WO2012037290A2 - Oculaire doté d'un afficheur réflexif éclairé uniformément - Google Patents

Oculaire doté d'un afficheur réflexif éclairé uniformément Download PDF

Info

Publication number
WO2012037290A2
WO2012037290A2 PCT/US2011/051650 US2011051650W WO2012037290A2 WO 2012037290 A2 WO2012037290 A2 WO 2012037290A2 US 2011051650 W US2011051650 W US 2011051650W WO 2012037290 A2 WO2012037290 A2 WO 2012037290A2
Authority
WO
WIPO (PCT)
Prior art keywords
eyepiece
image
light
user
display
Prior art date
Application number
PCT/US2011/051650
Other languages
English (en)
Other versions
WO2012037290A3 (fr
Inventor
Ralph F. Osterhout
John D. Haddick
Robert Michael Lohse
John N. Border
Gregory D. Miller
Ross W. Stovall
Original Assignee
Osterhout Group, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/037,324 external-priority patent/US20110214082A1/en
Priority claimed from US13/037,355 external-priority patent/US20110275923A1/en
Application filed by Osterhout Group, Inc. filed Critical Osterhout Group, Inc.
Publication of WO2012037290A2 publication Critical patent/WO2012037290A2/fr
Publication of WO2012037290A3 publication Critical patent/WO2012037290A3/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/086Auxiliary lenses located directly on a main spectacle lens or in the immediate vicinity of main spectacles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form

Definitions

  • the present disclosure relates to an augmented reality eyepiece, associated control technologies, and applications for use.
  • an eyepiece in an aspect of the invention, includes a mechanical frame adapted to secure a lens and an image source facility above the lens.
  • the image source facility includes an LED, a planar illumination facility and a reflective display.
  • the planar illumination facility is adapted to convert a light beam from the LED received on a side of the planar illumination facility into a top emitting planar light source.
  • the planar illumination facility is positioned to uniformly illuminate the reflective display, the planar illumination facility further adapted to be substantially transmissive to allow image light reflected from the reflective display to pass through the planar illumination facility towards a beam splitter.
  • the beam splitter is positioned to receive the image light from the reflective display and to reflect a portion of the image light onto a mirrored surface.
  • the mirrored surface is positioned and shaped to reflect the image light into an eye of a wearer of the eyepiece thereby providing an image within a field of view, the mirrored surface further adapted to be partially transmissive within an area of image reflectance.
  • the reflective display is a liquid crystal display such as a liquid crystal on silicon (LCoS) display, cholesteric liquid crystal display, guest-host liquid crystal display, polymer dispersed liquid crystal display, and phase retardation liquid crystal display, or a bistable display such as electrophoretic, electrofluidic, electrowetting, electrokinetic, and cholesteric liquid crystal, or a combination thereof.
  • LCD liquid crystal on silicon
  • the planar illumination facility is less than one of 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 4.5 mm or 5 mm in thickness.
  • the planar illumination facility may be a cover glass over the reflective display.
  • the planar illumination facility may include a wedge shaped optic adapted to receive the light from the LED and reflect, off of an upper decline surface, the light rom the LED in an upward direction towards the reflective display and wherein the image light reflected from the reflective display is reflected back towards the wedge shaped optic and passes through the wedge shaped optic in a direction towards the polarizing beam splitter.
  • the planar illumination facility may further include a display image direction correction optic to further redirect the image towards the beam splitter.
  • the planar illumination facility includes an optic with a lower surface, wherein the lower surface includes imperfections adapted to redirect the light from the LED in a upward direction to illuminate the reflective display and wherein the image light reflected from the reflective display is projected back towards the optic with a lower surface and passes through the optic with the lower surface in a direction towards the polarizing beam splitter.
  • the planar illumination facility may further include a correction optic that is adapted to correct for image dispersion caused by the imperfections.
  • the planar illumination facility may include a multi-layered optic, wherein each layer is on an angle adapted to reflect a portion of the light beam from the LED in an upward direction to illuminate the reflective display and wherein the image from the reflective display is projected back towards the multi-layered optic and passes through the multi-layered optic in a direction towards the polarizing beam splitter.
  • the planar illumination facility may include a diffuser to expand the cone angle of the image light as it passes through the planar illumination facility to the beam splitter.
  • FIG. 2 depicts
  • FIG. 3 depicts
  • FIG. 4 depicts
  • FIG. 5 depicts
  • FIG. 6 depicts
  • Fig. 8A-C depicts embodiments of the eyepiece arranged in a flip- up/flip-down configuration.
  • Fig. 8D-E depicts embodiments of snap-fit elements of a secondary optic.
  • Fig. 8F depicts embodiments of flip-up/flip-down electro-optics modules.
  • Fig. 9 depicts an electrochromic layer of the eyepiece.
  • Fig. 10 depicts the advantages of the eyepiece in real-time image enhancement, keystone correction, and virtual perspective correction.
  • Fig. 11 depicts a plot of responsivity versus wavelength for three substrates.
  • Fig. 12 illustrates the performance of the black silicon sensor.
  • Fig. 13A depicts an incumbent night vision system
  • Fig. 13B depicts the night vision system of the present disclosure
  • Fig. 13C illustrates the difference in responsivity between the two.
  • Fig. 14 depicts a tactile interface of the eyepiece.
  • Fig. 14A depicts motions in an embodiment of the eyepiece featuring nod control.
  • Fig. 15 depicts a ring that controls the eyepiece.
  • Fig. 15AA depicts a ring that controls the eyepiece with an integrated camera, where in an embodiment may allow the user to provide a video image of themselves as part of a videoconference.
  • Fig. 15 A depicts hand mounted sensors in an embodiment of a virtual mouse.
  • Fig. 15B depicts a facial actuation sensor as mounted on the eyepiece.
  • Fig. 15C depicts a hand pointing control of the eyepiece.
  • Fig. 15D depicts a hand pointing control of the eyepiece.
  • Fig. 15E depicts an example of eye tracking control.
  • Fig. 15F depicts a hand positioning control of the eyepiece.
  • Fig. 16 depicts a location-based application mode of the eyepiece.
  • Fig. 17 shows the difference in image quality between A) a flexible platform of uncooled CMOS image sensors capable of VIS/NIR/SWIR imaging and B) an image intensified night vision system
  • Fig. 18 depicts an augmented reality-enabled custom billboard.
  • Fig. 19 depicts an augmented reality-enabled custom
  • Fig. 20 an augmented reality-enabled custom artwork.
  • Fig. 20A depicts a method for posting messages to be transmitted when a viewer reaches a certain location.
  • Fig. 21 depicts an alternative arrangement of the eyepiece optics and electronics.
  • Fig. 22 depicts an alternative arrangement of the eyepiece optics and electronics.
  • Fig. 22A depicts the eyepiece with an example of eyeglow.
  • Fig. 22B depicts a cross-section of the eyepiece with a light control element for reducing eyeglow.
  • Fig. 23 depicts an alternative arrangement of the eyepiece optics and electronics.
  • Fig. 24 depicts a lock position of a virtual keyboard.
  • Fig. 24A depicts an embodiment of a virtually projected image on a part of the human body.
  • Fig. 25 depicts a detailed view of the projector.
  • Fig. 26 depicts a detailed view of the RGB LED module.
  • Fig. 27 depicts a gaming network.
  • Fig. 28 depicts a method for gaming using augmented reality glasses.
  • Fig. 29 depicts an exemplary electronic circuit diagram for an augmented reality eyepiece.
  • Fig. 29A depicts a control circuit for eye-tracking control of an external device.
  • Fig. 29B depicts a communication network among users of augmented reality eyepieces.
  • Fig. 30 depicts partial image removal by the eyepiece.
  • Fig. 31 depicts a flowchart for a method of identifying a person based on speech of the person as captured by microphones of the augmented reality device.
  • Fig. 32 depicts a typical camera for use in video calling or conferencing.
  • Fig. 33 illustrates an embodiment of a block diagram of a video calling camera.
  • Fig. 34 depicts embodiments of the eyepiece for optical or digital stabilization.
  • Fig. 35 depicts an embodiment of a classic cassegrain
  • Fig. 36 depicts the configuration of the micro-cassegrain telescoping folded optic camera.
  • Fig. 37 depicts a swipe process with a virtual keyboard.
  • Fig. 38 depicts a target marker process for a virtual keyboard.
  • Fig. 38 A depicts an embodiment of a visual word translator.
  • Fig. 39 illustrates glasses for biometric data capture according to an embodiment.
  • Fig. 40 illustrates iris recognition using the biometric data capture glasses according to an embodiment.
  • Fig. 41 depicts face and iris recognition according to an embodiment.
  • Fig. 42 illustrates use of dual omni-microphones according to an embodiment.
  • Fig. 43 depicts the directionality improvements with multiple microphones.
  • Fig. 44 shows the use of adaptive arrays to steer the audio capture facility according to an embodiment.
  • Fig. 45 shows the mosaic finger and palm enrollment system according to an embodiment.
  • Fig. 46 illustrates the traditional optical approach used by other finger and palm print systems.
  • Fig. 47 shows the approach used by the mosaic sensor according to an embodiment.
  • Fig. 48 depicts the device layout of the mosaic sensor according to an embodiment.
  • Fig. 49 illustrates the camera field of view and number of cameras used in a mosaic sensor according to another embodiment.
  • Fig. 50 shows the bio-phone and tactical computer according to an embodiment.
  • Fig. 51 shows the use of the bio-phone and tactical computer in capturing latent fingerprints and palm prints according to an embodiment.
  • Fig. 52 illustrates a typical DOMEX collection.
  • Fig. 53 shows the relationship between the biometric images captured using the bio-phone and tactical computer and a biometric watch list according to an embodiment.
  • Fig. 54 illustrates a pocket bio-kit according to an embodiment.
  • Fig. 55 shows the components of the pocket bio-kit according to an embodiment.
  • Fig. 56 depicts the fingerprint, palm print, geo-location and POI enrollment device according to an embodiment.
  • Fig. 57 shows a system for multi-modal biometric collection, identification, geo-location, and POI enrollment according to an embodiment.
  • Fig. 58 illustrates a fingerprint, palm print, geo-location, and POI enrollment forearm wearable device according to an embodiment.
  • Fig. 59 shows a mobile folding biometric enrollment kit according to an embodiment.
  • Fig. 60 is a high level system diagram of a biometric enrollment kit according to an embodiment.
  • Fig. 61 is a system diagram of a folding biometric enrollment device according to an embodiment.
  • Fig. 62 shows a thin- film finger and palm print sensor according to an embodiment.
  • Fig. 63 shows a biometric collection device for finger, palm, and enrollment data collection according to an embodiment.
  • Fig. 64 illustrates capture of a two stage palm print according to an embodiment.
  • Fig. 65 illustrates capture of a fingertip tap according to an embodiment.
  • Fig. 66 illustrates capture of a slap and roll print according to an embodiment.
  • Fig. 67 depicts a system for taking contactless fingerprints, palmprints or other biometric prints.
  • Fig. 68 depicts a process for taking contactless fingerprints, palmprints or other biometric prints.
  • Fig. 69 depicts an embodiment of a watch controller.
  • Fig. 70A-D depicts embodiment cases for the eyepiece, including capabilities for charging and integrated display.
  • Fig. 71 depicts an embodiment of a ground stake data system.
  • Fig. 72 depicts a block diagram of a control mapping system including the eyepiece.
  • Fig. 73 depicts a biometric flashlight.
  • Fig. 74 depicts a helmet-mounted version of the eyepiece.
  • Fig. 75 depicts an embodiment of situational awareness glasses.
  • Fig. 76A depicts an assembled 360° imager and Fig. 76B depicts a cutaway view of the 360° imager.
  • Figure 77 depicts an exploded view of the multi-coincident view camera.
  • Figure 78 depicts a flight eye.
  • Fig. 79 depicts an exploded top view of the eyepiece.
  • Fig. 80 depicts an exploded electro-optic assembly.
  • Fig. 81 depicts an exploded view of the shaft of the electro-optic assembly.
  • Fig. 82 depicts an embodiment of an optical display system utilizing a planar illumination facility with a reflective display.
  • Fig. 83 depicts a structural embodiment of a planar illumination optical system.
  • Fig. 84 depicts an embodiment assembly of a planar illumination facility and a reflective display with laser speckle suppression components.
  • Fig. 85 depicts an embodiment of a planar illumination facility with grooved features for redirecting light.
  • Fig. 86 depicts an embodiment of a planar illumination facility with grooved features and 'anti-grooved' features paired to reduce image aberrations.
  • Fig. 87 depicts an embodiment of a planar illumination facility fabricated from a laminate structure.
  • Fig. 88 depicts an embodiment of a planar illumination facility with a wedged optic assembly for redirecting light.
  • Fig. 89 depicts is a block diagram of an illumination module, according to an embodiment of the invention.
  • Fig. 90 depicts is a block diagram of an optical frequency converter, according to an embodiment of the invention.
  • Fig. 91 depicts is a block diagram of a laser illumination module, according to an embodiment of the invention.
  • Fig. 92 depicts is a block diagram of a laser illumination system, according to another embodiment of the invention.
  • Fig. 93 depicts is a block diagram of an imaging system, according to an embodiment of the invention.
  • the present disclosure relates to eyepiece electro-optics.
  • the eyepiece may include projection optics suitable to project an image onto a see-through or translucent lens, enabling the wearer of the eyepiece to view the surrounding environment as well as the displayed image.
  • the projection optics also known as a projector, may include an RGB LED module that uses field sequential color. With field sequential color, a single full color image may be broken down into color fields based on the primary colors of red, green, and blue and imaged by an LCoS (liquid crystal on silicon) optical display 210 individually. As each color field is imaged by the optical display 210, the corresponding LED color is turned on. When these color fields are displayed in rapid sequence, a full color image may be seen.
  • LCoS liquid crystal on silicon
  • the resulting projected image in the eyepiece can be adjusted for any chromatic aberrations by shifting the red image relative to the blue and/or green image and so on.
  • the image may thereafter be reflected into a two surface freeform waveguide where the image light engages in total internal reflections (TIR) until reaching the active viewing area of the lens where the user sees the image.
  • a processor which may include a memory and an operating system, may control the LED light source and the optical display.
  • the projector may also include or be optically coupled to a display coupling lens, a condenser lens, a polarizing beam splitter, and a field lens.
  • an illustrative embodiment of the augmented reality eyepiece 100 may be depicted. It will be understood that embodiments of the eyepiece 100 may not include all of the elements depicted in Fig. 1 while other embodiments may include additional or different elements.
  • the optical elements may be embedded in the arm portions 122 of the frame 102 of the eyepiece. Images may be projected with a projector 108 onto at least one lens 104 disposed in an opening of the frame 102.
  • One or more projectors 108 such as a nanoprojector, picoprojector, microprojector, femtoprojector, LASER-based projector, holographic projector, and the like may be disposed in an arm portion of the eyepiece frame 102.
  • both lenses 104 are see-through or translucent while in other embodiments only one lens 104 is translucent while the other is opaque or missing.
  • more than one projector 108 may be included in the eyepiece 100.
  • the eyepiece 100 may also include at least one articulating ear bud 120, a radio transceiver 118 and a heat sink 114 to absorb heat from the LED light engine, to keep it cool and to allow it to operate at full brightness.
  • a radio transceiver 118 and a heat sink 114 to absorb heat from the LED light engine, to keep it cool and to allow it to operate at full brightness.
  • TI OMAP4 open multimedia applications processors
  • a flex cable with RF antenna 110 all of which will be further described herein.
  • the projector 200 may be an RGB projector.
  • the projector 200 may include a housing 202, a heatsink 204 and an RGB LED engine or module 206.
  • the RGB LED engine 206 may include LEDs, dichroics, concentrators, and the like.
  • a digital signal processor (DSP) (not shown) may convert the images or video stream into control signals, such as voltage drops / current modifications, pulse width modulation (PWM) signals, and the like to control the intensity, duration, and mixing of the LED light.
  • the DSP may control the duty cycle of each PWM signal to control the average current flowing through each LED generating a plurality of colors.
  • a still image co-processor of the eyepiece may employ noise-filtering, image / video stabilization, and face detection, and be able to make image enhancements.
  • An audio back-end processor of the eyepiece may employ buffering, SRC, equalization and the like.
  • the projector 200 may include an optical display 210, such as an LCoS display, and a number of components as shown.
  • the projector 200 may be designed with a single panel LCoS display 210; however, a three panel display may be possible as well.
  • the display 210 is illuminated with red, blue, and green sequentially (aka field sequential color).
  • the projector 200 may make use of alternative optical display technologies, such as a back-lit liquid crystal display (LCD), a front-lit LCD, a transflective LCD, an organic light emitting diode (OLED), a field emission display (FED), a ferroelectric LCoS (FLCOS), liquid crystal technologies mounted on Sapphire, transparent liquid-crystal micro-displays, quantum-dot displays, and the like.
  • LCD liquid crystal display
  • front-lit LCD a front-lit LCD
  • a transflective LCD an organic light emitting diode
  • OLED organic light emitting diode
  • FED field emission display
  • FLCOS ferroelectric LCoS
  • the eyepiece may be powered by any power supply, such as battery power, solar power, line power, and the like.
  • the power may be integrated in the frame 102 or disposed external to the eyepiece 100 and in electrical communication with the powered elements of the eyepiece 100.
  • a solar energy collector may be placed on the frame 102, on a belt clip, and the like.
  • Battery charging may occur using a wall charger, car charger, on a belt clip, in an eyepiece case, and the like.
  • the projector 200 may include the LED light engine 206, which may be mounted on heat sink 204 and holder 208, for ensuring vibration-free mounting for the LED light engine, hollow tapered light tunnel 220, diffuser 212 and condenser lens 214.
  • Hollow tunnel 220 helps to homogenize the rapidly- varying light from the RGB LED light engine.
  • hollow light tunnel 220 includes a silvered coating.
  • the diffuser lens 212 further homogenizes and mixes the light before the light is led to the condenser lens 214. The light leaves the condenser lens 214 and then enters the polarizing beam splitter (PBS) 218.
  • PBS polarizing beam splitter
  • the LED light is propagated and split into polarization components before it is refracted to a field lens 216 and the LCoS display 210.
  • the LCoS display provides the image for the microprojector.
  • the image is then reflected from the LCoS display and back through the polarizing beam splitter, and then reflected ninety degrees.
  • the image leaves microprojector 200 in about the middle of the microprojector.
  • the light then is led to the coupling lens 504, described below.
  • Fig. 2 depicts an embodiment of the projector assembly along with other supporting figures as described herein, but one skilled in the art will appreciate that other configurations and optical technologies may be employed.
  • transparent structures such as with substrates of Sapphire, may be utilized to implement the optical path of the projector system rather than with reflective optics, thus potentially altering and/or eliminating optical components, such as the beam splitter, redirecting mirror, and the like.
  • the system may have a backlit system, where the LED RGB triplet may be the light source directed to pass light through the display.
  • the back light and the display may be mounted either adjacent to the wave guide, or there may be collumnizing/directing optics after the display to get the light to properly enter the optic.
  • the display may be mounted on the top, the side, and the like, of the waveguide.
  • a small transparent display may be implemented with a silicon active backplane on a transparent substrate (e.g. sapphire), transparent electrodes controlled by the silicon active backplane, a liquid crystal material, a polarizer, and the like.
  • the function of the polarizer may be to correct for depolarization of light passing through the system to improve the contrast of the display.
  • the system may utilize a spatial light modulator that imposes some form of spatially- varying modulation on the light path, such as a micro-channel spatial light modulator where a membrane-mirror light shutters based on micro-electromechanical systems (MEMS).
  • MEMS micro-electromechanical systems
  • the system may also utilize other optical components, such as a tunable optical filter (e.g. with a deformable membrane actuator), a high angular deflection micro-mirror system, a discrete phase optical element, and the like.
  • the eyepiece may utilize OLED displays, quantum-dot displays, and the like, that provide higher power efficiency, brighter displays, less costly components, and the like.
  • display technologies such as OLED and quantum-dot displays may allow for flexible displays, and so allowing greater packaging efficiency that may reduce the overall size of the eyepiece.
  • OLED and quantum-dot display materials may be printed through stamping techniques onto plastic substrates, thus creating a flexible display component.
  • the OLED (organic LED) display may be a flexible, low-power display that does not require backlighting. It can be curved, as in standard eyeglass lenses.
  • the OLED display may be or provide for a transparent display.
  • the eyepiece may utilize a planar illumination facility 8208 in association with a reflective display 8210, where light source(s) 8202 are coupled 8204 with an edge of the planar illumination facility 8208, and where the planar side of the planar illumination facility 8208 illuminates the reflective display 8210 that provides imaging of content to be presented to the eye 8222 of the wearer through transfer optics 8212.
  • the reflective display 8210 may be an LCD, an LCD on silicon (LCoS), cholesteric liquid crystal, guest-host liquid crystal, polymer dispersed liquid crystal, phase retardation liquid crystal, and the like, or other liquid crystal technology know in the art.
  • the reflective display 8210 may be a bi-stable display, such as electrophoretic, electrofluidic, electrowetting, electrokinetic, cholesteric liquid crystal, and the like, or any other bistable display known to the art.
  • the reflective display 8210 may also be a combination of an LCD technology and a bi-stable display technology.
  • the coupling 8204 between a light source 8202 and the 'edge' of the planar illumination facility 8208 may be made through other surfaces of the planar illumination facility 8208 and then directed into the plane of the planar illumination facility 8208, such as initially through the top surface, bottom surface, an angled surface, and the like. For example, light may enter the planar illumination facility from the top surface, but into a 45° facet such that the light is bent into the direction of the plane. In an alternate embodiment, this bending of direction of the light may be implemented with optical coatings.
  • the light source 8202 may be an RGB LED source (e.g. an LED array) coupled 8204 directly to the edge of the planar illumination facility.
  • the light entering the edge of the planar illumination facility may then be directed to the reflective display for imaging, such as described herein.
  • Light may enter the reflective display to be imaged, and then redirected back through the planar illumination facility, such as with a reflecting surface at the backside of the reflective display.
  • Light may then enter the transfer optics 8212 for directing the image to the eye 8222 of the wearer, such as through a lens 8214, reflected by a beam splitter 8218 to a reflective surface 8220, back through the beam splitter 8218, and the like, to the eye 8222.
  • the transfer optics 8212 have been described in terms of the 8214, 8218, and 8220, it will be appreciated by one skilled in the art that the transfer optics 8212 may include any transfer optics configuration known, including more complex or simpler configurations than describe herein. For instance, with a different focal length in the field lens 8214, the beam splitter 8218 could bend the image directly towards the eye, thus eliminating the curved mirror 8220, and achieving a simpler design implementation.
  • the light source 8202 may be an LED light source, a laser light source, a white light source, and the like, or any other light source known in the art.
  • the light coupling mechanism 8204 may be direct coupling between the light source 8202 and the planar illumination facility 8208, or through coupling medium or mechanism, such as a waveguide, fiber optic, light pipe, lens, and the like.
  • the planar illumination facility 8208 may receive and redirect the light to a planar side of its structure through an interference grating, scattering features, reflective surfaces, refractive elements, and the like.
  • the planar illumination facility 8208 may be a cover glass over the reflective display 8210, such as to reduce the combined thickness of the reflective display 8210 and the planar illumination facility 8208.
  • the planar illumination facility 8208 may further include a diffuser located on the side nearest the transfer optics 8212, to expand the cone angle of the image light as it passes through the planar illumination facility 8208 to the transfer optics 8212.
  • the transfer optics 8212 may include a plurality of optical elements, such as lenses, mirrors, beam splitters, and the like, or any other optical transfer element known to the art.
  • Fig. 83 presents an embodiment of an optical system 8302 for the eyepiece 8300, where a planar illumination facility 8310 and reflective display 8308 mounted on substrate 8304 are shown interfacing through transfer optics 8212 including an initial diverging lens 8312, a beam splitter 8314, and a spherical mirror 8318, which present the image to the eyebox 8320 where the wearer's eye receives the image.
  • the flat beam splitter 8314 may be a wire-grid polarizer, a metal partially transmitting mirror coating, and the like
  • the spherical reflector 8318 may be a series of dielectric coatings to give a partial mirror on the surface.
  • the coating on the spherical mirror 8318 may be a thin metal coating to provide a partially transmitting mirror.
  • Fig. 84 shows a planar illumination facility 8408 as part of a ferroelectric light-wave circuit (FLC) 8404, including a configuration that utilizes laser light sources 8402 coupling to the planar illumination facility 8408 through a waveguide wavelength converter 8420 8422, where the planar illumination facility 8408 utilizes a grating technology to present the incoming light from the edge of the planar illumination facility to the planar surface facing the reflective display 8410. The image light from the reflective display 8410 is then redirected back though the planar illumination facility 8408 though a hole 8412 in the supporting structure 8414 to the transfer optics.
  • FLC ferroelectric light-wave circuit
  • the FLC also utilizes optical feedback to reduce speckle from the lasers, by broadening the laser spectrum as described in United States Patent 7265896.
  • the laser source 8402 is an IR laser source, where the FLC combines the beams to RGB, with back reflection that causes the laser light to hop and produce a broadened bandwidth to provide the speckle suppression.
  • the speckle suppression occurs in the wave-guides 8420.
  • the laser light from laser sources 8402 is coupled to the planar illumination facility 8408 through a multi-mode interference combiner (MMI) 8422. Each laser source port is positioned such that the light traversing the MMI combiner superimposes on one output port to the planar illumination facility 8408.
  • MMI multi-mode interference combiner
  • the grating of the planar illumination facility 8408 produces uniform illumination for the reflective display.
  • the grating elements may use a very fine pitch (e.g. interferometric) to produce the illumination to the reflective display, which is reflected back with very low scatter off the grating as the light passes through the planar illumination facility to the transfer optics. That is, light comes out aligned such that the grating is nearly fully transparent.
  • the optical feedback utilized in this embodiment is due to the use of laser light sources, and when LEDs are utilized, speckle suppression may not be required because the LEDs are already broadband enough.
  • the light source(s) 8202 are coupled 8204 directly to the edge of the planar illumination facility 8502.
  • Light then travels through the planar illumination facility 8502 and encounters small grooves 8504A-D in the planar illumination facility material, such as grooves in a piece of Poly-methyl methacrylate (PMMA).
  • the grooves 8504A-D may vary in spacing as they progress away from the input port (e.g. less 'aggressive' as they progress from 8504A to 8504D), vary in heights, vary in pitch, and the like.
  • the light is then redirected by the grooves 8504A-D to the reflective display 8210 as an incoherent array of light sources, producing fans of rays traveling to the reflective display 8210, where the reflective display 8210 is far enough away from the grooves 8504A-D to produce illumination patterns from each groove that overlap to provide uniform illumination of the area of the reflective display 8210.
  • there may be an optimum spacing for the grooves where the number of grooves per pixel on the reflective display 8210 may be increased to make the light more incoherent (more fill), but where in turn this produces lower contrast in the image provided to the wearer with more grooves to interfere within the provided image.
  • counter ridges 8604 may be applied into the grooves of the planar illumination facility, such as in a 'snap-on' ridge assembly 8602. Wherein the counter ridges 8604 are positioned in the grooves 8504A-D such that there is an air gap between the groove sidewalls and the counter ridge sidewalls. This air gap provides a defined change in refractive index as perceived by the light as it travels through the planar illumination facility that promotes a reflection of the light at the groove sidewalk The application of counter ridges 8604 reduces aberrations and deflections of the image light caused by the grooves.
  • image light reflected from reflective display 8210 is refracted by the groove sidewall and as such it changes direction because of Snell's law.
  • the refraction of the image light is compensated for and the image light is redirected toward the transfer optics 8214.
  • the planar illumination facility 8702 may be a laminate structure created out of a plurality of laminating layers 8704 wherein the laminating layers 8704 have alternating different refractive indices.
  • the planar illumination facility 8702 may be cut across two diagonal planes 8708 of the laminated sheet.
  • the grooved structure shown in Figs. 85 and 86 is replaced with the laminate structure 8702.
  • the laminating sheet may be made of similar materials (PMMA 1 versus PMMA 2 - where the difference is in the molecular weight of the PMMA). As long as the layers are fairly thick, there may be no interference effects, and act as a clear sheet of plastic.
  • the diagonal laminations will redirect a small percentage of light source 8202 to the reflective display, where the pitch of the lamination is selected to minimize aberration.
  • Fig. 88 shows a planar illumination facility 8802 utilizing a 'wedge' configuration.
  • the light source(s) are coupled 8204 directly to the edge of the planar illumination facility 8802.
  • Light then travels through the planar illumination facility 8802 and encounters the slanted surface of the first wedge 8804, where the light is redirected to the reflective display 8210, and then back to the illumination facility 8802 and through both the first wedge 8804 and the second wedge 8812 and on to the transfer optics.
  • multi-layer coatings 8808 8810 may be applied to the wedges to improve transfer properties.
  • the wedge may be made from PMMA, with dimensions of l/2mm high - 10mm width, and spanning the entire reflective display, have 1 to 1.5 degrees angle, and the like.
  • the light may go through multiple reflections within the wedge 8804 before passing through the wedge 8804 to illuminate the reflective display 8210. If the wedge 8804 is coated with a highly reflecting coating 8808 and 8810, the ray may make many reflections inside wedge 8804 before turning around and coming back out to the light source 8202 again. However, by employing multi-layer coatings 8808 and 8810 on the wedge 8804, such as with Si02, Niobium Pentoxide, and the like, light may be directed to illuminate the reflective display 8210.
  • the coatings 8808 and 8810 may be designed to reflect light at a specified wavelength over a wide range of angles, but transmit light within a certain range of angles (e.g. theta out angles). In embodiments, the design may allow the light to reflect within the wedge until it reaches a transmission window for presentation to the reflective display 8210, where the coating is then configured to enable transmission.
  • the coating is then configured to enable transmission.
  • the see-through optics system including a planar illumination facility 8208 and reflective display 8210 as described herein may be applied to any head-worn device known to the art, such as including the eyepiece as described herein, but also to helmets (e.g. military helmets, pilot helmets, bike helmets, motorcycle helmets, deep sea helmets, space helmets, and the like) ski goggles, eyewear, water diving masks, dusk masks, respirators, Hazmat head gear, virtual reality headgear, simulation devices, and the like.
  • helmets e.g. military helmets, pilot helmets, bike helmets, motorcycle helmets, deep sea helmets, space helmets, and the like
  • goggles e.g. military helmets, pilot helmets, bike helmets, motorcycle helmets, deep sea helmets, space helmets, and the like
  • eyewear e.g. military helmets, pilot helmets, bike helmets, motorcycle helmets, deep sea helmets, space helmets, and the like
  • goggles e.g. military helmet
  • the optics system and protective covering associated with the head-worn device may incorporate the optics system in a plurality of ways, including inserting the optics system into the head-worn device in addition to optics and covering traditionally associated with the head-worn device.
  • the optics system may be included in a ski goggle as a separate unit, providing the user with projected content, but where the optics system doesn't replace any component of the ski goggle, such as the see-through covering of the ski goggle (e.g. the clear or colored plastic covering that is exposed to the outside environment, keeping the wind and snow from the user's eyes).
  • the optics system may replace, at least in part, certain optics traditionally associated with the head-worn gear.
  • certain optical elements of the transfer optics 8212 may replace the outer lens of an eyewear application.
  • a beam splitter, lens, or mirror of the transfer optics 8212 could replace the front lens for an eyewear application (e.g. sunglasses), thus eliminating the need for the front lens of the glasses, such as if the curved reflection mirror 8220 is extended to cover the glasses, eliminating the need for the cover lens.
  • the see-through optics system including a planar illumination facility 8208 and reflective display 8210 may be located in the head-worn gear so as to be unobtrusive to the function and aesthetic of the head-worn gear.
  • the optics system may be located in proximity with an upper portion of the lens, such as in the upper portion of the frame.
  • a planar illumination facility may provide light in a plurality of colors including Red-Green-Blue (RGB) light and/or white light.
  • the light from the illumination module may be directed to a 3LCD system, a Digital Light Processing (DLP®) system, a Liquid Crystal on Silicon (LCoS) system, or other micro-display or micro-projection systems.
  • the illumination module may use wavelength combining and nonlinear frequency conversion with nonlinear feedback to the source to provide a source of high-brightness, long-life, speckle-reduced or speckle-free light.
  • Various embodiments of the invention may provide light in a plurality of colors including Red-Green-Blue (RGB) light and/or white light.
  • the light from the illumination module may be directed to a 3 LCD system, a Digital Light Processing (DLP) system, a Liquid Crystal on Silicon (LCoS) system, or other micro-display or micro-projection systems.
  • the illumination modules described herein may be used in the optical assembly for the eyepiece 100.
  • One embodiment of the invention includes a system comprising a laser, LED or other light source configured to produce an optical beam at a first wavelength, a planar lightwave circuit coupled to the laser and configured to guide the optical beam, and a waveguide optical frequency converter coupled to the planar lightwave circuit, and configured to receive the optical beam at the first wavelength, convert the optical beam at the first wavelength into an output optical beam at a second wavelength.
  • the system may provide optically coupled feedback which is nonlinearly dependent on the power of the optical beam at the first wavelength to the laser.
  • Another embodiment of the invention includes a system comprising a substrate, a light source, such as a laser diode array or one or more LEDs disposed on the substrate and configured to emit a plurality of optical beams at a first wavelength, a planar lightwave circuit disposed on the substrate and coupled to the light source, and configured to combine the plurality of optical beams and produce a combined optical beam at the first wavelength, and a nonlinear optical element disposed on the substrate and coupled to the planar lightwave circuit, and configured to convert the combined optical beam at the first wavelength into an optical beam at a second wavelength using nonlinear frequency conversion.
  • the system may provide optically coupled feedback which is nonlinearly dependent on a power of the combined optical beam at the first wavelength to the laser diode array.
  • Another embodiment of the invention includes a system comprising a light source, such as a semiconductor laser array or one or more LEDs configured to produce a plurality of optical beams at a first wavelength, an arrayed waveguide grating coupled to the light source and configured to combine the plurality of optical beams and output a combined optical beam at the first wavelength, a quasi- phase matching wavelength-converting waveguide coupled to the arrayed waveguide grating and configured to use second harmonic generation to produce an output optical beam at a second wavelength based on the combined optical beam at the first wavelength.
  • a light source such as a semiconductor laser array or one or more LEDs configured to produce a plurality of optical beams at a first wavelength
  • an arrayed waveguide grating coupled to the light source and configured to combine the plurality of optical beams and output a combined optical beam at the first wavelength
  • a quasi- phase matching wavelength-converting waveguide coupled to the arrayed waveguide grating and configured to use second harmonic generation to produce an output optical beam at a second wavelength based on the
  • Power may be obtained from within a wavelength conversion device and fed back to the source.
  • the feedback power has a nonlinear dependence on the input power provided by the source to the wavelength conversion device.
  • Nonlinear feedback may reduce the sensitivity of the output power from the wavelength conversion device to variations in the nonlinear coefficients of the device because the feedback power increases if a nonlinear coefficient decreases.
  • the increased feedback tends to increase the power supplied to the wavelength conversion device, thus mitigating the effect of the reduced nonlinear coefficient.
  • FIG. 89 is a block diagram of an illumination module, according to an embodiment of the invention.
  • Illumination module 8900 comprises an optical source, a combiner, and an optical frequency converter, according to an embodiment of the invention.
  • An optical source 8902, 8904 emits optical radiation 8910, 8914 toward an input port 8922, 8924 of a combiner 8906.
  • Combiner 8906 has a combiner output port 8926, which emits combined radiation 8918.
  • Combined radiation 8918 is received by an optical frequency converter 8908, which provides output optical radiation 8928.
  • Optical frequency converter 8908 may also provide feedback radiation 8920 to combiner output port 8926.
  • Combiner 8906 splits feedback radiation 8920 to provide source feedback radiation 8912 emitted from input port 8922 and source feedback radiation 8916 emitted from input port 8924.
  • Source feedback radiation 8912 is received by optical source 8902
  • source feedback radiation 8916 is received by optical source 8904.
  • Optical radiation 8910 and source feedback radiation 8912 between optical source 8902 and combiner 8906 may propagate in any combination of free space and/or guiding structure (e.g., an optical fiber or any other optical waveguide).
  • Optical radiation 8914, source feedback radiation 8916, combined radiation 8918 and feedback radiation 8920 may also propagate in any combination of free space and/or guiding structure.
  • Suitable optical sources 8902 and 8904 include one or more LEDs or any source of optical radiation having an emission wavelength that is influenced by optical feedback.
  • sources include lasers, and may be semiconductor diode lasers.
  • optical sources 8902 and 8904 may be elements of an array of semiconductor lasers. Sources other than lasers may also be employed (e.g., an optical frequency converter may be used as a source). Although two sources are shown on FIG. 89, the invention may also be practiced with more than two sources.
  • Combiner 8906 is shown in general terms as a three port device having ports 8922, 8924, and 8926. Although ports 8922 and 8924 are referred to as input ports, and port 8926 is referred to as a combiner output port, these ports may be bidirectional and may both receive and emit optical radiation as indicated above.
  • Combiner 8906 may include a wavelength dispersive element and optical elements to define the ports. Suitable wavelength dispersive elements include arrayed waveguide gratings, reflective diffraction gratings, transmissive diffraction gratings, holographic optical elements, assemblies of wavelength-selective filters, and photonic band-gap structures. Thus, combiner 8906 may be a wavelength combiner, where each of the input ports i has a corresponding, non-overlapping input port wavelength range for efficient coupling to the combiner output port.
  • optical frequency converter 8908 Various optical processes may occur within optical frequency converter 8908, including but not limited to harmonic generation, sum frequency generation (SFG), second harmonic generation (SHG), difference frequency generation, parametric generation, parametric amplification, parametric oscillation, three-wave mixing, four-wave mixing, stimulated Raman scattering, stimulated Brillouin scattering, stimulated emission, acousto-optic frequency shifting and/or electro-optic frequency shifting.
  • harmonic generation sum frequency generation (SFG), second harmonic generation (SHG), difference frequency generation
  • parametric generation parametric amplification
  • parametric oscillation three-wave mixing
  • four-wave mixing stimulated Raman scattering
  • stimulated Brillouin scattering stimulated emission
  • electro-optic frequency shifting acousto-optic frequency shifting.
  • optical frequency converter 8908 accepts optical inputs at an input set of optical wavelengths and provides an optical output at an output set of optical wavelengths, where the output set differs from the input set.
  • Optical frequency converter 8908 may include nonlinear optical materials such as lithium niobate, lithium tantalate, potassium titanyl phosphate, potassium niobate, quartz, silica, silicon oxynitride, gallium arsenide, lithium borate, and/or beta-barium borate.
  • Optical interactions in optical frequency converter 8908 may occur in various structures including bulk structures, waveguides, quantum well structures, quantum wire structures, quantum dot structures, photonic bandgap structures, and/or multi-component waveguide structures.
  • optical frequency converter 8908 provides a parametric nonlinear optical process
  • this nonlinear optical process is preferably phase-matched.
  • phase-matching may be birefringent phase-matching or quasi- phase-matching.
  • Quasi-phase matching may include methods disclosed in U.S. Pat. No. 7,116,468 to Miller, the disclosure of which is hereby incorporated by reference.
  • Optical frequency converter 8908 may also include various elements to improve its operation, such as a wavelength selective reflector for wavelength selective output coupling, a wavelength selective reflector for wavelength selective resonance, and/or a wavelength selective loss element for controlling the spectral response of the converter.
  • multiple illumination modules as described in Fig. 89 may be associated to form a compound illumination module.
  • FIG. 90 is a block diagram of an optical frequency converter, according to an embodiment of the invention.
  • FIG. 90 illustrates how feedback radiation 8920 is provided by an exemplary optical frequency converter 8908 which provides parametric frequency conversion.
  • Combined radiation 8918 provides forward radiation 9002 within optical frequency converter 8908 that propagates to the right on FIG. 90
  • parametric radiation 9004 also propagating to the right on FIG. 90, is generated within optical frequency converter 8908 and emitted from optical frequency converter 8908 as output optical radiation 8928.
  • there is a net power transfer from forward radiation 9002 to parametric radiation 9004 as the interaction proceeds i.e., as the radiation propagates to the right in this example).
  • a reflector 9008 which may have wavelength-dependent transmittance, is disposed in optical frequency converter 8908 to reflect (or partially reflect) forward radiation 9002 to provide backward radiation 9006 or may be disposed externally to optical frequency converter 8908 after endface 9010.
  • Reflector 9008 may be a grating, an internal interface, a coated or uncoated endface, or any combination thereof. The preferred level of reflectivity for reflector 9008 is greater than 90%.
  • a reflector located at an input interface 9012 provides purely linear feedback (i.e., feedback that does not depend on the process efficiency).
  • a reflector located at an endface 9010 provides a maximum degree of nonlinear feedback, since the dependence of forward power on process efficiency is maximized at the output interface (assuming a phase- matched parametric interaction).
  • FIG. 91 is a block diagram of a laser illumination module, according to an embodiment of the invention. While lasers are used in this embodiment, it is understood that other light sources, such as LEDs, may also be used.
  • Laser illumination module 9100 comprises an array of diode lasers 9102, waveguides 9104 and 9106, star couplers 9108 and 9110 and optical frequency converter 9114.
  • An array of diode lasers 9102 has lasing elements coupled to waveguides 9104 acting as input ports (such as ports 8922 and 8924 on FIG. 89) to a planar waveguide star coupler 9108.
  • Star coupler 9108 is coupled to another planar waveguide star coupler 9110 by waveguides 9106 which have different lengths.
  • the combination of star couplers 9108 and 9110 with waveguides 9106 may be an arrayed waveguide grating, and acts as a wavelength combiner (e.g., combiner 8906 on FIG. 89) providing combined radiation 8918 to waveguide 9112.
  • Waveguide 9112 provides combined radiation 8918 to optical frequency converter 9114.
  • an optional reflector 9116 provides a back reflection of combined radiation 8918. As indicated above in connection with FIGS. 90, this back reflection provides nonlinear feedback according to embodiments of the invention.
  • One or more of the elements described with reference to FIG. 91 may be fabricated on a common substrate using planar coating methods and/or lithography methods to reduce cost, parts count and alignment requirements.
  • a second waveguide may be disposed such that its core is in close proximity with the core of the waveguide in optical frequency converter 8908.
  • this arrangement of waveguides functions as a directional coupler, such that radiation in waveguide may provide additional radiation in optical frequency converter 8908.
  • Significant coupling may be avoided by providing radiation at wavelengths other than the wavelengths of forward radiation 9002 or additional radiation may be coupled into optical frequency converter 8908 at a location where forward radiation 9002 is depleted.
  • traveling wave feedback configurations may also be used.
  • the feedback re-enters the gain medium at a location different from the location at which the input power is emitted from.
  • FIG. 92 is a block diagram of a compound laser illumination module, according to another embodiment of the invention.
  • Compound laser illumination module 9200 comprises one or more laser illumination modules 9100 described with reference to FIG. 91.
  • FIG. 92 illustrates compound laser illumination module 9200 including three laser illumination modules 9100 for simplicity, compound laser illumination module 9200 may include more or fewer laser illumination modules 9100.
  • An array of diode lasers 9210 may include one or more arrays of diode lasers 9102 which may be an array of laser diodes, a diode laser array, and/or a semiconductor laser array configured to emit optical radiation within the infrared spectrum, i.e., with a wavelength shorter than radio waves and longer than visible light.
  • Laser array output waveguides 9220 couple to the diode lasers in the array of diode lasers 9210 and directs the outputs of the array of diode lasers 9210 to star couplers 9108A-C.
  • the laser array output waveguides 9220, the arrayed waveguide gratings 9230, and the optical frequency converters 9114A-C may be fabricated on a single substrate using a planar lightwave circuit, and may comprise silicon oxynitride waveguides and/or lithium tantalate waveguides.
  • Arrayed waveguide gratings 9230 comprise the star couplers 9108A-C, waveguides 9106A-C, and star couplers 9110A-C.
  • Waveguides 9112A-C provide combined radiation to optical frequency converters 9114A-C and feedback radiation to star couplers 9110A-C, respectively.
  • Optical frequency converters 9114A-C may comprise nonlinear optical (NLO) elements, for example optical parametric oscillator elements and/or quasi-phase matched optical elements.
  • NLO nonlinear optical
  • Compound laser illumination module 9200 may produce output optical radiation at a plurality of wavelengths.
  • the plurality of wavelengths may be within a visible spectrum, i.e., with a wavelength shorter than infrared and longer than ultraviolet light.
  • waveguide 9240A may similarly provide output optical radiation between about 450 nm and about 470 nm
  • waveguide 9240B may provide output optical radiation between about 525 nm and about 545 nm
  • waveguide 9240C may provide output optical radiation between about 615 nm and about 660 nm.
  • These ranges of output optical radiation may again be selected to provide visible wavelengths (for example, blue, green and red wavelengths, respectively) that are pleasing to a human viewer, and may again be combined to produce a white light output.
  • the waveguides 9240A-C may be fabricated on the same planar lightwave circuit as the laser array output waveguides 9220, the arrayed waveguide gratings 9230, and the optical frequency converters 9114A-C.
  • the output optical radiation provided by each of the waveguides 9240A-C may provide an optical power in a range between approximately 1 watts and approximately 20 watts.
  • the optical frequency converter 9114 may comprise a quasi-phase matching wavelength-converting waveguide configured to perform second harmonic generation (SHG) on the combined radiation at a first wavelength, and generate radiation at a second wavelength.
  • a quasi-phase matching wavelength-converting waveguide may be configured to use the radiation at the second wavelength to pump an optical parametric oscillator integrated into the quasi-phase matching wavelength- converting waveguide to produce radiation at a third wavelength, the third wavelength optionally different from the second wavelength.
  • the quasi-phase matching wavelength-converting waveguide may also produce feedback radiation propagated via waveguide 9112 through the arrayed waveguide grating 9230 to the array of diode lasers 9210, thereby enabling each laser disposed within the array of diode lasers 9210 to operate at a distinct wavelength determined by a corresponding port on the arrayed waveguide grating.
  • compound laser illumination module 9200 may be configured using an array of diode lasers 9210 nominally operating at a wavelength of approximately 830 nm to generate output optical radiation in a visible spectrum corresponding to any of the colors red, green, or blue.
  • Compound laser illumination module 9200 may be optionally configured to directly illuminate spatial light modulators without intervening optics.
  • compound laser illumination module 9200 may be configured using an array of diode lasers 9210 nominally operating at a single first wavelength to simultaneously produce output optical radiation at multiple second wavelengths, such as wavelengths corresponding to the colors red, green, and blue. Each different second wavelength may be produced by an instance of laser illumination module 9100.
  • the compound laser illumination module 9200 may be configured to produce diffraction- limited white light by combining output optical radiation at multiple second wavelengths into a single waveguide using, for example, waveguide- selective taps (not shown).
  • the array of diode lasers 9210, laser array output waveguides 9220, arrayed waveguide gratings 9230, waveguides 9112, optical frequency converters 9114, and frequency converter output waveguides 9240 may be fabricated on a common substrate using fabrication processes such as coating and lithography.
  • the beam shaping element 9250 is coupled to the compound laser illumination module 9200 by waveguides 9240A-C, described with reference to FIG. 92.
  • Beam shaping element 9250 may be disposed on a same substrate as the compound laser illumination module 9200.
  • the substrate may, for example, comprise a thermally conductive material, a semiconductor material, or a ceramic material.
  • the substrate may comprise copper-tungsten, silicon, gallium arsenide, lithium tantalate, silicon oxynitride, and/or gallium nitride, and may be processed using semiconductor manufacturing processes including coating, lithography, etching, deposition, and implantation.
  • Some of the described elements such as the array of diode lasers 9210, laser array output waveguides 9220, arrayed waveguide gratings 9230, waveguides 9112, optical frequency converters 9114, waveguides 9240, beam shaping element 9250, and various related planar lightwave circuits may be passively coupled and/or aligned, and in some embodiments, passively aligned by height on a common substrate.
  • Each of the waveguides 9240A-C may couple to a different instance of beam shaping element 9250, rather than to a single element as shown.
  • Beam shaping element 9250 may be configured to shape the output optical radiation from waveguides 9240A-C into an approximately rectangular diffraction-limited optical beam, and may further configure the output optical radiation from waveguides 9240A-C to have a brightness uniformity greater than approximately 95% across the approximately rectangular beam shape.
  • the beam shaping element 9250 may comprise an aspheric lens, such as a "top-hat” microlens, a holographic element, or an optical grating.
  • the diffraction- limited optical beam output by the beam shaping element 9250 produces substantially reduced or no speckle.
  • the optical beam output by the beam shaping element 9250 may provide an optical power in a range between approximately 1 watt and approximately 20 watts, and a substantially flat phase front.
  • FIG. 93 is a block diagram of an imaging system, according to an embodiment of the invention.
  • Imaging system 9300 comprises light engine 9310, optical beams 9320, spatial light modulator 9330, modulated optical beams 9340, and projection lens 9350.
  • the light engine 9310 may be a compound optical illumination module, such as multiple illumination modules described in Fig. 89, a compound laser illumination module 9200, described with reference to FIG. 92, or a laser illumination system 9300, described with reference to FIG. 93.
  • Spatial light modulator 9330 may be a 3LCD system, a DLP system, a LCoS system, a transmissive liquid crystal display, a liquid-crystal-on-silicon array, a grating-based light valve, or other micro- display or micro-projection system or reflective display.
  • the spatial light modulator 9330 may be configured to spatially modulate the optical beam 9320.
  • the spatial light modulator 9330 may be coupled to electronic circuitry configured to cause the spatial light modulator 9330 to modulate a video image, such as may be displayed by a television or a computer monitor, onto the optical beam 9320 to produce a modulated optical beam 9340.
  • modulated optical beam 9340 may be output from the spatial light modulator on a same side as the spatial light modulator receives the optical beam 9320, using optical principles of reflection.
  • modulated optical beam 9340 may be output from the spatial light modulator on an opposite side as the spatial light modulator receives the optical beam 9320, using optical principles of transmission.
  • the modulated optical beam 9340 may optionally be coupled into a projection lens 9350.
  • the projection lens 9350 is typically configured to project the modulated optical beam 9340 onto a display, such as a video display screen.
  • a method of illuminating a video display may be performed using a compound illumination module such as one comprising multiple illumination modules 8900, a compound laser illumination module 9100, a laser illumination system 9200, or an imaging system 9300.
  • a diffraction-limited output optical beam is generated using a compound illumination module, compound laser illumination module 9100, laser illumination system 9200 or light engine 9310.
  • the output optical beam is directed using a spatial light modulator, such as spatial light modulator 9330, and optionally projection lens 9350.
  • the spatial light modulator may project an image onto a display, such as a video display screen.
  • the illumination module may be configured to emit any number of wavelengths including one, two, three, four, five, six, or more, the wavelengths spaced apart by varying amounts, and having equal or unequal power levels.
  • An illumination module may be configured to emit a single wavelength per optical beam, or multiple wavelengths per optical beam.
  • An illumination module may also comprise additional components and functionality including polarization controller, polarization rotator, power supply, power circuitry such as power FETs, electronic control circuitry, thermal management system, heat pipe, and safety interlock.
  • an illumination module may be coupled to an optical fiber or a lightguide, such as glass (e.g. BK7).
  • the digital signal processor may be programmed and/or configured to receive video feed information and configure the video feed to drive whatever type of image source is being used with the optical display 210.
  • the DSP may include a bus or other communication mechanism for communicating information, and an internal processor coupled with the bus for processing the information.
  • the DSP may include a memory, such as a random access memory (RAM) or other dynamic storage device (e.g., dynamic RAM (DRAM), static RAM (SRAM), and synchronous DRAM (SDRAM)), coupled to the bus for storing information and instructions to be executed.
  • RAM random access memory
  • DRAM dynamic RAM
  • SRAM static RAM
  • SDRAM synchronous DRAM
  • the DSP can include a nonvolatile memory such as for example a read only memory (ROM) or other static storage device (e.g., programmable ROM (PROM), erasable PROM (EPROM), and electrically erasable PROM (EEPROM)) coupled to the bus for storing static information and instructions for the internal processor.
  • ROM read only memory
  • PROM programmable ROM
  • EPROM erasable PROM
  • EEPROM electrically erasable PROM
  • the DSP may include special purpose logic devices (e.g., application specific integrated circuits (ASICs)) or configurable logic devices (e.g., simple programmable logic devices (SPLDs), complex programmable logic devices (CPLDs), and field programmable gate arrays (FPGAs)).
  • SPLDs simple programmable logic devices
  • CPLDs complex programmable logic devices
  • FPGAs field programmable gate arrays
  • the DSP may include at least one computer readable medium or memory for holding instructions programmed and for containing data structures, tables, records, or other data necessary to drive the optical display.
  • Examples of computer readable media suitable for applications of the present disclosure may be compact discs, hard disks, floppy disks, tape, magneto-optical disks, PROMs (EPROM, EEPROM, flash EPROM), DRAM, SRAM, SDRAM, or any other magnetic medium, compact discs (e.g., CD-ROM), or any other optical medium, punch cards, paper tape, or other physical medium with patterns of holes, a carrier wave (described below), or any other medium from which a computer can read.
  • the DSP may also include a communication interface to provide a data communication coupling to a network link that can be connected to, for example, a local area network (LAN), or to another communications network such as the Internet. Wireless links may also be implemented.
  • LAN local area network
  • Wireless links may also be implemented.
  • an appropriate communication interface can send and receive electrical, electromagnetic or optical signals that carry digital data streams representing various types of information (such as the video information) to the optical display 210.
  • the eyepiece may provide an external interface to computer peripheral devices, such as a monitor, display, TV, keyboards, mice, memory storage (e.g. external hard drive, optical drive, solid state memory), network interface (e.g. to the Internet), and the like.
  • computer peripheral devices such as a monitor, display, TV, keyboards, mice, memory storage (e.g. external hard drive, optical drive, solid state memory), network interface (e.g. to the Internet), and the like.
  • the external interface may provide direct connectivity to external computer peripheral devices (e.g. connect directly to a monitor), indirect connectivity to external computer peripheral devices (e.g. through a central external peripheral interface device), through a wired connection, though a wireless connection, and the like.
  • the eyepiece may be able to connect to a central external peripheral interface device that provides connectivity to external peripheral devices, where the external peripheral interface device may include computer interface facilities, such as a computer processor, memory, operating system, peripheral drivers and interfaces, USB port, external display interface, network port, speaker interface, microphone interface, and the like.
  • the eyepiece may be connected to the central external peripheral interface by a wired connection, wireless connection, directly in a cradle, and the like, and when connected may provide the eyepiece with computational facilities similar to or identical to a personal computer.
  • Figs. 21 and 22 depict an alternate arrangement of the waveguide and projector in exploded view.
  • the projector is placed just behind the hinge of the arm of the eyepiece and it is vertically oriented such that the initial travel of the RGB LED signals is vertical until the direction is changed by a reflecting prism in order to enter the waveguide lens.
  • the vertically arranged projection engine may have a PBS 218 at the center, the RGB LED array at the bottom, a hollow, tapered tunnel with thin film diffuser to mix the colors for collection in an optic, and a condenser lens.
  • the PBS may have a pre- polarizer on an entrance face.
  • the pre-polarizer may be aligned to transmit light of a certain polarization, such as p-polarized light and reflect (or absorb) light of the opposite polarization, such as s-polarized light.
  • the polarized light may then pass through the PBS to the field lens 216.
  • the purpose of the field lens 216 may be to create near telecentric illumination of the LCoS panel.
  • the LCoS display may be truly reflective, reflecting colors sequentially with correct timing so the image is displayed properly. Light may reflect from the LCoS panel and, for bright areas of the image, may be rotated to s-polarization. The light then may refract through the field lens 216 and may be reflected at the internal interface of the PBS and exit the projector, heading toward the coupling lens.
  • the hollow, tapered tunnel 220 may replace the homogenizing lenslet from other embodiments.
  • Methods and apparatus may reduce eyeglow through a light control element, such as with a partially reflective mirror in the optics associated with the image source, with polarizing optics, and the like.
  • a light control element such as with a partially reflective mirror in the optics associated with the image source, with polarizing optics, and the like.
  • light entering the waveguide may be polarized, such as s-polarized.
  • the light control element may include a linear polarizer. Wherein the linear polarizer in the light control element is oriented relative to the linearly polarized image light so that the second portion of the linearly polarized image light that passes through the partially reflecting mirror is blocked and eyeglow is reduced.
  • eyeglow may be minimized or eliminated by attaching lenses to the waveguide or frame, such as the snap-fit optics described herein, that are oppositely polarized from the light reflecting from the user's eye, such as p-polarized in this case.
  • the light control element may include a second quarter wave film and a linear polarizer.
  • the second quarter wave film converts a second portion of a circularly polarized image light into linearly polarized image light with a polarization state that is blocked by the linear polarizer in the light control element so that eyeglow is reduced.
  • the light control element includes a linear polarizer and a quarter wave film
  • incoming unpolarized scene light from the external environment in front of the user is converted to linearly polarized light while 50% of the light is blocked.
  • the first portion of scene light that passes through the linear polarizer is linearly polarized light which is converted by the quarter wave film to circularly polarized light.
  • Fig. 22B shows an example of a see- through display assembly with a light control element in a glasses frame.
  • the glasses cross-section 2200B shows the components of see-through display assembly in a glasses frame 2202B.
  • the light control element covers the entire see- through view seen by the user.
  • Supporting members 2204B and 2208B are shown supporting the partially reflecting mirror 2210B and the beam splitter layer 2212B respectively in the field of view of the user's eye 2214B.
  • the supporting members 2204B and 2208B along with the light control element 2218B are connected to the glasses frame 2202B.
  • the other components such as the folding mirror 2220B and the first quarter wave film 2222B are also connected to the supporting members 2204B and 2208B so that the combined assembly is structurally sound.
  • augmented reality eyepiece 2100 includes a frame 2102 and left and right earpieces or temple pieces 2104.
  • Protective lenses 2106 such as ballistic lenses, are mounted on the front of the frame 2102 to protect the eyes of the user or to correct the user's view of the surrounding environment if they are prescription lenses.
  • the front portion of the frame may also be used to mount a camera or image sensor 2130 and one or more microphones 2132.
  • waveguides are mounted in the frame 2102 behind the protective lenses 2106, one on each side of the center or adjustable nose bridge 2138.
  • the front cover 2106 may be interchangeable, so that tints or prescriptions may be changed readily for the particular user of the augmented reality device.
  • each lens is quickly interchangeable, allowing for a different prescription for each eye.
  • the lenses are quickly interchangeable with snap-fits as discussed elsewhere herein.
  • Certain embodiments may only have a projector and waveguide combination on one side of the eyepiece while the other side may be filled with a regular lens, reading lens, prescription lens, or the like.
  • the left and right ear pieces 2104 each vertically mount a projector or microprojector 2114 or other image source atop a spring-loaded hinge 2128 for easier assembly and vibration/ shock protection.
  • Each temple piece also includes a temple housing 2116 for mounting associated electronics for the eyepiece, and each may also include an elastomeric head grip pad 2120, for better retention on the user.
  • Each temple piece also includes extending, wrap-around ear buds 2112 and an orifice 2126 for mounting a headstrap 2142.
  • the temple housing 2116 contains electronics associated with the augmented reality eyepiece.
  • the electronics may include several circuit boards, as shown, such as for the microprocessor and radios 2122, the communications system on a chip (SOC) 2124, and the open multimedia applications processor (OMAP) processor board 2140.
  • the communications system on a chip (SOC) may include electronics for one or more communications capabilities, including a wide local area network (WLAN), BlueToothTM communications, frequency modulation (FM) radio, a global positioning system (GPS), a 3-axis accelerometer, one or more gyroscopes, and the like.
  • the right temple piece may include an optical trackpad (not shown) on the outside of the temple piece for user control of the eyepiece and one or more applications.
  • the frame 2102 is in a general shape of a pair of wrap-around sunglasses.
  • the sides of the glasses include shape-memory alloy straps 2134, such as nitinol straps.
  • the nitinol or other shape-memory alloy straps are fitted for the user of the augmented reality eyepiece.
  • the straps are tailored so that they assume their trained or preferred shape when worn by the user and warmed to near body temperature.
  • the fit of the eyepiece may provide user eye width alignment techniques and measurements.
  • the position and/or alignment of the projected display to the wearer of the eyepiece may be adjustable in position to accommodate the various eye widths of the different wearers.
  • the positioning and/or alignment may be automatic, such as though detection of the position of the wearer's eyes through the optical system (e.g. iris or pupil detection), or manual, such as by the wearer, and the like.
  • the earbuds are intended for connection to the controls of the augmented reality eyepiece for delivering sounds to ears of the user.
  • the sounds may include inputs from the wireless internet or telecommunications capability of the augmented reality eyepiece.
  • the earbuds also include soft, deformable plastic or foam portions, so that the inner ears of the user are protected in a manner similar to earplugs.
  • the earbuds limit inputs to the user's ears to about 85 dB. This allows for normal hearing by the wearer, while providing protection from gunshot noise or other explosive noises and listening in high background noise environments.
  • the controls of the noise-cancelling earbuds have an automatic gain control for very fast adjustment of the cancelling feature in protecting the wearer's ears.
  • Fig. 23 depicts a layout of the vertically arranged projector 2114 in an eyepiece 2300, where the illumination light passes from bottom to top through one side of the PBS on its way to the display and imager board, which may be silicon backed, and being refracted as image light where it hits the internal interfaces of the triangular prisms which constitute the polarizing beam splitter, and is reflected out of the projector and into the waveguide lens.
  • the dimensions of the projector are shown with the width of the imager board being 11 mm, the distance from the end of the imager board to the image centerline being 10.6 mm, and the distance from the image centerline to the end of the LED board being about 11.8 mm.
  • FIG. 25 A detailed and assembled view of the components of the projector discussed above may be seen in Fig. 25.
  • This view depicts how compact the micro- projector 2500 is when assembled, for example, near a hinge of the augmented reality eyepiece.
  • Microprojector 2500 includes a housing and a holder 2508 for mounting certain of the optical pieces. As each color field is imaged by the optical display 2510, the corresponding LED color is turned on.
  • the RGB LED light engine 2502 is depicted near the bottom, mounted on heat sink 2504.
  • the holder 2508 is mounted atop the LED light engine 2502, the holder mounting light tunnel 2520, diffuser lens 2512 (to eliminate hotspots) and condenser lens 2514.
  • Light passes from the condenser lens into the polarizing beam splitter 2518 and then to the field lens 2516.
  • the light then refracts onto the LCoS (liquid crystal on silicon) chip 2510, where an image is formed.
  • the light for the image then reflects back through the field lens 2516 and is polarized and reflected 90° through the polarizing beam splitter 2518.
  • the light then leaves the microprojector for transmission to the optical display of the glasses.
  • Fig. 26 depicts an exemplary RGB LED module 2600.
  • the LED is a 2x2 array with 1 red, 1 blue and 2 green die and the LED array has 4 cathodes and a common anode.
  • the maximum current may be 0.5 A per die and the maximum voltage ( ⁇ 4V) may be needed for the green and blue die.
  • the system may utilize an optical system that is able to generate a monochrome display to the wearer, which may provide advantages to image clarity, image resolution, frame rate, and the like.
  • the frame rate may triple (over an RGB system) and this may be useful in a night vision and the like situation where the camera is imaging the surroundings, where those images may be processed and displayed as content.
  • the image may be brighter, such as be three times brighter if three LEDs are used, or provide a space savings with only one LED. If multiple LEDs are used, they may be the same color or they could be different (RGB).
  • the system may be a switchable monochrome/color system where RGB is used but when the wearer wants monochrome they could either choose an individual LED or a number of them. All three LEDs may be used at the same time, as opposed to sequencing, to create white light. Using three LEDs without sequencing may be like any other white light where the frame rate goes up by a factor of three.
  • the "switching" between monochrome and color may be done "manually" (e.g.
  • a physical button a GUI interface selection
  • it may be done automatically depending on the application that is running. For instance, a wearer may go into a night vision mode or fog clearing mode, and the processing portion of the system automatically determines that the eyepiece needs to go into a monochrome high refresh rate mode.
  • Fig. 3 depicts an embodiment of a horizontally disposed projector in use.
  • the projector 300 may be disposed in an arm portion of an eyepiece frame.
  • the LED module 302, under processor control 304, may emit a single color at a time in rapid sequence.
  • the emitted light may travel down a light tunnel 308 and through at least one homogenizing lenslet 310 before encountering a polarizing beam splitter 312 and being deflected towards an LCoS display 314 where a full color image is displayed.
  • the LCoS display may have a resolution of 1280 x 720p.
  • the image may then be reflected back up through the polarizing beam splitter, reflected off a fold mirror 318 and travel through a collimator on its way out of the projector and into a waveguide.
  • the projector may include a diffractive element to eliminate aberrations.
  • the interactive head-mounted eyepiece includes an optical assembly through which a user views a surrounding environment and displayed content, wherein the optical assembly includes a corrective element that corrects the user' s view of the surrounding environment, a freeform optical waveguide enabling internal reflections, and a coupling lens positioned to direct an image from an optical display, such as an LCoS display, to the optical waveguide.
  • the eyepiece further includes one or more integrated processors for handling content for display to the user and an integrated image source, such as a projector facility, for introducing the content to the optical assembly.
  • the image source is a projector
  • the projector facility includes a light source and the optical display.
  • Light from the light source is emitted under control of the processor and traverses a polarizing beam splitter where it is polarized before being reflected off the optical display, such as the LCoS display or LCD display in certain other embodiments, and into the optical waveguide.
  • a surface of the polarizing beam splitter may reflect the color image from the optical display into the optical waveguide.
  • the RGB LED module may emit light sequentially to form a color image that is reflected off the optical display.
  • the corrective element may be a see-through correction lens that is attached to the optical waveguide to enable proper viewing of the surrounding environment whether the image source is on or off. This corrective element may be a wedge-shaped correction lens, and may be prescription, tinted, coated, or the like.
  • the freeform optical waveguide which may be described by a higher order polynomial, may include dual freeform surfaces that enable a curvature and a sizing of the waveguide.
  • the curvature and the sizing of the waveguide enable its placement in a frame of the interactive head-mounted eyepiece. This frame may be sized to fit a user's head in a similar fashion to sunglasses or eyeglasses.
  • Other elements of the optical assembly of the eyepiece include a homogenizer through which light from the light source is propagated to ensure that the beam of light is uniform and a collimator that improves the resolution of the light entering the optical waveguide.
  • the image light which may be polarized and collimated, may optionally traverse a display coupling lens 412, which may or may not be the collimator itself or in addition to the collimator, and enter the waveguide 414.
  • the waveguide 414 may be a freeform waveguide, where the surfaces of the waveguide are described by a polynomial equation.
  • the waveguide may be rectilinear.
  • the waveguide 414 may include two reflective surfaces. When the image light enters the waveguide 414, it may strike a first surface with an angle of incidence greater than the critical angle above which total internal reflection (TIR) occurs.
  • TIR total internal reflection
  • the image light may engage in TIR bounces between the first surface and a second facing surface, eventually reaching the active viewing area 418 of the composite lens.
  • light may engage in at least three TIR bounces. Since the waveguide 414 tapers to enable the TIR bounces to eventually exit the waveguide, the thickness of the composite lens 420 may not be uniform. Distortion through the viewing area of the composite lens 420 may be minimized by disposing a wedge-shaped correction lens 410 along a length of the freeform waveguide 414 in order to provide a uniform thickness across at least the viewing area of the lens 420.
  • the correction lens 410 may be a prescription lens, a tinted lens, a polarized lens, a ballistic lens, and the like.
  • the optical waveguide may have a first surface and a second surface enabling total internal reflections of the light entering the waveguide, the light may not actually enter the waveguide at an internal angle of incidence that would result in total internal reflection.
  • the eyepiece may include a mirrored surface on the first surface of the optical waveguide to reflect the displayed content towards the second surface of the optical waveguide.
  • the mirrored surface enables a total reflection of the light entering the optical waveguide or a reflection of at least a portion of the light entering the optical waveguide.
  • the surface may be 100% mirrored or mirrored to a lower percentage.
  • an air gap between the waveguide and the corrective element may cause a reflection of the light that enters the waveguide at an angle of incidence that would not result in TIR.
  • the eyepiece includes an integrated image source, such as a projector, that introduces content for display to the optical assembly from a side of the optical waveguide adjacent to an arm of the eyepiece.
  • an integrated image source such as a projector
  • the present disclosure provides image injection to the waveguide from a side of the waveguide.
  • the displayed content aspect ratio is between approximately square to approximately rectangular with the long axis approximately horizontal. In embodiments, the displayed content aspect ratio is 16:9. In embodiments, achieving a rectangular aspect ratio for the displayed content where the long axis is approximately horizontal may be done via rotation of the injected image. In other embodiments, it may be done by stretching the image until it reaches the desired aspect ratio.
  • Fig. 5 depicts a design for a waveguide eyepiece showing sample dimensions.
  • the width of the coupling lens 504 may be 13 ⁇ 15 mm, with the optical display 502 optically coupled in series. These elements may be disposed in an arm or redundantly in both arms of an eyepiece. Image light from the optical display 502 is projected through the coupling lens 504 into the freeform waveguide 508.
  • the thickness of the composite lens 520, including waveguide 508 and correction lens 510, may be 9 mm.
  • the waveguide 502 enables an exit pupil diameter of 8 mm with an eye clearance of 20 mm.
  • the resultant see-through view 512 may be about 60 - 70 mm.
  • the distance from the pupil to the image light path as it enters the waveguide 502 may be about 50 - 60 mm, which can accommodate a large % of human head breadths.
  • the field of view may be larger than the pupil. In embodiments, the field of view may not fill the lens. It should be understood that these dimensions are for a particular illustrative embodiment and should not be construed as limiting.
  • the waveguide, snap-on optics, and/or the corrective lens may comprise optical plastic.
  • the waveguide snap-on optics, and/or the corrective lens may comprise glass, marginal glass, bulk glass, metallic glass, palladium-enriched glass, or other suitable glass.
  • the waveguide 508 and correction lens 510 may be made from different materials selected to result in little to no chromatic aberrations. The materials may include a diffraction grating, a holographic grating, and the like.
  • the projected image may be a stereo image when two projectors 108 are used for the left and right images.
  • the projectors 108 may be disposed at an adjustable distance from one another that enables adjustment based on the interpupillary distance for individual wearers of the eyepiece.
  • External devices 4504 for use with the eyepiece include devices useful in entertainment, navigation, computing, communication, weaponry, and the like.
  • External control devices 4508 include a ring/hand or other haptic controller, external device enabling gesture control (e.g. non-integral camera, device with embedded accelerometer), I/F to external device, and the like.
  • External processing facilities 4510 include local processing facilities, remote processing facilities, I/F to external applications, and the like.
  • Applications for use 4512 include those for commercial, consumer, military, education, government, augmented reality, advertising, media, and the like.
  • Various third party facilities 4514 may be accessed by the eyepiece or work in conjunction with the eyepiece. Eyepieces 100 may interact with other eyepieces 100 through wireless communication, near-field communication, a wired communication, and the like.
  • Fig. 6 depicts an embodiment of the eyepiece 600 with a see- through or translucent lens 602.
  • a projected image 618 can be seen on the lens 602.
  • the image 618 that is being projected onto the lens 602 happens to be an augmented reality version of the scene that the wearer is seeing, wherein tagged points of interest (POI) in the field of view are displayed to the wearer.
  • the augmented reality version may be enabled by a forward facing camera embedded in the eyepiece (not shown in Fig. 6) that images what the wearer is looking and identifies the location / POI.
  • the output of the camera or optical transmitter may be sent to the eyepiece controller or memory for storage, for transmission to a remote location, or for viewing by the person wearing the eyepiece or glasses.
  • the video output may be streamed to the virtual screen seen by the user.
  • the video output may thus be used to help determine the user's location, or may be sent remotely to others to assist in helping to locate the location of the wearer, or for any other purpose.
  • Other detection technologies such as GPS, RFID, manual input, and the like, may be used to determine a wearer's location.
  • a database may be accessed by the eyepiece for information that may be overlaid, projected or otherwise displayed with what is being seen. Augmented reality applications and technology will be further described herein.
  • FIG. 7 an embodiment of the eyepiece 700 is depicted with a translucent lens 702 on which is being displayed streaming media (an e-mail application) and an incoming call notification 704.
  • the media obscures a portion of the viewing area, however, it should be understood that the displayed image may be positioned anywhere in the field of view. In embodiments, the media may be made to be more or less transparent.
  • the eyepiece may receive input from any external source, such as an external converter box.
  • the source may be depicted in the lens of eyepiece.
  • the eyepiece may use the phone's location capabilities to display location-based augmented reality, including marker overlay from marker-based AR applications.
  • a VNC client running on the eyepiece's processor or an associated device may be used to connect to and control a computer, where the computer' s display is seen in the eyepiece by the wearer.
  • content from any source may be streamed to the eyepiece, such as a display from a panoramic camera riding atop a vehicle, a user interface for a device, imagery from a drone or helicopter, and the like.
  • a gun-mounted camera may enable shooting a target not in direct line of sight when the camera feed is directed to the eyepiece.
  • the lenses may be chromic, such as photochromic or electrochromic.
  • the electrochromic lens may include integral chromic material or a chromic coating which changes the opacity of at least a portion of the lens in response to a burst of charge applied by the processor across the chromic material.
  • a chromic portion 902 of the lens 904 is shown darkened, such as for providing greater viewability by the wearer of the eyepiece when that portion is showing displayed content to the wearer.
  • chromic areas on the lens may be controlled independently, such as large portions of the lens, sub-portions of the projected area, programmable areas of the lens and/or projected area, controlled to the pixel level, and the like.
  • Activation of the chromic material may be controlled via the control techniques further described herein or automatically enabled with certain applications (e.g. a streaming video application, a sun tracking application) or in response to a frame-embedded UV sensor.
  • an electrochromic layer may be located between optical elements and/or on the surface of an optical element on the eyepiece, such as on a corrective lens, on a ballistic lens, and the like.
  • the electrochromic layer may consist of a stack, such as an Indium Tin Oxide (ITO) coated PET/PC film with two layers of electrochromic (EC) between, which may eliminate another layer of PET/PC, thereby reducing reflections (e.g. a layer stack may comprise a PET/PC - EC - PET/PC - EC - PET/PC).
  • ITO Indium Tin Oxide
  • EC electrochromic
  • the lens may have an angular sensitive coating which enables transmitting light-waves with low incident angles and reflecting light, such as s-polarized light, with high incident angles.
  • the chromic coating may be controlled in portions or in its entirety, such as by the control technologies described herein.
  • the lenses may be variable contrast and the contrast may be under the control of a push button or any other control technique described herein.
  • the user may wear the interactive head-mounted eyepiece, where the eyepiece includes an optical assembly through which the user views a surrounding environment and displayed content.
  • the optical assembly may include a corrective element that corrects the user' s view of the surrounding environment, an integrated processor for handling content for display to the user, and an integrated image source for introducing the content to the optical assembly.
  • the optical assembly may include an electrochromic layer that provides a display characteristic adjustment that is dependent on displayed content requirements and surrounding environmental conditions.
  • the display characteristic may be brightness, contrast, and the like.
  • the surrounding environmental condition may be a level of brightness that without the display characteristic adjustment would make the displayed content difficult to visualize by the wearer of the eyepiece, where the display characteristic adjustment may be applied to an area of the optical assembly where content is being displayed.
  • the eyepiece may have brightness, contrast, spatial, resolution, and the like control over the eyepiece projected area, such as to alter and improve the user's view of the projected content against a bright or dark surrounding environment.
  • a user may be using the eyepiece under bright daylight conditions, and in order for the user to clearly see the displayed content the display area my need to be altered in brightness and/or contrast.
  • the viewing area surrounding the display area may be altered.
  • the area altered, whether within the display area or not, may be spatially oriented or controlled per the application being implemented. For instance, only a small portion of the display area may need to be altered, such as when that portion of the display area deviates from some determined or predetermined contrast ratio between the display portion of the display area and the surrounding environment.
  • portions of the lens may be altered in brightness, contrast, spatial extent, resolution, and the like, such as fixed to include the entire display area, adjusted to only a portion of the lens, adaptable and dynamic to changes in lighting conditions of the surrounding environment and/or the brightness-contrast of the displayed content, and the like.
  • Spatial extent e.g.
  • technologies for implementing alterations of brightness, contrast, spatial extent, resolution, and the like may include electrochromic materials, LCD technologies, embedded beads in the optics, flexible displays, suspension particle device (SPD) technologies, colloid technologies, and the like.
  • the user may enter sunglass mode where the composite lenses appear only somewhat darkened or the user may enter "Blackout" mode, where the composite lenses appear completely blackened.
  • Electrochromic materials may be electrochromic materials, films, inks, and the like. Electrochromism is the phenomenon displayed by some materials of reversibly changing appearance when electric charge is applied. Various types of materials and structures can be used to construct electrochromic devices, depending on the specific applications. For instance, electrochromic materials include tungsten oxide (WO 3 ), which is the main chemical used in the production of electrochromic windows or smart glass. In embodiments, electrochromic coatings may be used on the lens of the eyepiece in implementing alterations.
  • WO 3 tungsten oxide
  • electrochromic coatings may be used on the lens of the eyepiece in implementing alterations.
  • electrochromic displays may be used in implementing 'electronic paper' , which is designed to mimic the appearance of ordinary paper, where the electronic paper displays reflected light like ordinary paper.
  • electrochromism may be implemented in a wide variety of applications and materials, including gyricon (consisting of polyethylene spheres embedded in a transparent silicone sheet, with each sphere suspended in a bubble of oil so that they can rotate freely), electro-phoretic displays (forming images by rearranging charged pigment particles using an applied electric field), E-Ink technology, electro-wetting, electro-fluidic, interferometric modulator, organic transistors embedded into flexible substrates, nano-chromics displays (NCD), and the like.
  • gyricon consisting of polyethylene spheres embedded in a transparent silicone sheet, with each sphere suspended in a bubble of oil so that they can rotate freely
  • electro-phoretic displays forming images by rearranging charged pigment particles using an applied electric field
  • E-Ink technology electro-wetting, electro-fluidic, inter
  • SPD suspended particle devices
  • SPD technology may be an emulsion applied on a plastic substrate creating the active film. This plastic film may be laminated (as a single glass pane), suspended between two sheets of glass, plastic or other transparent materials, and the like.
  • the electro-optics may be mounted in a monocular or binocular flip-up/flip-down arrangement in two parts: 1) electro-optics; and 2) correction lens.
  • Fig. 8 A depicts a two part eyepiece where the electro-optics are contained within a module 802 that may be electrically connected to the eyepiece 804 via an electrical connector 810, such as a plug, pin, socket, wiring, and the like.
  • the lens 818 in the frame 814 may be a correction lens entirely.
  • the interpupillary distance (IPD) between the two halves of the electro-optic module 802 may be adjusted at the bridge 808 to accommodate various IPDs.
  • Fig. 8B depicts the binocular electro-optics module 802 where one half is flipped up and the other half is flipped down.
  • the nose bridge may be fully adjustable and elastomeric. This enables 3 -point mounting on nose bridge and ears with a head strap to assure the stability of images in the user's eyes, unlike the instability of helmet-mounted optics, that shift on the scalp.
  • the lens 818 may be ANSI-compliant, hard-coat scratch-resistant polycarbonate ballistic lenses, may be chromic, may have an angular sensitive coating, may include a UV-sensitive material, and the like.
  • the electro-optics module may include a CMOS-based VIS/NIR/SWIR black silicon sensor for night vision capability.
  • the electro-optics module 802 may feature quick disconnect capability for user flexibility, field replacement and upgrade.
  • the electro-optics module 802 may feature an integrated power dock.
  • the flip-up/flip-down lens 7910 may include a light block 7908.
  • Removable, elastomeric night adapters/light dams/light blocks 7908 may be used to shield the flip-up/flip-down lens 7910, such as for night operations.
  • the exploded top view of the eyepiece also depicts a headstrap 7900, frame 7904, and adjustable nose bridge 7902.
  • Fig. 80 depicts an exploded view of the electro-optic assembly in a front (A) and side angle (B) view.
  • a holder 8012 holds the see-through optic with corrective lens 7910.
  • An O-ring 8020 and screw 8022 secures the holder to the shaft 8024.
  • a spring 8028 provides a spring-loaded connection between the holder 8012 and shaft 8024.
  • the shaft 8024 connects to the attachment bracket 8014, which secures to the eyepiece using the thumbscrew 8018.
  • the shaft 8024 serves as a pivot and an IPD adjustment tool using the IPD adjustment knob 8030. As seen in Fig. 81, the knob 8030 rotates along adjustment threads 8134.
  • the shaft 8024 also features two set screw grooves 8132.
  • a photochromic layer may be included as part of the optics of the eyepiece.
  • Photochromism is the reversible transformation of a chemical species between two forms by the absorption of electromagnetic radiation, where the two forms have different absorption spectra, such as a reversible change of color, darkness, and the like, upon exposure to a given frequency of light.
  • a photochromic layer may be included between the waveguide and corrective optics of the eyepiece, on the outside of the corrective optic, and the like.
  • a photochromic layer (such as used as a darkening layer) may be activated with a UV diode, or other photochromic responsive wavelength known in the art.
  • the eyepiece optics may also include a UV coating outside the photochromic layer to prevent UV light from the Sun from accidentally activating it.
  • the augmented reality glasses may include a lens 818 for each eye of the wearer.
  • the lenses 818 may be made to fit readily into the frame 814, so that each lens may be tailored for the person for whom the glasses are intended.
  • the lenses may be corrective lenses, and may also be tinted for use as sunglasses, or have other qualities suitable for the intended environment.
  • the lenses may be tinted yellow, dark or other suitable color, or may be photochromic, so that the transparency of the lens decreases when exposed to brighter light.
  • the lenses may also be designed for snap fitting into or onto the frames, i.e., snap on lenses are one embodiment.
  • the lenses need not be corrective lenses; they may simply serve as sunglasses or as protection for the optical system within the frame.
  • the outer lenses are important for helping to protect the rather expensive waveguides, viewing systems and electronics within the augmented reality glasses.
  • the outer lenses offer protection from scratching by the environment of the user, whether sand, brambles, thorns and the like, in one environment, and flying debris, bullets and shrapnel, in another environment.
  • the outer lenses may be decorative, acting to change a look of the composite lens, perhaps to appeal to the individuality or fashion sense of a user.
  • the outer lenses may also help one individual user to distinguish his or her glasses from others, for example, when many users are gathered together.
  • the lenses and the frames meet ANSI Standard Z87.1-2010 for ballistic resistance.
  • the lenses also meet ballistic standard CE EN166B.
  • the lenses and frames may meet the standards of MIL-PRF-31013, standards 3.5.1.1 or 4.4.1.1. Each of these standards has slightly different requirements for ballistic resistance and each is intended to protect the eyes of the user from impact by highspeed projectiles or debris. While no particular material is specified, polycarbonate, such as certain Lexan® grades, usually is sufficient to pass tests specified in the appropriate standard.
  • replaceable lens 819 has a plurality of snap-fit arms 819a which fit into recesses 820a of frame 820.
  • the engagement angle 819b of the arm is greater than 90°, while the engagement angle 820b of the recess is also greater than 90°. Making the angles greater than right angles has the practical effect of allowing removal of lens 819 from the frame 820.
  • the lens 819 may need to be removed if the person's vision has changed or if a different lens is desired for any reason.
  • the design of the snap fit is such that there is a slight compression or bearing load between the lens and the frame. That is, the lens may be held firmly within the frame, such as by a slight interference fit of the lens within the frame.
  • the cantilever snap fit of Fig. 8D is not the only possible way to removably snap-fit the lenses and the frame.
  • an annular snap fit may be used, in which a continuous sealing lip of the frame engages an enlarged edge of the lens, which then snap-fits into the lip, or possibly over the lip.
  • Such a snap fit is typically used to join a cap to an ink pen.
  • This configuration may have an advantage of a sturdier joint with fewer chances for admission of very small dust and dirt particles.
  • Possible disadvantages include the fairly tight tolerances required around the entire periphery of both the lens and frame, and the requirement for dimensional integrity in all three dimensions over time.
  • a groove may be molded into an outer surface of the frame, with the lens having a protruding surface, which may be considered a tongue that fits into the groove. If the groove is semi-cylindrical, such as from about 270° to about 300°, the tongue will snap into the groove and be firmly retained, with removal still possible through the gap that remains in the groove.
  • a lens or replacement lens or cover 826 with a tongue 828 may be inserted into a groove 827 in a frame 825, even though the lens or cover is not snap-fit into the frame. Because the fit is a close one, it will act as a snap-fit and securely retain the lens in the frame.
  • the frame may be made in two pieces, such as a lower portion and an upper portion, with a conventional tongue-and-groove fit.
  • this design may also use standard fasteners to ensure a tight grip of the lens by the frame.
  • the design should not require disassembly of anything on the inside of the frame.
  • the snap-on or other lens or cover should be assembled onto the frame, or removed from the frame, without having to go inside the frame.
  • the augmented reality glasses have many component parts. Some of the assemblies and subassemblies may require careful alignment. Moving and jarring these assemblies may be detrimental to their function, as will moving and jarring the frame and the outer or snap-on lens or cover.
  • the flip-up / flip-down arrangement enables a modular design for the eyepiece.
  • the eyepiece be equipped with a monocular or binocular module 802, but the lens 818 may also be swapped.
  • additional features may be included with the module 802, either associated with one or both displays 812.
  • either monocular or binocular versions of the module 802 may be display only 852 (monocular), 854 (binocular) or may be equipped with a forward-looking camera 858 (monocular), and 860 & 862 (binocular).
  • the module may have additional integrated electronics, such as a GPS, a laser range finder, and the like.
  • a binocular electro-optic module 862 is equipped with stereo forward-looking cameras 870, GPS, and a laser range finder 868. These features may enable the Ultra- Vis embodiment to have panoramic night vision, and panoramic night vision with laser range finder and geo location.
  • the electro-optics characteristics may be, but not limited to, as follows:
  • the Projector Characteristics may be as follows:
  • an augmented reality eyepiece may include electrically-controlled lenses as part of the microprojector or as part of the optics between the microprojector and the waveguide.
  • Fig. 21 depicts an embodiment with such liquid lenses 2152.
  • the glasses may also include at least one camera or optical sensor 2130 that may furnish an image or images for viewing by the user.
  • the images are formed by a microprojector 2114 on each side of the glasses for conveyance to the waveguide 2108 on that side.
  • an additional optical element, a variable focus lens 2152 may also be furnished.
  • the lens may be electrically adjustable by the user so that the image seen in the waveguides 2108 are focused for the user.
  • the camera may be a multi-lens camera, such as an 'array camera' , where the eyepiece processor may combine the data from the multiple lenses and multiple viewpoints of the lenses to build a single high-quality image. This technology may be referred to as computational imaging, since software is used to process the image.
  • Computational imaging may provide image-processing advantages, such as allowing processing of the composite image as a function of individual lens images.
  • the processor may provide image processing to create images with special focusing, such as foveal imaging, where the focus from one of the lens images is clear, higher resolution, and the like, and where the rest of the image is defocused, lower resolution, and the like.
  • the processor may also select portions of the composite image to store in memory, while deleting the rest, such as when memory storage is limited and only portions of the composite image are critical to save.
  • use of the array camera may provide the ability to alter the focus of an image after the image has been taken.
  • the array camera may provide a thinner mechanical profile than a traditional single-lens assembly, thus making it easier to integrate into the eyepiece.
  • Variable lenses may include the so-called liquid lenses furnished by Varioptic, S.A., Lyons, France, or by LensVector, Inc., Mountain View, CA, U.S.A. Such lenses may include a central portion with two immiscible liquids. Typically, in these lenses, the path of light through the lens, i.e., the focal length of the lens is altered or focused by applying an electric potential between electrodes immersed in the liquids. At least one of the liquids is affected by the resulting electric or magnetic field potential. Thus, electrowetting may occur, as described in U.S. Pat. Appl. Publ. 2010/0007807, assigned to LensVector, Inc. Other techniques are described in LensVector Pat. Appl. Pubis. 2009/021331 and 2009/0316097. All three of these disclosures are incorporated herein by reference, as though each page and figures were set forth verbatim herein.
  • the electrically-adjustable lenses may be controlled by the controls of the glasses.
  • a focus adjustment is made by calling up a menu from the controls and adjusting the focus of the lens.
  • the lenses may be controlled separately or may be controlled together.
  • the adjustment is made by physically turning a control knob, by indicating with a gesture, or by voice command.
  • the augmented reality glasses may also include a rangefinder, and focus of the electrically-adjustable lenses may be controlled automatically by pointing the rangefinder, such as a laser rangefinder, to a target or object a desired distance away from the user.
  • variable lenses may also be applied to the outer lenses of the augmented reality glasses or eyepiece.
  • the lenses may simply take the place of a corrective lens.
  • the variable lenses with their electric-adjustable control may be used instead of or in addition to the image source- or projector- mounted lenses.
  • the corrective lens inserts provide corrective optics for the user's environment, the outside world, whether the waveguide displays are active or not.
  • the view or images presented travel from one or two digital cameras or sensors mounted on the eyepiece, to digital circuitry, where the images are processed and, if desired, stored as digital data before they appear in the display of the glasses.
  • the digital data is then used to form an image, such as by using an LCOS display and a series of RGB light emitting diodes.
  • the light images are processed using a series of lenses, a polarizing beam splitter, an electrically-powered liquid corrective lens and at least one transition lens from the projector to the waveguide.
  • the process of gathering and presenting images includes several mechanical and optical linkages between components of the augmented reality glasses. It seems clear, therefore, that some form of stabilization will be required. This may include optical stabilization of the most immediate cause, the camera itself, since it is mounted on a mobile platform, the glasses, which themselves are movably mounted on a mobile user. Accordingly, camera stabilization or correction may be required. In addition, at least some stabilization or correction should be used for the liquid variable lens. Ideally, a stabilization circuit at that point could correct not only for the liquid lens, but also for any aberration and vibration from many parts of the circuit upstream from the liquid lens, including the image source.
  • One advantage of the present system is that many commercial off-the-shelf cameras are very advanced and typically have at least one image- stabilization feature or option. Thus, there may be many embodiments of the present disclosure, each with a same or a different method of stabilizing an image or a very fast stream of images, as discussed below.
  • optical stabilization is typically used herein with the meaning of physically stabilizing the camera, camera platform, or other physical object, while image stabilization refers to data manipulation and processing.
  • One technique of image stabilization is performed on digital images as they are formed. This technique may use pixels outside the border of the visible frame as a buffer for the undesired motion. Alternatively, the technique may use another relatively steady area or basis in succeeding frames. This technique is applicable to video cameras, shifting the electronic image from frame to frame of the video in a manner sufficient to counteract the motion. This technique does not depend on sensors and directly stabilizes the images by reducing vibrations and other distracting motion from the moving camera. In some techniques, the speed of the images may be slowed in order to add the stabilization process to the remainder of the digital process, and requiring more time per image. These techniques may use a global motion vector calculated from frame-to-frame motion differences to determine the direction of the stabilization.
  • Optical stabilization for images uses a gravity- or electronically- driven mechanism to move or adjust an optical element or imaging sensor such that it counteracts the ambient vibrations.
  • Another way to optically stabilize the displayed content is to provide gyroscopic correction or sensing of the platform housing the augmented reality glasses, e.g., the user.
  • the sensors available and used on the augmented reality glasses or eyepiece include MEMS gyroscopic sensors. These sensors capture movement and motion in three dimensions in very small increments and can be used as feedback to correct the images sent from the camera in real time. It is clear that at least a large part of the undesired and undesirable movement probably is caused by movement of the user and the camera itself.
  • These larger movements may include gross movements of the user, e.g., walking or running, riding in a vehicle.
  • Smaller vibrations may also result within the augmented reality eyeglasses, that is, vibrations in the components in the electrical and mechanical linkages that form the path from the camera (input) to the image in the waveguide (output).
  • These gross movements may be more important to correct or to account for, rather than, for instance, independent and small movements in the linkages of components downstream from the projector.
  • Motion sensing may thus be used to sense the motion and correct for it, as in optical stabilization, or to sense the motion and then correct the images that are being taken and processed, as in image stabilization.
  • An apparatus for sensing motion and correcting the images or the data is depicted in Fig. 34A.
  • one or more kinds of motion sensors may be used, including accelerometers, angular position sensors or gyroscopes, such as MEMS gyroscopes. Data from the sensors is fed back to the appropriate sensor interfaces, such as analog to digital converters (ADCs) or other suitable interface, such as digital signal processors (DSPs).
  • a microprocessor then processes this information, as discussed above, and sends image- stabilized frames to the display driver and then to the see- through display or waveguide discussed above.
  • the display begins with the RGB display in the microprojector of the augmented reality eyepiece.
  • a video sensor or augmented reality glasses, or other device with a video sensor may be mounted on a vehicle.
  • the video stream may be communicated through a telecommunication capability or an Internet capability to personnel in the vehicle.
  • One application could be sightseeing or touring of an area.
  • Another embodiment could be exploring or reconnaissance, or even patrolling, of an area.
  • gyroscopic stabilization of the image sensor would be helpful, rather than applying a gyroscopic correction to the images or digital data representing the images.
  • An embodiment of this technique is depicted in Fig. 34B. In this technique, a camera or image sensor 3407 is mounted on a vehicle 3401.
  • One or more motion sensors 3406 are mounted in the camera assembly 3405.
  • a stabilizing platform 3403 receives information from the motion sensors and stabilizes the camera assembly 3405, so that jitter and wobble are minimized while the camera operates. This is true optical stabilization.
  • the motion sensors or gyroscopes may be mounted on or within the stabilizing platform itself. This technique would actually provide optical stabilization, stabilizing the camera or image sensor, in contrast to digital stabilization, correcting the image afterwards by computer processing of the data taken by the camera.
  • the key to optical stabilization is to apply the stabilization or correction before an image sensor converts the image into digital information.
  • feedback from sensors such as gyroscopes or angular velocity sensors, is encoded and sent to an actuator that moves the image sensor, much as an autofocus mechanism adjusts a focus of a lens.
  • the image sensor is moved in such a way as to maintain the projection of the image onto the image plane, which is a function of the focal length of the lens being used.
  • Autoranging and focal length information perhaps from a range finder of the interactive head-mounted eyepiece, may be acquired through the lens itself.
  • angular velocity sensors sometimes also called gyroscopic sensors, can be used to detect, respectively, horizontal and vertical movements. The motion detected may then be fed back to electromagnets to move a floating lens of the camera.
  • This optical stabilization technique would have to be applied to each lens contemplated, making the result rather expensive.
  • a control scheme with feedback would then apply a voltage and determine the effect of the applied voltage on the result, i.e., a focus or an astigmatism of the image.
  • the voltages may be applied in patterns, for example, equal and opposite + and - voltages, both positive voltages of differing magnitude, both negative voltages of differing magnitude, and so forth.
  • Such lenses are known as electrically variable optic lenses or electro-optic lenses.
  • Voltages may be applied to the electrodes in patterns for a short period of time and a check on the focus or astigmatism made. The check may be made, for instance, by an image sensor.
  • sensors on the camera or in this case the lens may detect motion of the camera or lens. Motion sensors would include accelerometers, gyroscopes, angular velocity sensors or piezoelectric sensors mounted on the liquid lens or a portion of the optic train very near the liquid lens.
  • a table such as a calibration table, is then constructed of voltages applied and the degree of correction or voltages needed for given levels of movement. More sophistication may also be added, for example, by using segmented electrodes in different portions of the liquid so that four voltages may be applied rather than two.
  • Fig. 34C An example is depicted in Fig. 34C.
  • Four electrodes 3409 are mounted within a liquid lens housing (not shown). Two electrodes are mounted in or near the non-conducting liquid and two are mounted in or near the conducting liquid. Each electrode is independent in terms of the possible voltage that may be applied.
  • Look-up or calibration tables may be constructed and placed in the memory of the augmented reality glasses.
  • the accelerometer or other motion sensor will sense the motion of the glasses, i.e., the camera on the glasses or the lens itself.
  • a motion sensor such as an accelerometer will sense in particular, small vibration-type motions that interfere with smooth delivery of images to the waveguide.
  • the image stabilization techniques described here can be applied to the electrically-controllable liquid lens so that the image from the projector is corrected immediately. This will stabilize the output of the projector, at least partially correcting for the vibration and movement of the augmented reality eyepiece, as well as at least some movement by the user.
  • Another variable focus element uses tunable liquid crystal cells to focus an image. These are disclosed, for example, in U.S. Pat. Appl. Publ. Nos. 2009/0213321, 2009/0316097 and 2010/0007807, which are hereby incorporated by reference in their entirety and relied on.
  • a liquid crystal material is contained within a transparent cell, preferably with a matching index of refraction.
  • the cell includes transparent electrodes, such as those made from indium tin oxide (ITO).
  • ITO indium tin oxide
  • a tunable liquid crystal cell 3420 is depicted in Fig. 34D.
  • the cell includes an inner layer of liquid crystal 3421 and thin layers 3423 of orienting material such as polyimide. This material helps to orient the liquid crystals in a preferred direction.
  • Transparent electrodes 3425 are on each side of the orienting material. An electrode may be planar, or may be spiral shaped as shown on the right in Fig. 34D.
  • Transparent glass substrates 3427 contain the materials within the cell.
  • the electrodes are formed so that they will lend shape to the magnetic field.
  • a spiral shaped electrode on one or both sides, such that the two are not symmetrical, is used in one embodiment.
  • a second embodiment is depicted in Fig. 34E.
  • Tunable liquid crystal cell 3430 includes central liquid crystal material 3431, transparent glass substrate walls 3433, and transparent electrodes.
  • Bottom electrode 3435 is planar, while top electrode 3437 is in the shape of a spiral.
  • Transparent electrodes may be made of indium tin oxide (ITO).
  • Additional electrodes may be used for quick reversion of the liquid crystal to a non-shaped or natural state.
  • a small control voltage is thus used to dynamically change the refractive index of the material the light passes through.
  • the voltage generates a spatially non-uniform magnetic field of a desired shape, allowing the liquid crystal to function as a lens.
  • the camera includes the black silicon, short wave infrared (SWIR) CMOS sensor described elsewhere in this patent.
  • the camera is a 5 megapixel (MP) optically-stabilized video sensor.
  • the controls include a 3 GHz microprocessor or microcontroller, and may also include a 633 MHz digital signal processor with a 30 M polygon/second graphic accelerator for real-time image processing for images from the camera or video sensor.
  • the augmented reality glasses may include a wireless internet, radio or telecommunications capability for wideband, personal area network (PAN), local area network (LAN), a wide local area network, WLAN, conforming to IEEE 802.11, or reach-back communications.
  • the equipment furnished in one embodiment includes a Bluetooth capability, conforming to IEEE 802.15.
  • the augmented reality glasses include an encryption system, such as a 256-bit Advanced Encryption System (AES) encryption system or other suitable encryption program, for secure communications.
  • AES Advanced Encryption System
  • the wireless telecommunications may include a capability for a 3G or 4G network and may also include a wireless internet capability.
  • the augmented reality eyepiece or glasses may also include at least one lithium-ion battery, and as discussed above, a recharging capability.
  • the recharging plug may comprise an AC/DC power converter and may be capable of using multiple input voltages, such as 120 or 240 VAC.
  • the controls for adjusting the focus of the adjustable focus lenses in one embodiment comprises a 2D or 3D wireless air mouse or other non-contact control responsive to gestures or movements of the user.
  • a 2D mouse is available from Logitech, Fremont, CA, USA.
  • a 3D mouse is described herein, or others such as the Cideko AVK05 available from Cideko, Taiwan, R.O.C, may be used.
  • the eyepiece may comprise electronics suitable for controlling the optics, and associated systems, including a central processing unit, non-volatile memory, digital signal processors, 3-D graphics accelerators, and the like.
  • the eyepiece may provide additional electronic elements or features, including inertial navigation systems, cameras, microphones, audio output, power,
  • thermometer thermometer
  • vibratory temple motors motion sensor
  • a microphone to enable audio control of the system
  • UV sensor to enable contrast and dimming with photochromic materials, and the like.
  • the central processing unit (CPU) of the eyepiece may be an OMAP 4, with dual 1 GHz processor cores.
  • the CPU may include a 633 MHz DSP, giving a capability for the CPU of 30 million
  • the system may also provide dual micro-SD (secure digital) slots for provisioning of additional removable non- volatile memory.
  • An on-board camera may provide 1.3 MP color and record up to 60 minutes of video footage.
  • the recorded video may be transferred wirelessly or using a mini-USB transfer device to off-load footage.
  • the communications system-on-a-chip may be capable of operating with wide local area networks (WLAN), Bluetooth version 3.0, a GPS receiver, an FM radio, and the like.
  • WLAN wide local area networks
  • Bluetooth version 3.0 Bluetooth version 3.0
  • GPS receiver GPS receiver
  • FM radio FM radio
  • the eyepiece may operate on a 3.6 VDC lithium-ion rechargeable battery for long battery life and ease of use.
  • An additional power source may be provided through solar cells on the exterior of the frame of the system. These solar cells may supply power and may also be capable of recharging the lithium-ion battery.
  • the total power consumption of the eyepiece may be
  • the micro-projector illumination engine also known herein as the projector, may include multiple light emitting diodes (LEDs).
  • LEDs light emitting diodes
  • Osram red, Cree green, and Cree blue LEDs are used. These are die-based LEDs.
  • the RGB engine may provide an adjustable color output, allowing a user to optimize viewing for various programs and applications.
  • illumination may be added to the glasses or controlled through various means.
  • LED lights or other lights may be embedded in the frame of the eyepiece, such as in the nose bridge, around the composite lens, or at the temples.
  • the intensity of the illumination and or the color of illumination may be modulated. Modulation may be accomplished through the various control technologies described herein, through various applications, filtering and
  • illumination may be modulated through various control technologies described herein such as through the adjustment of a control knob, a gesture, eye movement, or voice command.
  • a user desires to increase the intensity of illumination, the user may adjust a control knob on the glasses or he may adjust a control knob in the user interface displayed on the lens or by other means.
  • the user may use eye movements to control the knob displayed on the lens or he may control the knob by other means.
  • the user may adjust illumination through a movement of the hand or other body movement such that the intensity or color of illumination changes based on the movement made by the user.
  • the user may adjust the illumination through a voice command such as by speaking a phrase requesting increased or decreased illumination or requesting other colors to be displayed.
  • illumination modulation may be achieved through any control technology described herein or by other means.
  • the illumination may be modulated per the particular application being executed.
  • an application may automatically adjust the intensity of illumination or color of illumination based on the optimal settings for that application. If the current levels of illumination are not at the optimal levels for the application being executed, a message or command may be sent to provide for illumination adjustment.
  • illumination modulation may be accomplished through filtering and or through magnification.
  • filtering techniques may be employed that allow the intensity and or color of the light to be changed such that the optimal or desired illumination is achieved.
  • the intensity of the illumination may be modulated by applying greater or less magnification to reach the desired illumination intensity.
  • the projector may be connected to the display to output the video and other display elements to the user.
  • the display used may be an SVGA 800 x 600 dots/inch SYNDIANT liquid crystal on silicon (LCoS) display.
  • the target MPE dimensions for the system may be 24 mm x 12 mm x 6 mm.
  • the focus may be adjustable, allowing a user to refine the projector output to suit their needs.
  • the optics system may be contained within a housing fabricated for 6061-T6 aluminum and glass-filled ABS/PC.
  • the weight of the system in an embodiment, is estimated to be 3.75 ounces, or 95 grams.
  • the eyepiece and associated electronics provide night vision capability.
  • This night vision capability may be enabled by a black silicon SWIR sensor.
  • Black silicon is a complementary metal-oxide silicon (CMOS) processing technique that enhances the photo response of silicon over 100 times.
  • CMOS complementary metal-oxide silicon
  • SWIR short wave infra-red
  • a 300 nm deep absorbing and anti-reflective layer is added to the glasses. This layer offers improved responsivity as shown in Fig. 11, where the responsivity of black silicon is much greater than silicon' s over the visible and NIR ranges and extends well into the SWIR range.
  • CMOS complementary metal-oxide-semiconductor
  • NVGs current night-vision goggles
  • SWIR sensors pick up individual photons and convert light in the SWIR spectrum to electrical signals, similar to digital photography.
  • the photons can be produced from the natural recombination of oxygen and hydrogen atoms in the atmosphere at night, also referred to as "Night Glow.”
  • Shortwave infrared devices see objects at night by detecting the invisible, shortwave infrared radiation within reflected star light, city lights or the moon. They also work in daylight, or through fog, haze or smoke, whereas the current NVG Image Intensifier infrared sensors would be overwhelmed by heat or brightness. Because shortwave infrared devices pick up invisible radiation on the edge of the visible spectrum, the SWIR images look like the images produced by visible light with the same shadows and contrast and facial details, only in black and white, dramatically enhancing recognition so people look like people; they don't look like blobs often seen with thermal Imagers.
  • SWIR Electro-optics soldiers will be able to view every targeting laser in use, including those used by the enemy.
  • the Visible/Near Infrared/Short Wave Infrared Sensor can see through them- day or night, giving users an important tactical advantage.
  • Certain advantages include using active illumination only when needed. In some instances there may be sufficient natural illumination at night, such as during a full moon. When such is the case, artificial night vision using active illumination may not be necessary. With black silicon CMOS-based SWIR sensors, active illumination may not be needed during these conditions, and is not provided, thus improving battery life.
  • a black silicon image sensor may have over eight times the signal to noise ratio found in costly indium-gallium arsenide image sensors under night sky conditions. Better resolution is also provided by this technology, offering much higher resolution than available using current technology for night vision.
  • CMOS-based SWIR have been difficult to interpret, having good heat detection, but poor resolution.
  • This problem is solved with a black image silicon SWIR sensor, which relies on much shorter wavelengths. SWIR is highly desirable for battlefield night vision glasses for these reasons.
  • Fig. 12 illustrates the effectiveness of black silicon night vision technology, providing both before and after images of seeing through a) dust; b) fog, and c) smoke.
  • the images in FIG. 12 demonstrate the performance of the new
  • the image sensor may be able to distinguish between changes in the natural environment, such as disturbed vegetation, disturbed ground, and the like.
  • an enemy combatant may have recently placed an explosive device in the ground, and so the ground over the explosive will be 'disturbed ground' , and the image sensor (along with processing facilities internal or external to the eyepiece) may be able to distinguish the recently disturbed ground from the surrounding ground.
  • an underground explosive device e.g. an improvised explosive device (IED)
  • FIG. 17 shows the difference in image quality between A) a flexible platform of uncooled CMOS image sensors capable of VIS/NIR/SWIR imaging and B) an image intensified night vision system.
  • FIG. 13 depicts the difference in structure between current or incumbent vision enhancement technology 1300 and uncooled CMOS image sensors 1307.
  • the incumbent platform (Fig. 13A) limits deployment because of cost, weight, power consumption, spectral range, and reliability issues.
  • Incumbent systems are typically comprised of a front lens 1301, photocathode 1302, micro channel plate 1303, high voltage power supply 1304, phosphorous screen 1305, and eyepiece 1306. This is in contrast to a flexible platform (Fig. 13B) of uncooled CMOS image sensors 1307 capable of VIS/NIR/SWIR imaging at a fraction of the cost, power
  • These much simpler sensors include a front lens 1308 and an image sensor 1309 with a digital image output.
  • CMOS compatible processing technique that enhances the photo response of silicon over 100 times and extends the spectral range deep into the short wave infrared region.
  • the difference in responsivity is illustrated in FIG. 13C. While typical night vision goggles are limited to the UV, visible and near infrared (NIR) ranges, to about 1100 nm (1.1 micrometers) the newer CMOS image sensor ranges also include the short wave infrared (SWIR) spectrum, out to as much as 2000 nm (2 micrometers).
  • NIR visible and near infrared
  • SWIR short wave infrared
  • the black silicon core technology may offer significant improvement over current night vision glasses. Femtosecond laser doping may enhance the light detection properties of silicon across a broad spectrum.
  • optical response may be improved by a factor of 100 to 10,000.
  • the black silicon technology is a fast, scalable, and CMOS compatible technology at a very low cost, compared to current night vision systems. Black silicon technology may also provide a low operation bias, with 3.3 V typical. In addition, uncooled performance may be possible up to 50°C. Cooling requirements of current technology increase both weight and power consumption, and also create discomfort in users.
  • the black silicon core technology offers a high-resolution replacement for current image intensifier technology. Black silicon core technology may provide high speed electronic shuttering at speeds up to 1000 frames/second with minimal cross talk.
  • an OLED display may be preferred over other optical displays, such as the LCoS display.
  • the eyepiece incorporating the VIS/NIR/SWIR black silicon sensor may provide for better situational awareness (SAAS) surveillance and realtime image enhancement.
  • SAAS situational awareness
  • the VIS/NIR/SWIR black silicon sensor may be incorporated into a form factor suitable for night vision only, such as a night vision goggle or a night vision helmet.
  • the night vision goggle may include features that make it suitable for the military market, such as ruggedization and alternative power supplies, while other form factors may be suitable for the consumer or toy market.
  • the night vision goggles may have extended range, such as 500 - 1200 nm, and may also useable as a camera.
  • the VIS/NIR/SWIR black silicon sensor as well as other outboard sensors may be incorporated into a mounted camera that may be mounted on transport or combat vehicles so that the real-time feed can be sent to the driver or other occupants of the vehicle by superimposing the video on the forward view without obstructing it.
  • the driver can better see where he or she is going, the gunner can better see threats or targets of opportunity, and the navigator can better sense situational awareness (SAAS) while also looking for threats.
  • SAAS situational awareness
  • the feed could also be sent to off-site locations as desired, such as higher headquarters of memory/storage locations for later use in targeting, navigation, surveillance, data mining, and the like.
  • the UWB transceiver may be used to create a very high data rate, low-probability-of-intercept/low- probability-of-detection (LPI/LPD), Wireless Personal Area Network (WPAN) to connect weapons sights, weapons -mounted mouse/controller, E/O sensors, medical sensors, audio/video displays, and the like.
  • LPI/LPD low-probability-of-intercept/low- probability-of-detection
  • WPAN Wireless Personal Area Network
  • the WPAN may be created using other communications protocols.
  • a WPAN transceiver may be a COTS -compliant module front end to make the power management of a combat radio highly responsive and to avoid jeopardizing the robustness of the radio.
  • UWB ultra wideband
  • the WPAN transceivers create a low power, encrypted, wireless personal area network (WPAN) between soldier worn devices.
  • the WPAN transceivers can be attached or embedded into nearly any fielded military device with a network interface (handheld computers, combat displays, etc).
  • the system is capable of supporting many users, AES encryption, robust against jamming and RF interference as well as being ideal for combat providing low probabilities of interception and detection (LPIZ LPD).
  • the WPAN transceivers eliminate the bulk, weight and "snagability" of data cables on the soldier.
  • Interfaces include USB 1.1, USB 2.0 OTG, Ethernet 10-, 100 Base-T and RS232 9-pin D-Sub.
  • the power output may be -10, -20 dBm outputs for a variable range of up to 2 meters.
  • the data capacity may be 768 Mbps and greater.
  • the bandwidth may be 1.7 GHz.
  • Encryption may be 128-bit, 192-bit or 256-bit AES.
  • the WPAN transceiver may include Optimized Message Authentication Code (MAC) generation.
  • the WPAN transceiver may comply to MIL-STD-461F.
  • the WPAN transceiver may be in the form of a connector dust cap and may attach to any fielded military device.
  • the WPAN transceiver allows simultaneous video, voice, stills, text and chat, eliminates the need for data cables between electronic devices, allows hands-free control of multiple devices without distraction, features an adjustable connectivity range, interfaces with Ethernet and USB 2.0, features an adjustable frequency 3.1 to 10.6 GHz and 200mw peak draw and nominal standby.
  • the WPAN transceiver may enable creating a WPAN between the eyepiece 100 in the form of a GSE stereo heads-up combat display glasses, a computer, a remote computer controller, and biometric enrollment devices like that seen in Fig. 58.
  • the WPAN transceiver may enable creating a WPAN between the eyepiece in the form of flip-up/-down heads-up display combat glasses, the HUD CPU (if it is external), a weapon fore-grip controller, and a forearm computer similar to that seen in Fig. 58.
  • the eyepiece may provide its own cellular connectivity, such as though a personal wireless connection with a cellular system.
  • the personal wireless connection may be available for only the wearer of the eyepiece, or it may be available to a plurality of proximate users, such as in a Wi-Fi hot spot (e.g. MiFi), where the eyepiece provides a local hotspot for others to utilize.
  • proximate users may be other wearers of an eyepiece, or users of some other wireless computing device, such as a mobile communications facility (e.g. mobile phone).
  • a mobile communications facility e.g. mobile phone
  • the wearer may have to find a WiFi connection point or tether to their mobile communications facility in order to establish a wireless connection.
  • the eyepiece may be able to replace the need for having a separate mobile communications device, such as a mobile phone, mobile computer, and the like, by integrating these functions and user interfaces into the eyepiece.
  • the eyepiece may have an integrated WiFi connection or hotspot, a real or virtual keyboard interface, a USB hub, speakers (e.g. to stream music to) or speaker input connections, integrated camera, external camera, and the like.
  • an external device in connectivity with the eyepiece, may provide a single unit with a personal network connection (e.g. WiFi, cellular connection), keyboard, control pad (e.g. a touch pad), and the like.
  • Communications from the eyepiece may include communication links for special purposes.
  • an ultra-wide bandwidth communications link may be utilized when sending and/or receiving large volumes of data in a short amount of time.
  • a near-field communications (NFC) link may be used with very limited transmission range in order to post information to transmit to personnel when they are very near, such as for tactical reasons, for local directions, for warnings, and the like.
  • NFC near-field communications
  • a soldier may be able to post/hold information securely, and transmit only to people very near by with a need-to-know or need-to-use the information.
  • PAN personal area network
  • PAN personal area network
  • the eyepiece may include MEMS-based inertial navigation systems, such as a GPS processor, an accelerometer (e.g. for enabling head control of the system and other functions), a gyroscope, an altimeter, an inclinometer, a speedometer/odometer, a laser rangefinder, and a magnetometer, which also enables image stabilization.
  • MEMS-based inertial navigation systems such as a GPS processor, an accelerometer (e.g. for enabling head control of the system and other functions), a gyroscope, an altimeter, an inclinometer, a speedometer/odometer, a laser rangefinder, and a magnetometer, which also enables image stabilization.
  • the eyepiece may include integrated headphones, such as the articulating earbud 120, that provide audio output to the user or wearer.
  • a forward facing camera integrated with the eyepiece may enable basic augmented reality.
  • augmented reality a viewer can image what is being viewed and then layer an augmented, edited, tagged, or analyzed version on top of the basic view.
  • associated data may be displayed with or over the basic image. If two cameras are provided and are mounted at the correct interpupillary distance for the user, stereo video imagery may be created. This capability may be useful for persons requiring vision assistance. Many people suffer from deficiencies in their vision, such as near-sightedness, farsightedness, and so forth.
  • a camera and a very close, virtual screen as described herein provides a "video" for such persons, the video adjustable in terms of focal point, nearer or farther, and fully in control by the person via voice or other command.
  • This capability may also be useful for persons suffering diseases of the eye, such as cataracts, retinitis pigmentosa, and the like. So long as some organic vision capability remains, an augmented reality eyepiece can help a person see more clearly.
  • Embodiments of the eyepiece may feature one or more of magnification, increased brightness, and ability to map content to the areas of the eye that are still healthy.
  • Embodiments of the eyepiece may be used as bifocals or a magnifying glass.
  • the wearer may be able to increase zoom in the field of view or increase zoom within a partial field of view.
  • an associated camera may make an image of the object and then present the user with a zoomed picture.
  • a user interface may allow a wearer to point at the area that he wants zoomed, such as with the control techniques described herein, so the image processing can stay on task as opposed to just zooming in on everything in the camera's field of view.
  • a rear-facing camera (not shown) may also be incorporated into the eyepiece in a further embodiment.
  • the rear-facing camera may enable eye control of the eyepiece, with the user making application or feature selection by directing his or her eyes to a specific item displayed on the eyepiece.
  • a further embodiment of a device for capturing biometric data about individuals may incorporate a microcassegrain telescoping folded optic camera into the device.
  • the microcassegrain telescoping folded optic camera may be mounted on a handheld device, such as the bio-print device, the bio-phone, and could also be mounted on glasses used as part of a bio-kit to collect biometric data.
  • a cassegrain reflector is a combination of a primary concave mirror and a secondary convex mirror. These reflectors are often used in optical telescopes and radio antennas because they deliver good light (or sound) collecting capability in a shorter, smaller package.
  • both mirrors are aligned about the optical axis, and the primary mirror usually has a hole in the center, allowing light to reach the eyepiece or a camera chip or light detection device, such as a CCD chip.
  • An alternate design often used in radio telescopes, places the final focus in front of the primary reflector.
  • a further alternate design may tilt the mirrors to avoid obstructing the primary or secondary mirror and may eliminate the need for a hole in the primary mirror or secondary mirror.
  • the microcassegrain telescoping folded optic camera may use any of the above variations, with the final selection determined by the desired size of the optic device.
  • the classic cassegrain configuration 3500 uses a parabolic reflector as the primary mirror and a hyperbolic mirror as the secondary mirror. Further embodiments of the microcassegrain telescoping folded optic camera may use a hyperbolic primary mirror and/or a spherical or elliptical secondary mirror. In operation the classic cassegrain with a parabolic primary mirror and a hyperbolic secondary mirror reflects the light back down through a hole in the primary, as shown in Fig. 35. Folding the optical path makes the design more compact, and in a "micro" size, suitable for use with the bio-print sensor and bio-print kit described herein.
  • the beam is bent to make the optical path much longer than the physical length of the system.
  • folded optics is prismatic binoculars.
  • the secondary mirror may be mounted on an optically flat, optically clear glass plate that closes the lens tube. This support eliminates "star- shaped" diffraction effects that are caused by a straight- vaned support spider. This allows for a sealed closed tube and protects the primary mirror, albeit at some loss of light collecting power.
  • the cassegrain design also makes use of the special properties of parabolic and hyperbolic reflectors.
  • a concave parabolic reflector will reflect all incoming light rays parallel to its axis of symmetry to a single focus point.
  • a convex hyperbolic reflector has two foci and reflects all light rays directed at one focus point toward the other focus point.
  • Mirrors in this type of lens are designed and positioned to share one focus, placing the second focus of the hyperbolic mirror at the same point as where the image is observed, usually just outside the eyepiece.
  • the parabolic mirror reflects parallel light rays entering the lens to its focus, which is coincident with the focus of the hyperbolic mirror.
  • the hyperbolic mirror then reflects those light rays to the other focus point, where the camera records the image.
  • Fig. 36 shows the configuration of the microcassegrain telescoping folded optic camera.
  • the camera may be mounted on augmented reality glasses, a bio-phone, or other biometric collection device.
  • the assembly, 3600 has multiple telescoping segments that allow the camera to extend with cassegrain optics providing for a longer optical path.
  • Threads 3602 allow the camera to be mounted on a device, such as augmented reality glasses or other biometric collection device. While the embodiment depicted in Fig. 36 uses threads, other mounting schemes such as bayonet mount, knobs, or press-fit, may also be used.
  • a first telescoping section 3604 also acts as an external housing when the lens is in the fully retracted position.
  • the camera may also incorporate a motor to drive the extension and retraction of the camera.
  • a second telescoping section 3606 may also be included.
  • Other embodiments may incorporate varying numbers of telescoping sections, depending on the length of optical path needed for the selected task or data to be collected.
  • a third telescoping section 3608 includes the lens and a reflecting mirror.
  • the reflecting mirror may be a primary reflector if the camera is designed following classic cassegrain design.
  • the secondary mirror may be contained in first telescoping section 3604.
  • Further embodiments may utilize microscopic mirrors to form the camera, while still providing for a longer optical path through the use of folded optics. The same principles of cassegrain design are used.
  • Lens 3610 provides optics for use in conjunction with the folded optics of the cassegrain design.
  • the lens 3610 may be selected from a variety of types, and may vary depending on the application.
  • the threads 3602 permit a variety of cameras to be interchanged depending on the needs of the user.
  • Eye control of feature and option selection may be controlled and activated by object recognition software loaded on the system processor.
  • Object recognition software may enable augmented reality, combine the recognition output with querying a database, combine the recognition output with a computational tool to determine dependencies / likelihoods, and the like.
  • Three-dimensional viewing is also possible in an additional embodiment that incorporates a 3D projector.
  • Two stacked picoprojectors may be used to create the three dimensional image output.
  • a plurality of digital CMOS Sensors with redundant micros and DSPs for each sensor array and projector detect visible, near infrared, and short wave infrared light to enable passive day and night operations, such as real-time image enhancement 1002, real-time keystone correction 1004, and real-time virtual perspective correction 1008.
  • the eyepiece may utilize digital CMOS image sensors and directional microphones (e.g. microphone arrays) as described herein, such as for visible imaging for monitoring the visible scene (e.g. for biometric recognition, gesture control, coordinated imaging with 2D/3D projected maps), IR/UV imaging for scene enhancement (e.g. seeing through haze, smoke, in the dark), sound direction sensing (e.g.
  • each of these sensor inputs may be fed to a digital signal processor (DSP) for processing, such as internal to the eyepiece or as interfaced to external processing facilities.
  • DSP digital signal processor
  • the outputs of the DSP processing of each sensor input stream may then be algorithmically combined in a manner to generate useful intelligence data.
  • this system may be useful for a combination of real-time facial recognition, real time voice detection, and analysis through links to a database, especially with distortion corrections and contemporaneous GPS location for soldiers, service personnel, and the like, such as in monitoring remote areas of interest, e.g., known paths or trails, or high-security areas.
  • the augmented reality eyepiece or glasses may be powered by any stored energy system, such as battery power, solar power, line power, and the like.
  • a solar energy collector may be placed on the frame, on a belt clip, and the like. Battery charging may occur using a wall charger, car charger, on a belt clip, in a glasses case, and the like.
  • the eyepiece may be rechargeable and be equipped with a mini-USB connector for recharging.
  • the eyepiece may be equipped for remote inductive recharging by one or more remote inductive power conversion technologies, such as those provided by Powercast, Ligonier, PA, USA; and Fulton Int'l. Inc., Ada, MI, USA, which also owns another provider,
  • the augmented reality eyepiece also includes a camera and any interface necessary to connect the camera to the circuit.
  • the output of the camera may be stored in memory and may also be displayed on the display available to the wearer of the glasses.
  • a display driver may also be used to control the display.
  • the augmented reality device also includes a power supply, such as a battery, as shown, power management circuits and a circuit for recharging the power supply. As noted elsewhere, recharging may take place via a hard connection, e.g., a mini-USB connector, or by means of an inductor, a solar panel input, and so forth.
  • the control system for the eyepiece or glasses may include a control algorithm for conserving power when the power source, such as a battery, indicates low power.
  • This conservation algorithm may include shutting power down to applications that are energy intensive, such as lighting, a camera, or sensors that require high levels of energy, such as any sensor requiring a heater, for example.
  • Other conservation steps may include slowing down the power used for a sensor or for a camera, e.g., slowing the sampling or frame rates, going to a slower sampling or frame rate when the power is low; or shutting down the sensor or camera at an even lower level.
  • Applications of the present disclosure may be controlled through movements and direct actions of the wearer, such as movement of his or her hand, finger, feet, head, eyes, and the like, enabled through facilities of the eyepiece (e.g. accelerometers, gyros, cameras, optical sensors, GPS sensors, and the like) and/or through facilities worn or mounted on the wearer (e.g. body mounted sensor control facilities).
  • the wearer may directly control the eyepiece through movements and/or actions of their body without the use of a traditional hand-held remote controller.
  • the wearer may have a sense device, such as a position sense device, mounted on one or both hands, such as on at least one finger, on the palm, on the back of the hand, and the like, where the position sense device provides position data of the hand, and provides wireless communications of position data as command information to the eyepiece.
  • the sense device of the present disclosure may include a gyroscopic device (e.g.
  • a wearer may have a position sense device mounted on their right index finger, where the device is able to sense motion of the finger.
  • the user may activate the eyepiece either through some switching mechanism on the eyepiece or through some predetermined motion sequence of the finger, such as moving the finger quickly, tapping the finger against a hard surface, and the like.
  • tapping against a hard surface may be interpreted through sensing by accelerometers, force sensors, pressure sensors, and the like.
  • the position sense device may then transmit motions of the finger as command information, such as moving the finger in the air to move a cursor across the displayed or projected image, moving in quick motion to indicate a selection, and the like.
  • the position sense device may send sensed command information directly to the eyepiece for command processing, or the command processing circuitry may be co-located with the position sense device, such as in this example, mounted on the finger as part of an assembly including the sensors of the position sense device.
  • the wearer may have a plurality of position sense devices mounted on their body.
  • the wearer may have position sense devices mounted on a plurality of points on the hand, such as with individual sensors on different fingers, or as a collection of devices, such as in a glove.
  • the aggregate sense command information from the collection of sensors at different locations on the hand may be used to provide more complex command information.
  • the wearer may use a sensor device glove to play a game, where the glove senses the grasp and motion of the user's hands on a ball, bat, racket, and the like, in the use of the present disclosure in the simulation and play of a simulated game.
  • the plurality of position sense devices may be mounted on different parts of the body, allowing the wearer to transmit complex motions of the body to the eyepiece for use by an application.
  • the sense device may have a force sensor, pressure sensor, and the like, such as for detecting when the sense device comes in contact with an object.
  • a sense device may include a force sensor at the tip of a wearer's finger.
  • the wearer may tap, multiple tap, sequence taps, swipe, touch, and the like to generate a command to the eyepiece.
  • Force sensors may also be used to indicate degrees of touch, grip, push, and the like, where
  • commands may be delivered as a series of continuous commands that constantly update the command information being used in an application through the eyepiece.
  • a wearer may be running a simulation, such as a game application, military application, commercial application, and the like, where the movements and contact with objects, such as through at least one of a plurality of sense devices, are fed to the eyepiece as commands that influence the simulation displayed through the eyepiece.
  • a sense device may be included in a pen controller, where the pen controller may have a force sensor, pressure sensor, inertial measurement unit, and the like, and where the pen controller may be used to produce virtual writing, control a cursor associated with the eyepiece's display, act as a computer mouse, provide control commands though physical motion and/or contact, and the like.
  • the sense device may include an optical sensor or optical transmitter as a way for movement to be interpreted as a command.
  • a sense device may include an optical sensor mounted on the hand of the wearer, and the eyepiece housing may include an optical transmitter, such that when a user moves their hand past the optical transmitter on the eyepiece, the motions may be interpreted as commands.
  • a motion detected through an optical sensor may include swiping past at different speeds, with repeated motions, combinations of dwelling and movement, and the like.
  • optical sensors and/or transmitters may be located on the eyepiece, mounted on the wearer (e.g.
  • a number of sensors useful for monitoring the condition of the wearer or a person in proximity to the wearer are mounted within the augmented reality glasses. Sensors have become much smaller, thanks to advances in electronics technology. Signal transducing and signal processing technologies have also made great progress in the direction of size reduction and digitization.
  • a temperature sensor in the AR glasses, but an entire sensor array.
  • These sensors may include, as noted, a temperature sensor, and also sensor to detect: pulse rate; beat-to-beat heart variability; EKG or ECG; respiration rate; core body temperature; heat flow from the body; galvanic skin response or GSR; EMG; EEG; EOG; blood pressure; body fat; hydration level;
  • a retinal sensor and a blood oxygenation sensor such as an Sp0 2 sensor
  • Such sensors are available from a variety of manufacturers, including Vermed, Bellows Falls, VT, USA; VTI, Ventaa, Finland; and ServoFlow, Lexington, MA, USA.
  • sensors mounted on the person or on equipment of the person rather than on the glasses themselves.
  • accelerometers, motion sensors and vibration sensors may be usefully mounted on the person, on clothing of the person, or on equipment worn by the person. These sensors may maintain continuous or periodic contact with the controller of the AR glasses through a Bluetooth® radio transmitter or other radio device adhering to IEEE 802.11 specifications.
  • the sensors may be more useful if they are mounted directly on the person's skin, or even on a T-shirt worn by the person, rather than mounted on the glasses. In these cases, a more accurate reading may be obtained by a sensor placed on the person or on the clothing rather than on the glasses.
  • Such sensors need not be as tiny as the sensors which would be suitable for mounting on the glasses themselves, and be more useful, as seen.
  • the AR glasses or goggles may also include environmental sensors or sensor arrays. These sensors are mounted on the glasses and sample the atmosphere or air in the vicinity of the wearer. These sensors or sensor array may be sensitive to certain substances or concentrations of substances. For example, sensors and arrays are available to measure concentrations of carbon monoxide, oxides of nitrogen (“NO x "), temperature, relative humidity, noise level, volatile organic chemicals (VOC), ozone, particulates, hydrogen sulfide, barometric pressure and ultraviolet light and its intensity.
  • OOC volatile organic chemicals
  • Vendors and manufacturers include: Sensares, Crolles, FR; Cairpol, Ales, FR; Critical Environmental Technologies of Canada, Delta, B.C., Canada; Apollo Electronics Co., Shenzhen, China; and AV Technology Ltd., Stockport, Cheshire, UK.
  • Many other sensors are well known. If such sensors are mounted on the person or on clothing or equipment of the person, they may also be useful. These environmental sensors may include radiation sensors, chemical sensors, poisonous gas sensors, and the like.
  • environmental sensors, health monitoring sensors, or both are mounted on the frames of the augmented reality glasses.
  • the sensors may be mounted on the person or on clothing or equipment of the person.
  • a sensor for measuring electrical activity of a heart of the wearer may be implanted, with suitable accessories for transducing and transmitting a signal indicative of the person' s heart activity.
  • the signal may be transmitted a very short distance via a
  • the signal may then be processed by the signal-monitoring and processing equipment of the augmented reality glasses, and recorded and displayed on the virtual screen available to the wearer. In another embodiment, the signal may also be sent via the AR glasses to a friend or squad leader of the wearer. Thus, the health and well-being of the person may be monitored by the person and by others, and may also be tracked over time.
  • environmental sensors may be mounted on the person or on equipment of the person.
  • radiation or chemical sensors may be more useful if worn on outer clothing or a web-belt of the person, rather than mounted directly on the glasses.
  • signals from the sensors may be monitored locally by the person through the AR glasses.
  • the sensor readings may also be transmitted elsewhere, either on demand or automatically, perhaps at set intervals, such as every quarter-hour or half-hour.
  • a history of sensor readings, whether of the person's body readings or of the environment may be made for tracking or trending purposes.
  • an RF/micropower impulse radio (MIR) sensor may be associated with the eyepiece and serve as a short-range medical radar.
  • the sensor may operate on an ultra- wide band.
  • the sensor may include an RF/impulse generator, receiver, and signal processor, and may be useful for detecting and measuring cardiac signals by measuring ion flow in cardiac cells within 3 mm of the skin.
  • the receiver may be a phased array antenna to enable determining a location of the signal in a region of space.
  • the sensor may be used to detect and identify cardiac signals through blockages, such as walls, water, concrete, dirt, metal, wood, and the like. For example, a user may be able to use the sensor to determine how many people are located in a concrete structure by how many heart rates are detected.
  • a detected heart rate may serve as a unique identifier for a person so that they may be recognized in the future.
  • the RF/impulse generator RF/impulse generator
  • receiver may be a phased array antenna to enable determining a location of the signal in a region of space.
  • the sensor may be used to detect and identify cardiac signals through blockages, such as walls, water, concrete
  • RF/impulse generator may be embedded in one device, such as the eyepiece or some other device, while the receiver is embedded in a different device, such as another eyepiece or device.
  • a virtual "tripwire" may be created when a heart rate is detected between the transmitter and receiver.
  • the sensor may be used as an in-field diagnostic or self-diagnosis tool. EKG's may be analyzed and stored for future use as a biometric identifier. A user may receive alerts of sensed heart rate signals and how many heart rates are present as displayed content in the eyepiece.
  • Fig. 29 depicts an embodiment 2900 of an augmented reality eyepiece or glasses with a variety of sensors and communication equipment.
  • One or more than one environmental or health sensors are connected to a sensor interface locally or remotely through a short range radio circuit and an antenna, as shown.
  • the sensor interface circuit includes all devices for detecting, amplifying, processing and sending on or transmitting the signals detected by the sensor(s).
  • the remote sensors may include, for example, an implanted heart rate monitor or other body sensor (not shown).
  • the other sensors may include an accelerometer, an inclinometer, a temperature sensor, a sensor suitable for detecting one or more chemicals or gasses, or any of the other health or environmental sensors discussed in this disclosure.
  • a sense device enables simultaneous electric field sensing through the eyepiece.
  • Electric field (EF) sensing is a method of proximity sensing that allows computers to detect, evaluate and work with objects in their vicinity. Physical contact with the skin, such as a handshake with another person or some other physical contact with a conductive or a non-conductive device or object, may be sensed as a change in an electric field and either enable data transfer to or from the eyepiece or terminate data transfer.
  • videos captured by the eyepiece may be stored on the eyepiece until a wearer of the eyepiece with an embedded electric field sensing transceiver touches an object and initiates data transfer from the eyepiece to a receiver.
  • the transceiver may include a transmitter that includes a transmitter circuit that induces electric fields toward the body and a data sense circuit, which distinguishes transmitting and receiving modes by detecting both transmission and reception data and outputs control signals corresponding to the two modes to enable two-way communication.
  • An instantaneous private network between two people may be generated with a contact, such as a handshake.
  • Data may be transferred between an eyepiece of a user and a data receiver or eyepiece of the second user. Additional security measures may be used to enhance the private network, such as facial or audio recognition, detection of eye contact, fingerprint detection, biometric entry, and the like.
  • an authentication facility associated with accessing functionality of the eyepiece, such as access to displayed or projected content, access to restricted projected content, enabling functionality of the eyepiece itself (e.g. as through a login to access functionality of the eyepiece) either in whole or in part, and the like.
  • Authentication may be provided through recognition of the wearer's voice, iris, retina, fingerprint, and the like, or other biometric identifier.
  • the authentication system may provide for a database of biometric inputs for a plurality of users such that access control may be provided for use of the eyepiece based on policies and associated access privileges for each of the users entered into the database.
  • the eyepiece may provide for an authentication process.
  • the authentication facility may sense when a user has taken the eyepiece off, and require re-authentication when the user puts it back on. This better ensures that the eyepiece only provides access to those users that are authorized, and for only those privileges that the wearer is authorized for.
  • the authentication facility may be able to detect the presence of a user' s eye or head as the eyepiece is put on. In a first level of access, the user may only be able to access low-sensitivity items until authentication is complete. During authentication, the authentication facility may identify the user, and look up their access privileges. Once these privileges have been determined, the authentication facility may then provide the appropriate access to the user. In the case of an unauthorized user being detected, the eyepiece may maintain access to low-sensitivity items, further restrict access, deny access entirely, and the like.
  • a receiver may be associated with an object to enable control of that object via touch by a wearer of the eyepiece, wherein touch enables transmission or execution of a command signal in the object.
  • a receiver may be associated with a car door lock. When a wearer of the eyepiece touches the car, the car door may unlock.
  • a receiver may be embedded in a medicine bottle. When the wearer of the eyepiece touches the medicine bottle, an alarm signal may be initiated.
  • a receiver may be associated with a wall along a sidewalk. As the wearer of the eyepiece passes the wall or touches the wall, advertising may be launched either in the eyepiece or on a video panel of the wall.
  • a WiFi exchange of information with a receiver may provide an indication that the wearer is connected to an online activity such as a game or may provide verification of identity in an online environment.
  • a representation of the person could change color or undergo some other visual indication in response to the contact.
  • the eyepiece may include a tactile interface as in Fig. 14, such as to enable haptic control of the eyepiece, such as with a swipe, tap, touch, press, click, roll of a rollerball, and the like.
  • the tactile interface 1402 may be mounted on the frame of the eyepiece 1400, such as on an arm, both arms, the nosepiece, the top of the frame, the bottom of the frame, and the like.
  • the tactile interface 1402 may include controls and functionality similar to a computer mouse, with left and right buttons, a 2D position control pad such as described herein, and the like.
  • the tactile interface may be mounted on the eyepiece near the user's temple and act as a 'temple mouse' controller for the eyepiece projected content to the user and may include a temple-mounted rotary selector and enter button.
  • the tactile interface may be one or more vibratory temple motors which may vibrate to alert or notify the user, such as to danger left, danger right, a medical condition, and the like.
  • the tactile interface may be mounted on a controller separate from the eyepiece, such as a worn controller hand-carried controller, and the like. If there is an accelerometer in the controller then it may sense the user tapping, such as on a keyboard, on their hand (either on the hand with the controller or tapping with the hand that has the controller), and the like.
  • the wearer may then touch the tactile interface in a plurality of ways to be interpreted by the eyepiece as commands, such as by tapping one or multiple times on the interface, by brushing a finger across the interface, by pressing and holding, by pressing more than one interface at a time, and the like.
  • the tactile interface may be attached to the wearer's body (e.g. their hand, arm, leg, torso, neck), their clothing, as an attachment to their clothing, as a ring 1500, as a bracelet, as a necklace, and the like.
  • the interface may be attached on the body, such as on the back of the wrist, where touching different parts of the interface provides different command information (e.g.
  • the tactile interface may incorporate resistive touch technologies, capacitive touch technologies, proportional pressure touch technologies, and the like.
  • the tactile interface may utilize discrete resistive touch technologies where the application requires the interface to be simple, rugged, low power, and the like.
  • the tactile interface may utilize capacitive tough technologies where more functionality is required through the interface, such as though movement, swiping, multi-point contacts, and the like.
  • the tactile interface may utilize pressure touch technologies, such as when variable pressure commanding is required. In embodiments, any of these, or like touch technologies, may be used in any tactile interface as described herein.
  • the wearer may have an interface mounted in a ring as shown in Fig. 15, a hand piece, and the like, where the interface may have at least one of a plurality of command interface types, such as a tactile interface, a position sensor device, and the like with wireless command connection to the eyepiece.
  • the ring 1500 may have controls that mirror a computer mouse, such as buttons 1504 (e.g. functioning as a one-button, multi-button, and like mouse functions), a 2D position control 1502, scroll wheel, and the like.
  • the buttons 1504 and 2D position control 1502 may be as shown in Fig. 15, where the buttons are on the side facing the thumb and the 2D position controller is on the top.
  • buttons and 2D position control may be in other configurations, such as all facing the thumb side, all on the top surface, or any other combination.
  • the 2D position control 1502 may be a 2D button position controller (e.g. such as the TrackPoint pointing device embedded in some laptop keyboards to control the position of the mouse), a pointing stick, joystick, an optical track pad, an opto touch wheel, a touch screen, touch pad, track pad, scrolling track pad, trackball, any other position or pointing controller, and the like.
  • control signals from the tactile interface may be provided with a wired or wireless interface to the eyepiece, where the user is able to conveniently supply control inputs, such as with their hand, thumb, finger, and the like.
  • control inputs such as with their hand, thumb, finger, and the like.
  • the user may be able to articulate the controls with their thumb, where the ring is worn on the user's index finger.
  • a method or system may provide an interactive head-mounted eyepiece worn by a user, wherein the eyepiece includes an optical assembly through which the user views a surrounding environment and displayed content, a processor for handling content for display to the user, and an integrated projector facility for projecting the content to the optical assembly, and a control device worn on the body of the user, such as a hand of the user, including at least one control component actuated by the user, and providing a control command from the actuation of the at least one control component to the processor as a command instruction.
  • the command instruction may be directed to the manipulation of content for display to the user.
  • the control device may be worn on a first digit of the hand of the user, and the at least one control component may be actuated by a second digit of a hand of the user.
  • the first digit may be the index finger, the second digit the thumb, and the first and second digit on the same hand of the user.
  • the control device may have at least one control component mounted on the index finger side facing the thumb.
  • the at least one control component may be a button.
  • the at least one control component may be a 2D position controller.
  • the control device may have at least one button actuated control component mounted on the index finger side facing the thumb, and a 2D position controller actuated control component mounted on the top facing side of the index finger.
  • the control components may be mounted on at least two digits of the user' s hand.
  • the control device may be worn as a glove on the hand of the user.
  • the control device may be worn on the wrist of the user.
  • the at least one control component may be worn on at least one digit of the hand, and a transmission facility may be worn separately on the hand.
  • the transmission facility may be worn on the wrist.
  • the transmission facility may be worn on the back of the hand.
  • the control component may be at least one of a plurality of buttons.
  • the at least one button may provide a function substantially similar to a conventional computer mouse button. Two of the plurality of buttons may function substantially similar to primary buttons of a conventional two-button computer mouse.
  • the control component may be a scrolling wheel.
  • the control component may be a 2D position control component.
  • the 2D position control component may be a button position controller, pointing stick, joystick, optical track pad, opto-touch wheel, touch screen, touch pad, track pad, scrolling track pad, trackball, capacitive touch screen, and the like.
  • the 2D position control component may be controlled with the user's thumb.
  • the control component may be a touch-screen capable of implementing touch controls including button-like functions and 2D manipulation functions. The control component may be actuated when the user puts on the projected processor content pointing and control device.
  • the wearer may have an interface mounted in a ring 1500AA that includes a camera 1502AA, such as shown in Fig. 15AA.
  • the ring controller 1502AA may have control interface types as described herein, such as through buttons 1504, 2D position control 1502, 3D position control (e.g. utilizing accelerometers, gyros), and the like.
  • the ring controller 1500AA may then be used to control functions within the eyepiece, such as controlling the manipulation of the projected display content to the wearer.
  • the control interfaces 1502, 1504 may provide control aspects to the embedded camera 1502AA, such as on/off, zoom, pan, focus, recording a still image picture, recording a video, and the like.
  • the functions may be controlled through other control aspects of the eyepiece, such as through voice control, other tactile control interfaces, eye gaze detection as described herein, and the like.
  • the camera may also have automatic control functions enabled, such as auto-focus, timed functions, face detection and/or tracking, auto-zoom, and the like.
  • the ring controller 1500AA with integrated camera 1502AA may be used to view the wearer 1508AA during a videoconference enabled through the eyepiece, where the wearer 1508AA may hold the ring controller (e.g. as mounted on their finger) out in order to allow the camera 1502AA a view of their face for transmission to at least one other participant on the videoconference.
  • the wearer may take the ring controller 1500AA off and place it down on a surface 1510AA (e.g. a table top) such that the camera 1502AA has a view of the wearer.
  • An image of the wearer 1512AA may then be displayed on the display area 1518AA of the eyepiece and transmitted to others on the videoconference, such as along with the images 1514AA of other participants on the videoconference call.
  • the camera 1502AA may provide for manual or automatic FOV 1504AA adjustment.
  • the wearer may set the ring controller 1500AA down on a surface 1510AA for use in a video conference call, and the FOV 1504AA may be controlled either manually (e.g.
  • the FOV 1504AA may be enabled to change as the wearer moves, such as by tracking by face recognition.
  • the FOV 1504AA may also zoomed in/out to adjust to changes in the position of the wearer's face.
  • the camera 1502AA may be used for a plurality of still and/or video applications, where the view of the camera is provided to the wearer on the display area 1518AA of the eyepiece, and where storage may be available in the eyepiece for storing the images / videos, which may be transferred, communicated, and the like, from the eyepiece to some external storage facility, user, web-application, and the like.
  • a camera may be incorporated in a plurality of different mobile devices, such as worn on the arm, hand, wrist, finger, and the like, such as the watch 3202 with embedded camera 3200 as shown in Figs. 32-33.
  • any of these mobile devices may include manual and/or automatic functions as described for the ring controller 1502AA.
  • the ring controller 1502AA may have additional sensors, embedded functions, control features, and the like, such as a fingerprint scanner, tactile feedback, and LCD screen, an accelerometer, Bluetooth, and the like.
  • the ring controller may provide for synchronized monitoring between the eyepiece and other control components, such as described herein.
  • the eyepiece may provide a system and method for providing an image of the wearer to videoconference participants through the use of an external mirror, where the wearer views themselves in the mirror and an image of themselves is captured through an integrated camera of the eyepiece.
  • the captured image may be used directly, or the image may be flipped to correct for the image reversal of the mirror.
  • the wearer may enter into a videoconference with a plurality of other people, where the wearer may be able to view live video images of the others though the eyepiece.
  • the user may be able to view themselves in the mirror, have the image captured by the integrated camera, and provide the other people with a image of themselves for purposes of the videoconference.
  • This image may also be available to the wearer as a projected image to the eyepiece, such as in addition to the images of the other people involved in the videoconference.
  • a control component may provide a surface- sensing component in the control device for detecting motion across a surface may also be provided.
  • the surface sensing component may be disposed on the palmar side of the user's hand.
  • the surface may be at least one of a hard surface, a soft surface, surface of the user's skin, surface of the user's clothing, and the like.
  • Providing control commands may be transmitted wirelessly, through a wired connection, and the like.
  • the control device may control a pointing function associated with the displayed processor content.
  • the pointing function may be control of a cursor position;
  • the control device may control a pointing function associated with the viewed surrounding environment.
  • the pointing function may be placing a cursor on a viewed object in the surrounding environment.
  • the viewed object's location position may be determined by the processor in association with a camera integrated with the eyepiece.
  • the viewed object's identification may be determined by the processor in association with a camera integrated with the eyepiece.
  • the control device may control a function of the eyepiece.
  • the function may be associated with the displayed content.
  • the function may be a mode control of the eyepiece.
  • the control device may be foldable for ease of storage when not worn by the user.
  • the control device may be used with external devices, such as to control the external device in association with the eyepiece. External devices may be entertainment equipment, audio equipment, portable electronic devices, navigation devices, weapons, automotive controls, and the like.
  • a body worn control device may provide 3D position sensor information to the eyepiece.
  • the control device may act as an 'air mouse' , where 3D position sensors (e.g. accelerometers, gyros, and the like) provide position information when a user commands so, such as with the click of a button, a voice command, a visually detected gesture, and the like.
  • 3D position sensors e.g. accelerometers, gyros, and the like
  • the user may be able to use this feature to navigate either a 2D or 3D image being projected to the user via the eyepiece projection system.
  • the eyepiece may provide an external relay of the image for display or projection to others, such as in the case of a presentation.
  • the user may be able to change the mode of the control device between 2D and 3D, in order to accommodate different functions, applications, user interfaces, and the like.
  • multiple 3D control devices may be utilized for certain applications, such as in simulation applications.
  • a system may comprise an interactive head- mounted eyepiece worn by a user, wherein the eyepiece includes an optical assembly through which the user views a surrounding environment and displayed content, wherein the optical assembly comprises a corrective element that corrects the user's view of the surrounding environment, an integrated processor for handling content for display to the user, and an integrated image source for introducing the content to the optical assembly; and a tactile control interface mounted on the eyepiece that accepts control inputs from the user through at least one of a user touching the interface and the user being proximate to the interface.
  • control of the eyepiece, and especially control of a cursor associated with displayed content to the user may be enabled through hand control, such as with a worn device 1500 as in Fig. 15, as a virtual computer mouse 1500A as in Fig. 15A, and the like.
  • the worn device 1500 may transmit commands through physical interfaces (e.g. a button 1502, scroll wheel 1504), and the virtual computer mouse 1500 A may be able interpret commands though detecting motion and actions of the user's thumb, fist, hand, and the like.
  • a physical mouse is a pointing device that functions by detecting two-dimensional motion relative to its supporting surface.
  • a physical mouse traditionally consists of an object held under one of the user's hands, with one or more buttons.
  • a virtual mouse may involve one or more sensors attached to the user's hand, such as on the thumb 1502A, finger 1504A, palm 1508A, wrist 1510A, and the like, where the eyepiece receives signals from the sensors and translates the received signals into motion of a cursor on the eyepiece display to the user.
  • the signals may be received through an exterior interface, such as the tactile interface 1402, through a receiver on the interior of the eyepiece, at a secondary communications interface, on an associated physical mouse or worn interface, and the like.
  • the virtual mouse may also include actuators or other output type elements attached to the user's hand, such as for haptic feedback to the user through vibration, force, pressure, electrical impulse, temperature, and the like. Sensors and actuators may be attached to the user's hand by way of a wrap, ring, pad, glove, and the like.
  • the eyepiece virtual mouse may allow the user to translate motions of the hand into motion of the cursor on the eyepiece display, where 'motions' may include slow movements, rapid motions, jerky motions, position, change in position, and the like, and may allow users to work in three dimensions, without the need for a physical surface, and including some or all of the six degrees of freedom.
  • the 'virtual mouse' may be associated with multiple portions of the hand, the virtual mouse may be implemented as multiple 'virtual mouse' controllers, or as a distributed controller across multiple control members of the hand.
  • the eyepiece may provide for the use of a plurality of virtual mice, such as for one on each of the user's hands, one or more of the user's feet, and the like.
  • the eyepiece virtual mouse may need no physical surface to operate, and detect motion such as through sensors, such as one of a plurality of accelerometer types (e.g. tuning fork, piezoelectric, shear mode, strain mode, capacitive, thermal, resistive, electromechanical, resonant, magnetic, optical, acoustic, laser, three dimensional, and the like), and through the output signals of the sensor(s) determine the translational and angular displacement of the hand, or some portion of the hand.
  • accelerometers may produce output signals of magnitudes proportional to the translational acceleration of the hand in the three directions. Pairs of accelerometers may be configured to detect rotational accelerations of the hand or portions of the hand.
  • Translational velocity and displacement of the hand or portions of the hand may be determined by integrating the accelerometer output signals and the rotational velocity and displacement of the hand may be determined by integrating the difference between the output signals of the accelerometer pairs.
  • other sensors may be utilized, such as ultrasound sensors, imagers, IR/RF, magnetometer, gyro magnetometer, and the like.
  • accelerometers, or other sensors may be mounted on various portions of the hand, the eyepiece may be able to detect a plurality of movements of the hand, ranging from simple motions normally associated with computer mouse motion, to more highly complex motion, such as interpretation of complex hand motions in a simulation application.
  • the user may require only a small translational or rotational action to have these actions translated to motions associated with user intended actions on the eyepiece projection to the user.
  • the virtual mouse may have physical switches associated with it to control the device, such as an on/off switch mounted on the hand, the eyepiece, or other part of the body.
  • the virtual mouse may also have on/off control and the like through pre-defined motions or actions of the hand.
  • the operation of the virtual mouse may be enabled through a rapid back and forth motion of the hand.
  • the virtual mouse may be disabled through a motion of the hand past the eyepiece, such as in front of the eyepiece.
  • the virtual mouse for the eyepiece may provide for the interpretation of a plurality of motions to operations normally associated with physical mouse control, and as such, familiar to the user without training, such as single clicking with a finger, double clicking, triple clicking, right clicking, left clicking, click and drag, combination clicking, roller wheel motion, and the like.
  • the eyepiece may provide for gesture recognition, such as in interpreting hand gestures via mathematical algorithms.
  • gesture control recognition may be provided through technologies that utilize capacitive changes resulting from changes in the distance of a user's hand from a conductor element as part of the eyepiece's control system, and so would require no devices mounted on the user' s hand.
  • the conductor may be mounted as part of the eyepiece, such as on the arm or other portion of the frame, or as some external interface mounted on the user' s body or clothing.
  • the conductor may be an antenna, where the control system behaves in a similar fashion to the touch-less musical instrument known as the theremin.
  • the theremin uses the heterodyne principle to generate an audio signal, but in the case of the eyepiece, the signal may be used to generate a control input signal.
  • the control circuitry may include a number of radio frequency oscillators, such as where one oscillator operates at a fixed frequency and another controlled by the user's hand, where the distance from the hand varies the input at the control antenna.
  • the user's hand acts as a grounded plate (the user's body being the connection to ground) of a variable capacitor in an L-C (inductance-capacitance) circuit, which is part of the oscillator and determines its frequency.
  • the circuit may use a single oscillator, two pairs of heterodyne oscillators, and the like.
  • this type of control interface may be ideal for control inputs that vary across a range, such as a volume control, a zoom control, and the like. However, this type of control interface may also be used for more discrete control signals (e.g. on/off control) where a predetermined threshold determines the state change of the control input.
  • the eyepiece may interface with a physical remote control device, such as a wireless track pad mouse, hand held remote control, body mounted remote control, remote control mounted on the eyepiece, and the like.
  • the remote control device may be mounted on an external piece of equipment, such as for personal use, gaming, professional use, military use, and the like.
  • the remote control may be mounted on a weapon for a soldier, such as mounted on a pistol grip, on a muzzle shroud, on a fore grip, and the like, providing remote control to the soldier without the need to remove their hands from the weapon.
  • the remote control may be removably mounted to the eyepiece.
  • a remote control for the eyepiece may be activated and/or controlled through a proximity sensor.
  • a proximity sensor may be a sensor able to detect the presence of nearby objects without any physical contact.
  • a proximity sensor may emit an electromagnetic or electrostatic field, or a beam of electromagnetic radiation (infrared, for instance), and look for changes in the field or return signal.
  • the object being sensed is often referred to as the proximity sensor's target.
  • Different proximity sensor targets may demand different sensors. For example, a capacitive or photoelectric sensor might be suitable for a plastic target; an inductive proximity sensor requires a metal target.
  • proximity sensor technologies include capacitive displacement sensors, eddy-current, magnetic, photocell (reflective), laser, passive thermal infrared, passive optical, CCD, reflection of ionizing radiation, and the like.
  • the proximity sensor may be integral to any of the control embodiments described herein, including physical remote controls, virtual mouse, interfaces mounted on the eyepiece, controls mounted on an external piece of equipment (e.g. a game controller, a weapon), and the like.
  • sensors for measuring a user's body motion may be used to control the eyepiece, or as an external input, such as using an inertial measurement unit (IMU), a 3-axis magnetometer, a 3-axis gyro, a 3-axis
  • IMU inertial measurement unit
  • 3-axis magnetometer 3-axis magnetometer
  • 3-axis gyro 3-axis gyro
  • an sensor may be mounted on the hand(s) of the user, thereby enabling the use of the signals from the sensor for control the eyepiece, as described herein.
  • sensor signals may be received and interpreted by the eyepiece to assess and/or utilize the body motions of the user for purposes other than control.
  • sensors mounted on each leg and each arm of the user may provide signals to the eyepiece that allow the eyepiece to measure the gait of the user. The gait of the user may then in turn be used to monitor the gait of the user over time, such as to monitor changes in physical behavior, improvement during physical therapy, changes due to a head trauma, and the like.
  • the eyepiece may initially determine a baseline gait profile for the user, and then monitor the user over time, such as before and after a physical event (e.g. a sports-related collision, an explosion, an vehicle accident, and the like).
  • a physical event e.g. a sports-related collision, an explosion, an vehicle accident, and the like.
  • the eyepiece may be used periodically to measure the gait of the user, and maintain the measurements in a database for analysis.
  • a running gait time profile may be produced, such as to monitor the user's gait for indications of physical traumas, physical improvements, and the like.
  • control of the eyepiece may be enabled through the sensing of the motion of a facial feature, the tensing of a facial muscle, the clicking of the teeth, the motion of the jaw, and the like, of the user wearing the eyepiece through a facial actuation sensor 1502B.
  • the eyepiece may have a facial actuation sensor as an extension from the eyepiece earphone assembly 1504B, from the arm 1508B of the eyepiece, and the like, where the facial actuation sensor may sense a force, a vibration, and the like associated with the motion of a facial feature.
  • the facial actuation sensor may also be mounted separate from the eyepiece assembly, such as part of a standalone earpiece, where the sensor output of the earpiece and the facial actuation sensor may be either transferred to the eyepiece by either wired or wireless communication (e.g. Bluetooth or other communications protocol known to the art).
  • the facial actuation sensor may also be attached to around the ear, in the mouth, on the face, on the neck, and the like.
  • the facial actuation sensor may also be comprised of a plurality of sensors, such as to optimize the sensed motion of different facial or interior motions or actions. In embodiments, the facial actuation sensor may detect motions and interpret them as commands, or the raw signals may be sent to the eyepiece for interpretation.
  • Commands may be commands for the control of eyepiece functions, controls associated with a cursor or pointer as provided as part of the display of content to the user, and the like. For example, a user may click their teeth once or twice to indicate a single or double click, such as normally associated with the click of a computer mouse. In another example, the user may tense a facial muscle to indicate a command, such as a selection associated with the projected image.
  • the facial actuation sensor may utilize noise reduction processing to minimize the background motions of the face, the head, and the like, such as through adaptive signal processing technologies.
  • a voice activity sensor may also be utilized to reduce interference, such as from the user, from other individuals nearby, from surrounding environmental noise, and the like.
  • the facial actuation sensor may also improve communications and eliminate noise by detecting vibrations in the cheek of the user during speech, such as with multiple microphones to identify the background noise and eliminate it through noise cancellation, volume augmentation, and the like.
  • the user of the eyepiece may be able to obtain information on some environmental feature, location, object, and the like, viewed through the eyepiece by raising their hand into the field of view of the eyepiece and pointing at the object or position.
  • the pointing finger of the user may indicate an environmental feature, where the finger is not only in the view of the eyepiece but also in the view of an embedded camera.
  • the system may now be able to correlate the position of the pointing finger with the location of the environmental feature as seen by the camera.
  • the eyepiece may have position and orientation sensors, such as GPS and a magnetometer, to allow the system to know the location and line of sight of the user.
  • the system may be able to extrapolate the position information of the environmental feature, such as to provide the location information to the user, to overlay the position of the environmental information onto a 2D or 3D map, to further associate the established position information to correlate that position information to secondary information about that location (e.g. address, names of individuals at the address, name of a business at that location, coordinates of the location), and the like.
  • Fig. 15C in an example, the user is looking though the eyepiece 1502C and pointing with their hand 1504C at a house 1508C in their field of view, where an embedded camera 15 IOC has both the pointed hand 1504C and the house 1508C in its field of view.
  • the system is able to determine the location of the house 1508C and provide location information 1514C and a 3D map superimposed onto the user's view of the environment.
  • the information associated with an environmental feature may be provided by an external facility, such as communicated with through a wireless communication connection, stored internal to the eyepiece, such as downloaded to the eyepiece for the current location, and the like.
  • information provided to the wearer of the eyepiece may include any of a plurality of information related to the scene as viewed by the wearer, such as geographic information, point of interest information, social networking information (e.g. Twitter, Facebook, and the like information related to a person standing in front of the wearer augmented around the person, such as 'floating' around the person), profile information (e.g. such as stored in the wearer's contact list), historical information, consumer information, product information, retail information, safety information, advertisements, commerce information, security information, game related information, humorous annotations, news related information, and the like.
  • social networking information e.g. Twitter, Facebook, and the like information related to a person standing in front of the wearer augmented around the person, such as 'floating' around the person
  • profile information e.g. such as
  • the user may be able to control their view perspective relative to a 3D projected image, such as a 3D projected image associated with the external environment, a 3D projected image that has been stored and retrieved, a 3D displayed movie (such as downloaded for viewing), and the like.
  • a 3D projected image such as a 3D projected image associated with the external environment, a 3D projected image that has been stored and retrieved, a 3D displayed movie (such as downloaded for viewing), and the like.
  • the user may be able to change the view perspective of the 3D displayed image 1512C, such as by turning their head, and where the live external environment and the 3D displayed image stay together even as the user turns their head, moves their position, and the like.
  • the eyepiece may be able to provide an augmented reality by overlaying information onto the user's viewed external environment, such as the overlaid 3D displayed map 1512C, the location information 1514C, and the like, where the displayed map, information, and the like, may change as the user's view changes.
  • the perspective of the viewer may be changed to put the viewer 'into' the movie environment with some control of the viewing perspective, where the user may be able to move their head around and have the view change in correspondence to the changed head position, where the user may be able to 'walk into' the image when they physically walk forward, have the perspective change as the user moves the gazing view of their eyes, and the like.
  • additional image information may be provided, such as at the sides of the user's view that could be accessed by turning the head.
  • the user of one eyepiece may be able to synchronize their view of a projected image with at least the view of a second user of an eyepiece.
  • two separate eyepiece users may wish to view the same 3D map, game projection, point-of-interest projection, and the like, where the two viewers are not only seeing the same projected content, but where the projected content' s view is synchronized between them.
  • two users may want to jointly view a 3D map of a region, and the image is synchronized such that the one user may be able to point at a position on the 3D map that the other user is able to see and interact with.
  • the two users may be able to move around the 3D map and share a virtual-physical interaction between the two users and the 3D map, and the like. Further, a group of eyepiece wearers may be able to jointly interact with a projection as a group. In this way, two or more users may be able to have a unified augmented reality experience through the coordination- synchronization of their eyepieces.
  • Synchronization of two or more eyepieces may be provided by communication of position information between the eyepieces, such as absolute position information, relative position information, translation and rotational position information, and the like, such as from position sensors as described herein (e.g. gyroscopes, IMU, GPS, and the like). Communications between the eyepieces may be direct, through an Internet network, through the cell-network, through a satellite network, and the like. Processing of position information contributing to the synchronization may be executed in a master processor in a single eyepiece, collectively amongst a group of eyepieces, in remote server system, and the like, or any combination thereof.
  • position information between the eyepieces such as absolute position information, relative position information, translation and rotational position information, and the like, such as from position sensors as described herein (e.g. gyroscopes, IMU, GPS, and the like).
  • Communications between the eyepieces may be direct, through an Internet network, through the cell-network, through a satellite network, and the
  • the coordinated, synchronized view of projected content between multiple eyepieces may provide an extended augmented reality experience from the individual to a plurality of individuals, where the plurality of individuals benefit from the group augmented reality experience.
  • the eyepiece may utilize sound projection techniques to realize a direction of sound for the wearer of the eyepiece, such as with surround sound techniques. Realization of a direction of sound for a wearer may include the reproduction of the sound from the direction of origin, either in real-time or as a playback. It may include a visual or audible indicator to provide a direction for the source of sound.
  • Sound projection techniques may be useful to an individual that has their hearing impaired or blocked, such as due to the user experiencing hearing loss, a user wearing headphones, a user wearing hearing protection, and the like.
  • the eyepiece may provide enhanced 3D audible reproduction.
  • the wearer may have headphones on, and a gunshot has been fired.
  • the eyepiece may be able to reproduce the 3D sound profile for the sound of the gunshot, thus allowing the wearer to respond to the gunshot knowing where the sound came from.
  • a wearer with headphones, hearing loss, in a loud environment, and the like may not otherwise be able to tell what's being said and/or the direction of the person speaking, but is provided with a 3D sound enhancement from the eyepiece (e.g. the wearer is listening to other proximate individuals through headphones and so does not have directionality information).
  • a wearer may be in a loud ambient environment, or in an environment where periodic loud noises can occur.
  • the eyepiece may have the ability to cut off the loud sound to protect the wearer' s hearing, or the sound could be so loud that the wearer can't tell where the sound came from, and further, now their ears could be ringing so loud they can't hear anything.
  • the eyepiece may provide visible, auditory, vibration, and the like queues to the wearer to indicate the direction of the sound source.
  • the eyepiece may provide "augmented" hearing where the wearer's ears are plugged to protect their ears from loud noises, but using the ear buds to generate a reproduction of sound to replace what's missing form the natural world. This artificial sound may then be used to give directionality to wirelessly transmitted communication that the operator could't hear naturally.
  • an example of a configuration for establishing directionality of a source sound may be point different microphones in different directions.
  • at least one microphone may be used for the voice of the wearer, at least one microphone for the surrounding environment, at least one pointing down at the ground, and potentially in a plurality of different discrete directions.
  • the microphone pointing down may be subtracted to isolate other sounds, which may be combined with 3D sound surround, and augmented hearing techniques, as described herein.
  • a sound augmented system as part of the eyepiece, there are a number of users with eyepieces, such as in a noisy environment where all the users have 'plugged ears' as implemented through artificial noise blockage through the eyepiece ear buds.
  • One of wearers may yell out that they need some piece of equipment. Because of all the ambient noise and the hearing protection the eyepiece creates, no one can hear the request for equipment.
  • the wearer making the verbal request has a filtered microphone close to their mouth, and they could wirelessly transmit the request to the others, where their eyepiece could relay a sound signal to the other user's eyepieces, and to the ear on the correct side, and the others would know to look to the right or left to see who has made the request.
  • This system could be further enhanced with geo-locations of all the wearers, and a "virtual" surround sound system that uses the two ear buds to give the perception of 3D space (such as the SRS True Surround Technology).
  • auditory queues could also be computer generated so the communicating user doesn't need to verbalize their communication but can select it from a list of common commands, the computer generates the communication based on preconfigured conditions, and the like.
  • the wearers may be in a situation where they don't want a display in front of their eyes but want to have ear buds in their ears. In this case, if they wanted to notify someone in a group to get up and follow them, they could just click a controller a certain number of times, or provide a visual hand gesturer with a camera, an IMU, and the like.
  • the system may choose the 'follow me' command and transmit it to the other users with the communicating user's location for the 3D system to trick them into hearing from where they are actually sitting out of sight of them.
  • directional information may be determined and/or provided through position information from the users of eyepieces.
  • the eyepiece may provide aspects of signals intelligence (SIGINT), such as in the use of existing WiFi, 3G, Bluetooth, and the like communications signals to gather signals intelligence for devices and users in proximity to the wearer of the eyepiece.
  • SIGINT signals intelligence
  • These signals may be from other eyepieces, such as to gather information about other known friendly users; other eyepieces that have been picked up by an unauthorized individual, such as through a signal that is generated when an unauthorized user tries to use the eyepiece; other communications devices (e.g. radios, cell phones, pagers, walky-talkies, and the like); electronic signals emanating from devices that may not be directly used for communications; and the like.
  • Information gathered by the eyepiece may be direction information, position information, motion information, number of and/or rate of communications, and the like. Further, information may be gathered through the coordinated operations of multiple eyepieces, such as in the triangulation of a signal for determination of the signal's location.
  • the user of the eyepiece 1502D may be able to use multiple hand/finger points from their hand 1504D to define the field of view (FOV) 1508D of the camera 1510D relative to the see-thru view, such as for augmented reality applications.
  • FOV field of view
  • the user is utilizing their first finger and thumb to adjust the FOV 1508D of the camera 1510D of the eyepiece 1502D.
  • the user may utilize other combinations to adjust the FOV 1508D, such as with combinations of fingers, fingers and thumb, combinations of fingers and thumbs from both hands, use of the palm(s), cupped hand(s), and the like.
  • the use of multiple hand/finger points may enable the user to alter the FOV 1508 of the camera 1510D in much the same way as users of touch screens, where different points of the hand/finger establish points of the FOV to establish the desired view. In this instance however, there is no physical contact made between the user' s hand(s) and the eyepiece.
  • the camera may be commanded to associate portions of the user' s hand(s) to the establishing or changing of the FOV of the camera.
  • the command may be any command type described herein, including and not limited to hand motions in the FOV of the camera, commands associated with physical interfaces on the eyepiece, commands associated with sensed motions near the eyepiece, commands received from a command interface on some portion of the user, and the like.
  • the eyepiece may be able to recognize the finger/hand motions as the command, such as in some repetitive motion.
  • the user may also utilize this technique to adjust some portion of the projected image, where the eyepiece relates the viewed image by the camera to some aspect of the projected image, such as the hand/finger points in view to the projected image of the user.
  • the user may be simultaneously viewing the external environment and a projected image, and the user utilizes this technique to change the projected viewing area, region, magnification, and the like.
  • the user may perform a change of FOV for a plurality of reasons, including zooming in or out from a viewed scene in the live environment, zoom in or out from a viewed portion of the projected image, to change the viewing area allocated to the projected image, to change the perspective view of the environment or projected image, and the like.
  • the eyepiece may enable simultaneous FOVs.
  • simultaneous wide, medium, and narrow camera FOVs may be used, where the user can have different FOVs up simultaneously in view (i.e. wide to show the entire field, perhaps static, and narrow to focus on a particular target, perhaps moving with the eye or with a cursor).
  • the eyepiece may be able to determine where the user is gazing, or the motion of the user's eye, by tracking the eye through reflected light off the user's eye. This information may then be used to help correlate the user's line of sight with respect to the projected image, a camera view, the external environment, and the like, and used in control techniques as described herein. For instance, the user may gaze at a location on the projected image and make a selection, such as with an external remote control or with some detected eye movement (e.g. blinking). In an example of this technique, and referring to Fig.
  • transmitted light 1508E such as infrared light
  • the optical display 502 e.g. with a camera or other optical sensor
  • the information may then be analyzed to extract eye rotation from changes in reflections.
  • an eye tracking facility may use the corneal reflection and the center of the pupil as features to track over time; use reflections from the front of the cornea and the back of the lens as features to track; image features from inside the eye, such as the retinal blood vessels, and follow these features as the eye rotates; and the like.
  • the eyepiece may use other techniques to track the motions of the eye, such as with components surrounding the eye, mounted in contact lenses on the eye, and the like.
  • a special contact lens may be provided to the user with an embedded optical component, such as a mirror, magnetic field sensor, and the like, for measuring the motion of the eye.
  • electric potentials may be measured and monitored with electrodes placed around the eyes, utilizing the steady electric potential field from the eye as a dipole, such as with its positive pole at the cornea and its negative pole at the retina.
  • the electric signal may be derived using contact electrodes placed on the skin around the eye, on the frame of the eyepiece, and the like. If the eye moves from the centre position towards the periphery, the retina approaches one electrode while the cornea approaches the opposing one. This change in the orientation of the dipole and consequently the electric potential field results in a change in the measured signal. By analyzing these changes eye movement may be tracked.
  • eye gaze direction of the user and associated control involves placement (by the eyepiece) and optional selection (by the user) of a visual indicator in the user's peripheral vision, such as in order to reduce clutter in the narrow portion of the user' s visual field around the gaze direction where the eye's highest visual input resides.
  • the eyepiece may provide projected visual indicators in the periphery of vision as cues to the user. This way the brain may only have to process the detection of the indicator, and not the information associated with the indicator, thus decrease the potential for overloading the user with information.
  • the indicator may be an icon, a picture, a color, symbol, a blinking object, and the like, and indicate an alert, an email arriving, an incoming phone call, a calendar event, an internal or external processing facility that requires attention from the user, and the like.
  • the visual indicator With the visual indicator in the periphery, the user may become aware of it without being distracted by it. The user may then optionally decide to elevate the content associated with the visual cue in order to see more information, such as gazing over to the visual indicator, and by doing so, opening up it's content. For example, an icon representing an incoming email may indicate an email being received.
  • the user may notice the icon, and choose to ignore it (such as the icon disappearing after a period of time if not activated, such as by a gaze or some other control facility).
  • the user may notice the visual indicator and choose to 'active' it by gazing in the direction of the visual indicator.
  • the eyepiece may open up the email and reveal it's content. In this way the user maintains control over what information is being paid attention to, and as a result, minimize distractions and maximize content usage efficiency.
  • the eyepiece may utilize sub-conscious control aspects, such as images in the wearer's periphery, images presented to the user at rates below conscious perception, sub-conscious perceptions to a viewed scene by the viewer, and the like.
  • a wearer may be presented images through the eyepiece that are at a rate the wearer is unaware of, but is subconsciously made aware of as presented content, such as a reminder, an alert (e.g. an alert that calls on the wearer to increase a level of attention to something, but not so much so that the user needs a full conscious reminder), an indication related to the wearer's immediate environment (e.g.
  • the eyepiece has detected something in the wearer's field of view that may have some interest to the wearer, and to which the indication draws the wearer's attention), and the like.
  • the eyepiece may provide indicators to the wearer through a brain activity monitoring interface, where electrical signals within the brain fire before a person realizes they've recognized an image.
  • the brain activity-monitoring interface may include
  • EEG electroencephalogram
  • the eyepiece may provide conscious level feedback to the wearer to make the wearer more aware of the element. For example, a wearer may unconsciously become aware of seeing a familiar face in a crowd (e.g. a friend, a suspect, a celebrity), and the eyepiece provides a visual or audio indication to the wearer to bring the person more consciously to the attention of the wearer.
  • the wearer may view a product that arouses their attention at a subconscious level, and the eyepiece provides a conscious indication to the wearer, more information about the product, an enhanced view of the product, a link to more information about the product, and the like.
  • the ability for the eyepiece to extend the wearer' s reality to a subconscious level may enable the eyepiece to provide the wearer with an augmented reality beyond their normal conscious experience with the world around them.
  • the eyepiece may have a plurality of modes of operation where control of the eyepiece is controlled at least in part by positions, shapes, motions of the hand, and the like.
  • the eyepiece may utilize hand recognition algorithms to detect the shape of the hand/fingers, and to then associate those hand configurations, possibly in combination with motions of the hand, as commands.
  • hand recognition algorithms to detect the shape of the hand/fingers, and to then associate those hand configurations, possibly in combination with motions of the hand, as commands.
  • these hand configurations may need to be reused depending upon the mode of operation of the eyepiece.
  • certain hand configurations or motions may be assigned for transitioning the eyepiece from one mode to the next, thereby allowing for the reuse of hand motions. For instance, and referring to Fig.
  • the user's hand 1504F may be moved in view of a camera on the eyepiece, and the movement may then be interpreted as a different command depending upon the mode, such as a circular motion 1508F, a motion across the field of view 1510F, a back and forth motion 1512F, and the like.
  • mode one for panning a view from the projected image
  • mode two for zooming the projected image.
  • the user may want to use a left-to-right finger-pointed hand motion to command a panning motion to the right.
  • the user may also want to use a left-to-right finger-pointed hand motion to command a zooming of the image to greater magnification.
  • the eyepiece may be configured to interpret the hand motion differently depending upon the mode the eyepiece is currently in, and where specific hand motions have been assigned for mode transitions. For instance, a clockwise rotational motion may indicate a transition from pan to zoom mode, and a counter-clockwise rotational motion may indicate a transition from zoom to pan mode.
  • a clockwise rotational motion may indicate a transition from pan to zoom mode
  • a counter-clockwise rotational motion may indicate a transition from zoom to pan mode.
  • a system may comprise an interactive head- mounted eyepiece worn by a user, wherein the eyepiece includes an optical assembly through which the user views a surrounding environment and displayed content, wherein the optical assembly comprises a corrective element that corrects the user's view of the surrounding environment, an integrated processor for handling content for display to the user, and an integrated image source for introducing the content to the optical assembly; and an integrated camera facility that images a gesture, wherein the integrated processor identifies and interprets the gesture as a command instruction.
  • the control instruction may provide manipulation of the content for display, a command communicated to an external device, and the like.
  • control of the eyepiece may be enabled through eye movement, an action of the eye, and the like.
  • eye movements or actions may be interpreted as command information, such as through blinking, repetitive blinking, blink count, blink rate, eye open-closed, gaze tracking, eye movements to the side, up and down, side to side, through a sequence of positions, to a specific position, dwell time in a position, gazing toward a fixed object (e.g. the corner of the lens of the eyepiece), through a certain portion of the lens, at a real- world object, and the like.
  • a fixed object e.g. the corner of the lens of the eyepiece
  • eye control may enable the viewer to focus on a certain point on the displayed image from the eyepiece, and because the camera may be able to correlate the viewing direction of the eye to a point on the display, the eyepiece may be able to interpret commands through a combination of where the wearer is looking and an action by the wearer (e.g. blinking, touching an interface device, movement of a position sense device, and the like). For example, the viewer may be able to look at an object on the display, and select that object through the motion of a finger enabled through a position sense device.
  • commands through a combination of where the wearer is looking and an action by the wearer (e.g. blinking, touching an interface device, movement of a position sense device, and the like).
  • the viewer may be able to look at an object on the display, and select that object through the motion of a finger enabled through a position sense device.
  • the glasses may be equipped with eye tracking devices for tracking movement of the user's eye, or preferably both eyes; alternatively, the glasses may be equipped with sensors for six-degree freedom of movement tracking, i.e., head movement tracking.
  • eye tracking devices for tracking movement of the user's eye, or preferably both eyes; alternatively, the glasses may be equipped with sensors for six-degree freedom of movement tracking, i.e., head movement tracking.
  • sensors for six-degree freedom of movement tracking, i.e., head movement tracking.
  • These devices or sensors are available, for example, from Chronos Vision GmbH, Berlin, Germany and ISCAN, Woburn, MA.
  • Retinal scanners are also available for tracking eye movement. Retinal scanners may also be mounted in the augmented reality glasses and are available from a variety of companies, such as Tobii, Sweden, and SMI, Teltow, Germany, and ISCAN.
  • the augmented reality eyepiece also includes a user input interface, as shown, to allow a user to control the device.
  • Inputs used to control the device may include any of the sensors discussed above, and may also include a trackpad, one or more function keys and any other suitable local or remote device.
  • an eye tracking device may be used to control another device, such as a video game or external tracking device.
  • Fig. 29A depicts a user with an augmented reality eyepiece equipped with an eye tracking device 2900A, discussed elsewhere in this document.
  • the eye tracking device allows the eyepiece to track the direction of the user's eye or preferably, eyes, and send the movements to the controller of the eyepiece.
  • Control system includes the augmented reality eyepiece and a control device for the weapon.
  • the movements may then be transmitted to the control device for a weapon controlled by the control device, which may be within sight of the user.
  • the movement of the user' s eyes is then converted by suitable software to signals for controlling movement in the weapon, such as quadrant (range) and azimuth
  • the weapon may be large caliber, such as a howitzer or mortar, or may small caliber, such as a machine gun.
  • the movement of the user' s eyes is then converted by suitable software to signals for controlling movement of the weapon, such as quadrant (range) and azimuth (direction) of the weapon. Additional controls may be used for single or continuous discharges of the weapon, such as with the user' s trackpad or function keys.
  • the weapon may be stationary and non-directional, such as an implanted mine or shape-charge, and may be protected by safety devices, such as by requiring specific encoded commands.
  • the user of the augmented reality device may activate the weapon by transmitting the appropriate codes and commands, without using eye-tracking features.
  • control of the eyepiece may be enabled though gestures by the wearer.
  • the eyepiece may have a camera that views outward (e.g. forward, to the side, down) and interprets gestures or movements of the hand of the wearer as control signals.
  • Hand signals may include passing the hand past the camera, hand positions or sign language in front of the camera, pointing to a real- world object (such as to activate augmentation of the object), and the like.
  • Hand motions may also be used to manipulate objects displayed on the inside of the translucent lens, such as moving an object, rotating an object, deleting an object, opening-closing a screen or window in the image, and the like.
  • head motion control may be used to send commands to the eyepiece, where motion sensors such as accelerometers, gyros, or any other sensor described herein, may be mounted on the wearer' s head, on the eyepiece, in a hat, in a helmet, and the like.
  • head motions may include quick motions of the head, such as jerking the head in a forward and/or backward motion 1412, in an up and/or down motion 1410, in a side to side motion as a nod, dwelling in a position, such as to the side, moving and holding in position, and the like.
  • Motion sensors may be integrated into the eyepiece, mounted on the user's head or in a head covering (e.g.
  • the user may wear the interactive head- mounted eyepiece, where the eyepiece includes an optical assembly through which the user views a surrounding environment and displayed content.
  • the optical assembly may include a corrective element that corrects the user's view of the surrounding environment, an integrated processor for handling content for display to the user, and an integrated image source for introducing the content to the optical assembly.
  • At least one of a plurality of head motion sensing control devices may be integrated or in association with the eyepiece that provide control commands to the processor as command instructions based upon sensing a predefined head motion characteristic.
  • the head motion characteristic may be a nod of the user's head such that the nod is an overt motion dissimilar from ordinary head motions.
  • the overt motion may be a jerking motion of the head.
  • the control instructions may provide manipulation of the content for display, be communicated to control an external device, and the like.
  • Head motion control may be used in combination with other control mechanisms, such as using another control mechanism as discussed herein to activate a command and for the head motion to execute it. For example, a wearer may want to move an object to the right, and through eye control, as discussed herein, select the object and activate head motion control. Then, by tipping their head to the right, the object may be commanded to move to the right, and the command terminated through eye control.
  • the eyepiece may be controlled through audio, such as through a microphone.
  • Audio signals may include speech recognition, voice recognition, sound recognition, sound detection, and the like. Audio may be detected though a microphone on the eyepiece, a throat microphone, a jaw bone microphone, a boom microphone, a headphone, ear bud with microphone, and the like.
  • command inputs may provide for a plurality of control functions, such as turning on/off the eyepiece projector, turn on/off audio, turn on/off a camera, turn on/off augmented reality projection, turn on/off GPS, interaction with display (e.g. select / accept function displayed, replay of captured image or video, and the like), interaction with the real-world (e.g. capture image or video, turn a page of a displayed book, and the like), perform actions with an embedded or external mobile device (e.g. mobile phone, navigation device, music device, VoIP, and the like), browser controls for the Internet (e.g. submit, next result, and the like), email controls (e.g. read email, display text, text-to-speech, compose, select, and the like), GPS and navigation controls (e.g. save position, recall saved position, show directions, view location on map), and the like.
  • control functions such as turning on/off the eyepiece projector, turn on/off audio, turn on/off a camera, turn on/off augmented reality projection
  • the eyepiece may provide 3D display imaging to the user, such as through conveying a stereoscopic, auto-stereoscopic, computer- generated holography, volumetric display image, stereograms / stereoscopes, view- sequential displays, electro-holographic displays, parallax "two view” displays and parallax panoramagrams, re-imaging systems, and the like, creating the perception of 3D depth to the viewer.
  • Display of 3D images to the user may employ different images presented to the user's left and right eyes, such as where the left and right optical paths have some optical component that differentiates the image, where the projector facility is projecting different images to the user's left and right eye's, and the like.
  • the optical path including from the projector facility through the optical path to the user's eye, may include a graphical display device that forms a visual representation of an object in three physical dimensions.
  • a processor such as the integrated processor in the eyepiece or one in an external facility, may provide 3D image processing as at least a step in the generation of the 3D image to the user.
  • holographic projection technologies may be employed in the presentation of a 3D imaging effect to the user, such as computer- generated holography (CGH), a method of digitally generating holographic interference patterns.
  • CGH computer- generated holography
  • a holographic image may be projected by a holographic 3D display, such as a display that operates on the basis of interference of coherent light.
  • Computer generated holograms have the advantage that the objects which one wants to show do not have to possess any physical reality at all, that is, they may be completely generated as a 'synthetic hologram'.
  • There are a plurality of different methods for calculating the interference pattern for a CGH including from the fields of holographic information and computational reduction as well as in computational and quantization techniques.
  • the Fourier transform method and point source holograms are two examples of computational techniques.
  • the Fourier transformation method may be used to simulate the propagation of each plane of depth of the object to the hologram plane, where the reconstruction of the image may occur in the far field.
  • there may be two steps where first the light field in the far observer plane is calculated, and then the field is Fourier transformed back to the lens plane, where the wavefront to be reconstructed by the hologram is the superposition of the Fourier transforms of each object plane in depth.
  • a target image may be multiplied by a phase pattern to which an inverse Fourier transform is applied.
  • Intermediate holograms may then be generated by shifting this image product, and combined to create a final set.
  • the final set of holograms may then be approximated to form kinoforms for sequential display to the user, where the kinoform is a phase hologram in which the phase modulation of the object wavefront is recorded as a surface-relief profile.
  • the kinoform is a phase hologram in which the phase modulation of the object wavefront is recorded as a surface-relief profile.
  • the object is broken down in self-luminous points, where an elementary hologram is calculated for every point source and the final hologram is synthesized by superimposing all the elementary holograms.
  • 3-D or holographic imagery may be enabled by a dual projector system where two projectors are stacked on top of each other for a 3D image output.
  • Holographic projection mode may be entered by a control mechanism described herein or by capture of an image or signal, such as an outstretched hand with palm up, an SKU, an RFID reading, and the like.
  • a wearer of the eyepiece may view a letter 'X' on a piece of cardboard which causes the eyepiece to enter holographic mode and turning on the second, stacked projector. Selecting what hologram to display may be done with a control technique.
  • the projector may project the hologram onto the cardboard over the letter 'X' .
  • Associated software may track the position of the letter 'X' and move the projected image along with the movement of the letter 'X' .
  • the eyepiece may scan a SKU, such as a SKU on a toy construction kit, and a 3-D image of the completed toy construction may be accessed from an online source or non-volatile memory. Interaction with the hologram, such as rotating it, zooming in/out, and the like, may be done using the control mechanisms described herein. Scanning may be enabled by associated bar code / SKU scanning software.
  • a keyboard may be projected in space or on a surface. The holographic keyboard may be used in or to control any of the associated applications / functions.
  • eyepiece facilities may provide for locking the position of a virtual keyboard down relative to a real environmental object (e.g. a table, a wall, a vehicle dashboard, and the like) where the virtual keyboard then does not move as the wearer moves their head.
  • a virtual keyboard e.g. a table, a wall, a vehicle dashboard, and the like
  • the user may be sitting at a table and wearing the eyepiece 2402, and wish to input text into an application, such as a word processing application, a web browser, a communications application, and the like.
  • the user may be able to bring up a virtual keyboard 2408, or other interactive control element (e.g. virtual mouse, calculator, touch screen, and the like), to use for input.
  • the user may provide a command for bringing up the virtual keyboard 2408, and use a hand gesture 2404 for indicating the fixed location of the virtual keyboard 2408.
  • the virtual keyboard 2408 may then remain fixed in space relative to the outside environment, such as fixed to a location on the table 2410, where the eyepiece facilities keep the location of the virtual keyboard 2408 on the table 2410 even when the user turns their head. That is, the eyepiece 2402 may compensate for the user's head motion in order to keep the user's view of the virtual keyboard 2408 located on the table 2410.
  • the user may wear the interactive head-mounted eyepiece, where the eyepiece includes an optical assembly through which the user views a surrounding environment and displayed content.
  • the optical assembly may include a corrective element that corrects the user' s view of the surrounding environment, an integrated processor for handling content for display to the user, and an integrated image source for introducing the content to the optical assembly.
  • An integrated camera facility may be provided that images the surrounding environment, and identifies a user hand gesture as an interactive control element location command, such as a hand- finger configuration moved in a certain way, positioned in a certain way, and the like. The location of the interactive control element then may remain fixed in position with respect to an object in the surrounding environment, in response to the interactive control element location command, regardless of a change in the viewing direction of the user. In this way, the user may be able to utilize a virtual keyboard in much the same way they would a physical keyboard, where the virtual keyboard remains in the same location.
  • the virtual keyboard there are not 'physical limitations', such as gravity, to limit where the user may locate the keyboard. For instance, the user could be standing next to a wall, and place the keyboard location on the wall, and the like.
  • the 'virtual keyboard' technology may be applied to any controller, such as a virtual mouse, virtual touch pad, virtual game interface, virtual phone, virtual calculator, virtual paintbrush, virtual drawing pad, and the like.
  • a virtual touchpad may be visualized through the eyepiece to the user, and positioned by the user such as by use of hand gestures, and used in place of a physical touchpad.
  • eyepiece facilities may use visual techniques to render the projection of an object (e.g. virtual keyboard, keypad, calculator, notepad, joystick, control panel, book) onto a surface, such as by applying distortions like parallax, keystone, and the like.
  • an object e.g. virtual keyboard, keypad, calculator, notepad, joystick, control panel, book
  • eyepiece facilities may use visual techniques to render the projection of an object (e.g. virtual keyboard, keypad, calculator, notepad, joystick, control panel, book) onto a surface, such as by applying distortions like parallax, keystone, and the like.
  • an object e.g. virtual keyboard, keypad, calculator, notepad, joystick, control panel, book
  • these techniques may be applied dynamically, to provide the proper perspective even as the user moves around in relationship to the surface.
  • eyepiece facilities may use visual techniques to render the projection of a previously taken medical scan onto the wearer's body, such as an x-ray, an ultrasound, an MRI, a PET scan, and the like.
  • a previously taken medical scan such as an x-ray, an ultrasound, an MRI, a PET scan, and the like.
  • the eyepiece may have access to an x-ray image taken of the wearer's hand.
  • the eyepiece may then utilize its integrated camera to view the wear's hand 2402A, and overlay a projected image 2404 A of the x-ray onto the hand.
  • the eyepiece may be able to maintain the image overlay as the wearer moves their hand and gaze relative to one other.
  • this technique may also be implemented while the wearer is looking in the mirror, where the eyepiece transposes an image on top of the reflected image.
  • This technique may be used as part of a diagnostic procedure, for rehabilitation during physical therapy, to encourage exercise and diet, to explain to a patient a diagnosis or condition, and the like.
  • the images may be the images of the wearer, generic images from a database of images for medical conditions, and the like.
  • the generic overlay may show some type of internal issue that is typical of a physical condition, a projection of what the body will look like if a certain routine is followed for a period of time, and the like.
  • an external control device such as pointer controller
  • the overlay of the image may be synchronized between multiple people, each wearing an eyepiece, as described herein. For instance, a patient and a doctor may both project the image onto the patient's hand, where the doctor may now explain a physical ailment while the patient views the synchronized images of the projected scan and the doctor's explanation.
  • eyepiece facilities may provide for removing the portions of a virtual keyboard projection where intervening obstructions appear (e.g. the user's hand getting in the way, where it is not desired to project the keyboard onto the user's hand).
  • the eyepiece 3002 may provide a projected virtual keyboard 3008 to the wearer, such as onto a tabletop. The wearer may then reach Over' the virtual keyboard 3008 to type.
  • the keyboard is merely a projected virtual keyboard, rather than a physical keyboard, without some sort of compensation to the projected image the projected virtual computer would be projected Onto' the back of the user's hand.
  • the eyepiece may provide compensation to the projected image such that the portion of the wearer's hand 3004 that is obstructing the intended projection of the virtual keyboard onto the table may be removed from the projection. That is, it may not be desirable for portions of the keyboard projection 3008 to be visualized onto the user's hand, and so the eyepiece subtracts the portion of the virtual keyboard projection that is co-located with the wearer's hand 3004.
  • the user may wear the interactive head-mounted eyepiece, where the eyepiece includes an optical assembly through which the user views a surrounding environment and displayed content.
  • the optical assembly may include a corrective element that corrects the user's view of the surrounding environment, an integrated processor for handling content for display to the user, and an integrated image source for introducing the content to the optical assembly.
  • the displayed content may include an interactive control element (e.g. virtual keyboard, virtual mouse, calculator, touch screen, and the like).
  • An integrated camera facility may image a user' s body part as it interacts with the interactive control element, wherein the processor removes a portion of the interactive control element by subtracting the portion of the interactive control element that is determined to be co-located with the imaged user body part based on the user's view.
  • this technique of partial projected image removal may be applied to other projected images and obstructions, and is not meant to be restricted to this example of a hand over a virtual keyboard.
  • eyepiece facilities may provide for intervening obstructions for any virtual content that is displayed over "real" world content. If some reference frame is determined that places the content at some distance, then any object that passes between the virtual image and the viewer may be subtracted from the displayed content so as not to create a discontinuity for the user that is expecting the displayed information to exist at a certain distance away. In embodiments, variable focus techniques may also be used to increase the perception of a distance hierarchy amongst the viewed content. [00353] In embodiments, eyepiece facilities may provide for the ability to determine an intended text input from a sequence of character contacts swiped across a virtual keypad, such as with the finger, a stylus, the entire hand, and the like. For example, and referring to Fig.
  • the eyepiece may be projecting a virtual keyboard 3700, where the user wishes to input the word 'wind'. Normally, the user would discretely press the key positions for 'w' , then , then 'n' , and finally 'd', and a facility (camera, accelerometer, and the like, such as described herein) associated with the eyepiece would interpret each position as being the letter for that position.
  • a facility camera, accelerometer, and the like, such as described herein
  • the system may also be able to monitor the movement, or swipe, of the user' s finger or other pointing device across the virtual keyboard and determine best fit matches for the pointer movement.
  • the pointer has started at the character 'w' and swept a path 3704 though the characters e, r, t, y, u, i, k, n, b, v, f, and d where it stops.
  • the eyepiece may observe this sequence and determine the sequence, such as through an input path analyzer, feed the sensed sequence into a word matching search facility, and output a best fit word, in this case 'wind' as text 3708.
  • the eyepiece may monitor the motion of the pointing device across the keypad and determine the word more directly, such as though auto complete word matching, pattern recognition, object recognition, and the like, where some 'separator' indicates the space between words, such as a pause in the motion of the pointing device, a tap of the pointing device, a swirling motion of the pointing device, and the like.
  • the entire swipe path may be used with pattern or object recognition algorithms to associate whole words with the discrete patterns formed by the user's finger as they move through each character to form words, with a pause between the movements as demarcations between the words.
  • the eyepiece may provide the best- fit word, a listing of best-fit words, and the like.
  • the user may wear the interactive head-mounted eyepiece, where the eyepiece includes an optical assembly through which the user views a surrounding environment and displayed content.
  • the optical assembly may include a corrective element that corrects the user' s view of the surrounding environment, an integrated processor for handling content for display to the user, and an integrated image source for introducing the content to the optical assembly.
  • the displayed content may comprise an interactive keyboard control element (e.g. a virtual keyboard, calculator, touch screen, and the like), and where the keyboard control element is associated with an input path analyzer, a word matching search facility, and a keyboard input interface.
  • the user may input text by sliding a pointing device (e.g.
  • the reference displayed content may be something other than a keyboard, such as a sketch pad for freehand text, or other interface references like a 4-way joystick pad for controlling a game or real robots and aircraft, and the like.
  • a virtual drum kit such as with colored pads the user "taps" to make a sound.
  • the eyepiece's ability to interpret patterns of motion across a surface may allow for projecting reference content in order to give the user something to point at and provide them with visual and/or audio feedback.
  • the 'motion' detected by the eyepiece may be the motion of the user's eye as they look at the surface.
  • the eyepiece may have facilities for tracking the eye movement of the user, and by having both the content display locations of a projected virtual keyboard and the gazing direction of the user' s eye, the eyepiece may be able to detect the line-of-sight motion of the user' s eye across the keyboard, and then interpret the motions as words as described herein.
  • the eyepiece may provide the capability to command the eyepiece via hand gesture 'air lettering', such as the wearer using their finger to air swipe out a letter, word, and the like in view of an embedded eyepiece camera, where the eyepiece interprets the finger motion as letters, words, symbols for commanding, signatures, writing, emailing, texting, and the like.
  • the wearer may use this technique to sign a document utilizing an 'air signature' .
  • the wearer may use this technique to compose text, such as in an email, text, document, and the like.
  • the wearer eyepiece may recognize a symbol made through the hand motion as a control command.
  • the air lettering may be implemented through hand gesture recognition as interpreted by images captured through an eyepiece camera, or through other input control devices, such as via an inertial measurement unit (IMU) mounted in a device on the user' s finger, hand, and the like, as described herein.
  • IMU inertial measurement unit
  • eyepiece facilities may provide for presenting displayed content corresponding to an identified marker indicative of the intention to display the content. That is, the eyepiece may be commanded to display certain content based upon sensing a predetermined external visual cue.
  • the visual cue may be an image, an icon, a picture, face recognition, a hand configuration, a body configuration, and the like.
  • the displayed content may be an interface device that is brought up for use, a navigation aid to help the user find a location once they get to some travel location, an advertisement when the eyepiece views a target image, an informational profile, and the like.
  • visual marker cues and their associated content for display may be stored in memory on the eyepiece, in an external computer storage facility and imported as needed (such as by geographic location, proximity to a trigger target, command by the user, and the like), generated by a third-party, and the like.
  • the user may wear the interactive head-mounted eyepiece, where the eyepiece includes an optical assembly through which the user views a surrounding environment and displayed content.
  • the optical assembly may include a corrective element that corrects the user's view of the surrounding environment, an integrated processor for handling content for display to the user, and an integrated image source for introducing the content to the optical assembly.
  • An integrated camera facility may be provided that images an external visual cue, wherein the integrated processor identifies and interprets the external visual cue as a command to display content associated with the visual cue.
  • the visual cue 3812 may be included in a sign 3814 in the surrounding environment, where the projected content is associated with an advertisement.
  • the sign may be a billboard, and the advertisement for a personalized advertisement based on a preferences profile of the user.
  • the visual cue 3802,3808 may be a hand gesture, and the projected content a projected virtual keyboard 3804, 3810.
  • the hand gesture may be a thumb and index finger gesture 3802 from a first user hand, and the virtual keyboard 3804 projected on the palm of the first user hand, and where the user is able to type on the virtual keyboard with a second user hand.
  • the hand gesture 3808 may be a thumb and index finger gesture combination of both user hands, and the virtual keyboard 3810 projected between the user hands as configured in the hand gesture, where the user is able to type on the virtual keyboard using the thumbs of the user's hands.
  • Visual cues may provide the wearer of the eyepiece with an automated resource for associating a predetermined external visual cue with a desired outcome in the way of projected content, thus freeing the wearer from searching for the cues themselves.
  • the eyepiece may include a visual recognition language translation facility for providing translations for visually presented content, such as for road signs, menus, billboards, store signs, books, magazines, and the like.
  • the visual recognition language translation facility may utilize optical character recognition to identify letters from the content, match the strings of letters to words and phrases through a database of translations. This capability may be completely contained within the eyepiece, such as in an offline mode, or at least in part in an external computing facility, such as on an external server. For instance, a user may be in a foreign country, where the signs, menus, and the like are not understood by the wearer of the eyepiece, but for which the eyepiece is able to provide translations.
  • a user of the eyepiece may be Italian, and coming to the United States they have the need to interpret the large number of road signs in order to drive around safely. Referring to Fig. 38 A, the Italian user of the eyepiece is viewing a U.S. stop sign 3802A.
  • the eyepiece may identify the letters on the sign, translate the word 'stop' in the Italian for stop, 'arresto', and make the stop sign 3804A appear to read the word 'arresto' rather than 'stop'.
  • the eyepiece may also provide simple translation messages to the wearer, provide audio translations, provide a translation dictionary to the wearer, and the like.
  • the eyepiece may be useful for various applications and markets. It should be understood that the control mechanisms described herein may be used to control the functions of the applications described herein.
  • the eyepiece may run a single application at a time or multiple applications may run at a time. Switching between applications may be done with the control mechanisms described herein.
  • the eyepiece may be used in military applications, gaming, image recognition applications, to view / order e-books, GPS Navigation (Position, Direction, Speed and ETA), Mobile TV, athletics (view pacing, ranking, and competition times; receive coaching), telemedicine, industrial inspection, aviation, shopping, inventory management tracking, firefighting (enabled by VIS/NIRSWIR sensor that sees through fog, haze, dark), outdoor / adventure, custom advertising, and the like.
  • the eyepiece may be used with e-mail, such as GMAIL in Fig. 7, the Internet, web browsing, viewing sports scores, video chat, and the like.
  • the eyepiece may be used for educational / training purposes, such as by displaying step by step guides, such as hands-free, wireless maintenance and repair instructions.
  • a video manual and/or instructions may be displayed in the field of view.
  • the eyepiece may be used in Fashion, Health, and Beauty.
  • potential outfits, hairstyles, or makeup may be projected onto a mirror image of a user.
  • the eyepiece may be used in Business Intelligence, Meetings, and Conferences.
  • a user's name tag can be scanned, their face run through a facial recognition system, or their spoken name searched in database to obtain biographical information. Scanned name tags, faces, and conversations may be recorded for subsequent viewing or filing.
  • a "Mode" may be entered by the eyepiece.
  • certain applications may be available.
  • a consumer version of the eyepiece may have a Tourist Mode, Educational Mode, Internet Mode, TV Mode, Gaming Mode, Exercise Mode, Stylist Mode, Personal Assistant Mode, and the like.
  • a user of the augmented reality glasses may wish to participate in video calling or video conferencing while wearing the glasses.
  • Many computers, both desktop and laptop have integrated cameras to facilitate using video calling and conferencing.
  • software applications are used to integrate use of the camera with calling or conferencing features.
  • the augmented reality glasses providing much of the functionality of laptops and other computing devices, many users may wish to utilize video calling and video conferencing while on the move wearing the augmented reality glasses.
  • a video calling or video conferencing application may work with a WiFi connection, or may be part of a 3G or 4G calling network associated with a user's cell phone.
  • the camera for video calling or conferencing is placed on a device controller, such as a watch or other separate electronic computing device. Placing the video calling or conferencing camera on the augmented reality glasses is not feasible, as such placement would provide the user with a view only of themselves, and would not display the other participants in the conference or call. However, the user may choose to use the forward-facing camera to display their surroundings or another individual in the video call.
  • FIG. 32 depicts a typical camera 3200 for use in video calling or conferencing.
  • Such cameras are typically small and could be mounted on a watch 3202, as shown in FIG. 32, cell phone or other portable computing device, including a laptop computer.
  • Video calling works by connecting the device controller with the cell phone or other communications device.
  • the devices utilize software compatible with the operating system of the glasses and the communications device or computing device.
  • the screen of the augmented reality glasses may display a list of options for making the call and the user may gesture using a pointing control device or use any other control technique described herein to select the video calling option on the screen of the augmented reality glasses.
  • FIG. 33 illustrates an embodiment 3300 of a block diagram of a video-calling camera.
  • the camera incorporates a lens 3302, a CCD/CMOS sensor 3304, analog to digital converters for video signals, 3306, and audio signals, 3314.
  • Microphone 3312 collects audio input.
  • Both analog to digital converters 3306 and 3314 send their output signals to a signal enhancement module 3308.
  • the signal enhancement module 3308 forwards the enhanced signal, which is a composite of both video and audio signals to interface 3310.
  • Interface 3310 is connected to an IEEE 1394 standard bus interface, along with a control module 3316.
  • the video call camera depends on the signal capture which transforms the incident light, as well as incident sound into electrons. For light this process is performed by CCD or CMOS chip 3304.
  • the microphone transforms sound into electrical impulses.
  • the first step in the process of generating an image for a video call is to digitize the image.
  • the CCD or CMOS chip 3304 dissects the image and converts it into pixels. If a pixel has collected many photons, the voltage will be high. If the pixel has collected few photons, the voltage will be low. This voltage is an analog value.
  • the second step of digitization the voltage is transformed into a digital value by the analog to digital converter 3306, which handles image processing. At this point, a raw digital image is available.
  • Audio captured by the microphone 3312 is also transformed into a voltage. This voltage is sent to the analog to digital converter 3314 where the analog values are transformed into digital values.
  • the next step is to enhance the signal so that it may be sent to viewers of the video call or conference.
  • Signal enhancement includes creating color in the image using a color filter, located in front of the CCD or CMOS chip 3304. This filter is red, green, or blue and changes its color from pixel to pixel, and in an embodiment, may be a color filter array, or Bayer filter. These raw digital images are then enhanced by the filter to meet aesthetic requirements. Audio data may also be enhanced for a better calling experience.
  • the image and audio data are compressed and output as a digital video stream, in an embodiment using a digital video camera. If a photo camera is used, single images may be output, and in a further embodiment, voice comments may be appended to the files.
  • the enhancement of the raw digital data takes place away from the camera, and in an embodiment may occur in the device controller or computing device that the augmented reality glasses communicate with during a video call or conference.
  • Further embodiments may provide for portable cameras for use in industry, medicine, astronomy, microscopy, and other fields requiring specialized camera use. These cameras often forgo signal enhancement and output the raw digital image. These cameras may be mounted on other electronic devices or the user's hand for ease of use.
  • the camera interfaces to the augmented reality glasses and the device controller or computing device using an IEEE 1394 interface bus.
  • This interface bus transmits time critical data, such as a video and data whose integrity is critically important, including parameters or files to manipulate data or transfer images.
  • protocols define the behavior of the devices associated with the video call or conference.
  • the camera for use with the augmented reality glasses may, in embodiments, employ one of the following protocols: AV/C, DCAM, or SBP-2.
  • AV/C is a protocol for Audio Video Control and defines the behavior of digital video devices, including video cameras and video recorders.
  • DCAM refers to the 1394 based Digital Camera Specification and defines the behavior of cameras that output uncompressed image data without audio.
  • SBP-2 refers to Serial Bus Protocol and defines the behavior of mass storage devices, such as hard drives or disks.
  • Devices that use the same protocol are able to communicate with each other.
  • the same protocol may be used by the video camera on the device controller and the augmented reality glasses.
  • the augmented reality glasses, device controller, and camera use the same protocol, data may be exchanged among these devices.
  • Files that may be transferred among devices include: image and audio files, image and audio data flows, parameters to control the camera, and the like.
  • a user desiring to initiate a video call may select a video call option from a screen presented when the call process is initiated.
  • the user selects by making a gesture using a pointing device, or gesture to signal the selection of the video call option.
  • the user then positions the camera located on the device controller, wristwatch, or other separable electronic device so that the user's image is captured by the camera.
  • the image is processed through the process described above and is then streamed to the augmented reality glasses and the other participants for display to the users.
  • the camera may be mounted on a cell phone, personal digital assistant, wristwatch, pendant, or other small portable device capable of being carried, worn, or mounted.
  • the images or video captured by the camera may be streamed to the eyepiece.
  • a wearer may be able to image targets not in the line of sight and wirelessly receive imagery as a stream of displayed content to the eyepiece.
  • the present disclosure may provide the wearer with GPS-based content reception, as in Fig. 6.
  • augmented reality glasses of the present disclosure may include memory, a global positioning system, a compass or other orienting device, and a camera.
  • GPS-based computer programs available to the wearer may include a number of applications typically available from the Apple Inc. App Store for iPhone use. Similar versions of these programs are available for other brands of smart phone and may be applied to embodiments of the present disclosure. These programs include, for example, SREngine (scene recognition engine), NearestTube, TAT Augmented ID, Yelp, Layar, and TwittARound, as well as other more specialized applications, such as RealSki.
  • SREngine is a scene recognition engine that is able to identify objects viewed by the user's camera. It is a software engine able to recognize static scenes, such as scenes of architecture, structures, pictures, objects, rooms, and the like. It is then able to automatically apply a virtual "label" to the structures or objects according to what it recognizes.
  • the program may be called up by a user of the present disclosure when viewing a street scene, such as Fig. 6.
  • the engine will recognize the Fontaines de la Concorde in Paris.
  • the program will then summon a virtual label, shown in Fig. 6 as part of a virtual image 618 projected onto the lens 602.
  • the label may be text only, as seen at the bottom of the image 618.
  • Other labels applicable to this scene may include “fountain,” “museum,” “hotel,” or the name of the columned building in the rear.
  • Other programs of this type may include the Wikitude AR Travel Guide, Yelp and many others.
  • NearestTube for example, uses the same technology to direct a user to the closest subway station in London, and other programs may perform the same function, or similar, in other cities.
  • Layar is another application that uses the camera, a compass or direction, and GPS data to identify a user' s location and field of view. With this information, an overlay or label may appear virtually to help orient and guide the user. Yelp and Monocle perform similar functions, but their databases are somewhat more specialized, helping to direct users in a similar manner to restaurants or to other service providers.
  • the user may control the glasses, and call up these functions, using any of the controls described in this patent.
  • the glasses may be equipped with a microphone to pick up voice commands from a user and process them using software contained with a memory of the glasses. The user may then respond to prompts from small speakers or earbuds also contained within the glasses frame.
  • the glasses may also be equipped with a tiny track pad, similar to those found on smartphones.
  • the trackpad may allow a user to move a pointer or indicator on the virtual screen within the AR glasses, similar to a touch screen. When the user reaches a desired point on the screen, the user depresses the track pad to indicate his or her selection.
  • a user may call up a program, e.g., a travel guide, and then find his or her way through several menus, perhaps selecting a country, a city and then a category.
  • the category selections may include, for example, hotels, shopping, museums, restaurants, and so forth.
  • the user makes his or her selections and is then guided by the AR program.
  • the glasses also include a GPS locator, and the present country and city provides default locations that may be overridden.
  • the eyepiece's object recognition software may process the images being received by the eyepiece's forward facing camera in order to determine what is in the field of view.
  • the GPS coordinates of the location as determined by the eyepiece's GPS may be enough to determine what is in the field of view.
  • an RFID or other beacon in the environment may be broadcasting a location. Any one or combination of the above may be used by the eyepiece to identify the location and the identity of what is in the field of view.
  • the resolution for imaging that object may be increased or images or video may be captured at low compression. Additionally, the resolution for other objects in the user's view may be decreased, or captured at a higher compression rate in order to decrease the needed bandwidth.
  • content related to points of interest in the field of view may be overlaid on the real world image, such as social networking content, interactive tours, local information, and the like.
  • Information and content related to movies, local information, weather, restaurants, restaurant availability, local events, local taxis, music, and the like may be accessed by the eyepiece and projected on to the lens of the eyepiece for the user to view and interact with.
  • the forward facing camera may take an image and send it for processing to the eyepiece's associated processor.
  • Object recognition software may determine that the structure in the wearer's field of view is the Eiffel Tower.
  • the GPS coordinates determined by the eyepiece's GPS may be searched in a database to determine that the coordinates match those of the Eiffel Tower.
  • content may then be searched relating to the Eiffel Tower visitor' s information, restaurants in the vicinity and in the Tower itself, local weather, local Metro information, local hotel information, other nearby tourist spots, and the like. Interacting with the content may be enabled by the control mechanisms described herein.
  • GPS-based content reception may be enabled when a Tourist Mode of the eyepiece is entered.
  • the eyepiece may be used to view streaming video.
  • videos may be identified via search by GPS location, search by object recognition of an object in the field of view, a voice search, a holographic keyboard search, and the like.
  • a video database may be searched via the GPS coordinates of the Tower or by the term 'Eiffel Tower' once it has been determined that is the structure in the field of view.
  • Search results may include geo-tagged videos or videos associated with the Eiffel Tower.
  • the videos may be scrolled or flipped through using the control techniques described herein. Videos of interest may be played using the control techniques described herein.
  • the video may be laid over the real world scene or may be displayed on the lens out of the field of view.
  • the eyepiece may be darkened via the mechanisms described herein to enable higher contrast viewing.
  • the eyepiece may be able to utilize a camera and network connectivity, such as described herein, to provide the wearer with streaming video conferencing capabilities.
  • the user of augmented reality may receive content from an abundance of sources.
  • a visitor or tourist may desire to limit the choices to local businesses or institutions; on the other hand, businesses seeking out visitors or tourists may wish to limit their offers or solicitations to persons who are in their area or location but who are visiting rather than local residents.
  • the visitor or tourist may limit his or her search only to local businesses, say those within certain geographic limits. These limits may be set via GPS criteria or by manually indicating a geographic restriction. For example, a person may require that sources of streaming content or ads be limited to those within a certain radius (a set number or km or miles) of the person. Alternatively, the criteria may require that the sources are limited to those within a certain city or province.
  • the available content chosen by a user may be restricted or limited by the type of provider.
  • a user may restrict choices to those with a website operated by a government institution (.gov) or by a non-profit institution or organization (.org).
  • a tourist or visitor who may be more interested in visiting government offices, museums, historical sites and the like, may find his or her choices less cluttered.
  • the person may be more easily able to make decisions when the available choices have been pared down to a more reasonable number.
  • the ability to quickly cut down the available choices is desirable in more urban areas, such as Paris or Washington, D.C., where there are many choices.
  • the user controls the glasses in any of the manners or modes described elsewhere in this patent.
  • the user may call up a desired program or application by voice or by indicating a choice on the virtual screen of the augmented reality glasses.
  • the augmented glasses may respond to a track pad mounted on the frame of the glasses, as described above.
  • the glasses may be responsive to one or more motion or position sensors mounted on the frame. The signals from the sensors are then sent to a microprocessor or microcontroller within the glasses, the glasses also providing any needed signal transducing or processing.
  • the program of choice has begun, the user makes selections and enters a response by any of the methods discussed herein, such as signaling "yes” or "no" with a head movement, a hand gesture, a trackpad depression, or a voice command.
  • augmented reality devices are desirably equipped with both GPS capability and telecommunications capability. It will be a simple matter for the museum to provide streaming content within a limited area by limiting its broadcast power. The museum, however, may provide the content through the Internet and its content may be available world-wide. In this instance, a user may receive content through an augmented reality device advising that the museum is open today and is available for touring.
  • the user may respond to the content by the augmented reality equivalent of clicking on a link for the museum.
  • the augmented reality equivalent may be a voice indication, a hand or eye movement, or other sensory indication of the user' s choice, or by using an associated body-mounted controller.
  • the museum receives a cookie indicating the identity of the user or at least the user's internet service provider (ISP). If the cookie indicates or suggests an internet service provider other than local providers, the museum server may then respond with advertisements or offers tailored to visitors.
  • the cookie may also include an indication of a telecommunications link, e.g., a telephone number. If the telephone number is not a local number, this is an additional clue that the person responding is a visitor.
  • the museum or other institution may then follow up with the content desired or suggested by its marketing department.
  • Another application of the augmented reality eyepiece takes advantage of a user' s ability to control the eyepiece and its tools with a minimum use of the user's hands, using instead voice commands, gestures or motions.
  • a user may call upon the augmented reality eyepiece to retrieve information.
  • This information may already be stored in a memory of the eyepiece, but may instead be located remotely, such as a database accessible over the Internet or perhaps via an intranet which is accessible only to employees of a particular company or
  • the eyepiece may thus be compared to a computer or to a display screen which can be viewed and heard at an extremely close range and generally controlled with a minimal use of one's hands.
  • Applications may thus include providing information on-the- spot to a mechanic or electronics technician.
  • the technician can don the glasses when seeking information about a particular structure or problem encountered, for example, when repairing an engine or a power supply.
  • voice commands he or she may then access the database and search within the database for particular information, such as manuals or other repair and maintenance documents.
  • the desired information may thus be promptly accessed and applied with a minimum of effort, allowing the technician to more quickly perform the needed repair or maintenance and to return the equipment to service.
  • time savings may also save lives, in addition to saving repair or maintenance costs.
  • the information imparted may include repair manuals and the like, but may also include a full range of audio- visual information, i.e., the eyepiece screen may display to the technician or mechanic a video of how to perform a particular task at the same time the person is attempting to perform the task.
  • the augmented reality device also includes telecommunications capabilities, so the technician also has the ability to call on others to assist if there is some complication or unexpected difficulty with the task.
  • This educational aspect of the present disclosure is not limited to maintenance and repair, but may be applied to any educational endeavor, such as secondary or post-secondary classes, continuing education courses or topics, seminars, and the like.
  • a Wi-Fi enabled eyepiece may run a location- based application for geo-location of opted-in users. Users may opt-in by logging into the application on their phone and enabling broadcast of their location, or by enabling geo-location on their own eyepiece. As a wearer of the eyepiece scans people, and thus their opted-in device, the application may identify opted-in users and send an instruction to the projector to project an augmented reality indicator on an opted-in user in the user's field of view. For example, green rings may be placed around people who have opted-in to have their location seen. In another example, yellow rings may indicate people who have opted-in but don't meet some criteria, such as they do not have a FACEBOOK account, or that there are no mutual friends if they do have a FACEBOOK account.
  • Some social networking, career networking, and dating applications may work in concert with the location-based application.
  • Software resident on the eyepiece may coordinate data from the networking and dating sites and the location-based application.
  • TwittARound is one such program which makes use of a mounted camera to detect and label location-stamped tweets from other tweeters nearby. This will enable a person using the present disclosure to locate other nearby Twitter users.
  • users may have to set their devices to coordinate information from various networking and dating sites. For example, the wearer of the eyepiece may want to see all E-HARMONY users who are broadcasting their location. If an opted-in user is identified by the eyepiece, an augmented reality indicator may be laid over the opted-in user.
  • the indicator may take on a different appearance if the user has something in common with the wearer, many things in common with the user, and the like. For example, and referring to Fig. 16, two people are being viewed by the wearer. Both of the people are identified as E-HARMONY users by the rings placed around them. However, the woman shown with solid rings has more than one item in common with the wearer while the woman shown with dotted rings has no items in common with the wearer. Any available profile information may get accessed and displayed to the user.
  • the wearer when the wearer directs the eyepiece in the direction of a user who has a networking account, such as FACEBOOK, TWITTER, BLIPPY, LINKEDIN, GOOGLE, WIKIPEDIA, and the like, the user's recent posts or profile information may be displayed to the wearer. For example, recent status updates, "tweets", “blips”, and the like may get displayed, as mentioned above for TwittARound.
  • the wearer when the wearer points the eyepiece in a target user's direction, they may indicate interest in the user if the eyepiece is pointed for a duration of time and/or a gesture, head, eye, or audio control is activated.
  • the target user may receive an indication of interest on their phone or in their glasses. If the target user had marked the wearer as interesting but was waiting on the wearer to show interest first, an indication may immediately pop up in the eyepiece of the target user' s interest.
  • a control mechanism may be used to capture an image and store the target user' s information on associated non- volatile memory or in an online account.
  • a facial recognition program such as TAT Augmented ID, from TAT - The Astonishing Tribe, Malmo, Sweden, may be used. Such a program may be used to identify a person by his or her facial characteristics.
  • This software uses facial recognition software to identify a person.
  • photo identifying software from Flickr, one can then identify the particular nearby person, and one can then download information from social networking sites with information about the person. This information may include the person's name and the profile the person has made available on sites such as Facebook, Twitter, and the like.
  • This application may be used to refresh a user' s memory of a person or to identify a nearby person, as well as to gather information about the person.
  • the wearer may be able to utilize location-based facilities of the eyepiece to leave notes, comments, reviews, and the like, at locations, in association with people, places, products, and the like. For example, a person may be able to post a comment on a place they visited, where the posting may then be made available to others through the social network. In another example, a person may be able to post that comment at the location of the place such that the comment is available when another person comes to that location. In this way, a wearer may be able to access comments left by others when they come to the location. For instance, a wearer may come to the entrance to a restaurant, and be able to access reviews for the restaurant, such as sorted by some criteria (e.g. most recent review, age of reviewer, and the like).
  • a user may initiate the desired program by voice, by selecting a choice from a virtual touchscreen, as described above, by using a trackpad to select and choose the desired program, or by any of the control techniques described herein. Menu selections may then be made in a similar or complementary manner.
  • Sensors or input devices mounted in convenient locations on the user's body may also be used, e.g., sensors and a track pad mounted on a wrist pad, on a glove, or even a discreet device, perhaps of the size of a smart phone or a personal digital assistant.
  • Applications of the present disclosure may provide the wearer with Internet access, such as for browsing, searching, shopping, entertainment, and the like, such as through a wireless communications interface to the eyepiece.
  • a wearer may initiate a web search with a control gesture, such as through a control facility worn on some portion of the wearer's body (e.g. on the hand, the head, the foot), on some component being used by the wearer (e.g. a personal computer, a smart phone, a music player), on a piece of furniture near the wearer (e.g. a chair, a desk, a table, a lamp), and the like, where the image of the web search is projected for viewing by the wearer through the eyepiece.
  • the wearer may then view the search through the eyepiece and control web interaction though the control facility.
  • a user may be wearing an embodiment configured as a pair of glasses, with the projected image of an Internet web browser provided through the glasses while retaining the ability to simultaneously view at least portions of the surrounding real environment.
  • the user may be wearing a motion sensitive control facility on their hand, where the control facility may transmit relative motion of the user' s hand to the eyepiece as control motions for web control, such as similar to that of a mouse in a conventional personal computer configuration. It is understood that the user would be enabled to perform web actions in a similar fashion to that of a conventional personal computer configuration.
  • the image of the web search is provided through the eyepiece while control for selection of actions to carry out the search is provided though motions of the hand.
  • the overall motion of the hand may move a cursor within the projected image of the web search, the flick of the finger(s) may provide a selection action, and so forth.
  • the wearer may be enabled to perform the desired web search, or any other Internet browser-enabled function, through an embodiment connected to the Internet.
  • a user may have downloaded computer programs Yelp or Monocle, available from the App Store, or a similar product, such as NRU ("near you"), an application from Zagat to locate nearby restaurants or other stores, Google Earth, Wikipedia, or the like.
  • the person may initiate a search, for example, for restaurants, or other providers of goods or services, such as hotels, repairmen, and the like, or information.
  • locations are displayed or a distance and direction to a desired location is displayed.
  • the display may take the form of a virtual label co-located with the real world object in the user's view.
  • Layar Other applications from Layar (Amsterdam, the Netherlands) include a variety of "layers" tailored for specific information desired by a user.
  • a layer may include restaurant information, information about a specific company, real estate listings, gas stations, and so forth.
  • information may be presented on a screen of the glasses with tags having the desired information.
  • GPS global positioning system
  • a user may pivot or otherwise rotate his or her body and view buildings tagged with virtual tags containing information. If the user seeks restaurants, the screen will display restaurant information, such as name and location. If a user seeks a particular address, virtual tags will appear on buildings in the field of view of the wearer. The user may then make selections or choices by voice, by trackpad, by virtual touch screen, and so forth.
  • Applications of the present disclosure may provide a way for advertisements to be delivered to the wearer.
  • advertisements may be displayed to the viewer through the eyepiece as the viewer is going about his or her day, while browsing the Internet, conducting a web search, walking though a store, and the like.
  • the user may be performing a web search, and through the web search the user is targeted with an advertisement.
  • the advertisement may be projected in the same space as the projected web search, floating off to the side, above, or below the view angle of the wearer.
  • advertisements may be triggered for delivery to the eyepiece when some advertising providing facility, perhaps one in proximity to the wearer, senses the presence of the eyepiece (e.g.
  • the eyepiece may be used for tracking of advertisement interactions, such as the user seeing or interacting with a billboard, a promotion, an advertisement, and the like. For instance, user' s behavior with respect to advertisements may be tracked, such as to provide benefits, rewards, and the like to the user. In an example, the user may be paid five dollars in virtual cash whenever they see a billboard.
  • the eyepiece may provide impression tracking, such as based on seeing branded images (e.g. based on time, geography), and the like.
  • offers may be targeted based on the location and the event related to the eyepiece, such as what the user saw, heard, interacted with, and the like.
  • ad targeting may be based on historical behavior, such as based on what the user has interacted with in the past, patterns of interactions, and the like.
  • the wearer may be window-shopping in Manhattan, where stores are equipped with such advertising providing facilities.
  • the advertising providing facilities may trigger the delivery of an advertisement to the wearer based on a known location of the user determined by an integrated location sensor of the eyepiece, such as a GPS.
  • the location of the user may be further refined via other integrated sensors, such as a magnetometer to enable hyperlocal augmented reality advertising. For example, a user on a ground floor of a mall may receive certain advertisements if the
  • magnetometer and GPS readings place the user in front of a particular store.
  • the GPS location may remain the same, but the magnetometer reading may indicate a change in elevation of the user and a new placement of the user in front of a different store.
  • one may store personal profile information such that the advertising providing facility is able to better match advertisements to the needs of the wearer, the wearer may provide preferences for advertisements, the wearer may block at least some of the
  • the wearer may also be able to pass advertisements, and associated discounts, on to friends.
  • the wearer may communicate them directly to friends that are in close proximity and enabled with their own eyepiece; they may also communicate them through a wireless Internet connection, such as to a social network of friends, though email, SMS; and the like.
  • the wearer may be connected to facilities and/or infrastructure that enables the communication of advertisements from a sponsor to the wearer; feedback from the wearer to an advertisement facility, the sponsor of the advertisement, and the like; to other users, such as friends and family, or someone in proximity to the wearer; to a store, such as locally on the eyepiece or in a remote site, such as on the Internet or on a user's home computer; and the like.
  • interconnectivity facilities may include integrated facilities to the eyepiece to provide the user's location and gaze direction, such as through the use of GPS, 3 -axis sensors, magnetometer, gyros, accelerometers, and the like, for determining direction, speed, attitude (e.g. gaze direction) of the wearer.
  • Interconnectivity facilities may provide telecommunications facilities, such as cellular link, a WiFi/MiFi bridge, and the like. For instance, the wearer may be able to communicate through an available WiFi link, through an integrated MiFi (or any other personal or group cellular link) to the cellular system, and the like. There may be facilities for the wearer to store advertisements for a later use.
  • local advertisements may be stored on a server that contains geo-located local advertisements and specials, and these advertisements may be delivered to the wearer individually as the wearer approaches a particular location, or a set of advertisements may be delivered to the wearer in bulk when the wearer enters a geographic area that is associated with the advertisements so that the advertisements are available when the user nears a particular location.
  • the geographic location may be a city, a part of the city, a number of blocks, a single block, a street, a portion of the street, sidewalk, and the like, representing regional, local, hyper-local areas. Note that the preceding discussion uses the term
  • advertisement but one skilled in the art will appreciate that this can also mean an announcement, a broadcast, a circular, a commercial, a sponsored communication, an endorsement, a notice, a promotion, a bulletin, a message, and the like.
  • Figs. 18-20A depict ways to deliver custom messages to persons within a short distance of an establishment that wishes to send a message, such as a retail store.
  • embodiments may provide for a way to view custom billboards, such as when the wearer of the eyepiece is walking or driving, by applications as mentioned above for searching for providers of goods and services.
  • the billboard 1800 shows an exemplary augmented reality- based advertisement displayed by a seller or a service provider.
  • the exemplary advertisement may relate to an offer on drinks by a bar. For example, two drinks may be provided for the cost of just one drink.
  • augmented reality-based advertisements and offers With such augmented reality-based advertisements and offers, the wearer's attention may be easily directed towards the billboards.
  • the billboards may also provide details about location of the bar such as street address, floor number, phone number, and the like.
  • several devices other than eyepiece may be utilized to view the billboards. These devices may include without limitations smart phones, IPHONEs, IPADs, car windshields, user glasses, helmets, wristwatches, headphones, vehicle mounts, and the like.
  • a user wearer in case the augmented reality technology is embedded in the eyepiece
  • the user may receive offers or view the scene of the billboards based on his request.
  • FIG. 19 illustrates two exemplary roadside billboards 1900 containing offers and advertisements from sellers or service providers that may be viewed in the augmented reality manner.
  • the augmented advertisement may provide a live and near-to-reality perception to the user or the wearer.
  • the augmented reality enabled device such as the camera lens provided in the eyepiece may be utilized to receive and/or view graffiti 2000, slogans, drawings, and the like, that may be displayed on the roadside or on top, side, front of the buildings and shops.
  • the roadside billboards and the graffiti may have a visual (e.g. a code, a shape) or wireless indicator that may link the advertisement, or advertisement database, to the billboard.
  • a projection of the billboard advertisement may then be provided to the wearer.
  • the eyepiece may have brightness and contrast control over the eyepiece projected area of the billboard so as to improve readability for the advertisement, such as in a bright outside environment.
  • users may post information or messages on a particular location, based on its GPS location or other indicator of location, such as a magnetometer reading.
  • the intended viewer is able to see the message when the viewer is within a certain distance of the location, as explained with Fig. 20A.
  • a user decides the location where the message is to be received by persons to whom the message is sent.
  • the message is then posted 2003, to be sent to the appropriate person or persons when the recipient is close to the intended "viewing area.”
  • Location of the wearers of the augmented reality eyepiece is continuously updated 2005 by the GPS system which forms a part of the eyepiece.
  • the message is then sent 2007 to the viewer.
  • the message then appears as e-mail or a text message to the recipient, or if the recipient is wearing an eyepiece, the message may appear in the eyepiece.
  • the message may be displayed as "graffiti" on a building or feature at or near the specified location. Specific settings may be used to determine if all passersby to the "viewing area" can see the message or if only a specific person or group of people or devices with specific identifiers.
  • a soldier clearing a village may virtually mark a house as cleared by associating a message or identifier with the house, such as a big X marking the location of the house.
  • the soldier may indicate that only other American soldiers may be able to receive the location-based content.
  • other American soldiers pass the house, they may receive an indication automatically, such as by seeing the virtual 'X' on the side of the house if they have an eyepiece or some other augmented reality-enabled device, or by receiving a message indicating that the house has been cleared.
  • content related to safety applications may be streamed to the eyepiece, such as alerts, target identification, communications, and the like.
  • Embodiments may provide for a way to view information associated with products, such as in a store.
  • Information may include nutritional information for food products, care instructions for clothing products, technical specifications for consumer electronics products, e-coupons, promotions, price comparisons with other like products, price comparisons with other stores, and the like. This information may be projected in relative position with the product, to the periphery of sight to the wearer, in relation to the store layout, and the like.
  • the product may be identified visually through a SKU, a brand tag, and the like;
  • a viewer may be walking though a clothing store, and as they walk are provided with information on the clothes on the rack, where the information is provided through the product's RFID tag.
  • the information may be delivered as a list of information, as a graphic representation, as audio and/or video presentation, and the like.
  • the wearer may be food shopping, and advertisement providing facilities may be providing information to the wearer in association with products in the wearer's proximity, the wearer may be provided information when they pick up the product and view the brand, product name, SKU, and the like. In this way, the wearer may be provided a more informative environment in which to effectively shop.
  • One embodiment may allow a user to receive or share information about shopping or an urban area through the use of the augmented reality enabled devices such as the camera lens fitted in the eyepiece of exemplary sunglasses. These embodiments will use augmented reality (AR) software applications such as those mentioned above in conjunction with searching for providers of goods and services.
  • AR augmented reality
  • the wearer of the eyepiece may walk down a street or a market for shopping purposes.
  • the user may activate various modes that may assist in defining user preferences for a particular scenario or environment. For example the user may enter navigation mode through which the wearer may be guided across the streets and the market for shopping of the preferred accessories and products. The mode may be selected and various directions may be given by the wearer through various methods such as through text commands, voice commands, and the like.
  • the wearer may give a voice command to select the navigation mode which may result in the augmented display in front of the wearer.
  • the augmented information may depict information pertinent to the location of various shops and vendors in the market, offers in various shops and by various vendors, current happy hours, current date and time and the like.
  • Various sorts of options may also be displayed to the wearer.
  • the wearer may scroll the options and walk down the street guided through the navigation mode. Based on options provided, the wearer may select a place that suits him the best for shopping based on such as offers and discounts and the like.
  • the eyepiece may provide the ability to search, browse, select, save, share, receive advertisements, and the like for items of purchase, such as viewed through the eyepiece. For example, the wearer may search for an item across the Internet and make a purchase without making a phone call, such as through an application store, commerce application, and the like.
  • the wearer may give a voice command to navigate toward the place and the wearer may then be guided toward it.
  • the wearer may also receive advertisements and offers automatically or based on request regarding current deals, promotions and events in the interested location such as a nearby shopping store.
  • the advertisements, deals and offers may appear in proximity of the wearer and options may be displayed for purchasing desired products based on the advertisements, deals and offers.
  • the wearer may for example select a product and purchase it through a Google checkout.
  • a message or an email may appear on the eyepiece, similar to the one depicted in FIG. 7, with information that the transaction for the purchase of the product has been completed.
  • a product delivery status/information may also be displayed.
  • the user may wear the head-mounted eyepiece wherein the eyepiece includes an optical assembly through which the user may view a surrounding environment and displayed content.
  • the displayed content may comprise one or more local advertisements.
  • the location of the eyepiece may be determined by an integrated location sensor and the local advertisement may have a relevance to the location of the eyepiece.
  • the user's location may be determined via GPS, RFID, manual input, and the like.
  • the user may be walking by a coffee shop, and based on the user's proximity to the shop, an advertisement, similar to that depicted in Fig. 19, showing the store's brand 1900, such as the band for a fast food restaurant or coffee may appear in the user's field of view.
  • the user may experience similar types of local advertisements as he or she moves about the surrounding environment.
  • the eyepiece may contain a capacitive sensor capable of sensing whether the eyepiece is in contact with human skin.
  • a capacitive sensor capable of sensing whether the eyepiece is in contact with human skin.
  • Such sensor or group of sensors may be placed on the eyepiece and or eyepiece arm in such a manner that allows detection of when the glasses are being worn by a user.
  • sensors may be used to determine whether the eyepiece is in a position such that they may be worn by a user, for example, when the earpiece is in the unfolded position.
  • local advertisements may be sent only when the eyepiece is in contact with human skin, in a wearable position, a combination of the two, actually worn by the user and the like.
  • the local advertisement may be sent in response to the eyepiece being powered on or in response to the eyepiece being powered on and worn by the user and the like.
  • an advertiser may choose to only send local advertisements when a user is in proximity to a particular establishment and when the user is actually wearing the glasses and they are powered on allowing the advertiser to target the advertisement to the user at the appropriate time.
  • the local advertisement may be displayed to the user as a banner advertisement, two-dimensional graphic, text and the like. Further, the local advertisement may be associated with a physical aspect of the user' s view of the surrounding environment. The local advertisement may also be displayed as an augmented reality advertisement wherein the advertisement is associated with a physical aspect of the surrounding environment. Such advertisement may be two or three-dimensional.
  • a local advertisement may be associated with a physical billboard as described further in Fig. 18 wherein the user's attention may be drawn to displayed content showing a beverage being poured from a billboard 1800 onto an actual building in the surrounding environment.
  • the local advertisement may also contain sound that is displayed to the user through an earpiece, audio device or other means.
  • the local advertisement may be animated in embodiments.
  • the user may view the beverage flow from the billboard onto an adjacent building and, optionally, into the surrounding environment.
  • an advertisement may display any other type of motion as desired in the advertisement.
  • the local advertisement may be displayed as a three-dimensional object that may be associated with or interact with the surrounding environment.
  • the advertisement may remain associated with or in proximity to the object even as the user turns his head. For example, if an advertisement, such as the coffee cup as described in Fig. 19, is associated with a particular building, the coffee cup advertisement may remain associated with and in place over the building even as the user turns his head to look at another object in his environment.
  • local advertisements may be displayed to the user based on a web search conducted by the user where the advertisement is displayed in the content of the web search results. For example, the user may search for "happy hour" as he is walking down the street, and in the content of the search results, a local advertisement may be displayed advertising a local bar's beer prices.
  • the content of the local advertisement may be determined based on the user's personal information.
  • the user's information may be made available to a web application, an advertising facility and the like.
  • a web application, advertising facility or the user's eyepiece may filter the advertising based on the user' s personal information.
  • a user may store personal information about his likes and dislikes and such information may be used to direct advertising to the user's eyepiece.
  • the user may store data about his affinity for a local sports team, and as advertisements are made available, those advertisements with his favorite sports team may be given preference and pushed to the user.
  • a user's dislikes may be used to exclude certain advertisements from view.
  • the advertisements may be cashed on a server where the advertisement may be accessed by at least one of an advertising facility, web application and eyepiece and displayed to the user.
  • the user may interact with any type of local advertisement in numerous ways.
  • the user may request additional information related to a local advertisement by making at least one action of an eye movement, body movement and other gesture. For example, if an advertisement is displayed to the user, he may wave his hand over the advertisement in his field of view or move his eyes over the advertisement in order to select the particular advertisement to receive more information relating to such advertisement.
  • the user may choose to ignore the advertisement by any movement or control technology described herein such as through an eye movement, body movement, other gesture and the like. Further, the user may chose to ignore the advertisement by allowing it to be ignored by default by not selecting the advertisement for further interaction within a given period of time.
  • the advertisement may be ignored by default and disappear from the users view.
  • the user may select to not allow local advertisements to be displayed whereby said user selects such an option on a graphical user interface or by turning such feature off via a control on said eyepiece.
  • the eyepiece may include an audio device.
  • the displayed content may comprise a local advertisement and audio such that the user is also able to hear a message or other sound effects as they relate to the local advertisement.
  • the user may hear the bottle open and then the sound of the liquid pouring out of the bottle and onto the rooftop.
  • a descriptive message may be played, and or general information may be given as part of the advertisement.
  • any audio may be played as desired for the advertisement.
  • social networking may be facilitated with the use of the augmented reality enabled devices such as a camera lens fitted in the eyepiece.
  • a camera lens fitted in the eyepiece This may be utilized to connect several users or other persons that may not have the augmented reality enabled device together who may share thoughts and ideas with each other.
  • the wearer of the eyepiece may be sitting in a school campus along with other students.
  • the wearer may connect with and send a message to a first student who may be present in a coffee shop.
  • the wearer may ask the first student regarding persons interested in a particular subject such as environmental economics for example.
  • the camera lens fitted inside the eyepiece may track and match the students to a networking database such as 'Google me' that may contain public profiles.
  • Profiles of interested and relevant persons from the public database may appear and pop-up in front of the wearer on the eyepiece. Some of the profiles that may not be relevant may either be blocked or appear blocked to the user. The relevant profiles may be highlighted for quick reference of the wearer. The relevant profiles selected by the wearer may be interested in the subject environmental economics and the wearer may also connect with them. Further, they may also be connected with the first student. In this manner, a social network may be established by the wearer with the use of the eyepiece enabled with the feature of the augmented reality. The social networks managed by the wearer and the conversations therein may be saved for future reference.
  • the present disclosure may be applied in a real estate scenario with the use of the augmented reality enabled devices such as a camera lens fitted in an eyepiece.
  • the wearer in accordance with this embodiment, may want to get information about a place in which the user may be present at a particular time such as during driving, walking, jogging and the like.
  • the wearer may, for instance, want to understand residential benefits and loss in that place. He may also want to get detailed information about the facilities in that place. Therefore, the wearer may utilize a map such as a Google online map and recognize the real estate that may be available there for lease or purchase.
  • the user may receive information about real estate for sale or rent using mobile Internet applications such as Layar.
  • information about buildings within the user' s field of view is projected onto the inside of the glasses for consideration by the user.
  • Options may be displayed to the wearer on the eyepiece lens for scrolling, such as with a trackpad mounted on a frame of the glasses.
  • the wearer may select and receive information about the selected option.
  • the augmented reality enabled scenes of the selected options may be displayed to the wearer and the wearer may be able to view pictures and take a facility tour in the virtual environment.
  • the wearer may further receive information about real estate agents and fix an appointment with one of those.
  • An email notification or a call notification may also be received on the eyepiece for confirmation of the appointment. If the wearer finds the selected real estate of worth, a deal may be made and that may be purchased by the wearer.
  • customized and sponsored tours and travels may be enhanced through the use of the augmented reality-enabled devices, such as a camera lens fitted in the eyepiece.
  • the wearer (as a tourist) may arrive in a city such as Paris and wants to receive tourism and sightseeing related information about the place to accordingly plan his visit for the consecutive days during his stay.
  • the wearer may put on his eyepiece or operate any other augmented reality enabled device and give a voice or text command regarding his request.
  • the augmented reality enabled eyepiece may locate wearer position through geo-sensing techniques and decide tourism preferences of the wearer.
  • the eyepiece may receive and display customized information based on the request of the wearer on a screen.
  • the customized tourism information may include information about art galleries and museums, monuments and historical places, shopping complexes, entertainment and nightlife spots, restaurants and bars, most popular tourist destinations and centers/attractions of tourism, most popular local/cultural/regional destinations and attractions, and the like without limitations.
  • the eyepiece may prompt the user with other questions such as time of stay, investment in tourism and the like.
  • the wearer may respond through the voice command and in return receive customized tour information in an order as selected by the wearer. For example the wearer may give a priority to the art galleries over monuments. Accordingly, the information may be made available to the wearer. Further, a map may also appear in front of the wearer with different sets of tour options and with different priority rank such as:
  • Priority Rank 1 First tour Option (Champs Elyse, Louvre, Rodin, Museum, Famous cafe)
  • the wearer may select the first option since it is ranked as highest in priority based on wearer indicated preferences. Advertisements related to sponsors may pop up right after selection. Subsequently, a virtual tour may begin in the augmented reality manner that may be very close to the real environment. The wearer may for example take a 30 seconds tour to a vacation special to the Atlantis Resort in the Bahamas. The virtual 3D tour may include a quick look at the rooms, beach, public spaces, parks, facilities, and the like. The wearer may also experience shopping facilities in the area and receive offers and discounts in those places and shops. At the end of the day, the wearer might have experienced a whole day tour sitting in his chamber or hotel. Finally, the wearer may decide and schedule his plan accordingly.
  • Another embodiment may allow information concerning auto repairs and maintenance services with the use of the augmented reality enabled devices such as a camera lens fitted in the eyepiece.
  • the wearer may receive advertisements related to auto repair shops and dealers by sending a voice command for the request.
  • the request may, for example include a requirement of oil change in the vehicle/car.
  • the eyepiece may receive information from the repair shop and display to the wearer.
  • the eyepiece may pull up a 3D model of the wearer's vehicle and show the amount of oil left in the car through an augmented reality enabled scene/view.
  • the eyepiece may show other relevant information also about the vehicle of the wearer such as maintenance requirements in other parts like brake pads.
  • the wearer may see 3D view of the wearing brake pads and may be interested in getting those repaired or changed. Accordingly, the wearer may schedule an appointment with a vendor to fix the problem via using the integrated wireless communication capability of the eyepiece.
  • the confirmation may be received through an email or an incoming call alert on the eyepiece camera lens.
  • gift shopping may benefit through the use of the augmented reality enabled devices such as a camera lens fitted in the eyepiece.
  • the wearer may post a request for a gift for some occasion through a text or voice command.
  • the eyepiece may prompt the wearer to answer his preferences such as type of gifts, age group of the person to receive the gift, cost range of the gift and the like.
  • Various options may be presented to the user based on the received preferences. For instance, the options presented to the wearer may be: Cookie basket, Wine and cheese basket, Chocolate assortment, Golfer's gift basket, and the like.
  • the available options may be scrolled by the wearer and the best fit option may be selected via the voice command or text command.
  • the wearer may select the Golfer's gift basket.
  • a 3D view of the Golfer's gift basket along with a golf course may appear in front of the wearer.
  • the virtual 3D view of the Golfer's gift basket and the golf course enabled through the augmented reality may be perceived very close to the real world environment.
  • the wearer may finally respond to the address, location and other similar queries prompted through the eyepiece.
  • a confirmation may then be received through an email or an incoming call alert on the eyepiece camera lens.
  • augmented reality glasses may be computer video games, such as those furnished by Electronic Arts Mobile, UbiSoft and Activision Blizzard, e.g., World of Warcraft® (WoW).
  • WoW World of Warcraft®
  • augmented reality glasses may also use gaming applications.
  • the screen may appear on an inside of the glasses so that a user may observe the game and participate in the game.
  • controls for playing the game may be provided through a virtual game controller, such as a joystick, control module or mouse, described elsewhere herein.
  • the game controller may include sensors or other output type elements attached to the user' s hand, such as for feedback from the user through acceleration, vibration, force, pressure, electrical impulse, temperature, electric field sensing, and the like. Sensors and actuators may be attached to the user's hand by way of a wrap, ring, pad, glove, bracelet, and the like.
  • an eyepiece virtual mouse may allow the user to translate motions of the hand, wrist, and/or fingers into motions of the cursor on the eyepiece display, where "motions" may include slow movements, rapid motions, jerky motions, position, change in position, and the like, and may allow users to work in three dimensions, without the need for a physical surface, and including some or all of the six degrees of freedom.
  • gaming application implementations 2700 may use both the internet and a GPS.
  • a game is downloaded from a customer database via a game provider, perhaps using their web services and the internet as shown, to a user computer or augmented reality glasses.
  • the glasses which also have telecommunication capabilities, receive and send telecommunications and telemetry signals via a cellular tower and a satellite.
  • an on-line gaming system has access to information about the user's location as well as the user's desired gaming activities.
  • Games may take advantage of this knowledge of the location of each player.
  • the games may build in features that use the player's location, via a GPS locator or magnetometer locator, to award points for reaching the location.
  • the game may also send a message, e.g., display a clue, or a scene or images, when a player reaches a particular location.
  • a message for example, may be to go to a next destination, which is then provided to the player.
  • Scenes or images may be provided as part of a struggle or an obstacle which must be overcome, or as an opportunity to earn game points.
  • augmented reality eyepieces or glasses may use the wearer's location to quicken and enliven computer- based video games.
  • a user logs into a website whereby access to a game is permitted.
  • the game is selected.
  • the user may join a game, if multiple player games are available and desired; alternatively, the user may create a custom game, perhaps using special roles the user desired.
  • the game may be scheduled, and in some instances, players may select a particular time and place for the game, distribute directions to the site where the game will be played, etc. Later, the players meet and check into the game, with one or more players using the augmented reality glasses. Participants then play the game and if applicable, the game results and any statistics (scores of the players, game times, etc.) may be stored.
  • the location may change for different players in the game, sending one player to one location and another player or players to a different location.
  • the game may then have different scenarios for each player or group of players, based on their GPS or magnetometer-provided locations. Each player may also be sent different messages or images based on his or her role, his or her location, or both. Of course, each scenario may then lead to other situations, other interactions, directions to other locations, and so forth. In one sense, such a game mixes the reality of the player's location with the game in which the player is participating.
  • Games can range from simple games of the type that would be played in a palm of a player's hand, such as small, single player games. Alternatively, more complicated, multi-player games may also be played. In the former category are games such as SkySiege, AR Drone and Fire Fighter 360. In addition, multiplayer games are also easily envisioned. Since all players must log into the game, a particular game may be played by friends who log in and specify the other person or persons. The location of the players is also available, via GPS or other method. Sensors in the augmented reality glasses or in a game controller as described above, such as accelerometers, gyroscopes or even a magnetic compass, may also be used for orientation and game playing.
  • AR Invaders available for iPhone applications from the App Store.
  • Other games may be obtained from other vendors and for non-iPhone type systems, such as Layar, of Amsterdam and Paris SA, Paris, France, supplier of AR Drone, AR Flying Ace and AR Pursuit.
  • games may also be in 3D such that the user can experience 3D gaming.
  • the user when playing a 3D game, the user may view a virtual, augmented reality or other environment where the user is able to control his view perspective.
  • the user may turn his head to view various aspects of the virtual environment or other environment.
  • the perspective of the user may be such that the user is put 'into' a 3D game environment with at least some control over the viewing perspective where the user may be able to move his head and have the view of the game environment change in correspondence to the changed head position.
  • the user may be able to 'walk into' the game when he physically walks forward, and have the perspective change as the user moves. Further, the perspective may also change as the user moves the gazing view of his eyes, and the like. Additional image information may be provided, such as at the sides of the user's view that could be accessed by turning the head.
  • the 3D game environment may be projected onto the lenses of the glasses or viewed by other means. Further, the lenses may be opaque or transparent.
  • the 3D game image may be associated with and incorporate the external environment of the user such that the user may be able to turn his head and the 3D image and external environment stay together. Further, such 3D gaming image and external environment associations may change such that the 3D image associates with more than one object or more than one part of an object in the external environment at various instances such that it appears to the user that the 3D image is interacting with various aspects or objects of the actual environment.
  • the user may view a 3D game monster climb up a building or on to an automobile where such building or automobile is an actual object in the user's environment.
  • the user may interact with the monster as part of the 3D gaming experience.
  • the actual environment around the user may be part of the 3D gaming experience.
  • the user may interact in a 3D gaming environment while moving about his or her actual environment.
  • the 3D game may incorporate elements of the user's environment into the game, it may be wholly fabricated by the game, or it may be a mixture of both.
  • the 3D images may be associated with or generated by an augmented reality program, 3D game software and the like or by other means.
  • augmented reality is employed for the purpose of 3D gaming
  • a 3D image may appear or be perceived by the user based on the user's location or other data.
  • Such an augmented reality application may provide for the user to interact with such 3D image or images to provide a 3D gaming environment when using the glasses.
  • play in the game may advance and various 3D elements of the game may become accessible or inaccessible to the viewer.
  • various 3D enemies of the user's game character may appear in the game based on the actual location of the user.
  • the user may interact with or cause reactions from other users playing the game and or 3D elements associated with the other users playing the game.
  • Such elements associated with users may include weapons, messages, currency, a 3D image of the user and the like.
  • Based on a user's location or other data he or she may encounter, view, or engage, by any means, other users and 3D elements associated with other users.
  • 3D gaming may also be provided by software installed in or downloaded to the glasses where the user' s location is or is not used.
  • the lenses may be opaque to provide the user with a virtual reality or other virtual 3D gaming experience where the user is 'put into' the game where the user's movements may change the viewing perspective of the 3D gaming environment for the user.
  • the user may move through or explore the virtual environment through various body, head, and or eye movements, use of game controllers, one or more touch screens, or any of the control techniques described herein which may allow the user to navigate, manipulate, and interact with the 3D environment, and thereby play the 3D game.
  • the user may navigate, interact with and manipulate the 3D game environment and experience 3D gaming via body, hand, finger, eye, or other movements, through the use of one or more wired or wireless controllers, one or more touch screens, any of the control techniques described herein, and the like.
  • internal and external facilities available to the eyepiece may provide for learning the behavior of a user of the eyepiece, and storing that learned behavior in a behavioral database to enable location-aware control, activity- aware control, predictive control, and the like.
  • a user may have events and/or tracking of actions recorded by the eyepiece, such as commands from the user, images sensed through a camera, GPS location of the user, sensor inputs over time, triggered actions by the user, communications to and from the user, user requests, web activity, music listened to, directions requested, recommendations used or provided, and the like.
  • This behavioral data may be stored in a behavioral database, such as tagged with a user identifier or autonomously.
  • the eyepiece may collect this data in a learn mode, collection mode, and the like.
  • the eyepiece may utilize past data taken by the user to inform or remind the user of what they did before, or alternatively, the eyepiece may utilize the data to predict what eyepiece functions and applications the user may need based on past collected experiences.
  • the eyepiece may act as an automated assistant to the user, for example, launching applications at the usual time the user launches them, turning off augmented reality and the GPS when nearing a location or entering a building, streaming in music when the user enters the gym, and the like.
  • the learned behavior and/or actions of a plurality of eyepiece users may be autonomously stored in a collective behavior database, where learned behaviors amongst the plurality of users are available to individual users based on similar conditions. For example, a user may be visiting a city, and waiting for a train on a platform, and the eyepiece of the user accesses the collective behavior database to determine what other users have done while waiting for the train, such as getting directions, searching for points of interest, listening to certain music, looking up the train schedule, contacting the city website for travel information, connecting to social networking sites for entertainment in the area, and the like. In this way, the eyepiece may be able to provide the user with an automated assistant with the benefit of many different user experiences.
  • the learned behavior may be used to develop preference profiles, recommendations, advertisement targeting, social network contacts, behavior profiles for the user or groups of users, and the like, for/to the user.
  • the augmented reality eyepiece or glasses may include one or more acoustic sensors for detecting sound 2900.
  • acoustic sensors are similar to microphones, in that they detect sounds.
  • Acoustic sensors typically have one or more frequency bandwidths at which they are more sensitive, and the sensors can thus be chosen for the intended application. Acoustic sensors are available from a variety of
  • Suitable microphones include those which comprise a single microphone as well as those which comprise an array of microphones, or a microphone array.
  • Acoustic sensors may include those using micro electromechanical systems (MEMS) technology. Because of the very fine structure in a MEMS sensor, the sensor is extremely sensitive and typically has a wide range of sensitivity. MEMS sensors are typically made using semiconductor manufacturing techniques. An element of a typical MEMS accelerometer is a moving beam structure composed of two sets of fingers. One set is fixed to a solid ground plane on a substrate; the other set is attached to a known mass mounted on springs that can move in response to an applied acceleration. This applied acceleration changes the capacitance between the fixed and moving beam fingers. The result is a very sensitive sensor. Such sensors are made, for example, by STMicroelectronics, Austin, TX and Honeywell
  • sound capabilities of the augmented reality devices may also be applied to locating an origin of a sound.
  • the acoustic sensor will be equipped with appropriate transducers and signal processing circuits, such as a digital signal processor, for interpreting the signal and
  • One application for sound locating sensors may be to determine the origin of sounds from within an emergency location, such as a burning building, an automobile accident, and the like.
  • Emergency workers equipped with embodiments described herein may each have one or more than one acoustic sensors or microphones embedded within the frame.
  • the sensors could also be worn on the person's clothing or even attached to the person.
  • the signals are transmitted to the controller of the augmented reality eyepiece.
  • the eyepiece or glasses are equipped with GPS technology and may also be equipped with direction- finding capabilities; alternatively, with two sensors per person, the microcontroller can determine a direction from which the noise originated.
  • acoustic sensors typically measure levels of sound pressure (e.g., in decibels), and these other parameters may be used in appropriate types of acoustic sensors, including acoustic emission sensors and ultrasonic sensors or transducers.
  • a likely location may then be determined, and the responders can attempt to locate the person to be rescued.
  • responders may use these acoustic capabilities to determine the location of a person of interest to law enforcement.
  • a number of people on maneuvers may encounter hostile fire, including direct fire (line of sight) or indirect fire (out of line of sight, including high angle fire). The same techniques described here may be used to estimate a location of the hostile fire. If there are several persons in the area, the estimation may be more accurate, especially if the persons are separated at least to some extent, over a wider area.
  • FIG. 29B An example using embodiments of the augmented reality eyepieces is depicted in Fig. 29B.
  • numerous soldiers are on patrol, each equipped with augmented reality eyepieces, and are alert for hostile fire.
  • the sounds detected by their acoustic sensors or microphones may be relayed to a squad vehicle as shown, to their platoon leader, or to a remote tactical operations center (TOC) or command post (CP).
  • TOC remote tactical operations center
  • CP command post
  • the signals may also be sent to a mobile device, such as an airborne platform, as shown.
  • Communications among the soldiers and the additional locations may be facilitated using a local area network, or other network.
  • all the transmitted signals may be protected by encryption or other protective measures.
  • One or more of the squad vehicle, the platoon commander, the mobile platform, the TOC or the CP will have an integration capability for combining the inputs from the several soldiers and determining a possible location of the hostile fire.
  • the signals from each soldier will include the location of the soldier from a GPS capability inherent in the augmented reality glasses or eyepiece.
  • the acoustic sensors on each soldier may indicate a possible direction of the noise. Using signals from several soldiers, the direction and possibly the location of the hostile fire may be determined. The soldiers may then neutralize the location.
  • the augmented reality eyepiece may be equipped with ear buds, which may be articulating ear buds, as mentioned else where herein, and may be removably attached 1403, or may be equipped with an audio output jack 1401.
  • the eyepiece and ear buds may be equipped to deliver noise- cancelling interference, allowing the user to better hear sounds delivered from the audio- video communications capabilities of the augmented reality eyepiece or glasses, and may feature automatic gain control.
  • the speakers or ear buds of the augmented reality eyepiece may also connect with the full audio and visual capabilities of the device, with the ability to deliver high quality and clear sound from the included telecommunications device.
  • this includes radio or cellular telephone (smart phone) audio capabilities, and may also include complementary technologies, such as BluetoothTM capabilities or related technologies, such as IEEE 802.11, for wireless personal area networks (WPAN).
  • WLAN wireless personal area networks
  • Another aspect of the augmented audio capabilities includes speech recognition and identification capabilities. Speech recognition concerns
  • Speech identification may work hand in hand with the facial recognition capabilities of these devices to more positively identify persons of interest.
  • a camera connected as part of the augmented reality eyepiece can unobtrusively focus on desired personnel, such as a single person in a crowd or multiple faces in a crowd.
  • desired personnel such as a single person in a crowd or multiple faces in a crowd.
  • an image of the person or people may be taken.
  • the features of the image are then broken down into any number of measurements and statistics, and the results are compared to a database of known persons. An identity may then be made.
  • a voice or voice sampling from the person of interest may be taken.
  • the sample may be marked or tagged, e.g., at a particular time interval, and labeled, e.g., a description of the person's physical characteristics or a number.
  • the voice sample may be compared to a database of known persons, and if the person's voice matches, then an identification may be made.
  • multiple individuals of interest may by selected, such as for biometric identification.
  • the multiple selection may be through the use of a cursor, a hand gesture, an eye movement, and the like.
  • information concerning the selected individuals may be provided to the user, such as through the display, through audio, and the like.
  • control technologies described herein may be used to select faces or irises for imaging.
  • a cursor selection using the hand-worn control device may be used to select multiple faces in a view of the user's surrounding environment.
  • gaze tracking may be used to select which faces to select for biometric identification.
  • the hand-worn control device may sense a gesture used to select the individuals, such as pointing at each individual.
  • important characteristics of a particular person's speech may be understood from a sample or from many samples of the person's voice.
  • the samples are typically broken into segments, frames and subframes.
  • important characteristics include a fundamental frequency of the person's voice, energy, formants, speaking rate, and the like.
  • classifiers may include algorithms such as neural network classifiers, k-classifiers, hidden Markov models, Gaussian mixture models and pattern matching algorithms, among others.
  • a general template 3100 for speech recognition and speaker identification is depicted in Fig. 31.
  • a first step 3101 is to provide a speech signal. Ideally, one has a known sample from prior encounters with which to compare the signal. The signal is then digitized in step 3102 and is partitioned in step 3103 into fragments, such as segments, frames and subframes. Features and statistics of the speech sample are then generated and extracted in step 3104. The classifier, or more than one classifier, is then applied in step 3105 to determine general classifications of the sample. Post-processing of the sample may then be applied in step 3106, e.g., to compare the sample to known samples for possible matching and identification. The results may then be output in step 3107. The output may be directed to the person requesting the matching, and may also be recorded and sent to other persons and to one or more databases.
  • the audio capabilities of the eyepiece include hearing protection with the associated earbuds.
  • the audio processor of the eyepiece may enable automatic noise suppression, such as if a loud noise is detected near the wearer's head. Any of the control technologies described herein may be used with automatic noise suppression.
  • the eyepiece may include a nitinol head strap.
  • the head strap may be a thin band of curved metal which may either pull out from the arms of the eyepiece or rotate out and extend out to behind the head to secure the eyepiece to the head.
  • the tip of the nitinol strap may have a silicone cover such that the silicone cover is grasped to pull out from the ends of the arms.
  • only one arm has a nitinol band, and it gets secured to the other arm to form a strap.
  • both arms have a nitinol band and both sides get pulled out to either get joined to form a strap or independently grasp a portion of the head to secure the eyepiece on the wearer's head.
  • the eyepiece may have interchangeable equipment to attach the eyepiece to an individual's head, such as a joint where a head strap, glasses arms, helmet strap, helmet snap connection, and the like may be attached.
  • a joint in the eyepiece near the user's temple where the eyepiece may attach to a strap, and where the strap may be disconnected so the user may attach arms to make the eyepiece take the form of glasses, attach to a helmet, and the like.
  • the interchangeable equipment attaching the eyepiece to the user' s head or to a helmet may include an embedded antenna.
  • a Nitinol head strap may have an embedded antenna inside, such as for a particular frequency, for a plurality of frequencies, and the like.
  • the arm, strap, and the like may contain RF absorbing foam in order to aid in the absorption of RF energy while the antenna is used in transmission.
  • the eyepiece may include one or more adjustable wrap around extendable arms 2134.
  • the adjustable wrap around extendable arms 2134 may secure the position of the eyepiece to the user's head.
  • One or more of the extendable arms 2134 may be made out of a shape memory material.
  • one or both of the arms may be made of nitinol and/or any shape- memory material.
  • the end of at least one of the wrap around extendable arms 2134 may be covered with silicone.
  • the adjustable wrap around extendable arms 2134 may extend from the end of an eyepiece arm 2116. They may extend telescopically and/or they may slide out from an end of the eyepiece arms.
  • the extendable arms 2134 may slide out from the interior of the eyepiece arms 2116 or they may slide along an exterior surface of the eyepiece arms 2116. Further, the extendable arms 2134 may meet and secure to each other. The extendable arms may also attach to another portion of the head mounted eyepiece to create a means for securing the eyepiece to the user's head. The wrap around extendable arms 2134 may meet to secure to each other, interlock, connect, magnetically couple, or secure by other means so as to provide a secure attachment to the user's head. In embodiments, the adjustable wrap around extendable arms 2134 may also be independently adjusted to attach to or grasp portions of the user's head. As such the independently adjustable arms may allow the user increased customizability for a personalized fit to secure the eyepiece to the user's head.
  • At least one of the wrap around extendable arms 2134 may be detachable from the head mounted eyepiece.
  • the wrap around extendable arms 2134 may be an add-on feature of the head mounted eyepiece.
  • the user may chose to put extendable, non-extendable or other arms on to the head mounted eyepiece.
  • the arms may be sold as a kit or part of a kit that allows the user to customize the eyepiece to his or her specific preferences. Accordingly, the user may customize that type of material from which the adjustable wrap around extendable arm 2134 is made by selecting a different kit with specific extendable arms suited to his preferences. Accordingly, the user may customize his eyepiece for his particular needs and preferences.
  • an adjustable strap, 2142 may be attached to the eyepiece arms such that it extends around the back of the user' s head in order to secure the eyepiece in place.
  • the strap may be adjusted to a proper fit. It may be made out of any suitable material, including but not limited to rubber, silicone, plastic, cotton and the like.
  • the eyepiece may be secured to the user' s head by a plurality of other structures, such a rigid arm, a flexible arm, a gooseneck flex arm, a cable tensioned system, and the like.
  • a flexible arm may be constructed from a flexible tubing, such as in a gooseneck configuration, where the flexible arm may be flexed into position to adjust to the fit of a given user, and where the flexible arm may be reshaped as needed.
  • a flexible arm may be constructed from a cable tensioned system, such as in a robotic finger
  • the cable-driven system may implement an articulating ear horn for size adjustment and eyepiece headwear retention.
  • the cable-tensioned system may have two or more linkages, the cable may be stainless steel, Nitinol-based, electro-actuated, ratcheted, wheel adjusted, and the like.
  • the eyepiece may include security features, such as M-Shield Security, Secure content, DSM, Secure Runtime, IPSec, and the like.
  • security features such as M-Shield Security, Secure content, DSM, Secure Runtime, IPSec, and the like.
  • Other software features may include: User Interface, Apps, Framework, BSP, Codecs, Integration, Testing, System Validation, and the like.
  • the eyepiece materials may be chosen to enable ruggedization.
  • the eyepiece may be able to access a 3G access point that includes a 3G radio, an 802.11b connection and a Bluetooth connection to enable hopping data from a device to a 3G-enable embodiment of the eyepiece.
  • the present disclosure also relates to methods and apparatus for the capture of biometric data about individuals.
  • the methods and apparatus provide wireless capture of fingerprints, iris patterns, facial structure and other unique biometric features of individuals and then send the data to a network or directly to the eyepiece. Data collected from an individual may also be compared with previously collected data and used to identify a particular individual.
  • the eyepiece 100 may be associated with mobile biometric devices, such as a biometric flashlight 7300, a biometric phone 5000, a biometric camera, a pocket biometric device 5400, an arm strap biometric device 5600, and the like, where the mobile biometrics device may act as a stand-alone device or in communications with the eyepiece, such as for control of the device, display of data from the device, storage of data, linking to an external system, linking to other eyepieces and/or other mobile biometrics devices, and the like.
  • the mobile biometrics device may enable a soldier or other non-military personnel to collect or utilize existing biometrics to profile an individual.
  • the device may provide for tracking, monitoring, and collecting biometric records such as including video, voice, gait, face, iris biometrics and the like.
  • the device may provide for geo-location tags for collected data, such as with time, date, location, data-taking personnel, the environment, and the like.
  • the device may be able to capture and record fingerprints, palm prints, scars, marks, tattoos, audio, video, annotations, and the like, such as utilizing a thin film sensor, recording, collecting, identifying, and verifying face, fingerprint, iris, latent fingerprints, latent palm prints, voice, pocket litter, and other identifying visible marks and environmental data.
  • the device may be able to read prints wet or dry.
  • the device may include a camera, such as with, IR illumination, UV illumination, and the like, with a capability to see through, dust, smoke, haze, and the like.
  • the camera may support dynamic range extension, adaptive defect pixel correction, advanced sharpness enhancement, geometric distortion correction, advanced color management, hardware-based face detection, video stabilization, and the like.
  • the camera output may be transmitted to the eyepiece for presentation to the soldier.
  • the device may accommodate a plurality of other sensors, such as described herein, including an accelerometer, compass, ambient light, proximity, barometric and temperature sensors, and the like, depending on requirements.
  • the device may also have a mosaic print sensor, as described herein, producing high resolution images of the whorls and pores of an individual' s fingerprint, multiple finger prints simultaneously, palm print, and the like.
  • a soldier may utilize a mobile biometrics device to more easily collect personnel information, such as for document and media exploitation (DOMEX). For instance, during an interview, enrollment, interrogations, and the like, operators may photograph and read identifying data or 'pocket litter' (e.g. passport, ID cards, personal documents, cell phone directories, pictures), take biometric data, and the like, into a person of interest profile that may be entered into a searchable secure database.
  • biometric data may be filed using the most salient image plus manual entry, enabling partial data capture.
  • Data may be automatically geo-located, time/date stamped, filed into a digital dossier, and the like, such as with a locally or network assigned global unique identifier (GUID).
  • GUID global unique identifier
  • a face image may be captured at the scene of an IED bombing
  • the left iris image may be captured at a scene of a suicide bombing
  • latent fingerprints may be lifted from a sniper rifle, each taken from a different mobile biometrics device at different locations and times, and together identifying a person of interest from the multiple inputs, such as at a random vehicle inspection point.
  • a further embodiment of the eyepiece may be used to provide biometric data collection and result reporting.
  • Biometric data may be visual biometric data, such as facial biometric data or iris biometric data, or may be audio biometric data.
  • Fig. 39 depicts an embodiment providing biometric data capture.
  • the assembly, 3900 incorporates the eyepiece 100, discussed above in connection with Fig. 1.
  • Eyepiece 100 provides an interactive head-mounted eyepiece that includes an optical assembly. Other eyepieces providing similar functionality may also be used.
  • Eyepieces may also incorporate global positioning system capability to permit location information display and reporting.
  • the optical assembly allows a user to view the surrounding environment, including individuals in the vicinity of the wearer.
  • An embodiment of the eyepiece allows a user to biometrically identify nearby individuals using facial images and iris images or both facial and iris images or audio samples.
  • the eyepiece incorporates a corrective element that corrects a user' s view of the surrounding environment and also displays content provided to the user through in integrated processor and image source.
  • the integrated image source introduces the content to be displayed to the user to the optical assembly.
  • the eyepiece also includes an optical sensor for capturing biometric data.
  • the integrated optical sensor in an embodiment may incorporate a camera mounted on the eyepiece. This camera is used to capture biometric images of an individual near the user of the eyepiece. The user directs the optical sensor or the camera toward a nearby individual by positioning the eyepiece in the appropriate direction, which may be done just by looking at the individual. The user may select whether to capture one or more of a facial image, an iris image, or an audio sample.
  • the biometric data that may be captured by the eyepiece illustrated in Fig. 39 includes facial images for facial recognition, iris images for iris recognition, and audio samples for voice identification.
  • the eyepiece 3900 incorporates multiple microphones 3902 in an endfire array disposed along both the right and left temples of the eyepiece.
  • the microphone arrays 3902 are specifically tuned to enable capture of human voices in an environment with a high level of ambient noise.
  • the microphones may be directional, steerable, and covert.
  • Microphones 3902 provide selectable options for improved audio capture, including omni-directional operation, or directional beam operation.
  • Directional beam operation allows a user to record audio samples from a specific individual by steering the microphone array in the direction of the subject individual.
  • Adaptive microphone arrays may be created that will allow the operator to steer the directionality of the microphone array in three dimensions, where the directional beam may be adjusted in real time to maximize signal or minimize interfering noise for a non stationary target.
  • Array processing may allow summing of cardioid elements by analog or digital means, where there may be switching between omni and directional array operations.
  • beam forming, array steering, adaptive array processing (speech source location), and the like, may be performed by the on-board processor.
  • the microphone may be capable of 10 dB directional recording.
  • Audio biometric capture is enhanced by incorporating phased array audio and video tracking for audio and video capture. Audio tracking allows for continuing to capture an audio sample when the target individual is moving in an environment with other noise sources. In embodiments, the user's voice may be subtracted from the audio track so as to enable a clearer rendition of the target individual, such as for distinguishing what is being said, to provide better location tracking, to provide better audio tracking, and the like.
  • the eyepiece 3900 also incorporates a lithium-ion battery 3904, that is capable of operating for over twelve hours on a single charge.
  • the eyepiece 100 also incorporates a processor and solid-state memory 3906 for processing the captured biometric data.
  • the processor and memory are configurable to function with any software or algorithm used as part of a biometric capture protocol or format, such as the .wav format.
  • a further embodiment of the eyepiece assembly 3900 provides an integrated communications facility that transmits the captured biometric data to a remote facility that stores the biometric data in a biometric data database.
  • the biometric data database interprets the captured biometric data, interprets the data, and prepares content for display on the eyepiece.
  • Biometric information that may be captured includes iris images, facial images, and audio data.
  • a wearer of the eyepiece desiring to capture audio biometric data from a nearby observed individual positions himself or herself so that the individual appears is near the eyepiece, specifically, near the microphone arrays located in the eyepiece temples. Once in position the user initiates capture of audio biometric information.
  • This audio biometric information consists of a recorded sample of the target individual speaking. Audio samples may be captured in conjunction with visual biometric data, such as iris and facial images.
  • the wearer/user observes the desired individual and positions the eyepiece such that the optical sensor assembly or camera may collect an image of the biometric parameters of the desired individual.
  • the eyepiece processor and solid-state memory prepare the captured image for transmission to the remote computing facility for further processing.
  • the remote computing facility receives the transmitted biometric image and compares the transmitted image to previously captured biometric data of the same type. Iris or facial images are compared with previously collected iris or facial images to determine if the individual has been previously encountered and identified.
  • the remote computing facility transmits a report of the comparison to the wearer/user's eyepiece, for display.
  • the report may indicate that the captured biometric image matches previously captured images.
  • the user receives a report including the identity of the individual, along with other identifying information or statistics. Not all captured biometric data allows for an unambiguous determination of identity.
  • the remote computing facility provides a report of findings and may request the user to collect additional biometric data, possibly of a different type, to aid in the
  • Visual biometric data may be supplemented with audio biometric data as a further aid to identification.
  • Facial images are captured in a similar manner as iris images.
  • the field of view is necessarily larger, due to the size of the images collected. This also permits to user to stand further off from the subject whose facial biometric data is being captured.
  • the user may have originally captured a facial image of the individual.
  • the facial image may be incomplete or inconclusive because the individual may be wearing clothing or other apparel, such as a hat, that obscures facial features.
  • the remote computing facility may request that a different type of biometric capture be used and additional images or data be transmitted.
  • the user may be directed to obtain an iris image to supplement the captured facial image.
  • the additional requested data may be an audio sample of the individual's voice.
  • Fig. 40 illustrates capturing an iris image for iris recognition.
  • the figure illustrates the focus parameters used to analyze the image and includes a geographical location of the individual at the time of biometric data capture.
  • Fig. 40 also depicts a sample report that is displayed on the eyepiece.
  • Fig. 41 illustrates capture of multiple types of biometric data, in this instance, facial and iris images. The capture may be done at the same time, or by request of the remote computing facility if a first type of biometric data leads to an inconclusive result.
  • Fig. 42 shows the electrical configuration of the multiple microphone arrays contained in the temples of the eyepiece of Fig. 39.
  • the endfire microphone arrays allow for greater discrimination of signals and better directionality at a greater distance. Signal processing is improved by incorporating a delay into the transmission line of the back microphone.
  • the use of dual omni-directional microphones enables switching from an omni-directional microphone to a directional microphone. This allows for better direction finding for audio capture of a desired individual.
  • Fig. 43 illustrates the directionality improvements available with multiple microphones.
  • the multiple microphones may be arranged in a composite microphone array. Instead of using one standard high quality microphone to capture an audio sample, the eyepiece temple pieces house multiple microphones of different character.
  • this may be provided when the user is generating a biometric fingerprint of someone's voice for future capture and comparison.
  • One example of multiple microphone use uses microphones from cut off cell phones to reproduce the exact electrical and acoustic properties of the individual's voice. This sample is stored for future comparison in a database. If the individual's voice is later captured, the earlier sample is available for comparison, and will be reported to the eyepiece user, as the acoustic properties of the two samples will match.
  • Fig. 44 shows the use of adaptive arrays to improve audio data capture.
  • adaptive arrays can be created that allow the user to steer the directionality of the antenna in three dimensions.
  • Adaptive array processing permits location of the source of the speech, thus tying the captured audio data to a specific individual.
  • Array processing permits simple summing of the cardioid elements of the signal to be done either digitally or using analog techniques.
  • a user should switch the microphone between the omni-directional pattern and the directional array.
  • the processor allows for beamforming, array steering and adaptive array processing, to be performed on the eyepiece.
  • an audio phase array may be used for audio tracking of a specific individual.
  • the user may lock onto the audio signature of an individual in the surrounding environment (such as acquired in real-time or from a database of sound signatures), and track the location of the individual without the need to maintain eye contact or the user moving their head.
  • the location of the individual may be projected to the user through the eyepiece display.
  • the tracking of an individual may also be provided through an embedded camera in the eyepiece, where the user would not be required to maintain eye contact with the individual, or move their head to follow. That is, in the case of either the audio or visual tracking, the eyepiece may be able to track the individual within the local environment, without the user needing to show an physical motion to indicate that tracking is taking place and even as the user moves their direction of view.
  • the integrated camera may continuously record a video file
  • the integrated microphone may continuously record an audio file.
  • the integrated processor of the eyepiece may enable event tagging in long sections of the continuous audio or video recording. For example, a full day of passive recording may be tagged whenever an event, conversation, encounter, or other item of interest takes place. Tagging may be accomplished through the explicit press of a button, a noise or physical tap, a hand gesture, or any other control technique described herein.
  • a marker may be placed in the audio or video file or stored in a metadata header.
  • the marker may include the GPS coordinate of the event, conversation, encounter, or other item of interest.
  • the marker may be time- synced with a GPS log of the day.
  • Event tags may be active event tags that the user triggers manually, passive event tags that occur automatically (such as through preprogramming, through an event profile management facility, and the like), a location-sensitive tag triggered by the user's location, and the like.
  • the event that triggers the event tag may be triggered by a sound, a sight, a visual marker, received from a network connection, an optical trigger, an acoustic trigger, a proximity trigger, a temporal trigger, a geo-spatial trigger, and the like.
  • the event trigger may generate feedback to the user (such as an audio tone, a visual indicator, a message, and the like), store information (such as storing a file, document, entry in a listing, an audio file, a video file, and the like), generate an informational transmission, and the like.
  • the eyepiece may be used as Siglnt Glasses. Using one or more of an integrated WiFi, 3G or Bluetooth radios, the eyepiece may be used to conspicuously and passively gather signals intelligence for devices and individuals in the user' s proximity. Signals intelligence may be gathered
  • Various embodiments of tactical glasses may include standalone identification or collection of biometrics to geo-locate POIs, with visual biometrics (face, iris, walking gait) at a safe distance and positively identify POIs with robust sparse recognition algorithms for the face and iris.
  • the glasses may include a hands free display for biometric computer interface to merge print and visual biometrics on one comprehensive display with augmented target highlighting and view matches and warnings without alerting the POI.
  • the glasses may include location awareness, such as displaying current and average speeds plus routes and ETA to destination and preloading or recording trouble spots and ex-filtration routes.
  • the glasses may include real-time networked tracking of blue and red forces to always know where your friendly' s are, achieve visual separation range between blue and red forces, and geo-locate the enemy and share their location in real-time.
  • a processor associated with the glasses may include capabilities for OCR translation and speech translation.
  • the tactical glasses can be used in combat to provide a graphical user interface projected on the lens that provides users with directions and augmented reality data on such things as team member positional data, map information of the area, SWIR/CMOS night vision, vehicular S/A for soldiers, geo locating laser range finder for geo-locating a POI or a target to >500m with positional accuracy of typically less than two meters, S/A blue force range rings, Domex registration, AR field repair overlay, and real time UAV video.
  • the laser range finder may be a 1.55 micron eye-safe laser range finder.
  • the eyepiece may utilize GPS and inertial navigation (e.g. utilizing an inertial measurement unit) as described herein, such as described herein, to provide positional and directional accuracy.
  • the eyepiece may utilize additional sensors and associated algorithms to enhance positional and directional accuracy, such as with a 3-axis digital compass, inclinometer, accelerometer, gyroscope, and the like. For instance, a military operation may require greater positional accuracy then is available from GPS, and so other navigation sensors may be utilized in combination to increase the positional accuracy of GPS.
  • the tactical glasses may feature enhanced resolution, such as 1280 x 1024 pixels, and may also feature auto-focus.
  • the tactical glasses system incorporates ES2 (every soldier is a sensor) capabilities through uncooperative data recording and intuitive tactical displays for a comprehensive picture of situational awareness.
  • the tactical glasses may include one or more waveguides being integrated into the frame.
  • the total internal reflection lens is attached to a pair of ballistic glasses in a monocular or binocular flip-up/flip-down arrangement.
  • the tactical glasses may include omni-directional ear buds for advanced hearing and protection and a noise-cancelling boom microphone for communication phonetically differentiated commands.
  • the waveguides may have contrast control.
  • the contrast may be controlled using any of the control techniques described herein, such as gesture control, automatic sensor control, manual control using a temple mounted controller, and the like.
  • the tactical glasses may include a non-slip, adjustable elastic head- strap.
  • the tactical glasses may include clip-in corrective lenses.
  • the total internal reflection lens is attached to a device that is helmet-mounted, such as in Fig. 74, and may include a day/night, VIS/NIR/SWIR CMOS color camera.
  • the device enables unimpeded "sight" of the threat as well as the soldier's own weapon with "see through”, flip-up electro-optic projector image display.
  • the helmet-mounted device shown in Fig.
  • 74A may include an IR/SWIR illuminator 7402, UV/SWIR illuminator 7404, visible to SWIR panoramic lens 7408, visible to SWIR objective lens (not shown), transparent viewing pane 7410, iris recognition objective lens 7412, laser emitter 7414, laser receiver 7418, or any other sensor, processor, or technology described with respect to the eyepiece described herein, such as an integrated IMU, an eye-safe laser range finder, integrated GPS receiver, compass and inclinometer for positional accuracy, perspective control that changes the viewing angle of the image to match the eye position, electronic image stabilization and real-time enhancement, a library of threats stored onboard or remotely for access over a tactical network, and the like.
  • a body- worn wireless computer may interface with the device in Fig. 74.
  • the helmet- mounted device includes visible to SWIR projector optics, such as RGB
  • the helmet-mounted device may be controlled with an encrypted wireless UWB wrist or weapon fore grip controller.
  • the transparent viewing pane 7410 can rotate through 180° to project imagery onto a surface to share with others.
  • Fig. 74B shows a side view of the exploded device mounted to a helmet.
  • the device may include a fully ambidextrous mount for mounting on the left or right side of the helmet.
  • two devices may be mounted on each of the left and right sides of the helmet to enable binocular vision.
  • the device or devices may snap into a standard MICH or PRO-TECH helmet mount.
  • the tactical glasses system combines a low profile form, lightweight materials and fast processers to make quick and accurate decisions in the field.
  • the modular design of the system allows the devices to be effectively deployed to the individual, squad or company while retaining the ability to interoperate with any fielded computer.
  • the tactical glasses system incorporates real-time dissemination of data. With the onboard computer interface the operator can view, upload or compare data in real time. This provides valuable situational and environmental data can be rapidly disseminated to all networked personnel as well as command posts (CPs) and tactical operations centers (TOCs).
  • CPs command posts
  • TOCs tactical operations centers
  • This embodiment may include multiple field of view sensors 7502 for biometric collection situational awareness and augmented view user interface, fast locking GPS receiver and IMU, including 3-axis digital compass, gyroscope, accelerometer and
  • the multiple field of view sensors 7502 may enable a 100° x 40° FOV, which may be panoramic SXGA.
  • the sensors may be a VGA sensor, SXGA sensor, and a VGA sensor that generates a panoramic SXGA view with stitched 100° x 40° FOV on a display of the glasses.
  • the displays may be translucent with perspective control that changes the viewing angle of the image to match the eye position.
  • This embodiment may also include SWIR detection to let wearers see 1064nm and 1550nm laser designators, invisible to the enemy and may feature ultra- low power 256-bit AES Encrypted connection between glasses, tactical radios and computers, instant 2x zoom, auto face tracking, face and iris recording, and recognition and GPS geo-location with a lm auto-recognition range.
  • This embodiment may include a power supply, such as a 24 hour duration 4- AA alkaline, lithium and rechargeable battery box with its computer and memory expansion slots with a water- and dust-proof cord.
  • the glasses include a curved holographic wave guide.
  • the eyepiece may be able to sense lasers such as used in battlefield targeting.
  • sensors in the eyepiece may be able to detect laser light in typical military-use laser transmission bands, such as 1064nm, 1550nm, and the like.
  • the eyepiece may be able to detect whether their position is being targeted, if another location is being targeted, the location of a spotter using the laser as a targeting aid, and the like.
  • the eyepiece since the eyepiece may be able to sense laser light, such as directly or reflected, the soldier may not only detect enemy laser sources that have been directed or reflected to their position, but may supply the laser source themselves in order to locate optical surfaces (e.g.
  • the soldier scans the field with a laser and watches with the eyepiece for a reflected return of the laser as a possible location of an enemy viewing though binoculars.
  • the eyepiece may continuously scan the surrounding environment for laser light, and provide feedback and/or action as a result of a detection, such as an audible alarm to the soldier, a location indicted through a visual indicator on the eyepiece display, and the like.
  • a Pocket Camera may video record and captures still pictures, allowing the operator to record environmental data for analysis with a mobile, lightweight, rugged biometric device sized to be stored in a pocket.
  • An embodiment may be 2.25" x 3.5" x .375" and capable of face capture at 10 feet, iris capture at 3 feet, recording voice, pocket litter, walking gait, and other identifying visible marks and environmental data in EFTS and EBTS compliant formatting compatible with any Iris/Face algorithm.
  • the device is designed to pre-qualify and capture EFTS/EBTS/ NIST/ISO/ITL 1-2007 compliant salient images to be matched and filed by any biometric matching software or user interface.
  • the device may include a high definition video chip, lGHz processor with 533Mhz DSP, GPS chip, active illumination and pre-qualification algorithms.
  • the Pocket Bio Cam may not incorporate a biometric watch list so it can be used at all echelons and/or for constabulary leave-behind operations. Data may be automatically geo-located and date/time stamped.
  • the device may operate Linux SE OS, meet MIL-STD-810 environmental standards, and be waterproof to 3 ft depth.
  • a device for collection of fingerprints may be known as a bio-print device.
  • the bio-print apparatus comprises a clear platen with two beveled edges. The platen is illuminated by a bank of LEDs and one or more cameras.
  • FTIR frustrated total internal reflection
  • multiple cameras are place in inverted 'V's of a saw tooth pattern.
  • a rectangle is formed and uses light direct through one side and an array of cameras capture the images produced. The light enters the rectangle through the side of the rectangle, while the cameras are directly beneath the rectangle, enabling the cameras to capture the ridges and valleys illuminated by the light passing through the rectangle.
  • the images may be streamed to a remote display, such as a smart phone, computer, handheld device, or eyepiece, or other device.
  • a remote display such as a smart phone, computer, handheld device, or eyepiece, or other device.
  • Fig. 45 illustrates the construction and layout of an optics based finger and palm print system according to an embodiment.
  • the optical array consists of approximately 60 wafer scale cameras 4502.
  • the optics based system uses sequential perimeter illumination 4503, 4504 for high resolution imaging of the whorls and pores that comprise a finger or palm print. This configuration provides a low profile, lightweight, and extremely rugged configuration. Durability is enhanced with a scratch proof, transparent platen.
  • the mosaic print sensor uses a frustrated total internal reflection (FTIR) optical faceplate provides images to an array of wafer scale cameras mounted on a PCB like substrate 4505.
  • the sensor may be scaled to any flat width and length with a depth of approximately 1 ⁇ 2". Size may vary from a plate small enough to capture just one finger roll print, up to a plate large enough to capture prints of both hands simultaneously.
  • FTIR frustrated total internal reflection
  • the mosaic print sensor allows an operator to capture prints and compare the collected data against an on-board database. Data may also be uploaded and downloaded wirelessly.
  • the unit may operate as a standalone unit or may be integrated with any biometric system.
  • the mosaic print sensor offers high reliability in harsh environments with excessive sunlight.
  • multiple wafer scale optical sensors are digitally stitched together using pixel subtraction.
  • the resulting images are engineered to be over 500 dots per inch (dpi).
  • Power is supplied by a battery or by parasitically drawing power from other sources using a USB protocol. Formatting is EFTS, EBTS NIST, ISO, and ITL 1-2007 compliant.
  • Fig. 46 illustrates the traditional optical approach used by other sensors. This approach is also based on FTIR. In the figure, the fringes contact the prism and scatter the light. The fringes on the finger being printed show as dark lines, while the valleys of the fingerprint show as bright lines.
  • Fig. 47 illustrates the approach used by the mosaic sensor 4700.
  • the mosaic sensor also uses FTIR.
  • the plate is illuminated from the side and the internal reflections are contained within the plate of the sensor.
  • the fringes contact the prism and scatter the light, allowing the camera to capture the scattered light.
  • the fringes on the finger show as bright lines, whiles the valleys show as dark lines.
  • Fig. 48 depicts the layout of the mosaic sensor 4800.
  • the LED array is arranged around the perimeter of the plate. Underneath the plate are the cameras used to capture the fingerprint image. The image is captured on this bottom plate, known as the capture plane. The capture plane is parallel to the sensor plane, where the fingers are placed.
  • the thickness of the plate, the number of the cameras, and the number of the LEDs may vary, depending on the size of the active capturing area of the plate.
  • the thickness of the plate may be reduced by adding mirrors that fold the optical path of the camera, reducing the thickness needed.
  • Each camera should cover one inch of space with some pixels overlapping between the cameras. This allows the mosaic sensor to achieve 500 ppi.
  • the cameras may have a field of view of 60 degrees; however, there may be significant distortion in the image.
  • Fig. 49 shows an embodiment 4900 of a camera field of view and the interaction of the multiple cameras used in the mosaic sensor.
  • Each camera covers a small capturing area. This area depends on the camera field of view and the distance between the camera and the top surface of the plate, a is one half of the camera's horizontal field of view and ⁇ is one half of the camera's vertical field of view.
  • the mosaic sensor may be incorporated into a bio-phone and tactical computer as illustrated in Fig. 50.
  • the bio-phone and tactical computer uses a completed mobile computer architecture that incorporates dual core processors, DSP, 3-D graphics accelerator, 3G-4G Wi-Lan (in accordance with 802.11 a/b/g/n), Bluetooth 3.0, and a GPS receiver.
  • the bio-phone and tactical computer delivers power equivalent to a standard laptop in a phone size package.
  • Fig. 50 illustrates the components of the bio-phone and tactical computer.
  • the bio-phone and tactical computer assembly, 5000 provides a display screen 5001, speaker 5002 and keyboard 5003 contained within case 5004. These elements are visible on the front of the bio-phone and tactical computer assembly 5000.
  • On the rear of the assembly 3800 are located a camera for iris imaging 5005, a camera for facial imaging and video recording 5006 and a bio-print fingerprint sensor 5009.
  • the device incorporates selectable 256-bit AES encryption with COTS sensors and software for biometric pre-qualification for POI acquisition.
  • This software is matched and filed by any approved biometric matching software for sending and receiving secure "perishable" voice, video, and data communications.
  • the bio-phone supports Windows Mobile, Linux, and Android operating systems.
  • the bio-phone is a 3G-4G enabled hand-held device for reach back to web portals and biometric enabled watch list BEWL) databases. These databases allow for in- field comparison of captured biometric images and data.
  • the device is designed to fit into a standard LBV or pocket.
  • the biometrics phone and tactical computer may use a mobile computer architecture featuring dual core processors, DSP, 3-D graphics accelerator, 3G-4G, Wi-LAN (802.11 a/b/g/n), Bluetooth 3.0, enabled for secure and civilian networks, GPS Receiver, WVGA sun- sight readable capacitance touch-screen display, capable of outputting stereoscopic 3D video, tactile backlit QWERTY keyboard, on-board storage, supporting multiple operating systems, and the like, that delivers laptop power in a light weight design.
  • the bio-phone can search, collect, enroll, and verify multiple types of biometric data, including face, iris, two-finger fingerprint, as well as biographic data.
  • the device also records video, voice, gait, identifying marks, and pocket litter.
  • Pocket litter includes a variety of small items normally carried in a pocket, wallet, or purse and may include such items as spare change, identification, passports, charge cards, and the like.
  • Fig. 52 shows a typical collection of this type of information. Depicted in Fig. 52 are examples of a collection of pocket litter 5200.
  • the types of items that may be included are personal documents and pictures 5201, books 5202, notebooks and paper, 5203, and documents, such as a passport 5204.
  • the biometrics phone and tactical computer may include a camera, such as a high definition still and video camera, capable of biometric data taking and video conferencing.
  • the eyepiece camera and videoconference capabilities may be used in conjunction with the biometrics phone and tactical computer.
  • a camera integrated into the eyepiece may capture images and communicate the images to the biometrics phone and tactical computer, and vice a versa.
  • Data may be exchanged between the eyepiece and biometrics phone, network connectivity may be established by either, and shared, and the like.
  • the biometric phone and tactical computer may be housed in a rugged, fully militarized construction, tolerant to a militarized temperature range, waterproof (such as to a depth of 5m), and the like.
  • Fig. 51 illustrates an embodiment 5100 of the use of the bio-phone to capture latent fingerprints and palm prints. Fingerprints and palm prints are captured at 1000 dpi with active illumination from an ultraviolet diode with scale overlay. Both fingerprint and palm prints 5100 may be captured using the bio-phone.
  • Data collected by the bio-phone is automatically geo-located and date and time stamped using the GPS capability.
  • Data may be uploaded or downloaded and compared against onboard or networked databases. This data transfer is facilitated by the 3G-4G, Wi-Lan, and Bluetooth capabilities of the device.
  • Data entry may be done with the QWERTY keyboard, or other methods that may be provided, such as stylus or touch screen, or the like.
  • Biometric data is filed after collection using the most salient image. Manual entry allows for partial data capture.
  • Fig. 53 illustrates the interplay 5300 between the digital dossier images and the biometric watch list held at a database. The biometric watch list is used for comparing data captured in the field with previously captured data
  • Formatting may use EFTS, EBTS NIST, ISO, and ITL 1-2007 formats to provide compatibility with a range and variety of databases for biometric data.
  • Connectivity I/O 3G, 4G, WLAN a/b/g/n, Bluetooth 3.0, GPS, FM
  • Dual Core - 1 GHz Processors 600MHz DSP, and 30M
  • 3D Support Capable of outputting stereoscopic 3D video.
  • Camera Sensor Support Sensor dynamic range extension, Adaptive defect pixel correction, advanced sharpness enhancement, Geometric distortion correction, advanced color management, HW based face detection, Video stabilization
  • Biometrics On-board optical, 2 fingerprint sensor, Face, DOMEX, and Iris cameras. Sensors: Can accommodate the addition of accelerometer, compass, ambient light,
  • Audio On board microphone, speakers, and audio/video inputs.
  • Keyboard Full tactile QWERTY keyboard with adjustable backlight.
  • Additional devices and kits may also incorporate the mosaic sensors and may operate in conjunction with the bio-phone and tactical computer to provide a complete field solution for collection biometric data.
  • the pocket bio-kit illustrated in Fig. 54.
  • the components of the pocket bio-kit 5400 include a GPS antenna 5401, a bio-print sensor 5402, keyboard 5404, all contained in case 5403.
  • the specifications of the bio-kit are given below:
  • bio-phone and tactical computer may also be provided in a bio-kit that provides for a biometric data collection system that folds into a rugged and compact case. Data is collected in biometric standard image and data formats that can be cross-referenced for near real-time data communication with Department of Defense Biometric Authoritative Databases.
  • the pocket bio-kit shown in Fig. 55 can capture latent fingerprints and palm prints at 1 ,000 dpi with active illumination from an ultraviolet diode with scale overlay.
  • the bio-kit holds 32 GB memory storage cards that are capable of interoperation with combat radios or computers for upload and download of data in real-time field conditions. Power is provided by lithium ion batteries.
  • Components of the bio-kit assembly 5500 include a GPS antenna 5501, a bio-print sensor 5502, and a case 5503 with a base bottom 5505.
  • Biometric data collect is geo-located for monitoring and tracking individual movement. Finger and palm prints, iris images, face images, latent fingerprints, and video may be collected and enrolled in a database using the bio-kit. Algorithms for finger and palm prints, iris images, and face images facilitate these types of data collection. To aid in capturing iris images and latent fingerprint images simultaneously, the bio-kit has IR and UV diodes that actively illuminate an iris or latent fingerprint. In addition, the pocket bio-kit is also fully EFTS/EBTS compliant, including ITL 1-2007 and WSQ. The bio-kit meets MIL-STD-810 for operation in environmental extremes and uses a Linux operating system.
  • the bio-kit For capturing images, the bio-kit uses a high dynamic range camera with wave front coding for maximum depth of field, ensuring detail in latent fingerprints and iris images is captured. Once captured, real-time image enhancement software and image stabilization act to improve readability and provide superior visual discrimination.
  • the bio-kit is also capable of recording video and stores full- motion (30 fps) color video in an onboard "camcorder on chip.”
  • the eyepiece 100 may interface with the mobile folding biometrics enrollment kit (aka bio-kit) 5500, a biometric data collection system that folds into a compact rugged case, such that unfolds into a mini workstation for fingerprints, iris and facial recognition, latent fingerprint, and the like biometric data as described herein.
  • the mobile folding biometrics enrollment kit 5500 may be used as a stand-alone device or in association with the eyepiece 100, as described herein.
  • the mobile folding biometrics enrollment kit may fold up to a small size such as 6" x 3" x 1.5" with weight such as 2 pounds. It may contain a processor, digital signal processor, 3D accelerator, fast syndrome-based hash (FSB) functions, solid state memory (e.g. package-on-package (PoP)), hard drive, display (e.g. 75mm x 50mm, 640x480 (VGA) daylight-readable LCD anti-glare, anti-reflective, anti scratch screen), USB, Ethernet, embedded battery, mosaic optical fingerprint reader, digital iris camera (such as with active IR illumination), digital face and DOMEX camera with flash, fast lock GPS, and the like.
  • a processor digital signal processor
  • 3D accelerator fast syndrome-based hash (FSB) functions
  • solid state memory e.g. package-on-package (PoP)
  • display e.g. 75mm x 50mm, 640x480 (VGA) daylight-readable LCD anti-glare, anti-reflective, anti scratch screen
  • Data may be collected in biometric standard image and data formats that may be cross-referenced for a near real-time data communication with the DoD biometric authoritative databases.
  • the device may be capable of collecting biometric data and geo-location of persons of interest for monitoring and tracking, wireless data upload/download using combat radio or computer with standard networking interface, and the like.
  • the mosaic sensor may be incorporated into a wrist mounted fingerprint, palm print, geo-location, and POI enrollment device, shown in Fig. 56.
  • the eyepiece 100 may interface with the biometric device 5600, a biometric data collection system that straps on a soldier's wrist or arm and folds open for fingerprints, iris recognition, computer, and the like biometric data as described herein.
  • the device may have an integrated computer, keyboard, sunlight-readable display, biometric sensitive platen, and the like, so operators may rapidly and remotely store or compare data for collection and identification purposes.
  • the arm strap biometric sensitive platen may be used to scan a palm, fingerprints, and the like.
  • the device may provide geo-location tags for person of interest and collected data with time, date, location, and the like.
  • the biometric device 5600 may be used as a stand-alone device or in association with the eyepiece 100, as described herein.
  • the biometric device may be small and light to allow it to be comfortably worn on a soldier's arm, such as with dimensions 5" x 2.5" for the active fingerprint and palm print sensor, and a weight of 16 ounces.
  • the device may include a processor, digital signal processor, a transceiver, a Qwerty key board, large weather-resistant pressure driven print sensor, sunlight readable transflective QVGA color backlit LCD display, internal power source, and the like.
  • the wrist mounted assembly 5600 includes the following elements in case 5601: straps 5602, setting and on/off buttons 5603, protective cover for sensor 5604, pressure-driven sensor 4405, and a keyboard and LCD screen 5606.
  • the fingerprint, palm print, geo-location, and POI enrollments device includes an integrated computer, QWERTY keyboard, and display.
  • the display is designed to allow easy operation in strong sunlight and uses an LCD screen or LED indicator to alert the operator of successful fingerprint and palm print capture.
  • the display uses transflective QVGA color, with a backlit LCD screen to improve readability.
  • the device is lightweight and compact, weighing 16 oz. and measuring 5" x 2.5" at the mosaic sensor. This compact size and weight allows the device to slip into an LBV pocket or be strapped to a user's forearm, as shown in Fig. 56.
  • all POIs are tagged with geo-location information at the time of capture.
  • the size of the sensor screen allows 10 fingers, palm, four- finger slap, and finger tip capture.
  • the sensor incorporates a large pressure driven print sensor for rapid enrollment in any weather conditions as specified in MIL-STD-810, at a rate of 500 dpi.
  • Software algorithms support both fingerprint and palm print capture modes and uses a Linux operating system for device management. Capture is rapid, due to the 720 MHz processor with 533 MHZ DSP. This processing capability delivers correctly formatted, salient images to any existing approved system software.
  • the device is also fully EFTS/EBTS compliant, including ITL 1-2007 and WSQ.
  • the wrist-mounted device described above may also be used in conjunction with other devices, including augmented reality eyepieces with data and video display, shown in Fig. 57.
  • the assembly 5700 includes the following components: an eyepiece 5702, and a bio-print sensor device 5700.
  • the augmented reality eyepiece provides redundant, binocular, stereo sensors and display and provides the ability to see in a variety of lighting conditions, from glaring sun at midday, to the extremely low light levels found at night Operation of the eyepiece is simple with a rotary switch located on the temple of the eyepiece a user can access data from a forearm computer or sensor, or a laptop device.
  • the eyepiece also provides omni-directional earbuds for hearing protection and improved hearing.
  • a noise cancelling boom microphone may also be integrated into the eyepiece to provide better communication of phonetically differentiated commands.
  • the eyepiece is capable of communicating wirelessly with the bio- phone sensor and forearm mounted devices using a 256-bit AES encrypted UWB. This also allows the device to communicate with a laptop or combat radio, as well as network to CPs, TOCs, and biometric databases.
  • the eyepiece is ABIS, EBTS, EFTS, and JPEG 2000 compatible.
  • the eyepiece uses a networked GPS to provide highly accurate geo-location of POIs, as well as a RF filter array.
  • the low profile forearm mounted computer and tactical display integrate face, iris, fingerprint, palm print, and fingertip collection and identification.
  • the device also records video, voice, gait, and other distinguishing characteristics. Facial and iris tracking is automatic, allowing the device to assist in recognizing non-cooperative POIs.
  • the operator may also view sensor imagery, moving maps, superimposed applications with navigation, targeting, position or other information from sensors, UAVs, and the like, and data as well as the individual whose biometric data is being captured or other targets/POIs.
  • Fig. 58 illustrates a further embodiment of the fingerprint, palm print, geo-location, and POI enrollment device.
  • the device is 16 oz and uses a 5" x 2.5" active fingerprint and palm print capacitance sensor.
  • the sensor is capable of enrolling 10 fingers, a palm, 4 finger slap, and finger tip prints at 500 dpi.
  • a 0.6 - 1 GHz processor with 430 MHz DSP provides rapid enrollment and data capture.
  • the device is ABIS, EBTS, EFTS, and JPEG 2000 compatible and features networked GPS for highly accurate location of persons of interest.
  • the device communicates wirelessly over a 256-bit AES encrypted UWB, laptop, or combat radio. Database information may also be stored on the device, allowing in the field comparison without uploading information. This onboard data may also be shared wirelessly with other devices, such as a laptop or combat radio.
  • a further embodiment of the wrist mounted bio-print sensor assembly 5800 includes the following elements: a bio-print sensor 5801, wrist strap 5802, keyboard 5803, and combat radio connector interface 5804.
  • Data may be stored on the forearm device since the device can utilize Mil-con data storage caps for increased storage capacity. Data entry is performed on the QWERTY keyboard and may be done wearing gloves.
  • the display is a transflective QVGA, color, backlit LCD display designed to be readable in sunlight.
  • the device may be operated in a wide range of environments, as the device meets the requirements of MIL-STD-810 operation in environmental extremes.
  • the mosaic sensor described above may also be incorporated into a mobile, folding biometric enrollment kit, as shown in Fig. 59.
  • the mobile folding biometric enrollment kit 5900 folds into itself and is sized to fit into a tactical vest pocket, having dimensions of 8 x 12 x 4 inches when unfolded.
  • Fig. 60 illustrates an embodiment 6000 of how the eyepiece and forearm mounted device may interface to provide a complete system for biometric data collection.
  • Fig. 61 provides a system diagram 6100 for a mobile folding biometric enrollment kit.
  • the mobile folding biometric enrollment kit allows a user to search, collect, identify, verify, and enroll face, iris, palm print, fingertip, and biographic data for a subject and may also record voice samples, pocket litter, and other visible identifying marks. Once collected, the data is automatically geo-located, date, and time stamped. Collected data may be searched and compared against onboard and networked databases. For communicating with databases not onboard the device, wireless data up/download using combat radio or laptop computer with standard networking interface is provided. Formatting is compliant with EFTS, EBTS, NIST, ISO, and ITL 1-2007. Prequalified images may be sent directly to matching software as the device may use any matching and enrollment software.
  • the devices and systems incorporating described above provide a comprehensive solution for mobile biometric data collection, identification, and situational awareness.
  • the devices are capable of collecting fingerprints, palm prints, fingertips, faces, irises, voice, and video data for recognition of uncooperative persons of interest (POI).
  • Video is captured using high speed video to enable capture in unstable situations, such as from a moving video. Captured information may be readily shared and additional data entered via the keyboard. In addition, all data is tagged with date, time, and geo-location. This facilitates rapid dissemination of information necessary for situational awareness in potentially volatile environments. Additional data collection is possible with more personnel equipped with the devices, thus, demonstrating the idea that "every soldier is a sensor.” Sharing is facilitated by integration of biometric devices with combat radios and battlefield computers.
  • the eyepiece may utilize flexible thin- film sensors, such as integrated into the eyepiece itself, into an external device that the eyepiece interfaces with, and the like.
  • a thin film sensor may comprise a thin multilayer electromechanical arrangement that produces an electrical signal when subjected to a sudden contact force or to continuously varying forces. Typical applications of electromechanical thin film sensors employ both on-off electrical switch sensing and the time-resolved sensing of forces.
  • Thin-film sensors may include switches, force gauges, and the like, where thin film sensors may rely upon the effects of sudden electrical contact (switching), the gradual change of electrical resistance under the action of force, the gradual release of electrical charges under the action of stress forces, the generation of a gradual electromotive force across a conductor when, moving in a magnetic field, and the like.
  • flexible thin-film sensors may be utilized in force-pressure sensors with microscopic force sensitive pixels for two- dimensional force array sensors. This may be useful for touch screens for computers, smart-phones, notebooks, MP-3-like devices, especially those with military applications; screens for controlling anything under computer control including unmanned aerial vehicles (UAV), drones, mobile robots, exoskeleton-based devices; and the like.
  • UAV unmanned aerial vehicles
  • Thin-film sensors may be useful in security applications, such as in remote or local sensors for detecting intrusion, opening or closing of devices, doors, windows, equipment, and the like.
  • Thin-film sensors may be useful for trip wire detection, such as with electronics and radio used in silent, remote trip-wire detectors.
  • Thin-film sensors may be used in open-close detections, such as force sensors for detecting strain-stress in vehicle compartments, ship hulls, aircraft panels, and the like.
  • Thin-film sensors may be useful as biometric sensors, such as in fingerprinting, palm-printing, finger tip printing, and the like.
  • Thin-film sensors may be useful leak detection, such as detecting leaking tanks, storage facilities, and the like.
  • Thin-film sensors may be useful in medical sensors, such as in detecting liquid or blood external to a body, and the like. These sensor applications are meant to be illustrative of the many applications thin-film sensors may be employed in association with control and monitoring of external devices through the eyepiece, and are not meant to be limiting in any way.
  • Fig. 62 illustrates an embodiment 6200 of a thin-film finger and palm print collection device.
  • the device can record four fingerprint slaps and rolls, palm prints, and fingerprints to the NIST standard. Superior quality finger print images can be captured with either wet or dry hands.
  • the device is reduced in weight and power consumption compared to other large sensors.
  • the sensor is self-contained and is hot swappable.
  • the configuration of the sensor may be varied to suit a variety of needs, and the sensor may be manufactured in various shapes and dimensions.
  • Fig. 63 depicts an embodiment 6300 of a finger, palm, and enrollment data collection device.
  • This device records fingertip, roll, slap, and palm prints.
  • a built in QWERTY keyboard allows entry of written enrollment data. As with the devices described above, all data is tagged with date, time, and geo-location of collection.
  • a built in database provides on board matching of potential POIs against the built in database. Matching may also be performed with other databases over a battlefield network.
  • This device can be integrated with the optical biometric collection eyepiece described above to support face and iris recognition.
  • Weight & Size 16 oz. forearm straps or inserts into LBV pocket
  • Biometric Collection fingerprint and palm print collection, identification
  • Tags all collected biometric data with time, date, and location
  • Wireless fully interoperable with combat radios, hand held or lap top computers and 256-bit AES encryption
  • Figs. 64-66 depict use of the devices incorporating a sensor for collecting biometric data.
  • Fig. 64 shows an embodiment 6400 of the capture of a two- stage palm print.
  • Fig. 65 shows collection 6500 using a fingertip tap.
  • Fig. 66 demonstrates an embodiment 6600 of a slap and roll print being collected.
  • fingerprints may be taken by persons using a polarized light source and retrieving images of the fingerprints using reflected polarized light in two planes.
  • fingerprints may be taken by persons using a light source and retrieving images of the fingerprints using multispectral processing, e.g., using two imagers at two different locations with different inputs. The different inputs may be caused by using different filters or different sensors/imagers.
  • Applications of this technology may include biometric checks of unknown persons or subjects in which the safety of the persons doing the checking may be at issue.
  • an unknown person or subject may approach a checkpoint, for example, to be allowed further travel to his or her destination.
  • a checkpoint for example, to be allowed further travel to his or her destination.
  • the person P and an appropriate body part such as a hand, a palm P, or other part, are illuminated by a source of polarized light 6701.
  • the source of polarized light may simply be a lamp or other source of illumination with a polarizing filter to emit light that is polarized in one plane. The light travels to the person in an area which has been specified for non-contact fingerprinting, so that the polarized light impinges on the fingers or other body part of the person P.
  • the incident polarized light is then reflected from the fingers or other body part and passes in all directions from the person.
  • Two imagers or cameras 6704 receive the reflected light after the light has passed through optical elements such as a lens 6702 and a polarizing filter 6703.
  • the cameras or imagers may be mounted on the augmented reality glasses, as discussed above with respect to Fig. 8F.
  • the light then passes from palm or finger or fingers of the person of interest to two different polarizing filters 6704a, 6704b and then to the imagers or cameras 6705.
  • Light which has passed through the polarizing filters may have a 90° orientation difference (horizontal and vertical) or other orientation difference, such as 30°, 45°, 60° or 120°.
  • the cameras may be digital cameras with appropriate digital imaging sensors to convert the incident light into appropriate signals.
  • the signals are then processed by appropriate processing circuitry 6706, such as digital signal processors.
  • the signals may then be combined in a conventional manner, such as by a digital microprocessor with memory 6707.
  • the digital processor with appropriate memory is programmed to produce data suitable for an image of a palm, fingerprint, or other image as desired.
  • the digital data from the imagers may then be combined in this process, for example, using the techniques of U.S. Pat. No. 6,249,616 and others.
  • the combined "image" may then be checked against a database to determine an identity of the person.
  • the augmented reality glasses may include such a database in the memory, or may refer the signals data elsewhere 6708 for comparison and checking.
  • a process for taking contactless fingerprints, palm prints or other biometric prints is disclosed in the flowchart of Fig. 68.
  • a polarized light source is provided 6801.
  • the person of interest and the selected body part is positioned for illumination by the light.
  • incident white light it may be possible to use incident white light rather than using a polarized light source.
  • light is reflected 6803 from the person to two cameras or imagers.
  • a polarizing filter is placed in front of each of the two cameras, so that the light received by the cameras is polarized 6804 in two different planes, such as in a horizontal and vertical plane.
  • Each camera detects 6805 the polarized light.
  • the cameras or other sensors then convert the incidence of light into signals or data 6806 suitable for preparation of images.
  • the images are then combined 6807 to form a very distinct, reliable print.
  • the result is an image of very high quality that may be compared to digital databases to identify the person and to detect persons of interest.
  • the contactless fingerprint system may be employed at a checkpoint, such as a compound entrance, a building entrance, a roadside checkpoint or other convenient location. Such a location may be one where it is desirable to admit some persons and to refuse entrance or even detain other persons of interest.
  • the system may make use of an external light source, such as a lamp, if polarized light is used.
  • the cameras or other imagers used for the contactless imaging may be mounted on opposite sides of one set of augmented reality glasses (for one person). For example, a two-camera version is shown in Fig. 8F, with two cameras 870 mounted on frame 864.
  • the software for at least processing the image may be contained within a memory of the augmented reality glasses.
  • the digital data from the cameras/imagers may be routed to a nearby datacenter for appropriate processing.
  • This processing may include combining the digital data to form an image of the print.
  • the processing may also include checking a database of known persons to determine whether the subject is of interest.
  • one camera on each of two persons may be used, as seen in the camera 858 in Fig. 8F.
  • the two persons would be relatively near so that their respective images would be suitably similar for combining by the appropriate software.
  • the two cameras 6705 in Fig. 67 may be mounted on two different pairs of augmented reality glasses, such as on two soldiers manning a checkpoint.
  • the cameras may be mounted on a wall or on stationary parts of the checkpoint itself.
  • the two images may then be combined by a remote processor with memory 6707, such as a computer system at the building checkpoint.
  • persons using the augmented reality glasses may be in constant contact with each other through at least one of many wireless technologies, especially if they are both on duty at a checkpoint. Accordingly, the data from the single cameras or from the two-camera version may be sent to a data center or other command post for the appropriate processing, followed by checking the database for a match of the palm print, fingerprint, iris print, and so forth.
  • the data center may be conveniently located near the checkpoint.
  • the touchless or contactless biometric data gathering discussed above may be controlled in several ways, such as the control techniques discussed else in this disclosure.
  • a user may initiate a data-gathering session by pressing a touch pad on the glasses, or by giving a voice command.
  • the user may initiate a session by a hand movement or gesture or using any of the control techniques described herein.
  • any of these techniques may bring up a menu, from which the user may select an option, such as "begin data gathering session,” “terminate data-gathering session,” or “continue session.” If a data-gathering session is selected, the computer-controlled menu may then offer menu choices for number of cameras, which cameras, and so forth, much as a user selects a printer. There may also be modes, such as a polarized light mode, a color filter mode, and so forth. After each selection, the system may complete a task or offer another choice, as appropriate. User intervention may also be required, such as turning on a source of polarized light or other light source, applying filters or polarizers, and so forth.
  • the menu may then offer selections as to which database to use for comparison, which device(s) to use for storage, etc.
  • the touchless or contactless biometric data gathering system may be controlled by any of the methods described herein.
  • the fingerprint sensor may be used to call up a soldier's medical history, giving information immediately on allergies, blood type, and other time sensitive and treatment determining data quickly and easily, thus allowing proper treatment to be provided under battlefield conditions. This is especially helpful for patients who may be unconscious when initially treated and who may be missing identification tags.
  • a further embodiment of a device for capturing biometric data from individuals may incorporate a server to store and process biometric data collected.
  • the biometric data captured may include a hand image with multiple fingers, a palm print, a face camera image, an iris image, an audio sample of an individual's voice, and a video of the individual's gait or movement.
  • the collected data must be accessible to be useful.
  • Processing of the biometric data may be done locally or remotely at a separate server.
  • Local processing may offer the option to capture raw images and audio and make the information available on demand from a computer host over a WiFi or USB link.
  • another local processing method processes the images and then transmits the processed data over the Internet. This local processing includes the steps of finding the finger prints, rating the finger prints, finding the face and then cropping it, finding and then rating the iris, and other similar steps for audio and video data. While processing the data locally requires more complex code, it does offer the advantage of reduced data transmission over the Internet.
  • a scanner associated with the biometric data collection devices may use code that is compliant with the USB Image Device protocol that is a commonly used scanner standard. Other embodiments may use different scanner standards, depending on need.
  • the Bio-Print device When a WiFi network is used to transfer the data, the Bio-Print device, which is further described herein, can function or appear like a web server to the network. Each of the various types of images may be available by selecting or clicking on a web page link or button from a browser client. This web server functionality may be part of the Bio-Print device, specifically, included in the microcomputer functionality.
  • a web server may be a part of the Bio-Print microcomputer host, allowing for the Bio-Print device to author a web page that exposes captured data and also provides some controls.
  • An additional embodiment of the browser application could provide controls to capture high resolution hand prints, face images, iris images, set the camera resolution, set the capture time for audio samples, and also enable a streaming connection, using a web cam, Skype, or similar mechanism. This connection could be attached to the audio and face camera.
  • a further embodiment provides a browser application that gives access to images and audio captured via file transfer protocol (FTP) or other protocol.
  • FTP file transfer protocol
  • a still further embodiment of the browser application may provide for automatic refreshes at a selectable rate to repeatedly grab preview images.
  • An additional embodiment provides local processing of captured biometric data using a microcomputer and provides additional controls to display a rating of the captured image, allowing a user to rate each of the prints found, retrieve faces captured, and also to retrieve cropped iris images and allow a user to rate each of the iris prints.
  • OMAP3 Open Multimedia Application Platform
  • RNDIS Remote Network Driver Interface Specification
  • An application on the microcomputer may implement the above by receiving data from an FPGA over the USB bus. Once received, JPEG content is created. This content may be written over a socket to a server running on a laptop, or be written to a file. Alternately, the server could receive the socket stream, pop the image, and leave it open in a window, thus creating a new window for each biometric capture.
  • NFS Network File System
  • SAMBA System Management Bus
  • a JPEG viewer would display the files.
  • the display client could include a laptop, augmented reality glasses, or a phone running the Android platform.
  • An additional embodiment provides for a server-side application offering the same services described above.
  • An alternative embodiment to a server-side application displays the results on the augmented reality glasses.
  • a further embodiment provides the microcomputer on a removable platform, similar to a mass storage device or streaming camera.
  • the removable platform also incorporates an active USB serial port.
  • the eyepiece may include audio and/or visual sensors to capture sounds and/or visuals from 360 degrees around the wearer of an eyepiece. This may be from sensors mounted on the eyepiece itself, or coupled to sensors mounted on a vehicle that the wearer is in. For instance, sound sensors and/or cameras may be mounted to the outside of a vehicle, where the sensors are communicatively coupled to the eyepiece to provide a surround sound and/or sight 'view' of the surrounding environment.
  • the sound system of the eyepiece may provide sound protection, canceling, augmentation, and the like, to help improve the hearing quality of the wearer while they are surrounded by extraneous or loud noise.
  • a wearer may be coupled to cameras mounted on the vehicle they are driving. These cameras may then be in communication with the eyepiece, and provide a 360-degree view around the vehicle, such as provided in a projected graphical image through the eyepiece display to the wearer.
  • control aspects of the eyepiece may include a remote device in the form of a watch controller 6902, such as including a receiver and/or transmitter for interfacing with the eyepiece for messaging and/or controlling the eyepiece when the user is not wearing the eyepiece.
  • the watch controller may include a camera, a fingerprint scanner, discrete control buttons, 2D control pad, an LCD screen, a capacitive touch screen for multi-touch control, a shake motor / piezo bumper to give tactile feedback, buttons with tactile feel, Bluetooth, camera, fingerprint scanner, accelerometer, and the like, such as provided in a control function area 6904 or on other functional portions 6910 of the watch controller 6902.
  • a watch controller may have a standard watch display 6908, but additionally have functionality to control the eyepiece, such as through control functions 6914 in the control function area 6904.
  • the watch controller may display and/or otherwise notify the user (e.g. vibration, audible sounds) of messages from the eyepiece, such an email, advertisements, calendar alerts, and the like, and show the content of the message that comes in from the eyepiece that the user is currently not wearing.
  • a shake motor, piezo bumper, and the like may provide tactile feedback to the touch screen control interface.
  • the watch receiver may be able to provide virtual buttons and clicks in the control function area 6904 user interface, buzz and bump the user' s wrist, and the like, when a message is received.
  • the watch controller may utilize an embedded camera for videoconferencing (such as described herein), iris scanning (e.g. for recording an image of the iris for storage in a database, for use in authentication in conjunction with an existing iris image in storage, and the like), picture taking, video, and the like.
  • the watch controller may have a fingerprint scanner, such as described herein.
  • the watch controller, or any other tactile interface described herein may measure a user's pulse, such as through a pulse sensor 6912 (which may be located in the band, on the underside of the main body of the watch, and the like.
  • control/tactile interface components may have pulse detection such that the pulse from different control interface components are monitored in a synchronized way, such as for health, activity monitoring, authorization, and the like.
  • a watch controller and the eyepiece may both have pulse monitoring, where the eyepiece is capable of sensing whether the two are in synchronization, if both match a previously measured profile (such as for authentication), and the like.
  • other biometrics may be used for authentication between multiple control interfaces and the eyepiece, such as with fingerprints, iris scans, pulse, health profile, and the like, where the eyepiece knows whether the same person is wearing the interface component (e.g. the watch controller) and the eyepiece.
  • Biometric/health of a person may be determined by looking at IR LED view of the skin, for looking at subsurface pulse, and the like.
  • multi-device authentication e.g. token for Bluetooth handshake
  • the sensors on both devices e.g. fingerprint on both devices as a hash for the Bluetooth token
  • the eyepiece may be stored in an eyepiece carrying case, such as including a recharge capability, an integrated display, and the like.
  • Fig. 70A depicts an embodiment of a case, shown closed, with integrated recharge AC plug and digital display
  • Fig. 70B shows the same embodiment case open
  • Fig. 70C shows another embodiment case closed
  • Fig. 70D shows the same embodiment open, where a digital display is shown through the cover.
  • the case may have the ability to recharge the eyepiece while in the case, such as through an AC connection or battery (e.g. a rechargeable lithium- ion battery built into the carrying case for charging the eyepiece while away from AC power).
  • the case may include a digital display in communications with the eyepiece, such as through Bluetooth wireless, and the like.
  • the display may provide information about the state of the eyepiece, such as messages received, battery level indication, notifications, and the like.
  • the eyepiece 7120 may be used in conjunction with an unattended ground sensor unit 7102, such as formed as a stake 7104 that can be inserted in the ground 7118 by personnel, fired from a remote control helicopter, dropped by plane, and the like.
  • the ground sensor unit 7102 may include a camera 7108, a controller 7110, a sensor 7112, and the like.
  • Sensors 7112 may include a magnetic sensor, sound sensor, vibration sensor, thermal sensor, passive IR sensor, motion detector, GPS, real-time clock, and the like, and provide monitoring at the location of the ground sensor unit 7102.
  • the camera 7108 may have a field of view 7114 in both azimuth and elevation, such as a full or partial 360-degree camera array in azimuth and +/-90 degrees in elevation.
  • the ground sensor unit 7102 may capture a sensor and image data of an event(s) and transmit it over a wireless network connection to an eyepiece 7120. Further, the eyepiece may then transmit the data to an external communications facility 7122, such as a cell network, a satellite network, a WiFi network, to another eyepiece, and the like.
  • ground sensor units 7102 may relay data from unit to unit, such as from 7102A to 7102B to 7102C.
  • the data may then be relayed from eyepiece 7120 A to eyepiece 7120B and on to the communications facility 7122, such as in a backhaul data network.
  • Data collected from a ground sensor unit 7102, or array of ground sensor units may be shared with a plurality of eyepieces, such as from eyepiece to eyepiece, from the communications facility to the eyepiece, and the like, such that users of the eyepiece may utilize and share the data, either in it's raw form or in a post-processed form (i.e. as a graphic display of the data through the eyepiece).
  • the ground sensor units may be inexpensive, disposable, toy-grade, and the like.
  • the ground sensor unit 7102 may provide backup for computer files from the eyepiece 7120.
  • the eyepiece may provide control through facilities internal and external to the eyepiece, such as initiated from the surrounding environment 7202, input devices 7204, sensing devices 7208, user action capture devices 7210, internal processing facilities 7212, internal multimedia processing facilities, internal applications 7214, camera 7218, sensors 7220, earpiece 7222, projector 7224, through a transceiver 7228, through a tactile interface 7230, from external computing facilities 7232, external applications 7234, event and/or data feeds 7238, external devices 7240, third parties 7242, and the like.
  • facilities internal and external to the eyepiece such as initiated from the surrounding environment 7202, input devices 7204, sensing devices 7208, user action capture devices 7210, internal processing facilities 7212, internal multimedia processing facilities, internal applications 7214, camera 7218, sensors 7220, earpiece 7222, projector 7224, through a transceiver 7228, through a tactile interface 7230, from external computing facilities 7232, external applications 7234, event and/or data feeds 7238, external devices 7240, third parties 72
  • Command and control modes 7260 of the eyepiece may be initiated by sensing inputs through input devices 7244, user action 7248, external device interaction 7250, reception of events and/or data feeds 7252, internal application execution 7254, external application execution 7258, and the like.
  • steps included in the execution control including at least combinations of two of the following: events and/or data feeds, sensing inputs and/or sensing devices, user action capture inputs and/or outputs, user movements and/or actions for controlling and/or initiating commands, command and/or control modes and interfaces in which the inputs may be reflected, applications on the platform that may use commands to respond to inputs, communications and/or connection from the on-platform interface to external systems and/or devices, external devices, external applications, feedback 7262 to the user (such as related to external devices, external applications), and the like.
  • events and/or data feeds may include email, military related communications, calendar alerts, security events, safety events, financial events, personal events, a request for input, instruction, entering an activity state, entering a military engagement activity state, entering a type of environment, entering a hostile environment, entering a location, and the like, and combinations of the same.
  • sensing inputs and/or sensing devices may include a charge-coupled device, black silicon sensor, IR sensor, acoustic sensor, induction sensor, motion sensor, optical sensor, opacity sensor, proximity sensor, inductive sensor, Eddy-current sensor, passive infrared proximity sensor, radar, capacitance sensor, capacitive displacement sensor, hall-effect sensor, magnetic sensor, GPS sensor, thermal imaging sensor, thermocouple, thermistor, photoelectric sensor, ultrasonic sensor, infrared laser sensor, inertial motion sensor, MEMS internal motion sensor, ultrasonic 3D motion sensor, accelerometer, inclinometer, force sensor, piezoelectric sensor, rotary encoders, linear encoders, chemical sensor, ozone sensor, smoke sensor, heat sensor, magnetometer, carbon dioxide detector, carbon monoxide detector, oxygen sensor, smoke detector, metal detector, rain sensor, altimeter, GPS, detection of being outside, detection of context, detection of activity, object detector (e.g. billboard), marker detector (e.g.
  • user action capture inputs and/or devices may include a head tracking system, camera, voice recognition system, body movement sensor (e.g. kinetic sensor), eye-gaze detection system, tongue touch pad, sip-and-puff systems, joystick, cursor, mouse, touch screen, touch sensor, finger tracking devices, 3D/2D mouse, inertial movement tracking, microphone, wearable sensor sets, robotic motion detection system, optical motion tracking system, laser motion tracking system, keyboard, virtual keyboard, virtual keyboard on a physical platform, context determination system, activity determination system (e.g.
  • user movements or actions for controlling or initiating commands may include head movement, head shake, head nod, head roll, forehead twitch, ear movement, eye movement, eye open, eye close, blink on eye, eye roll, hand movement, clench fist, open fist, shake fist, advance fist, retract fist, voice commands, sip or puff on straw, tongue movement, finger movement, one or more finger movements, extend finger crook finger, retract finger, extend thumb, make symbol with finger(s), make symbol with finger and thumb, depress finger of thumb, drag and drop with fingers, touch and drag, touch and drag with two fingers, wrist movement, wrist roll, wrist flap, arm movement, arm extend, arm retract, arm left turn signal, arm right turn signal, arms akimbo, arms extended, leg movement, leg kick, leg extend, leg curl, jumping jack, body movement walk, run turn left, turn right, about-face, twirl, arms up and twirl, arms down and twirl, one left out and
  • command and/or control modes and interfaces in which inputs can be reflected may include a graphical user interface (GUI), auditory command interface, clickable icons, navigable lists, virtual reality interface, augmented reality interface, heads-up display, semi-opaque display, 3D navigation interface, command line, virtual touch screen, robot control interface, typing (e.g. with persistent virtual keyboard locked in place), predictive and/or learning based user interface (e.g. learns what the wearer does in a 'training mode', and when and where they do it), simplified command mode (e.g.
  • applications on the eyepiece that can use commands and/or respond to inputs may include military applications, weapons control applications, military targeting applications, war game simulation, hand-to- hand fighting simulator, repair manual applications, tactical operations applications, mobile phone applications (e.g. iPhone apps), information processing, fingerprint capture, facial recognition, information display, information conveying, information gathering, iris capture, entertainment, easy access to information for pilots, locating objects in 3D in the real world, targeting for civilians, targeting for police, instructional, tutorial guidance without using hands (e.g. in maintenance, assembly, first aid, etc), blind navigation assistance, communications, music, search, advertising, video, computer games, video, computer games, eBooks, advertising, shopping, e- commerce, videoconferencing, and the like, and combinations of the same.
  • communication and/or connection from the eyepiece interface to external systems and devices may include a microcontroller, microprocessor, digital signal processor, steering wheel control interface, joystick controller, motion and sensor resolvers, stepper controller, audio system controller, program to integrate sound and image signals, application programming interface (API), graphical user interface (GUI), navigation system controller, network router, network controller, reconciliation system, payment system, gaming device, pressure sensor, and the like.
  • API application programming interface
  • GUI graphical user interface
  • navigation system controller network router, network controller, reconciliation system, payment system, gaming device, pressure sensor, and the like.
  • external devices to be controlled may include a weapon, a weapon control system, a communications system, a bomb detection system, a bomb disarming system, a remote-controlled vehicle, a computer (and thus many devices able to be controlled by a computer), camera, projector, cell phone, tracking devices, display (e.g. computer, video, TV screen), video game, war game simulator, mobile gaming, pointing or tracking device, radio or sound system, range finder, audio system, iPod, smart phone, TV, entertainment system, computer controlled weapons system, drone, robot, automotive dashboard interfaces, lighting devices (e.g. mood lighting), exercise equipment, gaming platform (such as the gaming platform recognizing the user and preloading what they like to play), vehicles, storage-enabled devices, payment system, ATM, POS system, and the like.
  • lighting devices e.g. mood lighting
  • exercise equipment e.g., exercise equipment
  • gaming platform such as the gaming platform recognizing the user and preloading what they like to play
  • vehicles storage-enabled devices
  • payment system e
  • applications in association with external devices may be military applications, weapons control applications, military targeting applications, war game simulation, hand-to-hand fighting simulator, repair manual applications, tactical operations applications, communications, information processing, fingerprint capture, facial recognition, iris capture, entertainment, easy access to information for pilots, locating objects in 3D in the real world, targeting for civilians, targeting for police, instructional, tutorial guidance without using hands (e.g. maintenance, assembly, first aid), blind navigation assistance, music, search, advertising, video, computer games, eBooks, automotive dashboard applications, advertising, military enemy targeting, shopping, e-commerce, and the like, and combinations of same.
  • feedback to the wearer related to external devices and applications may include visual display, heads-up display, bulls-eye or target tracking display, tonal output or sound warning, performance or rating indicator, score, mission accomplished indication, action complete indication, play of content, display of information, reports, data mining, recommendations, targeted
  • control aspects of the eyepiece may include combinations of a head nod from a soldier as movement to initiate a silent command (such as during a combat engagement), through a graphical user interface for reflecting modes and/or interfaces in which the control input is reflected, a military application on the eyepiece that uses the commands and/or responds to the control input, an audio system controller to communicate and/or connect from the eyepiece interface to an external system or device, and the like.
  • the soldier may be controlling a secure communications device through the eyepiece during a combat engagement, and wish to change some aspect of communications, such as a channel, a frequency, an encoding level, and the like, without making a sound and with minimal motion so as to minimize the chance of being heard or seen.
  • a nod of the soldier's head may be programmed to indicate the change, such as a quick nod forward to indicate the beginning of a transmission, a quick nod backward to indicate the end of a transmission, and the like.
  • the eyepiece may be projecting a graphical user interface to the soldier for the secure communications device, such as showing what channel is active, what alternative channels are available, others in their team that are currently transmitting, and the like. The nod of the soldier may then be interpreted by processing facilities of the eyepiece as a change command, the command transmitted to the audio system controller, and the graphical user interface for the communications device showing the change.
  • certain nods / body motions may be interpreted as specific commands to be transmitted such that the eyepiece sends a pre-established communication without the soldier needing to be audible. That is, the soldier may be able to send pre-canned communications to their team though body motions (for example, as determined together with the team prior to the engagement). In this way, a soldier wearing and utilizing the facilities of the eyepiece may be able to connect and interface with the external secure
  • control aspects of the eyepiece may include combinations of motion and position sensors as sensing inputs, an augmented reality interface as a command and control interface in which the inputs can be reflected to a soldier, a motion sensor and range finder for a weapon system as external devices to be controlled and information collected from, feedback to the soldier related to the external devices, and the like.
  • a soldier wearing the eyepiece may be monitoring military movements within an environment with the motion sensor, and when the motion sensor is triggered an augmented reality interface may be projected to the wearer that helps identify a target, such as a person, vehicle, and the like for further monitoring and/or targeting.
  • the range finder may be able to determine the range to the object and feedback that information to the soldier for use in targeting (such as manually, with the soldier executing a firing action; or automatically, with the weapon system receiving the information for targeting and the soldier providing a command to fire).
  • the augmented reality interface may provide information to the soldier about the target, such as the location of the object on a 2D or 3D projected map, identity of the target from previously collected information (e.g. as stored in an object database, including face recognition, object recognition), coordinates of the target, night vision imaging of the target, and the like.
  • the triggering of the motion detector may be interpreted by processing facilities of the eyepiece as a warning event, the command may be transmitted to the range finder to determine the location of the object, as well as to the speakers of the ear phones of the eyepiece to provide an audio warning to the soldier that a moving object has been sensed in the area being monitored.
  • the audio warning plus visual indicators to the soldier may serve as inputs to the soldier that attention should be paid to the moving object, such as if the object has been identified as an object of interest to the soldier, such as through an accessed database for known combatants, known vehicle types, and the like. For instance, the soldier may be at a guard post monitoring the perimeter around the post at night.
  • the environment may be dark, and the soldier may have fallen into a low attentive state, as it may be late at night, with all environmental conditions quiet.
  • the eyepiece may then act as a sentry augmentation device, 'watching' from the soldier's personal perspective (as opposed to some external monitoring facility for the guard post).
  • the soldier may be instantly alerted as well as guided to the location, range, identity, and the like, of the motion. In this way, the soldier may be able to react to avoid personal danger, to target fire to the located movement, and the like, as well as alert the post to potential danger.
  • the soldier may have improved reaction time as a result of the warning from the eyepiece, with better decision making though information about the target, and minimizing the danger of being injured or the guard post from being infiltrated.
  • other sensing inputs and/or sensing devices, command and/or control modes and interfaces in which the inputs can be reflected, useful external devices to be controlled, feedback related to external devices and/or external applications, and the like, as described herein, may also be applied.
  • the eyepiece may enable remote control of vehicles, such as a truck, robot, drone, helicopter, watercraft, and the like.
  • vehicles such as a truck, robot, drone, helicopter, watercraft, and the like.
  • a soldier wearing the eyepiece may be able to command through an internal communications interface for control of the vehicle.
  • Vehicle control may be provided through voice commands, body movement (e.g. a soldier instrumented with movement sensors that are in interactive communication with the eyepiece, and interfaced through the eyepiece to control the vehicle), keyboard interface, and the like.
  • a soldier wearing an eyepiece may provide remote control to a bomb disposal robot or vehicle, where commands are generated by the soldier though a command interface of the eyepiece, such as described herein.
  • a soldier may command an aircraft, such as a remote control drone, remote control tactical counter-rotating helicopter, and the like. Again, the soldier may provide control of the remote control aircraft through control interfaces as described herein.
  • control aspects of the eyepiece may include combinations of a wearable sensor set as an action capture input for a soldier, utilizing a robot control interface as a command and control interface in which the inputs can be reflected, a drone or other robotic device as an external device to be controlled, and the like.
  • the soldier wearing the eyepiece may be instrumented with a sensor set for the control of a military drone, such as with motion sensor inputs to control motion of the drone, hand recognition control for manipulation of control features of the drone (e.g. such as through a graphical user interface displayed through the eyepiece), voice command inputs for control of the drone, and the like.
  • control of the drone through the eyepiece may include control of flight, control of on-board interrogation sensors (e.g. visible camera, IR camera, radar), threat avoidance, and the like.
  • the soldier may be able to guide the drone to its intended target using body mounted sensors and picturing the actual battlefield through a virtual 2D/3D projected image, where flight, camera, monitoring controls are commanded though body motions of the soldier. In this way, the soldier may be able to maintain an individualistic, full visual immersion, of the flight and
  • the eyepiece may have a robot control interface for managing and reconciling the various control inputs from the soldier-worn sensor set, and for providing an interface for control of the drone.
  • the drone may then be controlled remotely through physical action of the soldier, such as through a wireless connection to a military control center for drone control and management.
  • a soldier may control a bomb-disarming robot that may be controlled through a soldier-worn sensor set and associated eyepiece robot control interface.
  • the soldier may be provided with a graphical user interface that provides a 2D or 3D view of the environment around the bomb disarming robot, and where the sensor pack provides translation of the motion of the soldier (e.g. arms, hands, and the like) to motions of the robot.
  • control aspects of the eyepiece may include combinations of an event indication to the soldier as they enter a location, a predictive-learning based user interface as a command and control mode and/or interface in which the input occurrence of the event is reflected, a weapons control system as an external device to be controlled, and the like.
  • an eyepiece may be programmed to learn the behavior of a soldier, such as what the soldier typically does when they enter a particular environment with a particular weapons control system, e.g. does the wearer turn on the system, arm the system, bring up visual displays for the system, and the like. From this learned behavior, the eyepiece may be able to make a prediction of what the soldier wants in the way of an eyepiece control function. For example, the soldier may be thrust into a combat situation, and needs the immediate use of a weapons control system.
  • the eyepiece may sense the location and/or the identity of the weapons system as the soldier approaches, and configure/enable the weapons system to how the soldier typically configures the system when they are near the weapons control system, such as in previous uses of the weapons system where the eyepiece was in a learning mode, and commanding the weapons control system to turn on the system as last configured.
  • the eyepiece may sense the location and/or identity of the weapons system through a plurality of methods and systems, such as through a vision system recognizing the location, an RFID system, a GPS system, and the like.
  • the commanding of the weapons control system may be through a graphical user interface that provides the soldier with a visual for fire-control of the weapon system, an audio- voice command system interface that provides choices to the soldier and voice recognition for commanding, pre-determined automatic activation of a function, and the like.
  • there may be a profile associated with such learned commanding where the soldier is able to modify the learned profile and/or set preferences within the learned profile to help optimize automated actions, and the like.
  • the soldier may have separate weapon control profiles for weapons readiness (i.e. while on post and awaiting action) and for active weapons engagement with the enemy.
  • the soldier may need to modify a profile to adjust to changing conditions associated with use of the weapon system, such as a change in fire command protocols, ammunition type, added capabilities of the weapon system, and the like.
  • a profile may be modified to adjust to changing conditions associated with use of the weapon system, such as a change in fire command protocols, ammunition type, added capabilities of the weapon system, and the like.
  • other events and/or data feeds, command and/or control modes and interfaces in which the inputs can be reflected, useful external devices to be controlled, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of an individual responsibility event for a soldier (such as deployed in a theater of action, and managing their time) as an event and/or data feed, a voice recognition system as a user action capture input device, an auditory command interface as a command and control interface in which the inputs can be reflected, video-based communications as an application on the eyepiece that is used to respond to the input from the soldier, and the like.
  • a soldier wearing the eyepiece may get a visual indication projected to them of a scheduled event for a group video supported communication between commanders. The soldier may then use a voice command to an auditory command interface on the eyepiece to bring up the contact information for the call, and voice command the group video
  • the eyepiece may serve as a personal assistant for the soldier, bringing up scheduled events and providing the soldier with a hands -free command interface to execute the scheduled events.
  • the eyepiece may provide for the visual interface for the group video communication, where the images of the other commanders are projected to the soldier through the eyepiece, and where an external camera is providing the soldier's video image through communicative connection to the eyepiece (such as with an external device with a camera, using a mirror with the internally integrated camera, and the like, as described herein).
  • the eyepiece may provide a fully integrated personal assistant and phone/video-based communications platform, subsuming the functions of other traditionally separate electronics devices, such as the radio, mobile phone, a video-phone, a personal computer, a calendar, a hands-free command and control interface, and the like.
  • other events and/or data feeds, user action capture inputs and/or devices, command and/or control modes and interfaces in which the inputs can be reflected, applications on platform that can use commands and/or respond to inputs, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of a security event to a soldier as an event and/or data feed; a camera and touch screen as user action capture input devices; an information processing, fingerprint capture, facial recognition application on the eyepiece to respond to the inputs; a graphical user interface for communications and/or connection between the eyepiece and external systems and devices; and an external information processing, fingerprint capture, facial recognition application and database for access to external security facilities and connectivity, and the like.
  • a soldier may receive a 'security event' while on post at a military checkpoint where a plurality of individuals is to be security checked and/or identified.
  • the soldier may then use biometric input devices, such as a camera for photographing faces and a touch screen for recording fingerprints, where the biometric inputs are managed though an internal information, processing, fingerprint capture, and facial recognition application on the eyepiece.
  • biometric input devices such as a camera for photographing faces and a touch screen for recording fingerprints
  • the eyepiece may provide a graphical user interface as a communications connection to an external information, processing, fingerprint capture, and facial recognition application, where the graphical user interface provides data capture interfaces, external database access, people of interest database, and the like.
  • the eyepiece may provide for an end-to-end security management facility, including monitoring for people of interest, input devices for taking biometric data, displaying inputs and database information, connectivity to external security and database applications, and the like.
  • the soldier may be checking people through a military checkpoint, and the soldier has been commanded to collect facial images, such as with iris biometrics, for anyone that meets a profile and is not currently in a security database.
  • the soldier' s eyepiece takes high-resolution images of each individual for facial and/or iris recognition, such as checked though a database accessible though a network communication link.
  • a person may be allowed to pass the checkpoint if they do not meet the profile (e.g.
  • the soldier may be able to process the individual directly through facilities of the eyepiece or with the eyepiece controlling an external device, such as for collecting personal information for the individual, taking a close-up image of the individual's face and/or iris, recording fingerprints, and the like, such as described herein.
  • control aspects of the eyepiece may include combinations of a finger movement as a user action for a soldier initiating an eyepiece command, a clickable icon as a command and control mode and/or interface in which the user action can be reflected, an application on the eyepiece (e.g. weapons control, troop movements, intelligence data feed, and the like), a military application tracking API as a communication and/or connection from the eyepiece application to an external system, an external personnel tracking application, feedback to military personnel, and the like.
  • an application on the eyepiece e.g. weapons control, troop movements, intelligence data feed, and the like
  • a military application tracking API as a communication and/or connection from the eyepiece application to an external system
  • an external personnel tracking application e.g., feedback to military personnel, and the like.
  • a system for monitoring a soldier's selection of an on-eyepiece application may be implemented through an API such that the monitoring provides a service to the military for monitoring and tracking application usage, feedback to the soldier as to other applications available to them based on the monitored behavior, and the like.
  • the soldier may select an application for use and/or download, such as through a graphical user interface where clickable icons are presented, and to which the soldier may be able to select the icon based on a finger movement control implementation facility (such as a camera or inertial system through which the soldier's finger action is used as a control input, in this case to select the clickable icon).
  • a finger movement control implementation facility such as a camera or inertial system through which the soldier's finger action is used as a control input, in this case to select the clickable icon.
  • the selection may then be monitored through the military application tracking API that sends the selection, or stored number of selections (such as transmitting stored selections over a period of time), to the external personnel tracking application.
  • the soldier's application selections in this case 'virtual clicks', may then be analyzed for the purpose of optimizing usage, such as through increasing bandwidth, change of available applications, improvement to existing applications, and the like.
  • the external personnel tracking application may utilize the analysis to determine what the wearer' s preferences are in terms of applications use, and send the wearer feedback in the form of
  • the eyepiece may provide services to improve the soldier's experience with the eyepiece, such as with recommendations for usage that the soldier may benefit from, and the like, while aiding in guiding the military use of the eyepiece and applications thereof. For instance, a soldier that is new to using the eyepiece may not fully utilize its capabilities, such as in use of augmented reality interfaces, organizational applications, mission support, and the like.
  • the eyepiece may have the capability to monitor the soldier's utilization, compare the utilization to utilization metrics (such as stored in an external eyepiece utilization facility), and provide feedback to the soldier in order to improve use and associated efficiency of the eyepiece, and the like.
  • control aspects of the eyepiece may include combinations of body movement (e.g. kinetic sensor) and touch sensors as user action capture sensing devices, head and hand movement as user actions for controlling and/or initiating commands, a virtual reality interface as a command and control interface through which the inputs can be reflected, an information display as an application on the eyepiece that can respond to the inputs, a combat simulator as an external device to be controlled through a combat simulation application, and the activation of the combat simulator content to the soldier with performance, rating, score, and the like, as feedback to the user related to the external device and application.
  • body movement e.g. kinetic sensor
  • touch sensors as user action capture sensing devices
  • head and hand movement as user actions for controlling and/or initiating commands
  • a virtual reality interface as a command and control interface through which the inputs can be reflected
  • an information display as an application on the eyepiece that can respond to the inputs
  • a combat simulator as an external device to be controlled through a combat simulation application
  • the activation of the combat simulator content to
  • a soldier may be able to interact with an artificial reality enhanced combat simulator, where the wearer's body movements are interpreted as control inputs, such as though body movement sensors, touch sensors, and the like. In this way, movements of the wearer's body may be fed into the combat simulator, rather than using more traditional control inputs such as a handheld controller.
  • the soldier's experience may be more realistic, such as to provide better muscle memory from the simulated combat exercise, such as when engaged in defensive avoidance, in a firefight, and the like, and where the eyepiece provides a full immersion experience for the soldier without the need for external devices that would normally not be used by the soldier in a live action.
  • Body motion control inputs may feed into a virtual reality interface and information display application on the eyepiece to provide the user with the visual depiction of the simulated combat environment.
  • the combat simulator may be run entirely on-board the eyepiece as a local application, interfaced to an external combat simulator facility local to the wearer, interfaced to a networked combat simulator facility (e.g. a massively multiplayer combat simulator, an individual combat simulator, a group combat simulator through a local network connection), and the like.
  • a networked combat simulator facility e.g. a massively multiplayer combat simulator, an individual combat simulator, a group combat simulator through a local network connection
  • the eyepiece application portion of simulation execution may provide the visual environment and information display to the soldier, and the external combat simulator facility may provide the combat simulator application execution.
  • the combat simulator implementation may extend to external facilities across a secure network. External facilities, whether local or across the secure network, may then provide feedback to the soldier, such as in providing at least a portion of the executed content (e.g. the locally provided projection combined with content from the external facilities and other soldiers), performance indications, scores, rankings, and the like.
  • the eyepiece may provide a soldier environment where the eyepiece interfaces with external control inputs and external processing facilities, to create the next generation of combat simulator platform.
  • sensing inputs and/or sensing devices user movements or actions for controlling or initiating commands, command and/or control modes and interfaces in which the inputs can be reflected, applications on platform that can use commands and/or respond to inputs, useful external devices to be controlled, feedback related to external devices and/or external applications, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of IR, thermal, force, carbon monoxide, and the like sensors as inputs; microphone as an additional input device; voice commands as an action by a soldier to initiate commands; a heads-up display as a command and control interface in which the inputs can be reflected; an instructional guidance application to provide guidance while reducing the need for the soldier to use their hands, such as in emergency repair in the field, maintenance, assembly, and the like; a visual display that provides feedback to the soldier based on the actions of the soldier and the sensor inputs; and the like. For instance, a soldier's vehicle may have been damaged in a firefight, leaving the soldier(s) stranded without immediate transport capabilities.
  • the soldier may be able to bring up an instructional guidance application, as running through the eyepiece, to provide hands-free instruction and computer-based expert knowledge access to diagnosing the problem with the vehicle.
  • the application may provide a tutorial for procedures not familiar to the soldier, such as restoring basic and temporary functionality of the vehicle.
  • the eyepiece may also be monitoring various sensor inputs relevant to the diagnosis, such as an IR, thermal, force, ozone, carbon monoxide, and the like sensors, so that the sensor input may be accessible to the instructional application and/or directly accessible to the soldier.
  • the application may also provide for a microphone through which voice commands may be accepted; a heads-up display for the display of instruction information, 2D or 3D depiction of the portion of the vehicle under repair; and the like.
  • the eyepiece may be able to provide a hands-free virtual assistant to the soldier to assist them in the diagnosis and repair of the vehicle in order to re-establish a means for transport, allowing the soldier to re-engage the enemy or move to safety.
  • other sensing inputs and/or sensing devices, user action capture inputs and/or devices, user movements or actions for controlling or initiating commands, command and/or control modes and interfaces in which the inputs can be reflected, applications on platform that can use commands and/or respond to inputs, feedback related to external devices and/or external applications, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of the eyepiece entering an 'activity state', such as a 'military engagement' activity mode, e.g. the soldier commanding the eyepiece into a military engagement mode, or the eyepiece sensing it is in proximity to a military activity, perhaps even a predetermined or targeted engagement area through a received mission directive, which may have further been developed in part through self monitoring and learning the wearer' s general engagement assignment.
  • a 'military engagement' activity mode e.g. the soldier commanding the eyepiece into a military engagement mode
  • the eyepiece sensing it is in proximity to a military activity, perhaps even a predetermined or targeted engagement area through a received mission directive, which may have further been developed in part through self monitoring and learning the wearer' s general engagement assignment.
  • entering an activity state e.g.
  • a military engagement activity state such as while driving in a vehicle into an encounter with the enemy or into hostile territory, may be combined with an object detector as a sensing input or sensing device, a head- mounted camera and/or eye-gaze detection system as a user action capture input, eye movement as a user movement or action for controlling or initiating commands, a 3D navigation interface as a command and control mode and/or interface in which the inputs can be reflected, an engagement management application on-board the eyepiece as an application for coordinating command inputs and user interface, a navigation system controller to communicate or connect with external systems or devices, a vehicle navigation system as an external device to be controlled and/or interfaced with, a military planning and execution facility as an external application for processing user actions with regard to a military directive, bulls-eye or target tracking system as feedback to the wearer as to enemy targeting opportunities within sight while driving, and the like.
  • an object detector as a sensing input or sensing device
  • a head- mounted camera and/or eye-gaze detection system as a user action
  • a soldier may enter a hostile environment while driving their vehicle, and the eyepiece, detecting the presence of the enemy engagement area (e.g. through GPS, direct viewing targets through an integrated camera, and the like) may enter a 'military engagement activity state' (such as enabled and/or approved by the soldier).
  • the eyepiece may then detect an enemy vehicle, hostile dwelling, and the like with an object detector that locates an enemy targeting opportunity, such as through a head-mounted camera.
  • an eye-gaze detection system on the eyepiece may monitor where the soldier is looking, and possibly highlight information about a target at the location of the wearer' s gaze, such as enemy personnel, enemy vehicle, enemy weapons, as well as friendly forces, where friend and foe are identified and differentiated.
  • the soldier' s eye movement may also be tracked, such as for changing targets of interest, or for command inputs (e.g. a quick nod indicating a selection command, a downward eye movement indicating a command for additional information, and the like).
  • the eyepiece may invoke a 3D navigation interface projection to assist in providing the soldier with information associated with their surroundings, and a military engagement application for coordinating the military engagement activity state, such as taking inputs from the soldier, providing outputs to the 3D navigation interface, interfacing with external devices and applications, and the like.
  • the eyepiece may for instance utilize a navigation system controller to interface with a vehicle navigation system, and thus may include the vehicle navigation system into the military engagement experience.
  • the eyepiece may use its own navigation system, such as in place of the vehicle system or to augment it, such as when the soldier gets out of the vehicle and wishes to have over-the-ground directions provided to them.
  • the eyepiece may interface with an external military planning and execution facility, such as to provide current status, troop movements, weather conditions, friendly forces position and strength, and the like.
  • the soldier through entering an activity state, may be provided feedback associated with the activity state, such as for a military engagement activity state being supplied feedback in the form of information associated with an identified target.
  • control aspects of the eyepiece may include combinations of a secure communications reception as a triggering event to a soldier, inertial movement tracking as a user action capture input device, drag-and-drop with fingers and swipe movements by the soldier as user movements or actions for controlling or initiating commands, navigable lists as a command and control interface in which the inputs can be reflected, information conveying as a type of application on the eyepiece that can use commands and respond to inputs, a reconciliation system as a communication or connection from the on-eyepiece interface to external systems and devices, iris capture and recognition system as an external application for external systems and devices, and the like.
  • a soldier wearing the eyepiece may receive a secure communication, and the communication may come in to the eyepiece as an 'event' to the soldier, such as to trigger an operations mode of the eyepiece, with a visual and/or audible alert, to initiate an application or action on the eyepiece, and the like.
  • the soldier may be able to react to the event through a plurality of control mechanisms, such as the wearer 'drag and dropping', swiping, and the like with their fingers and hands through a hand gesture interface (e.g. through a camera and hand gesture application on-board the eyepiece, where the wearer drags the email or information within the communication into a file, an application, another communication, and the like).
  • the wearer may call up navigable lists as part of acting on the communication.
  • the user may convey the information from the secure communication through an eyepiece application to external systems and devices, such as a reconciliation system for tracking communications and related actions.
  • the eyepiece and/or secure access system may require identification verification, such as through biometric identity verification e.g. fingerprint capture, iris capture recognition, and the like.
  • biometric identity verification e.g. fingerprint capture, iris capture recognition, and the like.
  • the soldier may receive a secure communication that is a security alert, where the secure communication comes with secure links to further information, and where the soldier is required to provide biometric authentication before being provided access.
  • the soldier may be able to use hand gestures in their response and manipulation of content available through the eyepiece, such as manipulating lists, links, data, images, and the like available directly from the communications and/or through the included links.
  • Providing the capability for the soldier to respond and manipulate content in association with the secure communication may better allow the soldier to interact with the message and content in a manner that does not compromise any non-secure environment they may currently be in.
  • other events and/or data feeds user action capture inputs and/or devices, user movements or actions for controlling or initiating commands, command and/or control modes and interfaces in which the inputs can be reflected, applications on platform that can use commands and/or respond to inputs, communication or connection from the on-platform interface to external systems and devices, applications for external devices, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of using an inertial user interface as a user action capture input device to provide military instruction to a soldier through the eyepiece to an external display device.
  • a soldier wearing the eyepiece, may wish to provide instruction to a group of other soldiers in the field from a briefing that has been made available to them through the facilities of the eyepiece.
  • the soldier may be aided though the use of a physical 3D or 2D mouse (e.g. with inertial motion sensor, MEMS inertial sensor, ultrasonic 3D motion sensor, accelerometer, and the like), a virtual mouse, a virtual touch screen, a virtual keyboard, and the like to provide an interface for manipulating content in the briefing.
  • a physical 3D or 2D mouse e.g. with inertial motion sensor, MEMS inertial sensor, ultrasonic 3D motion sensor, accelerometer, and the like
  • a virtual mouse e.g. with inertial motion sensor, MEMS inertial sensor, ultrasonic 3D motion sensor, acceler
  • the briefing may be viewable to and manipulated though the eyepiece, but also exported in real-time, such as to an external router that is connected to an external display device (e.g. computer monitor, projector, video screen, TV screen, and the like).
  • the eyepiece may provide a way for the soldier to have others view what they see through the eyepiece and as controlled through the control facilities of the eyepiece, allowing the soldier to export multimedia content associated with the briefing as enabled through the eyepiece to other non-eyepiece wearers.
  • a mission briefing may be provided to a commander in the field, and the commander, through the eyepiece, may be able to brief their team with multimedia and augmented reality resources available through the eyepiece, as described herein, thus gaining the benefit that such visual resources provide.
  • sensing inputs and/or sensing devices may also be applied.
  • user action capture inputs and/or devices may also be applied.
  • command and/or control modes and interfaces in which the inputs can be reflected communication or connection from the on-platform interface to external systems and devices, useful external devices to be controlled, feedback related to external devices and/or external applications, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of using an events/data feed and sensing inputs/sensing devices, such as where a security event plus an acoustic sensor may be implemented.
  • a security alert sent to a soldier and an acoustic sensor is utilized as an input device to monitor voice content in the surrounding environment, directionality of gunfire, and the like.
  • a security alert is broadcast to all military personnel in a specific area, and with the warning, the eyepiece activates an application that monitors an embedded acoustic sensor array that analyzes loud sounds to identify the type of source for the sound, and direction from which the sound came.
  • other events and/or data feeds, sensing inputs and/or sensing devices, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of using an events/data feed and user action capture inputs/devices, such as for a request for an input plus use of a camera.
  • a soldier may be in a location of interest and is sent a request for photos or video from their location, such as where the request is accompanied with instructions for what to photograph. For instance, the soldier is at a checkpoint, and at some central command post it is determined that an individual on interest may attempt to cross the checkpoint. Central command may then provide instructions to eyepiece users in proximity to the checkpoint to record and upload images and video, which may in embodiments be preformed automatically without the soldier needing to manually turn on the camera.
  • other events and/or data feeds, user action capture inputs and/or devices, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of using an events/data feed and user movements or actions for controlling or initiating commands, such as when a soldier is entering an 'activity state' and they use a hand gesture for control.
  • a soldier may be put in an activity state of readiness to engage the enemy, and the soldier uses hand gestures to silently command the eyepiece within an engagement command and control environment. For instance, the soldier may suddenly enter an enemy area as determined by new intelligence received that places the eyepiece in a heightened alert state. In this state it may be a requirement that silence may be required, and so the eyepiece transitions to a hand gesture command mode.
  • other events and/or data feeds, user movements or actions for controlling or initiating commands, and the like, as described herein may also be applied.
  • control aspects of the eyepiece may include combinations of using an events/data feed and command/control modes and interfaces in which the inputs can be reflected, such as entering a type of environment and the user of a virtual touch screen.
  • a soldier may enter a weapons system area, and a virtual touch screen is made available to the wearer for at least a portion of the control of the weapons system. For instance, the soldier enters a weapons vehicle, and the eyepiece detecting the presence of the weapons system, and that the soldier is authorized to use the weapon, brings up a virtual fire control interface with virtual touch screen.
  • other events and/or data feeds, command and/or control modes and interfaces in which the inputs can be reflected, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of using an events/data feed and applications on platform that can use commands/respond to inputs, such as for a safety event in combination with easy access to information for pilots.
  • a military pilot or someone responsible for the flight checkout of a pilotless aircraft
  • a drone specialist approaches a drone to prepare it for launch, and an interactive checkout procedure is displayed to the soldier by the eyepiece.
  • a communications channel may be opened to the pilot of the drone so they are included in the pre-flight checkout.
  • control aspects of the eyepiece may include combinations of using an events/data feed and a communication or connection from the on-platform interface to external systems and devices, such as the soldier entering a location and a graphical user interface (GUI).
  • GUI graphical user interface
  • a soldier may enter a location where they are required to interact with external devices, and where the external device is interfaced through the GIU. For instance, a soldier gets in a military transport, and the soldier is presented with a GUI that opens up an interactive interface that instructs the soldier on what they need to do during different phases of the transport.
  • other events and/or data feeds, communication or connection from the on-platform interface to external systems and devices, and the like, as described herein may also be applied.
  • control aspects of the eyepiece may include combinations of using an events/data feed and a useful external device to be controlled, such as for an instruction provided and a weapon system.
  • a soldier may be provided instructions, or a feed of instructions, where at least one instruction pertains to the control of an external weapons system. For instance, a soldier may be operating a piece of artillery, and the eyepiece is providing them not only
  • control aspects of the eyepiece may include combinations of using an events/data feed and an application for a useful external device, such as in a security event/feed and biometrics capture/recognition.
  • a soldier may be sent a security event notification through (such as through a security feed) to capture biometrics (fingerprints, iris scan, walking gait profile) of certain individuals, where the biometrics are stored, evaluated, analyzed, and the like, through an external biometrics application (such as served from a secure military network-based server/cloud).
  • biometrics fingerprints, iris scan, walking gait profile
  • an external biometrics application such as served from a secure military network-based server/cloud.
  • other events and/or data feeds, applications for external devices, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of using an events/data feed and feedback to a soldier related to the external devices and applications, such as entering an activity state and the soldier being provided a display of information.
  • a soldier may place the eyepiece into an activity state such as for military staging, readiness, action, debrief, and the like, and as feedback to being placed into the activity state the soldier receives a display of information pertaining to the entered state. For instance, a soldier enters into a staging state for a mission, where the eyepiece fetches information from a remote server as part of the tasks the soldier has to complete during staging, including securing equipment, additional training, and the like.
  • other events and/or data feeds, feedback related to external devices and/or external applications, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of using sensing inputs/sensing devices and user action capture inputs/devices, such as with an inertial motion sensor and head tracking system.
  • the head motion of a soldier may be tracked through inertial motion sensor(s) in the eyepiece, such as for nod control of the eyepiece, view direction sensing for the eyepiece, and the like.
  • the soldier may be a targeting a weapon system, and the eyepiece senses the gaze direction of the soldier' s head through the inertial motion sensor(s) to provide continuous targeting of the weapon.
  • the weapon system may move continuously in response to the soldier' s gaze direction, and so be continuously ready to fire on the target.
  • other sensing inputs and/or sensing devices, user action capture inputs and/or devices, and the like, as described herein may also be applied.
  • control aspects of the eyepiece may include combinations of using sensing inputs/sensing devices and user movements or actions for controlling or initiating commands, such as with an optical sensor and an eye shut, blink, and the like movement.
  • the state of the soldier's eye may be sensed by an optical sensor that is included in the optical chain of the eyepiece, such as for using eye movement for control of the eyepiece.
  • the soldier may be aiming their rifle, where the rifle has the capability to be fired through control commands from the eyepiece (such as in the case of a sniper, where commanding through the eyepiece may decrease the errors in targeting due to pulling the trigger manually).
  • control aspects of the eyepiece may include combinations of using sensing inputs/sensing devices and command/control modes and interfaces in which the inputs can be reflected, such as with a proximity sensor and robotic control interface.
  • a proximity sensor integrated into the eyepiece may be used to sense the soldier's proximity to a robotic control interface in order to activate and enable the use of the robotics.
  • a soldier walks up to a bomb- detecting robot, and the robot automatically activates and initializes configuration for this particular soldier (e.g. configuring for the preferences of the soldier).
  • configuration e.g. configuring for the preferences of the soldier.
  • other sensing inputs and/or sensing devices, command and/or control modes and interfaces in which the inputs can be reflected, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of using sensing inputs/sensing devices and applications on platform that can use commands/respond to inputs, such as with an audio sensor and music/sound application.
  • An audio sensor may monitor the ambient sound and initiate and/or adjust the volume for music, ambient sound, sound cancelling, and the like, to help counter an undesirable ambient sound. For instance, a soldier is loaded onto a transport and the engines of the transport are initially off. At this time the soldier may have no other duties except to rest, so they initiate music to help them rest. When the engines of the transport come on the music/sound application adjusts the volume and/or initiates additional sound cancelling audio in order to help keep the music input the same as before the engines started up.
  • other sensing inputs and/or sensing devices, applications on platform that can use commands and/or respond to inputs, and the like, as described herein may also be applied.
  • control aspects of the eyepiece may include combinations of using sensing inputs/sensing devices and communication or connection from the on-platform interface to external systems and devices, such as with a passive IR proximity sensor and external digital signal processor.
  • a soldier may be monitoring a night scene with the passive IR proximity sensor, the sensor indicates a motion, and the eyepiece initiates a connection to an external digital signal processor for aiding in identifying the target from the proximity sensor data. Further, an IR imaging camera may be initiated to contribute additional data to the digital signal processor.
  • other sensing inputs and/or sensing devices, communication or connection from the on-platform interface to external systems and devices, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of using sensing inputs/sensing devices and useful external devices to be controlled, such as with an acoustic sensor and a weapons system, where an eyepiece being worn by a soldier senses a loud sound, such as may be an explosion or gun fire, and where the eyepiece then initiates the control of a weapons system for possible action against a target associated with the creation of the loud sound. For instance, a soldier is on guard duty, and gunfire is heard. The eyepiece may be able to detect the direction of the gunshot, and direct the soldier to the position from which the gunshot was made.
  • other sensing inputs and/or sensing devices, useful external devices to be controlled, and the like, as described herein may also be applied.
  • control aspects of the eyepiece may include combinations of using sensing inputs/sensing devices and applications for those useful external devices, such as with a camera and external application for instructions.
  • the camera embedded in a soldier's eyepiece may view a target icon indicating that instructions are available, and the eyepiece accessing the external application for instructions. For instance, a soldier is delivered to a staging area, and upon entry the eyepiece camera views the icon, accesses the instructions externally, and provides the soldier with the instructions for what to do, where all the steps may be automatic so that the instructions are provided without the soldier being aware of the icon.
  • other sensing inputs and/or sensing devices, applications for external devices, and the like, as described herein may also be applied.
  • control aspects of the eyepiece may include combinations of using sensing inputs/sensing devices and feedback to user related to the external devices and applications, such as with a GPS sensor and a visual display from a remote application.
  • the soldier may have an embedded GPS sensor that sends/streams location coordinates to a remote location facility/application that sends/streams a visual display of the surrounding physical environment to the eyepiece for display.
  • a soldier may be constantly viewing the surrounding environment though the eyepiece, and by way of the embedded GPS sensor, is continuously streamed a visual display overlay that allows for the soldier to have an augmented reality view of the surrounding environment, even as the change locations.
  • other sensing inputs and/or sensing devices, feedback related to external devices and/or external applications, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of using user action capture inputs/devices and user movements or actions for controlling or initiating commands, such as with a body movement sensor (e.g. kinetic sensor) and an arm motion.
  • the soldier may have body movement sensors attached to their arms, where the motion of their arms convey a command.
  • a soldier may have kinetic sensors on their arms, and the motion of their arms are duplicated in an aircraft landing lighting system, such that the lights normally held by personnel aiding in a landing may be made to be larger and more visible.
  • other user action capture inputs and/or devices, user movements or actions for controlling or initiating commands, and the like, as described herein may also be applied.
  • control aspects of the eyepiece may include combinations of using user action capture inputs/devices and command/control modes and interfaces in which the inputs can be reflected, such as wearable sensor sets and a predictive learning-based user interface.
  • a soldier may wear a sensor set where the data from the sensor set is continuously collected and fed to a machine-learning facility through a learning-based user interface, where the soldier may be able to accept, reject, modify, and the like, the learning from their motions and behaviors.
  • a soldier may perform the same tasks in generally the same physical manner every Monday morning, and the machine-learning facility may establish a learned routine that it provides to the soldier on subsequent Monday mornings, such as a reminder to clean certain equipment, fill out certain forms, play certain music, meet with certain people, and the like. Further, the soldier may be able to modify the outcome of the learning through direct edits to the routine, such as in a learned behavior profile.
  • other user action capture inputs and/or devices, command and/or control modes and interfaces in which the inputs can be reflected, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of using user action capture inputs/devices and applications on platform that can use commands/respond to inputs, such as a finger-following camera and video application.
  • a soldier may be able to control the direction that the eyepiece embedded camera is taking video through a resident video application. For instance, a soldier may be viewing a battle scene where they have need to be gazing in one direction, such as being watchful for new developments in the engagement, while filming in a different direction, such as the current point of engagement.
  • other user action capture inputs and/or devices, applications on platform that can use commands and/or respond to inputs, and the like, as described herein may also be applied.
  • control aspects of the eyepiece may include combinations of using user action capture inputs/devices and communication or connection from the on-platform interface to external systems and devices, such as a microphone and voice recognition input plus a steering wheel control interface.
  • the soldier may be able to change aspects of the handling of a vehicle through voice commands received through the eyepiece and delivered to a vehicle's steering wheel control interface (such as through radio communications between the eyepiece and the steering wheel control interface). For instance, a soldier is driving a vehicle on a road, and so the vehicle has certain handling capabilities that are ideal for the road. But the vehicle also has other modes for diving under different conditions, such as off -road, in snow, in mud, in heavy rain, while in pursuit of another vehicle, and the like.
  • the soldier may be able to change the mode through voice command as the vehicle changes driving conditions.
  • other user action capture inputs and/or devices, communication or connection from the on- platform interface to external systems and devices, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of using user action capture inputs/devices and useful external devices to be controlled, such as a microphone and voice recognition input plus an automotive dashboard interface device.
  • the soldier may use voice commands to control various devices associated with the dashboard of a vehicle, such as heating and ventilation, radio, music, lighting, trip computer, and the like.
  • a soldier may be driving a vehicle on a mission, across rough terrain, such that they cannot let go of the steering wheel with either hand in order to manually control a vehicle dashboard device.
  • the soldier may be able to control the vehicle dashboard device through voice controls to the eyepiece.
  • Voice commands through the eyepiece may be especially advantageous, such as opposed to voice control through a dashboard microphone system, because the military vehicle may be immersed in a very loud acoustic environment, and so using the microphone in the eyepiece may give substantially improved performance under such conditions.
  • other user action capture inputs and/or devices, useful external devices to be controlled, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of using user action capture inputs/devices and applications for useful external devices, such as with a joystick device and external entertainment application.
  • a soldier may have access to a gaming joystick controller and is able to play a game through an external entertainment application, such as a multi-player game hosted on a network server. For instance, the soldier may be experiencing down time during a deployment, and on base they have access to a joystick device that interfaces to the eyepiece, and the eyepiece in turn to the external entertainment application.
  • the soldier may be networked together with other military personnel across the network. The soldier may have stored preferences, a profile, and the like, associated with the game play.
  • the external entertainment application may manage the game play of the soldier, such as in terms of their deployment, current state of readiness, required state of readiness, past history, ability level, command position, rank, geographic location, future deployment, and the like.
  • other user action capture inputs and/or devices, applications for external devices, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of using user action capture inputs/devices and feedback to the user related to external devices and applications, such as with an activity determination system and tonal output or sound warning.
  • the soldier may have access to the activity determination system through the eyepiece to monitor and determine the soldier's state of activity, such as in extreme activity, at rest, bored, anxious, in exercise, and the like, and where the eyepiece may provide forms of tonal output or sound warning when conditions go out of limits in any way, such as pre-set, learned, as typical, and the like.
  • the soldier may be monitored for current state of health during combat, and where the soldier and/or another individual (e.g.
  • medic, hospital personnel, another member of the soldier's team, a command center, and the like are provided an audible signal when health conditions enter a dangerous level, such as indicating that the soldier has been hurt in battle. As such, others may be alerted to the soldier's injuries, and would be able to attend to the injuries in a more time effective manner.
  • other user action capture inputs and/or devices, feedback related to external devices and/or external applications, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of using user movements or actions for controlling or initiating commands plus command/control modes and interfaces in which the inputs can be reflected, such as a clenched fist and Navigable list.
  • a soldier may bring up a navigable list as projected content on the eyepiece display with a gesture such as a clenched fist, and the like.
  • the eyepiece camera may be able to view the soldier's hand gesture(s), recognize and identify the hand gesture(s), and execute the command in terms of a pre-determined gesture-to-command database.
  • hand gestures may include gestures of the hand, finger, arm, leg, and the like.
  • other user movements or actions for controlling or initiating commands, command and/or control modes and interfaces in which the inputs can be reflected, and the like, as described herein, may also be applied.
  • control aspects of the eyepiece may include combinations of using user movements or actions for controlling or initiating commands plus applications on platform that can use commands/respond to inputs, such as a head nod and information display.
  • the soldier may bring up an information display application with a gesture such as a headshake, arm motion, leg motion, eye motion, and the like.
  • a gesture such as a headshake, arm motion, leg motion, eye motion, and the like.
  • the soldier may wish to access an application, database, network connection, and the like, through the eyepiece, and is able to bring up a display application as part of a graphical user interface with the nod of their head (such as sensed though motion detectors in the eyepiece, on the soldier's head, on the soldier's helmet, and the like.
  • other user movements or actions for controlling or initiating commands, applications on platform that can use commands and/or respond to inputs, and the like, as described herein may also be applied.
  • control aspects of the eyepiece may include combinations of using user movements or actions for controlling or initiating commands plus communication or connection from the on-platform interface to external systems and devices, such as the blink of an eye and through an API to external applications.
  • the soldier may be able to bring up an application program interface to access external applications, such as with the blink of an eye, a nod of the head, the movement of an arm or leg, and the like.
  • the soldier may be able to access an external application through an API embedded in an eyepiece facility, and do so with the blink of an eye, such as detected though an optical monitoring capability through the optics system of the eyepiece.
  • other user movements or actions for controlling or initiating commands may be used to bring up an application program interface to access external applications, such as with the blink of an eye, a nod of the head, the movement of an arm or leg, and the like.
  • control aspects of the eyepiece may include combinations of using user movements or actions for controlling or initiating commands and external devices to be controlled, such as through the tap of a foot accessing an external range finder device.
  • a soldier may have a sensor such as a kinetic sensor on their shoe that will detect the motion of the soldier' s foot, and the soldier uses a foot motion such as a tap of their foot to use an external range finder device to determine the range to an object such an enemy target.
  • the soldier may be targeting a weapon system, and using both hands in the process.
  • commanding by way of a foot action through the eyepiece may allow for 'hands free' commanding.
  • other user movements or actions for controlling or initiating commands, useful external devices to be controlled, and the like, as described herein may also be applied.
  • control aspects of the eyepiece may include combinations of using user movements or actions for controlling or initiating commands plus applications for those useful external devices, such as making a symbol with a hand and an information conveying application.
  • the soldier may utilize a hand formed symbol to trigger information shared through an external information conveying application, such as an external information feed, a photo/video sharing application, a text application, and the like.
  • an external information conveying application such as an external information feed, a photo/video sharing application, a text application, and the like.
  • a soldier uses a hand signal to turn on the embedded camera and share the video stream with another person, to storage, and the like.
  • other user movements or actions for controlling or initiating commands, applications for external devices, and the like, as described herein may also be applied.
  • control aspects of the eyepiece may include combinations of using user movements or actions for controlling or initiating commands plus feedback to soldier as related to an external device and application, such as a headshake plus an audible alert.
  • the soldier may be wearing an eyepiece equipped with an accelerometer (or like capable sensor for detecting g-force headshake), where when the soldier experiences a g-force headshake that is at a dangerously high level, an audible alert is sounded as feedback to the user, such as determined either as a part of on- or off-eyepiece applications.
  • the output of the accelerometer may be recorded and stored for analysis.
  • the soldier may experience a g-force headshake from a proximate explosion, and the eyepiece may sense and record the sensor data associated with the headshake. Further, headshakes of a dangerous level may trigger automatic actions by the eyepiece, such as transmitting an alert to other soldiers and/or to a command center, begin monitoring and/or transmitting the health of the soldier from other body mounted sensors, provide audible instructions to the soldier related to their potential injuries, and the like. In embodiments, other user movements or actions for controlling or initiating commands, feedback related to external devices and/or external

Abstract

La présente invention concerne un oculaire comprenant un cadre mécanique conçu pour fixer une lentille et une installation de source d'image au-dessus de la lentille. L'installation de source d'image comprend une DEL, une installation d'éclairage plate et un afficheur réflexif. L'installation d'éclairage plat convertit un faisceau lumineux provenant de la DEL reçu sur un côté de l'installation d'éclairage plate en une source de lumière plate à émission par le haut, éclaire uniformément l'affichage réflexif, et est sensiblement transmissive pour permettre à la lumière réfléchie de la traverser en direction d'un séparateur de faisceau. Le séparateur de faisceau est positionné pour recevoir la lumière de l'image et pour réfléchir une partie sur une surface miroir. La surface miroir est positionnée et façonnée pour réfléchir la lumière de l'image dans un œil d'un utilisateur de l'oculaire, ce qui permet de fournir une image dans un champ de vision, la surface miroir étant conçue en outre pour être partiellement transmissive dans une zone de réflectance de l'image.
PCT/US2011/051650 2010-09-14 2011-09-14 Oculaire doté d'un afficheur réflexif éclairé uniformément WO2012037290A2 (fr)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US38257810P 2010-09-14 2010-09-14
US61/382,578 2010-09-14
US13/037,324 2011-02-28
US13/037,324 US20110214082A1 (en) 2010-02-28 2011-02-28 Projection triggering through an external marker in an augmented reality eyepiece
US13/037,355 US20110275923A1 (en) 2010-02-26 2011-02-28 Goldmann applanation tonometer, biomicroscopy device and related methods
US13/037,355 2011-02-28
US201161472491P 2011-04-06 2011-04-06
US61/472,491 2011-04-06
US201161483400P 2011-05-06 2011-05-06
US61/483,400 2011-05-06
US201161487371P 2011-05-18 2011-05-18
US61/487,371 2011-05-18
US201161504513P 2011-07-05 2011-07-05
US61/504,513 2011-07-05

Publications (2)

Publication Number Publication Date
WO2012037290A2 true WO2012037290A2 (fr) 2012-03-22
WO2012037290A3 WO2012037290A3 (fr) 2012-07-12

Family

ID=44999858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/051650 WO2012037290A2 (fr) 2010-09-14 2011-09-14 Oculaire doté d'un afficheur réflexif éclairé uniformément

Country Status (1)

Country Link
WO (1) WO2012037290A2 (fr)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2494939A (en) * 2011-09-23 2013-03-27 Gixia Group Co Head-Mounted System for Image Pick-Up, Analysis and Display
US8472120B2 (en) 2010-02-28 2013-06-25 Osterhout Group, Inc. See-through near-eye display glasses with a small scale image source
US8477425B2 (en) 2010-02-28 2013-07-02 Osterhout Group, Inc. See-through near-eye display glasses including a partially reflective, partially transmitting optical element
US8482859B2 (en) 2010-02-28 2013-07-09 Osterhout Group, Inc. See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film
US8488246B2 (en) 2010-02-28 2013-07-16 Osterhout Group, Inc. See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film
CN103323972A (zh) * 2013-05-27 2013-09-25 京东方科技集团股份有限公司 显示装置
JP2013218395A (ja) * 2012-04-05 2013-10-24 Sony Corp 情報処理装置、プログラム及び情報処理方法
US8814691B2 (en) 2010-02-28 2014-08-26 Microsoft Corporation System and method for social networking gaming with an augmented reality
WO2014174067A1 (fr) * 2013-04-25 2014-10-30 Essilor International (Compagnie Generale D'optique) Procédé de commande d'une visiocasque électro-optique adaptée à un utilisateur
EP2818830A1 (fr) * 2013-06-28 2014-12-31 Hyundai Mnsoft, Inc. Appareil, procédé et serveur pour fournir un contenu
WO2014011266A3 (fr) * 2012-04-05 2015-04-16 Augmented Vision Inc. Appareil destiné à un visiocasque transparent optique possédant une capacité de commande mutuelle d'occlusion et d'opacité
CN104769487A (zh) * 2012-09-12 2015-07-08 Bae系统信息和电子系统集成有限公司 安装于面部的极端环境热传感器系统
US9091851B2 (en) 2010-02-28 2015-07-28 Microsoft Technology Licensing, Llc Light control in head mounted displays
US9097890B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc Grating in a light transmissive illumination system for see-through near-eye display glasses
US9097891B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc See-through near-eye display glasses including an auto-brightness control for the display brightness based on the brightness in the environment
US9129295B2 (en) 2010-02-28 2015-09-08 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear
US9128281B2 (en) 2010-09-14 2015-09-08 Microsoft Technology Licensing, Llc Eyepiece with uniformly illuminated reflective display
US9134534B2 (en) 2010-02-28 2015-09-15 Microsoft Technology Licensing, Llc See-through near-eye display glasses including a modular image source
US9182596B2 (en) 2010-02-28 2015-11-10 Microsoft Technology Licensing, Llc See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light
WO2015193875A1 (fr) * 2014-06-16 2015-12-23 B. G. Negev Technologies And Applications Ltd., At Ben-Gurion University Dispositif intégré d'interpolation d'ircl en image visible
US9223134B2 (en) 2010-02-28 2015-12-29 Microsoft Technology Licensing, Llc Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses
US9229227B2 (en) 2010-02-28 2016-01-05 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a light transmissive wedge shaped illumination system
CN105319712A (zh) * 2014-07-14 2016-02-10 尚立光电股份有限公司 反射式显示器
US9285589B2 (en) 2010-02-28 2016-03-15 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered control of AR eyepiece applications
US9341843B2 (en) 2010-02-28 2016-05-17 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a small scale image source
US9366862B2 (en) 2010-02-28 2016-06-14 Microsoft Technology Licensing, Llc System and method for delivering content to a group of see-through near eye display eyepieces
EP3046007A1 (fr) * 2015-01-15 2016-07-20 Nokia Technologies OY Procédé, appareil et produit programme d'ordinateur pour permettre une communication entre des dispositifs sur la base de contact avec l'oeil
WO2016134969A1 (fr) * 2015-02-23 2016-09-01 International Business Machines Corporation Interfaçage par l'intermédiaire d'un affichage tête haute à l'aide d'un contact visuel
CN106105170A (zh) * 2014-03-10 2016-11-09 高通股份有限公司 用于基于隐式用户提示促成无线通信的设备和方法
TWI581026B (zh) * 2015-08-07 2017-05-01 高準精密工業股份有限公司 光學裝置
FR3046516A1 (fr) * 2016-01-06 2017-07-07 Sashi Juganaikloo Systeme de gestion d'enregistrement en continu
WO2017119827A1 (fr) * 2016-01-05 2017-07-13 Saab Ab Plaque frontale dans des afficheurs à projection optique transparents
US9759917B2 (en) 2010-02-28 2017-09-12 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered AR eyepiece interface to external devices
GB2548885A (en) * 2016-03-31 2017-10-04 Konica Minolta Business Solutions Europe Gmbh Collision detection
US10088911B2 (en) 2016-12-30 2018-10-02 Manuel Saez Programmable electronic helmet
US10180572B2 (en) 2010-02-28 2019-01-15 Microsoft Technology Licensing, Llc AR glasses with event and user action control of external applications
US10539787B2 (en) 2010-02-28 2020-01-21 Microsoft Technology Licensing, Llc Head-worn adaptive display
CN111077672A (zh) * 2018-10-18 2020-04-28 三星电子株式会社 透视显示装置
CN111178324A (zh) * 2015-02-02 2020-05-19 豪威科技股份有限公司 采用准直器的光学传感器
CN111431493A (zh) * 2020-04-22 2020-07-17 浙江大学 一种低噪声mems压电水听器的回波放大电路
US10860100B2 (en) 2010-02-28 2020-12-08 Microsoft Technology Licensing, Llc AR glasses with predictive control of external device based on event input
US11174022B2 (en) * 2018-09-17 2021-11-16 International Business Machines Corporation Smart device for personalized temperature control
WO2021252269A3 (fr) * 2020-06-08 2022-01-20 Tectus Corporation Conceptions optiques avancées pour systèmes d'imagerie
US20220101391A1 (en) * 2020-09-30 2022-03-31 United States Postal Service System and method for providing presentations to customers
US11294159B2 (en) 2018-07-13 2022-04-05 Tectus Corporation Advanced optical designs for eye-mounted imaging systems
US11583231B2 (en) 2019-03-06 2023-02-21 X Development Llc Adjustable electrode headset
US11604355B2 (en) 2016-10-31 2023-03-14 Tectus Corporation Optical systems with solid transparent substrate
US11642081B2 (en) 2019-02-01 2023-05-09 X Development Llc Electrode headset
US11740445B2 (en) 2018-07-13 2023-08-29 Tectus Corporation Advanced optical designs for imaging systems
US11800246B2 (en) 2022-02-01 2023-10-24 Landscan Llc Systems and methods for multispectral landscape mapping

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8467133B2 (en) 2010-02-28 2013-06-18 Osterhout Group, Inc. See-through display with an optical assembly including a wedge-shaped illumination system

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249616B1 (en) 1997-05-30 2001-06-19 Enroute, Inc Combining digital images based on three-dimensional relationships between source image data sets
US20020106115A1 (en) 1996-10-04 2002-08-08 Henri Rajbenbach System for acquiring three-dimensional fingerprints and method of acquisition
US7116468B2 (en) 2004-12-22 2006-10-03 Collinear Corporation Design of quasi-phasematched optical frequency converters
US7245440B2 (en) 2004-12-23 2007-07-17 Varioptic S.A. Variable focal lens
US7265896B2 (en) 2004-12-17 2007-09-04 Collinear Corporation Optical power combining for optical frequency conversion having nonlinear feedback
US20080219522A1 (en) 2007-03-09 2008-09-11 Authentec, Inc. Finger sensor using polarized light and associated methods
US20090021331A1 (en) 2007-07-19 2009-01-22 Samsung Electro-Mechanics Co. Ltd. Step attenuator
US20090213321A1 (en) 2008-02-25 2009-08-27 Lensvector Inc. Tunable liquid lens with reduced aberration
US20090316097A1 (en) 2008-06-22 2009-12-24 Lensvector Inc. Liquid crystal device and method of fabrication thereof
US20100007807A1 (en) 2008-06-21 2010-01-14 Lensvector Inc. Optically hidden electromagnetic source for generation of spatially non uniform magnetic field and tunable devices made thereof
US7651594B2 (en) 2002-04-18 2010-01-26 Dai Nippon Printing Co., Ltd. Barrier film and laminated material, container for wrapping and image display medium using the same, and manufacturing method for barrier film
US20100177386A1 (en) 2007-06-29 2010-07-15 Varioptic, S.A. Electrowetting device with polymer electrode
US20100295987A1 (en) 2007-12-13 2010-11-25 Varioptic, S.A. Image stabilization circuitry for liquid lens
US7894440B2 (en) 2009-03-13 2011-02-22 Freescale Semiconductor, Inc. Programmable hash-tuple generation with parallel rule implementation independence

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303085A (en) * 1992-02-07 1994-04-12 Rallison Richard D Optically corrected helmet mounted display
AU686511B2 (en) * 1995-05-15 1998-02-05 Raytheon Company Low-cost light-weight head-mounted virtual-image projection display with low moments of inertia and low center of gravity
US6204974B1 (en) * 1996-10-08 2001-03-20 The Microoptical Corporation Compact image display system for eyeglasses or other head-borne frames
US6563648B2 (en) * 2000-10-20 2003-05-13 Three-Five Systems, Inc. Compact wide field of view imaging system
US20070263137A1 (en) * 2006-05-09 2007-11-15 Victor Company Of Japan, Limited Illuminating device and display device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020106115A1 (en) 1996-10-04 2002-08-08 Henri Rajbenbach System for acquiring three-dimensional fingerprints and method of acquisition
US6249616B1 (en) 1997-05-30 2001-06-19 Enroute, Inc Combining digital images based on three-dimensional relationships between source image data sets
US7651594B2 (en) 2002-04-18 2010-01-26 Dai Nippon Printing Co., Ltd. Barrier film and laminated material, container for wrapping and image display medium using the same, and manufacturing method for barrier film
US7265896B2 (en) 2004-12-17 2007-09-04 Collinear Corporation Optical power combining for optical frequency conversion having nonlinear feedback
US7116468B2 (en) 2004-12-22 2006-10-03 Collinear Corporation Design of quasi-phasematched optical frequency converters
US7245440B2 (en) 2004-12-23 2007-07-17 Varioptic S.A. Variable focal lens
US20080219522A1 (en) 2007-03-09 2008-09-11 Authentec, Inc. Finger sensor using polarized light and associated methods
US20100177386A1 (en) 2007-06-29 2010-07-15 Varioptic, S.A. Electrowetting device with polymer electrode
US20090021331A1 (en) 2007-07-19 2009-01-22 Samsung Electro-Mechanics Co. Ltd. Step attenuator
US20100295987A1 (en) 2007-12-13 2010-11-25 Varioptic, S.A. Image stabilization circuitry for liquid lens
US20090213321A1 (en) 2008-02-25 2009-08-27 Lensvector Inc. Tunable liquid lens with reduced aberration
US20100007807A1 (en) 2008-06-21 2010-01-14 Lensvector Inc. Optically hidden electromagnetic source for generation of spatially non uniform magnetic field and tunable devices made thereof
US20090316097A1 (en) 2008-06-22 2009-12-24 Lensvector Inc. Liquid crystal device and method of fabrication thereof
US7894440B2 (en) 2009-03-13 2011-02-22 Freescale Semiconductor, Inc. Programmable hash-tuple generation with parallel rule implementation independence

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. HAWKES, A. NEHORAI: "Acoustic Vector-Sensor Beamforming and Capon Direction Estimation", IEEE TRANSACTIONS ON SIGNAL PROCESSING, vol. 46, no. 9, September 1998 (1998-09-01), pages 2291 - 2304, XP011058270
P.K. TAM, K.T. WONG: "Cramér-Rao Bounds for Direction Finding by an Acoustic Vector Sensor Under Nonideal Gain-Phase Responses, Noncollocation or Nonorthogonal Orientation", IEEE SENSORS JOURNAL, vol. 9, no. 8, August 2009 (2009-08-01), pages 969 - 982, XP011263852

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10180572B2 (en) 2010-02-28 2019-01-15 Microsoft Technology Licensing, Llc AR glasses with event and user action control of external applications
US9091851B2 (en) 2010-02-28 2015-07-28 Microsoft Technology Licensing, Llc Light control in head mounted displays
US8477425B2 (en) 2010-02-28 2013-07-02 Osterhout Group, Inc. See-through near-eye display glasses including a partially reflective, partially transmitting optical element
US9329689B2 (en) 2010-02-28 2016-05-03 Microsoft Technology Licensing, Llc Method and apparatus for biometric data capture
US8488246B2 (en) 2010-02-28 2013-07-16 Osterhout Group, Inc. See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film
US9223134B2 (en) 2010-02-28 2015-12-29 Microsoft Technology Licensing, Llc Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses
US9759917B2 (en) 2010-02-28 2017-09-12 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered AR eyepiece interface to external devices
US10539787B2 (en) 2010-02-28 2020-01-21 Microsoft Technology Licensing, Llc Head-worn adaptive display
US9875406B2 (en) 2010-02-28 2018-01-23 Microsoft Technology Licensing, Llc Adjustable extension for temple arm
US10268888B2 (en) 2010-02-28 2019-04-23 Microsoft Technology Licensing, Llc Method and apparatus for biometric data capture
US10860100B2 (en) 2010-02-28 2020-12-08 Microsoft Technology Licensing, Llc AR glasses with predictive control of external device based on event input
US8472120B2 (en) 2010-02-28 2013-06-25 Osterhout Group, Inc. See-through near-eye display glasses with a small scale image source
US9366862B2 (en) 2010-02-28 2016-06-14 Microsoft Technology Licensing, Llc System and method for delivering content to a group of see-through near eye display eyepieces
US9285589B2 (en) 2010-02-28 2016-03-15 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered control of AR eyepiece applications
US9097890B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc Grating in a light transmissive illumination system for see-through near-eye display glasses
US9097891B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc See-through near-eye display glasses including an auto-brightness control for the display brightness based on the brightness in the environment
US9129295B2 (en) 2010-02-28 2015-09-08 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear
US9229227B2 (en) 2010-02-28 2016-01-05 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a light transmissive wedge shaped illumination system
US9134534B2 (en) 2010-02-28 2015-09-15 Microsoft Technology Licensing, Llc See-through near-eye display glasses including a modular image source
US9182596B2 (en) 2010-02-28 2015-11-10 Microsoft Technology Licensing, Llc See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light
US8482859B2 (en) 2010-02-28 2013-07-09 Osterhout Group, Inc. See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film
US8814691B2 (en) 2010-02-28 2014-08-26 Microsoft Corporation System and method for social networking gaming with an augmented reality
US9341843B2 (en) 2010-02-28 2016-05-17 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a small scale image source
US9128281B2 (en) 2010-09-14 2015-09-08 Microsoft Technology Licensing, Llc Eyepiece with uniformly illuminated reflective display
GB2494939A (en) * 2011-09-23 2013-03-27 Gixia Group Co Head-Mounted System for Image Pick-Up, Analysis and Display
WO2014011266A3 (fr) * 2012-04-05 2015-04-16 Augmented Vision Inc. Appareil destiné à un visiocasque transparent optique possédant une capacité de commande mutuelle d'occlusion et d'opacité
US10162184B2 (en) 2012-04-05 2018-12-25 Magic Leap, Inc. Wide-field of view (FOV) imaging devices with active foveation capability
US11656452B2 (en) 2012-04-05 2023-05-23 Magic Leap, Inc. Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
JP2013218395A (ja) * 2012-04-05 2013-10-24 Sony Corp 情報処理装置、プログラム及び情報処理方法
US10901221B2 (en) 2012-04-05 2021-01-26 Magic Leap, Inc. Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
US9726893B2 (en) 2012-04-05 2017-08-08 Magic Leap, Inc. Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
US10175491B2 (en) 2012-04-05 2019-01-08 Magic Leap, Inc. Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
US10451883B2 (en) 2012-04-05 2019-10-22 Magic Leap, Inc. Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
US10061130B2 (en) 2012-04-05 2018-08-28 Magic Leap, Inc. Wide-field of view (FOV) imaging devices with active foveation capability
US9547174B2 (en) 2012-04-05 2017-01-17 Magic Leap, Inc. Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
US10048501B2 (en) 2012-04-05 2018-08-14 Magic Leap, Inc. Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
CN107843988A (zh) * 2012-04-05 2018-03-27 奇跃公司 具有相互遮挡和不透明度控制能力的用于光学透视头戴显示器的设备
CN107843988B (zh) * 2012-04-05 2021-02-02 奇跃公司 具有相互遮挡和不透明度控制能力的用于光学透视头戴显示器的设备
US9874752B2 (en) 2012-04-05 2018-01-23 Magic Leap, Inc. Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
US9851563B2 (en) 2012-04-05 2017-12-26 Magic Leap, Inc. Wide-field of view (FOV) imaging devices with active foveation capability
CN104769487A (zh) * 2012-09-12 2015-07-08 Bae系统信息和电子系统集成有限公司 安装于面部的极端环境热传感器系统
CN105164576A (zh) * 2013-04-25 2015-12-16 埃西勒国际通用光学公司 对适配于佩戴者的头戴式电光设备进行控制的方法
JP2016520206A (ja) * 2013-04-25 2016-07-11 エシロール エンテルナショナル (コンパニ ジェネラル ドプチック) 装着者に適合化された頭部装着型電子光学装置を制御する方法
WO2014174067A1 (fr) * 2013-04-25 2014-10-30 Essilor International (Compagnie Generale D'optique) Procédé de commande d'une visiocasque électro-optique adaptée à un utilisateur
US10416451B2 (en) 2013-04-25 2019-09-17 Essilor International Method of controlling a head mounted electro-optical device adapted to a wearer
CN105164576B (zh) * 2013-04-25 2019-07-05 依视路国际公司 对适配于佩戴者的头戴式电光设备进行控制的方法
WO2014190656A1 (fr) * 2013-05-27 2014-12-04 京东方科技集团股份有限公司 Dispositif d'affichage
CN103323972A (zh) * 2013-05-27 2013-09-25 京东方科技集团股份有限公司 显示装置
CN103323972B (zh) * 2013-05-27 2016-12-28 京东方科技集团股份有限公司 显示装置
EP2818830A1 (fr) * 2013-06-28 2014-12-31 Hyundai Mnsoft, Inc. Appareil, procédé et serveur pour fournir un contenu
CN106105170B (zh) * 2014-03-10 2020-01-10 高通股份有限公司 用于基于隐式用户提示促成无线通信的设备和方法
US10394330B2 (en) 2014-03-10 2019-08-27 Qualcomm Incorporated Devices and methods for facilitating wireless communications based on implicit user cues
CN106105170A (zh) * 2014-03-10 2016-11-09 高通股份有限公司 用于基于隐式用户提示促成无线通信的设备和方法
US10033946B2 (en) 2014-06-16 2018-07-24 B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University SWIR to visible image up-conversion integrated device
WO2015193875A1 (fr) * 2014-06-16 2015-12-23 B. G. Negev Technologies And Applications Ltd., At Ben-Gurion University Dispositif intégré d'interpolation d'ircl en image visible
CN105319712A (zh) * 2014-07-14 2016-02-10 尚立光电股份有限公司 反射式显示器
EP3046007A1 (fr) * 2015-01-15 2016-07-20 Nokia Technologies OY Procédé, appareil et produit programme d'ordinateur pour permettre une communication entre des dispositifs sur la base de contact avec l'oeil
CN111178324A (zh) * 2015-02-02 2020-05-19 豪威科技股份有限公司 采用准直器的光学传感器
CN111178324B (zh) * 2015-02-02 2023-09-19 天津极豪科技有限公司 采用准直器的光学传感器
US9652035B2 (en) 2015-02-23 2017-05-16 International Business Machines Corporation Interfacing via heads-up display using eye contact
WO2016134969A1 (fr) * 2015-02-23 2016-09-01 International Business Machines Corporation Interfaçage par l'intermédiaire d'un affichage tête haute à l'aide d'un contact visuel
US9658689B2 (en) 2015-02-23 2017-05-23 International Business Machines Corporation Interfacing via heads-up display using eye contact
TWI581026B (zh) * 2015-08-07 2017-05-01 高準精密工業股份有限公司 光學裝置
US10539800B2 (en) 2016-01-05 2020-01-21 Saab Ab Face plate in transparent optical projection displays
WO2017119827A1 (fr) * 2016-01-05 2017-07-13 Saab Ab Plaque frontale dans des afficheurs à projection optique transparents
WO2017118697A1 (fr) * 2016-01-06 2017-07-13 Juganaikloo Sashi Systeme de gestion d'enregistrement en continu
FR3046516A1 (fr) * 2016-01-06 2017-07-07 Sashi Juganaikloo Systeme de gestion d'enregistrement en continu
GB2548885A (en) * 2016-03-31 2017-10-04 Konica Minolta Business Solutions Europe Gmbh Collision detection
US11604355B2 (en) 2016-10-31 2023-03-14 Tectus Corporation Optical systems with solid transparent substrate
US10088911B2 (en) 2016-12-30 2018-10-02 Manuel Saez Programmable electronic helmet
US11294159B2 (en) 2018-07-13 2022-04-05 Tectus Corporation Advanced optical designs for eye-mounted imaging systems
US11740445B2 (en) 2018-07-13 2023-08-29 Tectus Corporation Advanced optical designs for imaging systems
US11174022B2 (en) * 2018-09-17 2021-11-16 International Business Machines Corporation Smart device for personalized temperature control
CN111077672B (zh) * 2018-10-18 2023-06-30 三星电子株式会社 透视显示装置
CN111077672A (zh) * 2018-10-18 2020-04-28 三星电子株式会社 透视显示装置
US11642081B2 (en) 2019-02-01 2023-05-09 X Development Llc Electrode headset
US11583231B2 (en) 2019-03-06 2023-02-21 X Development Llc Adjustable electrode headset
CN111431493A (zh) * 2020-04-22 2020-07-17 浙江大学 一种低噪声mems压电水听器的回波放大电路
WO2021252269A3 (fr) * 2020-06-08 2022-01-20 Tectus Corporation Conceptions optiques avancées pour systèmes d'imagerie
US20220101391A1 (en) * 2020-09-30 2022-03-31 United States Postal Service System and method for providing presentations to customers
US11800246B2 (en) 2022-02-01 2023-10-24 Landscan Llc Systems and methods for multispectral landscape mapping

Also Published As

Publication number Publication date
WO2012037290A3 (fr) 2012-07-12

Similar Documents

Publication Publication Date Title
US11275482B2 (en) Ar glasses with predictive control of external device based on event input
US10852540B2 (en) AR glasses with event and user action control of external applications
US10860100B2 (en) AR glasses with predictive control of external device based on event input
US9128281B2 (en) Eyepiece with uniformly illuminated reflective display
US9759917B2 (en) AR glasses with event and sensor triggered AR eyepiece interface to external devices
US9285589B2 (en) AR glasses with event and sensor triggered control of AR eyepiece applications
US8482859B2 (en) See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film
US8472120B2 (en) See-through near-eye display glasses with a small scale image source
US8477425B2 (en) See-through near-eye display glasses including a partially reflective, partially transmitting optical element
US9229227B2 (en) See-through near-eye display glasses with a light transmissive wedge shaped illumination system
US9129295B2 (en) See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear
US9366862B2 (en) System and method for delivering content to a group of see-through near eye display eyepieces
US9097891B2 (en) See-through near-eye display glasses including an auto-brightness control for the display brightness based on the brightness in the environment
US20120194418A1 (en) Ar glasses with user action control and event input based control of eyepiece application
US20120206335A1 (en) Ar glasses with event, sensor, and user action based direct control of external devices with feedback
US20120206485A1 (en) Ar glasses with event and sensor triggered user movement control of ar eyepiece facilities
US20120206334A1 (en) Ar glasses with event and user action capture device control of external applications
US20120194550A1 (en) Sensor-based command and control of external devices with feedback from the external device to the ar glasses
US20140063055A1 (en) Ar glasses specific user interface and control interface based on a connected external device type
US20130314303A1 (en) Ar glasses with user action control of and between internal and external applications with feedback
US20120212406A1 (en) Ar glasses with event and sensor triggered ar eyepiece command and control facility of the ar eyepiece
US20120206322A1 (en) Ar glasses with event and sensor input triggered user action capture device control of ar eyepiece facility
US20120194553A1 (en) Ar glasses with sensor and user action based control of external devices with feedback
US20120194420A1 (en) Ar glasses with event triggered user action control of ar eyepiece facility
US20120194552A1 (en) Ar glasses with predictive control of external device based on event input

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11785162

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11785162

Country of ref document: EP

Kind code of ref document: A2