WO2012049858A1 - 無機繊維質成形体及びその製造方法並びに加熱設備 - Google Patents

無機繊維質成形体及びその製造方法並びに加熱設備 Download PDF

Info

Publication number
WO2012049858A1
WO2012049858A1 PCT/JP2011/005763 JP2011005763W WO2012049858A1 WO 2012049858 A1 WO2012049858 A1 WO 2012049858A1 JP 2011005763 W JP2011005763 W JP 2011005763W WO 2012049858 A1 WO2012049858 A1 WO 2012049858A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
inorganic
sio
weight
heat treatment
Prior art date
Application number
PCT/JP2011/005763
Other languages
English (en)
French (fr)
Inventor
賢 米内山
鉄也 石原
智彦 岸木
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Priority to EP11832302.1A priority Critical patent/EP2628717A4/en
Priority to KR1020137009307A priority patent/KR20140020826A/ko
Priority to AU2011315024A priority patent/AU2011315024B2/en
Priority to CN201180049363.9A priority patent/CN103153913B/zh
Publication of WO2012049858A1 publication Critical patent/WO2012049858A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/46Rock wool ; Ceramic or silicate fibres
    • C04B14/4643Silicates other than zircon
    • C04B14/465Ca-silicate, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/006Glass-ceramics fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/40Asbestos
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6224Fibres based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/82Asbestos; Glass; Fused silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • C03C2213/02Biodegradable glass fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • C04B2235/9638Tolerance; Dimensional accuracy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Definitions

  • the present invention relates to an inorganic fiber molded body, a method for producing the same, and a heating facility, and more particularly to suppression of deformation due to heating of an inorganic fiber molded body containing biosoluble inorganic fibers.
  • An inorganic fiber molded body containing inorganic fibers and a binder is lightweight, easy to handle, and excellent in heat insulation, and is used, for example, as a heat insulating material in an industrial furnace.
  • problems have recently been pointed out that inorganic fibers are inhaled into the human body and enter the lungs.
  • biosoluble inorganic fibers contain MgO and CaO, and shrink when heated compared to inorganic fibers that do not have biosolubility such as alumina fibers. It is easy to do, and it is easy to cause thermal creep.
  • the present invention has been made in view of the above problems, and is an inorganic fiber in which deformation during heating or at least a part of a high temperature range (hereinafter also referred to as heating during use) is effectively suppressed. It is an object of the present invention to provide a molded body, a manufacturing method thereof, and a heating facility.
  • An inorganic fiber molded body according to an embodiment of the present invention for solving the above-mentioned problems is characterized in that it includes biosoluble inorganic fibers partially crystallized and an inorganic binder.
  • ADVANTAGE OF THE INVENTION According to this invention, the inorganic fibrous molded object by which the deformation
  • the said inorganic fiber molded object WHEREIN The said biosoluble inorganic fiber is good also as including the crystal
  • the biosoluble inorganic fiber may have an SiO 2 content of 66 to 82% by mass.
  • the biosoluble inorganic fiber may have a CaO content of 10 to 34% by mass.
  • MgO content of the said biosoluble inorganic fiber is good also as being 1 mass% or less.
  • a method for producing an inorganic fibrous molded body includes a first step of heat-treating amorphous biosoluble inorganic fibers, and the heat treatment. And a second step of forming an inorganic fibrous formed body containing the biosoluble inorganic fiber and an inorganic binder.
  • the amorphous biosoluble inorganic fiber may be heat-treated at a temperature equal to or higher than the crystallization temperature to obtain the biosoluble inorganic fiber partially crystallized.
  • the biosoluble inorganic fiber subjected to the heat treatment may contain wollastonite, diopside or enstatite crystals.
  • the biosoluble inorganic fiber may have an SiO 2 content of 66 to 82% by mass.
  • the biosoluble inorganic fiber may have a CaO content of 10 to 34% by mass.
  • MgO content of the said biosoluble inorganic fiber is good also as being 1 mass% or less.
  • a heating facility for solving the above-described problems is characterized by including any one of the inorganic fibrous molded bodies.
  • ADVANTAGE OF THE INVENTION According to this invention, the heating equipment containing the inorganic fiber molded object by which the deformation
  • an inorganic fibrous molded body in which deformation due to heating during use is effectively suppressed, a manufacturing method thereof, and a heating facility.
  • the method includes a first step of heat-treating amorphous biosoluble inorganic fibers (hereinafter referred to as “heat treatment step”), the biosoluble inorganic fibers subjected to the heat treatment, and inorganic And a second step (hereinafter referred to as “molding step”) of molding an inorganic fibrous molded body containing a binder.
  • an amorphous biosoluble inorganic fiber is prepared.
  • the biosoluble inorganic fiber is an inorganic fiber and has biosolubility (for example, a property of being decomposed in the living body even when inhaled into the lungs of the living body).
  • the biologically soluble inorganic fiber is at least partially amorphous, and it is confirmed by powder X-ray diffraction (XRD) measurement that it is amorphous.
  • the biosoluble inorganic fiber is, for example, an inorganic fiber having a physiological saline dissolution rate at 40 ° C. of 1% or more.
  • the physiological saline dissolution rate is measured, for example, as follows. That is, first, 1 g of a sample prepared by pulverizing inorganic fibers to 200 mesh or less and 150 mL of physiological saline are placed in an Erlenmeyer flask (volume: 300 mL) and placed in an incubator at 40 ° C. Next, a horizontal vibration of 120 revolutions per minute is continuously applied to the Erlenmeyer flask for 50 hours. Thereafter, the concentration (mg / L) of each element contained in the filtrate obtained by filtration is measured with an ICP emission analyzer.
  • the physiological saline dissolution rate (%) is calculated. That is, for example, when the measurement element is silicon (Si), magnesium (Mg), calcium (Ca), and aluminum (Al), the physiological saline dissolution rate C (%) is calculated by the following equation.
  • C (%) [filtrate amount (L) ⁇ (a1 + a2 + a3 + a4) ⁇ 100] / [mass of inorganic fiber before dissolution (mg) ⁇ (b1 + b2 + b3 + b4) / 100].
  • a1, a2, a3 and a4 are the measured concentrations of silicon, magnesium, calcium and aluminum (mg / L), respectively, and b1, b2, b3 and b4 are respectively in the inorganic fibers before dissolution. It is content (mass%) of silicon, magnesium, calcium, and aluminum.
  • the biosoluble inorganic fiber has, for example, an inorganic fiber having a dissolution rate constant of 150 ng / cm 2 ⁇ h or more, preferably 150 to 1500 ng / cm 2 ⁇ h, more preferably 200 to 1500 ng / cm 2 ⁇ h. It is.
  • the biosoluble inorganic fiber is, for example, an inorganic fiber having an estimated half-life of 40 days or less, preferably 10 to 40 days, more preferably 10 to 30 days.
  • the SiO 2 content of the biosoluble inorganic fiber may be, for example, 50 to 82% by mass.
  • the SiO 2 content is preferably 63 to 81% by mass, more preferably 66 to 80% by mass, and even more preferably 71 to 76% by mass. That is, the biosoluble inorganic fiber is, for example, an inorganic fiber having a SiO 2 content of 66 to 82% by mass and a total of CaO content and MgO content of 18 to 34% by mass.
  • the total of the CaO content and the MgO content is preferably 19 to 34% by mass, and more preferably 20 to 34% by mass.
  • the total range of these CaO content and MgO content can be arbitrarily combined with the above-described range of SiO 2 content.
  • SiO 2 content of bio-soluble inorganic fibers is in the range described above, the bio-soluble inorganic fibers, in addition to bio-solubility, and thus also has excellent heat resistance.
  • the CaO content of the biosoluble inorganic fiber may be, for example, 10 to 34% by mass. That is, the biosoluble inorganic fiber has an SiO 2 content of 66 to 82% by mass and an CaO content of 10 to 34% by mass (hereinafter referred to as “SiO 2 / CaO fiber”). )).
  • the CaO content is preferably 12 to 32% by mass, and more preferably 14 to 30% by mass.
  • the MgO content of the biosoluble inorganic fiber may be, for example, 1% by mass or less (that is, 0 to 1% by mass). MgO is usually more than 0% by mass. That is, the biosoluble inorganic fiber has, for example, a SiO 2 / CaO fiber having a SiO 2 content of 66 to 82% by mass, a CaO content of 10 to 34% by mass, and a MgO content of 1% by mass or less. It is good also as being.
  • the MgO content is preferably 0.9% by mass or less, and more preferably 0.8% by mass or less.
  • the MgO content of the biosoluble inorganic fiber may be more than 1% by mass and 20% by mass or less. That is, biosoluble inorganic fibers, for example, a SiO 2 content of 66 to 82 wt%, MgO content of 1 wt percent, and 20 mass% of inorganic fibers (hereinafter, "SiO 2 / MgO fibers It may also be “.”
  • the MgO content is preferably 2 to 19% by mass, and more preferably 3 to 19% by mass.
  • the biosoluble inorganic fiber may have, for example, a total content of SiO 2 content, MgO content and CaO content of 97% by mass or more (that is, 97 to 100% by mass).
  • the total of the SiO 2 content, the MgO content and the CaO content is preferably 97.5% by mass or more, and more preferably 98% by mass or more.
  • the total range of these SiO 2 content, MgO content and CaO content is the range of the SiO 2 content described above, the total range of the CaO content and MgO content described above, the range of the CaO content described above. , And can be arbitrarily combined with the above-described MgO content range.
  • the biosoluble inorganic fiber may further contain other components in addition to SiO 2 and an alkaline earth metal oxide (for example, at least one of MgO and CaO). That is, biosoluble inorganic fibers include, for example, alumina (Al 2 O 3 ), titania (TiO 2 ) and zirconia (ZrO 2 ), iron oxide (Fe 2 O 3 ), manganese oxide (MnO), potassium oxide (K One or more selected from the group consisting of 2 O) may be further contained, or may not be contained.
  • the bio-soluble inorganic fibers containing Al 2 O 3, Al 2 O 3 content for example, 5 wt% or less, and 3.4 wt% or less, or 3.0 wt% or less. Moreover, it can be 1.1 weight% or more or 2.0 weight% or more. The content is preferably 0 to 3% by mass, more preferably 1 to 3% by mass. If Al 2 O 3 is contained within this range, the strength becomes high.
  • the biosoluble inorganic fiber has, for example, a total content of SiO 2 content, MgO content, CaO content and Al 2 O 3 content of 98% by mass or more (that is, 98 to 100% by mass) or 99% by mass. % Or more (that is, 99 to 100% by mass).
  • biosoluble inorganic fibers having the following composition can be exemplified. 50 to 82% by weight of SiO 2 , Al 2 O 3 , ZrO 2 and TiO 2 Total of CaO and MgO 18-50% by weight
  • biosoluble inorganic fiber of the following compositions can be illustrated.
  • SiO 2 50 to 82% by weight
  • SiO 2 / MgO fibers SiO 2 66-82% by weight CaO 1-9% by weight (for example, it can be 2-8% by weight) MgO 10-30% by weight (for example, it can be 15-20% by weight) Al 2 O 3 3 wt% or less Other oxides Less than 2 wt%
  • SiO 2 / CaO fibers Fibers having the following composition are excellent in biosolubility and fire resistance after heating.
  • SiO 2 66-82 wt% (for example, it can be 68-80 wt%, 70-80 wt%, 71-80 wt% or 71.25-76 wt%)
  • CaO 10-34% by weight (for example, it can be 18-30% by weight, 20-27% by weight or 21-26% by weight)
  • MgO 3 wt% or less eg, 1 wt% or less
  • Al 2 O 3 5% by weight or less eg, 3.4% by weight or less or 3% by weight or less, and 1.1% by weight or more or 2.0% by weight or more
  • the biologically soluble inorganic fiber includes, as other components, alkali metal oxides (K 2 O, Na 2 O, etc.), Fe 2 O 3 , ZrO 2 , TiO 2 , P 2 O 5 , B 2 O 3 , R 2 O 3 (R is selected from Sc, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, or a mixture thereof) The above may or may not be included. Other oxides may be 0.2 wt% or less or 0.1 wt% or less, respectively.
  • Alkali metal oxide may or may not be contained, and may be 0.2% by weight or less, 0.15% by weight or less, or 0.1% by weight or less. In the alkali metal oxide, each oxide may be 0.2% by weight or less, or 0.1% by weight or less. Moreover, it is good also considering the sum total of an alkali metal oxide as 0.2 weight% or less. Alkali metal oxide may be contained more than 0.01% by weight, 0.05% by weight or more, or 0.08% by weight or more.
  • K 2 O may or may not be contained, and may be 0.2% by weight or less, 0.15% by weight or less, or 0.1% by weight or less. K 2 O may be contained more than 0.01% by weight, 0.05% by weight or more, or 0.08% by weight or more. Na 2 O may or may not be contained, and may be 0.2% by weight or less, 0.15% by weight or less, or 0.1% by weight or less. Na 2 O may be contained more than 0.01% by weight, 0.05% by weight or more, or 0.08% by weight or more. Further, the total content of Na and K may be more than 500 ppm.
  • the average fiber diameter of the biosoluble inorganic fiber is not particularly limited as long as the inorganic fiber molded body is suitably produced, and is, for example, 1 to 10 ⁇ m, preferably 2 to 6 ⁇ m.
  • the average fiber diameter is less than 1 ⁇ m, the water resistance tends to decrease, so the strength of the produced inorganic fibrous molded body tends to be low.
  • the average fiber diameter exceeds 10 ⁇ m, the density of the produced inorganic fibrous molded body is too low, and the strength of the inorganic fibrous molded body tends to be low.
  • the average fiber length of the biosoluble inorganic fiber is not particularly limited as long as the inorganic fiber molded body is suitably produced, and is, for example, 1 to 200 mm, preferably 1 to 100 mm. When the average fiber length is within the above range, it becomes easy to produce an inorganic fibrous molded body having an appropriate density.
  • the amorphous biosoluble inorganic fiber prepared as described above is subjected to heat treatment to obtain the biosoluble inorganic fiber subjected to the heat treatment.
  • the method including the heat treatment step is a method in which an amorphous biosoluble inorganic fiber (hereinafter referred to as “untreated fiber”) is subjected to a heat treatment, and the biosoluble inorganic fiber subjected to the heat treatment. (Hereinafter, referred to as “heat-treated fiber”).
  • the manufactured heat-treated fiber is used as a raw material for an inorganic fibrous shaped body as described later.
  • the conditions (for example, temperature and time) of the heat treatment are such that when the inorganic fibrous molded body containing the heat treated fibers is heated, the deformation (warp, shrinkage, etc.) of the inorganic fibrous molded body If it determines so that it may reduce compared with that of the inorganic fiber molding to contain, it will not be restricted in particular.
  • the heat treatment is performed, for example, under the condition that the amount of warping when the inorganic fiber molded body including the heat-treated fiber is heated is reduced as compared with that of the inorganic fiber molded body including the untreated fiber.
  • the heat treatment is performed under the condition that, for example, the heating linear shrinkage rate at 300 to 1300 ° C. of the inorganic fiber molded body containing the heat treated fiber is reduced as compared with that of the inorganic fiber molded body containing the untreated fiber.
  • the heating linear shrinkage rate is, for example, the length of the inorganic fiber molded body before and after the heating measured by heating the inorganic fiber molded body at a constant temperature in the range of 300 to 1300 ° C. for 24 hours in an electric furnace.
  • the heating linear shrinkage rate (%) ⁇ (XY) / X ⁇ ⁇ 100.
  • X indicates the length (mm) of the inorganic fibrous molded body before heating
  • Y indicates the length (mm) of the inorganic fibrous molded body after heating.
  • heating temperature in the heat treatment of the SiO 2 / MgO fiber is, for example, 600 to 1300 ° C., preferably 800 to 1300 ° C., more preferably 850 to 1000 ° C. is there.
  • heating temperature in the heat treatment of the SiO 2 / CaO fiber is, for example, 820 to 1300 ° C., preferably 830 to 1300 ° C., more preferably 840 to 1000 ° C. Yes, most preferably 850-1000 ° C.
  • the heat treatment temperature may be a temperature equal to or higher than the crystallization temperature of untreated fibers, for example. That is, in this case, in the heat treatment step, the untreated fiber is subjected to a heat treatment at a temperature equal to or higher than the crystallization temperature to obtain a heat-treated fiber partially crystallized.
  • the crystallization temperature of the untreated fiber is measured by, for example, TG-DTA (thermogravimetric-differential heat measurement).
  • a heat treatment temperature not lower than the crystallization temperature cannot be generally determined. For example, 600 to 1300 ° C., 600 to 1100 ° C., or 800 to 1000 ° C.
  • the heat-treated fiber includes, for example, crystals that are not included in the untreated fiber used for the production thereof.
  • the crystals contained in the heat-treated fiber can be analyzed by, for example, powder X-ray diffraction. That is, the heat treatment is performed so that, for example, a heat-treated fiber in which crystals that are not detected in the untreated fiber in powder X-ray diffraction are detected can be obtained by performing heat treatment on the untreated fiber.
  • the heat-treated fiber When the heat-treated fiber is the above-described SiO 2 / CaO fiber, the heat-treated fiber partially crystallized includes, for example, wollastonite crystals. In this case, the heat-treated fiber may further contain other crystals. That is, the heat-treated fiber includes, for example, one type or two or more types of crystals selected from the group consisting of wollastonite, cristobalite, and tridymite.
  • the heat-treated fiber When the heat-treated fiber is the above-described SiO 2 / MgO fiber, the heat-treated fiber partially crystallized includes, for example, enstatite crystals. In this case, the heat-treated fiber may further contain other crystals. That is, the heat-treated fiber includes, for example, one or more crystals selected from the group consisting of enstatite, diopsite, cristobalite, and tridymite.
  • Heat-treated fibers are other biosoluble inorganic fibers (for example, SiO 2 content is 35 to 45% by mass, Al 2 O 3 content is 10 to 20% by mass, MgO content is 4 to 8% by mass, and CaO is contained. Heat-treated partly crystallized when the amount is 20 to 40% by mass, Fe 2 O 3 content is 0 to 3% by mass, and MnO content is 0 to 1% by mass.
  • the fiber may contain, for example, one or more crystals selected from the group consisting of wollastonite, annosite, diopsite, acarmanite, and augite.
  • heat processing temperature has the effect that the deformation
  • the heating time in the heat treatment (hereinafter referred to as “heat treatment time”) is also not particularly limited as long as the above-described effects of the heat treatment can be obtained. That is, the heat treatment time is, for example, 1 minute to 48 hours, preferably 3 minutes to 24 hours.
  • the heat treatment time is, for example, 3 minutes to 8 hours, preferably 5 minutes to 3 hours.
  • the biosoluble inorganic fiber can change its biosolubility by being subjected to heat treatment. That is, the biologically soluble inorganic fiber is likely to be degraded in its biological solubility when subjected to heat treatment.
  • the biosolubility after heating is lower than that before heating. Often to do.
  • the inventors of the present invention can obtain heat-treated fibers having better biosolubility than before heat treatment by using the above-mentioned SiO 2 / CaO fibers as bio-soluble inorganic fibers. I found this on my own.
  • a SiO 2 content of 66 to 82 mass%, CaO content of the 10 to 34% by weight of SiO 2 / CaO fibers by heat treatment at the crystallization temperature or higher obtained
  • the biosolubility of the heat-treated fiber is significantly increased as compared with that before the heat treatment.
  • the heat-treated fiber since the heat-treated fiber has a large SiO 2 content, it has excellent heat resistance in addition to excellent biosolubility.
  • the chemical reaction between the heat-treated fiber and Al 2 O 3 is a phenomenon that occurs depending on the ratio of the components of SiO 2 / CaO / Al 2 O 3 , and the chemical reaction (melting) also occurs from the solid state diagram of the oxide. You can see what happens.
  • This chemical reaction involving melting can be suppressed, for example, by increasing the SiO 2 content of the biosoluble inorganic fiber.
  • the chemical reaction between the SiO 2 / CaO fiber and Al 2 O 3 constituting the industrial furnace wall is effectively suppressed.
  • SiO 2 / CaO fibers having a SiO 2 content of 66 to 82% by mass, a CaO content of 10 to 34% by mass, and an MgO content of 1% by mass or less are also preferably used.
  • the MgO content is small, deformation during heating of the inorganic fibrous formed body including the heat-treated fibers can be effectively reduced.
  • the SiO 2 / MgO fiber since the SiO 2 / MgO fiber has a relatively high MgO content, crystals containing Si and Mg as main components (for example, enstatite) preferentially by heating at a temperature higher than the crystallization temperature. Formed.
  • the above-mentioned SiO 2 / CaO fiber has a high CaO content and a low MgO content. Therefore, crystals containing Si and Ca as main components by heating at a temperature equal to or higher than the crystallization temperature (for example, waving) Lastite) is preferentially formed.
  • the specific gravity of a crystal containing Si and Ca as main components is smaller than that of a crystal containing Si and Mg as main components. Then, the smaller the specific gravity of the crystals contained in the heat-treated fiber, the smaller the deformation amount of the heat-treated fiber (for example, the heat shrinkage).
  • the inorganic fiber molded body contains the SiO 2 / CaO fiber having a small MgO content as the heat-treated fiber, deformation (warping, heating line shrinkage, etc.) of the inorganic fiber molded body is effective. Is suppressed.
  • the biosolubility after the heat treatment is within a desired range (for example, the physiological saline dissolution rate at 40 ° C. is 1%) If it is above, there is no particular problem.
  • an inorganic fibrous molded body containing the heat-treated fiber prepared in the above-described heat treatment step and an inorganic binder is molded. That is, first, a raw material containing heat-treated fibers and an inorganic binder is prepared.
  • the inorganic binder is not particularly limited as long as it binds the heat-treated fiber.
  • anionic colloidal silica colloidal silica such as cationic colloidal silica, fumed silica, zirconia sol, titania sol, alumina sol, bentonite,
  • colloidal silica such as cationic colloidal silica, fumed silica, zirconia sol, titania sol, alumina sol, bentonite
  • One or more selected from the group consisting of kaolins can be used.
  • the content of the heat-treated fiber is, for example, 70 to 95.5% by mass, and the content of the inorganic binder is, for example, 0.5 to 30% by mass.
  • the raw material may further contain other components in addition to the heat-treated fiber and the inorganic binder. That is, the raw material may further contain, for example, an organic binder.
  • the organic binder is not particularly limited as long as it binds the heat-treated fiber, and is, for example, one or more selected from the group consisting of starch, acrylic resin, and polyacrylamide.
  • the raw material may further contain, for example, a refractory inorganic powder.
  • the refractory inorganic powder is, for example, ceramic powder such as silica, alumina, titania, zirconia, silicon nitride, silicon carbide, and / or carbon powder such as carbon black.
  • the raw material is prepared by mixing a heat-treated fiber, an inorganic binder, and other components as necessary with a solvent.
  • the solvent is not particularly limited as long as the heat-treated fiber and the inorganic binder are mixed and dispersed.
  • water for example, distilled water, ion exchange water, tap water, ground water, industrial water
  • a polar organic solvent For example, monovalent alcohols such as ethanol and propanol, divalent alcohols such as ethylene glycol, and preferably water.
  • the raw material of the inorganic fibrous molded body thus prepared is an amorphous composition. That is, the raw material is a plastic composition, for example, a fluid composition (so-called slurry or the like).
  • a fixed inorganic fiber molded body is manufactured from the amorphous raw material thus prepared. That is, for example, by putting the raw material in a mold having a predetermined shape, removing the solvent from the raw material in the mold, and further drying the raw material, an inorganic fibrous molded body having a shape corresponding to the shape of the mold is obtained. obtain.
  • the raw material is poured into a mold having a net at the bottom, and then the solvent is removed by sucking the solvent contained in the raw material through the net, and then the raw material Is dried by heating in a dryer.
  • the heating temperature for drying is, for example, 60 to 150 ° C., preferably 80 to 120 ° C.
  • an inorganic fiber molded body can be obtained by a method in which an amorphous composition having low fluidity as compared with a slurry is prepared as a raw material, the raw material is placed in a mold having a predetermined shape, and dried and fired in the mold. Can be obtained.
  • the inorganic fibrous molded body (hereinafter referred to as “the molded body”) according to the present embodiment is preferably manufactured by such a method. That is, this molded object is an inorganic fibrous molded object containing the heat-processing fiber mentioned above and an inorganic binder.
  • the molded body is an inorganic fibrous molded body containing, for example, a biosoluble inorganic fiber (heat-treated fiber) partially crystallized and an inorganic binder.
  • the SiO 2 content of the heat-treated fiber contained in the molded body is, for example, 66 to 82% by mass. In this case, the formed body has excellent heat resistance due to the relatively large SiO 2 content of the heat-treated fiber.
  • the CaO content of the heat-treated fiber contained in the molded body is, for example, 10 to 34% by mass. That is, this heat-treated fiber is, for example, a SiO 2 / CaO fiber having a SiO 2 content of 66 to 82% by mass and a CaO content of 10 to 34% by mass.
  • the partially crystallized SiO 2 / CaO fiber includes, for example, wollastonite crystals.
  • the SiO 2 / CaO fiber may contain, for example, one or more crystals selected from the group consisting of wollastonite, cristobalite, and tridymite.
  • these SiO 2 / CaO fibers have a very excellent biosolubility increased by the heat treatment because the heat treatment is performed prior to the molding of the inorganic fiber molded body. is doing.
  • the SiO 2 content of the SiO 2 / CaO fiber is large, as described above, even when the molded body is used by being heated on an industrial furnace wall containing Al 2 O 3 , the SiO 2 The chemical reaction between the 2 / CaO fiber and the Al 2 O 3 is effectively suppressed, and deformation of the molded body is also effectively suppressed.
  • the MgO content of the heat-treated fiber contained in the molded body is, for example, 1% by mass or less. That is, this heat-treated fiber is, for example, SiO 2 / CaO fiber having a SiO 2 content of 66 to 82% by mass, a CaO content of 10 to 34% by mass, and a MgO content of 1% by mass or less. is there. In this case, since the MgO content of the heat-treated fiber is small, as described above, deformation (warping, heating line shrinkage, etc.) during heating of the molded body is effectively suppressed.
  • the contents of the heat-treated fiber and the inorganic binder in the molded body are not particularly limited, and are appropriately determined depending on the use and required characteristics.
  • the content of the heat-treated fiber is 70 to 95.5% by mass. More specifically, for example, in the molded body, the content of the heat-treated fiber is 70 to 95.5% by mass, and the content of the inorganic binder is 0.5 to 30% by mass.
  • the density of the molded body is not particularly limited, and is appropriately determined depending on the application and required characteristics.
  • the density of the molded body is 0.1 to 1.0 kg / cm 3 , preferably 0.15 to 0.6 kg / cm 3 .
  • the shape of the molded body is not particularly limited, and is appropriately determined depending on its use and required characteristics.
  • the shape of the molded body may be a plate shape (polygonal plate shape such as a square (board), disc shape, etc.), a cylindrical shape (polygonal shape such as a square shape, a cylindrical shape, etc.), a weight shape ( A polygonal pyramid such as a square pyramid, a cone, etc.
  • the present molded body contains heat-treated fibers as biosoluble fibers, so that deformation when used in a heated state is effectively suppressed. That is, for example, preferably, the heating linear shrinkage rate when the molded body is heated at 1100 ° C. for 24 hours is 3.0% or less, more specifically 0.0 to 3.0%. .
  • the amount of warping when the molded body is heated at 400 ° C. for 24 hours is 1.3 mm or less, and more specifically, 1.0 mm or less.
  • the measurement method is as shown in the examples.
  • This molded body is applied to various uses. That is, this molded object is used as a heat insulating material, a sealing material, and a packing material in heating equipment, such as a heat treatment apparatus, an industrial furnace, and an incinerator, for example. Moreover, this molded object is used also as a sound-absorbing material, a filter material, a catalyst support
  • the biosolubility of the biosoluble inorganic fiber before and after the heat treatment was evaluated.
  • the SiO 2 content is 73 mass%
  • the CaO content is 21 to 26 mass%
  • the MgO content is 1 mass% or less
  • Al 2 O 3 is 1 to 3 mass%.
  • Amorphous SiO 2 / CaO fiber (hereinafter referred to as “fiber A”) was prepared.
  • the crystallization temperature of fiber A was 895 ° C.
  • the heat treatment temperature was 800 ° C., 1000 ° C., or 1100 ° C.
  • the heat treatment time was 24 hours.
  • the biosolubility of the fiber A before the heat treatment and after the heat treatment at each temperature was evaluated. That is, the dissolution rate constant (ng / cm 2 ⁇ h) and the assumed half-life (days) were evaluated as indicators of biosolubility.
  • the dissolution rate constant of the fiber A was measured as follows. That is, first, the fiber A was passed through a 45 ⁇ m sieve, and the fiber A from which the shot was removed was placed on the filter paper. Subsequently, the physiological saline was dripped on the fiber A with the micropump, and the filtrate which passed the fiber A and the filter paper was stored in the tank. The filtrate collected after the lapse of a predetermined time was recovered. And the elution component in the collect
  • the estimated half-life was measured with reference to a test (German standard) on whether or not the exemption condition according to NoteQ of EU Directive 97/69 / EC was satisfied. That is, in this test, when a fiber longer than 20 ⁇ m has a load half-life of less than 40 days in a short-term in vivo retention test by injection into the trachea of an animal, the fiber satisfies the exemption condition. . Therefore, when this test was performed using the fiber A before the heat treatment, the load half-life of the fiber A was 19 days. And the assumed half life of the fiber A after the heat treatment is obtained by dividing the dissolution rate constant of the fiber A before the heat treatment by the dissolution rate constant of the fiber A after the heat treatment. Calculated by multiplying by the load half-life.
  • the SiO 2 content is 76 mass%
  • the CaO content is 2 to 6 mass%
  • the MgO content is 16 to 20 mass%
  • Al 2 O 3 is 1 to 2 mass.
  • % Amorphous SiO 2 / MgO fiber hereinafter referred to as “fiber B”.
  • the crystallization temperature of the fiber B was 857 ° C.
  • the fiber B was heat-treated.
  • the heat treatment temperature was 700 ° C, 800 ° C, 850 ° C, 900 ° C or 1000 ° C.
  • the heat treatment time was 24 hours for 700 ° C., 800 ° C. and 1000 ° C., and 50 hours for 850 ° C. and 900 ° C.
  • FIG. 1 shows the results of evaluating the biosolubility of fiber A.
  • FIG. 2 the result of having evaluated the biosolubility of the fiber B is shown.
  • both the fiber A and the fiber B before the heat treatment (“untreated” in the figure) had excellent biosolubility.
  • the biological solubility of fiber A was increased by heat treatment.
  • the heat treatment by performing the heat treatment at a temperature exceeding the crystallization temperature of the fiber A, the biosolubility of the fiber A significantly increased.
  • the fiber A after the heat treatment had extremely excellent biosolubility.
  • the biosolubility of fiber B was reduced by heat treatment.
  • the heat treatment is performed at a temperature near or higher than the crystallization temperature of the fiber B, the biosolubility of the fiber B is significantly reduced.
  • the fiber A was subjected to heat treatment, and the generation of crystals in the fiber A was analyzed.
  • the fiber A was heat-treated.
  • the heat treatment temperature was 600 ° C, 700 ° C, 800 ° C, 900 ° C, 1000 ° C, 1100 ° C, 1200 ° C, 1300 ° C, or 1400 ° C.
  • the heat treatment time was 24 hours.
  • the fiber A after the heat treatment was analyzed by powder X-ray diffraction (XRD).
  • FIG. 3 the XRD measurement result of the fiber A obtained by heat processing in each heat processing temperature is shown.
  • indicates the peak of wollastonite (CaSiO 3 ) crystal
  • indicates the peak of pseudowollastonite crystal
  • indicates the peak of cristobalite crystal.
  • X marks indicate the peaks of tridymite crystals.
  • wollastonite crystals were produced by heat treatment at 900 ° C. or higher. Moreover, the crystal
  • the fiber B was subjected to a heat treatment, and XRD measurement was performed.
  • enstatite crystals were produced by heat treatment at 900 ° C. or higher.
  • crystallization of cristobalite was produced
  • crystallization was produced
  • An inorganic fibrous molded body containing the fiber A was produced, and its heating line shrinkage rate was evaluated. First, a fiber A that was not heat-treated, a fiber A that was heat-treated at 850 ° C. for 10 minutes, and a fiber A that was heat-treated at 900 ° C. for 10 minutes were prepared.
  • any fiber A 5 parts by weight of colloidal silica (ST30, manufactured by Nissan Chemical Industries, Ltd.) as an inorganic binder, and starch (Petrosize J, manufactured by Nissho Chemical Co., Ltd.) as an organic binder was mixed with 4.5 parts by weight and aggregating material (Polystron 117, manufactured by Arakawa Chemical Co., Ltd.) with 0.5 parts by weight, and 5000 parts by weight of water to prepare a raw material slurry.
  • colloidal silica ST30, manufactured by Nissan Chemical Industries, Ltd.
  • starch Petrosize J, manufactured by Nissho Chemical Co., Ltd.
  • aggregating material Polystron 117, manufactured by Arakawa Chemical Co., Ltd.
  • this raw material slurry was poured into a mold having a net installed at the bottom. And the water contained in the raw material slurry was sucked and removed through the net of the mold. Thereafter, the dehydrated raw material was heated and dried in a dryer.
  • a rectangular plate-like inorganic fibrous board having a size of 600 mm ⁇ 900 mm and a thickness of 50 mm was formed.
  • the content of fiber A was 91.0% by mass, and the content of colloidal silica was 4.5% by mass.
  • heating linear shrinkage rate (%) ⁇ (XY) / X ⁇ ⁇ 100.
  • X is the length (mm) of the inorganic fiber board before heating
  • Y is the length (mm) of the inorganic fiber board after heating.
  • FIG. 4 shows the results of measuring the heating linear shrinkage rate.
  • the heating line shrinkage of the inorganic fiber board (“850 ° C. treated fiber A” and “900 ° C. treated fiber A” in the figure) manufactured using the heat-treated fiber A.
  • the rate was reduced compared to the inorganic fibrous board (“untreated fiber A” in the figure) manufactured using the fiber A that was not subjected to the heat treatment.
  • the heating linear shrinkage of the inorganic fiber board (“900 ° C. treated fiber A” in the figure) containing the fiber A that has been heat-treated at a heat treatment temperature higher than the crystallization temperature is determined by the heating temperature at the time of measurement. It was significantly reduced in the entire range of 700 to 1300 ° C.
  • An inorganic fiber molded body containing fiber A or fiber B was produced, and the amount of warpage when the inorganic fiber molded body was heated was evaluated. First, the fiber A and the fiber B were subjected to heat treatment.
  • fiber A not subjected to heat treatment fiber A not subjected to heat treatment, fiber A subjected to heat treatment at 800 ° C. for 5 minutes, fiber A subjected to heat treatment at 850 ° C. for 5 minutes, heat treatment at 850 ° C. for 10 minutes , Fiber A subjected to heat treatment at 900 ° C. for 5 minutes, and fiber A subjected to heat treatment at 950 ° C. for 10 minutes were prepared.
  • a fiber B that was not heat-treated, a fiber B that was heat-treated at 800 ° C. for 5 minutes, and a fiber B that was heat-treated at 900 ° C. for 10 minutes were prepared.
  • an inorganic fibrous board containing fiber A or fiber B was manufactured. That is, 100 parts by weight of any fiber A, 5 parts by weight of colloidal silica (ST30, manufactured by Nissan Chemical Industries, Ltd.) as an inorganic binder, and starch (Petrosize J, manufactured by Nissho Chemical Co., Ltd.) as an organic binder. was mixed with 4.5 parts by weight and aggregating material (Polystron 117, manufactured by Arakawa Chemical Co., Ltd.) with 0.5 parts by weight, and 5000 parts by weight of water to prepare a raw material slurry. And the inorganic fiber board containing the fiber A was manufactured similarly to the above-mentioned Example 3.
  • any fiber B 100 parts by weight of any fiber B, 5 parts by weight of colloidal silica (ST30, manufactured by Nissan Chemical Industries, Ltd.) as an inorganic binder, and starch (Petrosize J, manufactured by Nissho Chemical Co., Ltd.) as an organic binder.
  • colloidal silica ST30, manufactured by Nissan Chemical Industries, Ltd.
  • starch Petrosize J, manufactured by Nissho Chemical Co., Ltd.
  • aggregating material Polystron 117, manufactured by Arakawa Chemical Co., Ltd.
  • the inorganic fiber board containing the fiber B was manufactured similarly to the above-mentioned Example 3.
  • the amount of warpage of the inorganic fiber board was measured.
  • the inorganic fibrous board manufactured as described above was cut into a size of 860 mm ⁇ 450 mm and a thickness of 50 mm to obtain a test piece.
  • one surface (surface of 860 mm ⁇ 450 mm) arranged so as to face the inside of the electric furnace at the time of heating described later is determined, and the one end from the longitudinal end of the determined surface to the other end
  • a straight ruler was handed over to measure the distance (the amount of deformation before the heat treatment) between the straight ruler and the portion of the surface farthest from the straight ruler (the most recessed portion).
  • the inorganic fiber board was placed on the inner wall of the electric furnace so that the surface on which the deformation amount before the heat treatment was measured as described above faced the inside of the electric furnace. Furthermore, in this electric furnace, the inorganic fiber board was heated at 300 ° C., 400 ° C., 500 ° C., 600 ° C., 700 ° C., 800 ° C. or 900 ° C. for 24 hours by a panel heater arranged in the electric furnace. . After heating, the amount of deformation of the inorganic fibrous board was measured in the same manner as before heating. And the value which reduced the deformation amount before a heating from the deformation amount after a heating was obtained as curvature amount (mm).
  • FIG. 5 shows the results of measuring the warpage (mm) of the inorganic fibrous board containing the fiber A.
  • FIG. 6 the result of having measured the curvature amount (mm) of the inorganic fibrous board containing the fiber B is shown.
  • the fiber A subjected to the heat treatment at 850 ° C. or higher is compared with the inorganic fiber board (“untreated fiber A” in the figure) containing the fiber A not subjected to the heat treatment.
  • the included inorganic fiber board had a small maximum warpage amount between 300 ° C. and 900 ° C., and the change in the warp amount was also reduced.
  • the surface facing the furnace becomes high temperature by heating, and the opposite surface becomes lower temperature. Accordingly, the heating up to 800 ° C. causes warping due to the temperature difference in the board, but at 900 ° C., the opposite surface is also heated, so that the warping is returned on many boards. If such a change in the amount of warping is large, it may cause cracks.
  • the fiber B subjected to the heat treatment at 800 ° C. or higher is compared with the inorganic fiber board (“untreated fiber B” in the figure) containing the fiber B not subjected to the heat treatment.
  • the amount of warpage of the inorganic fiber board contained was effectively reduced.

Abstract

一部が結晶化した生体溶解性無機繊維と、無機バインダーとを含み、前記生体溶解性無機繊維が、以下の組成を有するSiO/MgO繊維又はSiO/CaO繊維であることを特徴とする無機繊維質成形体。[SiO/MgO繊維]SiO66~82重量%、CaO1~9重量%、MgO10~30重量%、Al3重量%以下;[SiO/CaO繊維]SiO66~82重量%、CaO10~34重量%、MgO3重量%以下、Al5重量%以下

Description

無機繊維質成形体及びその製造方法並びに加熱設備
 本発明は、無機繊維質成形体及びその製造方法並びに加熱設備に関し、特に、生体溶解性無機繊維を含む無機繊維質成形体の加熱による変形の抑制に関する。
 無機繊維とバインダーとを含む無機繊維質成形体は、軽量で扱いやすく、且つ断熱性に優れるため、例えば、工業炉における断熱材として使用されている。一方、近年、無機繊維が人体に吸入されて肺に侵入することによる問題が指摘されている。
 そこで、人体に吸入されても問題を起こさない又は起こしにくい生体溶解性無機繊維が開発され、無機繊維質成形体の原料として使用されている(例えば、特許文献1)。
特開2008-162853号公報
 しかしながら、従来、例えば、生体溶解性無機繊維を含む無機繊維質成形体を加熱下で使用した場合、当該無機繊維質成形体に反りや収縮等の変形が生じやすかった。
 このような変形の原因の一つとしては、例えば、生体溶解性無機繊維は、MgOやCaOを含むことにより、アルミナ繊維等の生体溶解性を有しない無機繊維に比べて、加熱されると収縮しやすいことや、熱クリープを起こしやすいことが挙げられる。
 本発明は、上記課題に鑑みて為されたものであって、使用時の加熱又は少なくとも一部の高温温度範囲(以下使用時の加熱ともいう)による変形が効果的に抑制された無機繊維質成形体及びその製造方法並びに加熱設備を提供することをその目的の一つとする。
 上記課題を解決するための本発明の一実施形態に係る無機繊維質成形体は、一部が結晶化した生体溶解性無機繊維と、無機バインダーと、を含むことを特徴とする。本発明によれば、使用時の加熱による変形が効果的に抑制された無機繊維質成形体を提供することができる。
 また、前記無機繊維質成形体において、前記生体溶解性無機繊維は、ワラストナイト、ディオプサイド又はエンスタタイトの結晶を含むこととしてもよい。また、前記生体溶解性無機繊維のSiO含有量は、66~82質量%であることとしてもよい。また、前記生体溶解性無機繊維のCaO含有量は、10~34質量%であることとしてもよい。また、前記生体溶解性無機繊維のMgO含有量は、1質量%以下であることとしてもよい。
 上記課題を解決するための本発明の一実施形態に係る無機繊維質成形体の製造方法は、非晶質の生体溶解性無機繊維に加熱処理を施す第一工程と、前記加熱処理が施された前記生体溶解性無機繊維と、無機バインダーと、を含む無機繊維質成形体を成形する第二工程と、を含むことを特徴とする。本発明によれば、使用時の加熱による変形が効果的に抑制された無機繊維質成形体の製造方法を提供することができる。
 また、前記第一工程において、前記非晶質の生体溶解性無機繊維に結晶化温度以上の温度で加熱処理を施し、一部が結晶化した前記生体溶解性無機繊維を得ることとしてもよい。また、前記加熱処理が施された前記生体溶解性無機繊維は、ワラストナイト、ディオプサイド又はエンスタタイトの結晶を含むこととしてもよい。また、前記生体溶解性無機繊維のSiO含有量は、66~82質量%であることとしてもよい。また、前記生体溶解性無機繊維のCaO含有量は、10~34質量%であることとしてもよい。また、前記生体溶解性無機繊維のMgO含有量は、1質量%以下であることとしてもよい。
 上記課題を解決するための本発明の一実施形態に係る加熱設備は、前記いずれかの無機繊維質成形体を含むことを特徴とする。本発明によれば、使用時の加熱による変形が効果的に抑制された無機繊維質成形体を含む加熱設備を提供することができる。
 本発明によれば、使用時の加熱による変形が効果的に抑制された無機繊維質成形体及びその製造方法並びに加熱設備を提供することができる。
本発明の一実施形態に係る実施例において生体溶解性無機繊維の生体溶解性を評価した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例において生体溶解性無機繊維の生体溶解性を評価した結果の他の例を示す説明図である。 本発明の一実施形態に係る実施例において生体溶解性無機繊維の加熱処理による結晶の生成を解析した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例において無機繊維質成形体の加熱線収縮率を評価した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例において無機繊維質成形体の反り量を評価した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例において無機繊維質成形体の反り量を評価した結果の他の例を示す説明図である。
 以下に、本発明の一実施形態について説明する。なお、本発明は、本実施形態に限られるものではない。
 まず、本実施形態に係る無機繊維質成形体の製造方法(以下、「本方法」という。)について説明する。本方法は、非晶質の生体溶解性無機繊維に加熱処理を施す第一工程(以下、「加熱処理工程」という。)と、当該加熱処理が施された当該生体溶解性無機繊維と、無機バインダーと、を含む無機繊維質成形体を成形する第二工程(以下、「成形工程」という。)と、を含む。
 加熱処理工程においては、まず、非晶質の生体溶解性無機繊維を準備する。生体溶解性無機繊維は、無機繊維であって生体溶解性(例えば、生体の肺に吸入されても当該生体内で分解される性質)を有するものである。生体溶解性無機繊維は少なくとも一部が非晶質であり、非晶質であることは粉末X線回析(XRD)測定で確認される。
 生体溶解性無機繊維は、例えば、40℃における生理食塩水溶解率が1%以上の無機繊維である。
 生理食塩水溶解率は、例えば、次のようにして測定される。すなわち、先ず、無機繊維を200メッシュ以下に粉砕して調製された試料1g及び生理食塩水150mLを三角フラスコ(容積300mL)に入れ、40℃のインキュベーターに設置する。次に、三角フラスコに、毎分120回転の水平振動を50時間継続して加える。その後、ろ過により得られた濾液に含有されている各元素の濃度(mg/L)をICP発光分析装置により測定する。そして、測定された各元素の濃度と、溶解前の無機繊維における各元素の含有量(質量%)と、に基づいて、生理食塩水溶解率(%)を算出する。すなわち、例えば、測定元素が、ケイ素(Si)、マグネシウム(Mg)、カルシウム(Ca)及びアルミニウム(Al)である場合には、次の式により、生理食塩水溶解率C(%)を算出する;C(%)=[ろ液量(L)×(a1+a2+a3+a4)×100]/[溶解前の無機繊維の質量(mg)×(b1+b2+b3+b4)/100]。この式において、a1、a2、a3及びa4は、それぞれ測定されたケイ素、マグネシウム、カルシウム及びアルミニウムの濃度(mg/L)であり、b1、b2、b3及びb4は、それぞれ溶解前の無機繊維におけるケイ素、マグネシウム、カルシウム及びアルミニウムの含有量(質量%)である。
 また、生体溶解性無機繊維は、例えば、溶解速度定数が150ng/cm・h以上であり、好ましくは150~1500ng/cm・h、より好ましくは200~1500ng/cm・hの無機繊維である。
 また、生体溶解性無機繊維は、例えば、想定半減期が40日以下であり、好ましくは10~40日、より好ましくは10~30日の無機繊維である。
 生体溶解性無機繊維のSiO含有量は、例えば、50~82質量%であることとしてもよい。SiO含有量は、63~81質量%であることが好ましく、66~80質量%であることがより好ましく、71~76質量%であることがさらに好ましい。すなわち、生体溶解性無機繊維は、例えば、SiO含有量が66~82質量%であり、CaO含有量とMgO含有量との合計が18~34質量%の無機繊維である。CaO含有量とMgO含有量との合計は、19~34質量%であることが好ましく、20~34質量%であることがより好ましい。これらCaO含有量とMgO含有量との合計の範囲は、上述したSiO含有量の範囲と任意に組み合わせることができる。生体溶解性無機繊維のSiO含有量が上記の範囲であることによって、当該生体溶解性無機繊維は、生体溶解性に加えて、優れた耐熱性をも有することとなる。
 生体溶解性無機繊維のCaO含有量は、例えば、10~34質量%であることとしてもよい。すなわち、生体溶解性無機繊維は、例えば、SiO含有量が66~82質量%であり、CaO含有量が10~34質量%の無機繊維(以下、「SiO/CaO繊維」ということがある。)であることとしてもよい。CaO含有量は、12~32質量%であることが好ましく、14~30質量%であることがより好ましい。これらCaO含有量の範囲は、上述したSiO含有量の範囲、上述したCaO含有量とMgO含有量との合計の範囲と任意に組み合わせることができる。
 生体溶解性無機繊維のMgO含有量は、例えば、1質量%以下(すなわち、0~1質量%)であることとしてもよい。MgOは通常0質量%超となる。すなわち、生体溶解性無機繊維は、例えば、SiO含有量が66~82質量%であり、CaO含有量が10~34質量%であり、MgO含有量が1質量%以下のSiO/CaO繊維であることとしてもよい。MgO含有量は、0.9質量%以下であることが好ましく、0.8質量%以下であることがより好ましい。これらMgO含有量の範囲は、上述したSiO含有量の範囲、上述したCaO含有量とMgO含有量との合計の範囲、上述したCaO含有量の範囲と任意に組み合わせることができる。
 生体溶解性無機繊維のMgO含有量は、1質量%超、且つ20質量%以下であることとしてもよい。すなわち、生体溶解性無機繊維は、例えば、SiO含有量が66~82質量%であり、MgO含有量が1質量%超、且つ20質量%以下の無機繊維(以下、「SiO/MgO繊維」ということがある。)であることとしてもよい。MgO含有量は、2~19質量%であることが好ましく、3~19質量%であることがより好ましい。これらMgO含有量の範囲は、上述したSiO含有量の範囲、上述したCaO含有量とMgO含有量との合計の範囲と任意に組み合わせることができる。
 生体溶解性無機繊維は、例えば、SiO含有量、MgO含有量及びCaO含有量の合計が97質量%以上(すなわち、97~100質量%)であることとしてもよい。SiO含有量、MgO含有量及びCaO含有量の合計は、97.5質量%以上であることが好ましく、98質量%以上であることがより好ましい。これらSiO含有量、MgO含有量及びCaO含有量の合計の範囲は、上述したSiO含有量の範囲、上述したCaO含有量とMgO含有量との合計の範囲、上述したCaO含有量の範囲、上述したMgO含有量の範囲と任意に組み合わせることができる。
 なお、生体溶解性無機繊維は、SiOと、アルカリ土類金属酸化物(例えば、MgO及びCaOの少なくとも一方)とに加えて、さらに他の成分を含有してもよい。すなわち、生体溶解性無機繊維は、例えば、アルミナ(Al)、チタニア(TiO)及びジルコニア(ZrO)、酸化鉄(Fe)、酸化マンガン(MnO)、酸化カリウム(KO)からなる群より選択される1種又は2種以上をさらに含有してもよく、また、含有しなくてもよい。
 具体的に、生体溶解性無機繊維がAlを含有する場合、Al含有量は、例えば、5重量%以下、3.4重量%以下又は3.0重量%以下とできる。また、1.1重量%以上又は2.0重量%以上とできる。好ましくは0~3質量%、より好ましくは1~3質量%である。この範囲でAlを含むと強度が高くなる。この場合、生体溶解性無機繊維は、例えば、SiO含有量、MgO含有量、CaO含有量及びAl含有量の合計が98質量%以上(すなわち、98~100質量%)又は99質量%以上(すなわち、99~100質量%)であることとしてもよい。
 具体的に、以下の組成の生体溶解性無機繊維を例示できる。
 SiOとAlとZrOとTiOとの合計 50~82重量%
 CaOとMgOとの合計 18~50重量%
 さらに、以下の組成の生体溶解性無機繊維を例示できる。
 SiO 50~82重量%
 CaOとMgOとの合計 10~43重量%
 SiO/MgO繊維として以下の組成を例示できる。
 SiO 66~82重量%
 CaO 1~9重量%(例えば、2~8重量%とできる)
 MgO 10~30重量%(例えば、15~20重量%とできる)
 Al 3重量%以下
 他の酸化物 2重量%未満
 SiO/CaO繊維として以下の組成を例示できる。以下の組成の繊維は加熱後の生体溶解性、耐火性に優れる。
 SiO 66~82重量%(例えば、68~80重量%、70~80重量%、71~80重量%又は71.25~76重量%とできる)
 CaO 10~34重量%(例えば、18~30重量%、20~27重量%又は21~26重量%とできる)
 MgO 3重量%以下(例えば、1重量%以下とできる)
 Al 5重量%以下(例えば3.4重量%以下又は3重量%以下とできる。また、1.1重量%以上又は2.0重量%以上とできる)
 他の酸化物 2重量%未満
 上記の生体溶解性無機繊維は、他の成分として、アルカリ金属酸化物(KO、NaO等)、Fe、ZrO、TiO、P、B、R(RはSc,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Y又はこれらの混合物から選択される)等を1以上含んでもよく、含まなくてもよい。他の酸化物は、それぞれ、0.2重量%以下又は0.1重量%以下としてよい。
 アルカリ金属酸化物は含まれても含まれなくてもよく、0.2重量%以下、0.15重量%以下又は0.1重量%以下とすることができる。アルカリ金属酸化物は各酸化物を各々0.2重量%以下としてもよく、または各々0.1重量%以下としてもよい。また、アルカリ金属酸化物の合計を0.2重量%以下としてもよい。アルカリ金属酸化物は0.01重量%超、0.05重量%以上又は0.08重量%以上含まれていてもよい。
 KOは含まれても含まれなくてもよく、0.2重量%以下、0.15重量%以下又は0.1重量%以下とすることができる。KOは0.01重量%超、0.05重量%以上又は0.08重量%以上含まれていてもよい。
 NaOは含まれても含まれなくてよく、0.2重量%以下、0.15重量%以下又は0.1重量%以下とすることができる。NaOは0.01重量%超、0.05重量%以上又は0.08重量%以上含まれていてもよい。
 また、NaとKの合計の含有量を500ppm超としてもよい。
 生体溶解性無機繊維の平均繊維径は、無機繊維質成形体が好適に製造される範囲であれば特に限られず、例えば、1~10μmであり、好ましくは2~6μmである。平均繊維径が1μm未満である場合には、耐水性が低下しやすくなるため、製造される無機繊維質成形体の強度が低くなりやすい。また、平均繊維径が10μmを超える場合には、製造される無機繊維質成形体の密度が低くなりすぎるため、当該無機繊維質成形体の強度が低くなりやすい。
 生体溶解性無機繊維の平均繊維長は、無機繊維質成形体が好適に製造される範囲であれば特に限られず、例えば、1~200mmであり、好ましくは1~100mmである。平均繊維長が上記範囲内にあることにより、適切な密度を有する無機繊維質成形体を製造しやすくなる。
 次に、加熱処理工程においては、上述のようにして準備した非晶質の生体溶解性無機繊維に加熱処理を施し、当該加熱処理が施された当該生体溶解性無機繊維を得る。すなわち、この加熱処理工程を含む方法は、非晶質の生体溶解性無機繊維(以下、「未処理繊維」という。)に加熱処理を施して、当該加熱処理が施された生体溶解性無機繊維(以下、「加熱処理繊維」という。)を製造する方法でもある。製造された加熱処理繊維は、後述のとおり、無機繊維質成形体の原料として使用される。
 加熱処理の条件(例えば、温度及び時間)は、加熱処理繊維を含む無機繊維質成形体が加熱された場合に、当該無機繊維質成形体の変形(反り、収縮等)が、未処理繊維を含む無機繊維質成形体のそれに比べて低減されるよう決定されれば特に限られない。
 すなわち、加熱処理は、例えば、加熱処理繊維を含む無機繊維質成形体を加熱した場合の反り量が、未処理繊維を含む無機繊維質成形体のそれに比べて低減される条件で行う。また、加熱処理は、例えば、加熱処理繊維を含む無機繊維質成形体の300~1300℃での加熱線収縮率が、未処理繊維を含む無機繊維質成形体のそれに比べて低減される条件で行う。
 なお、加熱線収縮率は、例えば、無機繊維質成形体を電気炉中、300~1300℃の範囲内の一定温度で24時間加熱し、測定された加熱前後の当該無機繊維質成形体の長さに基づき、次の式から求められる;加熱線収縮率(%)={(X-Y)/X}×100。なお、この式において、「X」は加熱前の無機繊維質成形体の長さ(mm)を示し、「Y」は加熱後の無機繊維質成形体の長さ(mm)を示す。
 SiO/MgO繊維の加熱処理における加熱温度(以下、「加熱処理温度」という。)は、例えば、600~1300℃であり、好ましくは800~1300℃であり、より好ましくは850~1000℃である。
 SiO/CaO繊維の加熱処理における加熱温度(以下、「加熱処理温度」という。)は、例えば、820~1300℃であり、好ましくは830~1300℃であり、より好ましくは840~1000℃であり、最も好ましくは850~1000℃である。
 加熱処理温度は、例えば、未処理繊維の結晶化温度以上の温度であってもよい。すなわち、この場合、加熱処理工程においては、未処理繊維に結晶化温度以上の温度で加熱処理を施し、一部が結晶化した加熱処理繊維を得る。なお、未処理繊維の結晶化温度は、例えば、TG-DTA(熱重量-示差熱測定)により測定される。
 結晶化温度は、未処理繊維の化学組成に応じて変化するため、当該結晶化温度以上の加熱処理温度は一概に決定できないが、例えば、600~1300℃、600~1100℃、又は800~1000℃である。
 結晶化温度以上の温度で加熱処理を行うことにより、加熱処理繊維内には、その化学組成及び加熱処理温度に応じた種類の結晶が生成される。すなわち、加熱処理繊維は、例えば、その製造に使用された未処理繊維には含まれない結晶を含む。加熱処理繊維に含まれる結晶は、例えば、粉末X線回折により解析することができる。すなわち、加熱処理は、例えば、未処理繊維に加熱処理を施すことによって、粉末X線回折において当該未処理繊維では検出されなかった結晶が検出される加熱処理繊維が得られるように行う。
 加熱処理繊維が上述のSiO/CaO繊維である場合、一部が結晶化された加熱処理繊維は、例えば、ワラストナイトの結晶を含む。この場合、加熱処理繊維は、さらに他の結晶を含むこととしてもよい。すなわち、加熱処理繊維は、例えば、ワラストナイト、クリストバライト及びトリジマイトからなる群より選択される1種又は2種以上の結晶を含む。
 加熱処理繊維が上述のSiO/MgO繊維である場合、一部が結晶化された加熱処理繊維は、例えば、エンスタタイトの結晶を含む。この場合、加熱処理繊維は、さらに他の結晶を含むこととしてもよい。すなわち、加熱処理繊維は、例えば、エンスタタイト、ディオプサイト、クリストバライト及びトリジマイトからなる群より選択される1種又は2種以上の結晶を含む。
 加熱処理繊維が他の生体溶解性無機繊維(例えば、SiO含有量が35~45質量%、Al含有量が10~20質量%、MgO含有量が4~8質量%、CaO含有量が20~40質量%、Fe含有量が0~3質量%、MnO含有量が0~1質量%の生体溶解性無機繊維)である場合、一部が結晶化された加熱処理繊維は、例えば、ワラストナイト、アノサイト、ディオプサイト、アカルマナイト及びオーガイトからなる群より選択される1種又は2種以上の結晶を含むこととしてもよい。
 なお、加熱処理温度は、上述のとおり、加熱処理繊維を含む無機繊維質成形体が加熱された場合の変形が、未処理繊維を含む無機繊維質成形体のそれに比べて低減されるという効果が得られる範囲であれば特に限られず、例えば、未処理繊維の結晶化温度未満であってもよい。
 加熱処理における加熱時間(以下、「加熱処理時間」という。)もまた、上述の加熱処理による効果が得られる範囲であれば、特に限られない。すなわち、加熱処理時間は、例えば、1分~48時間であり、好ましくは3分~24時間である。
 具体的に、加熱処理温度が未処理繊維の結晶化温度以上である場合には、加熱処理時間は、例えば、3分~8時間であり、好ましくは5分~3時間である。
 また、生体溶解性無機繊維は、加熱処理が施されることにより、その生体溶解性が変化し得る。すなわち、生体溶解性無機繊維は、加熱処理が施されることにより、その生体溶解性が低下しやすい。特に、生体溶解性無機繊維を、その結晶化温度以上の温度で加熱して、当該生体溶解性無機繊維の一部を結晶化させる場合、加熱後の生体溶解性は、加熱前に比べて低下することが多い。
 この点、本発明の発明者らは、生体溶解性無機繊維として上述のSiO/CaO繊維を使用することにより、加熱処理前に比べてより優れた生体溶解性を有する加熱処理繊維が得られることを独自に見出した。
 すなわち、例えば、SiO含有量が66~82質量%であり、CaO含有量が10~34質量%のSiO/CaO繊維に、その結晶化温度以上の温度で加熱処理を施すことにより、得られる加熱処理繊維の生体溶解性は、加熱処理前に比べて顕著に増加する。さらに、この場合、加熱処理繊維は、SiO含有量が大きいため、優れた生体溶解性に加えて、優れた耐熱性をも有している。
 また、加熱処理繊維を含む無機繊維質成形体が工業炉壁に施工され高温に晒された場合には、例えば、当該加熱処理繊維のSiO/CaOの比率においてSiOの比率が小さくなると、当該加熱処理繊維がAlと化学反応を起こすことがあり、その結果、当該無機繊維質成形体の大きな変形等、各種炉材等へ不都合が生じることがある。
 加熱処理繊維とAlとの化学反応は、SiO/CaO/Alの成分の比率に依存して起こる現象であり、酸化物の固体状態図からも化学反応(溶融)が起こることが確認できる。この溶融を伴う化学反応は、例えば、生体溶解性無機繊維のSiO含有量を増加させることで抑制することができる。この点、上述のSiO/CaO繊維は、そのSiO含有量が大きいため、当該SiO/CaO繊維と、工業炉壁を構成するAlと、の化学反応が効果的に抑制される。
 さらに、例えば、SiO含有量が66~82質量%であり、CaO含有量が10~34質量%であり、MgO含有量が1質量%以下のSiO/CaO繊維も好ましく使用される。この場合、MgO含有量が小さいため、加熱処理繊維を含む無機繊維質成形体の加熱時の変形を効果的に低減することができる。
 すなわち、例えば、SiO/MgO繊維は、MgO含有量が比較的大きいため、その結晶化温度以上の温度での加熱によって、Si及びMgを主成分として含む結晶(例えば、エンスタタイト)が優先的に形成される。これに対し、上述したSiO/CaO繊維は、CaO含有量が高く、MgO含有量が低いため、その結晶化温度以上の温度での加熱によってSi及びCaを主成分として含む結晶(例えば、ワラストナイト)が優先的に形成される。Caのイオン半径はMgのそれに比べて大きいため、Si及びCaを主成分として含む結晶の比重は、Si及びMgを主成分として含む結晶のそれに比べて小さくなる。そして、加熱処理繊維に含まれる結晶の比重が小さいほど、当該加熱処理繊維の変形量(例えば、加熱線収縮率)は小さくなる。
 したがって、無機繊維質成形体が加熱処理繊維として上述したMgO含有量の小さいSiO/CaO繊維を含むことにより、当該無機繊維質成形体の加熱時の変形(反り、加熱線収縮等)が効果的に抑制される。
 なお、加熱処理によって生体溶解性無機繊維の生体溶解性が低下する場合であっても、当該加熱処理後の生体溶解性が所望の範囲内(例えば、40℃における生理食塩水溶解率が1%以上)であれば特に問題はない。
 次に、成形工程においては、上述の加熱処理工程で準備した加熱処理繊維と、無機バインダーと、を含む無機繊維質成形体を成形する。すなわち、まず、加熱処理繊維と無機バインダーとを含む原料を調製する。
 無機バインダーは、加熱処理繊維を結着するものであれば特に限られず、例えば、アニオン性のコロイダルシリカ、カチオン性のコロイダルシリカ等のコロイダルシリカ、ヒュームドシリカ、ジルコニアゾル、チタニアゾル、アルミナゾル、ベントナイト、カオリンからなる群より選択される1種又は2種以上を使用することができる。
 原料において、加熱処理繊維の含有量は、例えば、70~95.5質量%であり、無機バインダーの含有量は、例えば、0.5~30質量%である。
 原料は、加熱処理繊維及び無機バインダーに加えて、さらに他の成分を含有してもよい。すなわち、原料は、例えば、有機バインダーをさらに含有してもよい。有機バインダーは、加熱処理繊維を結着するものであれば特に限られず、例えば、澱粉、アクリル樹脂、ポリアクリルアミドからなる群より選択される1種又は2種以上である。原料は、例えば、耐火性無機粉末をさらに含有してもよい。耐火性無機粉末は、例えば、シリカ、アルミナ、チタニア、ジルコニア、窒化ケイ素、炭化ケイ素等のセラミックス粉末、及び/又はカーボンブラック等の炭素粉末である。
 原料は、加熱処理繊維、無機バインダー及び必要に応じてその他の成分を溶媒と混合することにより調製する。溶媒は、加熱処理繊維及び無機バインダーを混合し分散するものであれば特に限られず、例えば、水(例えば、蒸留水、イオン交換水、水道水、地下水、工業用水)及び/又は極性有機溶媒(例えば、エタノール、プロパノール等の1価のアルコール類、エチレングリコール等の2価のアルコール類)であり、好ましくは水である。
 こうして調製された無機繊維質成形体の原料は、不定形の組成物である。すなわち、原料は、可塑性のある組成物であり、例えば、流動性のある組成物(いわゆるスラリー等)である。
 成形工程においては、こうして調製された不定形の原料から、定形の無機繊維質成形体を製造する。すなわち、例えば、原料を所定形状の型に入れ、当該型内で当該原料から溶媒を除去し、さらに、当該原料を乾燥することにより、当該型の形状に対応した形状の無機繊維質成形体を得る。
 より具体的に、例えば、原料を底部に網が設置された成形型に流し込み、次いで、当該網を介して当該原料に含有される溶媒を吸引することにより当該溶媒を除去し、その後、当該原料を乾燥機中で加熱して乾燥させる。乾燥のための加熱温度は、例えば、60~150℃であり、好ましくは80~120℃である。
 なお、無機繊維質成形体の成形方法は、上述の吸引成形法に限られない。すなわち、例えば、原料として、スラリーに比べて流動性の低い不定形組成物を調製し、当該原料を所定形状の型に入れ、当該型内で乾燥及び焼成する方法によっても、無機繊維質成形体を得ることができる。
 本実施形態に係る無機繊維質成形体(以下、「本成形体」という。)は、このような本方法により好ましく製造される。すなわち、本成形体は、上述の加熱処理繊維と、無機バインダーと、を含む無機繊維質成形体である。本成形体は、例えば、一部が結晶化した生体溶解性無機繊維(加熱処理繊維)と、無機バインダーと、を含む無機繊維質成形体である。
 本成形体に含まれる加熱処理繊維のSiO含有量は、例えば、66~82質量%である。この場合、本成形体は、加熱処理繊維のSiO含有量が比較的大きいことによって、優れた耐熱性を有することとなる。
 本成形体に含まれる加熱処理繊維のCaO含有量は、例えば、10~34質量%である。すなわち、この加熱処理繊維は、例えば、SiO含有量が66~82質量%であり、CaO含有量が10~34質量%のSiO/CaO繊維である。
 一部が結晶化したSiO/CaO繊維は、例えば、ワラストナイトの結晶を含む。この場合、SiO/CaO繊維は、例えば、ワラストナイト、クリストバライト及びトリジマイトからなる群より選択される1種又は2種以上の結晶を含むこととしてもよい。
 これらのSiO/CaO繊維は、上述のとおり、無機繊維質成形体の成形に先立って加熱処理が施されていることによって、当該加熱処理によって増大された、非常に優れた生体溶解性を有している。
 また、SiO/CaO繊維のSiO含有量が大きいことにより、上述のとおり、本成形体が、Alを含む工業炉壁で加熱して使用された場合であっても、当該SiO/CaO繊維と当該Alとの化学反応が効果的に抑制され、本成形体の変形も効果的に抑制される。
 本成形体に含まれる加熱処理繊維のMgO含有量は、例えば、1質量%以下である。すなわち、この加熱処理繊維は、例えば、SiO含有量が66~82質量%であり、CaO含有量が10~34質量%であり、MgO含有量が1質量%以下のSiO/CaO繊維である。この場合、加熱処理繊維のMgO含有量が小さいことにより、上述のとおり、本成形体の加熱時の変形(反り、加熱線収縮等)が効果的に抑制される。
 本成形体における加熱処理繊維及び無機バインダーの含有量は、特に限られず、その用途や求められる特性によって適宜決定される。例えば、本成形体において、加熱処理繊維の含有量は70~95.5質量%である。より具体的に、例えば、本成形体において、加熱処理繊維の含有量は70~95.5質量%であり、無機バインダーの含有量は0.5~30質量%である。
 本成形体の密度は、特に限られず、その用途や求められる特性によって適宜決定される。例えば、本成形体の密度は、0.1~1.0kg/cmであり、好ましくは0.15~0.6kg/cmである。
 本成形体の形状は、特に限られず、その用途や求められる特性によって適宜決定される。例えば、本成形体の形状は、板状(四角等の多角形の板状(ボード)、円板状等)、筒状(四角等の多角形の筒状、円筒状等)、錘状(四角錘等の多角錐、円錐等)である。尚、ペーパー(通常厚みが8mm以下)を含まないとしてもよい。
 本成形体は、生体溶解性繊維として加熱処理繊維を含有することにより、加熱された状態で使用された場合の変形が効果的に抑制されている。すなわち、例えば、好ましくは、本成形体を1100℃で24時間加熱した場合の加熱線収縮率は、3.0%以下であり、より具体的には、0.0~3.0%である。本成形体を400℃で24時間加熱した場合の反り量は、1.3mm以下であり、より具体的には、1.0mm以下である。測定方法は実施例に示す通りである。
 本成形体は、様々な用途に適用される。すなわち、本成形体は、例えば、熱処理装置、工業炉、焼却炉等の加熱設備における断熱材、シール材、パッキング材として使用される。また、本成形体は、例えば、吸音材、ろ過材、触媒担体、複合材料用補強材、耐火被覆材としても使用される。
 次に、本実施形態に係る具体的な実施例について説明する。
 加熱処理前後の生体溶解性無機繊維の生体溶解性を評価した。まず、第一の生体溶解性無機繊維として、SiO含有量が73質量%、CaO含有量が21~26質量%、MgO含有量が1質量%以下、Alを1~3質量%の非晶質のSiO/CaO繊維(以下、「繊維A」という。)を準備した。繊維Aの結晶化温度は895℃であった。
 次に、繊維Aに加熱処理を施した。加熱処理温度は、800℃、1000℃又は1100℃とした。加熱処理時間は24時間とした。
 そして、加熱処理前及び各温度での加熱処理後の繊維Aの生体溶解性を評価した。すなわち、生体溶解性を示す指標として、溶解速度定数(ng/cm・h)及び想定半減期(日)を評価した。
 繊維Aの溶解速度定数は、次のようにして測定した。すなわち、まず、繊維Aを45μmの篩に通し、ショットを除去した繊維Aを濾紙上に置いた。次いで、マイクロポンプにより、繊維A上に生理食塩水を滴下させ、繊維A及び濾紙を通過した濾液をタンク内に貯めた。所定時間経過後に貯まった濾液を回収した。そして、回収された濾液中の溶出成分をICP発光分析装置により定量し、溶出量(ng)を得た。溶解速度定数は、次の式により算出した;溶解速度定数(ng/cm・h)=溶出量(ng)/(繊維Aの比表面積(cm)×試験時間(h))。
 想定半減期は、EU指令97/69/ECのNoteQに係る適用除外条件を満たすか否かの試験(ドイツ基準)を参考にして測定した。すなわち、この試験では、動物の気管内への注入による短期の生体内滞留性試験において、20μmより長い繊維が40日未満の荷重半減期をもつ場合、当該繊維は適用除外条件を満たすこととなる。そこで、加熱処理前の繊維Aを使用して、この試験を行ったところ、当該繊維Aの荷重半減期は19日であった。そして、加熱処理後の繊維Aの想定半減期は、加熱処理前の繊維Aの溶解速度定数を当該加熱処理後の繊維Aの溶解速度定数で除した値に、当該加熱処理前の繊維Aの荷重半減期を乗じることにより算出した。
 また、第二の生体溶解性無機繊維として、SiO含有量が76質量%、CaO含有量が2~6質量%、MgO含有量が16~20質量%、Alを1~2質量%の非晶質のSiO/MgO繊維(以下、「繊維B」という。)を準備した。繊維Bの結晶化温度は857℃であった。
 次に、繊維Bに加熱処理を施した。加熱処理温度は、700℃、800℃、850℃、900℃又は1000℃とした。加熱処理時間は、700℃、800℃及び1000℃については24時間、850℃及び900℃については50時間とした。
 そして、上述の繊維Aの場合と同様に、繊維Bの加熱処理前及び各温度での加熱処理後の繊維Bの生体溶解性を評価した。
 図1には、繊維Aの生体溶解性を評価した結果を示す。図2には、繊維Bの生体溶解性を評価した結果を示す。図1及び図2に示すように、加熱処理前(図中の「未処理」)の繊維A及び繊維Bはいずれも、優れた生体溶解性を有していた。
 繊維Aは、図1に示すように、加熱処理が施されることにより、その生体溶解性が増大した。特に、繊維Aの結晶化温度を超える温度で加熱処理を行うことにより、当該繊維Aの生体溶解性は顕著に増大した。このように、加熱処理後の繊維Aは、極めて優れた生体溶解性を有していた。
 繊維Bは、図2に示すように、加熱処理が施されることにより、その生体溶解性が低下した。特に、繊維Bの結晶化温度付近又はそれより高い温度で加熱処理を行うことにより、当該繊維Bの生体溶解性は著しく低下した。
 繊維Aに加熱処理を施し、当該繊維Aにおける結晶の生成を解析した。まず、繊維Aを加熱処理した。加熱処理温度は、600℃、700℃、800℃、900℃、1000℃、1100℃、1200℃、1300℃又は1400℃とした。加熱処理時間は24時間とした。次いで、加熱処理後の繊維Aを粉末X線回折(XRD)で解析した。
 図3には、各加熱処理温度での加熱処理により得られた繊維AのXRD測定結果を示す。図3において、「△」印はワラストナイト(CaSiO)の結晶のピークを示し、「□」印はシュードワラストナイトの結晶のピークを示し、「○」印はクリストバライトの結晶のピークを示し、「×」印はトリジマイトの結晶のピークを示す。
 図3に示すように、繊維Aの結晶化温度より高い加熱処理温度で加熱処理を行うことによって、当該繊維Aに当該加熱処理前には検出されなかった結晶が生成されることが確認された。
 すなわち、900℃以上で加熱処理を行うことにより、ワラストナイトの結晶が生成された。また、1100℃以上で加熱処理を行うことにより、クリストバライトの結晶が生成された。また、1200℃以上で加熱処理を行うことにより、シュードワラストナイトの結晶が生成された。また、1300℃以上で加熱処理を行うことにより、トリジマイトの結晶が生成された。
 また、繊維Aの場合と同様に、繊維Bに加熱処理を施し、XRD測定を行った。その結果、900℃以上で加熱処理を行うことにより、エンスタタイトの結晶が生成された。また、1100℃以上で加熱処理を行うことにより、クリストバライトの結晶が生成された。また、1300℃以上で加熱処理を行うことにより、トリジマイトの結晶が生成された。
 繊維Aを含む無機繊維質成形体を製造し、その加熱線収縮率を評価した。まず、加熱処理が施されていない繊維A、850℃で10分の加熱処理が施された繊維A及び900℃で10分の加熱処理が施された繊維Aを準備した。
 そして、いずれかの繊維Aを100重量部と、無機バインダーとしてコロイダルシリカ(ST30、日産化学工業株式会社製)を5重量部と、有機バインダーとして澱粉(ペトロサイズJ、日澱化学株式会社製)を4.5重量部及び凝集材(ポリストロン117、荒川化学工業株式会社製)を0.5重量部と、を5000重量部の水と混合して、原料スラリーを調製した。
 次に、この原料スラリーを、底部に網が設置された成形型に流し込んだ。そして、成形型の網を介して原料スラリーに含有される水を吸引し除去した。その後、脱水された原料を乾燥機中で加熱して乾燥させた。
 こうして、600mm×900mm、厚さ50mmの四角形板状の無機繊維質ボードを成形した。無機繊維質ボードにおいて、繊維Aの含有量は91.0質量%であり、コロイダルシリカの含有量は4.5質量%であった。
 さらに、無機繊維質ボードを電気炉中、700℃、800℃、900℃、1000℃、1100℃、1200℃、1260℃又は1300℃で24時間加熱した。そして、無機繊維質ボードの加熱線収縮率を次の式より求めた;加熱線収縮率(%)={(X-Y)/X}×100。この式において、「X」は加熱前の無機繊維質ボードの長さ(mm)であり、「Y」は加熱後の無機繊維質ボードの長さ(mm)であった。
 図4には、加熱線収縮率を測定した結果を示す。図4に示すように、加熱処理が施された繊維Aを使用して製造された無機繊維質ボード(図中の「850℃処理繊維A」及び「900℃処理繊維A」)の加熱線収縮率は、当該加熱処理が施されていない繊維Aを使用して製造された無機繊維質ボード(図中の「未処理繊維A」)に比べて低減された。
 特に、結晶化温度より高い加熱処理温度で加熱処理が施された繊維Aを含む無機繊維質ボード(図中の「900℃処理繊維A」)の加熱線収縮率は、測定時の加熱温度が700~1300℃の全ての範囲において顕著に低減された。
 繊維A又は繊維Bを含む無機繊維質成形体を製造し、当該無機繊維質成形体を加熱した場合の反り量を評価した。まず、繊維A及び繊維Bに加熱処理を施した。
 すなわち、加熱処理が施されていない繊維A、800℃で5分の加熱処理が施された繊維A、850℃で5分の加熱処理が施された繊維A、850℃で10分の加熱処理が施された繊維A、900℃で5分の加熱処理が施された繊維A、及び950℃で10分の加熱処理が施された繊維Aを準備した。
 また、加熱処理が施されていない繊維B、800℃で5分の加熱処理が施された繊維B、及び900℃で10分の加熱処理が施された繊維Bを準備した。
 次に、繊維A又は繊維Bを含む無機繊維質ボードを製造した。すなわち、いずれかの繊維Aを100重量部と、無機バインダーとしてコロイダルシリカ(ST30、日産化学工業株式会社製)を5重量部と、有機バインダーとして澱粉(ペトロサイズJ、日澱化学株式会社製)を4.5重量部及び凝集材(ポリストロン117、荒川化学工業株式会社製)を0.5重量部と、を5000重量部の水と混合して、原料スラリーを調製した。そして、上述の実施例3と同様にして、繊維Aを含む無機繊維質ボードを製造した。
 また、いずれかの繊維Bを100重量部と、無機バインダーとしてコロイダルシリカ(ST30、日産化学工業株式会社製)を5重量部と、有機バインダーとして澱粉(ペトロサイズJ、日澱化学株式会社製)を4.5重量部及び凝集材(ポリストロン117、荒川化学工業株式会社製)を0.5重量部と、を5000重量部の水と混合して、原料スラリーを調製した。そして、上述の実施例3と同様にして、繊維Bを含む無機繊維質ボードを製造した。
 次に、無機繊維質ボードの反り量を測定した。まず、上述のようにして製造した無機繊維質ボードを860mm×450mm、厚さ50mmのサイズに切り出して試験片とした。この試験片の表面のうち、後述の加熱時に電気炉の内側に向くよう配置される一つの表面(860mm×450mmの表面)を決定し、当該決定された表面の長手方向の一方端から他方端に直定規を渡し、当該表面の当該直定規から最も離れた部分(最も凹んでいる部分)と、当該直定規と、の距離(加熱処理前の変形量)を測定した。
 その後、上述のように加熱処理前の変形量が測定された表面を電気炉の内側に向くよう、無機繊維質ボードを当該電気炉の内壁に配置した。さらに、この電気炉内において、当該電気炉内に配置したパネルヒーターによって、無機繊維質ボードを、300℃、400℃、500℃、600℃、700℃、800℃又は900℃で24時間加熱した。加熱後、上述の加熱前と同様にして、無機繊維質ボードの変形量を測定した。そして、加熱後の変形量から加熱前の変形量を減じた値を反り量(mm)として得た。
 図5には、繊維Aを含む無機繊維質ボードの反り量(mm)を測定した結果を示す。図6には、繊維Bを含む無機繊維質ボードの反り量(mm)を測定した結果を示す。
 図5に示すように、加熱処理が施されていない繊維Aを含む無機繊維質ボード(図中の「未処理繊維A」)に比べて、850℃以上の加熱処理が施された繊維Aを含む無機繊維質ボードは、300℃~900℃の間の最大反り量が小さく、反り量の変化も低減された。無機繊維質ボードは、炉に対向する面が加熱により高温になり、反対面はより低温となる。従って、800℃までの加熱ではボード内の温度差により反りが生じるが、900℃では反対面も加熱されるため多くのボードでは反りが戻っている。このような反り量の変化が大きいと割れ等の原因となる。
 図6に示すように、加熱処理が施されていない繊維Bを含む無機繊維質ボード(図中の「未処理繊維B」)に比べて、800℃以上の加熱処理が施された繊維Bを含む無機繊維質ボードの反り量は効果的に低減された。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。

Claims (9)

  1.  一部が結晶化した生体溶解性無機繊維と、無機バインダーとを含み、
     前記生体溶解性無機繊維が、以下の組成を有するSiO/MgO繊維又はSiO/CaO繊維である
     ことを特徴とする無機繊維質成形体。
    [SiO/MgO繊維]
     SiO 66~82重量%
     CaO 1~9重量%
     MgO 10~30重量%
     Al 3重量%以下
    [SiO/CaO繊維]
     SiO 66~82重量%
     CaO 10~34重量%
     MgO 3重量%以下
     Al 5重量%以下
  2.  前記生体溶解性無機繊維は、ワラストナイト、ディオプサイド又はエンスタタイトの結晶を含む
     ことを特徴とする請求項1に記載された無機繊維質成形体。
  3.  前記成形体がボードであり、400℃で24時間加熱したときの反り量が1.3mm以下である
     ことを特徴とする請求項1又は2に記載された無機繊維質成形体。
  4.  以下の組成を有するSiO/MgO繊維である、非晶質の生体溶解性無機繊維に600~1300℃の加熱処理を施す第一工程と、
     前記加熱処理が施された前記生体溶解性無機繊維と、無機バインダーと、を含む無機繊維質成形体を成形する第二工程と、
     を含む
     ことを特徴とする無機繊維質成形体の製造方法。
    [SiO/MgO繊維]
     SiO 66~82重量%
     CaO 1~9重量%
     MgO 10~30重量%
     Al 3重量%以下
  5.  以下の組成を有するSiO/CaO繊維である、非晶質の生体溶解性無機繊維に820~1300℃の加熱処理を施す第一工程と、
     前記加熱処理が施された前記生体溶解性無機繊維と、無機バインダーと、を含む無機繊維質成形体を成形する第二工程と、
     を含む
     ことを特徴とする無機繊維質成形体の製造方法。
    [SiO/CaO繊維]
     SiO 66~82重量%
     CaO 10~34重量%
     MgO 3重量%以下
     Al 5重量%以下
  6.  前記第一工程において、前記非晶質の生体溶解性無機繊維に結晶化温度以上の温度で加熱処理を施し、一部が結晶化した前記生体溶解性無機繊維を得る
     ことを特徴とする請求項4又は5に記載された無機繊維質成形体の製造方法。
  7.  前記加熱処理が施された前記生体溶解性無機繊維は、ワラストナイト、ディオプサイド又はエンスタタイトの結晶を含む
     ことを特徴とする請求項4~6のいずれかに記載された無機繊維質成形体の製造方法。
  8.  前記成形体がボードであり、400℃で24時間加熱したときの反り量が1.3mm以下である
     ことを特徴とする請求項4~7のいずれかに記載された無機繊維質成形体の製造方法。
  9.  請求項1~3のいずれかに記載された無機繊維質成形体を含む
     ことを特徴とする加熱設備。
PCT/JP2011/005763 2010-10-14 2011-10-14 無機繊維質成形体及びその製造方法並びに加熱設備 WO2012049858A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11832302.1A EP2628717A4 (en) 2010-10-14 2011-10-14 INORGANIC FIBER FORM BODIES, METHOD FOR THE PRODUCTION THEREOF AND HEATING DEVICE THEREFOR
KR1020137009307A KR20140020826A (ko) 2010-10-14 2011-10-14 무기 섬유질성형체 및 그 제조 방법 및 가열 설비
AU2011315024A AU2011315024B2 (en) 2010-10-14 2011-10-14 Inorganic fiber molded article, method for producing same, and heating equipment
CN201180049363.9A CN103153913B (zh) 2010-10-14 2011-10-14 无机纤维质成型体及其制造方法以及加热设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-231303 2010-10-14
JP2010231303 2010-10-14
JP2011-154567 2011-07-13
JP2011154567A JP4975179B2 (ja) 2010-10-14 2011-07-13 無機繊維質成形体及びその製造方法並びに加熱設備

Publications (1)

Publication Number Publication Date
WO2012049858A1 true WO2012049858A1 (ja) 2012-04-19

Family

ID=45938099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005763 WO2012049858A1 (ja) 2010-10-14 2011-10-14 無機繊維質成形体及びその製造方法並びに加熱設備

Country Status (7)

Country Link
US (1) US20120100983A1 (ja)
EP (1) EP2628717A4 (ja)
JP (1) JP4975179B2 (ja)
KR (1) KR20140020826A (ja)
CN (1) CN103153913B (ja)
AU (1) AU2011315024B2 (ja)
WO (1) WO2012049858A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175545A1 (ja) * 2012-05-22 2013-11-28 ニチアス株式会社 加熱装置
JP5863917B1 (ja) * 2014-09-22 2016-02-17 ニチアス株式会社 耐火構造及びその使用方法
WO2017090633A1 (ja) * 2015-11-27 2017-06-01 曙ブレーキ工業株式会社 摩擦材
US9944552B2 (en) 2013-07-22 2018-04-17 Morgan Advanced Materials Plc Inorganic fibre compositions
US10894737B2 (en) 2016-01-15 2021-01-19 Thermal Ceramics Uk Limited Apparatus and method for forming melt-formed inorganic fibres
DE102021211745A1 (de) 2020-10-23 2022-04-28 Thermal Ceramics Uk Limited Wärmeisolierung
CN114635229A (zh) * 2022-02-25 2022-06-17 江苏恒科新材料有限公司 一种隔热聚酯纳米纤维膜的制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940134B2 (en) * 2011-04-05 2015-01-27 Nichias Corporation Paper comprising heat treated bio-soluble inorganic fibers, and method and equipment for making same
JP5022512B1 (ja) * 2011-12-01 2012-09-12 ニチアス株式会社 不定形組成物
JP5856541B2 (ja) * 2012-06-07 2016-02-09 ニチアス株式会社 生理食塩水に可溶なAl−Ca系無機繊維及びその組成物
JP2014228035A (ja) * 2013-05-21 2014-12-08 イソライト工業株式会社 耐火断熱材及びその製造方法
CN103405167B (zh) * 2013-08-09 2016-01-20 赵伟 家用食品烘烤装置
JP5634637B1 (ja) * 2014-08-08 2014-12-03 ニチアス株式会社 生体溶解性無機繊維
JP6496268B2 (ja) * 2016-03-29 2019-04-03 日本碍子株式会社 セラミックス焼成体の製造方法
JP6453824B2 (ja) * 2016-09-07 2019-01-16 ニチアス株式会社 無機繊維質成形体
JP6940792B2 (ja) * 2019-12-03 2021-09-29 デンカ株式会社 無機繊維成形体、加熱炉、構造体、及び無機繊維成形体の製造方法
DE102022203542A1 (de) 2022-04-07 2023-10-12 E.G.O. Elektro-Gerätebau GmbH Wärmedämmformkörper und Verfahren zur Herstellung eines solchen Wärmedämmformkörpers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003335A (ja) * 2001-06-21 2003-01-08 Toshiba Monofrax Co Ltd 無機繊維
JP2003089547A (ja) * 2001-04-09 2003-03-28 Toshiba Monofrax Co Ltd 生理食塩水に可溶な無機繊維とその製造方法
JP2005089913A (ja) * 2003-09-18 2005-04-07 Saint-Gobain Tm Kk 無機繊維およびその製造方法
JP2005515307A (ja) * 2002-01-10 2005-05-26 ユニフラックス コーポレイション 高温耐性ガラス質無機繊維
JP2007197870A (ja) * 2006-01-27 2007-08-09 Nichias Corp 無機繊維質成形体及びその製造方法
JP2007211963A (ja) * 2006-02-13 2007-08-23 Ibiden Co Ltd 無機繊維体
JP2008518119A (ja) * 2004-11-01 2008-05-29 ザ・モーガン・クルーシブル・カンパニー・ピーエルシー アルカリ土類シリケート繊維の改質
JP2008162853A (ja) 2006-12-28 2008-07-17 Nichias Corp 無機繊維質成形体及び不定形無機繊維質組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR204579A1 (es) * 1974-05-30 1976-02-12 Babcock & Wilcox Co Procedimiento para la formacion de un producto eristalino elastico de grano fino y material obtenido
JP2000220037A (ja) * 1999-01-28 2000-08-08 Nichias Corp 生理学的媒体に可溶な非晶質無機繊維
JP2002266169A (ja) * 2000-12-27 2002-09-18 Toshiba Monofrax Co Ltd 耐熱性無機繊維及び無機繊維製品
KR101047623B1 (ko) * 2001-10-09 2011-07-07 쓰리엠 이노베이티브 프로퍼티즈 컴파니 생체가용성 무기 섬유 및 운모질 결합제를 함유하는 조성물
GB0424190D0 (en) * 2004-11-01 2004-12-01 Morgan Crucible Co Modification of alkaline earth silicate fibres
CN101460717B (zh) * 2006-06-01 2013-01-16 3M创新有限公司 多层安装垫
AU2007327075B8 (en) * 2006-11-28 2012-09-06 Morgan Advanced Materials Plc Inorganic fibre compositions
US20080178992A1 (en) * 2007-01-31 2008-07-31 Geo2 Technologies, Inc. Porous Substrate and Method of Fabricating the Same
JP4977253B1 (ja) * 2011-03-30 2012-07-18 ニチアス株式会社 無機繊維質ペーパー及びその製造方法並びに設備
JP4937414B1 (ja) * 2011-03-30 2012-05-23 ニチアス株式会社 硬化定形物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089547A (ja) * 2001-04-09 2003-03-28 Toshiba Monofrax Co Ltd 生理食塩水に可溶な無機繊維とその製造方法
JP2003003335A (ja) * 2001-06-21 2003-01-08 Toshiba Monofrax Co Ltd 無機繊維
JP2005515307A (ja) * 2002-01-10 2005-05-26 ユニフラックス コーポレイション 高温耐性ガラス質無機繊維
JP2005089913A (ja) * 2003-09-18 2005-04-07 Saint-Gobain Tm Kk 無機繊維およびその製造方法
JP2008518119A (ja) * 2004-11-01 2008-05-29 ザ・モーガン・クルーシブル・カンパニー・ピーエルシー アルカリ土類シリケート繊維の改質
JP2007197870A (ja) * 2006-01-27 2007-08-09 Nichias Corp 無機繊維質成形体及びその製造方法
JP2007211963A (ja) * 2006-02-13 2007-08-23 Ibiden Co Ltd 無機繊維体
JP2008162853A (ja) 2006-12-28 2008-07-17 Nichias Corp 無機繊維質成形体及び不定形無機繊維質組成物

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102183051B1 (ko) * 2012-05-22 2020-11-25 니찌아스 카부시키카이샤 가열장치
CN104335676A (zh) * 2012-05-22 2015-02-04 霓佳斯株式会社 加热装置
US10143042B2 (en) 2012-05-22 2018-11-27 Nichias Corporation Heating device
KR20190097330A (ko) * 2012-05-22 2019-08-20 니찌아스 카부시키카이샤 가열장치
WO2013175545A1 (ja) * 2012-05-22 2013-11-28 ニチアス株式会社 加熱装置
US9944552B2 (en) 2013-07-22 2018-04-17 Morgan Advanced Materials Plc Inorganic fibre compositions
JP5863917B1 (ja) * 2014-09-22 2016-02-17 ニチアス株式会社 耐火構造及びその使用方法
WO2016047041A1 (ja) * 2014-09-22 2016-03-31 ニチアス株式会社 耐火構造及びその使用方法
US11077641B2 (en) 2014-09-22 2021-08-03 Nichias Corporation Fireproof construction and method for using same
US10584757B2 (en) 2015-11-27 2020-03-10 Akebono Brake Industry Co., Ltd. Friction material
WO2017090633A1 (ja) * 2015-11-27 2017-06-01 曙ブレーキ工業株式会社 摩擦材
US10894737B2 (en) 2016-01-15 2021-01-19 Thermal Ceramics Uk Limited Apparatus and method for forming melt-formed inorganic fibres
DE102021211745A1 (de) 2020-10-23 2022-04-28 Thermal Ceramics Uk Limited Wärmeisolierung
DE102021211747A1 (de) 2020-10-23 2022-04-28 Thermal Ceramics Uk Limited Wärmeisolierung
WO2022084655A1 (en) 2020-10-23 2022-04-28 Thermal Ceramics Uk Limited Thermal insulation
DE102021211746A1 (de) 2020-10-23 2022-04-28 Thermal Ceramics Uk Limited Wärmeisolierung
DE112021005608T5 (de) 2020-10-23 2023-08-24 Thermal Ceramics Uk Limited Wärmeisolierung
DE102021211747B4 (de) 2020-10-23 2024-02-29 Thermal Ceramics Uk Limited Wärmeisolierung
CN114635229A (zh) * 2022-02-25 2022-06-17 江苏恒科新材料有限公司 一种隔热聚酯纳米纤维膜的制备方法

Also Published As

Publication number Publication date
EP2628717A4 (en) 2014-04-16
JP2012102450A (ja) 2012-05-31
JP4975179B2 (ja) 2012-07-11
AU2011315024B2 (en) 2015-03-19
KR20140020826A (ko) 2014-02-19
AU2011315024A1 (en) 2013-03-14
CN103153913B (zh) 2016-04-20
EP2628717A1 (en) 2013-08-21
US20120100983A1 (en) 2012-04-26
CN103153913A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
JP4975179B2 (ja) 無機繊維質成形体及びその製造方法並びに加熱設備
JP4977253B1 (ja) 無機繊維質ペーパー及びその製造方法並びに設備
JP5015336B1 (ja) 無機繊維質ペーパー及びその製造方法
JP5277337B1 (ja) 加熱装置
EP2692712B1 (en) Method of hardening a shaped article
JP2007197264A (ja) 無機繊維質成形体
KR20130130842A (ko) 습윤 블랭킷
US8940134B2 (en) Paper comprising heat treated bio-soluble inorganic fibers, and method and equipment for making same
JP5236100B1 (ja) 無機繊維質ペーパーからなる緩衝材及びその製造方法並びに設備
JP5148770B1 (ja) 無機繊維質ペーパーからなる緩衝材及びその製造方法
JP2013243120A (ja) 加熱装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180049363.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832302

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011832302

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011315024

Country of ref document: AU

Date of ref document: 20111014

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137009307

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE