WO2011114435A1 - Driving device using polymer actuator elements - Google Patents

Driving device using polymer actuator elements Download PDF

Info

Publication number
WO2011114435A1
WO2011114435A1 PCT/JP2010/054420 JP2010054420W WO2011114435A1 WO 2011114435 A1 WO2011114435 A1 WO 2011114435A1 JP 2010054420 W JP2010054420 W JP 2010054420W WO 2011114435 A1 WO2011114435 A1 WO 2011114435A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
polymer actuator
actuator element
drive
control unit
Prior art date
Application number
PCT/JP2010/054420
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 功
宣明 芳賀
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to PCT/JP2010/054420 priority Critical patent/WO2011114435A1/en
Priority to JP2012505346A priority patent/JP5466757B2/en
Publication of WO2011114435A1 publication Critical patent/WO2011114435A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution

Definitions

  • the present invention relates to a drive device having a polymer actuator element that bends and deforms when a voltage is applied to a pair of electrode layers, and more particularly to a structure for improving temperature characteristics of the polymer actuator element.
  • the polymer actuator element includes, for example, an electrolyte layer and a pair of electrode layers provided on both sides in the thickness direction of the electrolyte layer as shown in Patent Document 1.
  • a polymer actuator element has temperature characteristics, and the displacement amount and generated force of the polymer actuator element vary depending on the use environment temperature. In particular, the actuator characteristics are likely to deteriorate under a low temperature environment.
  • a polymer actuator element is disposed on the image sensor side, and the image sensor at the time of driving is arranged.
  • a structure in which the polymer actuator element is warmed by the heat from is disclosed.
  • the imaging element is separated from the polymer actuator element.
  • a structure in which a heat radiating plate is attached to the imaging element and a heat generating part is brought close to the polymer actuator element is also disclosed, but cannot be brought into contact with each other, so that it is difficult to efficiently warm the element.
  • the structure shown in Patent Document 2 cannot be applied to a drive device that requires an image sensor and is not provided with an image sensor in the first place. Or in the structure which does not have an image pick-up element shown in patent document 2, if a new heat generating apparatus is used in order to warm a polymer actuator element, it will become high-cost.
  • the polymer actuator element can be warmed only when the image sensor is driven, and further, the polymer actuator element is warmed even when it is not necessary to be warmed, resulting in poor controllability. Yes.
  • the present invention solves the above-described conventional problems, and can provide a driving apparatus using a polymer actuator element that can efficiently warm a polymer actuator element at low cost and has excellent controllability to heat generation. It is intended to provide.
  • the drive device having the polymer actuator element according to the present invention, A polymer actuator element comprising an electrolyte layer and electrode layers provided on both surfaces in the thickness direction of the electrolyte layer, and deformed when a voltage is applied between the electrode layers; A drive unit having a controller for applying a drive voltage to the polymer actuator element, The control unit can apply an AC voltage to the polymer actuator element, and the control unit applies the AC voltage according to a state of the polymer actuator element.
  • the control unit can apply an AC voltage to the polymer actuator element as necessary.
  • a current flows through the electrode layer, and the polymer actuator element is warmed by self-heating by Joule heat. It is done.
  • the characteristic at the time of low temperature can be improved, or the bias
  • a controller capable of applying an alternating voltage is connected to the element, and there is no need to change the layer structure of the polymer actuator element from the conventional one. Further, there is no need to provide a separate heat generating device. For this reason, the drive device can be reduced in size, thickness, and cost.
  • the actuator element it is possible to warm the actuator element efficiently because it is a structure that uses the self-heating of the element itself, and since there is no change in the element structure, there is no factor such as characteristic deterioration due to structural change or deterioration in characteristic stability, Therefore, according to the present invention, it is possible to effectively improve the actuator characteristics of the polymer actuator element particularly at low temperature operation.
  • the controller applies the AC voltage when a temperature around the polymer actuator element or the polymer actuator element is lower than a predetermined temperature.
  • the controller applies the AC voltage when a current value flowing through the polymer actuator element is smaller than a predetermined value. Since the drive current becomes small at low temperatures, the characteristics at low temperature can be effectively improved by applying an alternating current when the drive current becomes smaller than a predetermined value.
  • the control unit is provided with a monitor unit capable of detecting at least one of an environmental temperature change or an information change from the polymer actuator element based on the environmental temperature change, and the monitor unit It is preferable to determine whether or not the AC voltage is superimposed on the basis of the detection result from. For example, when the monitor unit detects that the environmental temperature change has become equal to or lower than a predetermined temperature, control can be performed so that alternating voltage is superimposed. Alternatively, when the environmental temperature is low, the drive current flowing through the polymer actuator element is reduced and the element displacement is reduced. Therefore, when the monitor unit detects that the drive current or the element displacement is below a predetermined value. In addition, it is possible to control so that alternating voltage is superimposed. As described above, in the present invention, the timing of superimposing the AC voltage can be set finely, and the controllability with respect to heat generation can be improved more effectively.
  • the control unit is provided with a monitor unit capable of detecting at least one of an environmental temperature change or an information change from the polymer actuator element based on the environmental temperature change, and the monitor unit It is preferable that the superimposed waveform of the AC voltage is controlled based on the detection result from.
  • the control of the superimposed waveform in the present invention means controlling the frequency of AC voltage, symmetry (symmetry) with respect to voltage and drive voltage, waveform shape (rectangular wave, sine wave, sawtooth wave, triangular wave, etc.), and the like. .
  • the superimposed waveform of alternating voltage can be set finely, and the controllability with respect to heat_generation
  • the monitor unit detects a current flowing through the polymer actuator element.
  • the AC voltage is applied with being superimposed on the drive voltage with an amplitude smaller than the drive voltage.
  • the maximum voltage value of the AC voltage and the absolute value of the minimum voltage value can be different. Thereby, for example, it is possible to avoid that the maximum value of the voltage in which the AC voltage and the driving voltage are superimposed exceeds the driving voltage, and it is possible to prevent deterioration of the polymer actuator element.
  • the AC voltage can be applied to the polymer actuator when no driving voltage is applied to the polymer actuator element.
  • the polymer actuator element can be efficiently warmed even when the polymer actuator element is not driven, and the polymer actuator element can be smoothly driven during the subsequent driving, particularly in a low temperature environment. it can.
  • the polymer actuator element can be warmed efficiently at low cost.
  • it is possible to effectively improve the actuator characteristics of the polymer actuator element at low temperature operation.
  • the controllability against heat generation can be effectively improved.
  • (A) is a partial cross-sectional view when the polymer actuator element in the present embodiment is not driven
  • (b) is a partial cross-sectional view showing a state where the polymer actuator element is curved
  • (A) is a schematic diagram showing an example of a voltage waveform applied between electrode layers of the polymer actuator element
  • (b) is a schematic diagram showing an example of a current waveform flowing through the polymer actuator element 32
  • Partial enlarged schematic view showing another example of the voltage waveform applied between the electrode layers of the polymer actuator element
  • Block diagram of a control unit provided in the drive device of the present embodiment The fragmentary sectional view of the dot display device to which the drive device which has a polymer actuator element of this embodiment is applied.
  • FIG. 1 is a partial cross-sectional view of a polymer actuator element that constitutes the drive device of this embodiment.
  • FIG. 1B schematically shows a control unit connected to the polymer actuator element together with the polymer actuator element.
  • a drive device having a polymer actuator element has at least a polymer actuator element and an electric system including a control unit for driving the polymer actuator element.
  • the polymer actuator element 32 in the present embodiment includes an electrolyte layer 33, upper electrode layers 34 formed on both surfaces in the thickness direction (Z) of the electrolyte layer 33, and A lower electrode layer 35 is provided.
  • the polymer actuator element 32 includes an electrolyte layer 33 having an ionic liquid and a base polymer, an upper electrode layer 34 and a lower electrode having a conductive filler such as carbon nanotubes, an ionic liquid and a base polymer. And a layer 35.
  • the upper electrode layer 34 is formed on the upper surface side of the electrolyte layer 33 in the figure, and the lower electrode layer 35 is formed on the lower surface side of the electrolyte layer 33 in the figure.
  • PVDF polyvinylidene fluoride
  • PMMA polymethyl methacrylate
  • the electrolyte layer 33 may include an ion exchange resin and a polar organic solvent containing a salt or a liquid organic compound that is an ionic liquid.
  • the ion exchange resin is, for example, a cation exchange resin.
  • the anion is fixed and the cation can move freely.
  • the cation exchange resin a resin obtained by introducing a functional group such as a sulfonic acid group or a carboxyl group into a resin such as polyethylene, polystyrene, or fluororesin can be preferably used.
  • the base end portion 36 of the polymer actuator element 32 is a fixed end portion, and the base end portion 36 of the polymer actuator element 32 is fixedly supported by a fixed support portion 38.
  • the polymer actuator element 32 is cantilevered.
  • a drive voltage is applied between the electrode layers 34 and 35 on both sides, as shown in FIG. 1B, a swelling difference occurs above and below the electrolyte layer 33 due to ion movement in the electrolyte layer 33 and the bending stress is increased. It is generated and the distal end portion 37 which is the free end portion of the polymer actuator element 32 can be bent and deformed.
  • the principle that the difference in swelling between electrodes due to ion transfer is generally not unambiguous, but one of the typical principle factors is that there is a difference in swelling due to the difference in ionic radius between cation and anion. It is known.
  • connection part that is electrically connected to the electrode layers 34 and 35.
  • positioned between the fixed support part 38 and each electrode layer 34 and 35 may be sufficient.
  • a control unit 80 including a drive circuit 60 shown in FIG. 1B is connected to the base end portion 36 of the polymer actuator element 32.
  • the control unit 80 (drive circuit 60) can apply a drive voltage to the polymer actuator element 32 and further includes an oscillator (OSC) so that an alternating voltage can be superimposed on the drive voltage.
  • OSC oscillator
  • FIG. 2A shows an example of a voltage waveform applied between the electrode layers 34 and 35 of the polymer actuator element 32
  • FIG. 2B shows a current waveform flowing through the polymer actuator element 32.
  • FIG. 2A In the non-driving state A of the polymer actuator element 32 shown in FIG. 2A, no voltage is applied between the electrode layers 34 and 35, and in the driving state B of the polymer actuator element 32, a driving voltage is applied between the electrode layers 34 and 35. Apply C.
  • the polymer actuator element 32 in the present embodiment is a capacitive load actuator, and the drive current D flowing through the polymer actuator element 32 shown in FIG. 2B behaves in the same manner as a general capacitor.
  • the drive voltage C is raised by, for example, a rectangular wave as shown in FIG. 2A
  • the drive current D becomes a differential waveform, and a large current is generated at the rising portion of the drive voltage C as shown in FIG. Flowing and charging begins. Thereafter, the drive current D rapidly decreases and eventually the drive current D becomes smaller due to full charge.
  • each of the electrode layers 34 and 35 in the present embodiment has a configuration including a conductive filler such as a carbon nanotube, and can generate heat by Joule heat by passing an electric current.
  • an AC voltage E having a frequency higher than that of the drive voltage C is applied to the drive voltage C by the drive circuit 60 including the oscillator shown in FIG. Superposition is possible.
  • the AC voltage is applied according to the state of the polymer actuator element 32. Since the AC voltage E is a voltage having an amplitude centered on 0 V, the center voltage I having a waveform superimposed on the drive voltage C coincides with the drive voltage C.
  • the driving voltage C is a main voltage for bending and deforming the polymer actuator element 32 as shown in FIG. 1B, and indicates a voltage necessary for driving. Specifically, as shown in FIG. 2A, it indicates the voltage level at a linear portion after the voltage rises from the time of non-application of the voltage.
  • the AC voltage E is superimposed on the drive voltage C, whereby the current F is repeatedly applied to the electrode layers 34 and 35 as shown in FIG. It can flow. Therefore, the electrode layers 34 and 35 can be heated by Joule heat.
  • the current F becomes close to the AC current and may temporarily become a negative value.
  • AC voltage E is set to a frequency higher than drive voltage C. At this time, the AC voltage E is set to a frequency or voltage that does not change in the displacement of the polymer actuator element 32 itself due to superimposition on the drive voltage C, or falls within the allowable fluctuation according to the purpose of use. .
  • the drive device (see FIG. 5) using the polymer actuator element 32 of the present embodiment is used to press the protruding member 31 by direct current driving (DC driving) the polymer actuator element 32 as described later.
  • DC driving direct current driving
  • the frequency of the superimposed AC voltage E can be set to about 1 to several hundred Hz (more specifically, about 1 to 100 Hz).
  • the amplitude of the AC voltage E is set to be smaller than the drive voltage C, the superimposed maximum voltage value G becomes too high with respect to the drive voltage C, and the polymer actuator element. It can be avoided that 32 deteriorates.
  • the AC voltage E may be several tens of mV to several tens of mV with respect to the driving voltage C of 1 to 3V. Thereby, the polymer actuator element 32 can be efficiently warmed and the polymer actuator element 32 can be driven stably.
  • the polymer actuator element 32 can cause the current F to flow through the electrode layers 34 and 35 by superimposing the AC voltage E on the drive voltage C. Can be warmed by self-heating.
  • the actuator element 32 can be efficiently warmed, and since the element structure is not changed, there is no factor such as deterioration of characteristics due to structural changes or deterioration of characteristics stability. . Therefore, according to the present embodiment, it is possible to effectively improve the actuator characteristics of the polymer actuator element 32 particularly at low temperature operation.
  • the center voltage value I between the maximum voltage value G and the minimum voltage value H of the AC voltage E substantially matches the drive voltage C. Therefore, in FIG. 2A, the alternating voltage E can be superimposed on the symmetrical waveform with respect to the driving voltage C.
  • the frequency of the superimposed AC voltage E is sufficiently higher than the ion movement speed in the electrolyte layer 33, the maximum voltage value of the AC voltage E is applied at a voltage exceeding the upper limit voltage that can be applied to the polymer actuator element 32.
  • the alternating voltage E having a symmetrical waveform as described above is excellent in voltage controllability, and the actuator characteristics of the polymer actuator element 32 are less varied and the stability of the characteristics is improved. Is the most efficient.
  • an asymmetrical AC voltage can be superimposed on the driving voltage C as shown in FIG.
  • the maximum voltage value G may become too high and the polymer actuator element 32 may gradually deteriorate.
  • the maximum voltage value (GC) and the minimum voltage value (HC) of the AC voltage E are reduced.
  • asymmetrical AC voltages having different absolute values it is possible to generate heat by flowing a sufficient current.
  • the average applied voltage can be set to the drive voltage C, and a current can flow without affecting the displacement.
  • the heat generation effect can be improved more effectively, and it is possible to effectively improve the actuator characteristics particularly in a low temperature environment.
  • the waveform of the AC voltage E may be a triangular wave, a sine wave or the like as shown in FIG. 2A, or may be a rectangular wave as shown in FIG.
  • the waveform shape is not particularly limited, but the waveform shape can be regulated by a waveform control unit 84 constituting the control unit 80 described later.
  • FIG. 4 shows a preferred configuration of the connecting portion 80 connected to the polymer actuator element 32.
  • the control unit 80 includes a monitor unit 81, a determination processing unit 82, and a drive circuit 60.
  • the determination processing unit 82 determines whether or not to perform AC voltage superimposition based on the detection result from the monitor unit 81, and the AC voltage superimposed waveform based on the detection signal from the monitor unit 81.
  • a waveform control unit 84 for controlling the waveform for controlling.
  • the polymer actuator element 32 is connected to a monitor unit 81 and a drive circuit 60.
  • the superposition of the AC voltage E on the drive voltage C in the present embodiment is performed, for example, when the environmental temperature becomes a certain low temperature.
  • the monitor unit 81 detects a change in the drive current (peak current) of the polymer actuator element 32.
  • the switching unit 83 of the determination processing unit 82 determines whether or not the AC voltage E is superimposed on the drive voltage C shown in FIG.
  • the driving circuit 60 causes the alternating voltage E to be superimposed on the driving voltage C and applied to the polymer actuator element 32.
  • the polymer actuator element 32 is warmed.
  • the switching unit 83 determines not to superimpose the AC voltage E
  • the drive circuit 60 applies the drive voltage C to the polymer actuator element 32 without superimposing the AC voltage E.
  • the polymer actuator element 32 is not warmed.
  • the controller 80 can switch on / off the superposition of the AC voltage E depending on whether the polymer actuator element 32 needs to be warmed or not. It becomes possible to keep the element 32 in an optimal state.
  • the waveform control unit 84 can determine whether or not to control the superimposed waveform of the AC voltage E.
  • the control of the superimposed waveform includes symmetry with respect to the frequency and voltage of the AC voltage E and the driving voltage C (symmetry; see FIGS. 2A and 3), waveform shape (rectangular wave, sine wave, sawtooth wave, triangular wave, etc.); 2 (a), FIG. 3) and the like are controlled.
  • the emitted-heat amount etc. can be adjusted and it becomes possible to keep the polymer actuator element 32 in the optimal state.
  • the monitor unit 81 can also monitor the amount of displacement of the polymer actuator element 32 to switch on / off of the superposition of the AC voltage E and adjust the superposition waveform. If the temperature is low, the amount of displacement becomes smaller than a predetermined value even if a predetermined drive voltage C is applied to the polymer actuator element 32. Therefore, the amount of displacement of the polymer actuator element 32 is detected by the monitor unit 81, and on the basis of the detection result, the control unit 80 switches on / off the superposition of the AC voltage E and adjusts the superposition waveform. Is possible.
  • the monitor unit 81 is connected to a thermosensitive element (thermometer) 85, and when the monitor unit 81 detects an external environmental temperature, the control unit 80 turns on the superposition of the AC voltage E. It is also possible to switch on / off and adjust the superimposed waveform.
  • thermosensitive element thermosensitive element
  • switching of on / off of the superposition of the alternating voltage E and adjustment of the superposition waveform are performed by changing the environmental temperature or changing the information from the polymer actuator element 32 (displacement amount) Or the drive current) can be detected by the monitor unit 81, and can be set finely based on the detection result.
  • the monitor unit 81 it is possible to more effectively improve the controllability for heat generation.
  • the thermal element 85 and the monitor unit 81, the polymer actuator element 32 and the monitor unit 81 may both be connected or may be connected to only one of them.
  • the main purpose of warming the polymer actuator element 32 is to suppress a decrease in actuator characteristics in a low temperature environment and improve the actuator characteristics.
  • the polymer actuator element is also used in a room temperature environment. By warming 32, the actuator characteristics can be further improved.
  • the AC voltage E is superimposed on the drive voltage C when the environmental temperature change or the information change from the polymer actuator element 32 based on the environmental temperature change becomes, and how the superimposed waveform is changed. It can be changed or adjusted as appropriate depending on the setting for the determination processing unit 82.
  • the polymer actuator element 32 is heated by heating the electrode layers 34 and 35 by superimposing AC waveforms. It is possible to set.
  • an AC voltage J can be applied in the non-driven state A of the polymer actuator element 32 in which no voltage is applied between the electrode layers 34 and 35. It is. Thereby, even when the polymer actuator element 32 is not driven, the element can be warmed, and the polymer actuator element can be smoothly driven at the time of subsequent driving, particularly in a low temperature environment.
  • the AC voltage J is set to a frequency or voltage at which the polymer actuator element 32 does not displace even when the AC voltage J is applied, or even if the polymer actuator element 32 is displaced, the amount of displacement is within the allowable range for the purpose of use in the drive device. Is done.
  • the AC voltage E is set so as to be superposed on the drive voltage C
  • the control unit 80 is set so that the AC voltage J can be applied even in the non-drive state A. It is also possible to control the AC voltage J to be applied only in the non-driving state A.
  • FIG. 5 shows a specific application example of the driving device having the polymer actuator element in the present embodiment.
  • FIG. 5 shows a partial longitudinal sectional view of the dot display device 1.
  • the dot display device 1 is used, for example, as a braille cell that gives information to a visually impaired person.
  • FIG. 5 is a vertical cross-sectional view showing a portion of one dot out of braille generally composed of six dots.
  • a lower case 10 and an upper case 20 are overlapped to form a thin casing.
  • predetermined spaces (deformable regions) 10 b and 20 b are formed between the lower case 10 and the upper case 20.
  • a polymer actuator element 32 is disposed in the spaces 10b and 20b.
  • the base end portion 36 of the polymer actuator element 32 is sandwiched and fixed by the upper pressing portion 25 formed on the upper case 20 and the lower pressing portion 13 provided on the lower case 10.
  • the lower pressing portion 13 is integrally connected to the elastic portion 12.
  • an upper wiring board 50 is provided between the base end portion 36 and the upper pressing portion 25.
  • the upper wiring board 50 and the upper electrode layer 34 (see FIG. 1 and the like) of the polymer actuator element 32 are electrically connected.
  • a lower wiring board 40 is provided between the base end portion 36 and the lower pressing portion 13. The lower wiring board 40 and the lower electrode layer 35 (see FIG. 1 and the like) of the polymer actuator element 32 are electrically connected.
  • a hole 21 is formed in the upper case 20, and a protruding member 31 is provided in the hole 21.
  • the protruding member 31 is a contacted portion 31a having a curved surface at the distal end facing the Z1 direction as the protruding direction, and a pressed portion 31b receiving the protruding pressing force at the proximal end facing in the Z2 direction as the retracting direction.
  • a voltage is applied to the electrode layers 34 and 35 of the polymer actuator element 32 to bend and deform the tip portion 37 of the polymer actuator element 32 upward, and the protruding member 31 is pressed to a dotted line. It can be moved upward as shown.
  • the polymer actuator element 32 is warmed by self-heating of the polymer actuator element 32 when the polymer actuator element 32 is driven, when it is not driven, or when it is driven and not driven.
  • the actuator characteristics in a low temperature environment can be improved.
  • the heat generating device is not provided separately, but the self-heating of the polymer actuator element 32 is used as described above, so that the dot display device 1 can be reduced in size, thickness, and cost.
  • the electrode layers 34 and 35 constituting the polymer actuator element 32 are used as a heating element, the entire polymer actuator element 32 can be efficiently warmed.
  • control unit 80 shown in FIG. 4 is provided in the dot display device 1, and the polymer actuator element 32 can self-heat only when necessary, and the amount of generated heat is also adjusted by adjusting the superimposed waveform. Therefore, the dot display device 1 having excellent controllability against heat generation can be obtained.
  • the drive device having the polymer actuator element 32 of the present embodiment can be applied to other than the braille dot display device 1.

Abstract

Disclosed is a more compact, slimmer, and lower-cost driving device which comprises polymer actuator elements exhibiting superior heat-generation control characteristics and which can efficiently warm the polymer actuator elements. The driving device comprises an electrolyte layer, electrode layers provided on both surfaces of the electrolyte layer in the thickness direction, and a polymer actuator element that deforms when a voltage is applied between said electrode layers. When an AC voltage (E) with a higher frequency than drive voltage (C) supplied to the polymer actuator element is superposed on said drive voltage, a drive current flows to the electrode layers and the polymer actuator element is warmed by Joule self-heating.

Description

高分子アクチュエータ素子を用いた駆動装置Drive device using polymer actuator element
 本発明は、一対の電極層に電圧を印加すると湾曲変形する高分子アクチュエータ素子を有する駆動装置に関し、特に、高分子アクチュエータ素子の温度特性の改善構造に関する。 The present invention relates to a drive device having a polymer actuator element that bends and deforms when a voltage is applied to a pair of electrode layers, and more particularly to a structure for improving temperature characteristics of the polymer actuator element.
 高分子アクチュエータ素子は、例えば特許文献1に示すように、電解質層と、前記電解質層の厚さ方向の両側に設けられた一対の電極層とを有して構成されている。そして、固定端である基端部側の一対の電極層間に電圧を付与すると、自由端である先端部が湾曲変形するように構成されている。 The polymer actuator element includes, for example, an electrolyte layer and a pair of electrode layers provided on both sides in the thickness direction of the electrolyte layer as shown in Patent Document 1. When a voltage is applied between the pair of electrode layers on the base end side that is the fixed end, the tip end that is the free end is bent and deformed.
 一般に高分子アクチュエータ素子は、温度特性を有し、高分子アクチュエータ素子の変位量や発生力等は、使用環境温度により変化する。特に、低温での環境下にて、アクチュエータ特性が低下しやすい。 Generally, a polymer actuator element has temperature characteristics, and the displacement amount and generated force of the polymer actuator element vary depending on the use environment temperature. In particular, the actuator characteristics are likely to deteriorate under a low temperature environment.
 上記した素子の温度特性に関し、特許文献2に記載された発明には、低温環境下において安定した動作を得るために、撮像素子側に、高分子アクチュエータ素子を配置して、駆動時における撮像素子からの熱により高分子アクチュエータ素子を暖める構造が開示されている。 Regarding the temperature characteristics of the above-described element, in the invention described in Patent Document 2, in order to obtain a stable operation in a low temperature environment, a polymer actuator element is disposed on the image sensor side, and the image sensor at the time of driving is arranged. A structure in which the polymer actuator element is warmed by the heat from is disclosed.
特開2009-77578号公報JP 2009-77578 A 特開2006-293006号公報JP 2006-293006 A
 しかしながら、特許文献2に示す構造では、撮像素子が高分子アクチュエータ素子から離れている。撮像素子に放熱板を取り付けて、高分子アクチュエータ素子に発熱部を近づけた構造も開示されているが接触させることはできないため、素子を効率的に暖めることが難しい。また特許文献2に示す構造では、撮像素子を必要とし、そもそも撮像素子が設けられない駆動装置には適用できない。あるいは特許文献2に示す撮像素子を有さない構造において、高分子アクチュエータ素子を暖めるために新たな発熱装置を用いればコスト高となる。また特許文献2の構造では、撮像素子の駆動時しか高分子アクチュエータ素子を暖めることができず、更には、暖める必要のない場合にも高分子アクチュエータ素子が暖められ制御性に劣る構造となっている。 However, in the structure shown in Patent Document 2, the imaging element is separated from the polymer actuator element. A structure in which a heat radiating plate is attached to the imaging element and a heat generating part is brought close to the polymer actuator element is also disclosed, but cannot be brought into contact with each other, so that it is difficult to efficiently warm the element. Further, the structure shown in Patent Document 2 cannot be applied to a drive device that requires an image sensor and is not provided with an image sensor in the first place. Or in the structure which does not have an image pick-up element shown in patent document 2, if a new heat generating apparatus is used in order to warm a polymer actuator element, it will become high-cost. Further, in the structure of Patent Document 2, the polymer actuator element can be warmed only when the image sensor is driven, and further, the polymer actuator element is warmed even when it is not necessary to be warmed, resulting in poor controllability. Yes.
 そこで本発明は、上記従来の課題を解決するものであり、低コストにて効率良く高分子アクチュエータ素子を暖めることができ、更に発熱に対する制御性に優れた高分子アクチュエータ素子を用いた駆動装置を提供することを目的としている。 Accordingly, the present invention solves the above-described conventional problems, and can provide a driving apparatus using a polymer actuator element that can efficiently warm a polymer actuator element at low cost and has excellent controllability to heat generation. It is intended to provide.
 本発明における高分子アクチュエータ素子を有する駆動装置は、
 電解質層及び前記電解質層の厚さ方向の両面に設けられた電極層を備え、前記電極層間に電圧を付与すると変形する高分子アクチュエータ素子と、
 前記高分子アクチュエータ素子へ駆動電圧を印加する制御部とを有する駆動装置であって、
 前記制御部は、前記高分子アクチュエータ素子へ交流電圧を印加可能とされ、前記制御部は、前記高分子アクチュエータ素子の状態に応じて前記交流電圧を印加することを特徴とするものである。
The drive device having the polymer actuator element according to the present invention,
A polymer actuator element comprising an electrolyte layer and electrode layers provided on both surfaces in the thickness direction of the electrolyte layer, and deformed when a voltage is applied between the electrode layers;
A drive unit having a controller for applying a drive voltage to the polymer actuator element,
The control unit can apply an AC voltage to the polymer actuator element, and the control unit applies the AC voltage according to a state of the polymer actuator element.
 上記したように制御部では、高分子アクチュエータ素子に必要に応じて交流電圧を印加可能としており、交流電圧の印加により、電極層に電流が流れ、ジュール熱により高分子アクチュエータ素子が自己発熱によって暖められる。そして本発明では、低温時の特性を向上させたり、イオンの偏りを除去しやすくできる。また本発明では、交流電圧を印加可能な制御部を素子に接続しており、高分子アクチュエータ素子の層構造を従来から変える必要性がない。また、別に発熱装置を設ける必要もない。このため駆動装置の小型・薄型化及び低コスト化を実現できる。また素子自身の自己発熱を使用する構造であるため効率良くアクチュエータ素子を暖めることが可能であり、また素子構造を変えないため構造変化に伴う特性劣化や特性の安定性の低下といった要因もなく、したがって、本発明によれば、特に低温動作での高分子アクチュエータ素子のアクチュエータ特性を効果的に、改善することができる。 As described above, the control unit can apply an AC voltage to the polymer actuator element as necessary. When the AC voltage is applied, a current flows through the electrode layer, and the polymer actuator element is warmed by self-heating by Joule heat. It is done. And in this invention, the characteristic at the time of low temperature can be improved, or the bias | inclination of ion can be removed easily. Further, in the present invention, a controller capable of applying an alternating voltage is connected to the element, and there is no need to change the layer structure of the polymer actuator element from the conventional one. Further, there is no need to provide a separate heat generating device. For this reason, the drive device can be reduced in size, thickness, and cost. In addition, it is possible to warm the actuator element efficiently because it is a structure that uses the self-heating of the element itself, and since there is no change in the element structure, there is no factor such as characteristic deterioration due to structural change or deterioration in characteristic stability, Therefore, according to the present invention, it is possible to effectively improve the actuator characteristics of the polymer actuator element particularly at low temperature operation.
 本発明では、前記制御部は、前記高分子アクチュエータ素子または前記高分子アクチュエータ素子の周囲の温度が所定の温度より低いときに前記交流電圧を印加することが好ましい。 In the present invention, it is preferable that the controller applies the AC voltage when a temperature around the polymer actuator element or the polymer actuator element is lower than a predetermined temperature.
 また本発明では、前記制御部は、前記高分子アクチュエータ素子に流れる電流値が所定の値より小さいときに前記交流電圧を印加することが好ましい。低温時には駆動電流が小さくなるので、駆動電流が所定値よりも小さくなったときに交流電流を印加することで低温時の特性を効果的に改善することが出来る。 In the present invention, it is preferable that the controller applies the AC voltage when a current value flowing through the polymer actuator element is smaller than a predetermined value. Since the drive current becomes small at low temperatures, the characteristics at low temperature can be effectively improved by applying an alternating current when the drive current becomes smaller than a predetermined value.
 また本発明では、前記制御部では、環境温度変化、あるいは、前記環境温度変化に基づく前記高分子アクチュエータ素子からの情報変化の少なくともいずれか1つを検出可能なモニタ部が設けられ、前記モニタ部からの検出結果に基づいて、前記交流電圧の重畳の有無が判断されることが好ましい。例えば、環境温度変化が、所定温度以下となったことをモニタ部で検出したときに、交流電圧の重畳が行われるように制御することができる。あるいは、環境温度が低温になると、高分子アクチュエータ素子に流れる駆動電流が小さくなり、素子変位量が小さくなるので、駆動電流や素子変位量が所定値以下となったことをモニタ部で検出したときに、交流電圧の重畳が行われるように制御することができる。このように本発明では、交流電圧の重畳のタイミングを木目細かく設定でき、発熱に対する制御性をより効果的に向上させることができる。 In the present invention, the control unit is provided with a monitor unit capable of detecting at least one of an environmental temperature change or an information change from the polymer actuator element based on the environmental temperature change, and the monitor unit It is preferable to determine whether or not the AC voltage is superimposed on the basis of the detection result from. For example, when the monitor unit detects that the environmental temperature change has become equal to or lower than a predetermined temperature, control can be performed so that alternating voltage is superimposed. Alternatively, when the environmental temperature is low, the drive current flowing through the polymer actuator element is reduced and the element displacement is reduced. Therefore, when the monitor unit detects that the drive current or the element displacement is below a predetermined value. In addition, it is possible to control so that alternating voltage is superimposed. As described above, in the present invention, the timing of superimposing the AC voltage can be set finely, and the controllability with respect to heat generation can be improved more effectively.
 また本発明では、前記制御部では、環境温度変化、あるいは、前記環境温度変化に基づく前記高分子アクチュエータ素子からの情報変化の少なくともいずれか1つを検出可能なモニタ部が設けられ、前記モニタ部からの検出結果に基づいて、前記交流電圧の重畳波形が制御されることが好ましい。本発明における重畳波形の制御とは、交流電圧の周波数や、電圧、駆動電圧に対する対称性(シンメトリー)、波形形状(矩形波、正弦波、鋸波、三角波等)等を制御することを意味する。そして本発明では、モニタ部からの検出結果に基づいて、交流電圧の重畳波形を木目細かく設定でき、発熱に対する制御性をより効果的に向上させることができる。 In the present invention, the control unit is provided with a monitor unit capable of detecting at least one of an environmental temperature change or an information change from the polymer actuator element based on the environmental temperature change, and the monitor unit It is preferable that the superimposed waveform of the AC voltage is controlled based on the detection result from. The control of the superimposed waveform in the present invention means controlling the frequency of AC voltage, symmetry (symmetry) with respect to voltage and drive voltage, waveform shape (rectangular wave, sine wave, sawtooth wave, triangular wave, etc.), and the like. . And in this invention, based on the detection result from a monitor part, the superimposed waveform of alternating voltage can be set finely, and the controllability with respect to heat_generation | fever can be improved more effectively.
 また本発明では、前記モニタ部は、前記高分子アクチュエータ素子に流れる電流を検出することが好ましい。 In the present invention, it is preferable that the monitor unit detects a current flowing through the polymer actuator element.
 また本発明では、前記交流電圧は、前記駆動電圧よりも小さい振幅で前記駆動電圧に重畳されて印加されることが好ましい。小さい交流電圧の重畳により、高分子アクチュエータ素子の動作に与える影響を低減できる。 In the present invention, it is preferable that the AC voltage is applied with being superimposed on the drive voltage with an amplitude smaller than the drive voltage. By superimposing a small alternating voltage, the influence on the operation of the polymer actuator element can be reduced.
 また本発明では、前記交流電圧の最大電圧値と最小電圧値の絶対値が異なる構成にできる。これにより、例えば、交流電圧と駆動電圧が重畳された電圧の最大値が、駆動電圧を過大に上回ることを避けることができ、高分子アクチュエータ素子の劣化を防止できる。    In the present invention, the maximum voltage value of the AC voltage and the absolute value of the minimum voltage value can be different. Thereby, for example, it is possible to avoid that the maximum value of the voltage in which the AC voltage and the driving voltage are superimposed exceeds the driving voltage, and it is possible to prevent deterioration of the polymer actuator element. *
 また本発明では、前記高分子アクチュエータ素子に駆動電圧を印加しないときに、前記交流電圧を前記高分子アクチュエータに印加可能とされたものであることが好ましい。 In the present invention, it is preferable that the AC voltage can be applied to the polymer actuator when no driving voltage is applied to the polymer actuator element.
 これにより、高分子アクチュエータ素子の非駆動時においても高分子アクチュエータ素子を効率良く暖めることができ、その後の駆動時に、特に低温環境下であっても、高分子アクチュエータ素子をスムースに駆動させることができる。 As a result, the polymer actuator element can be efficiently warmed even when the polymer actuator element is not driven, and the polymer actuator element can be smoothly driven during the subsequent driving, particularly in a low temperature environment. it can.
 本発明では、低コストにて効率良く高分子アクチュエータ素子を暖めることができる。特に低温動作での高分子アクチュエータ素子のアクチュエータ特性を効果的に、改善することができる。更に本発明によれば発熱に対する制御性を効果的に向上させることができる。 In the present invention, the polymer actuator element can be warmed efficiently at low cost. In particular, it is possible to effectively improve the actuator characteristics of the polymer actuator element at low temperature operation. Furthermore, according to the present invention, the controllability against heat generation can be effectively improved.
(a)は、本実施形態における高分子アクチュエータ素子の非駆動時の部分断面図、(b)は、高分子アクチュエータ素子が湾曲した状態を示す部分断面図、(A) is a partial cross-sectional view when the polymer actuator element in the present embodiment is not driven, (b) is a partial cross-sectional view showing a state where the polymer actuator element is curved, (a)は、高分子アクチュエータ素子の電極層間に印加される電圧波形の一例を示す模式図、(b)は、高分子アクチュエータ素子32に流れる電流波形の一例を示す模式図、(A) is a schematic diagram showing an example of a voltage waveform applied between electrode layers of the polymer actuator element, (b) is a schematic diagram showing an example of a current waveform flowing through the polymer actuator element 32, 高分子アクチュエータ素子の電極層間に印加される電圧波形の別の例を示す部分拡大模式図、Partial enlarged schematic view showing another example of the voltage waveform applied between the electrode layers of the polymer actuator element, 本実施形態の駆動装置に設けられる制御部のブロック図、Block diagram of a control unit provided in the drive device of the present embodiment, 本実施形態の高分子アクチュエータ素子を有する駆動装置を適用したドット表示装置の部分断面図。The fragmentary sectional view of the dot display device to which the drive device which has a polymer actuator element of this embodiment is applied.
 図1は本実施形態の駆動装置を構成する高分子アクチュエータ素子の部分断面図を示す。図1(b)では、高分子アクチュエータ素子とともに高分子アクチュエータ素子に接続される制御部を模式図的に示している。 FIG. 1 is a partial cross-sectional view of a polymer actuator element that constitutes the drive device of this embodiment. FIG. 1B schematically shows a control unit connected to the polymer actuator element together with the polymer actuator element.
 本実施形態において高分子アクチュエータ素子を有する駆動装置は、少なくとも、高分子アクチュエータ素子と、高分子アクチュエータ素子を駆動させるための制御部を備えた電気系統とを有する。まず図1を用いて高分子アクチュエータ素子の構造を説明する。 In the present embodiment, a drive device having a polymer actuator element has at least a polymer actuator element and an electric system including a control unit for driving the polymer actuator element. First, the structure of the polymer actuator element will be described with reference to FIG.
 図1(a)に示すように、本実施形態における高分子アクチュエータ素子32は、電解質層33と、電解質層33の厚さ方向(Z)の両側表面に形成される上部電極層34、及び、下部電極層35を備えて構成される。 As shown in FIG. 1A, the polymer actuator element 32 in the present embodiment includes an electrolyte layer 33, upper electrode layers 34 formed on both surfaces in the thickness direction (Z) of the electrolyte layer 33, and A lower electrode layer 35 is provided.
 例えば、本発明における実施形態の高分子アクチュエータ素子32は、イオン液体とベースポリマーを有する電解質層33と、カーボンナノチューブ等の導電性フィラー、イオン液体及びベースポリマーとを有する上部電極層34及び下部電極層35とを有して構成される。上部電極層34は電解質層33の図示上面側、下部電極層35は、電解質層33の図示下面側に形成される。 For example, the polymer actuator element 32 according to the embodiment of the present invention includes an electrolyte layer 33 having an ionic liquid and a base polymer, an upper electrode layer 34 and a lower electrode having a conductive filler such as carbon nanotubes, an ionic liquid and a base polymer. And a layer 35. The upper electrode layer 34 is formed on the upper surface side of the electrolyte layer 33 in the figure, and the lower electrode layer 35 is formed on the lower surface side of the electrolyte layer 33 in the figure.
 ベースポリマーとしては、ポリフッ化ビニリデン(PVDF)や、ポリメチルメタクリレート(PMMA)等を提示できる。この具体例では電解質層33内にイオン交換樹脂を含まないので、陽イオン及び陰イオンのどちらも自由に移動可能な状態となっている。 As the base polymer, polyvinylidene fluoride (PVDF), polymethyl methacrylate (PMMA) or the like can be presented. In this specific example, since the ion exchange resin is not included in the electrolyte layer 33, both the cation and the anion are freely movable.
 なお、電解質層33は、イオン交換樹脂と、塩を含有する分極性有機溶媒又はイオン液体である液状有機化合物とが含まれたものであってもよい。このとき、イオン交換樹脂は例えば、陽イオン交換樹脂である。これにより陰イオンが固定され、陽イオンが自由に移動可能となる。陽イオン交換樹脂としては、ポリエチレン、ポリスチレン、フッ素樹脂等の樹脂に、スルホン酸基、カルボキシル基等の官能基が導入されたものを好ましく使用できる。 The electrolyte layer 33 may include an ion exchange resin and a polar organic solvent containing a salt or a liquid organic compound that is an ionic liquid. At this time, the ion exchange resin is, for example, a cation exchange resin. As a result, the anion is fixed and the cation can move freely. As the cation exchange resin, a resin obtained by introducing a functional group such as a sulfonic acid group or a carboxyl group into a resin such as polyethylene, polystyrene, or fluororesin can be preferably used.
 高分子アクチュエータ素子32の基端部36は固定端部であり、高分子アクチュエータ素子32の基端部36は、固定支持部38にて固定支持されている。図1に示すように例えば、高分子アクチュエータ素子32は、片持ちで支持されている。そして両面の電極層34,35間に駆動電圧を印加すると、図1(b)に示すように、電解質層33内のイオン移動などによって電解質層33の上下にて膨潤差が生じ、曲げ応力が発生して、高分子アクチュエータ素子32の自由端部である先端部37を湾曲変形させることができる。イオン移動で電極間に膨潤の差が生じる原理は一般に一義的ではないとされているが、代表的な原理要因の1つに、陽イオンと陰イオンのイオン半径の差で膨潤に差が生じることが知られている。 The base end portion 36 of the polymer actuator element 32 is a fixed end portion, and the base end portion 36 of the polymer actuator element 32 is fixedly supported by a fixed support portion 38. As shown in FIG. 1, for example, the polymer actuator element 32 is cantilevered. When a drive voltage is applied between the electrode layers 34 and 35 on both sides, as shown in FIG. 1B, a swelling difference occurs above and below the electrolyte layer 33 due to ion movement in the electrolyte layer 33 and the bending stress is increased. It is generated and the distal end portion 37 which is the free end portion of the polymer actuator element 32 can be bent and deformed. The principle that the difference in swelling between electrodes due to ion transfer is generally not unambiguous, but one of the typical principle factors is that there is a difference in swelling due to the difference in ionic radius between cation and anion. It is known.
 なお図1に示す固定支持部38は、電極層34,35と電気的に接続する接続部であることが好ましい。あるいは固定支持部38と各電極層34,35との間に配線基板等が配置される構成であってもよい。 1 is preferably a connection part that is electrically connected to the electrode layers 34 and 35. Or the structure by which a wiring board etc. are arrange | positioned between the fixed support part 38 and each electrode layer 34 and 35 may be sufficient.
 高分子アクチュエータ素子32の基端部36には、例えば図1(b)に示す駆動回路60を備えた制御部80が接続されている。この制御部80(駆動回路60)では高分子アクチュエータ素子32に駆動電圧を印加でき、更に発振器(OSC)を備えており、交流電圧を駆動電圧に対して重畳させることが可能になっている。 For example, a control unit 80 including a drive circuit 60 shown in FIG. 1B is connected to the base end portion 36 of the polymer actuator element 32. The control unit 80 (drive circuit 60) can apply a drive voltage to the polymer actuator element 32 and further includes an oscillator (OSC) so that an alternating voltage can be superimposed on the drive voltage.
 図2(a)に、高分子アクチュエータ素子32の電極層34,35間に印加される電圧波形の一例を示し、図2(b)に、高分子アクチュエータ素子32に流れる電流波形を示す。図2(a)に示す高分子アクチュエータ素子32の非駆動状態Aでは電極層34,35間に電圧を印加せず、高分子アクチュエータ素子32の駆動状態Bでは電極層34,35間に駆動電圧Cを印加する。 2A shows an example of a voltage waveform applied between the electrode layers 34 and 35 of the polymer actuator element 32, and FIG. 2B shows a current waveform flowing through the polymer actuator element 32. As shown in FIG. In the non-driving state A of the polymer actuator element 32 shown in FIG. 2A, no voltage is applied between the electrode layers 34 and 35, and in the driving state B of the polymer actuator element 32, a driving voltage is applied between the electrode layers 34 and 35. Apply C.
 本実施形態における高分子アクチュエータ素子32は、容量負荷系アクチュエータであり、図2(b)に示す高分子アクチュエータ素子32に流れる駆動電流Dは、一般的なキャパシタと同様の振る舞いとなる。図2(a)のように駆動電圧Cを例えば矩形波により立ち上げた際に駆動電流Dは微分波形になり、図2(b)に示すように、駆動電圧Cの立ち上がり部分で大きな電流が流れて充電が始まる。その後、駆動電流Dは急激に低下し、やがて満充電により駆動電流Dは小さくなる。 The polymer actuator element 32 in the present embodiment is a capacitive load actuator, and the drive current D flowing through the polymer actuator element 32 shown in FIG. 2B behaves in the same manner as a general capacitor. When the drive voltage C is raised by, for example, a rectangular wave as shown in FIG. 2A, the drive current D becomes a differential waveform, and a large current is generated at the rising portion of the drive voltage C as shown in FIG. Flowing and charging begins. Thereafter, the drive current D rapidly decreases and eventually the drive current D becomes smaller due to full charge.
 上記したように本実施形態における各電極層34,35は、例えば、カーボンナノチューブ等の導電性フィラーを含む構成であり、電流を流すことでジュール熱により発熱させることが可能である。 As described above, each of the electrode layers 34 and 35 in the present embodiment has a configuration including a conductive filler such as a carbon nanotube, and can generate heat by Joule heat by passing an electric current.
 そこで本実施形態では図2(a)に示すように、図1(b)に示した発振器を備える駆動回路60により、駆動電圧Cに対して、駆動電圧Cよりも高い周波数の交流電圧Eを重畳可能としている。交流電圧は高分子アクチュエータ素子32の状態に応じて印加される。交流電圧Eは、0Vを中心に振幅を有する電圧であるため、駆動電圧Cと重畳した波形の中心電圧Iは駆動電圧Cと一致する。駆動電圧Cとは、高分子アクチュエータ素子32を図1(b)のように湾曲変形させるための主電圧であり、駆動のために必要な電圧を指している。具体的には図2(a)に示すように、電圧の非印加時から電圧が立上った後の直線的な部分での電圧レベルを指している。なお、図示してわかりやすいよう直線部分を設けた例を示しているが、最初から交流を印加してもよい。 Therefore, in this embodiment, as shown in FIG. 2A, an AC voltage E having a frequency higher than that of the drive voltage C is applied to the drive voltage C by the drive circuit 60 including the oscillator shown in FIG. Superposition is possible. The AC voltage is applied according to the state of the polymer actuator element 32. Since the AC voltage E is a voltage having an amplitude centered on 0 V, the center voltage I having a waveform superimposed on the drive voltage C coincides with the drive voltage C. The driving voltage C is a main voltage for bending and deforming the polymer actuator element 32 as shown in FIG. 1B, and indicates a voltage necessary for driving. Specifically, as shown in FIG. 2A, it indicates the voltage level at a linear portion after the voltage rises from the time of non-application of the voltage. In addition, although the example which provided the linear part for illustration so that it may be understood easily is shown, you may apply alternating current from the beginning.
 本実施形態では、図2(a)に示すように、駆動電圧Cに対して交流電圧Eを重畳させることで、図2(b)に示すように、電流Fを繰り返し電極層34,35に流すことができる。よって、電極層34,35をジュール熱により発熱させることが出来る。なお、駆動電圧による電流成分が減少して交流電圧による電流成分が相対的に大きくなったときには電流Fは交流電流に近くなり、一時的にマイナス値となることもある。 In the present embodiment, as shown in FIG. 2A, the AC voltage E is superimposed on the drive voltage C, whereby the current F is repeatedly applied to the electrode layers 34 and 35 as shown in FIG. It can flow. Therefore, the electrode layers 34 and 35 can be heated by Joule heat. When the current component due to the drive voltage decreases and the current component due to the AC voltage becomes relatively large, the current F becomes close to the AC current and may temporarily become a negative value.
 交流電圧Eは、駆動電圧Cよりも高い周波数に設定される。この際、交流電圧Eが、駆動電圧Cへの重畳によって高分子アクチュエータ素子32自身の変位に変動がない、あるいは、使用目的等に合わせて許容される変動内となる周波数又は電圧に設定される。 AC voltage E is set to a frequency higher than drive voltage C. At this time, the AC voltage E is set to a frequency or voltage that does not change in the displacement of the polymer actuator element 32 itself due to superimposition on the drive voltage C, or falls within the allowable fluctuation according to the purpose of use. .
 例えば、本実施形態の高分子アクチュエータ素子32を用いた駆動装置(図5参照)は、後述するように、高分子アクチュエータ素子32を直流駆動(DC駆動)させて、突出部材31を押圧する用途に使用できるが、かかる場合、重畳する交流電圧Eの周波数を1~数百Hz程度(より具体的には1~100Hz程度)に設定することが出来る。 For example, the drive device (see FIG. 5) using the polymer actuator element 32 of the present embodiment is used to press the protruding member 31 by direct current driving (DC driving) the polymer actuator element 32 as described later. In such a case, the frequency of the superimposed AC voltage E can be set to about 1 to several hundred Hz (more specifically, about 1 to 100 Hz).
 また図2(a)に示すように、駆動電圧Cに対し交流電圧Eの振幅を小さく設定することで、重畳された最大電圧値Gが駆動電圧Cに対して高くなりすぎて高分子アクチュエータ素子32が劣化することを避けることができる。周波数にもよるが、駆動電圧Cが1~3Vに対して、交流電圧Eは数十mV~百数十mV程度でよい。これにより、高分子アクチュエータ素子32を効率良く暖めることができるとともに、高分子アクチュエータ素子32を安定して駆動させることが出来る。 Further, as shown in FIG. 2A, by setting the amplitude of the AC voltage E to be smaller than the drive voltage C, the superimposed maximum voltage value G becomes too high with respect to the drive voltage C, and the polymer actuator element. It can be avoided that 32 deteriorates. Although depending on the frequency, the AC voltage E may be several tens of mV to several tens of mV with respect to the driving voltage C of 1 to 3V. Thereby, the polymer actuator element 32 can be efficiently warmed and the polymer actuator element 32 can be driven stably.
 このように本実施形態では、高分子アクチュエータ素子32に必要に応じて、駆動電圧Cへの交流電圧Eの重畳により電流Fを電極層34,35に流すことができ、高分子アクチュエータ素子32を自己発熱によって暖めることができる。本実施形態では、高分子アクチュエータ素子32に接続される制御部80を構成する駆動回路60の回路構造を変更するだけで、高分子アクチュエータ素子32としての層構造・形状を従来から変える必要性がない。このため、別に発熱装置を用いるような場合に比べて、高分子アクチュエータ素子32を備えた駆動装置の小型・薄型化及び低コスト化を実現できる。また素子自身の自己発熱を使用する構造であるため効率良くアクチュエータ素子32を暖めることが可能であり、また素子構造を変えないため構造変化に伴う特性劣化や特性の安定性の低下といった要因もない。したがって、本実施形態によれば、特に低温動作での高分子アクチュエータ素子32のアクチュエータ特性を効果的に、改善することができる。 As described above, in the present embodiment, if necessary, the polymer actuator element 32 can cause the current F to flow through the electrode layers 34 and 35 by superimposing the AC voltage E on the drive voltage C. Can be warmed by self-heating. In the present embodiment, there is a need to change the layer structure / shape of the polymer actuator element 32 from the conventional one only by changing the circuit structure of the drive circuit 60 constituting the control unit 80 connected to the polymer actuator element 32. Absent. For this reason, compared with the case where a heat generating device is used separately, the drive device provided with the polymer actuator element 32 can be reduced in size, thickness, and cost. In addition, since the self-heating of the element itself is used, the actuator element 32 can be efficiently warmed, and since the element structure is not changed, there is no factor such as deterioration of characteristics due to structural changes or deterioration of characteristics stability. . Therefore, according to the present embodiment, it is possible to effectively improve the actuator characteristics of the polymer actuator element 32 particularly at low temperature operation.
 図2(a)では、交流電圧Eの最大電圧値Gと、最小電圧値Hとの間の中心電圧値Iが、駆動電圧Cに略一致している。よって、図2(a)では、交流電圧Eを駆動電圧Cに対して対称波形に重畳させることができる。重畳する交流電圧Eの周波数が、電解質層33内でのイオン移動速度よりも十分に高い場合、交流電圧Eの最大電圧値を高分子アクチュエータ素子32に印加可能な上限電圧を超える電圧にて印加することが可能であり、このとき、交流電圧Eを上記のように対称波形とすることが電圧制御性に優れるとともに、高分子アクチュエータ素子32のアクチュエータ特性をばらつきが小さく特性の安定性を向上させるうえで最も効率がよい。 In FIG. 2A, the center voltage value I between the maximum voltage value G and the minimum voltage value H of the AC voltage E substantially matches the drive voltage C. Therefore, in FIG. 2A, the alternating voltage E can be superimposed on the symmetrical waveform with respect to the driving voltage C. When the frequency of the superimposed AC voltage E is sufficiently higher than the ion movement speed in the electrolyte layer 33, the maximum voltage value of the AC voltage E is applied at a voltage exceeding the upper limit voltage that can be applied to the polymer actuator element 32. In this case, the alternating voltage E having a symmetrical waveform as described above is excellent in voltage controllability, and the actuator characteristics of the polymer actuator element 32 are less varied and the stability of the characteristics is improved. Is the most efficient.
 あるいは図3に示すように、非対称の交流電圧を駆動電圧Cに重畳することもできる。例えば、大きな発熱量を得たいために交流電圧の振幅を大きくしすぎると最大電圧値Gが高くなりすぎて高分子アクチュエータ素子32が徐々に劣化してしまう恐れがあるが、非対称の交流電圧を印加して最大電圧値Gがそれほど高くなく、最小電圧値Hが低くなるように重畳することによって、すなわち、交流電圧Eの最大電圧値(G-C)と最小電圧値(H-C)の絶対値が異なる非対称な交流電圧を印加することによって、十分な電流を流して発熱させることが可能となる。また、このとき波形を適切に制御することによって平均の印加電圧は駆動電圧Cとすることも可能であり、変位には影響せずに電流を流すことができる。これにより、発熱効果をより効果的に向上させることができ、特に低温環境下でのアクチュエータ特性の向上を効果的に図ることが可能である。 Alternatively, an asymmetrical AC voltage can be superimposed on the driving voltage C as shown in FIG. For example, if the amplitude of the AC voltage is increased too much in order to obtain a large amount of heat generation, the maximum voltage value G may become too high and the polymer actuator element 32 may gradually deteriorate. By applying the voltage so that the maximum voltage value G is not so high and the minimum voltage value H is low, that is, the maximum voltage value (GC) and the minimum voltage value (HC) of the AC voltage E are reduced. By applying asymmetrical AC voltages having different absolute values, it is possible to generate heat by flowing a sufficient current. At this time, by appropriately controlling the waveform, the average applied voltage can be set to the drive voltage C, and a current can flow without affecting the displacement. As a result, the heat generation effect can be improved more effectively, and it is possible to effectively improve the actuator characteristics particularly in a low temperature environment.
 交流電圧Eの波形は、図2(a)に示すように三角波、正弦波等であってもよいし図3に示すように矩形波であってもよい。波形形状は特に限定されるものではないが、後述する制御部80を構成する波形制御部84にて波形形状を規制することが可能である。 The waveform of the AC voltage E may be a triangular wave, a sine wave or the like as shown in FIG. 2A, or may be a rectangular wave as shown in FIG. The waveform shape is not particularly limited, but the waveform shape can be regulated by a waveform control unit 84 constituting the control unit 80 described later.
 図4には高分子アクチュエータ素子32に接続される接続部80の好ましい構成が示されている。図4に示すように、制御部80には、モニタ部81、判断処理部82及び駆動回路60が備えられている。判断処理部82は、モニタ部81からの検出結果に基づいて、交流電圧の重畳を行うか否かを判断する切換部83と、モニタ部81からの検出信号に基づいて、交流電圧の重畳波形を制御する波形を制御する波形制御部84とを有する。 FIG. 4 shows a preferred configuration of the connecting portion 80 connected to the polymer actuator element 32. As shown in FIG. 4, the control unit 80 includes a monitor unit 81, a determination processing unit 82, and a drive circuit 60. The determination processing unit 82 determines whether or not to perform AC voltage superimposition based on the detection result from the monitor unit 81, and the AC voltage superimposed waveform based on the detection signal from the monitor unit 81. And a waveform control unit 84 for controlling the waveform for controlling.
 図4に示すように、高分子アクチュエータ素子32は、モニタ部81及び駆動回路60に接続されている。 As shown in FIG. 4, the polymer actuator element 32 is connected to a monitor unit 81 and a drive circuit 60.
 本実施形態における駆動電圧Cに対する交流電圧Eの重畳は、例えば、環境温度がある所定以下の低温になったときに行う。高分子アクチュエータ素子32は、低温であると駆動電流が電極層34,35間に流れにくくなるため、高分子アクチュエータ素子32の駆動電流(ピーク電流)の変化をモニタ部81で検出する。モニタ部81での検出結果に基づいて判断処理部82の切換部83では、図2(a)に示す駆動電圧Cに対して交流電圧Eを重畳するか否かを判断する。切換部83にて交流電圧Eの重畳を行うと決定されると駆動回路60により、駆動電圧Cに対して交流電圧Eを重畳させて、高分子アクチュエータ素子32に印加する。これにより高分子アクチュエータ素子32が暖められる。あるいは、切換部83にて交流電圧Eの重畳を行わないと決定されると、駆動回路60では、交流電圧Eを重畳することなく駆動電圧Cを高分子アクチュエータ素子32に印加する。かかる場合、高分子アクチュエータ素子32は暖められない。このように本実施形態では制御部80にて、高分子アクチュエータ素子32を暖めることが必要である場合と必要でない場合とで交流電圧Eの重畳のオン/オフを切り換えることができ、高分子アクチュエータ素子32を最適な状態に保つことが可能になる。 The superposition of the AC voltage E on the drive voltage C in the present embodiment is performed, for example, when the environmental temperature becomes a certain low temperature. When the polymer actuator element 32 is at a low temperature, it becomes difficult for the drive current to flow between the electrode layers 34 and 35, so the monitor unit 81 detects a change in the drive current (peak current) of the polymer actuator element 32. Based on the detection result of the monitor unit 81, the switching unit 83 of the determination processing unit 82 determines whether or not the AC voltage E is superimposed on the drive voltage C shown in FIG. When the switching unit 83 determines that the alternating voltage E is to be superimposed, the driving circuit 60 causes the alternating voltage E to be superimposed on the driving voltage C and applied to the polymer actuator element 32. Thereby, the polymer actuator element 32 is warmed. Alternatively, when the switching unit 83 determines not to superimpose the AC voltage E, the drive circuit 60 applies the drive voltage C to the polymer actuator element 32 without superimposing the AC voltage E. In such a case, the polymer actuator element 32 is not warmed. As described above, in the present embodiment, the controller 80 can switch on / off the superposition of the AC voltage E depending on whether the polymer actuator element 32 needs to be warmed or not. It becomes possible to keep the element 32 in an optimal state.
 またモニタ部81での検出結果に基づいて、波形制御部84では、交流電圧Eの重畳波形の制御を行うか否かを判断することができる。重畳波形の制御とは、交流電圧Eの周波数や電圧、駆動電圧Cに対する対称性(シンメトリー;図2(a)、図3参照)、波形形状(矩形波、正弦波、鋸波、三角波等;図2(a)、図3参照)等を制御することを意味する。これにより、モニタ部81の検出結果に基づいて、発熱量等を調整することができ、高分子アクチュエータ素子32を最適な状態に保つことが可能になる。 Further, based on the detection result of the monitor unit 81, the waveform control unit 84 can determine whether or not to control the superimposed waveform of the AC voltage E. The control of the superimposed waveform includes symmetry with respect to the frequency and voltage of the AC voltage E and the driving voltage C (symmetry; see FIGS. 2A and 3), waveform shape (rectangular wave, sine wave, sawtooth wave, triangular wave, etc.); 2 (a), FIG. 3) and the like are controlled. Thereby, based on the detection result of the monitor part 81, the emitted-heat amount etc. can be adjusted and it becomes possible to keep the polymer actuator element 32 in the optimal state.
 また本実施形態では、モニタ部81では、高分子アクチュエータ素子32の変位量をモニタすることで、交流電圧Eの重畳のオン/オフを切り換え、重畳波形の調整を行うことも可能である。低温であると、所定の駆動電圧Cを高分子アクチュエータ素子32に印加しても変位量が所定値よりも小さくなる。よって、高分子アクチュエータ素子32の変位量をモニタ部81で検出し、その検出結果に基づいて、制御部80にて交流電圧Eの重畳のオン/オフの切り換えや重畳波形の調整を行うことが可能である。 In the present embodiment, the monitor unit 81 can also monitor the amount of displacement of the polymer actuator element 32 to switch on / off of the superposition of the AC voltage E and adjust the superposition waveform. If the temperature is low, the amount of displacement becomes smaller than a predetermined value even if a predetermined drive voltage C is applied to the polymer actuator element 32. Therefore, the amount of displacement of the polymer actuator element 32 is detected by the monitor unit 81, and on the basis of the detection result, the control unit 80 switches on / off the superposition of the AC voltage E and adjusts the superposition waveform. Is possible.
 また本実施形態では、モニタ部81が感熱素子(温度計)85と接続されており、モニタ部81にて外部の環境温度を検出することで、制御部80にて交流電圧Eの重畳のオン/オフの切り換えや重畳波形の調整を行うことも可能である。 In the present embodiment, the monitor unit 81 is connected to a thermosensitive element (thermometer) 85, and when the monitor unit 81 detects an external environmental temperature, the control unit 80 turns on the superposition of the AC voltage E. It is also possible to switch on / off and adjust the superimposed waveform.
 このように本実施形態では、交流電圧Eの重畳のオン/オフの切換や、重畳波形の調整を、環境温度変化、あるいは、環境温度変化に基づく高分子アクチュエータ素子32からの情報変化(変位量や駆動電流)をモニタ部81にて検出し、その検出結果に基づいて、きめ細かく設定することが可能である。以上により、本実施形態では、発熱に対する制御性をより効果的に向上させることが可能である。 As described above, in the present embodiment, switching of on / off of the superposition of the alternating voltage E and adjustment of the superposition waveform are performed by changing the environmental temperature or changing the information from the polymer actuator element 32 (displacement amount) Or the drive current) can be detected by the monitor unit 81, and can be set finely based on the detection result. As described above, in the present embodiment, it is possible to more effectively improve the controllability for heat generation.
 なお感熱素子85とモニタ部81、高分子アクチュエータ素子32とモニタ部81は両方、接続された状態であっても、どちらか一方にのみ接続された状態であってもよい。 The thermal element 85 and the monitor unit 81, the polymer actuator element 32 and the monitor unit 81 may both be connected or may be connected to only one of them.
 本実施形態において、高分子アクチュエータ素子32を暖める主目的は、低温環境下でのアクチュエータ特性の低下を抑え、アクチュエータ特性を改善することにあるが、例えば、常温環境下においても、高分子アクチュエータ素子32を暖めることで、アクチュエータ特性を更に向上させることが可能である。環境温度変化、あるいは、環境温度変化に基づく高分子アクチュエータ素子32からの情報変化がどの程度となった場合に、駆動電圧Cに対して交流電圧Eの重畳を行い、また重畳波形をどのように調整するかは判断処理部82に対する設定により適宜、変更、調整を行うことが可能である。必ずしも環境温度が低温の場合のみならず常温等であってもアクチュエータ特性を更に向上させたい場合には、交流波形の重畳により電極層34,35を発熱させて高分子アクチュエータ素子32を暖めるように設定することが可能である。また、一方向に駆動し続けることによる高分子アクチュエータ素子32の歪を解消するために逆方向へ駆動する際も、イオンの移動をスムースにするとともにポリマーを軟化させるために温度を上げた方がよい。このような場合も、交流波形の重畳を行うこともできる。 In the present embodiment, the main purpose of warming the polymer actuator element 32 is to suppress a decrease in actuator characteristics in a low temperature environment and improve the actuator characteristics. For example, the polymer actuator element is also used in a room temperature environment. By warming 32, the actuator characteristics can be further improved. The AC voltage E is superimposed on the drive voltage C when the environmental temperature change or the information change from the polymer actuator element 32 based on the environmental temperature change becomes, and how the superimposed waveform is changed. It can be changed or adjusted as appropriate depending on the setting for the determination processing unit 82. When it is desired to further improve the actuator characteristics not only when the ambient temperature is low but also at room temperature or the like, the polymer actuator element 32 is heated by heating the electrode layers 34 and 35 by superimposing AC waveforms. It is possible to set. Also, when driving in the opposite direction in order to eliminate the distortion of the polymer actuator element 32 caused by continuing driving in one direction, it is better to raise the temperature in order to smooth the movement of ions and soften the polymer. Good. In such a case, the alternating waveform can be superimposed.
 また本実施形態では、図2(a)に示すように、電極層34,35間に電圧を印加していない高分子アクチュエータ素子32の非駆動状態Aにおいて、交流電圧Jを印加することも可能である。これにより、高分子アクチュエータ素子32の非駆動時においても、素子を暖めることができ、その後の駆動時に、特に低温環境下にて高分子アクチュエータ素子をスムースに駆動させることができる。 In the present embodiment, as shown in FIG. 2A, an AC voltage J can be applied in the non-driven state A of the polymer actuator element 32 in which no voltage is applied between the electrode layers 34 and 35. It is. Thereby, even when the polymer actuator element 32 is not driven, the element can be warmed, and the polymer actuator element can be smoothly driven at the time of subsequent driving, particularly in a low temperature environment.
 交流電圧Jは、交流電圧Jの印加によっても高分子アクチュエータ素子32が変位しない、あるいは、変位してもその変位量が、駆動装置における使用目的で許容される範囲内となる周波数や電圧に設定される。 The AC voltage J is set to a frequency or voltage at which the polymer actuator element 32 does not displace even when the AC voltage J is applied, or even if the polymer actuator element 32 is displaced, the amount of displacement is within the allowable range for the purpose of use in the drive device. Is done.
 図2(a)に示すように、駆動電圧Cに対して交流電圧Eを重畳可能に設定し、且つ、非駆動状態Aにおいても交流電圧Jを印加できるように制御部80にて設定することが可能であるし、非駆動状態Aにおいてのみ交流電圧Jを印加可能に制御することも可能である。 As shown in FIG. 2A, the AC voltage E is set so as to be superposed on the drive voltage C, and the control unit 80 is set so that the AC voltage J can be applied even in the non-drive state A. It is also possible to control the AC voltage J to be applied only in the non-driving state A.
 図5は、本実施形態における高分子アクチュエータ素子を有する駆動装置の具体例な適用例である。 FIG. 5 shows a specific application example of the driving device having the polymer actuator element in the present embodiment.
 図5には、ドット表示装置1の部分縦断面図が示されている。このドット表示装置1は、例えば、視覚障害者に情報を与える点字セルとして使用される。図5は、通常、6個のドットで構成される点字のうち、1つのドットの部分を示す縦断面図である。 FIG. 5 shows a partial longitudinal sectional view of the dot display device 1. The dot display device 1 is used, for example, as a braille cell that gives information to a visually impaired person. FIG. 5 is a vertical cross-sectional view showing a portion of one dot out of braille generally composed of six dots.
 図5に示すように、ドット表示装置1は、下ケース10と上ケース20とが重ね合わされて薄型の筐体が構成される。図5に示すように下ケース10と上ケース20の間には所定の空間(変形可能領域)10b,20bが形成されている。 As shown in FIG. 5, in the dot display device 1, a lower case 10 and an upper case 20 are overlapped to form a thin casing. As shown in FIG. 5, predetermined spaces (deformable regions) 10 b and 20 b are formed between the lower case 10 and the upper case 20.
 そして図5に示すように前記空間10b,20b内に高分子アクチュエータ素子32が配置される。 Then, as shown in FIG. 5, a polymer actuator element 32 is disposed in the spaces 10b and 20b.
 高分子アクチュエータ素子32の基端部36は、上ケース20に形成された上部押圧部25と、下ケース10に設けられた下部押圧部13により挟まれて固定される。なお下部押圧部13は弾性部12と一体に接続されている。 The base end portion 36 of the polymer actuator element 32 is sandwiched and fixed by the upper pressing portion 25 formed on the upper case 20 and the lower pressing portion 13 provided on the lower case 10. The lower pressing portion 13 is integrally connected to the elastic portion 12.
 また図5に示すように、基端部36と上部押圧部25の間には上部配線板50が設けられている。上部配線板50と高分子アクチュエータ素子32の上部電極層34(図1等参照)とは電気的に接続されている。また、基端部36と下部押圧部13との間には下部配線板40が設けられる。下部配線板40と高分子アクチュエータ素子32の下部電極層35(図1等参照)とは電気的に接続されている。 Further, as shown in FIG. 5, an upper wiring board 50 is provided between the base end portion 36 and the upper pressing portion 25. The upper wiring board 50 and the upper electrode layer 34 (see FIG. 1 and the like) of the polymer actuator element 32 are electrically connected. A lower wiring board 40 is provided between the base end portion 36 and the lower pressing portion 13. The lower wiring board 40 and the lower electrode layer 35 (see FIG. 1 and the like) of the polymer actuator element 32 are electrically connected.
 図5に示すように、上ケース20に穴21が形成され、その穴21に突出部材31が設けられている。突出部材31は、突出方向であるZ1方向に向く先端部が曲面形状の接触部31aであり、退行方向であるZ2方向に向く基端部が突出押圧力を受ける被押圧部31bである。 As shown in FIG. 5, a hole 21 is formed in the upper case 20, and a protruding member 31 is provided in the hole 21. The protruding member 31 is a contacted portion 31a having a curved surface at the distal end facing the Z1 direction as the protruding direction, and a pressed portion 31b receiving the protruding pressing force at the proximal end facing in the Z2 direction as the retracting direction.
 図5に示す実線の高分子アクチュエータ素子32は、非駆動時を示す。このとき、例えば、高分子アクチュエータ素子32の自由端である先端部37は、突出部材31の被押圧部31bに接触した状態となっている。 The solid-line polymer actuator element 32 shown in FIG. At this time, for example, the distal end portion 37 which is a free end of the polymer actuator element 32 is in a state of being in contact with the pressed portion 31 b of the protruding member 31.
 図5に示すように、高分子アクチュエータ素子32の電極層34,35に電圧を印加して、高分子アクチュエータ素子32の先端部37を上方に湾曲変形させ、突出部材31を押圧しながら点線に示すように上方に移動させることができる。 As shown in FIG. 5, a voltage is applied to the electrode layers 34 and 35 of the polymer actuator element 32 to bend and deform the tip portion 37 of the polymer actuator element 32 upward, and the protruding member 31 is pressed to a dotted line. It can be moved upward as shown.
 本実施形態によれば、高分子アクチュエータ素子32の駆動時、あるいは非駆動時、又は、駆動時と非駆動時の双方において、高分子アクチュエータ素子32の自己発熱により、高分子アクチュエータ素子32を暖めることができ、特に低温環境時のアクチュエータ特性を改善できる。本実施形態では、別に発熱装置を設けるものでなく、上記のように、高分子アクチュエータ素子32の自己発熱を利用するものであるから、ドット表示装置1の小型化・薄型化及び低コスト化に適切に対応でき、しかも、高分子アクチュエータ素子32を構成する電極層34,35自体を発熱体として用いているから、高分子アクチュエータ素子32全体を効率良く暖めることができる。 According to the present embodiment, the polymer actuator element 32 is warmed by self-heating of the polymer actuator element 32 when the polymer actuator element 32 is driven, when it is not driven, or when it is driven and not driven. In particular, the actuator characteristics in a low temperature environment can be improved. In the present embodiment, the heat generating device is not provided separately, but the self-heating of the polymer actuator element 32 is used as described above, so that the dot display device 1 can be reduced in size, thickness, and cost. In addition, since the electrode layers 34 and 35 constituting the polymer actuator element 32 are used as a heating element, the entire polymer actuator element 32 can be efficiently warmed.
 また本実施形態では図4に示す制御部80がドット表示装置1に設けられ、必要なときだけ、高分子アクチュエータ素子32を自己発熱させることができ、またその発熱量も重畳波形の調整により調整することができ、よって、発熱に対する制御性に優れたドット表示装置1とすることができる。 Further, in the present embodiment, the control unit 80 shown in FIG. 4 is provided in the dot display device 1, and the polymer actuator element 32 can self-heat only when necessary, and the amount of generated heat is also adjusted by adjusting the superimposed waveform. Therefore, the dot display device 1 having excellent controllability against heat generation can be obtained.
 本実施形態の高分子アクチュエータ素子32を有する駆動装置は、点字用のドット表示装置1以外にも適用することが可能である。 The drive device having the polymer actuator element 32 of the present embodiment can be applied to other than the braille dot display device 1.
A 非駆動状態
B 駆動状態
C 駆動電圧
D 駆動電流
E、J 交流電圧
F 電流
1 ドット表示装置
10 下ケース
10b、20b 空間(変形可能領域)
20 上ケース
31 突出部材
31b 被押圧部
32 高分子アクチュエータ素子
33 電解質層
34、35 電極層
36 基端部
37 先端部
40、50 配線板
60 駆動回路
80 制御部
81 モニタ部
82 判断処理部
83 切換部
84 波形制御部
85 感熱素子
A Non-driving state B Driving state C Driving voltage D Driving current E, J AC voltage F Current 1 Dot display device 10 Lower case 10b, 20b Space (deformable region)
20 Upper case 31 Projecting member 31b Pressed portion 32 Polymer actuator element 33 Electrolyte layer 34, 35 Electrode layer 36 Base end portion 37 Tip end portion 40, 50 Wiring board 60 Drive circuit 80 Control unit 81 Monitor unit 82 Judgment processing unit 83 Switching 84 Waveform controller 85 Thermal element

Claims (9)

  1.  電解質層及び前記電解質層の厚さ方向の両面に設けられた電極層を備え、前記電極層間に電圧を付与すると変形する高分子アクチュエータ素子と、
     前記高分子アクチュエータ素子へ駆動電圧を印加する制御部とを有する駆動装置であって、
     前記制御部は、前記高分子アクチュエータ素子へ交流電圧を印加可能とされ、前記制御部は、前記高分子アクチュエータ素子の状態に応じて前記交流電圧を印加することを特徴とする駆動装置。
    A polymer actuator element comprising an electrolyte layer and electrode layers provided on both surfaces in the thickness direction of the electrolyte layer, and deformed when a voltage is applied between the electrode layers;
    A drive unit having a controller for applying a drive voltage to the polymer actuator element,
    The control unit can apply an AC voltage to the polymer actuator element, and the control unit applies the AC voltage according to a state of the polymer actuator element.
  2.  前記制御部は、前記高分子アクチュエータ素子または前記高分子アクチュエータ素子の周囲の温度が所定の温度より低いときに前記交流電圧を印加する請求項1記載の駆動装置。 The driving device according to claim 1, wherein the controller applies the AC voltage when a temperature around the polymer actuator element or the polymer actuator element is lower than a predetermined temperature.
  3.  前記制御部は、前記高分子アクチュエータ素子に流れる電流値が所定の値より小さいときに前記交流電圧を印加する請求項1記載の駆動装置。 The driving device according to claim 1, wherein the control unit applies the AC voltage when a current value flowing through the polymer actuator element is smaller than a predetermined value.
  4.  前記制御部では、環境温度変化、あるいは、前記環境温度変化に基づく前記高分子アクチュエータ素子からの情報変化の少なくともいずれか1つを検出可能なモニタ部が設けられ、前記モニタ部からの検出結果に基づいて、前記交流電圧の重畳の有無が判断される請求項1ないし3のいずれか1項に記載の駆動装置。 In the control unit, a monitor unit capable of detecting at least one of an environmental temperature change or an information change from the polymer actuator element based on the environmental temperature change is provided, and a detection result from the monitor unit is displayed. The drive device according to claim 1, wherein the presence or absence of superposition of the AC voltage is determined based on the basis.
  5.  前記制御部では、環境温度変化、あるいは、前記環境温度変化に基づく高分子アクチュエータ素子からの情報変化の少なくともいずれか1つを検出可能なモニタ部が設けられ、前記モニタ部からの検出結果に基づいて、前記交流電圧の重畳波形が制御される請求項1ないし4のいずれか1項に記載の駆動装置。 The control unit is provided with a monitor unit capable of detecting at least one of an environmental temperature change or an information change from the polymer actuator element based on the environmental temperature change, and based on a detection result from the monitor unit. The drive device according to claim 1, wherein a superimposed waveform of the AC voltage is controlled.
  6.  前記モニタ部は、前記高分子アクチュエータ素子に流れる電流を検出する請求項4又は5記載の駆動装置。 The drive unit according to claim 4 or 5, wherein the monitor unit detects a current flowing through the polymer actuator element.
  7.  前記交流電圧は、前記駆動電圧よりも小さい振幅で前記駆動電圧に重畳されて印加される請求項1ないし6のいずれか1項に記載の駆動装置。 The drive device according to any one of claims 1 to 6, wherein the AC voltage is applied with being superimposed on the drive voltage with an amplitude smaller than the drive voltage.
  8.  前記交流電圧の最大電圧値と最小電圧値の絶対値が異なる請求項1ないし7のいずれか1項に記載の駆動装置。 The driving device according to any one of claims 1 to 7, wherein an absolute value of the maximum voltage value and the minimum voltage value of the AC voltage is different.
  9.  前記高分子アクチュエータ素子に駆動電圧を印加しないときに、前記交流電圧を前記高分子アクチュエータに印加可能とされた請求項1ないし8のいずれか1項に記載の駆動装置。 The drive device according to any one of claims 1 to 8, wherein the AC voltage can be applied to the polymer actuator when no drive voltage is applied to the polymer actuator element.
PCT/JP2010/054420 2010-03-16 2010-03-16 Driving device using polymer actuator elements WO2011114435A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/054420 WO2011114435A1 (en) 2010-03-16 2010-03-16 Driving device using polymer actuator elements
JP2012505346A JP5466757B2 (en) 2010-03-16 2010-03-16 Drive device using polymer actuator element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/054420 WO2011114435A1 (en) 2010-03-16 2010-03-16 Driving device using polymer actuator elements

Publications (1)

Publication Number Publication Date
WO2011114435A1 true WO2011114435A1 (en) 2011-09-22

Family

ID=44648567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054420 WO2011114435A1 (en) 2010-03-16 2010-03-16 Driving device using polymer actuator elements

Country Status (2)

Country Link
JP (1) JP5466757B2 (en)
WO (1) WO2011114435A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042560A (en) * 2010-08-16 2012-03-01 Sony Corp Driving device, lens module and imaging device
CN111462592A (en) * 2020-05-09 2020-07-28 长春大学 Piezoelectric elastic sheet type braille point display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021128412A (en) 2020-02-12 2021-09-02 豊田合成株式会社 Tactile presentation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178386A (en) * 2004-11-24 2006-07-06 Yaskawa Electric Corp Micromanipulator and drive method therefor
JP2008216074A (en) * 2007-03-05 2008-09-18 Yaskawa Electric Corp Expansion amount sensing method and device of polymer actuator
JP2010039311A (en) * 2008-08-06 2010-02-18 Alps Electric Co Ltd Display using polymer actuator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4732798B2 (en) * 2005-05-19 2011-07-27 株式会社日立製作所 Actuators and actuator modules

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178386A (en) * 2004-11-24 2006-07-06 Yaskawa Electric Corp Micromanipulator and drive method therefor
JP2008216074A (en) * 2007-03-05 2008-09-18 Yaskawa Electric Corp Expansion amount sensing method and device of polymer actuator
JP2010039311A (en) * 2008-08-06 2010-02-18 Alps Electric Co Ltd Display using polymer actuator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042560A (en) * 2010-08-16 2012-03-01 Sony Corp Driving device, lens module and imaging device
US9127652B2 (en) 2010-08-16 2015-09-08 Sony Corporation Method and apparatus for driving a polymer actuator to control a lens
CN111462592A (en) * 2020-05-09 2020-07-28 长春大学 Piezoelectric elastic sheet type braille point display device
CN111462592B (en) * 2020-05-09 2022-05-17 长春大学 Piezoelectric elastic sheet type braille point display device

Also Published As

Publication number Publication date
JPWO2011114435A1 (en) 2013-06-27
JP5466757B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
CN107431121B (en) Electroactive polymer-based actuator or sensor device
US8237324B2 (en) Bistable electroactive polymers
JP6405497B1 (en) Electroactive polymer sensor and detection method
RU2750680C2 (en) Electrical autopilot drive gear and method of actuation
JP5466757B2 (en) Drive device using polymer actuator element
JP5277010B2 (en) Drive device
KR20160088093A (en) Artificial muscle
US9127652B2 (en) Method and apparatus for driving a polymer actuator to control a lens
US9834437B2 (en) Method for manufacturing MEMS torsional electrostatic actuator
KR102034002B1 (en) Display apparatus and manufacturing method thereof
CN111033776A (en) Actuator structure and actuating method thereof
JP6770589B2 (en) Actuator device and drive method incorporating an electroactive polymer actuator
JP2011223842A5 (en)
CN111396274A (en) Perception drive integration sheet metal driver based on shape memory alloy
EP3695444B1 (en) Actuator device and method
JPWO2010001771A1 (en) Polymer actuator and polymer actuator mounted device
KR101401642B1 (en) Microgripper for gripping the object using change of frictional force and method for controlling thereof
EP3769348B1 (en) Actuator device and actuation method
CN110574178A (en) Electroactive material actuator and driving method
EP3449515A1 (en) Eap actuator and drive method
JP5470115B2 (en) Polymer actuator element and driving device using the same
JP5560070B2 (en) Polymer actuator element and driving device using the same
JP2012178379A (en) Variable capacitance element
JP4424699B2 (en) Driving method of inchworm
KR102355926B1 (en) Sensor type actuator and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847851

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505346

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847851

Country of ref document: EP

Kind code of ref document: A1