WO2011055655A1 - Image pickup device, optical unit, wafer lens laminated body, and method for manufacturing wafer lens laminated body - Google Patents

Image pickup device, optical unit, wafer lens laminated body, and method for manufacturing wafer lens laminated body Download PDF

Info

Publication number
WO2011055655A1
WO2011055655A1 PCT/JP2010/068918 JP2010068918W WO2011055655A1 WO 2011055655 A1 WO2011055655 A1 WO 2011055655A1 JP 2010068918 W JP2010068918 W JP 2010068918W WO 2011055655 A1 WO2011055655 A1 WO 2011055655A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
resin
wafer
glass substrate
light
Prior art date
Application number
PCT/JP2010/068918
Other languages
French (fr)
Japanese (ja)
Inventor
東吾 寺本
康司 飯島
節夫 徳弘
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2011055655A1 publication Critical patent/WO2011055655A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0085Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing wafer level optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/003Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present invention relates to an imaging apparatus, an optical unit, a wafer lens laminate, and a method for manufacturing a wafer lens laminate.
  • Patent Documents 1 and 2 disclose a so-called step-and-repeat method in which formed portions are sequentially formed on a large-diameter glass substrate.
  • the mold is a master mold and the resin mold is a sub master mold.
  • the number of times of using the expensive master mold can be reduced, and as a result, the cost of the wafer lens can be reduced.
  • the molding part is sequentially formed on the first resin mold substrate having a large diameter using a small master molding die, so that it is adjacent after molding in the first region.
  • a predetermined amount of gap is generated between the second region. This occurs because the position accuracy of the mold in the first region and the position accuracy of the mold in the second region cannot be matched exactly.
  • the resin does not rotate in the formed gap, and the first resin mold having the groove portion where the base of the first resin mold substrate is exposed is manufactured on one surface of the first resin mold substrate.
  • the second resin mold is manufactured using the first resin mold having such a groove, and the wafer lens is manufactured using the second resin mold, the first resin is also applied to the wafer lens.
  • a groove portion is formed at a position corresponding to the groove portion of the mold.
  • two wafer lenses each having a groove portion are laminated and bonded to each other to form a wafer lens laminate, and the glass substrates of both wafer lenses are diced together to separate each pair of lens portions.
  • dicing is performed at a position where there is a cavity formed by the groove portions of the two stacked wafer lenses.
  • the present invention has been made in view of the above circumstances, and prevents the occurrence of bending or cracking during dicing without increasing the size or complexity of the wafer lens, and also prevents the glass substrate and the resin from peeling off.
  • An object of the present invention is to provide a wafer lens laminate and a method of manufacturing the wafer lens laminate that can be prevented.
  • Another object of the present invention is to provide an imaging device and an optical unit that can prevent the occurrence of ghosts while preventing cracks around the lens and peeling of the glass substrate and the resin part, while having a compact configuration. It is said.
  • a first lens block in which a first lens portion and a first non-lens portion around the first lens portion are formed of resin on at least one surface of the first glass substrate.
  • a second lens block in which a second lens part and a second non-lens part around the second lens part are formed of resin on at least one surface of the second glass substrate; and the first non-lens part.
  • an optical unit is provided in which the light shielding member forms a side surface portion on the same surface as the side surface portions of the first and second lens blocks.
  • a first lens block in which a first lens portion and a first non-lens portion around the first lens portion are formed of resin on at least one surface of the first glass substrate;
  • a second lens block in which a second lens part and a second non-lens part around the second lens part are formed of resin on at least one surface of the second glass substrate; and the first non-lens part.
  • An optical unit bonded so that the second non-lens portion faces the optical unit;
  • One end surface is joined to the surface of the second lens block opposite to the surface where the second lens portion and the second non-lens portion are formed, and an opening is formed at a position corresponding to the first and second lens portions.
  • a spacer made of glass having, A sensor unit having a cover member made of glass, bonded to the other end surface of the spacer, and having an image sensor disposed at a predetermined interval from the cover member, A light-shielding member having a light-shielding property with respect to incident light is exposed on the side surfaces of the first and second lens blocks at least at a part of the joint portion between the first non-lens part and the second non-lens part.
  • the light-shielding member forms a side surface portion on the same surface together with a side surface portion of the first and second lens blocks, a side surface portion of the spacer, and a side surface portion of the sensor unit.
  • An imaging device is provided.
  • the first lens portion formed on a part of the resin portion provided on one surface of the first glass substrate with the convex surface facing the object side, and the concave surface facing the image side.
  • a light-shielding member having a light-shielding property with respect to incident light is disposed between the resin part in which the second lens part is formed and the resin part in which the third lens part is formed, and side surfaces of the first and second lens blocks.
  • An optical unit is provided in which the side surface portion is formed on the same surface together with
  • the first lens portion formed on a part of the resin portion provided on one surface of the first glass substrate with the convex surface facing the object side, and the concave surface facing the image side.
  • a first lens block having a second lens portion formed on a part of a resin portion provided on the other surface of the first glass substrate, and a first surface of the second glass substrate with a concave surface facing the object side
  • a second lens having a third lens part formed on a part of the resin part provided on the second glass part and a fourth lens part formed on a part of the resin part provided on the other surface of the second glass substrate.
  • An image pickup apparatus comprising: a cover member made of glass to which the other end surface of the spacer is bonded; and a sensor unit having an image pickup element arranged at a predetermined interval from the cover member.
  • a light-shielding member having a light-shielding property with respect to incident light is disposed between the resin part in which the second lens part is formed and the resin part in which the third lens part is formed, and side surfaces of the first and second lens blocks.
  • the light shielding member is exposed and formed on the side surfaces of the first and second lens blocks, and the side surfaces of the first and second lens blocks, the side surfaces of the spacer, and the sensor.
  • An imaging device is provided in which the side surface portion of the same surface is formed together with the side surface portion of the unit.
  • a wafer lens laminate in which a plurality of wafer lenses each having a resin portion having a plurality of lens portions formed on a substrate are laminated, and at least of two wafer lenses that are directly laminated.
  • the resin part has a non-lens part on the outer periphery of each lens part, The non-lens part is configured to be partitioned from other lens parts by a groove part having a side peripheral surface as a side wall, A wafer lens laminate, wherein a cavity formed between the groove portion of one wafer lens and the other wafer lens to be laminated is filled between the wafer lenses laminated to each other.
  • a wafer lens laminate in which a plurality of wafer lenses each having a resin portion having a plurality of lens portions formed on a substrate are laminated, and at least of two wafer lenses that are directly laminated.
  • the resin part has a non-lens part on the outer periphery of each lens part, The non-lens part is configured to be partitioned from other lens parts by a groove part having a side peripheral surface as a side wall, A flat plate smaller than the cavity is disposed in a cavity formed between the groove portion of one wafer lens and the other wafer lens between the wafer lenses laminated to each other.
  • a wafer lens laminate is provided, which is filled with a resin therebetween.
  • a method of manufacturing a wafer lens laminate in which a plurality of wafer lenses each having a resin portion having a plurality of lens portions formed on a substrate are laminated, wherein two wafers are directly laminated. At least one of the lenses
  • the resin part of the wafer lens has a non-lens part on the outer periphery of each lens part, The non-lens part is configured to be partitioned from other lens parts by a groove part having a side peripheral surface as a side wall, Wafer lenses are stacked on top of each other,
  • a method for producing a wafer lens laminate wherein a resin is filled in a cavity formed between the groove of one wafer lens and the other wafer lens.
  • a method of manufacturing a wafer lens laminate in which a plurality of wafer lenses each having a resin portion having a plurality of lens portions formed on a substrate are laminated, wherein two wafers are directly laminated.
  • the resin part of the wafer lens has a non-lens part on the outer periphery of each lens part,
  • the non-lens part is configured to be partitioned from other lens parts by a groove part having a side peripheral surface as a side wall, Wafer lenses are stacked on top of each other, A flat plate smaller than the cavity is disposed in a cavity formed between the groove portion of one wafer lens and the other wafer lens, and a resin is filled between the flat plate and the cavity.
  • a method for producing a wafer lens laminate is provided.
  • the wafer lens laminate and the method for producing the wafer lens laminate of the present invention it is possible to prevent the occurrence of bending or cracking during dicing without increasing the size of the wafer lens or having a complicated configuration. And the resin can be prevented from peeling off, and unnecessary reflected light can be shielded by the light shielding member to prevent ghosting.
  • the imaging apparatus and the optical unit of the present invention it is possible to prevent the occurrence of ghost while preventing cracks around the lens and peeling between the glass substrate and the resin portion while having a compact configuration.
  • (A) is sectional drawing which shows schematic structure of an imaging device
  • (b) is drawing which shows the state which removed the package which is a top view of an imaging device. It is a perspective view which shows schematic structure of a wafer lens laminated body. It is a top view which shows schematically the aperture_diaphragm
  • (A), (b) is a part of manufacturing method of a wafer lens, and is the side view which showed the case where a 1st convex-shaped resin mold is manufactured.
  • (A), (b) is a side view which showed the case where the 2nd concave resin type
  • (A), (b) is a side view which showed the case where a wafer lens is manufactured from the state of FIG. 5 in a part of manufacturing method of a wafer lens.
  • (A), (b) is the side view which showed a part of manufacturing method of a wafer lens laminated body.
  • (A), (b) is a part of manufacturing method of a wafer lens laminated body, and is the side view which showed the case where a wafer lens laminated body is manufactured from the state of FIG.
  • (A) is the top view which showed the case where resin is filled in a cavity, when manufacturing a wafer lens laminated body
  • (b) is a side view of (a).
  • (A) is sectional drawing which shows schematic structure of the imaging device of 2nd Embodiment
  • (b) is a top view of the imaging device of 2nd Embodiment, and is drawing which shows the state which removed the package.
  • (A), (b) is the side view which showed a part of manufacturing method of the wafer lens laminated body of 2nd Embodiment.
  • (A), (b) is a part of manufacturing method of the wafer lens laminated body of 2nd Embodiment, and is the side view which showed the case where a wafer lens laminated body is manufactured from the state of FIG. It is a figure for demonstrating the manufacturing method of the wafer lens by a step and repeat system, Comprising: It is a top view in the case of manufacturing a 1st convex resin type
  • the imaging device 2 is mainly composed of a lens unit 4 and a sensor unit 6, and the lens unit 4 is disposed on the sensor unit 6.
  • the lens unit 4 includes an optical unit including lens blocks 8 and 10, a spacer 12, and a cover package 14.
  • the lens unit 4 is covered with the cover package 14 in a state where the lens blocks 8 and 10 and the spacer 12 are bonded and laminated. ing.
  • the lens block 8 has a flat glass substrate 16.
  • a diaphragm 18, an IR cut coat 21 and a resin part 20 are formed on the upper part of the glass substrate 16, and a diaphragm 22, an IR cut coat 23 and a resin part 24 are formed on the lower part of the glass substrate 16.
  • a convex lens portion 20a having a convex shape is formed at a substantially central portion of the resin portion 20.
  • parts other than the convex lens part 20a are non-lens parts 20b.
  • the non-lens portion 20b includes an inclined portion 20c inclined upward from the convex lens portion 20a toward the outer peripheral portion, a substantially flat flat portion 20d continuously convex upward from the inclined portion 20c, and an outer side of the flat portion 20d.
  • a groove portion 20e which is a portion formed to be depressed downward.
  • a concave lens portion 24 a having a concave shape is formed at a substantially central portion of the resin portion 24.
  • parts other than the concave lens part 24a are non-lens parts 24b.
  • the non-lens part 24b has a substantially flat flat part 24d formed on the outer peripheral part of the concave lens part 24a, and a groove part 24e which is a part formed to be recessed upward on the outside of the flat part 24d.
  • upward and downward refer to the upward and downward directions in FIG.
  • the lens block 10 also has a flat glass substrate 26.
  • a resin portion 28 is formed on the upper portion of the glass substrate 26, and a diaphragm 30 and a resin portion 32 are formed on the lower portion of the glass substrate 26.
  • a concave lens portion 28a having a concave shape is formed at a substantially central portion of the resin portion 28.
  • parts other than the concave lens part 28a are non-lens parts 28b.
  • the non-lens part 28b has a substantially flat flat part 28c formed on the outer peripheral part of the concave lens part 28a, and a groove part 28d which is a part formed to be depressed downward on the outer side of the flat part 28c.
  • a convex lens portion 32 a having a convex shape is formed at a substantially central portion of the resin portion 32.
  • parts other than the convex lens part 32a are non-lens parts 32b.
  • the non-lens part 32b has a substantially flat flat part 32c formed on the outer peripheral part of the convex lens part 32a, and a groove part 32d which is a part formed to be concave downward on the outside of the flat part 32c.
  • Resin portions 20, 24, 28, and 32 are light-transmitting portions where photo-curing resin is molded.
  • the convex lens portion 20a, the concave lens portion 24a, the concave lens portion 28a, and the convex lens portion 32a in the resin portions 20, 24, 28, and 32 are lens effective portions that exhibit a lens function (optical function).
  • the convex lens portion 20a, the concave lens portion 24a, the concave lens portion 28a, and the convex lens portion 32a are arranged concentrically. These lens portions are stacked vertically so that the optical axes 34 coincide with each other.
  • the sensor unit 6 mainly includes a sensor 36, a package 38, and a cover glass 40.
  • the sensor 36 is a light receiving sensor that receives light transmitted through the lens unit 4, and can photoelectrically convert the received light to output an electrical signal to an external device (not shown).
  • the package 38 has a bottomed box shape and is open at the top.
  • a sensor 36 is disposed at a substantially central portion of the package 38.
  • the cover glass 40 is provided as a lid on the upper part of the package 38, and the sensor 36 is sealed in a space surrounded by the package 38 and the cover glass 40.
  • the spacer 12 is interposed between the lens block 10 and the sensor 36, and provides a constant interval between these members.
  • the wafer lens laminate 50 mainly includes wafer lenses 52 and 54, a spacer substrate 56, It has the structure by which these members were laminated
  • the wafer lens laminate 50 is diced at a predetermined position to form a plurality of sets of units in which the lens blocks 8 and 10 and the spacers 12 are bonded and laminated.
  • the wafer lens 52 includes a glass substrate 16 having a wafer shape, and a diaphragm 18, a resin portion 20, and an IR cut coat 21 are formed on the glass substrate 16.
  • a large number of the apertures 18 are formed on the glass substrate 16 in a rectangular shape, and a circular opening 18a is formed at the center of each aperture 18 except for a portion corresponding to the convex lens portion 20a of the resin portion 20. It is formed (see FIG. 3).
  • the diaphragm 18 is made of a light shielding photoresist.
  • a photoresist mixed with carbon black is applied as the light shielding photoresist.
  • the IR cut coat 21 is formed at a location corresponding to the convex lens portion 20a, and a large number of small circular shapes are arranged on the glass substrate 16 (see FIG. 3).
  • the IR cut coat 21 shields infrared rays that are about to enter the sensor 36 when the imaging apparatus 2 is used. Even for ultraviolet light, the transmittance is limited to 50% or less due to reflection and light absorption.
  • the IR cut coat 21 is an alternating multilayer film in which a plurality of low refractive index layers made of a low refractive index material and a plurality of high refractive index layers made of a high refractive index material are alternately stacked. It is.
  • the IR cut coat 21 may be formed so that the low refractive index layer is in direct contact with the glass substrate 16.
  • Examples of the method for forming the IR cut coat 21 include a known vacuum deposition method, sputtering, CVD (Chemical Vapor Deposition) method, patterning method and the like while using a mask.
  • a mask a mask in which a hole is formed only at a location corresponding to the convex lens portion 20a is used, and the IR cut coat 21 is formed only at a location corresponding to the convex lens portion 20a.
  • the aperture 18 and the IR cut coat 21 are formed on the glass substrate 16, and then the convex lens portion 20 a and the non-lens portion 20 b are formed by forming a resin between the mold and the glass substrate. Therefore, the diaphragm 18 and the IR cut coat 21 are covered with the resin portion 20.
  • a diaphragm 22, a resin part 24, and an IR cut coat 23 are formed below the glass substrate 16.
  • apertures 22 are formed on the glass substrate 16 in the same shape as the apertures 18, and a circular opening 22 a is removed from the central portion of each aperture 18 except for a portion corresponding to the concave lens portion 24 a of the resin portion 24. Is formed. Further, like the diaphragm 18, it is made of a light shielding photoresist.
  • a large number of IR cut coats 23 are formed on the glass substrate 26, and are formed at locations corresponding to the concave lens portions 24a.
  • the IR cut coat 23 has the same shape as the IR cut coat 21 and is formed in the same manner as the IR cut coat 21.
  • the aperture 22 and the IR cut coat 23 are formed in the same manner as the aperture 18 and the IR cut coat 21, and are covered with a resin portion 24 constituting a concave lens portion 24a and a non-lens portion 24b.
  • the concave lens portion 24a is in a coaxial position with the convex lens portion 20a.
  • a portion constituted by a set of convex lens portion 20a, aperture 18, aperture 22, concave lens portion 24a, IR cut coat 21 and IR cut coat 23 corresponds to one unit of the component, and a large number of these are held on the glass substrate 16. In this state, the wafer lens 54 and the spacer substrate 56 are unitized.
  • the wafer lens 54 has a glass substrate 26 having a wafer shape, and a resin portion 28 is formed on the glass substrate 26.
  • the resin portion 28 constitutes a concave lens portion 28a at a position coaxial with the convex lens portion 20a.
  • a diaphragm 30 and a resin part 32 are formed in the lower part of the glass substrate 26.
  • a large number of the diaphragms 30 are formed on the glass substrate 26 in a rectangular shape, and a circular opening 30a is formed at a central portion of each diaphragm 30 except a portion corresponding to the convex lens part 30a of the resin part 32. Is formed.
  • the diaphragm 30 is covered with a resin portion 32 constituting a convex lens portion 32a, and the convex lens portion 32a is coaxial with the convex lens portion 20a.
  • a portion constituted by a set of concave lens portion 28a, diaphragm 30, and convex lens portion 32a corresponds to one unit of a component, and is unitized with wafer lens 52 and spacer substrate 56 in a state where a large number of these are held on glass substrate 26.
  • the spacer substrate 56 is a glass flat plate having a wafer shape like the glass substrates 16 and 26. A large number of circular openings are formed in the spacer substrate 56.
  • the wafer lens laminated body 50 includes, in order from the upper side to the lower side, a convex lens portion 20a, an IR cut coat 21 (opening 18a of the diaphragm 18), and an IR cut coat 23 (opening of the diaphragm 22).
  • Portion 22a), concave lens portion 24a, concave lens portion 28a, aperture 30a of diaphragm 30, convex lens portion 32a, and aperture 56a of spacer substrate 56 are disposed on optical axis 34, and wafer lens laminate 50 is diced into a dicing line.
  • a plurality of lens units 4 are formed by cutting along 62.
  • the resin parts 20, 24, 28, 32 are basically composed of a photocurable resin 44 (see FIG. 6).
  • acrylic resin, allyl ester resin, epoxy resin, silicone resin or the like is used as the resin 44.
  • Acrylic resins and allyl ester resins can be reactively cured by radical polymerization, and epoxy resins can be reactively cured by cationic polymerization.
  • Resin portions 20, 24, 28, and 32 may be made of a thermosetting resin. According to the thermosetting resin, it can be cured by addition polymerization such as silicone in addition to radical polymerization and cationic polymerization.
  • the (meth) acrylate used for the polymerization reaction is not particularly limited, and the following (meth) acrylate produced by a general production method can be used. Ester (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, ether (meth) acrylate, alkyl (meth) acrylate, alkylene (meth) acrylate, (meth) acrylate having an aromatic ring, alicyclic structure The (meth) acrylate which has is mentioned. One or more of these can be used.
  • (Meth) acrylate having an alicyclic structure is particularly preferable, and may be an alicyclic structure containing an oxygen atom or a nitrogen atom.
  • 2-alkyl-2-adamantyl (meth) acrylate Japanese Patent Laid-Open No. 2002-193883
  • adamantyl di (meth) acrylate Japanese Patent Laid-Open No. 57-5000785
  • diallyl adamantyl dicarboxylate Japanese Patent Laid-Open No. 60-60
  • perfluoroadamantyl acrylate JP 2004-123687
  • (meth) acrylate for example, methyl acrylate, methyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate Tert-butyl methacrylate, phenyl acrylate, phenyl methacrylate, benzyl acrylate, benzyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, and the like.
  • polyfunctional (meth) acrylate examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta ( (Meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, tripentaerythritol octa (meth) acrylate, tripentaerythritol septa (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tri Pentaerythritol penta (meth) acrylate, tripentaerythritol tetra (meth) acrylate, tripenta
  • Allyl ester resin A resin having an allyl group and cured by radical polymerization. Examples thereof include the following, but are not particularly limited to the following.
  • Epoxy resin is not particularly limited as long as it has an epoxy group and is polymerized and cured by light or heat, and an acid anhydride, a cation generator, or the like can be used as a curing initiator.
  • Epoxy resin is preferable in that it has a low cure shrinkage and can be a lens with excellent molding accuracy.
  • Examples of the epoxy include novolak phenol type epoxy resin, biphenyl type epoxy resin, and dicyclopentadiene type epoxy resin.
  • Examples include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, vinyl Cyclohexene dioxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3-dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2 -Cyclopropanedicarboxylic acid bisglycidyl ester and the like.
  • the curing agent is used for constituting the curable resin material and is not particularly limited. Moreover, in this invention, when comparing the transmittance
  • an acid anhydride curing agent, a phenol curing agent, or the like can be preferably used.
  • acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride
  • acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride
  • examples thereof include an acid, a mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, and methyl nadic anhydride.
  • a curing accelerator is contained as necessary.
  • the curing accelerator is not particularly limited as long as it has good curability, is not colored, and does not impair the transparency of the thermosetting resin.
  • 2-ethyl-4-methylimidazole is not limited. Imidazoles such as (2E4MZ), tertiary amines, quaternary ammonium salts, bicyclic amidines such as diazabicycloundecene and their derivatives, phosphines, phosphonium salts, etc. can be used, Two or more kinds may be mixed and used.
  • Silicone Resin A silicone resin having a siloxane bond with Si—O—Si as the main chain can be used.
  • a silicone resin made of a predetermined amount of polyorganosiloxane resin can be used (for example, JP-A-6-9937).
  • thermosetting polyorganosiloxane resin is not particularly limited as long as it becomes a three-dimensional network structure with a siloxane bond skeleton by a continuous hydrolysis-dehydration condensation reaction by heating. It exhibits curability and has the property of being hard to be re-softened by overheating once cured.
  • Such a polyorganosiloxane resin includes the following general formula (A) as a structural unit, and the shape thereof may be any of a chain, a ring, and a network.
  • R 1 and R 2 represent the same or different substituted or unsubstituted monovalent hydrocarbon groups.
  • R 1 and R 2 an alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group, an alkenyl group such as a vinyl group and an allyl group, an allyl group such as a phenyl group and a tolyl group Group, a cycloalkyl group such as a cyclohexyl group or a cyclooctyl group, or a group in which a hydrogen atom bonded to a carbon atom of these groups is substituted with a halogen atom, a cyano group, an amino group, or the like, such as a chloromethyl group, 3, 3, Examples include 3-trifluoropropyl group,
  • the polyorganosiloxane resin is usually used after being dissolved in a hydrocarbon solvent such as toluene, xylene, or a petroleum solvent, or a mixture of these with a polar solvent. Moreover, you may mix
  • a hydrocarbon solvent such as toluene, xylene, or a petroleum solvent, or a mixture of these with a polar solvent.
  • the method for producing the polyorganosiloxane resin is not particularly limited, and any known method can be used. For example, it can be obtained by hydrolysis or alcoholysis of one or a mixture of two or more organohalogenosilanes.
  • the polyorganosiloxane resin generally contains a hydrolyzable group such as a silanol group or an alkoxy group. The group is contained in an amount of 1 to 10% by mass in terms of a silanol group.
  • These reactions are generally performed in the presence of a solvent capable of melting organohalogenosilane. It can also be obtained by a method of synthesizing a block copolymer by cohydrolyzing a linear polyorganosiloxane having a hydroxyl group, an alkoxy group or a halogen atom at the molecular chain terminal with an organotrichlorosilane.
  • the polyorganosiloxane resin thus obtained generally contains the remaining HCl, but in the composition of the present embodiment, the storage stability is good, so that the one having 10 ppm or less, preferably 1 ppm or less is used. Is good.
  • a positive first convex shape is formed from a negative concave mold 100 corresponding to the optical surface shape of the convex lens portion 20a.
  • Resin mold 210 is molded (first resin mold manufacturing process).
  • a negative second concave resin mold 220 is formed from the first convex resin mold 210 (second resin mold manufacturing process), and FIG.
  • the wafer lens 52 is molded by the molded second concave resin mold 220 (wafer lens manufacturing process).
  • First resin mold manufacturing process As shown in FIG. 4A, a resin 218 serving as a material of the molding part 212 of the first convex resin mold 210 is dropped on the upper surface of the concave mold 100 (dispensing process), and above the concave mold 100. A first resin mold substrate 214 which is a glass substrate is sucked and fixed. At this time, each is arranged so that the concave mold 100 corresponds to a part of the first resin mold substrate 214 (first region R1).
  • the concave mold 100 is raised to a predetermined height position toward the first resin mold substrate 214 disposed above, and the resin 218 is pressed against the first resin mold substrate 214 (imprint process). .
  • the concave mold 100 After the light irradiation, the concave mold 100 is lowered, thereby releasing the resin 218 from the concave mold 100 (mold release process).
  • a positive shape corresponding to the optical surface shape of the convex lens portion 20a of the wafer lens 52 is formed on a part of the lower surface of the first resin mold substrate 214 (first region R1).
  • a first convex resin mold 210 having a portion 212 is formed. That is, the molding part 212 of the first convex resin mold 210 corresponding to one concave mold 100 is formed on the first resin mold substrate 214.
  • X is shifted to move the concave mold 100 (see FIG. 4A), and the dispensing process, the imprint process, the exposure process, and the release process are performed as one cycle in the same manner as described above, and this cycle is repeated a predetermined number of times.
  • a plurality of molding portions 212 are sequentially formed on the first resin mold substrate 214 to manufacture the first convex resin mold 210 (see FIG. 4B).
  • FIG. 13 shows a process of manufacturing the first convex resin mold 210 manufactured using the mold 100.
  • the first resin mold (first convex resin mold 210) having a large area is manufactured from the small mold 100, so that the first resin mold is formed. Only the mold 100 is used, the wafer lens 52 can be formed at low cost, and cost reduction can be achieved.
  • the gap X is generated because the position accuracy of the mold 100 in the first region R1 and the position accuracy of the mold 100 in the second region R2 cannot be matched exactly.
  • the resin 218 does not rotate in the formed gap X, and the first resin having the groove portion M in which the base of the first resin mold substrate 214 is exposed on one surface of the first resin mold substrate 214.
  • the mold 210 is manufactured (see FIG. 4B). In FIG. 4, only the vicinity of the left end of the mold 100 before the movement and the right end of the mold 100 are illustrated.
  • Second resin mold manufacturing process As shown in FIG. 5A, a resin 228 is dropped on the upper surface of the first convex resin mold 210 (dispensing process), and the second resin mold that is a glass substrate above the first convex resin mold 210. The substrate 224 is sucked and fixed.
  • the first convex resin mold 210 is raised to a predetermined height position toward the second resin mold substrate 224 disposed above, and the resin 228 is pressed against the second resin mold substrate 224 ( Imprint process).
  • the resin 228 filled between the first convex resin mold 210 and the second resin mold substrate 224 is The resin 228 is photocured by irradiating light from above the second resin mold substrate 224 (exposure process).
  • the first convex resin mold 210 is lowered, thereby releasing the resin 228 from the first convex resin mold 210 (release process).
  • a second concave resin mold having a negative molded part 222 corresponding to the optical surface shape of the convex lens part 20a of the wafer lens 52 on the lower surface of the second resin mold substrate 224. 220 is manufactured. Since the first resin mold 210 has the groove portion M as described above, the groove portion derived from the groove portion M is also formed in the second resin mold 220.
  • a diaphragm 18 and an IR cut coat 21 that are optical components are formed in advance on a glass substrate 16 for wafer lenses. Specifically, a photoresist mixed with carbon black is applied onto the glass substrate 16, and then the material layer is selectively removed by a known patterning exposure and development process. Form. Further, the IR cut coat 21 is formed on the glass substrate 16 by a known method.
  • the resin 44 is dropped onto the upper surface of the second concave resin mold 220 (dispensing process), and the glass substrate 16 for the wafer lens is sucked above the second concave resin mold 220. ⁇ Fix it.
  • the second concave resin mold 220 is raised to a predetermined height position toward the glass substrate 16 disposed above, and the resin 44 is pressed against the glass substrate 16 (imprint process).
  • the resin 44 filled between the second concave resin mold 220 and the glass substrate 16 is irradiated with light from above the glass substrate 16. Irradiate to photocur the resin 44 (exposure process).
  • the second concave resin mold 220 is lowered, thereby releasing the resin 44 from the second concave resin mold 220 (mold release step).
  • a plurality of convex lens portions 20 a are formed on the lower surface of the glass substrate 16 as shown in FIG.
  • the groove portion 20e is formed at a position corresponding to the groove portion M of the first resin mold 210 (see FIG. 6B).
  • the glass substrate 16 is turned upside down, and the diaphragm 22 and the IR cut coat 23 are formed on the surface of the glass substrate 16 opposite to the surface on which the convex lens portion 20a is provided.
  • a plurality of concave lens portions 24a are formed through a dispensing process, an imprint process, an exposure process, and a mold release process in the wafer lens manufacturing process. In this way, the wafer lens 52 is manufactured.
  • the mold, the first resin mold, and the second resin mold to be used have shapes corresponding to the shapes of the concave lens portion 24a to be molded.
  • the wafer lens 54 can be manufactured in the same manner through the first resin mold manufacturing process, the second resin mold manufacturing process, and the wafer lens manufacturing process described above, and the description thereof is omitted here. To do.
  • an adhesive 281 is applied to the upper surface of the non-lens portion 28b (flat portion 28c) of the resin portion 28 of the wafer lens 54, and the wafer lenses 52 and 54 are pressed against each other.
  • the adhesive 281 is made of, for example, a photocurable resin and is cured by light irradiation. In addition, it may be composed of a thermosetting resin. Thereafter, light is irradiated from below the wafer lens 52 to cure the adhesive 281 and fix the wafer lenses 52 and 54 (see FIG. 7B).
  • a resin K is filled into a cavity K formed by the groove 24e of the wafer lens 52 and the groove 28d of the wafer lens 54.
  • the resin 101 is filled in the syringe 101, and the resin J is filled in the cavity K through the needle 102.
  • the resin J may be a photo-curing resin or a thermosetting resin as in the case of the lens material.
  • it is ghost to use a black resin having a light-shielding property against incident light. It is preferable in terms of countermeasures.
  • the same resin 44 as that of the resin portions 20, 24, 28, 30 of the wafer lenses 52, 54 may be used.
  • the resin J When a photocurable resin is used as the resin J, after the resin J is filled, the resin J is irradiated with light and cured.
  • an adhesive 321 is applied to the lower surface of the non-lens portion 32b (groove portion 32d) of the resin portion 32 of the wafer lens 54, and the wafer lens 54 and the spacer substrate 56 are pressed against each other.
  • the adhesive 321 the same photo-curing resin or thermosetting resin as the above-described adhesive 281 can be used.
  • the adhesive 321 is cured by light irradiation, and the wafer lens 54 and the spacer substrate 56 are fixed. As a result, the wafer lens laminate 50 is manufactured.
  • the manufactured wafer lens laminate 50 is obtained by dicing the glass substrates 16 and 26 and the spacer substrate 56 with the dicing line 62 at the position of the filled resin J, whereby the lens blocks 8 and 10 and the spacer 12 are bonded and laminated. A plurality of the set of units are formed.
  • the first resin mold A first resin mold 210 having a groove portion M in which the base of the first resin mold substrate 214 is exposed on one surface of the substrate 214 is manufactured. Furthermore, when the second resin mold 220 is manufactured using the first resin mold 210 having such a groove M, and the wafer lens 52 is manufactured using the second resin mold 220, the wafer lens 52 is formed. Also, a groove 20e is formed at a position corresponding to the groove M of the first resin mold 210. Then, as shown in FIGS.
  • the wafer lenses 52 and 54 having the groove portions 24e and 28d are laminated and bonded together to form a wafer lens laminate 50, and the glass substrate of the wafer lenses 52 and 54 is obtained.
  • dicing 16 and 26 into pieces for each pair of lens portions a position where there is a cavity K formed by the groove portions 24e and 28d of the laminated wafer lenses 52 and 54 is diced. .
  • the cavity K is filled with resin, the occurrence of bending and cracking due to impact during dicing is prevented, and the occurrence of peeling between the glass substrates 16 and 26 and the resin portions 24 and 28 is also prevented.
  • the lens block 8 and the spacer 12 are included in the lens block 8 and 10 to form the wafer lens laminated body 50.
  • the lens unit 8 and only the wafer lens laminated body 50 is diced and the optical unit is used. It is good.
  • the spacer 12 is cut in advance to the same size as the optical unit, and attached to the optical unit together with the sensor unit 6.
  • the material filling the grooves 24e and 28d is made of a light shielding material, the resin that forms the concave lens portion 24a of the lens block 8 as shown in FIG.
  • a light-shielding member having a light-shielding property against incident light is formed between the portion 24 and the resin portion 28 where the concave lens portion 28a of the lens block 10 is formed, and the wafer lens stack 50 is collectively cut after filling.
  • the light shielding member is formed so as to be exposed on the side surfaces of the lens locks 8 and 10, and the side surface portion which is a cut surface of the lens block 8 and 10 and the exposed light shielding material have the same side surface portion. It becomes the structure which forms.
  • the side surface portion of the spacer 12 and the side surface portion of the sensor unit 6 as the imaging device 2 also form the same side surface portion. It becomes composition.
  • the resin portions 20, 24, 28, and 32 of the wafer lenses 52 and 54 have the non-lens portions 20b, 24b, 28b, and 32b on the outer periphery of the convex lens portions 20a, 24a, 28a, and 32a that are optical surfaces. And are separated from the other lens parts 20a, 24a, 28a, 32a by grooves 20e, 24e, 28d, 32d whose side walls are the side peripheral surfaces of the non-lens parts 20b, 24b, 28b, 32b. Since the resin J is filled in the cavity K formed by the groove portion 24e of one wafer lens 52 and the groove portion 28d of the other wafer lens 54 between the wafer lenses 52 and 54 thus formed, bending during dicing is performed. And the occurrence of cracks, and the glass substrates 16 and 26 of the wafer lenses 52 and 54 and the resin portions 20, 24, 28, Peeling and 2 can be prevented.
  • the resin J filled in the cavity K is made of black resin, so that it is excellent in ghost countermeasures.
  • the IR cut coats 21 and 23 formed on the glass substrate 16 of the wafer lens 52 are formed only at positions corresponding to the convex lens portion 20a and the concave lens portion 24a, and a small circular shape is formed on the glass substrates 16 and 26. Since they are formed side by side, infrared rays can be reliably shielded from the convex lens portion 20a and the concave lens portion 24a. Furthermore, the warp of the glass substrate 16 can be reduced as compared with the case where an IR cut coat is formed on the entire surface of the glass substrate 16.
  • an adhesive 581 is applied to the lower surface of the flat plate 58, and the flat plate 58 and the wafer lens are bonded to the groove 28d forming the cavity K. 54 are pressed against each other.
  • an adhesive 582 is applied to the upper surface of the flat plate 58, while an adhesive 241 is applied to the lower surface of the flat portion 24c of the resin portion 24 of the wafer lens 52, and the flat plate 58 and the wafer are coated. The lenses 52 are pressed against each other.
  • the adhesives 582 and 241 the same photo-curable resin or thermosetting resin as the adhesive 281 of the first embodiment described above can be used.
  • the adhesives 581, 582 and 241 are cured by irradiating light from above the wafer lens 52, and the wafer lens 52. 54 and the flat plate 58 are fixed. At this time, the adhesives 581 and 582 are filled in the gap between the flat plate 58 and the cavity K and cured.
  • an adhesive 321 is applied to the lower surface of the non-lens portion 32b (groove portion 32d) of the resin portion 32 of the wafer lens 54, as shown in FIG.
  • the lens 54 and the spacer substrate 56 are pressed against each other.
  • the adhesive 321 is cured by light irradiation, and the wafer lenses 52 and 54 and the spacer substrate 56 are fixed. As a result, the wafer lens laminate 50 is manufactured.
  • the glass blocks 16, 26, the flat plate 58, and the spacer substrate 56 are diced by the dicing line 62 in which the flat plate 58 is arranged, whereby the lens blocks 8, 10 and the spacer 12 are separated. A plurality of bonded and laminated units are formed.
  • the resin portions 20, 24, 28, and 32 of the wafer lenses 52 and 54 have the non-lens portions 20b, 24b, 28b, and 32b on the outer periphery of the convex lens portions 20a, 24a, 28a, and 32a that are optical surfaces. And is separated from the other lens portions 20a, 24a, 28a, 32a by the groove portions 20e, 24e, 28d, 32d having the side peripheral surfaces of the non-lens portions 20b, 24b, 28b, 32b as side walls, and are laminated together.
  • a flat plate 58 smaller than the hollow K is disposed in a cavity K formed by the groove portion 24e of one wafer lens 52 and the groove portion 28d of the other wafer lens 54.
  • adhesives 581 and 582 which are resins are filled. Therefore, it is possible to prevent the occurrence of bending and cracks during dicing, and to prevent the glass substrates 16 and 26 of the wafer lenses 52 and 54 and the resin portions 20, 24, 28 and 32 from peeling off.
  • the flat plate 58 is smaller than the size of the cavity K and the gap between the cavity K and the flat plate 58 is filled with a resin adhesive, even when the wafer lenses 52 and 54 are joined together, the convex lens portion 24a and the concave lens portion.
  • the core thickness at 28a can be made uniform, and a highly accurate wafer lens laminate 50 can be obtained.
  • Imaging device 4 Lens unit (optical unit) 6 Sensor unit 8 Lens block (first lens block) 10 Lens block (second lens block) 12 Spacer 14 Cover package (cover member) 16 Glass substrate 18 Aperture 20 Resin part 20a Convex lens part (first lens part) 20b Non-lens part 20c Inclined part 20d Flat part 20e Groove part 21 IR cut filter 22 Aperture 23 IR cut filter 24a Concave lens part (second lens part) 24b Non-lens part 24d Flat part 24e Groove part 26 Glass substrate 28 Resin part 28a Concave lens part (third lens part) 28b Non-lens part 28c Flat part 28d Groove part 30 Aperture 32 Resin part 32a Convex lens part (fourth lens part) 32b Non-lens part 32c Flat part 32d Groove part 50 Wafer lens stack 52, 54 Wafer lens 56 Spacer substrate 58 Flat plate 100 Concave mold 210 First convex resin mold 212 Molding part 214 First resin mold substrate 220 Second Conca

Abstract

Disclosed is a wafer lens laminated body wherein a plurality of wafer lenses are laminated, each of said wafer lenses having, on a glass substrate, a resin section having a plurality of lens sections. The resin section has a non lens section on the outer circumference of each lens section, and the non lens section is partitioned from other lens sections by means of a groove section, which has the side circumferential surface thereof as the side wall. In the laminated wafer lenses, a space formed by means of the groove section of one wafer lens and the groove section of another wafer lens is filled with resin or a flat plate.

Description

撮像装置、光学ユニット、ウエハレンズ積層体及びウエハレンズ積層体の製造方法Imaging apparatus, optical unit, wafer lens laminate, and method for manufacturing wafer lens laminate
 本発明は、撮像装置、光学ユニット、ウエハレンズ積層体及びウエハレンズ積層体の製造方法に関する。 The present invention relates to an imaging apparatus, an optical unit, a wafer lens laminate, and a method for manufacturing a wafer lens laminate.
 従来、光学レンズの製造分野においては、ガラス基板に対して硬化性樹脂からなるレンズ部を設けることで、耐熱性の高い光学レンズを得る技術が検討されている。この技術を適用した光学レンズの製造方法の一例として、ガラス基板の表面に硬化性樹脂からなる光学部材を複数設けたいわゆる「ウエハレンズ」を形成し、その後にレンズ部毎にガラス基板をカットする方法も提案されている。 Conventionally, in the field of manufacturing optical lenses, a technique for obtaining an optical lens having high heat resistance by providing a lens portion made of a curable resin on a glass substrate has been studied. As an example of an optical lens manufacturing method to which this technology is applied, a so-called “wafer lens” in which a plurality of optical members made of a curable resin is provided on the surface of a glass substrate is formed, and then the glass substrate is cut for each lens portion. A method has also been proposed.
 ウエハレンズを製造する方法として、例えば、金型から第1の樹脂型を作成し、続いて第1の樹脂型から同じく第2の樹脂型を作成し、第2の樹脂型を利用して樹脂製のウエハレンズを製造するといった、金型及び2つの樹脂型を使用する場合がある(例えば、特許文献1、2参照)。特に特許文献2では、大径のガラス基板に対して成形部を順次形成していくといった、いわゆるステップアンドリピート方式が開示されている。 As a method of manufacturing a wafer lens, for example, a first resin mold is created from a mold, and then a second resin mold is created from the first resin mold, and a resin is produced using the second resin mold. In some cases, a mold and two resin molds are used to manufacture a manufactured wafer lens (see, for example, Patent Documents 1 and 2). In particular, Patent Document 2 discloses a so-called step-and-repeat method in which formed portions are sequentially formed on a large-diameter glass substrate.
 ここで、金型がマスター成形型であり、樹脂型がサブマスター成形型である。サブマスター成形型を使ってウエハレンズを製作すると、高価なマスター成形型の使用回数を低減でき、結果的にウエハレンズのコストを下げることができる。 Here, the mold is a master mold and the resin mold is a sub master mold. When the wafer lens is manufactured using the sub master mold, the number of times of using the expensive master mold can be reduced, and as a result, the cost of the wafer lens can be reduced.
特表2006-519711号公報Special table 2006-519711 gazette 米国特許出願公開2006/0259546号公報US Patent Application Publication No. 2006/0259546
 しかしながら、上記ステップアンドリピート方式では、小さなマスター成形金型を用いて大径の第1の樹脂型基板に対して成形部を順次形成していくので、第1の領域での成形後、隣接する第2の領域との間には所定量の隙間が生ずる。これは、第1の領域での金型の位置と、第2の領域での金型との位置精度をぴったり合わせることができないために生ずるものである。 However, in the above step-and-repeat method, the molding part is sequentially formed on the first resin mold substrate having a large diameter using a small master molding die, so that it is adjacent after molding in the first region. A predetermined amount of gap is generated between the second region. This occurs because the position accuracy of the mold in the first region and the position accuracy of the mold in the second region cannot be matched exactly.
 その結果、形成された隙間内に樹脂が回らず、第1の樹脂型基板の一方の面には、第1の樹脂型基板の素地が露出した溝部を有する第1の樹脂型が製造される。さらに、このような溝部を有する第1の樹脂型を利用して、第2の樹脂型を製造し、第2の樹脂型を利用してウエハレンズを製造すると、ウエハレンズにも第1の樹脂型の溝部に対応する位置に、溝部が形成されることになる。 As a result, the resin does not rotate in the formed gap, and the first resin mold having the groove portion where the base of the first resin mold substrate is exposed is manufactured on one surface of the first resin mold substrate. . Further, when the second resin mold is manufactured using the first resin mold having such a groove, and the wafer lens is manufactured using the second resin mold, the first resin is also applied to the wafer lens. A groove portion is formed at a position corresponding to the groove portion of the mold.
 そして、それぞれ溝部を有する2つのウエハレンズ同士を互いに積層して接合し、ウエハレンズ積層体とし、両ウエハレンズのガラス基板を一括してダイシングすることによって、一組のレンズ部毎に個片化する場合、積層された2つのウエハレンズの溝部同士によって形成される空洞のある位置をダイシングすることになる。 Then, two wafer lenses each having a groove portion are laminated and bonded to each other to form a wafer lens laminate, and the glass substrates of both wafer lenses are diced together to separate each pair of lens portions. In this case, dicing is performed at a position where there is a cavity formed by the groove portions of the two stacked wafer lenses.
 そのため、ダイシング時の衝撃によって撓みやクラックが生じたり、ガラス基板と樹脂部との剥がれが発生することがある。勿論このような空洞は、直接積層するウエハレンズの一方のみが溝部を有し、他方が溝部を有しないウエハレンズ同士を積層する場合にも生ずる。 Therefore, bending or cracking may occur due to impact during dicing, or the glass substrate and the resin part may be peeled off. Of course, such a cavity also occurs when only one of the wafer lenses to be directly laminated has a groove and the other has no groove.
 本発明は、上記事情に鑑みてなされたもので、ウエハレンズを大型化したり複雑な構成にすることなく、ダイシング時における撓みやクラックの発生を防止し、また、ガラス基板と樹脂との剥がれも防止することのできる、ウエハレンズ積層体及びウエハレンズ積層体の製造方法を提供することを目的としている。また、本発明はコンパクトな構成でありながら、レンズ周囲におけるクラックやガラス基板と樹脂部との剥がれを防止しつつ、ゴーストの発生を防止することのできる撮像装置及び光学ユニットを提供することを目的としている。 The present invention has been made in view of the above circumstances, and prevents the occurrence of bending or cracking during dicing without increasing the size or complexity of the wafer lens, and also prevents the glass substrate and the resin from peeling off. An object of the present invention is to provide a wafer lens laminate and a method of manufacturing the wafer lens laminate that can be prevented. Another object of the present invention is to provide an imaging device and an optical unit that can prevent the occurrence of ghosts while preventing cracks around the lens and peeling of the glass substrate and the resin part, while having a compact configuration. It is said.
 本発明の一の態様によれば、第1ガラス基板の少なくとも一方の面に第1レンズ部と該第1レンズ部の周囲の第1非レンズ部とを樹脂にて形成した第1レンズブロックと、第2ガラス基板の少なくとも一方の面に第2レンズ部と該第2レンズ部の周囲の第2非レンズ部とを樹脂にて形成した第2レンズブロックと、を前記第1非レンズ部と前記第2非レンズ部が対向するように接合した光学ユニットであって、
 前記第1非レンズ部と前記第2非レンズ部との間の接合部分の少なくとも一部に、入射光に対して遮光性を有する遮光部材を、前記第1及び第2レンズブロックの側面に露出して形成するとともに、当該遮光部材は、前記第1、第2レンズブロックの側面部と共に同一面で側面部を形成していることを特徴とする光学ユニットが提供される。
According to one aspect of the present invention, a first lens block in which a first lens portion and a first non-lens portion around the first lens portion are formed of resin on at least one surface of the first glass substrate. A second lens block in which a second lens part and a second non-lens part around the second lens part are formed of resin on at least one surface of the second glass substrate; and the first non-lens part. An optical unit joined so that the second non-lens part faces,
A light-shielding member having a light-shielding property with respect to incident light is exposed on the side surfaces of the first and second lens blocks at least at a part of the joint portion between the first non-lens part and the second non-lens part. In addition, an optical unit is provided in which the light shielding member forms a side surface portion on the same surface as the side surface portions of the first and second lens blocks.
 本発明の他の態様によれば、第1ガラス基板の少なくとも一方の面に第1レンズ部と該第1レンズ部の周囲の第1非レンズ部とを樹脂にて形成した第1レンズブロックと、第2ガラス基板の少なくとも一方の面に第2レンズ部と該第2レンズ部の周囲の第2非レンズ部とを樹脂にて形成した第2レンズブロックと、を前記第1非レンズ部と前記第2非レンズ部が対向するように接合した光学ユニットと、
 前記第2レンズブロックの前記第2レンズ部及び第2非レンズ部の形成された面と反対側の面に一端面が接合され、前記第1及び第2レンズ部に対応する位置に開口部を有するガラスからなるスペーサと、
 前記スペーサの他端面に接合され、ガラスからなるカバー部材を有し、当該カバー部材から所定間隔を以って配置された撮像素子を有するセンサユニットと、を備えた撮像装置であって、
 前記第1非レンズ部と前記第2非レンズ部との間の接合部分の少なくとも一部に、入射光に対して遮光性を有する遮光部材を、前記第1及び第2レンズブロックの側面に露出して形成するとともに、当該遮光部材は、前記第1、第2レンズブロックの側面部、前記スペーサの側面部、前記センサユニットの側面部と共に同一面で側面部を形成していることを特徴とする撮像装置が提供される。
According to another aspect of the present invention, a first lens block in which a first lens portion and a first non-lens portion around the first lens portion are formed of resin on at least one surface of the first glass substrate; A second lens block in which a second lens part and a second non-lens part around the second lens part are formed of resin on at least one surface of the second glass substrate; and the first non-lens part. An optical unit bonded so that the second non-lens portion faces the optical unit;
One end surface is joined to the surface of the second lens block opposite to the surface where the second lens portion and the second non-lens portion are formed, and an opening is formed at a position corresponding to the first and second lens portions. A spacer made of glass having,
A sensor unit having a cover member made of glass, bonded to the other end surface of the spacer, and having an image sensor disposed at a predetermined interval from the cover member,
A light-shielding member having a light-shielding property with respect to incident light is exposed on the side surfaces of the first and second lens blocks at least at a part of the joint portion between the first non-lens part and the second non-lens part. The light-shielding member forms a side surface portion on the same surface together with a side surface portion of the first and second lens blocks, a side surface portion of the spacer, and a side surface portion of the sensor unit. An imaging device is provided.
 本発明の他の態様によれば、物体側に凸面を向け、第1ガラス基板の一方の面に設けられた樹脂部の一部に形成された第1レンズ部と、像側に凹面を向け、第1ガラス基板の他方の面に設けられた樹脂部の一部に形成された第2レンズ部とを有する第1レンズブロックと、
 物体側に凹面を向け、第2ガラス基板の一方の面に設けられた樹脂部の一部に形成された第3レンズ部と、第2ガラス基板の他方の面に設けられた樹脂部の一部に形成された第4レンズ部とを有する第2レンズブロックとを、前記第2レンズ部と前記第3レンズ部の形成された樹脂部を接合した光学ユニットであって、
 前記第2レンズ部が形成される樹脂部と前記第3レンズ部が形成される樹脂部との間に入射光に対して遮光性を有する遮光部材を、前記第1及び第2レンズブロックの側面に露出して形成するとともに、前記第1、第2レンズブロックの側面部と共に同一面で側面部を形成していることを特徴とする光学ユニットが提供される。
According to another aspect of the present invention, the first lens portion formed on a part of the resin portion provided on one surface of the first glass substrate with the convex surface facing the object side, and the concave surface facing the image side. A first lens block having a second lens part formed on a part of the resin part provided on the other surface of the first glass substrate;
The third lens part formed on a part of the resin part provided on one surface of the second glass substrate with the concave surface facing the object side, and one of the resin parts provided on the other surface of the second glass substrate An optical unit in which a second lens block having a fourth lens part formed on a part is joined to a resin part on which the second lens part and the third lens part are formed,
A light-shielding member having a light-shielding property with respect to incident light is disposed between the resin part in which the second lens part is formed and the resin part in which the third lens part is formed, and side surfaces of the first and second lens blocks. An optical unit is provided in which the side surface portion is formed on the same surface together with the side surface portions of the first and second lens blocks.
 本発明の他の態様によれば、物体側に凸面を向け、第1ガラス基板の一方の面に設けられた樹脂部の一部に形成された第1レンズ部と、像側に凹面を向け、第1ガラス基板の他方の面に設けられた樹脂部の一部に形成された第2レンズ部とを有する第1レンズブロックと、物体側に凹面を向け、第2ガラス基板の一方の面に設けられた樹脂部の一部に形成された第3レンズ部と、第2ガラス基板の他方の面に設けられた樹脂部の一部に形成された第4レンズ部とを有する第2レンズブロックとを、前記第2レンズ部と前記第3レンズ部の形成された樹脂部を接合した光学ユニットと、
 前記第2レンズブロックの前記第4レンズ部が形成された樹脂部に一端面が接合され、前記第1レンズ部から第4レンズ部に対応する位置に開口部を有するガラスからなるスペーサと、
 前記スペーサの他端面が接合された、ガラスからなるカバー部材と、当該カバー部材から所定間隔を以って配置された撮像素子を有するセンサユニットと、を備えた撮像装置であって、
 前記第2レンズ部が形成される樹脂部と前記第3レンズ部が形成される樹脂部との間に入射光に対して遮光性を有する遮光部材を、前記第1及び第2レンズブロックの側面に露出して形成するとともに、当該遮光部材は前記第1及び第2レンズブロックの側面に露出して形成され、且つ前記第1、第2レンズブロックの側面部、前記スペーサの側面部、前記センサユニットの側面部と共に同一面の側面部を形成していることを特徴とする撮像装置が提供される。
According to another aspect of the present invention, the first lens portion formed on a part of the resin portion provided on one surface of the first glass substrate with the convex surface facing the object side, and the concave surface facing the image side. A first lens block having a second lens portion formed on a part of a resin portion provided on the other surface of the first glass substrate, and a first surface of the second glass substrate with a concave surface facing the object side A second lens having a third lens part formed on a part of the resin part provided on the second glass part and a fourth lens part formed on a part of the resin part provided on the other surface of the second glass substrate. An optical unit in which a block is joined to a resin part in which the second lens part and the third lens part are formed;
A spacer made of glass having one end surface bonded to the resin portion where the fourth lens portion of the second lens block is formed and having an opening at a position corresponding to the fourth lens portion from the first lens portion;
An image pickup apparatus comprising: a cover member made of glass to which the other end surface of the spacer is bonded; and a sensor unit having an image pickup element arranged at a predetermined interval from the cover member.
A light-shielding member having a light-shielding property with respect to incident light is disposed between the resin part in which the second lens part is formed and the resin part in which the third lens part is formed, and side surfaces of the first and second lens blocks. And the light shielding member is exposed and formed on the side surfaces of the first and second lens blocks, and the side surfaces of the first and second lens blocks, the side surfaces of the spacer, and the sensor. An imaging device is provided in which the side surface portion of the same surface is formed together with the side surface portion of the unit.
 本発明の他の態様によれば、基板上に複数のレンズ部を有する樹脂部が形成されたウエハレンズが複数積層されたウエハレンズ積層体であって、直接積層される2つのウエハレンズの少なくとも一方は、
 前記樹脂部が各レンズ部の外周に非レンズ部を有し、
 前記非レンズ部は、その側周面を側壁とする溝部によって他のレンズ部から仕切られた構成であり、
 互いに積層されたウエハレンズ間において、一方のウエハレンズの前記溝部と、他方の積層されるウエハレンズとの間に形成される空洞内に樹脂が充填されていることを特徴とするウエハレンズ積層体が提供される。
According to another aspect of the present invention, there is provided a wafer lens laminate in which a plurality of wafer lenses each having a resin portion having a plurality of lens portions formed on a substrate are laminated, and at least of two wafer lenses that are directly laminated. On the other hand,
The resin part has a non-lens part on the outer periphery of each lens part,
The non-lens part is configured to be partitioned from other lens parts by a groove part having a side peripheral surface as a side wall,
A wafer lens laminate, wherein a cavity formed between the groove portion of one wafer lens and the other wafer lens to be laminated is filled between the wafer lenses laminated to each other. Is provided.
 本発明の他の態様によれば、基板上に複数のレンズ部を有する樹脂部が形成されたウエハレンズが複数積層されたウエハレンズ積層体であって、直接積層される2つのウエハレンズの少なくとも一方は、
 前記樹脂部が各レンズ部の外周に非レンズ部を有し、
 前記非レンズ部は、その側周面を側壁とする溝部によって他のレンズ部から仕切られた構成であり、
 互いに積層されたウエハレンズ間において、一方のウエハレンズの前記溝部と、他方のウエハレンズとの間に形成される空洞内に、当該空洞よりも小さな平板が配置され、前記平板と前記空洞との間に樹脂が充填されていることを特徴とするウエハレンズ積層体が提供される。
According to another aspect of the present invention, there is provided a wafer lens laminate in which a plurality of wafer lenses each having a resin portion having a plurality of lens portions formed on a substrate are laminated, and at least of two wafer lenses that are directly laminated. On the other hand,
The resin part has a non-lens part on the outer periphery of each lens part,
The non-lens part is configured to be partitioned from other lens parts by a groove part having a side peripheral surface as a side wall,
A flat plate smaller than the cavity is disposed in a cavity formed between the groove portion of one wafer lens and the other wafer lens between the wafer lenses laminated to each other. A wafer lens laminate is provided, which is filled with a resin therebetween.
 本発明の他の態様によれば、基板上に複数のレンズ部を有する樹脂部が形成されたウエハレンズが複数積層されたウエハレンズ積層体の製造方法であって、直接積層される2つのウエハレンズの少なくとも一方は、
 前記ウエハレンズの前記樹脂部が各レンズ部の外周に非レンズ部を有し、
 前記非レンズ部は、その側周面を側壁とする溝部によって他のレンズ部から仕切られた構成であり、
 ウエハレンズを互いに積層させて配置し、
 一方のウエハレンズの前記溝部と、他方のウエハレンズの間に形成される空洞内に、樹脂を充填することを特徴とするウエハレンズ積層体の製造方法が提供される。
According to another aspect of the present invention, there is provided a method of manufacturing a wafer lens laminate in which a plurality of wafer lenses each having a resin portion having a plurality of lens portions formed on a substrate are laminated, wherein two wafers are directly laminated. At least one of the lenses
The resin part of the wafer lens has a non-lens part on the outer periphery of each lens part,
The non-lens part is configured to be partitioned from other lens parts by a groove part having a side peripheral surface as a side wall,
Wafer lenses are stacked on top of each other,
There is provided a method for producing a wafer lens laminate, wherein a resin is filled in a cavity formed between the groove of one wafer lens and the other wafer lens.
 本発明の他の態様によれば、基板上に複数のレンズ部を有する樹脂部が形成されたウエハレンズが複数積層されたウエハレンズ積層体の製造方法であって、直接積層される2つのウエハレンズの少なくとも一方は、
 前記ウエハレンズの前記樹脂部が各レンズ部の外周に非レンズ部を有し、
 前記非レンズ部は、その側周面を側壁とする溝部によって他のレンズ部から仕切られた構成であり、
 ウエハレンズを互いに積層させて配置し、
 一方のウエハレンズの前記溝部と、他方のウエハレンズとの間に形成される空洞内に、当該空洞よりも小さな平板を配置するとともに前記平板と前記空洞との間に樹脂を充填することを特徴とするウエハレンズ積層体の製造方法が提供される。
According to another aspect of the present invention, there is provided a method of manufacturing a wafer lens laminate in which a plurality of wafer lenses each having a resin portion having a plurality of lens portions formed on a substrate are laminated, wherein two wafers are directly laminated. At least one of the lenses
The resin part of the wafer lens has a non-lens part on the outer periphery of each lens part,
The non-lens part is configured to be partitioned from other lens parts by a groove part having a side peripheral surface as a side wall,
Wafer lenses are stacked on top of each other,
A flat plate smaller than the cavity is disposed in a cavity formed between the groove portion of one wafer lens and the other wafer lens, and a resin is filled between the flat plate and the cavity. A method for producing a wafer lens laminate is provided.
 本発明のウエハレンズ積層体及びウエハレンズ積層体の製造方法によれば、ウエハレンズを大型化したり複雑な構成にしたりすることなく、ダイシング時における撓みやクラックの発生を防止し、また、ガラス基板と樹脂との剥がれも防止することができると共に、遮光部材により不要な反射光などを遮光してゴーストを防止することができる。また、本発明の撮像装置及び光学ユニットによれば、コンパクトな構成でありながら、レンズ周囲におけるクラックやガラス基板と樹脂部との剥がれを防止しつつ、ゴーストの発生を防止することができる。 According to the wafer lens laminate and the method for producing the wafer lens laminate of the present invention, it is possible to prevent the occurrence of bending or cracking during dicing without increasing the size of the wafer lens or having a complicated configuration. And the resin can be prevented from peeling off, and unnecessary reflected light can be shielded by the light shielding member to prevent ghosting. In addition, according to the imaging apparatus and the optical unit of the present invention, it is possible to prevent the occurrence of ghost while preventing cracks around the lens and peeling between the glass substrate and the resin portion while having a compact configuration.
(a)は、撮像装置の概略構成を示す断面図であり、(b)は、撮像装置の平面図であってパッケージを外した状態を示す図面である。(A) is sectional drawing which shows schematic structure of an imaging device, (b) is drawing which shows the state which removed the package which is a top view of an imaging device. ウエハレンズ積層体の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of a wafer lens laminated body. ウエハレンズのガラス基板の絞り及びIRカットコートのパターンを概略的に示す平面図である。It is a top view which shows schematically the aperture_diaphragm | restriction of the glass substrate of a wafer lens, and the pattern of IR cut coat. (a)、(b)は、ウエハレンズの製造方法の一部で、第1の凸状樹脂型を製造する場合を示した側面図である。(A), (b) is a part of manufacturing method of a wafer lens, and is the side view which showed the case where a 1st convex-shaped resin mold is manufactured. (a)、(b)は、ウエハレンズの製造方法の一部で、図4の状態から第2の凹状樹脂型を製造する場合を示した側面図である。(A), (b) is a side view which showed the case where the 2nd concave resin type | mold is manufactured from the state of FIG. 4 in a part of manufacturing method of a wafer lens. (a)、(b)は、ウエハレンズの製造方法の一部で、図5の状態からウエハレンズを製造する場合を示した側面図である。(A), (b) is a side view which showed the case where a wafer lens is manufactured from the state of FIG. 5 in a part of manufacturing method of a wafer lens. (a)、(b)は、ウエハレンズ積層体の製造方法の一部を示した側面図である。(A), (b) is the side view which showed a part of manufacturing method of a wafer lens laminated body. (a)、(b)は、ウエハレンズ積層体の製造方法の一部で、図7の状態からウエハレンズ積層体を製造する場合を示した側面図である。(A), (b) is a part of manufacturing method of a wafer lens laminated body, and is the side view which showed the case where a wafer lens laminated body is manufactured from the state of FIG. (a)は、ウエハレンズ積層体を製造する際に、空洞内に樹脂を充填する場合を示した平面図、(b)は、(a)の側面図である。(A) is the top view which showed the case where resin is filled in a cavity, when manufacturing a wafer lens laminated body, (b) is a side view of (a). (a)は、第2実施形態の撮像装置の概略構成を示す断面図であり、(b)は、第2実施形態の撮像装置の平面図であってパッケージを外した状態を示す図面である。(A) is sectional drawing which shows schematic structure of the imaging device of 2nd Embodiment, (b) is a top view of the imaging device of 2nd Embodiment, and is drawing which shows the state which removed the package. . (a)、(b)は、第2実施形態のウエハレンズ積層体の製造方法の一部を示した側面図である。(A), (b) is the side view which showed a part of manufacturing method of the wafer lens laminated body of 2nd Embodiment. (a)、(b)は、第2実施形態のウエハレンズ積層体の製造方法の一部で、図7の状態からウエハレンズ積層体を製造する場合を示した側面図である。(A), (b) is a part of manufacturing method of the wafer lens laminated body of 2nd Embodiment, and is the side view which showed the case where a wafer lens laminated body is manufactured from the state of FIG. ステップアンドリピート方式によるウエハレンズの製造方法を説明するための図であって、第1の凸状樹脂型を製造する場合の平面図である。It is a figure for demonstrating the manufacturing method of the wafer lens by a step and repeat system, Comprising: It is a top view in the case of manufacturing a 1st convex resin type | mold.
 以下、図面を参照しながら本発明の好ましい実施形態について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 [第1実施形態]
 〈撮像装置〉
 図1(a)に示す通り、撮像装置2は主にはレンズユニット4とセンサユニット6とで構成されており、レンズユニット4がセンサユニット6上に配置されている。
[First Embodiment]
<Imaging device>
As shown in FIG. 1A, the imaging device 2 is mainly composed of a lens unit 4 and a sensor unit 6, and the lens unit 4 is disposed on the sensor unit 6.
 レンズユニット4はレンズブロック8、10からなる光学ユニットとスペーサ12とカバーパッケージ14とを有しており、レンズブロック8、10とスペーサ12とが接着・積層された状態でカバーパッケージ14に覆われている。 The lens unit 4 includes an optical unit including lens blocks 8 and 10, a spacer 12, and a cover package 14. The lens unit 4 is covered with the cover package 14 in a state where the lens blocks 8 and 10 and the spacer 12 are bonded and laminated. ing.
 レンズブロック8は平板状を呈したガラス基板16を有している。ガラス基板16の上部には絞り18、IRカットコート21、樹脂部20が形成されており、ガラス基板16の下部には絞り22、IRカットコート23、樹脂部24が形成されている。 The lens block 8 has a flat glass substrate 16. A diaphragm 18, an IR cut coat 21 and a resin part 20 are formed on the upper part of the glass substrate 16, and a diaphragm 22, an IR cut coat 23 and a resin part 24 are formed on the lower part of the glass substrate 16.
 樹脂部20の略中央部には凸状を呈した凸レンズ部20aが形成されている。樹脂部20では凸レンズ部20a以外の部位が非レンズ部20bとなっている。非レンズ部20bは、凸レンズ部20aから外周部に向けて、上方に傾斜した傾斜部20cと、傾斜部20cに連続して上側に凸となる略平坦な平坦部20dと、平坦部20dの外側で下向きに窪んで形成された部位である溝部20eとを有している。 A convex lens portion 20a having a convex shape is formed at a substantially central portion of the resin portion 20. In the resin part 20, parts other than the convex lens part 20a are non-lens parts 20b. The non-lens portion 20b includes an inclined portion 20c inclined upward from the convex lens portion 20a toward the outer peripheral portion, a substantially flat flat portion 20d continuously convex upward from the inclined portion 20c, and an outer side of the flat portion 20d. And a groove portion 20e which is a portion formed to be depressed downward.
 樹脂部24の略中央部には凹状を呈した凹レンズ部24aが形成されている。樹脂部24では凹レンズ部24a以外の部位が非レンズ部24bとなっている。非レンズ部24bは、凹レンズ部24aの外周部に形成された略平坦な平坦部24dと、平坦部24dの外側で上向きに窪んで形成された部位である溝部24eとを有している。なお、ここで上向き、下向きとは、図1(a)における上向き、下向きを言う。 A concave lens portion 24 a having a concave shape is formed at a substantially central portion of the resin portion 24. In the resin part 24, parts other than the concave lens part 24a are non-lens parts 24b. The non-lens part 24b has a substantially flat flat part 24d formed on the outer peripheral part of the concave lens part 24a, and a groove part 24e which is a part formed to be recessed upward on the outside of the flat part 24d. Here, upward and downward refer to the upward and downward directions in FIG.
 レンズブロック10も平板状を呈したガラス基板26を有している。ガラス基板26の上部には樹脂部28が形成されており、ガラス基板26の下部には絞り30と樹脂部32とが形成されている。 The lens block 10 also has a flat glass substrate 26. A resin portion 28 is formed on the upper portion of the glass substrate 26, and a diaphragm 30 and a resin portion 32 are formed on the lower portion of the glass substrate 26.
 樹脂部28の略中央部には凹状を呈した凹レンズ部28aが形成されている。樹脂部28では凹レンズ部28a以外の部位が非レンズ部28bとなっている。非レンズ部28bは、凹レンズ部28aの外周部に形成された略平坦な平坦部28cと、平坦部28cの外側で下向きに窪んで形成された部位である溝部28dとを有している。 A concave lens portion 28a having a concave shape is formed at a substantially central portion of the resin portion 28. In the resin part 28, parts other than the concave lens part 28a are non-lens parts 28b. The non-lens part 28b has a substantially flat flat part 28c formed on the outer peripheral part of the concave lens part 28a, and a groove part 28d which is a part formed to be depressed downward on the outer side of the flat part 28c.
 樹脂部32の略中央部には凸状を呈した凸レンズ部32aが形成されている。樹脂部32では凸レンズ部32a以外の部位が非レンズ部32bとなっている。非レンズ部32bは、凸レンズ部32aの外周部に形成された略平坦な平坦部32cと、平坦部32cの外側で下向きに凹に形成された部位である溝部32dとを有している。 A convex lens portion 32 a having a convex shape is formed at a substantially central portion of the resin portion 32. In the resin part 32, parts other than the convex lens part 32a are non-lens parts 32b. The non-lens part 32b has a substantially flat flat part 32c formed on the outer peripheral part of the convex lens part 32a, and a groove part 32d which is a part formed to be concave downward on the outside of the flat part 32c.
 樹脂部20、24、28、32は光硬化性樹脂を成形した部位で光透過性を有している。樹脂部20、24、28、32中の凸レンズ部20a、凹レンズ部24a、凹レンズ部28a、凸レンズ部32aはレンズ機能(光学機能)を発揮するレンズ有効部となっている。 Resin portions 20, 24, 28, and 32 are light-transmitting portions where photo-curing resin is molded. The convex lens portion 20a, the concave lens portion 24a, the concave lens portion 28a, and the convex lens portion 32a in the resin portions 20, 24, 28, and 32 are lens effective portions that exhibit a lens function (optical function).
 レンズブロック8、10を物体側(凸レンズ部20a側)から見た場合には、図1(b)に示す通り、凸レンズ部20a、凹レンズ部24a、凹レンズ部28a、凸レンズ部32aは同心円状に配置されており、これらレンズ部同士で光軸34が互いに一致するように上下に積層されている。 When the lens blocks 8 and 10 are viewed from the object side (convex lens portion 20a side), as shown in FIG. 1B, the convex lens portion 20a, the concave lens portion 24a, the concave lens portion 28a, and the convex lens portion 32a are arranged concentrically. These lens portions are stacked vertically so that the optical axes 34 coincide with each other.
 センサユニット6は、主にはセンサ36、パッケージ38、カバーガラス40から構成されている。センサ36はレンズユニット4を透過した光を受光する受光センサであって、受光した光を光電変換して電気信号を外部機器(図示略)に出力可能となっている。 The sensor unit 6 mainly includes a sensor 36, a package 38, and a cover glass 40. The sensor 36 is a light receiving sensor that receives light transmitted through the lens unit 4, and can photoelectrically convert the received light to output an electrical signal to an external device (not shown).
 パッケージ38は有底箱状を呈しており、上方が開放されている。パッケージ38の略中央部にはセンサ36が配されている。カバーガラス40は、パッケージ38の上部に蓋体として設けられており、センサ36はパッケージ38とカバーガラス40とに囲まれた空間中に密閉されている。 The package 38 has a bottomed box shape and is open at the top. A sensor 36 is disposed at a substantially central portion of the package 38. The cover glass 40 is provided as a lid on the upper part of the package 38, and the sensor 36 is sealed in a space surrounded by the package 38 and the cover glass 40.
 スペーサ12は、レンズブロック10とセンサ36との間に介在しており、これら部材間に一定の間隔を付与している。 The spacer 12 is interposed between the lens block 10 and the sensor 36, and provides a constant interval between these members.
 〈ウエハレンズ積層体〉
 図1のレンズユニット4をダイシングにより個片化する前のウエハレンズ積層体を説明するに、図2に示す通り、ウエハレンズ積層体50は、主にはウエハレンズ52、54とスペーサ基板56とで構成されており、これら部材が積層された構成を有している。
<Wafer lens laminate>
The wafer lens laminate before dicing the lens unit 4 of FIG. 1 by dicing will be described. As shown in FIG. 2, the wafer lens laminate 50 mainly includes wafer lenses 52 and 54, a spacer substrate 56, It has the structure by which these members were laminated | stacked.
 このウエハレンズ積層体50を所定位置でそれぞれダイシングすることによって、レンズブロック8、10とスペーサ12とが接着・積層された一組のユニットが複数形成される。 The wafer lens laminate 50 is diced at a predetermined position to form a plurality of sets of units in which the lens blocks 8 and 10 and the spacers 12 are bonded and laminated.
 図8(b)に示す通り、ウエハレンズ52は、ウエハ状を呈したガラス基板16を有し、ガラス基板16の上部には絞り18、樹脂部20、IRカットコート21が形成されている。 As shown in FIG. 8B, the wafer lens 52 includes a glass substrate 16 having a wafer shape, and a diaphragm 18, a resin portion 20, and an IR cut coat 21 are formed on the glass substrate 16.
 絞り18は、矩形状をなしてガラス基板16上に多数形成されており、各々の絞り18の中央部で、樹脂部20の凸レンズ部20aに対応する箇所が除かれて円形の開口部18aが形成されている(図3参照)。 A large number of the apertures 18 are formed on the glass substrate 16 in a rectangular shape, and a circular opening 18a is formed at the center of each aperture 18 except for a portion corresponding to the convex lens portion 20a of the resin portion 20. It is formed (see FIG. 3).
 絞り18は、遮光性フォトレジストにより構成されている。遮光性フォトレジストとしてはカーボンブラックを混入したフォトレジストが適用されている。 The diaphragm 18 is made of a light shielding photoresist. As the light shielding photoresist, a photoresist mixed with carbon black is applied.
 IRカットコート21は、凸レンズ部20aに対応する箇所にそれぞれ形成されており、ガラス基板16上に小さな円形状のものを多数並べて形成されている(図3参照)。 The IR cut coat 21 is formed at a location corresponding to the convex lens portion 20a, and a large number of small circular shapes are arranged on the glass substrate 16 (see FIG. 3).
 IRカットコート21は、撮像装置2とした場合にセンサ36に入射しようとする赤外線を遮光するものである。紫外光に対しても反射や光吸収により透過率が50%以下に制限される。詳しくは、IRカットコート21は、図示しないが、低屈折率材料から構成された低屈折率層と、高屈折率材料から構成された高屈折率層とを、交互に複数積層した交互多層膜である。好ましくはIRカットコート21の低屈折率層がガラス基板16に対して直接に接するように形成すると良い。 The IR cut coat 21 shields infrared rays that are about to enter the sensor 36 when the imaging apparatus 2 is used. Even for ultraviolet light, the transmittance is limited to 50% or less due to reflection and light absorption. Specifically, although not shown, the IR cut coat 21 is an alternating multilayer film in which a plurality of low refractive index layers made of a low refractive index material and a plurality of high refractive index layers made of a high refractive index material are alternately stacked. It is. Preferably, the IR cut coat 21 may be formed so that the low refractive index layer is in direct contact with the glass substrate 16.
 IRカットコート21の形成方法としては、マスクを使用しながら、公知の真空蒸着法やスパッタ、CVD(Chemical Vapor Deposition)法、パターニングする方法等が挙げられる。マスクとしては、凸レンズ部20aに対応する箇所にのみ穴が形成されたものを使用し、凸レンズ部20aに対応する箇所にのみIRカットコート21が形成されるようにする。 Examples of the method for forming the IR cut coat 21 include a known vacuum deposition method, sputtering, CVD (Chemical Vapor Deposition) method, patterning method and the like while using a mask. As the mask, a mask in which a hole is formed only at a location corresponding to the convex lens portion 20a is used, and the IR cut coat 21 is formed only at a location corresponding to the convex lens portion 20a.
 ガラス基板16上にまず絞り18及びIRカットコート21を形成し、ついで金型とガラス基板の間に樹脂を入れて成形することにより凸レンズ部20a、非レンズ部20bを形成する。従って、絞り18及びIRカットコート21は、樹脂部20により被覆されている。 First, the aperture 18 and the IR cut coat 21 are formed on the glass substrate 16, and then the convex lens portion 20 a and the non-lens portion 20 b are formed by forming a resin between the mold and the glass substrate. Therefore, the diaphragm 18 and the IR cut coat 21 are covered with the resin portion 20.
 ガラス基板16の下部には絞り22、樹脂部24、IRカットコート23が形成されている。 A diaphragm 22, a resin part 24, and an IR cut coat 23 are formed below the glass substrate 16.
 絞り22は、絞り18と同一形状でガラス基板16上に多数形成されており、各々の絞り18の中央部で、樹脂部24の凹レンズ部24aに対応する箇所が除かれて円形の開口部22aが形成されている。また、絞り18と同様に遮光性フォトレジストにより構成されている。 Many apertures 22 are formed on the glass substrate 16 in the same shape as the apertures 18, and a circular opening 22 a is removed from the central portion of each aperture 18 except for a portion corresponding to the concave lens portion 24 a of the resin portion 24. Is formed. Further, like the diaphragm 18, it is made of a light shielding photoresist.
 IRカットコート23は、ガラス基板26上に多数形成されており、凹レンズ部24aに対応する箇所にそれぞれ形成されている。IRカットコート23は、IRカットコート21と同一形状を呈し、IRカットコート21と同様にして形成されている。 A large number of IR cut coats 23 are formed on the glass substrate 26, and are formed at locations corresponding to the concave lens portions 24a. The IR cut coat 23 has the same shape as the IR cut coat 21 and is formed in the same manner as the IR cut coat 21.
 絞り22及びIRカットコート23は、絞り18及びIRカットコート21と同様に形成され、凹レンズ部24a、非レンズ部24bを構成する樹脂部24により被覆されている。凹レンズ部24aは、凸レンズ部20aと同軸位置にある。 The aperture 22 and the IR cut coat 23 are formed in the same manner as the aperture 18 and the IR cut coat 21, and are covered with a resin portion 24 constituting a concave lens portion 24a and a non-lens portion 24b. The concave lens portion 24a is in a coaxial position with the convex lens portion 20a.
 一組の凸レンズ部20a、絞り18、絞り22、凹レンズ部24a、IRカットコート21、IRカットコート23により構成される部分が部品の一単位に相当し、これらがガラス基板16に多数保持された状態で、ウエハレンズ54やスペーサ基板56とユニット化される。 A portion constituted by a set of convex lens portion 20a, aperture 18, aperture 22, concave lens portion 24a, IR cut coat 21 and IR cut coat 23 corresponds to one unit of the component, and a large number of these are held on the glass substrate 16. In this state, the wafer lens 54 and the spacer substrate 56 are unitized.
 図8(b)に示す通り、ウエハレンズ54は、ウエハ状を呈したガラス基板26を有し、ガラス基板26の上部には樹脂部28が形成されている。樹脂部28は凸レンズ部20aと同軸位置に凹レンズ部28aを構成している。 As shown in FIG. 8B, the wafer lens 54 has a glass substrate 26 having a wafer shape, and a resin portion 28 is formed on the glass substrate 26. The resin portion 28 constitutes a concave lens portion 28a at a position coaxial with the convex lens portion 20a.
 ガラス基板26の下部には、絞り30、樹脂部32が形成されている。 A diaphragm 30 and a resin part 32 are formed in the lower part of the glass substrate 26.
 絞り30は、矩形状をなしてガラス基板26上に多数形成されており、各々の絞り30の中央部で、樹脂部32の凸レンズ部30aに対応する箇所が除かれて円形の開口部30aが形成されている。 A large number of the diaphragms 30 are formed on the glass substrate 26 in a rectangular shape, and a circular opening 30a is formed at a central portion of each diaphragm 30 except a portion corresponding to the convex lens part 30a of the resin part 32. Is formed.
 絞り30は、凸レンズ部32aを構成する樹脂部32により被覆されており、凸レンズ部32aは、凸レンズ部20aと同軸位置にある。 The diaphragm 30 is covered with a resin portion 32 constituting a convex lens portion 32a, and the convex lens portion 32a is coaxial with the convex lens portion 20a.
 一組の凹レンズ部28a、絞り30、凸レンズ部32aにより構成される部分が部品の一単位に相当し、これらがガラス基板26に多数保持された状態でウエハレンズ52やスペーサ基板56とユニット化される。 A portion constituted by a set of concave lens portion 28a, diaphragm 30, and convex lens portion 32a corresponds to one unit of a component, and is unitized with wafer lens 52 and spacer substrate 56 in a state where a large number of these are held on glass substrate 26. The
 スペーサ基板56は、図2に示す通り、ガラス基板16、26と同様にウエハ状を呈したガラス製平板である。スペーサ基板56には、多数の円形状の開口部が形成されている。 As shown in FIG. 2, the spacer substrate 56 is a glass flat plate having a wafer shape like the glass substrates 16 and 26. A large number of circular openings are formed in the spacer substrate 56.
 ウエハレンズ積層体50には、図8(b)中、上側から下側に向けて順に、凸レンズ部20a、IRカットコート21(絞り18の開口部18a)、IRカットコート23(絞り22の開口部22a)、凹レンズ部24a、凹レンズ部28a、絞り30の開口部30a、凸レンズ部32a、スペーサ基板56の開口部56aが光軸34上に配置されており、このウエハレンズ積層体50をダイシングライン62に沿って切断して、複数のレンズユニット4が形成される。 In FIG. 8B, the wafer lens laminated body 50 includes, in order from the upper side to the lower side, a convex lens portion 20a, an IR cut coat 21 (opening 18a of the diaphragm 18), and an IR cut coat 23 (opening of the diaphragm 22). Portion 22a), concave lens portion 24a, concave lens portion 28a, aperture 30a of diaphragm 30, convex lens portion 32a, and aperture 56a of spacer substrate 56 are disposed on optical axis 34, and wafer lens laminate 50 is diced into a dicing line. A plurality of lens units 4 are formed by cutting along 62.
 〈レンズ材料〉
 樹脂部20、24、28、32は、基本的には光硬化性の樹脂44(図6参照)により構成される。
<Lens material>
The resin parts 20, 24, 28, 32 are basically composed of a photocurable resin 44 (see FIG. 6).
 樹脂44としては、アクリル樹脂、アリルエステル樹脂、エポキシ樹脂、シリコーン樹脂などが使用される。アクリル樹脂、アリルエステル樹脂はラジカル重合により反応硬化させることができ、エポキシ樹脂はカチオン重合により反応硬化させることができる。 As the resin 44, acrylic resin, allyl ester resin, epoxy resin, silicone resin or the like is used. Acrylic resins and allyl ester resins can be reactively cured by radical polymerization, and epoxy resins can be reactively cured by cationic polymerization.
 樹脂部20、24、28、32は、熱硬化性樹脂により構成されてもよい。熱硬化性樹脂によれば、ラジカル重合やカチオン重合の他にシリコーン等のように付加重合により硬化させることもできる。 Resin portions 20, 24, 28, and 32 may be made of a thermosetting resin. According to the thermosetting resin, it can be cured by addition polymerization such as silicone in addition to radical polymerization and cationic polymerization.
 樹脂44の詳細は(1)~(4)の通りである。 Details of the resin 44 are as described in (1) to (4).
 (1)アクリル樹脂
 重合反応に用いられる(メタ)アクリレートは特に制限はなく、一般的な製造方法により製造された下記(メタ)アクリレートを使用することができる。エステル(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、エーテル(メタ)アクリレート、アルキル(メタ)アクリレート、アルキレン(メタ)アクリレート、芳香環を有する(メタ)アクリレート、脂環式構造を有する(メタ)アクリレートが挙げられる。これらを1種類又は2種類以上を用いることができる。
(1) Acrylic resin The (meth) acrylate used for the polymerization reaction is not particularly limited, and the following (meth) acrylate produced by a general production method can be used. Ester (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, ether (meth) acrylate, alkyl (meth) acrylate, alkylene (meth) acrylate, (meth) acrylate having an aromatic ring, alicyclic structure The (meth) acrylate which has is mentioned. One or more of these can be used.
 特に脂環式構造を持つ(メタ)アクリレートが好ましく、酸素原子や窒素原子を含む脂環構造であってもよい。例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘプチル(メタ)アクリレート、ビシクロヘプチル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレートや、イソボロニル(メタ)アクリレート、水添ビスフェノール類のジ(メタ)アクリレート等が挙げられる。また特にアダマンタン骨格を持つと好ましい。例えば、2-アルキル-2-アダマンチル(メタ)アクリレート(特開2002-193883号公報)、アダマンチルジ(メタ)アクリレート(特開昭57-500785号公報)、アダマンチルジカルボン酸ジアリル(特開昭60-100537号公報)、パーフルオロアダマンチルアクリル酸エステル(特開2004-123687号公報)、新中村化学製 2-メチル-2-アダマンチルメタクリレート、1,3-アダマンタンジオールジアクリレート、1,3,5-アダマンタントリオールトリアクリレート、不飽和カルボン酸アダマンチルエステル(特開2000-119220号公報)、3,3’-ジアルコキシカルボニル-1,1’ビアダマンタン(特開2001-253835号公報)、1,1’-ビアダマンタン化合物(米国特許第3342880号明細書)、テトラアダマンタン(特開2006-169177号公報)、2-アルキル-2-ヒドロキシアダマンタン、2-アルキレンアダマンタン、1,3-アダマンタンジカルボン酸ジ-tert-ブチル等の芳香環を有しないアダマンタン骨格を有する硬化性樹脂(特開2001-322950号公報)、ビス(ヒドロキシフェニル)アダマンタン類やビス(グリシジルオキシフェニル)アダマンタン(特開平11-35522号公報、特開平10-130371号公報)等が挙げられる。 (Meth) acrylate having an alicyclic structure is particularly preferable, and may be an alicyclic structure containing an oxygen atom or a nitrogen atom. For example, cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, cycloheptyl (meth) acrylate, bicycloheptyl (meth) acrylate, tricyclodecyl (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, isoboronyl (meth) ) Acrylate, di (meth) acrylate of hydrogenated bisphenols, and the like. In particular, it preferably has an adamantane skeleton. For example, 2-alkyl-2-adamantyl (meth) acrylate (Japanese Patent Laid-Open No. 2002-193883), adamantyl di (meth) acrylate (Japanese Patent Laid-Open No. 57-5000785), diallyl adamantyl dicarboxylate (Japanese Patent Laid-Open No. 60-60) No. 100537), perfluoroadamantyl acrylate (JP 2004-123687), Shin-Nakamura Chemical Co., Ltd. 2-methyl-2-adamantyl methacrylate, 1,3-adamantanediol diacrylate, 1,3,5-adamantane Triol triacrylate, unsaturated carboxylic acid adamantyl ester (JP 2000-119220 A), 3,3′-dialkoxycarbonyl-1,1 ′ biadamantane (JP 2001-253835 A), 1,1′- Biadamantane compounds U.S. Pat. No. 3,342,880), tetraadamantane (Japanese Patent Laid-Open No. 2006-169177), 2-alkyl-2-hydroxyadamantane, 2-alkyleneadamantane, 1,3-adamantane dicarboxylate di-tert-butyl and the like Curable resins having an adamantane skeleton having no ring (Japanese Patent Laid-Open No. 2001-322950), bis (hydroxyphenyl) adamantanes and bis (glycidyloxyphenyl) adamantanes (Japanese Patent Laid-Open Nos. 11-35522 and 10-130371) No. gazette).
 また、その他反応性単量体を含有することも可能である。(メタ)アクリレートであれば、例えば、メチルアクリレート、メチルメタアクリレート、n-ブチルアクリレート、n-ブチルメタアクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルメタアクリレート、イソブチルアクリレート、イソブチルメタアクリレート、tert-ブチルアクリレート、tert-ブチルメタアクリレート、フェニルアクリレート、フェニルメタアクリレート、ベンジルアクリレート、ベンジルメタアクリレート、シクロヘキシルアクリレート、シクロヘキシルメタアクリレート、などが挙げられる。 It is also possible to contain other reactive monomers. In the case of (meth) acrylate, for example, methyl acrylate, methyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate Tert-butyl methacrylate, phenyl acrylate, phenyl methacrylate, benzyl acrylate, benzyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, and the like.
 多官能(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリペンタエリスリトールセプタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールテトラ(メタ)アクリレート、トリペンタエリスリトールトリ(メタ)アクリレートなどが挙げられる。 Examples of the polyfunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta ( (Meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, tripentaerythritol octa (meth) acrylate, tripentaerythritol septa (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tri Pentaerythritol penta (meth) acrylate, tripentaerythritol tetra (meth) acrylate, tripentaerythritol Such Rutori (meth) acrylate.
 (2)アリルエステル樹脂
 アリル基を持ちラジカル重合による硬化する樹脂で、例えば次のものが挙げられるが、特に以下のものに限定されるわけではない。
(2) Allyl ester resin A resin having an allyl group and cured by radical polymerization. Examples thereof include the following, but are not particularly limited to the following.
 芳香環を含まない臭素含有(メタ)アリルエステル(特開2003-66201号公報)、アリル(メタ)アクリレート(特開平5-286896号公報)、アリルエステル樹脂(特開平5-286896号公報、特開2003-66201号公報)、アクリル酸エステルとエポキシ基含有不飽和化合物の共重合化合物(特開2003-128725号公報)、アクリレート化合物(特開2003-147072号公報)、アクリルエステル化合物(特開2005-2064号公報)等が挙げられる。 Bromine-containing (meth) allyl ester not containing an aromatic ring (Japanese Patent Laid-Open No. 2003-66201), allyl (meth) acrylate (Japanese Patent Laid-Open No. 5-286896), allyl ester resin (Japanese Patent Laid-Open No. 5-286896), No. 2003-66201), a copolymer compound of an acrylate ester and an epoxy group-containing unsaturated compound (JP-A 2003-128725), an acrylate compound (JP-A 2003-147072), an acrylic ester compound (JP-A No. 2005-2064).
 (3)エポキシ樹脂
 エポキシ樹脂としては、エポキシ基を持ち光又は熱により重合硬化するものであれば特に限定されず、硬化開始剤としても酸無水物やカチオン発生剤等を用いることができる。エポキシ樹脂は硬化収縮率が低いため、成形精度の優れたレンズとすることができる点で好ましい。
(3) Epoxy resin The epoxy resin is not particularly limited as long as it has an epoxy group and is polymerized and cured by light or heat, and an acid anhydride, a cation generator, or the like can be used as a curing initiator. Epoxy resin is preferable in that it has a low cure shrinkage and can be a lens with excellent molding accuracy.
 エポキシの種類としては、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂が挙げられる。その一例として、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2’-ビス(4-グリシジルオキシシクロヘキシル)プロパン、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキシド、2-(3,4-エポキシシクロヘキシル)-5,5-スピロ-(3,4-エポキシシクロヘキサン)-1,3-ジオキサン、ビス(3,4-エポキシシクロヘキシル)アジペート、1,2-シクロプロパンジカルボン酸ビスグリシジルエステル等を挙げることができる。 Examples of the epoxy include novolak phenol type epoxy resin, biphenyl type epoxy resin, and dicyclopentadiene type epoxy resin. Examples include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, vinyl Cyclohexene dioxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3-dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2 -Cyclopropanedicarboxylic acid bisglycidyl ester and the like.
 硬化剤は、硬化性樹脂材料を構成する上で使用されるものであり特に限定はない。また、本発明において、硬化性樹脂材料と、添加剤を添加した後の光学材料の透過率を比較する場合、硬化剤は添加剤には含まれないものとする。硬化剤としては、酸無水物硬化剤やフェノール硬化剤等を好ましく使用することができる。 The curing agent is used for constituting the curable resin material and is not particularly limited. Moreover, in this invention, when comparing the transmittance | permeability of the curable resin material and the optical material after adding an additive, a hardening | curing agent shall not be contained in an additive. As the curing agent, an acid anhydride curing agent, a phenol curing agent, or the like can be preferably used.
 酸無水物硬化剤の具体例としては、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3-メチル-ヘキサヒドロ無水フタル酸、4-メチル-ヘキサヒドロ無水フタル酸、あるいは3-メチル-ヘキサヒドロ無水フタル酸と4-メチル-ヘキサヒドロ無水フタル酸との混合物、テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸等を挙げることができる。 Specific examples of acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride Examples thereof include an acid, a mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, and methyl nadic anhydride.
 また、必要に応じて硬化促進剤が含有される。硬化促進剤としては、硬化性が良好で、着色がなく、熱硬化性樹脂の透明性を損なわないものであれば、特に限定されるものではないが、例えば、2-エチル-4-メチルイミダゾール(2E4MZ)等のイミダゾール類、3級アミン、4級アンモニウム塩、ジアザビシクロウンデセン等の双環式アミジン類とその誘導体、ホスフィン、ホスホニウム塩等を用いることができ、これらを1種、あるいは2種以上を混合して用いてもよい。 Moreover, a curing accelerator is contained as necessary. The curing accelerator is not particularly limited as long as it has good curability, is not colored, and does not impair the transparency of the thermosetting resin. For example, 2-ethyl-4-methylimidazole is not limited. Imidazoles such as (2E4MZ), tertiary amines, quaternary ammonium salts, bicyclic amidines such as diazabicycloundecene and their derivatives, phosphines, phosphonium salts, etc. can be used, Two or more kinds may be mixed and used.
 (4)シリコーン樹脂
 Si-O-Siを主鎖としたシロキサン結合を有するシリコーン樹脂を使用することができる。当該シリコーン樹脂として、所定量のポリオルガノシロキサン樹脂よりなるシリコーン系樹脂が使用可能である(例えば特開平6-9937号公報)。
(4) Silicone Resin A silicone resin having a siloxane bond with Si—O—Si as the main chain can be used. As the silicone resin, a silicone resin made of a predetermined amount of polyorganosiloxane resin can be used (for example, JP-A-6-9937).
 熱硬化性のポリオルガノシロキサン樹脂は、加熱による連続的加水分解-脱水縮合反応によって、シロキサン結合骨格による三次元網状構造となるものであれば、特に制限はなく、一般に高温、長時間の加熱で硬化性を示し、一度硬化すると過熱により再軟化し難い性質を有する。 The thermosetting polyorganosiloxane resin is not particularly limited as long as it becomes a three-dimensional network structure with a siloxane bond skeleton by a continuous hydrolysis-dehydration condensation reaction by heating. It exhibits curability and has the property of being hard to be re-softened by overheating once cured.
 このようなポリオルガノシロキサン樹脂は、下記一般式(A)が構成単位として含まれ、その形状は鎖状、環状、網状形状のいずれであってもよい。 Such a polyorganosiloxane resin includes the following general formula (A) as a structural unit, and the shape thereof may be any of a chain, a ring, and a network.
 ((R)(R)SiO) … (A)
 上記一般式(A)中、「R」及び「R」は同種又は異種の置換、若しくは非置換の一価炭化水素基を示す。具体的には、「R」及び「R」として、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリル基、シクロヘキシル基、シクロオクチル基等のシクロアルキル基、又はこれらの基の炭素原子に結合した水素原子をハロゲン原子、シアノ基、アミノ基などで置換した基、例えばクロロメチル基、3,3,3-トリフルオロプロピル基、シアノメチル基、γ-アミノプロピル基、N-(β-アミノエチル)-γ-アミノプロピル基などが例示される。「R」及び「R」は水酸基及びアルコキシ基から選択される基であってもよい。また、上記一般式(A)中、「n」は50以上の整数を示す。
((R 1 ) (R 2 ) SiO) n (A)
In the general formula (A), “R 1 ” and “R 2 ” represent the same or different substituted or unsubstituted monovalent hydrocarbon groups. Specifically, as “R 1 ” and “R 2 ”, an alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group, an alkenyl group such as a vinyl group and an allyl group, an allyl group such as a phenyl group and a tolyl group Group, a cycloalkyl group such as a cyclohexyl group or a cyclooctyl group, or a group in which a hydrogen atom bonded to a carbon atom of these groups is substituted with a halogen atom, a cyano group, an amino group, or the like, such as a chloromethyl group, 3, 3, Examples include 3-trifluoropropyl group, cyanomethyl group, γ-aminopropyl group, N- (β-aminoethyl) -γ-aminopropyl group, and the like. “R 1 ” and “R 2 ” may be a group selected from a hydroxyl group and an alkoxy group. In the general formula (A), “n” represents an integer of 50 or more.
 ポリオルガノシロキサン樹脂は、通常、トルエン、キシレン、石油系溶剤のような炭化水素系溶剤、又はこれらと極性溶剤との混合物に溶解して用いられる。また、相互に溶解しあう範囲で、組成の異なるものを配合して用いてもよい。 The polyorganosiloxane resin is usually used after being dissolved in a hydrocarbon solvent such as toluene, xylene, or a petroleum solvent, or a mixture of these with a polar solvent. Moreover, you may mix | blend and use what has a different composition in the range which mutually melt | dissolves.
 ポリオルガノシロキサン樹脂の製造方法は、特に限定されるものではなく、公知のいずれの方法も用いることができる。例えば、オルガノハロゲノシランの一種又は二種以上の混合物を加水分解乃至アルコリシスすることによって得ることができ、ポリオルガノシロキサン樹脂は、一般にシラノール基又はアルコキシ基等の加水分解性基を含有し、これらの基をシラノール基に換算して1~10質量%含有する。 The method for producing the polyorganosiloxane resin is not particularly limited, and any known method can be used. For example, it can be obtained by hydrolysis or alcoholysis of one or a mixture of two or more organohalogenosilanes. The polyorganosiloxane resin generally contains a hydrolyzable group such as a silanol group or an alkoxy group. The group is contained in an amount of 1 to 10% by mass in terms of a silanol group.
 これらの反応は、オルガノハロゲノシランを溶融しうる溶媒の存在下に行うのが一般的である。また、分子鎖末端に水酸基、アルコキシ基又はハロゲン原子を有する直鎖状のポリオルガノシロキサンを、オルガノトリクロロシランと共加水分解して、ブロック共重合体を合成する方法によっても得ることができる。このようにして得られるポリオルガノシロキサン樹脂は一般に残存するHClを含むが、本実施形態の組成物においては、保存安定性が良好なことから、10ppm以下、好ましくは1ppm以下のものを使用するのがよい。 These reactions are generally performed in the presence of a solvent capable of melting organohalogenosilane. It can also be obtained by a method of synthesizing a block copolymer by cohydrolyzing a linear polyorganosiloxane having a hydroxyl group, an alkoxy group or a halogen atom at the molecular chain terminal with an organotrichlorosilane. The polyorganosiloxane resin thus obtained generally contains the remaining HCl, but in the composition of the present embodiment, the storage stability is good, so that the one having 10 ppm or less, preferably 1 ppm or less is used. Is good.
 〈ウエハレンズの製造方法〉
 ウエハレンズ52の形成に当たっては、図4(a)、(b)に示す通り、まず、凸レンズ部20aの光学面形状に対応したネガ形状の凹状金型100から、ポジ形状の第1の凸状樹脂型210を成形する(第1の樹脂型製造工程)。その後、図5(a)、(b)に示す通り、第1の凸状樹脂型210からネガ形状の第2の凹状樹脂型220を成形し(第2の樹脂型製造工程)、図6(a)、(b)に示す通り、成形した第2の凹状樹脂型220によってウエハレンズ52が成形される(ウエハレンズ製造工程)。
<Manufacturing method of wafer lens>
In forming the wafer lens 52, as shown in FIGS. 4A and 4B, first, a positive first convex shape is formed from a negative concave mold 100 corresponding to the optical surface shape of the convex lens portion 20a. Resin mold 210 is molded (first resin mold manufacturing process). Thereafter, as shown in FIGS. 5A and 5B, a negative second concave resin mold 220 is formed from the first convex resin mold 210 (second resin mold manufacturing process), and FIG. As shown in a) and (b), the wafer lens 52 is molded by the molded second concave resin mold 220 (wafer lens manufacturing process).
 以下に、第1の樹脂型製造工程、第2の樹脂型製造工程、ウエハレンズ製造工程について説明する。 Hereinafter, the first resin mold manufacturing process, the second resin mold manufacturing process, and the wafer lens manufacturing process will be described.
 《第1の樹脂型製造工程》
 図4(a)に示す通り、凹状金型100の上面に、第1の凸状樹脂型210の成形部212の材料となる樹脂218を滴下し(ディスペンス工程)、凹状金型100の上方にガラス基板である第1の樹脂型基板214を吸引・固定しておく。このとき、第1の樹脂型基板214の一部(第1の領域R1)に凹状金型100が対応するようにそれぞれを配置しておく。
<< First resin mold manufacturing process >>
As shown in FIG. 4A, a resin 218 serving as a material of the molding part 212 of the first convex resin mold 210 is dropped on the upper surface of the concave mold 100 (dispensing process), and above the concave mold 100. A first resin mold substrate 214 which is a glass substrate is sucked and fixed. At this time, each is arranged so that the concave mold 100 corresponds to a part of the first resin mold substrate 214 (first region R1).
 その後、凹状金型100を、上方に配置された第1の樹脂型基板214に向けて所定の高さ位置まで上昇させ、樹脂218を第一の樹脂型基板214に押圧する(インプリント工程)。 Thereafter, the concave mold 100 is raised to a predetermined height position toward the first resin mold substrate 214 disposed above, and the resin 218 is pressed against the first resin mold substrate 214 (imprint process). .
 そして、凹状金型100の高さ位置をそのまま保持しながら、凹状金型100と第1の樹脂型基板214との間に充填された樹脂218に対して、第1の樹脂型基板214の上方から光照射し、樹脂218を光硬化させる(露光工程)。 Then, while maintaining the height position of the concave mold 100 as it is, the upper side of the first resin mold substrate 214 with respect to the resin 218 filled between the concave mold 100 and the first resin mold substrate 214. Then, the resin 218 is photocured (exposure process).
 光照射後、凹状金型100を下降させ、これによって樹脂218を凹状金型100から離型する(離型工程)。 After the light irradiation, the concave mold 100 is lowered, thereby releasing the resin 218 from the concave mold 100 (mold release process).
 その結果、図4(b)に示す通り、第1の樹脂型基板214の下面の一部(第1の領域R1)にウエハレンズ52の凸レンズ部20aの光学面形状に対応したポジ形状の成形部212を有する第1の凸状樹脂型210が形成される。つまり、1つの凹状金型100に対応した第1の凸状樹脂型210の成形部212が第1の樹脂型基板214に形成されることになる。 As a result, as shown in FIG. 4B, a positive shape corresponding to the optical surface shape of the convex lens portion 20a of the wafer lens 52 is formed on a part of the lower surface of the first resin mold substrate 214 (first region R1). A first convex resin mold 210 having a portion 212 is formed. That is, the molding part 212 of the first convex resin mold 210 corresponding to one concave mold 100 is formed on the first resin mold substrate 214.
 その後、図4(a)に示す通り、第1の樹脂型基板214の下面の他の位置(第1の領域に隣接する第2の領域R2)に、第1の領域R1から所定量の隙間Xをずらして凹状金型100を移動させ(図4(a)参照)、上記と同様にディスペンス工程、インプリント工程、露光工程、離型工程の処理を1サイクルとして、このサイクルを所定回数繰り返して、第1の樹脂型基板214にさらに複数の成形部212を順次形成して、第1の凸状樹脂型210を製造する(図4(b)参照)。 Thereafter, as shown in FIG. 4A, a predetermined amount of gap from the first region R1 to another position on the lower surface of the first resin mold substrate 214 (second region R2 adjacent to the first region). X is shifted to move the concave mold 100 (see FIG. 4A), and the dispensing process, the imprint process, the exposure process, and the release process are performed as one cycle in the same manner as described above, and this cycle is repeated a predetermined number of times. Then, a plurality of molding portions 212 are sequentially formed on the first resin mold substrate 214 to manufacture the first convex resin mold 210 (see FIG. 4B).
 図13は、金型100を使って製造された第1の凸状樹脂型210を製造する工程を示している。このようなステップアンドリピート方式を採用することにより、小さな金型100から、広い面積の第1の樹脂型(第1の凸状樹脂型210)を製造するので、第1の樹脂型の形成時にのみ金型100が用いられ、ウエハレンズ52を低コストで形成でき、コストダウンを達成できる。 FIG. 13 shows a process of manufacturing the first convex resin mold 210 manufactured using the mold 100. By adopting such a step-and-repeat method, the first resin mold (first convex resin mold 210) having a large area is manufactured from the small mold 100, so that the first resin mold is formed. Only the mold 100 is used, the wafer lens 52 can be formed at low cost, and cost reduction can be achieved.
 なお、上記の隙間Xは、第1の領域R1での金型100の位置と、第2の領域R2での金型100との位置精度をぴったり合わせることができないために生ずるものである。その結果、形成された隙間X内に樹脂218が回らず、第1の樹脂型基板214の一方の面には、第1の樹脂型基板214の素地が露出した溝部Mを有する第1の樹脂型210が製造されることとなる(図4(b)参照)。なお、図4においては、金型100の、移動前の左側端部及び移動後の右側端部付近のみを図示してある。 The gap X is generated because the position accuracy of the mold 100 in the first region R1 and the position accuracy of the mold 100 in the second region R2 cannot be matched exactly. As a result, the resin 218 does not rotate in the formed gap X, and the first resin having the groove portion M in which the base of the first resin mold substrate 214 is exposed on one surface of the first resin mold substrate 214. The mold 210 is manufactured (see FIG. 4B). In FIG. 4, only the vicinity of the left end of the mold 100 before the movement and the right end of the mold 100 are illustrated.
 《第2の樹脂型製造工程》
 図5(a)に示す通り、第1の凸状樹脂型210の上面に樹脂228を滴下し(ディスペンス工程)、第1の凸状樹脂型210の上方にガラス基板である第2の樹脂型基板224を吸引・固定しておく。
<< Second resin mold manufacturing process >>
As shown in FIG. 5A, a resin 228 is dropped on the upper surface of the first convex resin mold 210 (dispensing process), and the second resin mold that is a glass substrate above the first convex resin mold 210. The substrate 224 is sucked and fixed.
 その後、第1の凸状樹脂型210を、上方に配置された第2の樹脂型基板224に向けて所定の高さ位置まで上昇させ、樹脂228を第2の樹脂型基板224に押圧する(インプリント工程)。 Thereafter, the first convex resin mold 210 is raised to a predetermined height position toward the second resin mold substrate 224 disposed above, and the resin 228 is pressed against the second resin mold substrate 224 ( Imprint process).
 そして、第1の凸状樹脂型210の高さ位置をそのまま保持しながら、第1の凸状樹脂型210と第2の樹脂型基板224との間に充填された樹脂228に対して、第2の樹脂型基板224の上方から光照射し、樹脂228を光硬化させる(露光工程)。 Then, while maintaining the height position of the first convex resin mold 210 as it is, the resin 228 filled between the first convex resin mold 210 and the second resin mold substrate 224 is The resin 228 is photocured by irradiating light from above the second resin mold substrate 224 (exposure process).
 光照射後、第1の凸状樹脂型210を下降させ、これによって樹脂228を第1の凸状樹脂型210から離型する(離型工程)。 After the light irradiation, the first convex resin mold 210 is lowered, thereby releasing the resin 228 from the first convex resin mold 210 (release process).
 その結果、図5(b)に示す通り、第2の樹脂型基板224の下面にウエハレンズ52の凸レンズ部20aの光学面形状に対応したネガ形状の成形部222を有する第2の凹状樹脂型220が製造される。第1の樹脂型210は上述の通り溝部Mを有するので、第2の樹脂型220においても、上記溝部Mに由来する溝部が形成されることとなる。 As a result, as shown in FIG. 5B, a second concave resin mold having a negative molded part 222 corresponding to the optical surface shape of the convex lens part 20a of the wafer lens 52 on the lower surface of the second resin mold substrate 224. 220 is manufactured. Since the first resin mold 210 has the groove portion M as described above, the groove portion derived from the groove portion M is also formed in the second resin mold 220.
 《ウエハレンズ製造工程》
 ウエハレンズ製造工程では、予めウエハレンズ用のガラス基板16上に、光学部品となる絞り18及びIRカットコート21を形成しておく。具体的には、カーボンブラックが混入したフォトレジストをガラス基板16上に塗布し、その後、公知のパターニング露光及び現像処理により、材料層を選択的に除去して、ガラス基板16には絞り18を形成する。また、ガラス基板16上に、公知の方法でIRカットコート21を形成する。
<Wafer lens manufacturing process>
In the wafer lens manufacturing process, a diaphragm 18 and an IR cut coat 21 that are optical components are formed in advance on a glass substrate 16 for wafer lenses. Specifically, a photoresist mixed with carbon black is applied onto the glass substrate 16, and then the material layer is selectively removed by a known patterning exposure and development process. Form. Further, the IR cut coat 21 is formed on the glass substrate 16 by a known method.
 そして、図6(a)に示す通り、第2の凹状樹脂型220の上面に樹脂44を滴下し(ディスペンス工程)、第2の凹状樹脂型220の上方にウエハレンズ用のガラス基板16を吸引・固定しておく。 Then, as shown in FIG. 6A, the resin 44 is dropped onto the upper surface of the second concave resin mold 220 (dispensing process), and the glass substrate 16 for the wafer lens is sucked above the second concave resin mold 220.・ Fix it.
 その後、第2の凹状樹脂型220を、上方に配置されたガラス基板16に向けて所定の高さ位置まで上昇させ、樹脂44をガラス基板16に押圧する(インプリント工程)。 Thereafter, the second concave resin mold 220 is raised to a predetermined height position toward the glass substrate 16 disposed above, and the resin 44 is pressed against the glass substrate 16 (imprint process).
 そして、第2の凹状樹脂型220の高さ位置をそのまま保持しながら、第2の凹状樹脂型220とガラス基板16との間に充填された樹脂44に対して、ガラス基板16の上方から光照射し、樹脂44を光硬化させる(露光工程)。 Then, while maintaining the height position of the second concave resin mold 220, the resin 44 filled between the second concave resin mold 220 and the glass substrate 16 is irradiated with light from above the glass substrate 16. Irradiate to photocur the resin 44 (exposure process).
 光照射後、第2の凹状樹脂型220を下降させ、これによって樹脂44を第2の凹状樹脂型220から離型する(離型工程)。 After the light irradiation, the second concave resin mold 220 is lowered, thereby releasing the resin 44 from the second concave resin mold 220 (mold release step).
 その結果、図6(b)に示す通り、ガラス基板16の下面に複数の凸レンズ部20aが形成される。こうして基板の片面にレンズ部が形成されたウエハレンズ52にも、第1の樹脂型210の溝部Mに対応する位置に、溝部20eが形成されている(図6(b)参照)。 As a result, a plurality of convex lens portions 20 a are formed on the lower surface of the glass substrate 16 as shown in FIG. In the wafer lens 52 having the lens portion formed on one side of the substrate in this way, the groove portion 20e is formed at a position corresponding to the groove portion M of the first resin mold 210 (see FIG. 6B).
 その後、図示しないが、ガラス基板16を上下反転させて、ガラス基板16の凸レンズ部20aが設けられた面とは反対側の面にも、絞り22、IRカットコート23を形成した後、上述のウエハレンズ製造工程におけるディスペンス工程、インプリント工程、露光工程、離型工程を経て複数の凹レンズ部24aを形成する。このようにしてウエハレンズ52が製造される。なお、使用する金型、第1の樹脂型、第2の樹脂型は、成形する凹レンズ部24aの形状にそれぞれ対応した形状のものとする。 Thereafter, although not shown, the glass substrate 16 is turned upside down, and the diaphragm 22 and the IR cut coat 23 are formed on the surface of the glass substrate 16 opposite to the surface on which the convex lens portion 20a is provided. A plurality of concave lens portions 24a are formed through a dispensing process, an imprint process, an exposure process, and a mold release process in the wafer lens manufacturing process. In this way, the wafer lens 52 is manufactured. The mold, the first resin mold, and the second resin mold to be used have shapes corresponding to the shapes of the concave lens portion 24a to be molded.
 また、ウエハレンズ54の製造方法についても、上述の第1の樹脂型製造工程、第2の樹脂型製造工程、ウエハレンズ製造工程を経て同様に製造することができるので、ここではその説明を省略する。 Also, the wafer lens 54 can be manufactured in the same manner through the first resin mold manufacturing process, the second resin mold manufacturing process, and the wafer lens manufacturing process described above, and the description thereof is omitted here. To do.
 〈ウエハレンズ積層体の製造方法〉
 図7(a)に示す通り、ウエハレンズ54の樹脂部28のうち非レンズ部28b(平坦部28c)の上面に接着剤281を塗布し、ウエハレンズ52、54を互いに押圧させる。接着剤281は、例えば、光硬化性樹脂で構成されており、光照射により硬化するものである。その他、熱硬化性樹脂から構成されたものであっても良い。その後、ウエハレンズ52の下方から光照射して接着剤281を硬化させ、ウエハレンズ52、54を固定する(図7(b)参照)。
<Method for producing wafer lens laminate>
As shown in FIG. 7A, an adhesive 281 is applied to the upper surface of the non-lens portion 28b (flat portion 28c) of the resin portion 28 of the wafer lens 54, and the wafer lenses 52 and 54 are pressed against each other. The adhesive 281 is made of, for example, a photocurable resin and is cured by light irradiation. In addition, it may be composed of a thermosetting resin. Thereafter, light is irradiated from below the wafer lens 52 to cure the adhesive 281 and fix the wafer lenses 52 and 54 (see FIG. 7B).
 その後、図8(a)に示す通り、ウエハレンズ52の溝部24eと、ウエハレンズ54の溝部28dとによって形成される空洞Kに樹脂Jを充填する。充填方法としては、図9(a)、(b)に示す通り、シリンジ101に樹脂Jを充填しておき、ニードル102を介して樹脂Jを空洞Kに充填する。 Thereafter, as shown in FIG. 8A, a resin K is filled into a cavity K formed by the groove 24e of the wafer lens 52 and the groove 28d of the wafer lens 54. As a filling method, as shown in FIGS. 9A and 9B, the resin 101 is filled in the syringe 101, and the resin J is filled in the cavity K through the needle 102.
 樹脂Jとしては、レンズ材料と同様に光硬化性樹脂であっても良いし、熱硬化性樹脂であっても良く、特に、入射光に対して遮光性のある黒色樹脂を使用することがゴースト対策の点で好ましい。また、光硬化性樹脂の場合、ウエハレンズ52、54の樹脂部20、24、28、30と同じ樹脂44を使用しても良い。 The resin J may be a photo-curing resin or a thermosetting resin as in the case of the lens material. In particular, it is ghost to use a black resin having a light-shielding property against incident light. It is preferable in terms of countermeasures. In the case of a photocurable resin, the same resin 44 as that of the resin portions 20, 24, 28, 30 of the wafer lenses 52, 54 may be used.
 樹脂Jとして光硬化性樹脂を使用した場合、樹脂Jを充填した後、樹脂Jに対して光照射して硬化させる。 When a photocurable resin is used as the resin J, after the resin J is filled, the resin J is irradiated with light and cured.
 その後、図8(b)に示す通り、ウエハレンズ54の樹脂部32のうち非レンズ部32b(溝部32d)の下面に接着剤321を塗布し、ウエハレンズ54とスペーサ基板56とを互いに押圧させる。接着剤321は、上述の接着剤281と同様の光硬化性樹脂や熱硬化性樹脂等を使用することができる。そして、光照射して接着剤321を硬化させ、ウエハレンズ54とスペーサ基板56とを固定する。これによってウエハレンズ積層体50が製造される。 Thereafter, as shown in FIG. 8B, an adhesive 321 is applied to the lower surface of the non-lens portion 32b (groove portion 32d) of the resin portion 32 of the wafer lens 54, and the wafer lens 54 and the spacer substrate 56 are pressed against each other. . As the adhesive 321, the same photo-curing resin or thermosetting resin as the above-described adhesive 281 can be used. Then, the adhesive 321 is cured by light irradiation, and the wafer lens 54 and the spacer substrate 56 are fixed. As a result, the wafer lens laminate 50 is manufactured.
 製造されたウエハレンズ積層体50は、充填した樹脂Jの位置でそれぞれガラス基板16、26、スペーサ基板56をダイシングライン62でダイシングすることによって、レンズブロック8、10とスペーサ12とが接着・積層された一組のユニットが複数形成される。 The manufactured wafer lens laminate 50 is obtained by dicing the glass substrates 16 and 26 and the spacer substrate 56 with the dicing line 62 at the position of the filled resin J, whereby the lens blocks 8 and 10 and the spacer 12 are bonded and laminated. A plurality of the set of units are formed.
 上述したように、上記ステップアンドリピート方式では、第1の領域R1での成形後、隣接する第2の領域R2との間には所定量の隙間Xが生じ、結果として、第1の樹脂型基板214の一方の面に、第1の樹脂型基板214の素地が露出した溝部Mを有する第1の樹脂型210が製造される。さらに、このような溝部Mを有する第1の樹脂型210を用いて、第2の樹脂型220を製造し、第2の樹脂型220を利用してウエハレンズ52を製造すると、ウエハレンズ52にも第1の樹脂型210の溝部Mに対応する位置に、溝部20eが形成される。そして、図7(a)、(b)に示す通り、溝部24e、28dを有するウエハレンズ52、54同士を互いに積層して接合し、ウエハレンズ積層体50とし、ウエハレンズ52、54のガラス基板16、26をダイシングすることによって一組のレンズ部毎に個片化する場合、積層されたウエハレンズ52、54の溝部24e、28d同士によって形成される空洞Kのある位置をダイシングすることになる。 As described above, in the step-and-repeat method, after molding in the first region R1, a predetermined amount of gap X occurs between the adjacent second regions R2, and as a result, the first resin mold A first resin mold 210 having a groove portion M in which the base of the first resin mold substrate 214 is exposed on one surface of the substrate 214 is manufactured. Furthermore, when the second resin mold 220 is manufactured using the first resin mold 210 having such a groove M, and the wafer lens 52 is manufactured using the second resin mold 220, the wafer lens 52 is formed. Also, a groove 20e is formed at a position corresponding to the groove M of the first resin mold 210. Then, as shown in FIGS. 7A and 7B, the wafer lenses 52 and 54 having the groove portions 24e and 28d are laminated and bonded together to form a wafer lens laminate 50, and the glass substrate of the wafer lenses 52 and 54 is obtained. When dicing 16 and 26 into pieces for each pair of lens portions, a position where there is a cavity K formed by the groove portions 24e and 28d of the laminated wafer lenses 52 and 54 is diced. .
 そのため、上述の通り、空洞Kに樹脂を充填しない場合は、ダイシング時の衝撃によって撓みやクラックが生じたり、ガラス基板16、26と樹脂部24、28との剥がれが発生することがある。勿論このような空洞は、直接積層するウエハレンズの一方のみが溝部を有し、他方が溝部を有しないウエハレンズ同士を積層する場合にも生ずる。 Therefore, as described above, when the resin is not filled in the cavity K, bending or cracking may occur due to an impact during dicing, or the glass substrates 16 and 26 and the resin portions 24 and 28 may be peeled off. Of course, such a cavity also occurs when only one of the wafer lenses to be directly laminated has a groove and the other has no groove.
 本実施形態においては、空洞Kに樹脂を充填しているため、ダイシング時の衝撃による撓みやクラックの発生が防止され、ガラス基板16、26と樹脂部24、28との剥がれが発生も防止される。 In this embodiment, since the cavity K is filled with resin, the occurrence of bending and cracking due to impact during dicing is prevented, and the occurrence of peeling between the glass substrates 16 and 26 and the resin portions 24 and 28 is also prevented. The
 なお、いままでの説明では、レンズブロック8、10にスペーサ12も含めてウエハレンズ積層体50としてきたが、レンズブロック8、10のみでウエハレンズ積層体50とし、これをダイシングしたものを光学ユニットとしてもよい。このときスペーサ12は、光学ユニットと同じ大きさに予めカットされ、センサユニット6と共に光学ユニットに取り付けられる。 In the description so far, the lens block 8 and the spacer 12 are included in the lens block 8 and 10 to form the wafer lens laminated body 50. However, the lens unit 8 and only the wafer lens laminated body 50 is diced and the optical unit is used. It is good. At this time, the spacer 12 is cut in advance to the same size as the optical unit, and attached to the optical unit together with the sensor unit 6.
 従って、切断して得られた光学ユニットで見た場合、溝部24e、28dに充填する材料を遮光材料で構成すると、図1に示されるように、レンズブロック8の凹レンズ部24aが形成される樹脂部24とレンズブロック10の凹レンズ部28aが形成される樹脂部28との間に入射光に対して遮光性を有する遮光部材が形成されるとともに、充填後にウエハレンズ積層体50を一括切断するため、当該遮光部材は前記レンズロック8、10の側面に露出して形成されることとなり、且つ前記レンズブロック8、10の切断面である側面部と露出した遮光材料とが同一面の側面部を形成している構成となる。 Therefore, when viewed with an optical unit obtained by cutting, if the material filling the grooves 24e and 28d is made of a light shielding material, the resin that forms the concave lens portion 24a of the lens block 8 as shown in FIG. A light-shielding member having a light-shielding property against incident light is formed between the portion 24 and the resin portion 28 where the concave lens portion 28a of the lens block 10 is formed, and the wafer lens stack 50 is collectively cut after filling. The light shielding member is formed so as to be exposed on the side surfaces of the lens locks 8 and 10, and the side surface portion which is a cut surface of the lens block 8 and 10 and the exposed light shielding material have the same side surface portion. It becomes the structure which forms.
 これにより、ウエハレンズを切断する際のクラック等の問題が軽減できるとともに、完成品である光学ユニットで見ても、遮光部材である樹脂を充填後に切断しているため、側面が同一面で構成できて、別途側面部を覆うカバーパッケージを敢えて異形状で構成するような面倒さがなく、全体としてコンパクトな光学ユニット、レンズユニットを提供できる。 As a result, problems such as cracks when cutting the wafer lens can be reduced, and even when viewed with the optical unit as a finished product, the resin is cut after filling with the light shielding member, so the sides are the same surface In addition, it is possible to provide a compact optical unit and a lens unit as a whole without the trouble of separately forming a cover package that covers the side surface separately in a different shape.
 勿論、スペーサ12に加えセンサユニット6も一括して切断する構成を採用すれば、撮像装置2として前記スペーサ12の側面部、前記センサユニット6の側面部も同様に同一面の側面部を形成する構成となる。 Of course, if the configuration in which the sensor unit 6 is cut together in addition to the spacer 12 is adopted, the side surface portion of the spacer 12 and the side surface portion of the sensor unit 6 as the imaging device 2 also form the same side surface portion. It becomes composition.
 以上のように、ウエハレンズ52、54の各樹脂部20、24、28、32は、光学面である凸レンズ部20a、24a、28a、32aの外周に非レンズ部20b、24b、28b、32bを有するとともに、当該非レンズ部20b、24b、28b、32bの側周面を側壁とする溝部20e、24e、28d、32dによって他のレンズ部20a、24a、28a、32aから仕切られており、互いに積層されたウエハレンズ52、54間において、一方のウエハレンズ52の溝部24eと、他方のウエハレンズ54の溝部28dとによって形成される空洞K内に樹脂Jが充填されているので、ダイシング時における撓みやクラックの発生を防止し、また、ウエハレンズ52、54のガラス基板16、26と樹脂部20、24、28、32との剥がれも防止することができる。 As described above, the resin portions 20, 24, 28, and 32 of the wafer lenses 52 and 54 have the non-lens portions 20b, 24b, 28b, and 32b on the outer periphery of the convex lens portions 20a, 24a, 28a, and 32a that are optical surfaces. And are separated from the other lens parts 20a, 24a, 28a, 32a by grooves 20e, 24e, 28d, 32d whose side walls are the side peripheral surfaces of the non-lens parts 20b, 24b, 28b, 32b. Since the resin J is filled in the cavity K formed by the groove portion 24e of one wafer lens 52 and the groove portion 28d of the other wafer lens 54 between the wafer lenses 52 and 54 thus formed, bending during dicing is performed. And the occurrence of cracks, and the glass substrates 16 and 26 of the wafer lenses 52 and 54 and the resin portions 20, 24, 28, Peeling and 2 can be prevented.
 また、空洞K内に充填された樹脂Jを黒色樹脂とすることによって、ゴースト対策に優れる。 Also, the resin J filled in the cavity K is made of black resin, so that it is excellent in ghost countermeasures.
 さらに、ウエハレンズ52のガラス基板16に形成されたIRカットコート21、23は、凸レンズ部20a及び凹レンズ部24aに対応する位置にのみ形成され、ガラス基板16、26上に小さな円形状のものを並べて形成されているので、凸レンズ部20a及び凹レンズ部24aへの赤外線の遮光を確実に行うことができる。さらに、ガラス基板16の全面にIRカットコートを形成する場合に比して、ガラス基板16の反りを低減することができる。 Further, the IR cut coats 21 and 23 formed on the glass substrate 16 of the wafer lens 52 are formed only at positions corresponding to the convex lens portion 20a and the concave lens portion 24a, and a small circular shape is formed on the glass substrates 16 and 26. Since they are formed side by side, infrared rays can be reliably shielded from the convex lens portion 20a and the concave lens portion 24a. Furthermore, the warp of the glass substrate 16 can be reduced as compared with the case where an IR cut coat is formed on the entire surface of the glass substrate 16.
 [第2実施形態]
〈ウエハレンズ積層体の製造方法〉
 第2実施形態では、図10(a)、(b)に示す通り、第1実施形態のウエハレンズ積層体の製造方法において、空洞K内に樹脂Jを充填する代わりに、レンズ部及びその周囲の平坦部に対向する領域に開口を設けた板部材である平板58を用い、レンズ部及びその周囲の平坦部と平板58の開口を対向させ、空洞K内に平板58が位置するように配置する。平板58は、空洞Kの大きさよりも予め小さいものを使用し、空洞Kと平板58との間を接着剤581により充填させる。
[Second Embodiment]
<Method for producing wafer lens laminate>
In the second embodiment, as shown in FIGS. 10A and 10B, in the method of manufacturing the wafer lens laminate of the first embodiment, instead of filling the resin K in the cavity K, the lens portion and its surroundings. The flat plate 58 which is a plate member provided with an opening in a region facing the flat portion of the lens is disposed so that the flat portion of the lens portion and the surrounding flat portion and the opening of the flat plate 58 are opposed to each other, and the flat plate 58 is positioned in the cavity K. To do. The flat plate 58 is previously smaller than the size of the cavity K, and the space between the cavity K and the flat plate 58 is filled with an adhesive 581.
 具体的に説明すると、図11(a)に示す通り、平板58の下面に接着剤581を塗布し、接着剤581を、空洞Kを形成する溝部28dに接着するように、平板58とウエハレンズ54を互いに押圧させる。 Specifically, as shown in FIG. 11A, an adhesive 581 is applied to the lower surface of the flat plate 58, and the flat plate 58 and the wafer lens are bonded to the groove 28d forming the cavity K. 54 are pressed against each other.
 さらに、図11(b)に示す通り、平板58の上面に接着剤582を塗布し、一方、ウエハレンズ52の樹脂部24の平坦部24cの下面に接着剤241を塗布し、平板58とウエハレンズ52を互いに押圧させる。接着剤582、241は、上述の第1実施形態の接着剤281と同様の光硬化性樹脂や熱硬化性樹脂等を使用することができる。 Further, as shown in FIG. 11B, an adhesive 582 is applied to the upper surface of the flat plate 58, while an adhesive 241 is applied to the lower surface of the flat portion 24c of the resin portion 24 of the wafer lens 52, and the flat plate 58 and the wafer are coated. The lenses 52 are pressed against each other. As the adhesives 582 and 241, the same photo-curable resin or thermosetting resin as the adhesive 281 of the first embodiment described above can be used.
 接着剤582、241として光硬化性樹脂を使用した場合には、図12(a)に示す通り、ウエハレンズ52の上方から光照射して接着剤581、582、241を硬化させ、ウエハレンズ52、54と平板58とを固定する。このとき、接着剤581、582が平板58と空洞Kとの間の隙間内に充填されて硬化する。 When a photo-curable resin is used as the adhesives 582 and 241, as shown in FIG. 12A, the adhesives 581, 582 and 241 are cured by irradiating light from above the wafer lens 52, and the wafer lens 52. 54 and the flat plate 58 are fixed. At this time, the adhesives 581 and 582 are filled in the gap between the flat plate 58 and the cavity K and cured.
 その後、図8(b)の場合と同様に、図12(b)に示す通り、ウエハレンズ54の樹脂部32のうち非レンズ部32b(溝部32d)の下面に接着剤321を塗布し、ウエハレンズ54とスペーサ基板56とを互いに押圧させる。その後、光照射して接着剤321を硬化させ、ウエハレンズ52、54とスペーサ基板56とを固定する。これによってウエハレンズ積層体50が製造される。 Thereafter, as in FIG. 8B, an adhesive 321 is applied to the lower surface of the non-lens portion 32b (groove portion 32d) of the resin portion 32 of the wafer lens 54, as shown in FIG. The lens 54 and the spacer substrate 56 are pressed against each other. Thereafter, the adhesive 321 is cured by light irradiation, and the wafer lenses 52 and 54 and the spacer substrate 56 are fixed. As a result, the wafer lens laminate 50 is manufactured.
 製造されたウエハレンズ積層体50は、平板58が配置されているダイシングライン62でそれぞれガラス基板16、26、平板58、スペーサ基板56をダイシングすることによって、レンズブロック8、10とスペーサ12とが接着・積層された一組のユニットが複数形成される。 In the manufactured wafer lens laminate 50, the glass blocks 16, 26, the flat plate 58, and the spacer substrate 56 are diced by the dicing line 62 in which the flat plate 58 is arranged, whereby the lens blocks 8, 10 and the spacer 12 are separated. A plurality of bonded and laminated units are formed.
 以上のように、ウエハレンズ52、54の各樹脂部20、24、28、32は、光学面である凸レンズ部20a、24a、28a、32aの外周に非レンズ部20b、24b、28b、32bを有するとともに、非レンズ部20b、24b、28b、32bの側周面を側壁とする溝部20e、24e、28d、32dによって他のレンズ部20a、24a、28a、32aから仕切られており、互いに積層されたウエハレンズ52、54間において、一方のウエハレンズ52の溝部24eと、他方のウエハレンズ54の溝部28dとによって形成される空洞K内に、当該空洞Kよりも小さな平板58が配置され、平板58と空洞Kとの間に樹脂である接着剤581、582が充填されている。そのため、ダイシング時における撓みやクラックの発生を防止し、また、ウエハレンズ52、54のガラス基板16、26と樹脂部20、24、28、32との剥がれも防止することができる。 As described above, the resin portions 20, 24, 28, and 32 of the wafer lenses 52 and 54 have the non-lens portions 20b, 24b, 28b, and 32b on the outer periphery of the convex lens portions 20a, 24a, 28a, and 32a that are optical surfaces. And is separated from the other lens portions 20a, 24a, 28a, 32a by the groove portions 20e, 24e, 28d, 32d having the side peripheral surfaces of the non-lens portions 20b, 24b, 28b, 32b as side walls, and are laminated together. Between the wafer lenses 52 and 54, a flat plate 58 smaller than the hollow K is disposed in a cavity K formed by the groove portion 24e of one wafer lens 52 and the groove portion 28d of the other wafer lens 54. Between the space 58 and the cavity K, adhesives 581 and 582 which are resins are filled. Therefore, it is possible to prevent the occurrence of bending and cracks during dicing, and to prevent the glass substrates 16 and 26 of the wafer lenses 52 and 54 and the resin portions 20, 24, 28 and 32 from peeling off.
 また、平板58は空洞Kの大きさよりも小さく、樹脂製の接着剤で空洞Kと平板58との隙間を充填するので、ウエハレンズ52、54同士を接合した場合でも、凸レンズ部24a及び凹レンズ部28aにおける心厚を均一にして、高精度なウエハレンズ積層体50とすることができる。 Further, since the flat plate 58 is smaller than the size of the cavity K and the gap between the cavity K and the flat plate 58 is filled with a resin adhesive, even when the wafer lenses 52 and 54 are joined together, the convex lens portion 24a and the concave lens portion. The core thickness at 28a can be made uniform, and a highly accurate wafer lens laminate 50 can be obtained.
 2 撮像装置
 4 レンズユニット(光学ユニット)
 6 センサユニット
 8 レンズブロック(第1レンズブロック)
 10 レンズブロック(第2レンズブロック)
 12 スペーサ
 14 カバーパッケージ(カバー部材)
 16 ガラス基板
 18 絞り
 20 樹脂部
 20a 凸レンズ部(第1レンズ部)
 20b 非レンズ部
 20c 傾斜部
 20d 平坦部
 20e 溝部
 21 IRカットフィルター
 22 絞り
 23 IRカットフィルター
 24a 凹レンズ部(第2レンズ部)
 24b 非レンズ部
 24d 平坦部
 24e 溝部
 26 ガラス基板
 28 樹脂部
 28a 凹レンズ部(第3レンズ部)
 28b 非レンズ部
 28c 平坦部
 28d 溝部
 30 絞り
 32 樹脂部
 32a 凸レンズ部(第4レンズ部)
 32b 非レンズ部
 32c 平坦部
 32d 溝部
 50 ウエハレンズ積層体
 52、54 ウエハレンズ
 56 スペーサ基板
 58 平板
 100 凹状金型
 210 第1の凸状樹脂型
 212 成形部
 214 第1の樹脂型基板
 220 第2の凹状樹脂型
 222 成形部
 224 第2の樹脂型基板
 581 接着剤
 582 接着剤
 K 空洞
 J 樹脂
2 Imaging device 4 Lens unit (optical unit)
6 Sensor unit 8 Lens block (first lens block)
10 Lens block (second lens block)
12 Spacer 14 Cover package (cover member)
16 Glass substrate 18 Aperture 20 Resin part 20a Convex lens part (first lens part)
20b Non-lens part 20c Inclined part 20d Flat part 20e Groove part 21 IR cut filter 22 Aperture 23 IR cut filter 24a Concave lens part (second lens part)
24b Non-lens part 24d Flat part 24e Groove part 26 Glass substrate 28 Resin part 28a Concave lens part (third lens part)
28b Non-lens part 28c Flat part 28d Groove part 30 Aperture 32 Resin part 32a Convex lens part (fourth lens part)
32b Non-lens part 32c Flat part 32d Groove part 50 Wafer lens stack 52, 54 Wafer lens 56 Spacer substrate 58 Flat plate 100 Concave mold 210 First convex resin mold 212 Molding part 214 First resin mold substrate 220 Second Concave resin mold 222 Molded part 224 Second resin mold substrate 581 Adhesive 582 Adhesive K Cavity J Resin

Claims (15)

  1.  第1ガラス基板の少なくとも一方の面に第1レンズ部と該第1レンズ部の周囲の第1非レンズ部とを樹脂にて形成した第1レンズブロックと、第2ガラス基板の少なくとも一方の面に第2レンズ部と該第2レンズ部の周囲の第2非レンズ部とを樹脂にて形成した第2レンズブロックと、を前記第1非レンズ部と前記第2非レンズ部が対向するように接合した光学ユニットであって、
     前記第1非レンズ部と前記第2非レンズ部との間の接合部分の少なくとも一部に、入射光に対して遮光性を有する遮光部材を、前記第1及び第2レンズブロックの側面に露出して形成するとともに、当該遮光部材は、前記第1、第2レンズブロックの側面部と共に同一面で側面部を形成していることを特徴とする光学ユニット。
    A first lens block in which a first lens portion and a first non-lens portion around the first lens portion are formed of resin on at least one surface of the first glass substrate, and at least one surface of the second glass substrate And a second lens block in which a second lens portion and a second non-lens portion around the second lens portion are formed of a resin so that the first non-lens portion and the second non-lens portion face each other. An optical unit bonded to
    A light-shielding member having a light-shielding property with respect to incident light is exposed on the side surfaces of the first and second lens blocks at least at a part of the joint portion between the first non-lens part and the second non-lens part. The optical unit is characterized in that the light shielding member forms a side surface portion on the same surface together with the side surface portions of the first and second lens blocks.
  2.  前記遮光部材は、前記接合部分にできた空洞部に注入された樹脂、又は当該空洞部分に設置された平板であることを特徴とする請求項1に記載の光学ユニット。 2. The optical unit according to claim 1, wherein the light shielding member is a resin injected into a cavity formed in the joint portion or a flat plate installed in the cavity portion.
  3.  第1ガラス基板の少なくとも一方の面に第1レンズ部と該第1レンズ部の周囲の第1非レンズ部とを樹脂にて形成した第1レンズブロックと、第2ガラス基板の少なくとも一方の面に第2レンズ部と該第2レンズ部の周囲の第2非レンズ部とを樹脂にて形成した第2レンズブロックと、を前記第1非レンズ部と前記第2非レンズ部が対向するように接合した光学ユニットと、
     前記第2レンズブロックの前記第2レンズ部及び第2非レンズ部の形成された面と反対側の面に一端面が接合され、前記第1及び第2レンズ部に対応する位置に開口部を有するガラスからなるスペーサと、
     前記スペーサの他端面に接合され、ガラスからなるカバー部材を有し、当該カバー部材から所定間隔を以って配置された撮像素子を有するセンサユニットと、を備えた撮像装置であって、
     前記第1非レンズ部と前記第2非レンズ部との間の接合部分の少なくとも一部に、入射光に対して遮光性を有する遮光部材を、前記第1及び第2レンズブロックの側面に露出して形成するとともに、当該遮光部材は、前記第1、第2レンズブロックの側面部、前記スペーサの側面部、前記センサユニットの側面部と共に同一面で側面部を形成していることを特徴とする撮像装置。
    A first lens block in which a first lens portion and a first non-lens portion around the first lens portion are formed of resin on at least one surface of the first glass substrate, and at least one surface of the second glass substrate And a second lens block in which a second lens portion and a second non-lens portion around the second lens portion are formed of a resin so that the first non-lens portion and the second non-lens portion face each other. An optical unit bonded to the
    One end surface is joined to the surface of the second lens block opposite to the surface where the second lens portion and the second non-lens portion are formed, and an opening is formed at a position corresponding to the first and second lens portions. A spacer made of glass having,
    A sensor unit having a cover member made of glass, bonded to the other end surface of the spacer, and having an image sensor disposed at a predetermined interval from the cover member,
    A light-shielding member having a light-shielding property with respect to incident light is exposed on the side surfaces of the first and second lens blocks at least at a part of the joint portion between the first non-lens part and the second non-lens part. The light-shielding member forms a side surface portion on the same surface together with a side surface portion of the first and second lens blocks, a side surface portion of the spacer, and a side surface portion of the sensor unit. An imaging device.
  4.  前記遮光部材は、前記接合部分にできた空洞部に注入された樹脂、又は当該空洞部分に設置された平板であることを特徴とする請求項3に記載の撮像装置。 4. The imaging apparatus according to claim 3, wherein the light shielding member is a resin injected into a hollow portion formed in the joint portion, or a flat plate installed in the hollow portion.
  5.  物体側に凸面を向け、第1ガラス基板の一方の面に設けられた樹脂部の一部に形成された第1レンズ部と、像側に凹面を向け、第1ガラス基板の他方の面に設けられた樹脂部の一部に形成された第2レンズ部とを有する第1レンズブロックと、
     物体側に凹面を向け、第2ガラス基板の一方の面に設けられた樹脂部の一部に形成された第3レンズ部と、第2ガラス基板の他方の面に設けられた樹脂部の一部に形成された第4レンズ部とを有する第2レンズブロックとを、前記第2レンズ部と前記第3レンズ部の形成された樹脂部を接合した光学ユニットであって、
     前記第2レンズ部が形成される樹脂部と前記第3レンズ部が形成される樹脂部との間に入射光に対して遮光性を有する遮光部材を、前記第1及び第2レンズブロックの側面に露出して形成するとともに、前記第1、第2レンズブロックの側面部と共に同一面で側面部を形成していることを特徴とする光学ユニット。
    A convex surface facing the object side, a first lens portion formed on a part of the resin portion provided on one surface of the first glass substrate, a concave surface facing the image side, and the other surface of the first glass substrate A first lens block having a second lens part formed on a part of the provided resin part;
    The third lens part formed on a part of the resin part provided on one surface of the second glass substrate with the concave surface facing the object side, and one of the resin parts provided on the other surface of the second glass substrate An optical unit in which a second lens block having a fourth lens part formed on a part is joined to a resin part on which the second lens part and the third lens part are formed,
    A light-shielding member having a light-shielding property with respect to incident light is disposed between the resin part in which the second lens part is formed and the resin part in which the third lens part is formed, and side surfaces of the first and second lens blocks. The optical unit is formed so as to be exposed to the surface, and the side surface portion is formed on the same surface together with the side surface portions of the first and second lens blocks.
  6.  物体側に凸面を向け、第1ガラス基板の一方の面に設けられた樹脂部の一部に形成された第1レンズ部と、像側に凹面を向け、第1ガラス基板の他方の面に設けられた樹脂部の一部に形成された第2レンズ部とを有する第1レンズブロックと、物体側に凹面を向け、第2ガラス基板の一方の面に設けられた樹脂部の一部に形成された第3レンズ部と、第2ガラス基板の他方の面に設けられた樹脂部の一部に形成された第4レンズ部とを有する第2レンズブロックとを、前記第2レンズ部と前記第3レンズ部の形成された樹脂部を接合した光学ユニットと、
     前記第2レンズブロックの前記第4レンズ部が形成された樹脂部に一端面が接合され、前記第1レンズ部から第4レンズ部に対応する位置に開口部を有するガラスからなるスペーサと、
     前記スペーサの他端面が接合された、ガラスからなるカバー部材と、当該カバー部材から所定間隔を以って配置された撮像素子を有するセンサユニットと、を備えた撮像装置であって、
     前記第2レンズ部が形成される樹脂部と前記第3レンズ部が形成される樹脂部との間に入射光に対して遮光性を有する遮光部材を、前記第1及び第2レンズブロックの側面に露出して形成するとともに、当該遮光部材は前記第1及び第2レンズブロックの側面に露出して形成され、且つ前記第1、第2レンズブロックの側面部、前記スペーサ基板の側面部、前記センサユニットの側面部と共に同一面の側面部を形成していることを特徴とする撮像装置。
    A convex surface facing the object side, a first lens portion formed on a part of the resin portion provided on one surface of the first glass substrate, a concave surface facing the image side, and the other surface of the first glass substrate A first lens block having a second lens part formed on a part of the provided resin part, a concave surface facing the object side, and a part of the resin part provided on one surface of the second glass substrate; A second lens block having a third lens part formed and a fourth lens part formed on a part of a resin part provided on the other surface of the second glass substrate; An optical unit in which the resin part formed with the third lens part is joined;
    A spacer made of glass having one end surface bonded to the resin portion where the fourth lens portion of the second lens block is formed and having an opening at a position corresponding to the fourth lens portion from the first lens portion;
    An image pickup apparatus comprising: a cover member made of glass to which the other end surface of the spacer is bonded; and a sensor unit having an image pickup element arranged at a predetermined interval from the cover member.
    A light-shielding member having a light-shielding property with respect to incident light is disposed between the resin part in which the second lens part is formed and the resin part in which the third lens part is formed, and side surfaces of the first and second lens blocks. The light shielding member is exposed and formed on the side surfaces of the first and second lens blocks, and the side surfaces of the first and second lens blocks, the side surfaces of the spacer substrate, An image pickup apparatus, wherein a side part of the same surface is formed together with a side part of the sensor unit.
  7.  基板上に複数のレンズ部を有する樹脂部が形成されたウエハレンズが複数積層されたウエハレンズ積層体であって、直接積層される2つのウエハレンズの少なくとも一方は、
     前記樹脂部が各レンズ部の外周に非レンズ部を有し、
     前記非レンズ部は、その側周面を側壁とする溝部によって他のレンズ部から仕切られた構成であり、
     互いに積層されたウエハレンズ間において、一方のウエハレンズの前記溝部と、他方の積層されるウエハレンズとの間に形成される空洞内に樹脂が充填されていることを特徴とするウエハレンズ積層体。
    A wafer lens laminate in which a plurality of wafer lenses in which a resin portion having a plurality of lens portions is formed on a substrate is laminated, and at least one of the two wafer lenses directly laminated is:
    The resin part has a non-lens part on the outer periphery of each lens part,
    The non-lens part is configured to be partitioned from other lens parts by a groove part having a side peripheral surface as a side wall,
    A wafer lens laminate, wherein a cavity formed between the groove portion of one wafer lens and the other wafer lens to be laminated is filled between the wafer lenses laminated to each other. .
  8.  前記空洞内に充填された樹脂は、入射光に対して遮光性を有する黒色樹脂であることを特徴とする請求項7に記載のウエハレンズ積層体。 The wafer lens laminate according to claim 7, wherein the resin filled in the cavity is a black resin having a light shielding property against incident light.
  9.  前記溝部は積層されるウエハレンズの両方に形成されていることを特徴とする請求項7に記載のウエハレンズ積層体。 The wafer lens laminate according to claim 7, wherein the groove is formed on both of the wafer lenses to be laminated.
  10.  基板上に複数のレンズ部を有する樹脂部が形成されたウエハレンズが複数積層されたウエハレンズ積層体であって、直接積層される2つのウエハレンズの少なくとも一方は、
     前記樹脂部が各レンズ部の外周に非レンズ部を有し、
     前記非レンズ部は、その側周面を側壁とする溝部によって他のレンズ部から仕切られた構成であり、
     互いに積層されたウエハレンズ間において、一方のウエハレンズの前記溝部と、他方のウエハレンズとの間に形成される空洞内に、当該空洞よりも小さな平板が配置され、前記平板と前記空洞との間に樹脂が充填されていることを特徴とするウエハレンズ積層体。
    A wafer lens laminate in which a plurality of wafer lenses in which a resin portion having a plurality of lens portions is formed on a substrate is laminated, and at least one of the two wafer lenses directly laminated is:
    The resin part has a non-lens part on the outer periphery of each lens part,
    The non-lens part is configured to be partitioned from other lens parts by a groove part having a side peripheral surface as a side wall,
    A flat plate smaller than the cavity is disposed in a cavity formed between the groove portion of one wafer lens and the other wafer lens between the wafer lenses laminated to each other. A wafer lens laminate, which is filled with a resin therebetween.
  11.  基板上に複数のレンズ部を有する樹脂部が形成されたウエハレンズが複数積層されたウエハレンズ積層体の製造方法であって、直接積層される2つのウエハレンズの少なくとも一方は、
     前記ウエハレンズの前記樹脂部が各レンズ部の外周に非レンズ部を有し、
     前記非レンズ部は、その側周面を側壁とする溝部によって他のレンズ部から仕切られた構成であり、
     ウエハレンズを互いに積層させて配置し、
     一方のウエハレンズの前記溝部と、他方のウエハレンズの間に形成される空洞内に、樹脂を充填することを特徴とするウエハレンズ積層体の製造方法。
    A method of manufacturing a wafer lens laminate in which a plurality of wafer lenses each having a resin portion having a plurality of lens portions formed on a substrate are laminated, wherein at least one of the two wafer lenses directly laminated is:
    The resin part of the wafer lens has a non-lens part on the outer periphery of each lens part,
    The non-lens part is configured to be partitioned from other lens parts by a groove part having a side peripheral surface as a side wall,
    Wafer lenses are stacked on top of each other,
    A method of manufacturing a wafer lens laminate, comprising: filling a cavity formed between the groove portion of one wafer lens and the other wafer lens.
  12.  前記空洞内に充填する樹脂を、入射光に対して遮光性を有する黒色樹脂とすることを特徴とする請求項11に記載のウエハレンズ積層体の製造方法。 12. The method for producing a wafer lens laminate according to claim 11, wherein the resin filled in the cavity is a black resin having a light shielding property against incident light.
  13.  前記ウエハレンズは、ステップ&リピート方式によって作製されたことを特徴とする請求項11に記載のウエハレンズ積層体の製造方法。 12. The method of manufacturing a wafer lens laminate according to claim 11, wherein the wafer lens is manufactured by a step-and-repeat method.
  14.  基板上に複数のレンズ部を有する樹脂部が形成されたウエハレンズが複数積層されたウエハレンズ積層体の製造方法であって、直接積層される2つのウエハレンズの少なくとも一方は、
     前記ウエハレンズの前記樹脂部が各レンズ部の外周に非レンズ部を有し、
     前記非レンズ部は、その側周面を側壁とする溝部によって他のレンズ部から仕切られた構成であり、
     ウエハレンズを互いに積層させて配置し、
     一方のウエハレンズの前記溝部と、他方のウエハレンズとの間に形成される空洞内に、当該空洞よりも小さな平板を配置するとともに前記平板と前記空洞との間に樹脂を充填することを特徴とするウエハレンズ積層体の製造方法。
    A method of manufacturing a wafer lens laminate in which a plurality of wafer lenses each having a resin portion having a plurality of lens portions formed on a substrate are laminated, wherein at least one of the two wafer lenses directly laminated is:
    The resin part of the wafer lens has a non-lens part on the outer periphery of each lens part,
    The non-lens part is configured to be partitioned from other lens parts by a groove part having a side peripheral surface as a side wall,
    Wafer lenses are stacked on top of each other,
    A flat plate smaller than the cavity is disposed in a cavity formed between the groove portion of one wafer lens and the other wafer lens, and a resin is filled between the flat plate and the cavity. A method for producing a wafer lens laminate.
  15.  前記ウエハレンズは、ステップ&リピート方式によって作製されたことを特徴とする請求項14に記載のウエハレンズ積層体の製造方法。 15. The method of manufacturing a wafer lens laminate according to claim 14, wherein the wafer lens is manufactured by a step-and-repeat method.
PCT/JP2010/068918 2009-11-05 2010-10-26 Image pickup device, optical unit, wafer lens laminated body, and method for manufacturing wafer lens laminated body WO2011055655A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-254387 2009-11-05
JP2009254387 2009-11-05

Publications (1)

Publication Number Publication Date
WO2011055655A1 true WO2011055655A1 (en) 2011-05-12

Family

ID=43969895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068918 WO2011055655A1 (en) 2009-11-05 2010-10-26 Image pickup device, optical unit, wafer lens laminated body, and method for manufacturing wafer lens laminated body

Country Status (1)

Country Link
WO (1) WO2011055655A1 (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125941A (en) * 2010-12-13 2012-07-05 Toshiba Mach Co Ltd Apparatus and method for manufacturing master mold
JP2013003542A (en) * 2011-06-21 2013-01-07 Konica Minolta Advanced Layers Inc Optical element assembly, optical element, production method of optical element assembly, and production method of optical element
WO2013084475A1 (en) * 2011-12-06 2013-06-13 コニカミノルタ株式会社 Lens unit and method for manufacturing same
WO2013168811A1 (en) * 2012-05-11 2013-11-14 コニカミノルタ株式会社 Image pick-up device, lens array layered body, and manufacturing method therefor
EP2726930A1 (en) * 2011-06-28 2014-05-07 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9049411B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Camera arrays incorporating 3×3 imager configurations
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9264610B2 (en) 2009-11-20 2016-02-16 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by heterogeneous camera arrays
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
TWI581031B (en) * 2015-07-23 2017-05-01 奇景光電股份有限公司 Wafer level lens system and method of fabricating the same
WO2017082820A1 (en) 2015-11-12 2017-05-18 Heptagon Micro Optics Pte. Ltd. Optical element stack assemblies
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
WO2018198266A1 (en) * 2017-04-27 2018-11-01 オリンパス株式会社 Endoscope, imaging module, and method for manufacturing imaging module
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
WO2019193965A1 (en) * 2018-04-05 2019-10-10 ソニーセミコンダクタソリューションズ株式会社 Laminated lens structure and method for manufacturing same, and electronic device
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US10741613B2 (en) 2014-10-14 2020-08-11 Ams Sensors Singapore Pte. Ltd. Optical element stack assemblies
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849903A (en) * 1981-09-21 1983-03-24 Canon Inc Light shielding device for microlens
JP2000131520A (en) * 1998-10-23 2000-05-12 Seiko Epson Corp Optical substrate, its production, and display device
JP2004088713A (en) * 2002-06-27 2004-03-18 Olympus Corp Image pickup lens unit and image pickup device
JP2004090450A (en) * 2002-08-30 2004-03-25 Ricoh Co Ltd Micro lens piece, method for molding the same, micro lens stamper, method for manufacturing micro lens stamper, micro lens molded body, plastic lens sheet, and projector
JP2006135577A (en) * 2004-11-05 2006-05-25 Seiko Precision Inc Solid-state imaging apparatus and electronic equipment provided with same
JP2007007919A (en) * 2005-06-29 2007-01-18 Dainippon Printing Co Ltd Laminate
JP2007519969A (en) * 2004-01-30 2007-07-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Variable focus lens package
JP2007299929A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Optical device, and optical device module employing it
JP2008508545A (en) * 2004-07-28 2008-03-21 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー Camera module, array based on the same, and manufacturing method thereof
JP2009229749A (en) * 2008-03-21 2009-10-08 Sharp Corp Wafer-like optical device, its method for manufacturing, electronic element wafer module, sensor wafer module, electronic element module, sensor module, and electronic information apparatus
JP2009251373A (en) * 2008-04-08 2009-10-29 Konica Minolta Holdings Inc Driving device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849903A (en) * 1981-09-21 1983-03-24 Canon Inc Light shielding device for microlens
JP2000131520A (en) * 1998-10-23 2000-05-12 Seiko Epson Corp Optical substrate, its production, and display device
JP2004088713A (en) * 2002-06-27 2004-03-18 Olympus Corp Image pickup lens unit and image pickup device
JP2004090450A (en) * 2002-08-30 2004-03-25 Ricoh Co Ltd Micro lens piece, method for molding the same, micro lens stamper, method for manufacturing micro lens stamper, micro lens molded body, plastic lens sheet, and projector
JP2007519969A (en) * 2004-01-30 2007-07-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Variable focus lens package
JP2008508545A (en) * 2004-07-28 2008-03-21 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー Camera module, array based on the same, and manufacturing method thereof
JP2006135577A (en) * 2004-11-05 2006-05-25 Seiko Precision Inc Solid-state imaging apparatus and electronic equipment provided with same
JP2007007919A (en) * 2005-06-29 2007-01-18 Dainippon Printing Co Ltd Laminate
JP2007299929A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Optical device, and optical device module employing it
JP2009229749A (en) * 2008-03-21 2009-10-08 Sharp Corp Wafer-like optical device, its method for manufacturing, electronic element wafer module, sensor wafer module, electronic element module, sensor module, and electronic information apparatus
JP2009251373A (en) * 2008-04-08 2009-10-29 Konica Minolta Holdings Inc Driving device

Cited By (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9055233B2 (en) 2008-05-20 2015-06-09 Pelican Imaging Corporation Systems and methods for synthesizing higher resolution images using a set of images containing a baseline image
US9049411B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Camera arrays incorporating 3×3 imager configurations
US11412158B2 (en) 2008-05-20 2022-08-09 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9576369B2 (en) 2008-05-20 2017-02-21 Fotonation Cayman Limited Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US9191580B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by camera arrays
US9712759B2 (en) 2008-05-20 2017-07-18 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US9188765B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US9124815B2 (en) 2008-05-20 2015-09-01 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by arrays of luma and chroma cameras
US10142560B2 (en) 2008-05-20 2018-11-27 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9264610B2 (en) 2009-11-20 2016-02-16 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by heterogeneous camera arrays
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US10455168B2 (en) 2010-05-12 2019-10-22 Fotonation Limited Imager array interfaces
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
JP2012125941A (en) * 2010-12-13 2012-07-05 Toshiba Mach Co Ltd Apparatus and method for manufacturing master mold
US11875475B2 (en) 2010-12-14 2024-01-16 Adeia Imaging Llc Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US11423513B2 (en) 2010-12-14 2022-08-23 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US10742861B2 (en) 2011-05-11 2020-08-11 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
JP2013003542A (en) * 2011-06-21 2013-01-07 Konica Minolta Advanced Layers Inc Optical element assembly, optical element, production method of optical element assembly, and production method of optical element
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
EP2726930A1 (en) * 2011-06-28 2014-05-07 Pelican Imaging Corporation Optical arrangements for use with an array camera
EP2726930A4 (en) * 2011-06-28 2015-03-04 Pelican Imaging Corp Optical arrangements for use with an array camera
US9578237B2 (en) 2011-06-28 2017-02-21 Fotonation Cayman Limited Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing
US9128228B2 (en) 2011-06-28 2015-09-08 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US10375302B2 (en) 2011-09-19 2019-08-06 Fotonation Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US10275676B2 (en) 2011-09-28 2019-04-30 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9864921B2 (en) 2011-09-28 2018-01-09 Fotonation Cayman Limited Systems and methods for encoding image files containing depth maps stored as metadata
US10430682B2 (en) 2011-09-28 2019-10-01 Fotonation Limited Systems and methods for decoding image files containing depth maps stored as metadata
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US11729365B2 (en) 2011-09-28 2023-08-15 Adela Imaging LLC Systems and methods for encoding image files containing depth maps stored as metadata
US20180197035A1 (en) 2011-09-28 2018-07-12 Fotonation Cayman Limited Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US10019816B2 (en) 2011-09-28 2018-07-10 Fotonation Cayman Limited Systems and methods for decoding image files containing depth maps stored as metadata
US10984276B2 (en) 2011-09-28 2021-04-20 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
WO2013084475A1 (en) * 2011-12-06 2013-06-13 コニカミノルタ株式会社 Lens unit and method for manufacturing same
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US10311649B2 (en) 2012-02-21 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
WO2013168811A1 (en) * 2012-05-11 2013-11-14 コニカミノルタ株式会社 Image pick-up device, lens array layered body, and manufacturing method therefor
CN104272143A (en) * 2012-05-11 2015-01-07 柯尼卡美能达株式会社 Image pick-up device, lens array layered body, and manufacturing method therefor
US10334241B2 (en) 2012-06-28 2019-06-25 Fotonation Limited Systems and methods for detecting defective camera arrays and optic arrays
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US11022725B2 (en) 2012-06-30 2021-06-01 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US10380752B2 (en) 2012-08-21 2019-08-13 Fotonation Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US10462362B2 (en) 2012-08-23 2019-10-29 Fotonation Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US10958892B2 (en) 2013-03-10 2021-03-23 Fotonation Limited System and methods for calibration of an array camera
US11570423B2 (en) 2013-03-10 2023-01-31 Adeia Imaging Llc System and methods for calibration of an array camera
US11272161B2 (en) 2013-03-10 2022-03-08 Fotonation Limited System and methods for calibration of an array camera
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US10225543B2 (en) 2013-03-10 2019-03-05 Fotonation Limited System and methods for calibration of an array camera
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10412314B2 (en) 2013-03-14 2019-09-10 Fotonation Limited Systems and methods for photometric normalization in array cameras
US10547772B2 (en) 2013-03-14 2020-01-28 Fotonation Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9787911B2 (en) 2013-03-14 2017-10-10 Fotonation Cayman Limited Systems and methods for photometric normalization in array cameras
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US10674138B2 (en) 2013-03-15 2020-06-02 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10542208B2 (en) 2013-03-15 2020-01-21 Fotonation Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US10638099B2 (en) 2013-03-15 2020-04-28 Fotonation Limited Extended color processing on pelican array cameras
US10455218B2 (en) 2013-03-15 2019-10-22 Fotonation Limited Systems and methods for estimating depth using stereo array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US10540806B2 (en) 2013-09-27 2020-01-21 Fotonation Limited Systems and methods for depth-assisted perspective distortion correction
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10767981B2 (en) 2013-11-18 2020-09-08 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US11486698B2 (en) 2013-11-18 2022-11-01 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10708492B2 (en) 2013-11-26 2020-07-07 Fotonation Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10574905B2 (en) 2014-03-07 2020-02-25 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US11546576B2 (en) 2014-09-29 2023-01-03 Adeia Imaging Llc Systems and methods for dynamic calibration of array cameras
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US10741613B2 (en) 2014-10-14 2020-08-11 Ams Sensors Singapore Pte. Ltd. Optical element stack assemblies
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
TWI581031B (en) * 2015-07-23 2017-05-01 奇景光電股份有限公司 Wafer level lens system and method of fabricating the same
US10175462B2 (en) 2015-07-23 2019-01-08 Himax Technologies Limited Wafer level lens system and method of fabricating the same
US10877239B2 (en) 2015-11-12 2020-12-29 Ams Sensors Singapore Pte. Ltd. Optical element stack assemblies
WO2017082820A1 (en) 2015-11-12 2017-05-18 Heptagon Micro Optics Pte. Ltd. Optical element stack assemblies
EP3374815A4 (en) * 2015-11-12 2019-07-10 Heptagon Micro Optics Pte. Ltd. Optical element stack assemblies
US11304598B2 (en) 2017-04-27 2022-04-19 Olympus Corporation Endoscope system and method of manufacturing image capturing module used in the endoscope system
WO2018198266A1 (en) * 2017-04-27 2018-11-01 オリンパス株式会社 Endoscope, imaging module, and method for manufacturing imaging module
US11562498B2 (en) 2017-08-21 2023-01-24 Adela Imaging LLC Systems and methods for hybrid depth regularization
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US10818026B2 (en) 2017-08-21 2020-10-27 Fotonation Limited Systems and methods for hybrid depth regularization
WO2019193965A1 (en) * 2018-04-05 2019-10-10 ソニーセミコンダクタソリューションズ株式会社 Laminated lens structure and method for manufacturing same, and electronic device
US11609362B2 (en) 2018-04-05 2023-03-21 Sony Semiconductor Solutions Corporation Stacked lens structure and method of manufacturing the same, and electronic apparatus
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11699273B2 (en) 2019-09-17 2023-07-11 Intrinsic Innovation Llc Systems and methods for surface modeling using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11842495B2 (en) 2019-11-30 2023-12-12 Intrinsic Innovation Llc Systems and methods for transparent object segmentation using polarization cues
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
US11683594B2 (en) 2021-04-15 2023-06-20 Intrinsic Innovation Llc Systems and methods for camera exposure control
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers

Similar Documents

Publication Publication Date Title
WO2011055655A1 (en) Image pickup device, optical unit, wafer lens laminated body, and method for manufacturing wafer lens laminated body
WO2009157273A1 (en) Imaging optical system, and imaging lens manufacturing method
US8540440B2 (en) Image capture lens, wafer lens, wafer lens laminate, method of manufacturing image capture lens, image capture lens intermediate product, method of manufacturing image capture lens intermediate product
CN105518491B (en) Wafer lens, wafer lens array, wafer lens laminated body and wafer lens array laminated body
US8416514B2 (en) Lens unit, lens assembly, camera module, method of fabricating camera module and lens assembly, method of fabricating optic member, and apparatus of fabricating optic member
WO2011055654A1 (en) Image pickup device and method for manufacturing the image pickup device
KR100673680B1 (en) Diffraction optical element and method manufacturing the same, and optical device
JP2013001091A (en) Method of manufacturing optical element
JPWO2013168811A1 (en) Imaging device, lens array laminate, and manufacturing method thereof
US20130118685A1 (en) Wafer lens member producing method, image pickup lens producing method, image pickup module producing method, and image pickup module-installed electronic device producing method
US20090311630A1 (en) Process for producing optical component
JP2010107891A (en) Wafer lens assemblage and method of manufacturing the same, lens unit, and imaging device
WO2009122934A1 (en) Optical element assembly, and method for production of optical unit
KR20110092138A (en) Mold for lens, method for manufacturing the same and lens using the mold for lens
JP2009244583A (en) Method for manufacturing optical element, optical element unit, and imaging unit
WO2009157310A1 (en) Imaging optical system
WO2009087836A1 (en) Optical element manufacturing method, optical element, electronic apparatus manufacturing method, and electronic apparatus
WO2005054913A1 (en) Optical parts, optical recording medium and method for manufacture thereof
US20110019062A1 (en) Optical Element Assembly, Image Pickup Module, and Method for Manufacturing Electronic Apparatus
KR101610374B1 (en) Apparatus for fabricating optic member and method of fabricating optic member
JP2015114343A (en) Image-capturing device, lens array stack, and method for manufacturing lens array stack
WO2010087208A1 (en) Diffractive optical element and manufacturing method thereof
JP5668446B2 (en) Imaging lens, wafer lens with spacer, and wafer lens laminate
JP2009176941A (en) Image sensing device and its manufacturing method
CN116135525A (en) Hybrid lens and method for manufacturing hybrid lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10828215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP