。また、第一校正用ターゲット52は、基材と、その基材に貼り付けられた標準カラーシート(例えば、マンセルカラーシート)とを有するものでもよい。第一校正用ターゲット52が硫酸バリウムからなるものとしてもよく、好ましくは、硫酸バリウムをタブレット状に成形したものを第一校正用ターゲット52として使用する。 The first calibration target 52 is, for example, a standard color chart such as Munsell color, a standard color plate (for example, a standard white plate), a standard fluorescent sample, or a Raman standard sample. The first calibration target 52 may include a base material and a standard color sheet (for example, Munsell color sheet) attached to the base material. The first calibration target 52 may be made of barium sulfate. Preferably, a barium sulfate molded into a tablet shape is used as the first calibration target 52.
 第二校正用ターゲット55は光を反射しない素材又は光の反射率の低い素材である。第二校正用ターゲット55における光の反射を防止するべく、第二校正用ターゲット55が反射防止コーティングされていてもよい。 The second calibration target 55 is a material that does not reflect light or a material with low light reflectivity. In order to prevent reflection of light at the second calibration target 55, the second calibration target 55 may be anti-reflection coated.
 治具本体31、第一校正用ターゲット52、第二校正用ターゲット55、押込棒53、第一遮光キャップ54及び第二遮光キャップ56は、耐薬品性を有することが好ましい。つまり、治具本体31、第一校正用ターゲット52、第二校正用ターゲット55、押込棒53、第一遮光キャップ54及び第二遮光キャップ56の素材は、滅菌ガス環境下においても性質の変化しない素材であることが好ましい。調整治具30が主に医療機器として用いられるためである。
 また、治具本体31、第一校正用ターゲット52、第二校正用ターゲット55、押込棒53、第一遮光キャップ54及び第二遮光キャップ56の素材は耐熱材であることが好ましい。治具本体31、第一校正用ターゲット52、第二校正用ターゲット55、押込棒53、第一遮光キャップ54及び第二遮光キャップ56の素材が高温下においても変形しない素材であることが好ましい。
The jig body 31, the first calibration target 52, the second calibration target 55, the push rod 53, the first light shielding cap 54, and the second light shielding cap 56 preferably have chemical resistance. That is, the materials of the jig body 31, the first calibration target 52, the second calibration target 55, the push rod 53, the first light shielding cap 54, and the second light shielding cap 56 do not change in properties even in a sterilized gas environment. A material is preferable. This is because the adjustment jig 30 is mainly used as a medical device.
The material of the jig body 31, the first calibration target 52, the second calibration target 55, the push rod 53, the first light shielding cap 54, and the second light shielding cap 56 is preferably a heat resistant material. The material of the jig body 31, the first calibration target 52, the second calibration target 55, the push rod 53, the first light shielding cap 54, and the second light shielding cap 56 is preferably a material that does not deform even at high temperatures.
 調整治具30の使用時には、プローブ10の先端部である投光受光部12を挿入口35から第一差込孔34に差し込む。第一空洞部37が円錐台状に形成され、挿入口35が大きく開口しているから、プローブ10の投光受光部12を第一差込孔34に差し込みやすい。 When using the adjustment jig 30, the light projecting / receiving part 12, which is the tip of the probe 10, is inserted into the first insertion hole 34 from the insertion port 35. Since the first cavity portion 37 is formed in a truncated cone shape and the insertion port 35 is greatly opened, the light projecting / receiving portion 12 of the probe 10 can be easily inserted into the first insertion hole 34.
 第一空洞部37が円錐台状に形成されているから、プローブ10の投光受光部12を第一差込孔34に押し込んでいくと、投光受光部12が中心に誘導される。そのため、プローブ10の投光受光部12を第三空洞部39に挿入しやすい。 Since the first cavity portion 37 is formed in a truncated cone shape, when the light projecting / receiving portion 12 of the probe 10 is pushed into the first insertion hole 34, the light projecting / receiving portion 12 is guided to the center. Therefore, the light projecting / receiving part 12 of the probe 10 can be easily inserted into the third cavity part 39.
 プローブ10の投光受光部12を第一差込孔34に押し込んで、投光受光部12の先端(投光受光窓20)がストッパ46に当接すると、投光受光部12をそれ以上押し込めなくなる。これにより、投光受光部12の位置が決まり、投光受光部12の先端が光密な状態で第一校正用ターゲット52に正対する。 When the light projecting / receiving part 12 of the probe 10 is pushed into the first insertion hole 34 and the tip of the light projecting / receiving part 12 (light projecting / receiving window 20) contacts the stopper 46, the light projecting / receiving part 12 is pushed further. Disappear. As a result, the position of the light projecting / receiving unit 12 is determined, and the front end of the light projecting / receiving unit 12 faces the first calibration target 52 in a light-tight state.
 投光受光部12の先端がストッパ46に当接した状態では、ストッパ46の開口47が投光受光部12によって塞がれる。そのため、外光が挿入口35に入射しても、その外光が第一校正用ターゲット52にまでは至らない。 In the state where the tip of the light projecting / receiving unit 12 is in contact with the stopper 46, the opening 47 of the stopper 46 is blocked by the light projecting / receiving unit 12. Therefore, even if external light enters the insertion port 35, the external light does not reach the first calibration target 52.
 投光受光部12が第三空洞部39に挿入された状態では、遮光シート50が第三空洞部39の内壁と投光受光部12の周面との間に挟まれる。そのため、第一校正用ターゲット52を遮光することができる。なお、遮光シート50,51が貼着される代わりに、第三空洞部39,45の内壁がシボ加工又はエンボス加工されている場合には、シボ加工又はエンボス加工による突起が投光受光部12の周面に接することで、第一校正用ターゲット52を遮光することができる。 In a state where the light projecting / receiving unit 12 is inserted into the third cavity 39, the light shielding sheet 50 is sandwiched between the inner wall of the third cavity 39 and the peripheral surface of the light projecting / receiving unit 12. Therefore, the first calibration target 52 can be shielded from light. When the inner walls of the third cavities 39 and 45 are embossed or embossed instead of attaching the light shielding sheets 50 and 51, the projections or embossed projections are projected and received by the light projecting / receiving unit 12. By contacting the peripheral surface, the first calibration target 52 can be shielded from light.
 プローブ10の投光受光部12を挿入口35から第一差込孔34に差し込むのと同様に、投光受光部12を挿入口41から第二差込孔40に差し込む。これにより、投光受光部12の先端を光密な状態で第一校正用ターゲット52に正対させることができる。 The light projecting / receiving unit 12 is inserted into the second insertion hole 40 from the insertion port 41 in the same manner as the light projecting / receiving unit 12 of the probe 10 is inserted into the first insertion hole 34 from the insertion port 35. Thereby, the front-end | tip of the light projection light-receiving part 12 can be directly opposed to the target 52 for 1st calibration in a light-tight state.
 投光受光部12の差し込みの順番は、第一差込孔34が先で、第二差込孔40が後である。治具本体31の表面(特に、治具本体31の上面)であって差込孔34,40に対応する位置には、差し込み順を表す符号57,58がそれぞれ付されている。このような符号57,58によってユーザーが差し込み順を視覚的に把握することができる。なお、差し込み順は逆であってもよい。 The order of insertion of the light projecting / receiving unit 12 is the first insertion hole 34 first and the second insertion hole 40 later. On the surface of the jig body 31 (particularly, the upper surface of the jig body 31) and at positions corresponding to the insertion holes 34 and 40, reference numerals 57 and 58 representing the insertion order are assigned, respectively. With such codes 57 and 58, the user can visually grasp the insertion order. Note that the insertion order may be reversed.
 以上の説明では、治具本体31に形成された差込孔の数が2であった。それに対して、差込孔の数が1であって、差込孔34,40のうちどちらか一方のみが治具本体31に形成されていてもよい。また、治具本体31に形成される差込孔の数が3以上であってもよい。差込孔の数が3以上である場合でも、差込孔34,40に加えて一又は複数の差込孔が治具本体31に形成され、これらの(又はこの)追加の差込孔の中心線が差込孔34,40の中心線に対して平行であり、これらの(又はこの)追加の差込孔の端の開口(挿入口)が治具本体31の一端面32で開口し、色の異なる追加の校正用ターゲットがこれらの(又はこの)追加の差込孔内にそれぞれ収容されている。なお、差込孔の数が3以上である場合、校正用ターゲット52,55の色がそれぞれ白、黒であるときは、追加の校正用ターゲットの色が白及び黒以外であって、追加の校正用ターゲットごとに色が異なる。 In the above description, the number of insertion holes formed in the jig body 31 is two. On the other hand, the number of the insertion holes may be 1, and only one of the insertion holes 34 and 40 may be formed in the jig body 31. Further, the number of insertion holes formed in the jig body 31 may be three or more. Even when the number of insertion holes is three or more, one or more insertion holes are formed in the jig body 31 in addition to the insertion holes 34 and 40, and these (or this) additional insertion holes The center line is parallel to the center line of the insertion holes 34, 40, and the opening (insertion opening) of these (or this) additional insertion holes opens at one end surface 32 of the jig body 31. Additional calibration targets of different colors are respectively accommodated in these (or this) additional insertion holes. If the number of insertion holes is 3 or more and the colors of the calibration targets 52 and 55 are white and black, respectively, the color of the additional calibration target is other than white and black, and the additional The color is different for each calibration target.
〔トレイ〕
 トレイ70について具体的に説明する。
 図14に示すように、トレイ70は、下面が開口した箱状のトレイ本体71を有する。トレイ本体71は、樹脂製、紙製又は金属製の薄板材を箱状に加工したものである。トレイ本体71が耐薬品性及び耐熱性を有し、滅菌ガス環境及び高温環境の下においてもトレイ本体71の性質が変化しない。
〔tray〕
The tray 70 will be specifically described.
As shown in FIG. 14, the tray 70 has a box-shaped tray body 71 having an open bottom surface. The tray body 71 is obtained by processing a thin plate material made of resin, paper, or metal into a box shape. The tray body 71 has chemical resistance and heat resistance, and the properties of the tray body 71 do not change even under a sterilization gas environment and a high temperature environment.
 トレイ本体71の上面には、プローブ収納凹部72及び調整治具収納凹部76が凹設されている。プローブ収納凹部72には、プローブ10が収納される。調整治具収納凹部76には、調整治具30が収納される。 A probe storage recess 72 and an adjustment jig storage recess 76 are provided in the upper surface of the tray body 71. The probe 10 is stored in the probe storage recess 72. The adjustment jig 30 is housed in the adjustment jig housing recess 76.
 プローブ収納凹部72は、コネクタ11が収納されるコネクタ収納部73と、ケーブル本体部13が収納されるケーブル収納部74と、投光受光部12が収納される先端部収納部75と、からなる。ケーブル収納部74は、トレイ本体71の上面に凹設されたリング状の凹部である。コネクタ収納部73はトレイ本体71の上面に凹設された凹部である。コネクタ収納部73は、ケーブル収納部74に繋がっているともに、ケーブル収納部74の接線方向に延びている。先端部収納部75は、トレイ本体71に凹設された凹部である。先端部収納部75は、ケーブル収納部74に繋がっているとともに、ケーブル収納部74の接線方向に延びている。 The probe storage recess 72 includes a connector storage portion 73 in which the connector 11 is stored, a cable storage portion 74 in which the cable main body portion 13 is stored, and a tip end storage portion 75 in which the light projecting / receiving portion 12 is stored. . The cable storage portion 74 is a ring-shaped recess that is recessed in the upper surface of the tray body 71. The connector storage portion 73 is a concave portion provided in the upper surface of the tray main body 71. The connector housing 73 is connected to the cable housing 74 and extends in the tangential direction of the cable housing 74. The front end storage portion 75 is a recess provided in the tray body 71. The distal end storage portion 75 is connected to the cable storage portion 74 and extends in the tangential direction of the cable storage portion 74.
 調整治具収納凹部76は、その上から見て、長方形に形成されている。調整治具収納凹部76が形成された位置は、先端部収納部75の近傍である。 The adjustment jig storage recess 76 is formed in a rectangular shape when viewed from above. The position where the adjustment jig storage recess 76 is formed is in the vicinity of the tip end storage section 75.
 図18は、横から見た調整治具収納凹部76の断面図である。図18の断面は、平面視した調整治具収納凹部76の長手方向に平行な面であって、トレイ本体71の上面に対して垂直な面である。図18に示すように、調整治具収納凹部76の断面形状は楔状であり、調整治具収納凹部76の底面77がトレイ本体71の上面に対して傾斜している。具体的には、図14に示すように、調整治具収納凹部76の底面77は、先端部収納部75の先(突き当たり)に向かう方向に向かって下りに傾斜している。 FIG. 18 is a cross-sectional view of the adjustment jig storage recess 76 viewed from the side. The cross section in FIG. 18 is a plane parallel to the longitudinal direction of the adjustment jig housing recess 76 in plan view, and is a plane perpendicular to the upper surface of the tray body 71. As shown in FIG. 18, the cross-sectional shape of the adjustment jig storage recess 76 is wedge-shaped, and the bottom surface 77 of the adjustment jig storage recess 76 is inclined with respect to the upper surface of the tray body 71. Specifically, as shown in FIG. 14, the bottom surface 77 of the adjustment jig storage recess 76 is inclined downward in the direction toward the tip (butting) of the tip end storage section 75.
 図19は、プローブ10及び調整治具30がトレイ70上に収納された状態を示した斜視図である。図19に示すように、プローブ10が、プローブ収納凹部72に嵌め込まれるようにしてプローブ収納凹部72に収納されている。具体的には、プローブ10の投光受光部12が先端部収納部75に嵌め込まれるようにして先端部収納部75に収納されている。また、プローブ10のケーブル本体部13は、螺旋状に巻かれた状態でケーブル収納部74に嵌め込まれるようにしてケーブル収納部74に収納されている。ケーブル本体部13は、コネクタ11側が投光受光部12側の上に重なるようにして螺旋状に巻かれている。プローブ10のコネクタ11は、コネクタ収納部73に嵌め込まれるようにしてコネクタ収納部73に収納されている。以上のようにプローブ10がプローブ収納凹部72に収納されることで、後述するようにプローブ10のコネクタ11を最初に取り出しやすい。 FIG. 19 is a perspective view showing a state in which the probe 10 and the adjustment jig 30 are stored on the tray 70. As shown in FIG. 19, the probe 10 is housed in the probe housing recess 72 so as to be fitted into the probe housing recess 72. Specifically, the light projecting / receiving portion 12 of the probe 10 is stored in the tip portion storage portion 75 so as to be fitted into the tip portion storage portion 75. The cable body 13 of the probe 10 is housed in the cable housing 74 so as to be fitted into the cable housing 74 in a spirally wound state. The cable main body 13 is spirally wound so that the connector 11 side overlaps the light projecting / receiving unit 12 side. The connector 11 of the probe 10 is housed in the connector housing portion 73 so as to be fitted into the connector housing portion 73. As described above, the probe 10 is housed in the probe housing recess 72, so that the connector 11 of the probe 10 can be easily taken out first as described later.
 逆に、ケーブル本体部13は、投光受光部12側がコネクタ11側の上に重なるようにして螺旋状に巻かれて、ケーブル収納部74に収納されていてもよい。ケーブル本体13の弾性次第では、ケーブル本体部13がケーブル収納部74から突出することがあるので、ケーブル本体部13のうち投光受光部12側がコネクタ11側の上に重ねることで、コネクタ11の取り出しの際にケーブル本体部13がケーブル収納部74から飛び出すことを防止することができる。いずれにせよ、ケーブル本体部13の弾性や長さ等を総合的に勘案して、ケーブル本体部13のうち投光受光部12側をコネクタ11側の上に重ねるか、それともコネクタ11側を投光受光部12側の上に重ねるかを選択する。 Conversely, the cable main body 13 may be spirally wound so that the light projecting / receiving portion 12 side overlaps the connector 11 side and stored in the cable storage portion 74. Depending on the elasticity of the cable main body 13, the cable main body 13 may protrude from the cable storage portion 74, so that the light projecting / receiving portion 12 side of the cable main body 13 overlaps the connector 11 side, so that the connector 11 It is possible to prevent the cable main body portion 13 from jumping out of the cable storage portion 74 at the time of taking out. In any case, considering the elasticity and length of the cable body 13 in a comprehensive manner, the light projecting / receiving part 12 side of the cable body 13 is overlaid on the connector 11 side, or the connector 11 side is projected. Select whether to superimpose on the light receiving unit 12 side.
 調整治具30の治具本体31は、調整治具収納凹部76に嵌め込まれるようにして調整治具収納凹部76に収納されている。ここで、治具本体31は、符号57,58が形成された面(治具本体31の上面)が上に向いて、その反対面(治具本体31の下面)が調整治具収納凹部76の底面77に向いた状態で調整治具収納凹部76に収納されている。 The jig body 31 of the adjustment jig 30 is housed in the adjustment jig housing recess 76 so as to be fitted into the adjustment jig housing recess 76. Here, the surface of the jig body 31 on which the reference numerals 57 and 58 are formed (the upper surface of the jig body 31) faces upward, and the opposite surface (the lower surface of the jig body 31) is the adjustment jig housing recess 76. The adjustment jig is housed in the adjustment jig housing recess 76 in a state facing the bottom surface 77.
 調整治具収納凹部76の底面77が傾斜面であるから、挿入口35,41が斜め上に向いている。なお、調整治具収納凹部76が略直方体状の凹部であり、治具本体31の後面33を下に向け、治具本体31の前面32を上に向けた状態で調整治具30の治具本体31が調整治具収納凹部76に収納され、挿入口35,41が真上に向いていてもよい。この場合、符号57,58はそれぞれ挿入口35,41の近傍において治具本体31の前面32に付されていることが好ましい。 Since the bottom surface 77 of the adjusting jig housing recess 76 is an inclined surface, the insertion ports 35 and 41 are directed obliquely upward. The adjustment jig storage recess 76 is a substantially rectangular recess, and the jig of the adjustment jig 30 is placed with the rear surface 33 of the jig body 31 facing down and the front surface 32 of the jig body 31 facing up. The main body 31 may be housed in the adjustment jig housing recess 76, and the insertion ports 35 and 41 may face upward. In this case, reference numerals 57 and 58 are preferably attached to the front surface 32 of the jig body 31 in the vicinity of the insertion ports 35 and 41, respectively.
 以上のようにプローブ10がプローブ収納凹部72に収納されているから、プローブ10がトレイ本体71に保持され、プローブ10を衝撃等から保護することができる。同様に、調整治具30も保護することができる。更に、診断用包装物1の搬送中等において、調整治具30とプローブ10が衝突し合うこともない。 Since the probe 10 is housed in the probe housing recess 72 as described above, the probe 10 is held by the tray body 71, and the probe 10 can be protected from impact or the like. Similarly, the adjustment jig 30 can be protected. Furthermore, the adjustment jig 30 and the probe 10 do not collide with each other during conveyance of the diagnostic package 1 or the like.
 プローブ収納凹部72の側面に一又は複数の弾性突起が凸設され、プローブ10がプローブ収納凹部72に収納されたらその弾性突起がプローブ10によって圧縮されてもよい。これにより、プローブ10が弾性突起によって支えられ、プローブ10がプローブ収納凹部72から外れにくくなる。同様に、調整治具収納凹部76の側面にも一又は複数の弾性突起が凸設されていてもよい。 One or a plurality of elastic protrusions may be provided on the side surface of the probe storage recess 72, and when the probe 10 is stored in the probe storage recess 72, the elastic protrusion may be compressed by the probe 10. As a result, the probe 10 is supported by the elastic protrusion, and the probe 10 is unlikely to be detached from the probe storage recess 72. Similarly, one or a plurality of elastic protrusions may be provided on the side surface of the adjustment jig housing recess 76.
〔カバー〕
 カバー80について具体的に説明する。カバー80がトレイ本体71の上面に覆い被さって、プローブ収納凹部72及び調整治具収納凹部76がカバー80によって蓋をされている。収納されたプローブ10及び調整治具30がカバー80によって覆われて、プローブ10及び調整治具30が保護されている。カバー80が耐薬品性及び耐熱性を有し、滅菌ガス環境及び高温環境の下においてもカバー80の性質が変化しない。
〔cover〕
The cover 80 will be specifically described. The cover 80 covers the upper surface of the tray body 71, and the probe storage recess 72 and the adjustment jig storage recess 76 are covered with the cover 80. The accommodated probe 10 and adjustment jig 30 are covered with a cover 80 to protect the probe 10 and adjustment jig 30. The cover 80 has chemical resistance and heat resistance, and the properties of the cover 80 do not change even under a sterilized gas environment and a high temperature environment.
 カバー80の下面には、プローブ収納凹部72に重なるような形状の凸部81が形成され、凸部81がプローブ10の上からプローブ収納凹部72に入り込んでいる。これにより、プローブ10がしっかり固定される。同様に、凸部82がカバー80の下面に形成されて、その凸部82が調整治具30の上から調整治具収納凹部76に入り込んでいる。なお、カバー80が無くてもよい。 A convex part 81 is formed on the lower surface of the cover 80 so as to overlap the probe accommodating concave part 72, and the convex part 81 enters the probe accommodating concave part 72 from above the probe 10. Thereby, the probe 10 is fixed firmly. Similarly, a convex portion 82 is formed on the lower surface of the cover 80, and the convex portion 82 enters the adjustment jig housing concave portion 76 from above the adjustment jig 30. Note that the cover 80 may be omitted.
〔包装袋〕
 包装袋90について具体的に説明する。
 図13、図14、図19に示すように、包装袋90がプローブ10、調整治具30、トレイ70及びカバー80を包み込み、これらプローブ10、調整治具30、トレイ70及びカバー80が包装袋90内に収容されている。勿論、包装袋90内においても、プローブ10がプローブ収納凹部72に収納され、調整治具30が調整治具収納凹部76に収納されている。
[Packaging bag]
The packaging bag 90 will be specifically described.
As shown in FIGS. 13, 14, and 19, the packaging bag 90 wraps the probe 10, the adjustment jig 30, the tray 70 and the cover 80, and the probe 10, the adjustment jig 30, the tray 70 and the cover 80 are the packaging bag. 90. Of course, also in the packaging bag 90, the probe 10 is stored in the probe storage recess 72, and the adjustment jig 30 is stored in the adjustment jig storage recess 76.
 図13には、プローブ10、調整治具30、トレイ70及びカバー80が包装袋90によって包装された状態が示されている。図13に示すように、包装袋90が密閉されている。 FIG. 13 shows a state where the probe 10, the adjustment jig 30, the tray 70, and the cover 80 are packaged by the packaging bag 90. As shown in FIG. 13, the packaging bag 90 is sealed.
 包装袋90は、遮光性を有することが好ましい。包装袋90は、気密性を有することが好ましい。包装袋90が耐薬品性を有し、滅菌ガス環境下においても包装袋90の性質が変化しない。包装袋90は気体透過性を有するが、包装体90に形成された微細孔が非常に小さく、マイクロメートルオーダーの細菌及び塵埃は包装体90を透過しない。 The packaging bag 90 preferably has light shielding properties. It is preferable that the packaging bag 90 has airtightness. The packaging bag 90 has chemical resistance, and the properties of the packaging bag 90 do not change even in a sterilized gas environment. Although the packaging bag 90 has gas permeability, micropores formed in the packaging body 90 are very small, and micrometer-order bacteria and dust do not penetrate the packaging body 90.
 包装袋90は滅菌処理されたものである。具体的には、プローブ10、調整治具30、トレイ70及びカバー80が包装袋90によって包装されて、包装袋90が密閉された状態で、その包装袋90が高温炉内で高温の滅菌ガス雰囲気に暴露されることで、包装袋90が滅菌処理される。 The packaging bag 90 is sterilized. Specifically, the probe 10, the adjustment jig 30, the tray 70 and the cover 80 are packaged by the packaging bag 90, and the packaging bag 90 is sealed, and the packaging bag 90 is heated at a high temperature in a high-temperature furnace. By being exposed to the atmosphere, the packaging bag 90 is sterilized.
〔ベースユニット〕
 ベースユニット100について説明する。
 図20は、ベースユニット100の斜視図である。図21は、ベースユニット100のブロック図である。図20及び図21に示すように、ベースユニット100は、筐体101、CPU103、RAM104、ROM105、信号処理部106、測光部107、発光制御部108,110、照明光源109、光源111、インターフェース112及びセンサー113を備える。
[Base unit]
The base unit 100 will be described.
FIG. 20 is a perspective view of the base unit 100. FIG. 21 is a block diagram of the base unit 100. As shown in FIGS. 20 and 21, the base unit 100 includes a housing 101, a CPU 103, a RAM 104, a ROM 105, a signal processing unit 106, a photometry unit 107, light emission control units 108 and 110, an illumination light source 109, a light source 111, and an interface 112. And a sensor 113.
 CPU103、RAM104、ROM105、信号処理部106、測光部107、発光制御部108,110、照明光源109、光源111、インターフェース112及びセンサー113は、筐体101に内蔵されている。 The CPU 103, RAM 104, ROM 105, signal processing unit 106, photometry unit 107, light emission control units 108 and 110, illumination light source 109, light source 111, interface 112, and sensor 113 are built in the housing 101.
 筐体101の前面には、接続部102が設けられている。プローブ10のコネクタ11が接続部102に接続される。プローブ10のコネクタ11が接続部102に接続されると、投光用光ファイバー14の基端が光導波路を介して光源111に接続され、受光用光ファイバー15の基端が光導波路を介して測光部107に接続され、照明用光ファイバー16の基端が光導波路を介して照明光源109に接続される。 A connecting portion 102 is provided on the front surface of the housing 101. The connector 11 of the probe 10 is connected to the connection unit 102. When the connector 11 of the probe 10 is connected to the connection portion 102, the base end of the light projecting optical fiber 14 is connected to the light source 111 via the optical waveguide, and the base end of the light receiving optical fiber 15 is connected to the photometry portion via the optical waveguide. 107, and the proximal end of the illumination optical fiber 16 is connected to the illumination light source 109 via an optical waveguide.
 センサー113は、接続部102に取り付けられている。センサー113は、コネクタ11が接続部102に接続されたことを検出し、その検出信号をCPU103に出力する。センサー113は、例えば赤外線センサー、マイクロスイッチ又は近接センサーである。 The sensor 113 is attached to the connection unit 102. The sensor 113 detects that the connector 11 is connected to the connection unit 102 and outputs a detection signal to the CPU 103. The sensor 113 is, for example, an infrared sensor, a micro switch, or a proximity sensor.
 ROM105には、CPU103にとって読取可能なプログラムが格納されている。CPU103は、ROM105に格納されたプログラムを実行して、そのプログラムに従って信号処理部106、測光部107、発光制御部108,110、インターフェース112を制御すると共に、これらの間で信号・データの転送を行う。RAM104は、CPU103に作業領域を提供するものである。 The ROM 105 stores a program that can be read by the CPU 103. The CPU 103 executes a program stored in the ROM 105, controls the signal processing unit 106, the photometry unit 107, the light emission control units 108 and 110, and the interface 112 according to the program, and transfers signals and data between them. Do. The RAM 104 provides a work area for the CPU 103.
 CPU103は、プログラムに従って、校正に関する演算を行い、演算結果(補正係数)をRAM104に記録する。CPU103は、その演算結果(補正係数)を測光部107に反映させる。 The CPU 103 performs a calculation related to the calibration according to the program, and records the calculation result (correction coefficient) in the RAM 104. The CPU 103 causes the photometry unit 107 to reflect the calculation result (correction coefficient).
 インターフェース112は、CPU109の指令に従って、CPU109とコンピュータ114の間でデータの転送を行うものである。コンピュータ114には、入力装置(例えば、キーボード、マウス)115及び表示モニタ116が接続されている。 The interface 112 is for transferring data between the CPU 109 and the computer 114 in accordance with a command from the CPU 109. An input device (for example, a keyboard and a mouse) 115 and a display monitor 116 are connected to the computer 114.
 発光制御部110は、CPU103の指令に従って、光源111を制御する。光源111の発光タイミング、消灯タイミング及び発光強度等が発光制御部110によって制御される。同様に、発光制御部108が、CPU103の指令に従って、照明光源109を制御する。 The light emission control unit 110 controls the light source 111 according to a command from the CPU 103. The light emission control unit 110 controls the light emission timing, the turn-off timing, the light emission intensity, and the like of the light source 111. Similarly, the light emission control unit 108 controls the illumination light source 109 in accordance with a command from the CPU 103.
 光源111は、励起光(例えば、X線、紫外線、可視光線又は電磁波)を発生する。
照明光源109は、照明光としての可視光を発する。
The light source 111 generates excitation light (for example, X-rays, ultraviolet rays, visible rays, or electromagnetic waves).
The illumination light source 109 emits visible light as illumination light.
 測光部107は、プローブ10の受光用光ファイバー15から入力した蛍光を分光するとともに、その蛍光の強度を波長ごとに測定する。また、測光部107は、プローブ10の受光用光ファイバー15から入力した蛍光を分光せずに、その蛍光の強度を測定する。以下、測光部107によって測定された波長ごとの強度をスペクトルデータといい、測光部107によって分光されずに測定された強度を強度データという。
 測光部107は、CPU103から入力した演算結果(補正係数)を反映した状態でスペクトルデータや強度データの測定をするし、その演算結果(補正係数)を反映しない状態でスペクトルデータや強度データの測定もする。
 測光部107によって測定されたスペクトルデータや強度データは、CPU103によって信号処理部106に転送されたり、CPU103及びインターフェース112によってコンピュータ114に転送されたりする。
 信号処理部106は、スペクトルデータ及び強度データの信号処理をする。
The photometry unit 107 separates the fluorescence input from the light receiving optical fiber 15 of the probe 10 and measures the intensity of the fluorescence for each wavelength. In addition, the photometry unit 107 measures the intensity of the fluorescence without splitting the fluorescence input from the light receiving optical fiber 15 of the probe 10. Hereinafter, the intensity for each wavelength measured by the photometric unit 107 is referred to as spectrum data, and the intensity measured without being spectrally separated by the photometric unit 107 is referred to as intensity data.
The photometry unit 107 measures spectral data and intensity data in a state where the calculation result (correction coefficient) input from the CPU 103 is reflected, and measures spectral data and intensity data in a state where the calculation result (correction coefficient) is not reflected. I also do.
Spectrum data and intensity data measured by the photometry unit 107 are transferred to the signal processing unit 106 by the CPU 103 or transferred to the computer 114 by the CPU 103 and the interface 112.
The signal processing unit 106 performs signal processing of spectrum data and intensity data.
〔診断用包装物の取扱方法及びベースユニットの動作〕
 診断用包装物1の取扱方法及びベースユニット100の動作について説明する。
 図22は、診断用包装物1の使用状態を示す斜視図である。図23は、CPU103がプログラムに従って行う処理の流れを示したフローチャートである。
[How to handle diagnostic packaging and operation of base unit]
The handling method of the diagnostic packaging 1 and the operation of the base unit 100 will be described.
FIG. 22 is a perspective view showing a usage state of the diagnostic packaging 1. FIG. 23 is a flowchart showing the flow of processing performed by the CPU 103 according to the program.
 まず、CPU103は、センサー113から検出信号を入力するまで待機する(ステップS1:No)。 First, the CPU 103 waits until a detection signal is input from the sensor 113 (step S1: No).
 その際、ユーザーが包装袋90を開封して、包装袋90からトレイ70ごとプローブ10、調整治具30及びカバー80を取り出す。次に、ユーザーがカバー80をトレイ70から外す。次に、ユーザーがプローブ10のコネクタ11をコネクタ収納部73から取り出し、そのコネクタ11をベースユニット100の接続部102に接続する。ケーブル本体部13のコネクタ11側がケーブル本体部13の投光受光部12側の上に重なるようにしてケーブル本体部13が螺旋状に巻かれているから、ユーザーにとってコネクタ11を取り出しやすい。 At that time, the user opens the packaging bag 90 and removes the probe 10, the adjustment jig 30, and the cover 80 together with the tray 70 from the packaging bag 90. Next, the user removes the cover 80 from the tray 70. Next, the user takes out the connector 11 of the probe 10 from the connector storage portion 73 and connects the connector 11 to the connection portion 102 of the base unit 100. Since the cable body 13 is spirally wound so that the connector 11 side of the cable body 13 overlaps the light projecting / receiving part 12 side of the cable body 13, the user can easily take out the connector 11.
 また、ユーザーは、プローブ10に付された識別子26を読み取って、その識別子26と同じ値を入力装置115で入力する。入力された識別子がコンピュータ114からCPU103に転送され、CPU103がその入力識別子をRAM104に記録する。 Also, the user reads the identifier 26 attached to the probe 10 and inputs the same value as the identifier 26 with the input device 115. The input identifier is transferred from the computer 114 to the CPU 103, and the CPU 103 records the input identifier in the RAM 104.
 コネクタ11が接続部102に接続されると、コネクタ11がセンサー113によって検出され、検出信号がセンサー113からCPU103に出力される。CPU103は、センサー113から検出信号を入力したら(ステップS1:Yes)、発光制御部110を制御して、光源111を発光させる(ステップS2)。光源111から発した励起光は、投光用光ファイバー14によってその先端まで導光されて、レンズ17によって投射される。なお、コネクタ11の接続をセンサー113によって検出しなくてもよい。この場合、光源111が常時発光した状態とし、CPU103が測光部107の測定結果の変化からコネクタ11の接続を認識する。コネクタ11が接続部102に接続されると、測光部107の測定結果が変化するためである。 When the connector 11 is connected to the connection unit 102, the connector 11 is detected by the sensor 113, and a detection signal is output from the sensor 113 to the CPU 103. When the detection signal is input from the sensor 113 (step S1: Yes), the CPU 103 controls the light emission control unit 110 to cause the light source 111 to emit light (step S2). The excitation light emitted from the light source 111 is guided to the tip by the light projecting optical fiber 14 and projected by the lens 17. The connection of the connector 11 may not be detected by the sensor 113. In this case, the light source 111 is always in a light emitting state, and the CPU 103 recognizes the connection of the connector 11 from the change in the measurement result of the photometry unit 107. This is because when the connector 11 is connected to the connection unit 102, the measurement result of the photometry unit 107 changes.
 次に、CPU103は、インターフェース112を介してコンピュータ114に表示指令を出力する(ステップS3)。表示指令を受けたコンピュータ114は、プローブ10の投光受光部12を調整治具30の挿入口35に挿入することを催促する画面を表示モニタ116に表示させる。併せて、コンピュータ114は、治具本体31の表面に付された符号57と同じ符号を表示モニタ116に表示させる。符号57と同じ符号が表示モニタ116に表示されるので、ユーザーはプローブ10の挿入口35への挿入催促を直感的・視覚的に理解することができる。 Next, the CPU 103 outputs a display command to the computer 114 via the interface 112 (step S3). Receiving the display command, the computer 114 causes the display monitor 116 to display a screen for prompting the insertion and reception unit 12 of the probe 10 to be inserted into the insertion port 35 of the adjustment jig 30. At the same time, the computer 114 causes the display monitor 116 to display the same code as the code 57 attached to the surface of the jig body 31. Since the same symbol as the symbol 57 is displayed on the display monitor 116, the user can intuitively and visually understand the prompt for insertion of the probe 10 into the insertion port 35.
 次に、ユーザーは、プローブ10の投光受光部12を挿入口35から第一差込孔34に差し込んで、投光受光部12の先端(投光受光窓20)をストッパ46に当接させる。挿入口35が斜め上を向いて露出しているから、調整治具30を調整治具収納凹部76から取り出さずに、プローブ10の投光受光部12を挿入口35に差し込むことができる。また、ストッパ46が第一差込孔34に凸設されているから、ユーザーは第一差込孔34の中を覗くことができなくても、投光受光部12の先端を適切な位置で第一校正用ターゲット52に正対させることができる。また、ユーザーが投光受光部12の先端(投光受光窓20)をストッパ46に当接させれば、投光受光部12の先端から第一校正用ターゲット52までの距離が適切に設定される。また、第一校正用ターゲット52がストッパ46寄りに配置されているから、投光受光部12の先端を第一校正用ターゲット52のすぐ近くに位置させることができる。 Next, the user inserts the light projecting / receiving part 12 of the probe 10 into the first insertion hole 34 from the insertion port 35, and brings the tip of the light projecting / receiving part 12 (light projecting / receiving window 20) into contact with the stopper 46. . Since the insertion port 35 is exposed obliquely upward, the light projecting / receiving portion 12 of the probe 10 can be inserted into the insertion port 35 without removing the adjustment jig 30 from the adjustment jig housing recess 76. Further, since the stopper 46 protrudes from the first insertion hole 34, even if the user cannot look into the first insertion hole 34, the tip of the light projecting / receiving unit 12 is positioned at an appropriate position. The first calibration target 52 can be directly opposed. In addition, when the user brings the tip of the light projecting / receiving unit 12 (light projecting / receiving window 20) into contact with the stopper 46, the distance from the tip of the light projecting / receiving unit 12 to the first calibration target 52 is appropriately set. The Further, since the first calibration target 52 is disposed near the stopper 46, the tip of the light projecting / receiving unit 12 can be positioned in the immediate vicinity of the first calibration target 52.
 投光受光部12の先端がストッパ46まで差し込まれたら、投光用光ファイバー14によってその先端から出射された励起光がレンズ17によって第一校正用ターゲット52に投射される。励起光が第一校正用ターゲット52によって反射され、反射光がレンズ17によって受光用光ファイバー15の先端に集光される。受光用光ファイバー15の先端に受光された反射光が受光用光ファイバー15によって測光部107に導光される。投光受光部12の先端が第一校正用ターゲット52のすぐ近くに位置しているから、励起光や反射光がほとんど減衰せず、強度の高い反射光が受光用光ファイバー15の先端に入射する。 When the leading end of the light projecting / receiving unit 12 is inserted up to the stopper 46, the excitation light emitted from the leading end of the projecting optical fiber 14 is projected onto the first calibration target 52 by the lens 17. The excitation light is reflected by the first calibration target 52, and the reflected light is condensed by the lens 17 on the tip of the light receiving optical fiber 15. The reflected light received at the tip of the light receiving optical fiber 15 is guided to the photometry unit 107 by the light receiving optical fiber 15. Since the tip of the light projecting / receiving unit 12 is located in the immediate vicinity of the first calibration target 52, excitation light and reflected light are hardly attenuated, and reflected light with high intensity is incident on the tip of the light receiving optical fiber 15. .
 投光受光部12の先端をストッパ46まで差し込んだら、ユーザーが入力装置115を操作する。その操作に基づく信号がコンピュータ114からCPU103に出力されたら、CPU103が測光部107に測光処理を行わせる(ステップS4)。これにより、測光部107によってスペクトルデータや強度データが測定される。 When the tip of the light projecting / receiving unit 12 is inserted to the stopper 46, the user operates the input device 115. When a signal based on the operation is output from the computer 114 to the CPU 103, the CPU 103 causes the photometry unit 107 to perform photometry processing (step S4). Thereby, spectrum data and intensity data are measured by the photometry unit 107.
 次に、CPU0103は、校正処理を行う(ステップS5)。具体的には、CPU103は、測光部107によって測定されたスペクトルデータ及び強度データが適正範囲に含まれるか否かを判断する。更に、CPU013が、測光部107によって測定されたスペクトルデータと強度データの両方又は片方から補正係数を演算する。第一校正用ターゲット52の色が白色であれば、このような校正処理は、ホワイトバランスの調整を目的とするとともに、プローブ10、光源111及び測光部107の個体差や組み合わせに基づくばらつきの調整を目的とする。 Next, the CPU 0103 performs a calibration process (step S5). Specifically, the CPU 103 determines whether or not the spectrum data and intensity data measured by the photometry unit 107 are included in an appropriate range. Further, the CPU 013 calculates a correction coefficient from both or one of spectrum data and intensity data measured by the photometry unit 107. If the color of the first calibration target 52 is white, such calibration processing is intended to adjust the white balance, and also adjusts variations based on individual differences and combinations of the probe 10, the light source 111, and the photometry unit 107. With the goal.
 次に、CPU103は、ステップS5における判断結果及び補正係数をRAM104に記録する(ステップS6)。この際、CPU103は、先に記録した入力識別子に判断結果及び補正係数を対応づける。 Next, the CPU 103 records the determination result and the correction coefficient in step S5 in the RAM 104 (step S6). At this time, the CPU 103 associates the determination result and the correction coefficient with the previously recorded input identifier.
 次に、CPU103は、インターフェース112を介してコンピュータ114に表示指令を出力する(ステップS7)。表示指令を受けたコンピュータ114は、プローブ10の投光受光部12を調整治具30の挿入口41に挿入することを催促する画面を表示モニタ116に表示させる。併せて、コンピュータ114は、治具本体31の表面に付された符号58と同じ符号を表示モニタ116に表示させる。これにより、ユーザーが挿入口41への挿入催促を容易に理解することができる。 Next, the CPU 103 outputs a display command to the computer 114 via the interface 112 (step S7). Receiving the display command, the computer 114 causes the display monitor 116 to display a screen that prompts the user to insert the light projecting / receiving unit 12 of the probe 10 into the insertion port 41 of the adjustment jig 30. In addition, the computer 114 causes the display monitor 116 to display the same reference numeral as the reference numeral 58 attached to the surface of the jig main body 31. Thereby, the user can easily understand the insertion prompt to the insertion port 41.
 次に、ユーザーは、プローブ10の投光受光部12を第一差込孔34から抜き出す。そして、ユーザーは、プローブ10の投光受光部12を挿入口41から第二差込孔40に差し込んで、投光受光部12の先端をストッパ48に当接させる。また、第二校正用ターゲット55がストッパ48から離れて配置されているから、投光受光部12の先端を第二校正用ターゲット55から離して配置することができる。 Next, the user pulls out the light projecting / receiving portion 12 of the probe 10 from the first insertion hole 34. Then, the user inserts the light projecting / receiving unit 12 of the probe 10 into the second insertion hole 40 from the insertion port 41, and brings the tip of the light projecting / receiving unit 12 into contact with the stopper 48. Further, since the second calibration target 55 is disposed away from the stopper 48, the tip of the light projecting / receiving unit 12 can be disposed away from the second calibration target 55.
 次に、ユーザーが入力装置115を操作すると、CPU103が測光部107を制御して、測光部107によってスペクトルデータや強度データが測定される(ステップS8)。この測光に際には、CPU103が光源111を点灯していてもよいし、消灯していてもよい。 Next, when the user operates the input device 115, the CPU 103 controls the photometry unit 107, and the photometry unit 107 measures spectrum data and intensity data (step S8). In this photometry, the CPU 103 may turn on the light source 111 or may turn it off.
 次に、CPU0103は、測光部107によって測定されたスペクトルデータ及び強度データが適正範囲に含まれるか否かを判断するとともに、測光部107によって測定されたスペクトルデータと強度データの両方又は片方から補正係数を演算する(ステップS9)。第二校正用ターゲット55の色が黒色であれば、第二校正用ターゲット55で励起光がほとんど反射しない。第二校正用ターゲット55で励起光が反射したものとしても、投光受光部12の先端から第二校正用ターゲット55までの距離が大きいので、反射光が減衰しやすい。しかも、第三空洞部45が円錐台状に形成されているから、第三空洞部45内で伝播する光が減衰しやすい。そのため、受光用光ファイバー15の先端に入射する励起光の強度も非常に低い。従って、ステップS9の校正処理は、プローブ10のレンズ17や光ファイバー14,15等に由来する迷光の強度や反射ノイズの強度を把握することを目的とする。 Next, the CPU 0103 determines whether or not the spectrum data and intensity data measured by the photometry unit 107 are included in an appropriate range, and corrects from both or one of the spectrum data and intensity data measured by the photometry unit 107. A coefficient is calculated (step S9). If the color of the second calibration target 55 is black, the excitation light is hardly reflected by the second calibration target 55. Even if the excitation light is reflected by the second calibration target 55, the reflected light is easily attenuated because the distance from the tip of the light projecting / receiving unit 12 to the second calibration target 55 is large. In addition, since the third cavity 45 is formed in a truncated cone shape, the light propagating in the third cavity 45 is likely to be attenuated. Therefore, the intensity of the excitation light incident on the tip of the light receiving optical fiber 15 is also very low. Therefore, the calibration process of step S9 aims at grasping the intensity of stray light and the intensity of reflection noise derived from the lens 17 of the probe 10, the optical fibers 14, 15 and the like.
 次に、CPU103は、ステップS9における判断結果及び補正係数を入力識別子に対応づけてRAM104に記録する(ステップS10)。そして、CPU103は、判断結果、補正係数及び入力識別子をRAM104に記憶された状態で、処理を終了する。 Next, the CPU 103 records the determination result in step S9 and the correction coefficient in the RAM 104 in association with the input identifier (step S10). Then, the CPU 103 ends the process with the determination result, the correction coefficient, and the input identifier stored in the RAM 104.
 以上のようにユーザーが診断用包装物1を取り扱って、CPU103の処理が行われることによって、キャリブレーションがなされる。なお、ベースユニット100が記録媒体(例えば不揮発性メモリ、磁気ディスクドライブ等)を有し、図23に示す処理が終了したら、CPU103が、RAM104に記録された入力識別子、判断結果及び補正係数を記録媒体に記録してもよい。こうすることでプローブ10ごとの入力識別子、判断結果及びが補正係数が記録媒体に蓄積され、ロット管理等のフィードバックを行いやすくなる。 As described above, the user handles the diagnostic package 1 and the processing of the CPU 103 is performed, whereby calibration is performed. When the base unit 100 has a recording medium (for example, a non-volatile memory, a magnetic disk drive, etc.) and the processing shown in FIG. 23 is completed, the CPU 103 records the input identifier, the determination result, and the correction coefficient recorded in the RAM 104. You may record on a medium. By doing so, the input identifier, determination result, and correction coefficient for each probe 10 are accumulated in the recording medium, and it becomes easy to perform feedback such as lot management.
 図23に示す処理の途中又は終了後に、ユーザーがコネクタ11を接続部102から取り外すと、その旨がセンサー113によって検出される。そうすると、CPU103がRAM104に記憶された入力識別子、判断結果及び補正係数を消去する。 23. When the user removes the connector 11 from the connection unit 102 during or after the process shown in FIG. 23, the sensor 113 detects that fact. Then, the CPU 103 deletes the input identifier, the determination result, and the correction coefficient stored in the RAM 104.
 以上のようなキャリブレーションが行われた後、コネクタ11を接続部102から取り外さずに、ユーザーがプローブ10の投光受光部12を第二差込孔40から抜き出す。そして、必要に応じて内視鏡の鉗子チャネルを利用して、プローブ10の投光受光部12を管腔に挿入する。その際、照明光源109が点灯して、投光受光部12の周囲が照らされてもよい。 After the calibration as described above is performed, the user pulls out the light projecting / receiving unit 12 of the probe 10 from the second insertion hole 40 without removing the connector 11 from the connection unit 102. Then, if necessary, the light projecting / receiving portion 12 of the probe 10 is inserted into the lumen using the forceps channel of the endoscope. At that time, the illumination light source 109 may be turned on to illuminate the periphery of the light projecting / receiving unit 12.
 その後、光源111がCPU103によって点灯される。そうすると、励起光が投光用光ファイバー14及びレンズ17によってプローブ10の投光受光部12の先端から生体組織の測定部位に投射される。生体組織の測定部位が励起光に起因して蛍光を発し、その蛍光がプローブ10の投光受光部12の先端に受光される。受光した蛍光が受光用光ファイバー15によって測光部107に伝送される。CPU103がRAM104に記録された補正係数を測光部107に反映させる。そして、測光部107が受光した蛍光の強度データやスペクトルデータを測定し、その強度データやスペクトルデータを補正係数で補正する。補正係数で補正された強度データやスペクトルデータは、信号処理部106によって信号処理されたり、CPU103及びインターフェース112によってコンピュータ114に転送されたりする。コンピュータ114は、補正された強度データやスペクトルデータを表示モニタ116に表示させる。これにより、生体組織の測定部位を診断することができる。 Thereafter, the light source 111 is turned on by the CPU 103. Then, the excitation light is projected from the tip of the light projecting / receiving unit 12 of the probe 10 onto the measurement site of the living tissue by the projecting optical fiber 14 and the lens 17. The measurement site of the living tissue emits fluorescence due to the excitation light, and the fluorescence is received at the tip of the light projecting / receiving unit 12 of the probe 10. The received fluorescence is transmitted to the photometry unit 107 by the light receiving optical fiber 15. The CPU 103 causes the photometric unit 107 to reflect the correction coefficient recorded in the RAM 104. Then, the intensity data and spectrum data of the fluorescence received by the photometry unit 107 are measured, and the intensity data and spectrum data are corrected with a correction coefficient. The intensity data and spectrum data corrected by the correction coefficient are signal processed by the signal processing unit 106 or transferred to the computer 114 by the CPU 103 and the interface 112. The computer 114 causes the display monitor 116 to display the corrected intensity data and spectrum data. Thereby, the measurement site | part of a biological tissue can be diagnosed.
 プローブ10が使い捨てであるため、診断後、コネクタ11を接続部102から外し、プローブ10を廃棄する。調整治具30、トレイ(tray)70、カバー80及び包装袋90も廃棄する。なお、調整治具30は、別のプローブ10のキャリブレーションのために再使用してもよい。 Since the probe 10 is disposable, after diagnosis, the connector 11 is removed from the connection portion 102 and the probe 10 is discarded. The adjusting jig 30, the tray 70, the cover 80, and the packaging bag 90 are also discarded. Note that the adjustment jig 30 may be reused for calibration of another probe 10.
〔効果〕
 以上の実施の形態によれば、以下のような効果を奏する。
〔effect〕
According to the above embodiment, the following effects can be obtained.
(1) プローブ10と調整治具30がセットになっているから、調整治具30とは別の大規模な調整治具を準備しなくても済む。
(2) プローブ10と調整治具30がセットになっているから、ユーザーは包装袋90を開封した時に調整治具30の存在に気づく。そのため、ユーザーは、プローブ10を用いて蛍光診断を行う前に、調整治具30を用いてプローブ10のキャリブレーションを忘れずに行う。
(3) プローブ10と調整治具30がセットになっているから、新しい調整治具30をプローブ10のキャリブレーションに用いることができる。調整治具30の校正用ターゲット52,55の劣化・変色等がなく、正確なキャリブレーションを行うことができる。
(4) 診断用包装物1がシンプルに構成されているから、診断用包装物1のコストが低い。
(5) プローブ10及び調整治具30の収納が工夫されているので、使い勝手がよい。調整治具30を取り出さずとも、キャリブレーションを行うことができる。
(6) プローブ10及び調整治具30が使い捨てであるから、使い勝手がよいうえ、衛生的である。
(7) 調整治具30に複数の差込孔及び複数の校正用ターゲットが設けられているから、キャリブレーションを複数回行うことができる。
(8) 調整治具30の本体31の上面に符号57,58が付されているから、キャリブレーションの順番を間違えない。
(9) プローブ10の投光受光部12の差込孔34,40への差込催促や差込順番が表示モニタ116に表示されるから、キャリブレーションの順番を間違えずに確実に行える。更に、ユーザーにキャリブレーション行為を認識させずにキャリブレーションが完了する。
(10) プローブ10のコネクタ11をベースユニット100の接続部102に接続すると、プローブ10の投光受光部12の差込孔34,40への差込催促が表示モニタ116に表示されるから、ユーザーがキャリブレーションをし忘れることがない。
(11) プローブ10の投光受光部12を差込孔34,40に差し込むだけの簡単な作業でキャリブレーションを行うことができる。そのため、ユーザーに特段の作業・負担を要求しなくても済む。
(12) ストッパ46,48によって、プローブ10の投光受光部12の先端から校正用ターゲット52,55までの距離を適切にすることができる。
(13) 遮光シート50,51によって校正用ターゲット52,55が遮光されるから、キャリブレーションの精度が高い。
(14) プローブ10の投光受光部12の先端をストッパ46,48に当てると、校正用ターゲット52,55が遮光されるから、キャリブレーションの精度が高い。ストッパ46,48がリング状に設けられているから、ストッパ46,48が投光・受光の障害とならない。
(1) Since the probe 10 and the adjustment jig 30 are a set, it is not necessary to prepare a large-scale adjustment jig different from the adjustment jig 30.
(2) Since the probe 10 and the adjustment jig 30 are a set, the user notices the presence of the adjustment jig 30 when the packaging bag 90 is opened. Therefore, the user remembers to calibrate the probe 10 using the adjustment jig 30 before performing the fluorescence diagnosis using the probe 10.
(3) Since the probe 10 and the adjustment jig 30 are a set, the new adjustment jig 30 can be used for calibration of the probe 10. There is no deterioration, discoloration, or the like of the calibration targets 52 and 55 of the adjustment jig 30, and accurate calibration can be performed.
(4) Since the diagnostic packaging 1 is simply configured, the cost of the diagnostic packaging 1 is low.
(5) Since the storage of the probe 10 and the adjustment jig 30 is devised, it is easy to use. Calibration can be performed without taking out the adjustment jig 30.
(6) Since the probe 10 and the adjustment jig 30 are disposable, they are convenient and hygienic.
(7) Since the adjustment jig 30 is provided with a plurality of insertion holes and a plurality of calibration targets, the calibration can be performed a plurality of times.
(8) Since the reference numerals 57 and 58 are attached to the upper surface of the main body 31 of the adjustment jig 30, the order of calibration is not mistaken.
(9) Since the prompt for insertion and the insertion order into the insertion holes 34 and 40 of the light projecting / receiving unit 12 of the probe 10 are displayed on the display monitor 116, the calibration can be performed without mistakes. Furthermore, the calibration is completed without allowing the user to recognize the calibration action.
(10) When the connector 11 of the probe 10 is connected to the connection portion 102 of the base unit 100, insertion prompts to the insertion holes 34 and 40 of the light projecting / receiving portion 12 of the probe 10 are displayed on the display monitor 116. The user never forgets to calibrate.
(11) Calibration can be performed by a simple operation of simply inserting the light projecting / receiving portion 12 of the probe 10 into the insertion holes 34 and 40. For this reason, it is not necessary to require the user to perform special work / load.
(12) By the stoppers 46 and 48, the distance from the tip of the light projecting / receiving unit 12 of the probe 10 to the calibration targets 52 and 55 can be made appropriate.
(13) Since the calibration targets 52 and 55 are shielded by the light shielding sheets 50 and 51, the calibration accuracy is high.
(14) When the tip of the light projecting / receiving unit 12 of the probe 10 is brought into contact with the stoppers 46 and 48, the calibration targets 52 and 55 are shielded from light so that the calibration accuracy is high. Since the stoppers 46 and 48 are provided in a ring shape, the stoppers 46 and 48 do not hinder light projection and light reception.
〔調整治具の変形例〕
 図24は、調整治具30Aの分解斜視図である。図25は、調整治具30Aの断面図である。図16及び図17等に示された調整治具30と、図24及び図25に示された調整治具30Aとの間で互いに対応する部分には、同一の符号を付す。以下、図16及び図17等に示された調整治具30と、図24及び図25に示された調整治具30Aとの相違する部分について主に説明する。
[Modification of adjustment jig]
FIG. 24 is an exploded perspective view of the adjustment jig 30A. FIG. 25 is a cross-sectional view of the adjustment jig 30A. Parts corresponding to each other between the adjustment jig 30 shown in FIGS. 16 and 17 and the adjustment jig 30A shown in FIGS. 24 and 25 are denoted by the same reference numerals. Hereinafter, the difference between the adjustment jig 30 shown in FIGS. 16 and 17 and the adjustment jig 30A shown in FIGS. 24 and 25 will be mainly described.
 調整治具30では、第一差込孔34が空洞部37~38からなるのに対して、調整治具30Aでは、第一差込孔34が空洞部38,39からなる。同様に、調整治具30では、第二差込孔40が空洞部43~45からなるのに対して、調整治具30Aでは、第二差込孔40が空洞部44,45からなる。つまり、円錐台状の空洞部37,43が無い。そのため、調整治具30Aは調整治具30と比較して、治具本体31の端面32から端面33までの長さが短い。また、調整治具30では、空洞部37,43の端がそれぞれ挿入口35,41として治具本体31の端面32で開口しているのに対して、調整治具30Aでは、空洞部39,45の端がそれぞれ挿入口35,41として治具本体31の端面32で開口している。つまり、この調整治具30Aでは、挿入口35,41がそれぞれ差込孔34,40の端である。 In the adjustment jig 30, the first insertion hole 34 includes the hollow portions 37 to 38, whereas in the adjustment jig 30 A, the first insertion hole 34 includes the hollow portions 38 and 39. Similarly, in the adjustment jig 30, the second insertion hole 40 includes the hollow portions 43 to 45, whereas in the adjustment jig 30 A, the second insertion hole 40 includes the hollow portions 44 and 45. That is, there are no frustoconical cavities 37 and 43. Therefore, the length of the adjustment jig 30 </ b> A from the end surface 32 to the end surface 33 of the jig main body 31 is shorter than that of the adjustment jig 30. Further, in the adjustment jig 30, the ends of the hollow portions 37 and 43 are opened as the insertion ports 35 and 41 on the end surface 32 of the jig main body 31, whereas in the adjustment jig 30 A, the hollow portions 39 and 43 are formed. 45 ends open on the end face 32 of the jig body 31 as insertion openings 35 and 41, respectively. That is, in this adjustment jig 30A, the insertion ports 35 and 41 are the ends of the insertion holes 34 and 40, respectively.
 また、調整治具30Aは、治具本体31、第一校正用ターゲット52、第二校正用ターゲット55、押込棒53、遮光シート50,51、第一遮光キャップ54及び第二遮光キャップ56等のほかに可撓性チューブ60,61を有する。 The adjustment jig 30A includes a jig body 31, a first calibration target 52, a second calibration target 55, a push rod 53, light shielding sheets 50 and 51, a first light shielding cap 54, a second light shielding cap 56, and the like. In addition, flexible tubes 60 and 61 are provided.
 可撓性チューブ60,61の一端が治具本体31の端面32に取り付けられ、可撓性チューブ60,61がそれぞれ差込孔34,40の中心線方向に延びている。可撓性チューブ60,61の両端が開口している。そして、可撓性チューブ60,61の内部空間がそれぞれ挿入口35,41を通じて差込孔34,40に連通している。 One end of the flexible tubes 60 and 61 is attached to the end surface 32 of the jig main body 31, and the flexible tubes 60 and 61 extend in the center line direction of the insertion holes 34 and 40, respectively. Both ends of the flexible tubes 60 and 61 are open. The internal spaces of the flexible tubes 60 and 61 communicate with the insertion holes 34 and 40 through the insertion ports 35 and 41, respectively.
 符号57,58はそれぞれ可撓性チューブ60,61の周面に付されている。なお、符号57,58が治具本体31の表面(特に、治具本体31の上面)に付されていてもよい。 Reference numerals 57 and 58 are attached to the peripheral surfaces of the flexible tubes 60 and 61, respectively. Reference numerals 57 and 58 may be attached to the surface of the jig body 31 (particularly, the upper surface of the jig body 31).
 この調整治具30Aは、調整治具30の代わりに、トレイ70の調整治具収納凹部76に収納されている。調整治具収納凹部76の底面77が傾斜面であるから、可撓性チューブ60,61の端の開口が斜め上に向いている。 The adjustment jig 30 </ b> A is stored in the adjustment jig storage recess 76 of the tray 70 instead of the adjustment jig 30. Since the bottom surface 77 of the adjusting jig housing recess 76 is an inclined surface, the openings at the ends of the flexible tubes 60 and 61 are directed obliquely upward.
 以上に説明したことを除いて、図16及び図17等に示された調整治具30と、図24及び図25に示された調整治具30Aとの間で互いに対応する部分は同様に設けられている。 Except as described above, the portions corresponding to each other between the adjustment jig 30 shown in FIGS. 16 and 17 and the adjustment jig 30A shown in FIGS. 24 and 25 are similarly provided. It has been.
 図23に示すステップS3のように催促画面が表示モニタ116に表示された場合には、ユーザーはプローブ10の投光受光部12を可撓性チューブ60に挿入して、投光受光部12の先端をストッパ46に当接させる。図23に示すステップS7のように催促画面が表示モニタ116に表示された場合には、ユーザーはプローブ10の投光受光部12を可撓性チューブ61に挿入して、投光受光部12の先端をストッパ48に当接させる。 When the prompting screen is displayed on the display monitor 116 as in step S3 shown in FIG. 23, the user inserts the light projecting / receiving unit 12 of the probe 10 into the flexible tube 60 and the light projecting / receiving unit 12 The tip is brought into contact with the stopper 46. When the prompting screen is displayed on the display monitor 116 as in step S7 shown in FIG. 23, the user inserts the light projecting / receiving unit 12 of the probe 10 into the flexible tube 61 and the light projecting / receiving unit 12 The tip is brought into contact with the stopper 48.
 可撓性チューブ60,61が可撓性であるため、可撓性チューブ60,61を曲げて、可撓性チューブ60,61の端部開口を上に向けることができる。そのため、プローブ10の投光受光部12を可撓性チューブ60,61の端部開口に挿入しやすい。 Since the flexible tubes 60 and 61 are flexible, the flexible tubes 60 and 61 can be bent and the end openings of the flexible tubes 60 and 61 can be directed upward. Therefore, it is easy to insert the light projecting / receiving portion 12 of the probe 10 into the end openings of the flexible tubes 60 and 61.
 本発明は、生体組織の光学的測定に利用することができる。 The present invention can be used for optical measurement of living tissue.
〈図1から図12B限りの符号〉
1 光学測定システム
10 プローブ
11 先端部
12 コネクタ部
12a 面(接続時の上面)
12b 孔部
13 ケーブル部
14(a~g) 導光用光ファイバー
15 レンズ
16 光学部品
17 外装チューブ
20 ベースユニット
21 接続部
30 包装用トレイ
40(A~E) 補正用測定環境構成物
41 開口部
42 光学的環境保持室
43,44 測定対象物質
45~47 壁部
48 遮光部材
49 突起部
50 生体組織
51 突起部
52 外周溝
53 目印
C コネクタ差し込み方向
〈図13から図25限りの符号〉
1 診断用包装物
10 プローブ
11 コネクタ
12 投光受光部
13 ケーブル本体部
30、30A 調整治具
31 治具本体
34,40 差込孔
35,41 挿入口
52,55 校正用ターゲット
46,48 ストッパ
50,51 遮光シート
54,56 遮光キャップ
60,61 可撓性チューブ
70 トレイ
71 トレイ本体
72 プローブ収納凹部
73 コネクタ収納部
74 ケーブル収納部
75 先端部収納部
76 調整治具収納凹部
90 包装袋 
<References in FIGS. 1 to 12B only>
DESCRIPTION OF SYMBOLS 1 Optical measuring system 10 Probe 11 Tip part 12 Connector part 12a surface (upper surface at the time of a connection)
12b Hole portion 13 Cable portion 14 (a to g) Light guiding optical fiber 15 Lens 16 Optical component 17 Exterior tube 20 Base unit 21 Connection portion 30 Packaging tray 40 (AE) Correction measurement environment component 41 Opening portion 42 Optical environment holding chambers 43 and 44 Measurement target substances 45 to 47 Wall portion 48 Light shielding member 49 Protruding portion 50 Biological tissue 51 Protruding portion 52 Outer peripheral groove 53 Marking C Connector insertion direction <reference numerals in FIGS.
DESCRIPTION OF SYMBOLS 1 Diagnosis package 10 Probe 11 Connector 12 Light projection light-receiving part 13 Cable main- body part 30 and 30A Adjustment jig 31 Jig main body 34 and 40 Insertion hole 35 and 41 Insertion target 52 and 55 Calibration target 46 and 48 Stopper 50 , 51 Shielding sheet 54, 56 Shielding cap 60, 61 Flexible tube 70 Tray 71 Tray body 72 Probe housing recess 73 Connector housing portion 74 Cable housing portion 75 Tip portion housing portion 76 Adjusting jig housing recess 90 Packaging bag

Claims (26)

  1. 生体組織の測定対象部位に照射光を照射して測定対象部位から放射される放射光を受光するための光学系を備えて当該放射光を測定するためのプローブであって、
    一端に、少なくとも光ファイバー又は撮像素子を含んだ受光光学系が構成された先端部を、他端に、検出器を有するベースユニットに接続されるコネクタ部を有し、
    前記先端部が挿入される開口部を有した光学的環境保持室を構成し、前記先端部が前記開口部から前記光学的環境保持室に挿入されることにより、当該先端部に既知の光学的環境を与える補正用測定環境構成物が前記コネクタ部に備えられたプローブ。
    A probe for measuring the radiated light with an optical system for receiving the radiated light emitted from the measurement target site by irradiating the measurement target site of the biological tissue with irradiation light,
    At one end, it has a connector part connected to a base unit having a detector, at the other end, a tip part in which a light receiving optical system including at least an optical fiber or an image sensor is configured,
    An optical environment holding chamber having an opening portion into which the tip portion is inserted is configured, and the tip portion is inserted into the optical environment holding chamber from the opening portion, so that the tip portion has a known optical environment. A probe in which a measurement environment component for correction that provides an environment is provided in the connector portion.
  2. 前記補正用測定環境構成物は、少なくとも前記先端部が挿入された状態にて前記光学的環境への外光の入射を遮る遮光部材を有することを特徴とする請求項1に記載のプローブ。 2. The probe according to claim 1, wherein the measurement environment component for correction includes a light shielding member that blocks external light from entering the optical environment in a state where at least the tip portion is inserted.
  3. 前記補正用測定環境構成物は、前記光学的環境保持室内に所定の測定対象物質を有することを特徴とする請求項1又は請求項2に記載のプローブ。 The probe according to claim 1 or 2, wherein the correction measurement environment component includes a predetermined measurement target substance in the optical environment holding chamber.
  4. 前記補正用測定環境構成物に挿入された前記先端部を所定の挿入長さでさらなる挿入を規制する係止構造が構成されたことを特徴とする請求項1から請求項3のうちいずれか一に記載のプローブ。 The locking structure for restricting further insertion of the tip portion inserted into the measurement environment component for correction with a predetermined insertion length is configured. The probe according to 1.
  5. 前記補正用測定環境構成物に挿入された前記先端部を所定の挿入長さで所定の係止力をもってさらなる挿入を規制するとともに抜き出しを防止する係止構造が構成されたことを特徴とする請求項1から請求項3のうちいずれか一に記載のプローブ。 The locking structure is configured to restrict further insertion of the distal end portion inserted into the measurement environment component for correction with a predetermined insertion length with a predetermined locking force and to prevent extraction. The probe according to any one of claims 1 to 3.
  6. 補正用測定時に適用すべき挿入長さに相当する先端からの長さを表示する目印が前記先端部の外周に設けられたことを特徴とする請求項1から請求項5のうちいずれか一に記載のプローブ。 The mark which displays the length from the front-end | tip corresponded to the insertion length which should be applied at the time of the measurement for correction | amendment was provided in the outer periphery of the said front-end | tip part, Any one of Claim 1-5 characterized by the above-mentioned. The probe as described.
  7. 請求項1から請求項6のうちいずれか一に記載のプローブと、
    当該プローブの前記コネクタ部が接続されるベースユニットとを備える光学測定システムであって、
    前記ベースユニットは、
    前記照射光の光源装置と、
    前記放射光の光強度を検出するための検出器と、
    前記補正用測定環境構成物による前記光学的環境で測定した補正用測定結果を保持記憶し、当該補正用測定結果に基づき、あらかじめ定められたアルゴリズムに則って、生体組織を対象とした生体測定結果に補正をかける演算処理装置とを有する光学測定システム。
    A probe according to any one of claims 1 to 6;
    An optical measurement system comprising a base unit to which the connector portion of the probe is connected,
    The base unit is
    A light source device for the irradiation light;
    A detector for detecting the light intensity of the emitted light;
    The measurement result for correction measured in the optical environment by the measurement environment component for correction is stored and stored, and the measurement result of the living tissue for the living tissue is determined based on the measurement result for correction in accordance with a predetermined algorithm. An optical measurement system having an arithmetic processing unit that corrects the signal.
  8. 請求項1から請求項6のうちいずれか一に記載のプローブと、
    当該プローブの前記コネクタ部が接続されるベースユニットとを備える光学測定システムであって、
    前記ベースユニットは、
    前記照射光の光源装置と、
    前記放射光の光強度を検出するための検出器と、
    前記補正用測定環境構成物による前記光学的環境で測定した補正用測定結果を保持記憶し、当該補正用測定結果に基づき、あらかじめ定められたアルゴリズムに則って、検出器の利得または減光フィルタの透過率を設定する演算処理装置とを有する光学測定システム。
    A probe according to any one of claims 1 to 6;
    An optical measurement system comprising a base unit to which the connector portion of the probe is connected,
    The base unit is
    A light source device for the irradiation light;
    A detector for detecting the light intensity of the emitted light;
    The measurement result for correction measured in the optical environment by the measurement environment component for correction is stored and stored, and based on the measurement result for correction, the gain of the detector or the attenuation filter is determined according to a predetermined algorithm. An optical measurement system having an arithmetic processing unit for setting transmittance.
  9. 請求項1から請求項6のうちいずれか一に記載のプローブと、
    当該プローブの前記コネクタ部が接続されるベースユニットとを備える光学測定システムであって、
    前記ベースユニットは、
    前記照射光の光源装置と、
    前記放射光の光強度を検出するための検出器と、
    前記補正用測定環境構成物による前記光学的環境で測定した補正用測定結果を保持記憶し、当該補正用測定結果に基づき、あらかじめ定められたアルゴリズムに則って、前記光源装置、検出器、又はそれらと前記プローブを光学的に接続する機構の少なくともいずれか一つの可動部を可動調整する演算処理装置とを有する光学測定システム。
    A probe according to any one of claims 1 to 6;
    An optical measurement system comprising a base unit to which the connector portion of the probe is connected,
    The base unit is
    A light source device for the irradiation light;
    A detector for detecting the light intensity of the emitted light;
    The measurement result for correction measured in the optical environment by the measurement environment component for correction is stored and stored, and based on the measurement result for correction, the light source device, the detector, or them according to a predetermined algorithm And an arithmetic processing unit that movably adjusts at least one movable part of the mechanism for optically connecting the probe.
  10. 前記コネクタ部が一定の配向でのみ前記ベースユニットへの接続が許容される機械的構造を有し、前記コネクタ部が前記ベースユニットに接続された状態において、前記先端部の前記補正用測定環境構成物への挿入方向を鉛直下向き又は斜め下向きに規制するように、前記補正用測定環境構成物が構成されてなる請求項7、請求項8又は請求項9に記載の光学測定システム。 The correction measurement environment configuration of the tip portion has a mechanical structure in which connection to the base unit is allowed only in a certain orientation, and the connector portion is connected to the base unit. 10. The optical measurement system according to claim 7, wherein the correction measurement environment component is configured so as to regulate a direction of insertion into an object vertically downward or obliquely downward.
  11. 請求項1から請求項6のうちいずれか一に記載のプローブの使用者への提供方法であって、
    前記補正用測定環境構成物を含めて前記プローブを滅菌処理する滅菌工程と、
    前記補正用測定環境構成物を含めて前記プローブを同一の包装体内に包装する包装工程とを備えるプローブの使用者への提供方法。
    A method for providing a user of the probe according to any one of claims 1 to 6, comprising:
    A sterilization step of sterilizing the probe including the correction measurement environment component;
    A probe providing method to a user, comprising: a packaging step of packaging the probe in the same package including the correction measurement environment component.
  12.  トレイと、
     前記トレイに収納され、光の伝送、投光及び受光をするプローブと、
     前記プローブの校正の際に前記プローブから出射した光が照射される校正用ターゲットを有し、前記プローブの校正の際に前記プローブを保持し、前記トレイに収納された調整治具と、
     前記プローブ、前記調整治具及び前記トレイを包み込んだ包装袋と、を備える、診断用包装物。
    A tray,
    A probe housed in the tray for transmitting, projecting and receiving light;
    A calibration target that is irradiated with light emitted from the probe during calibration of the probe, holding the probe during calibration of the probe, and an adjustment jig housed in the tray;
    A diagnostic package comprising the probe, the adjustment jig, and a packaging bag enclosing the tray.
  13.  前記トレイが、トレイ本体と、前記トレイ本体の上面に凹設されたプローブ収納凹部と、前記トレイ本体の上面に凹設された調整治具収納凹部と、を有し、
     前記プローブが前記プローブ収納凹部に収納され、前記調整治具が前記調整治具収納凹部に収納される、請求項12に記載の診断用包装物。
    The tray has a tray body, a probe storage recess recessed in the upper surface of the tray body, and an adjustment jig storage recess recessed in the upper surface of the tray body,
    The diagnostic packaging according to claim 12, wherein the probe is stored in the probe storage recess, and the adjustment jig is stored in the adjustment jig storage recess.
  14.  前記プローブ収納凹部が、前記トレイ本体の上面に凹設されたリング状のケーブル収納部と、前記トレイ本体の上面に凹設され、前記ケーブル収納部に繋がり、前記ケーブル収納部から前記ケーブル収納部の接線方向に延びたコネクタ収納部と、前記トレイ本体の上面に凹設され、前記ケーブル収納部に繋がり、前記ケーブル収納部から前記ケーブル収納部の接線方向に延びた先端部収納部と、を有し、
     前記プローブが、光の伝送を行うケーブル本体部と、前記ケーブル本体部の基端に連結され、光の入出力を行うコネクタと、前記ケーブル本体部の先端に連結され、投光及び受光を行う投光受光部と、を有し、
     前記投光受光部が前記先端部収納部に収納され、前記ケーブル本体部が前記ケーブル収納部に収納され、前記コネクタがコネクタ収納部に収納されている、請求項13に記載の診断用包装物。
    The probe storage recess is a ring-shaped cable storage portion recessed in the upper surface of the tray main body, and is recessed in the upper surface of the tray main body, connected to the cable storage portion, and from the cable storage portion to the cable storage portion. A connector storage portion extending in a tangential direction of the tray, and a tip storage portion recessed in the upper surface of the tray body, connected to the cable storage portion, and extending from the cable storage portion in the tangential direction of the cable storage portion. Have
    The probe is connected to a cable main body for transmitting light, a connector for inputting / outputting light, and connected to a distal end of the cable main body for light projection and light reception. A light receiving and receiving unit,
    The diagnostic packaging according to claim 13, wherein the light projecting / receiving unit is stored in the tip storage unit, the cable body unit is stored in the cable storage unit, and the connector is stored in a connector storage unit. .
  15.  前記ケーブル本体部が巻かれた状態で前記ケーブル収納部に収納されている、請求項14に記載の診断用包装物。 The diagnostic packaging according to claim 14, wherein the cable main body is wound and stored in the cable storage.
  16.  前記ケーブル本体部は前記コネクタ側が前記投光受光部側の上に重なるようにして螺旋状に巻かれている、請求項15に記載の診断用包装物。 The diagnostic package according to claim 15, wherein the cable main body is spirally wound so that the connector side overlaps the light projecting / receiving portion side.
  17.  前記ケーブル本体部は前記投光受光部側が前記コネクタ側の上に重なるようにして螺旋状に巻かれている、請求項15に記載の診断用包装物。 The diagnostic package according to claim 15, wherein the cable body is spirally wound so that the light projecting / receiving portion side overlaps the connector side.
  18.  前記調整治具が、前記調整治具収納凹部に収納された治具本体と、前記治具本体の表面で開口した挿入口と、前記挿入口から前記治具本体の内部に延びた差込孔と、を有し、
     前記校正用ターゲットが前記差込孔内に配置されている、請求項13から請求項17のうちいずれか一項に記載の診断用包装物。
    The adjustment jig includes a jig main body stored in the adjustment jig storage recess, an insertion opening opened on the surface of the jig main body, and an insertion hole extending from the insertion opening to the inside of the jig main body. And having
    The diagnostic packaging according to any one of claims 13 to 17, wherein the calibration target is disposed in the insertion hole.
  19.  前記差込孔が前記挿入口の反対側を閉塞されている、請求項18に記載の診断用包装物。 The diagnostic packaging according to claim 18, wherein the insertion hole is closed on the opposite side of the insertion port.
  20.  前記調整治具が、前記差込孔の内壁に凸設されたストッパを更に有し、
     前記校正用ターゲットが前記ストッパに関して前記挿入口の反対側において前記差込孔内に配置されている、請求項18又は請求項19に記載の診断用包装物。
    The adjustment jig further has a stopper protruding from the inner wall of the insertion hole,
    20. The diagnostic package according to claim 18 or 19, wherein the calibration target is disposed in the insertion hole on the opposite side of the insertion port with respect to the stopper.
  21.  前記調整治具の前記治具本体が、前記挿入口を斜め上に向けた状態で前記治具収納凹部に収納されている、請求項18から請求項20のうちいずれか一項に記載の診断用包装物。 The diagnosis according to any one of claims 18 to 20, wherein the jig body of the adjustment jig is housed in the jig housing recess with the insertion port facing obliquely upward. Packaging.
  22.  前記調整治具が、前記差込孔の内壁に貼着された遮光シートを更に有する、請求項18から請求項21のうちいずれか一に記載の診断用包装物。 The diagnostic package according to any one of claims 18 to 21, wherein the adjustment jig further includes a light shielding sheet attached to an inner wall of the insertion hole.
  23.  前記調整治具が、前記挿入口を通じて前記差込孔に連通するよう前記治具本体に取り付けられた可撓性チューブを更に有する、請求項18から請求項22のうちいずれか一に記載の診断用包装物。 The diagnosis according to any one of claims 18 to 22, wherein the adjustment jig further includes a flexible tube attached to the jig body so as to communicate with the insertion hole through the insertion port. Packaging.
  24.  前記挿入口、前記差込孔及び前記校正用ターゲットの数が複数であり、前記校正用ターゲットが前記差込孔内にそれぞれ配置されている、請求項18から請求項23のうちいずれか一に記載の診断用包装物。 The number of the insertion port, the insertion hole, and the calibration target is plural, and the calibration target is disposed in the insertion hole, respectively. The diagnostic packaging as described.
  25.  前記校正用ターゲットごとに色が異なる、請求項24に記載の診断用包装物。 25. The diagnostic packaging according to claim 24, wherein the color is different for each calibration target.
  26.  何れかの前記校正用ターゲットの色が白色であり、他の何れかの前記校正用ターゲットの色が黒色である、請求項24又は請求項25に記載の診断用包装物。  26. The diagnostic packaging according to claim 24 or 25, wherein any one of the calibration targets has a white color and any other calibration target has a black color.
PCT/JP2011/079334 2011-01-14 2011-12-19 Probe, optical measurement system, provision method, and packaged article for diagnosis purposes WO2012096102A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012552652A JP5915543B2 (en) 2011-01-14 2011-12-19 Diagnostic packaging

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011005482 2011-01-14
JP2011-010468 2011-01-21
JP2011010468 2011-01-21
JP2011-005482 2011-03-10

Publications (1)

Publication Number Publication Date
WO2012096102A1 true WO2012096102A1 (en) 2012-07-19

Family

ID=46507014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079334 WO2012096102A1 (en) 2011-01-14 2011-12-19 Probe, optical measurement system, provision method, and packaged article for diagnosis purposes

Country Status (2)

Country Link
JP (1) JP5915543B2 (en)
WO (1) WO2012096102A1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045581A1 (en) * 2012-09-24 2014-03-27 コニカミノルタ株式会社 Optical measurement device and probe system
WO2014182723A1 (en) * 2013-05-07 2014-11-13 Endochoice, Inc. White balance enclosed for use with a multi-viewing elements endoscope
JP2015150138A (en) * 2014-02-13 2015-08-24 Hoya株式会社 Endoscope system, image forming device, and mouthpiece
JP2016112048A (en) * 2014-12-11 2016-06-23 オリンパス株式会社 Endoscope storage and endoscope management system provided with the same
US9474440B2 (en) 2009-06-18 2016-10-25 Endochoice, Inc. Endoscope tip position visual indicator and heat management system
US9706908B2 (en) 2010-10-28 2017-07-18 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
US9943218B2 (en) 2013-10-01 2018-04-17 Endochoice, Inc. Endoscope having a supply cable attached thereto
US9949623B2 (en) 2013-05-17 2018-04-24 Endochoice, Inc. Endoscope control unit with braking system
US9968242B2 (en) 2013-12-18 2018-05-15 Endochoice, Inc. Suction control unit for an endoscope having two working channels
US10064541B2 (en) 2013-08-12 2018-09-04 Endochoice, Inc. Endoscope connector cover detection and warning system
US10078207B2 (en) 2015-03-18 2018-09-18 Endochoice, Inc. Systems and methods for image magnification using relative movement between an image sensor and a lens assembly
US10105039B2 (en) 2013-06-28 2018-10-23 Endochoice, Inc. Multi-jet distributor for an endoscope
US10123684B2 (en) 2014-12-18 2018-11-13 Endochoice, Inc. System and method for processing video images generated by a multiple viewing elements endoscope
US10130246B2 (en) 2009-06-18 2018-11-20 Endochoice, Inc. Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope
US10258222B2 (en) 2014-07-21 2019-04-16 Endochoice, Inc. Multi-focal, multi-camera endoscope systems
US10271713B2 (en) 2015-01-05 2019-04-30 Endochoice, Inc. Tubed manifold of a multiple viewing elements endoscope
US10292570B2 (en) 2016-03-14 2019-05-21 Endochoice, Inc. System and method for guiding and tracking a region of interest using an endoscope
US10376181B2 (en) 2015-02-17 2019-08-13 Endochoice, Inc. System for detecting the location of an endoscopic device during a medical procedure
US10401611B2 (en) 2015-04-27 2019-09-03 Endochoice, Inc. Endoscope with integrated measurement of distance to objects of interest
US10488648B2 (en) 2016-02-24 2019-11-26 Endochoice, Inc. Circuit board assembly for a multiple viewing element endoscope using CMOS sensors
US10516865B2 (en) 2015-05-17 2019-12-24 Endochoice, Inc. Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor
US10517464B2 (en) 2011-02-07 2019-12-31 Endochoice, Inc. Multi-element cover for a multi-camera endoscope
US10524645B2 (en) 2009-06-18 2020-01-07 Endochoice, Inc. Method and system for eliminating image motion blur in a multiple viewing elements endoscope
US10542877B2 (en) 2014-08-29 2020-01-28 Endochoice, Inc. Systems and methods for varying stiffness of an endoscopic insertion tube
US10595714B2 (en) 2013-03-28 2020-03-24 Endochoice, Inc. Multi-jet controller for an endoscope
US10663714B2 (en) 2010-10-28 2020-05-26 Endochoice, Inc. Optical system for an endoscope
EP3718465A1 (en) * 2019-04-04 2020-10-07 Biosense Webster (Israel) Ltd. Medical instrument calibration
US10898062B2 (en) 2015-11-24 2021-01-26 Endochoice, Inc. Disposable air/water and suction valves for an endoscope
US10993605B2 (en) 2016-06-21 2021-05-04 Endochoice, Inc. Endoscope system with multiple connection interfaces to interface with different video data signal sources
US11079279B2 (en) 2019-03-22 2021-08-03 Speclipse, Inc. Diagnosis method using laser induced breakdown spectroscopy and diagnosis device performing the same
US11082598B2 (en) 2014-01-22 2021-08-03 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
US11234581B2 (en) 2014-05-02 2022-02-01 Endochoice, Inc. Elevator for directing medical tool
US11529197B2 (en) 2015-10-28 2022-12-20 Endochoice, Inc. Device and method for tracking the position of an endoscope within a patient's body
WO2023034194A1 (en) * 2021-08-31 2023-03-09 Smith & Nephew, Inc. Methods and systems of ligament repair
US11957311B2 (en) 2021-12-14 2024-04-16 Endochoice, Inc. Endoscope control unit with braking system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11672425B2 (en) 2018-02-15 2023-06-13 Speclipse, Inc. Stand-alone apparatus and methods for in vivo detection of tissue malignancy using laser spectroscopy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04348739A (en) * 1990-08-23 1992-12-03 Olympus Optical Co Ltd Endoscope device
JPH0576483A (en) * 1991-09-17 1993-03-30 Olympus Optical Co Ltd White balance controller for endoscope
JPH07265257A (en) * 1994-03-30 1995-10-17 Asahi Optical Co Ltd Endoscope
JP2002051968A (en) * 2000-08-11 2002-02-19 Asahi Optical Co Ltd Electronic endoscope
JP2002533191A (en) * 1998-12-30 2002-10-08 エシコン・インコーポレイテッド Sterilization package for flexible endoscope
JP2006325690A (en) * 2005-05-24 2006-12-07 Pentax Corp Distal end protective cap for endoscope
JP2007215764A (en) * 2006-02-16 2007-08-30 Olympus Medical Systems Corp Endoscopic color balance controller and endoscopic system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2602873Y2 (en) * 1993-02-09 2000-01-31 オリンパス光学工業株式会社 Endoscope device with endoscope cover system
US5365925A (en) * 1993-08-13 1994-11-22 Ohmeda Inc. Disposable calibration boot for multi-point calibration in fiber optic sensors
JP3580903B2 (en) * 1994-09-26 2004-10-27 オリンパス株式会社 Lifting equipment
IES960752A2 (en) * 1996-10-25 1997-07-16 Bard Connaught An improved catheter packaging system
JP2005040210A (en) * 2003-07-24 2005-02-17 Pentax Corp Color adjusting device for endoscope
JP4847722B2 (en) * 2004-07-14 2011-12-28 テルモ株式会社 Medical tube packaging
JP2008012196A (en) * 2006-07-07 2008-01-24 Hi-Lex Corporation Board and package set for medical long scroll
US20100293892A1 (en) * 2008-12-12 2010-11-25 Edwards Lifesciences Corporation Method of Packaging and Package for Sensors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04348739A (en) * 1990-08-23 1992-12-03 Olympus Optical Co Ltd Endoscope device
JPH0576483A (en) * 1991-09-17 1993-03-30 Olympus Optical Co Ltd White balance controller for endoscope
JPH07265257A (en) * 1994-03-30 1995-10-17 Asahi Optical Co Ltd Endoscope
JP2002533191A (en) * 1998-12-30 2002-10-08 エシコン・インコーポレイテッド Sterilization package for flexible endoscope
JP2002051968A (en) * 2000-08-11 2002-02-19 Asahi Optical Co Ltd Electronic endoscope
JP2006325690A (en) * 2005-05-24 2006-12-07 Pentax Corp Distal end protective cap for endoscope
JP2007215764A (en) * 2006-02-16 2007-08-30 Olympus Medical Systems Corp Endoscopic color balance controller and endoscopic system

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10561308B2 (en) 2009-06-18 2020-02-18 Endochoice, Inc. Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope
US10912454B2 (en) 2009-06-18 2021-02-09 Endochoice, Inc. Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope
US10130246B2 (en) 2009-06-18 2018-11-20 Endochoice, Inc. Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope
US9474440B2 (en) 2009-06-18 2016-10-25 Endochoice, Inc. Endoscope tip position visual indicator and heat management system
US10524645B2 (en) 2009-06-18 2020-01-07 Endochoice, Inc. Method and system for eliminating image motion blur in a multiple viewing elements endoscope
US9907462B2 (en) 2009-06-18 2018-03-06 Endochoice, Inc. Endoscope tip position visual indicator and heat management system
US10412290B2 (en) 2010-10-28 2019-09-10 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
US10663714B2 (en) 2010-10-28 2020-05-26 Endochoice, Inc. Optical system for an endoscope
US9706908B2 (en) 2010-10-28 2017-07-18 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
US10779707B2 (en) 2011-02-07 2020-09-22 Endochoice, Inc. Multi-element cover for a multi-camera endoscope
US10517464B2 (en) 2011-02-07 2019-12-31 Endochoice, Inc. Multi-element cover for a multi-camera endoscope
WO2014045581A1 (en) * 2012-09-24 2014-03-27 コニカミノルタ株式会社 Optical measurement device and probe system
US11375885B2 (en) 2013-03-28 2022-07-05 Endochoice Inc. Multi-jet controller for an endoscope
US10595714B2 (en) 2013-03-28 2020-03-24 Endochoice, Inc. Multi-jet controller for an endoscope
US9667935B2 (en) 2013-05-07 2017-05-30 Endochoice, Inc. White balance enclosure for use with a multi-viewing elements endoscope
CN105358043A (en) * 2013-05-07 2016-02-24 恩多巧爱思股份有限公司 White balance enclosure for use with a multi-viewing elements endoscope
US10205925B2 (en) 2013-05-07 2019-02-12 Endochoice, Inc. White balance enclosure for use with a multi-viewing elements endoscope
WO2014182723A1 (en) * 2013-05-07 2014-11-13 Endochoice, Inc. White balance enclosed for use with a multi-viewing elements endoscope
US11229351B2 (en) 2013-05-17 2022-01-25 Endochoice, Inc. Endoscope control unit with braking system
US9949623B2 (en) 2013-05-17 2018-04-24 Endochoice, Inc. Endoscope control unit with braking system
US10433715B2 (en) 2013-05-17 2019-10-08 Endochoice, Inc. Endoscope control unit with braking system
US10105039B2 (en) 2013-06-28 2018-10-23 Endochoice, Inc. Multi-jet distributor for an endoscope
US10064541B2 (en) 2013-08-12 2018-09-04 Endochoice, Inc. Endoscope connector cover detection and warning system
US9943218B2 (en) 2013-10-01 2018-04-17 Endochoice, Inc. Endoscope having a supply cable attached thereto
US9968242B2 (en) 2013-12-18 2018-05-15 Endochoice, Inc. Suction control unit for an endoscope having two working channels
US11082598B2 (en) 2014-01-22 2021-08-03 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
JP2015150138A (en) * 2014-02-13 2015-08-24 Hoya株式会社 Endoscope system, image forming device, and mouthpiece
US11234581B2 (en) 2014-05-02 2022-02-01 Endochoice, Inc. Elevator for directing medical tool
US11883004B2 (en) 2014-07-21 2024-01-30 Endochoice, Inc. Multi-focal, multi-camera endoscope systems
US11229348B2 (en) 2014-07-21 2022-01-25 Endochoice, Inc. Multi-focal, multi-camera endoscope systems
US10258222B2 (en) 2014-07-21 2019-04-16 Endochoice, Inc. Multi-focal, multi-camera endoscope systems
US11771310B2 (en) 2014-08-29 2023-10-03 Endochoice, Inc. Systems and methods for varying stiffness of an endoscopic insertion tube
US10542877B2 (en) 2014-08-29 2020-01-28 Endochoice, Inc. Systems and methods for varying stiffness of an endoscopic insertion tube
JP2016112048A (en) * 2014-12-11 2016-06-23 オリンパス株式会社 Endoscope storage and endoscope management system provided with the same
US10123684B2 (en) 2014-12-18 2018-11-13 Endochoice, Inc. System and method for processing video images generated by a multiple viewing elements endoscope
US10271713B2 (en) 2015-01-05 2019-04-30 Endochoice, Inc. Tubed manifold of a multiple viewing elements endoscope
US10376181B2 (en) 2015-02-17 2019-08-13 Endochoice, Inc. System for detecting the location of an endoscopic device during a medical procedure
US11147469B2 (en) 2015-02-17 2021-10-19 Endochoice, Inc. System for detecting the location of an endoscopic device during a medical procedure
US10078207B2 (en) 2015-03-18 2018-09-18 Endochoice, Inc. Systems and methods for image magnification using relative movement between an image sensor and a lens assembly
US11555997B2 (en) 2015-04-27 2023-01-17 Endochoice, Inc. Endoscope with integrated measurement of distance to objects of interest
US10401611B2 (en) 2015-04-27 2019-09-03 Endochoice, Inc. Endoscope with integrated measurement of distance to objects of interest
US10791308B2 (en) 2015-05-17 2020-09-29 Endochoice, Inc. Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor
US11750782B2 (en) 2015-05-17 2023-09-05 Endochoice, Inc. Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor
US10516865B2 (en) 2015-05-17 2019-12-24 Endochoice, Inc. Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor
US11330238B2 (en) 2015-05-17 2022-05-10 Endochoice, Inc. Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor
US11529197B2 (en) 2015-10-28 2022-12-20 Endochoice, Inc. Device and method for tracking the position of an endoscope within a patient's body
US11311181B2 (en) 2015-11-24 2022-04-26 Endochoice, Inc. Disposable air/water and suction valves for an endoscope
US10898062B2 (en) 2015-11-24 2021-01-26 Endochoice, Inc. Disposable air/water and suction valves for an endoscope
US11782259B2 (en) 2016-02-24 2023-10-10 Endochoice, Inc. Circuit board assembly for a multiple viewing elements endoscope using CMOS sensors
US10488648B2 (en) 2016-02-24 2019-11-26 Endochoice, Inc. Circuit board assembly for a multiple viewing element endoscope using CMOS sensors
US10908407B2 (en) 2016-02-24 2021-02-02 Endochoice, Inc. Circuit board assembly for a multiple viewing elements endoscope using CMOS sensors
US10292570B2 (en) 2016-03-14 2019-05-21 Endochoice, Inc. System and method for guiding and tracking a region of interest using an endoscope
US11672407B2 (en) 2016-06-21 2023-06-13 Endochoice, Inc. Endoscope system with multiple connection interfaces to interface with different video data signal sources
US10993605B2 (en) 2016-06-21 2021-05-04 Endochoice, Inc. Endoscope system with multiple connection interfaces to interface with different video data signal sources
US11079279B2 (en) 2019-03-22 2021-08-03 Speclipse, Inc. Diagnosis method using laser induced breakdown spectroscopy and diagnosis device performing the same
US11422033B2 (en) 2019-03-22 2022-08-23 Speclipse, Inc. Diagnosis method using laser induced breakdown spectroscopy and diagnosis device performing the same
US11326949B2 (en) 2019-03-22 2022-05-10 Speclipse, Inc. Diagnosis method using laser induced breakdown spectroscopy and diagnosis device performing the same
US11259687B2 (en) 2019-04-04 2022-03-01 Biosense Webster (Israel) Ltd. Medical instrument calibration
EP3718465A1 (en) * 2019-04-04 2020-10-07 Biosense Webster (Israel) Ltd. Medical instrument calibration
WO2023034194A1 (en) * 2021-08-31 2023-03-09 Smith & Nephew, Inc. Methods and systems of ligament repair
US11957311B2 (en) 2021-12-14 2024-04-16 Endochoice, Inc. Endoscope control unit with braking system

Also Published As

Publication number Publication date
JPWO2012096102A1 (en) 2014-06-09
JP5915543B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5915543B2 (en) Diagnostic packaging
JP2637698B2 (en) Disposable calibration boot for multipoint calibration in fiber optic sensors
US7808639B2 (en) Color measurement instrument
JP5964150B2 (en) Optical pressure measurement
JP5390045B2 (en) probe
WO2005050156A2 (en) Measurement system and method for use in determining the patient&#39;s condition
EP2653854B1 (en) Optical measuring system and calibration method
JP4637604B2 (en) Endoscope color balance adjuster
EP1977373A1 (en) A method for ensuring quality of a sample carrier
JP5747828B2 (en) Locking structure such as probe, connector and package
EP2693179A1 (en) Optical characteristics measuring apparatus and method
JP5561176B2 (en) Diagnostic packaging and probe adjustment jig
JP5988983B2 (en) Calibration apparatus and calibration method
JP6237648B2 (en) Probe, spectroscopic measurement device, and diagnostic system
CN102088895B (en) Calibration methods for blood content sensors
JP4922622B2 (en) Endoscope color balance adjustment tool and endoscope system
JP2003180617A (en) System for fluoroscopic diagnosis
JPWO2012176720A1 (en) Light guide holding structure and holder for lighting
JP5655586B2 (en) Diagnostic probe package
JP5598344B2 (en) Measuring environment components for probe compensation and probe packaging
WO2018212159A1 (en) Catheter kit
TWI607741B (en) portable detected device
TWI813569B (en) Optical measuring device, catheter set and optical measuring method
JP5596870B2 (en) Measuring probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012552652

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855898

Country of ref document: EP

Kind code of ref document: A1