WO2010143662A1 - Optical information reading device - Google Patents

Optical information reading device Download PDF

Info

Publication number
WO2010143662A1
WO2010143662A1 PCT/JP2010/059772 JP2010059772W WO2010143662A1 WO 2010143662 A1 WO2010143662 A1 WO 2010143662A1 JP 2010059772 W JP2010059772 W JP 2010059772W WO 2010143662 A1 WO2010143662 A1 WO 2010143662A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
information
lens
liquid
optical
Prior art date
Application number
PCT/JP2010/059772
Other languages
French (fr)
Japanese (ja)
Inventor
久水文也
川島安武
Original Assignee
株式会社オプトエレクトロニクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オプトエレクトロニクス filed Critical 株式会社オプトエレクトロニクス
Publication of WO2010143662A1 publication Critical patent/WO2010143662A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0075Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having an element with variable optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10792Special measures in relation to the object to be scanned
    • G06K7/10801Multidistance reading
    • G06K7/10811Focalisation

Definitions

  • the present invention relates to an optical information reader having a focus function and a zoom function using a liquid lens.
  • Bar codes that are one-dimensional code information are well known for the purpose of merchandise management and inventory management.
  • a two-dimensional code is known as a code having a higher information density.
  • a method is known in which a two-dimensional code is photographed with a solid-state imaging device such as a CMOS image sensor or a CCD image sensor, and the image is subjected to various processing and then binarized and decoded. Yes.
  • the 2D code has a large amount of information that can be loaded, not only the price, product name, suppliers, etc., but also the information necessary for the management and sales side, as well as the production area, ingredients, simple precautions, usage, etc. It is also possible to provide information serving as a service when selling products to customers.
  • CMOS image sensor used in such a device that reads code information is not functionally different from what is mounted on a digital camera or the like, so it functions as a photographer that normally shoots objects and landscapes. Is required. For example, in the case of inventory management or the like, it is used when an image of a position where the article is stored together with the target article is stored in a database together with code information.
  • the mobile phone is equipped with a small camera using the above-described CMOS image sensor.
  • Most of the camera functions of mobile phones include a barcode / two-dimensional code scanner and an OCR (optical character reader), as well as images of landscapes and people, like ordinary digital cameras. is there.
  • An apparatus that performs imaging with a solid-state imaging device requires a configuration for focusing and a configuration for adjusting the size of an image, a configuration for automatically adjusting a focus position, a so-called autofocus function, and a configuration for changing a focal length, a so-called configuration.
  • a zoom function is required.
  • the auto focus function and zoom function a method of mechanically moving the lens position along the optical axis is known, but it is difficult to mount such a mechanism in a small device such as a mobile phone. is there. Therefore, there is a demand for a configuration in which the lens itself has an autofocus mechanism and a zoom. One of them is a liquid lens.
  • Patent Document 1 a technique for realizing a zoom function with a liquid lens has been disclosed (for example, see Patent Document 1).
  • Patent Documents 2 and 3 a technique in which a liquid lens is applied to a camera that captures a landscape or a person is disclosed (for example, see Patent Documents 2 and 3).
  • the present invention has been made to solve such a problem, and an object thereof is to provide an optical information reading apparatus having a focus function and a zoom function using a liquid lens with a simple configuration.
  • the present invention provides a first liquid and a second liquid, which have different optical refractive indexes and in which a boundary surface is formed without being mixed with each other, sealed in a container, Two or more liquid lenses to which a voltage for controlling the shape of the boundary surface between the liquid and the second liquid is applied are arranged with a predetermined interval at which the focal length can be changed by changing the shape of the boundary surface.
  • a lens module in which at least one optical lens is disposed, an imaging unit having a solid-state imaging device that photoelectrically converts an optical signal transmitted through the lens module, and a temperature detection unit that detects the temperature of each liquid lens, Control for performing focus control and zoom control based on distance measurement means for measuring the distance to the reading object, distance information to the reading object measured by the distance measurement means, and temperature information detected by the temperature detection means. It is an optical information reading and means.
  • the focal length can be continuously changed and the focal position can be adjusted to an arbitrary distance. Then, voltage information to be applied to the liquid lens is set based on the distance information to the reading object, and focus control for adjusting the focal position and zoom control for obtaining an image having a size suitable for decoding are performed.
  • the voltage information to be applied to the liquid lens is compensated by the temperature information, and optimum focus control and zoom control are performed even if the temperature fluctuates.
  • focus control and zoom control can be performed without moving the lens, and the focus function and zoom function can be realized with a simple configuration. Thereby, it becomes possible to incorporate in a small apparatus. Further, since focus control and zoom control are performed based on the distance information and the temperature information, a clear image can be acquired in a short time, and a clear image can be acquired even if the temperature fluctuates.
  • FIG. 1 is a functional block diagram illustrating an example of an optical information reading apparatus according to the present embodiment
  • FIG. 2 is an internal configuration diagram illustrating an example of a liquid lens constituting the lens module according to the present embodiment.
  • the optical information reading apparatus 1 includes a camera module 3 having a lens module 2 and a decoder 4.
  • the lens module 2 includes a plurality of liquid lenses, in this example, two liquid lenses 20A and 20B.
  • the liquid lens 20 ⁇ / b> A and the liquid lens 20 ⁇ / b> B are made of a conductive material that is an example of a first liquid in a cylindrical container 21 in which an incident surface 21 a and an output surface 21 b are formed of a transparent material that transmits light of a predetermined wavelength.
  • High-water solution 22 and insulating oil 23, which is an example of the second liquid, are sealed.
  • the aqueous solution 22 and the oil 23 are separated in a direction along the optical axis O of the liquid lens 20A and the liquid lens 20B, and a boundary surface 24 through which light is transmitted without being mixed with each other is formed.
  • the aqueous solution 22 and the oil 23 sealed by the liquid lens 20A and the liquid lens 20B have different light refractive indexes, and the light transmitted from the incident surface 21a to the output surface 21b is refracted at the boundary surface 24 between the aqueous solution 22 and the oil 23. Is done.
  • the liquid lens 20A and the liquid lens 20B include an electrode 25a in contact with the aqueous solution 22 and an electrode 25b in contact with both the aqueous solution 22 and the oil 23 through an insulating portion.
  • an electrode 25a in contact with the aqueous solution 22
  • an electrode 25b in contact with both the aqueous solution 22 and the oil 23 through an insulating portion.
  • Two liquid lenses 20 ⁇ / b> A and 20 ⁇ / b> B are arranged in series along the optical axis O, and in the liquid lenses 20 ⁇ / b> A and 20 ⁇ / b> B, the curvatures R ⁇ b> 1 and R ⁇ b> 2 of the boundary surface 24 between the aqueous solution 22 and the oil 23 are changed. It is possible to realize a function of continuously changing a focal distance called “focus” and a function of adjusting a focus position called “focus”.
  • the lens module 2 includes a thermistor 26A that detects the temperature of the liquid lens 20A and a thermistor 26B that detects the temperature of the liquid lens 20B.
  • the thermistors 26A and 26B are an example of temperature detection means.
  • the thermistor 26A is mounted on a flexible substrate (not shown) connected to the electrode of the liquid lens 20A, for example, so that the temperature around the liquid lens 20A can be accurately detected.
  • the thermistor 26B is mounted on a flexible substrate (not shown) connected to the electrode of the liquid lens 20B, for example, so that the temperature around the liquid lens 20B can be accurately detected.
  • the lens module 2 includes at least one optical lens 27.
  • the optical lens 27 is composed of, for example, a convex lens, and is disposed at the subsequent stage of the liquid lens 20B.
  • the liquid lens 20A, the liquid lens 20B, and the optical lens 27 are attached to a lens housing (not shown) with the optical axes aligned.
  • the optical lens 27 may be a single optical lens made of glass, plastic or the like that transmits light of a predetermined wavelength, or may be a combination of a plurality of optical lenses.
  • the camera module 3 includes the lens module 2 described above, an image sensor 30 that forms an imaging unit, and a distance measuring unit 31.
  • the image sensor 30 is an example of a solid-state imaging device, and photoelectrically converts an input optical signal and outputs an electrical signal.
  • a CMOS image sensor or a CCD image sensor is used as the image sensor 30, for example.
  • the image sensor 30 is disposed at a position where the light transmitted through the lens module 2 forms an image by the functions of the liquid lens 20 ⁇ / b> A, the liquid lens 20 ⁇ / b> B, and the optical lens 27.
  • the distance measuring unit 31 is an example of a distance measuring unit and includes, for example, a laser light receiving and emitting unit and the like, and measures the distance from the code symbol 5 that is a reading object.
  • the camera module 3 may include an illumination LED 32 that emits guide light indicating the code symbol 5 of the reading object.
  • the illumination LED 32 is provided as appropriate, and may not be mounted depending on the shape of the apparatus and the purpose of use.
  • the decoder 4 is an example of a signal processing unit, and performs control such as zoom and focus adjustment performed by the lens module 2, imaging performed by the image sensor 30, decoding of a signal output from the image sensor 30, and data transfer.
  • An ASIC (Application Specific Specific Integrated Circuit) 40 is provided as a means.
  • the decoder 4 includes a RAM 41 and a ROM 42 in which programs executed by the ASIC 40 and various tables are stored.
  • the decoder 4 is connected to the lens module 2 and the camera module 3 as a signal input / output unit, and is connected to an information processing apparatus such as an external host computer (not shown). I / O 44 is provided.
  • the optical information reading apparatus 1 may include an operation unit 45 as a setting unit in order to acquire identification information for identifying the type of the code symbol 5 that is an imaging target.
  • the operation unit 45 includes, for example, a display and a keyboard (not shown), and information is input or selected according to the display on the display. Further, without providing the operation unit 45, the identification information of the code symbol 5 may be acquired from an external information processing apparatus (not shown) and stored in the RAM 41.
  • the optical information reader 1 has a configuration in which the above-described components are mounted in a housing (not shown), for example, and a user can take an image with the hand.
  • the optical information reader 1 is a scanner that can read a code symbol 5 such as a bar code and a two-dimensional code. However, if the OCR software is installed, the optical information reader 1 can also read characters.
  • the ASIC 40 may be a combination of a CPU and an LSI such as an FPGA (Field Programmable Gate Array).
  • the optical information reading device 1 performs imaging when the reflected light from the code symbol 5 at an arbitrary distance forms an image on the image sensor 30, that is, when there is a so-called focus. This is because the content of the code symbol 5 cannot be decoded unless the image is clearly captured.
  • the camera module 3 includes a distance measuring unit 31 using a laser.
  • a laser distance measurement technique which measures the delay time between the start of the laser pulse and the return of the reflection to determine the distance.
  • the other is a parallax (parallax) technique, in which a beam is irradiated to form a spot on the imaging object, and the detection spot position on the imaging object is measured. The distance of the imaging object is determined from the detected spot position.
  • the distance measurement method is not limited to these examples, but the ASIC 40 is programmed to perform distance measurement by any one of these methods, for example.
  • the curvatures R1 and R2 of the boundary surface 24 between the aqueous solution 22 and the oil 23 change according to the applied voltage.
  • the curvatures R1 and R2 of the liquid lenses 20A and 20B change, the refractive power of the liquid lenses 20A and 20B changes. Therefore, an applied voltage necessary for focusing on a reading object at an arbitrary distance is uniquely determined. It is done.
  • the liquid lenses 20A and 20B are focused on.
  • the relationship between the voltage information V1 to be applied is measured to create a distance-voltage table TB1 and stored in the ASIC 40. Thereby, it is possible to acquire voltage information V1 corresponding to the distance to the code symbol 5 measured by the distance measuring unit 31.
  • the liquid lenses 20A and 20B need a standby time after the voltage is applied until the curvatures R1 and R2 according to the applied voltage become possible and imaging becomes possible.
  • This imaging standby time varies depending on the ambient temperature of the liquid lenses 20A and 20B.
  • FIG. 3 is a graph showing the relationship between the temperature and the response time of the liquid lens.
  • a predetermined voltage capable of focusing on the imaging target when applied to the liquid lens, changes in the sharpness of the image obtained through the liquid lens are shown by graphs 301 to 303 for each predetermined temperature.
  • the sharpness of an image that can be decoded by the ASIC 40 is defined as a threshold Th
  • the time until reaching the threshold Th is defined as an imaging standby time
  • the imaging standby time is generally smaller when the temperature is high
  • the graph As shown in 301 and graph 302 the imaging standby time at 60 ° C. is much shorter than the imaging standby time at 25 ° C.
  • the relationship between the temperature information Tp of the liquid lenses 20A and 20B and the imaging standby time information Tm is measured, and a temperature-standby time table TB2 is created and stored in the ASIC 40. Since the thermistors 26A and 26B are respectively provided in the liquid lenses 20A and 20B, the ambient temperature and the imaging standby time of the respective liquid lenses 20A and 20B are measured in advance.
  • FIG. 4 is a graph showing the relationship between the temperature measured by the thermistor and the standby time.
  • FIG. 4 shows the minimum imaging standby time at which a sharpness image that can be decoded by the ASIC 40 can be captured with respect to the temperature measured by the thermistors 26A and 26B. Thereby, it is possible to acquire imaging standby time information Tm according to the temperature of the liquid lens 20A measured by the thermistor 26A and the temperature of the liquid lens 20B measured by the thermistor 26B.
  • the distance-voltage table TB1 indicating the relationship between the distance information Ld up to the code symbol 5 and the voltage information V1 to be applied to the liquid lenses 20A and 20B, the temperature information Tp of the liquid lenses 20A and 20B, and the imaging.
  • Optimal focus adjustment is made by the temperature-standby time table TB2 showing the relationship with the wait time information Tm, and a clear image of the code symbol 5 can be captured.
  • the zoom function for continuously changing the focal length in the optical information reader 1 will be described.
  • the optical information reader 1 in order to decode the image of the code symbol 5 formed on the image sensor 30 by the ASIC 40, an image having a predetermined size is required according to the resolution of the image sensor 30.
  • the size of the image formed on the image sensor 30 is determined by the distance from the optical information reader 1 to the code symbol 5 that is the object to be read and the size of the code symbol 5. Therefore, the relationship between the angle of view ⁇ estimated from the distance information Ld to the code symbol 5 and the size information W of the code symbol 5 to be imaged is measured to create the distance-view angle table TB3 and store it in the ASIC 40. Keep it.
  • FIG. 5 is a graph showing the relationship between the distance to the code symbol and the angle of view.
  • FIG. 5 shows the angle of view with respect to the distance in Code 39 (pitch 0.254, width 70 mm), which is a general one-dimensional code. If the size of the code symbol 5 and the distance to the code symbol 5 are known, it is possible to predict the angle of view necessary for obtaining an image of a desired size. Thus, if a distance-view angle table TB3 such as a PDF417 code or a two-dimensional code that is frequently used as a reading object is created, the view angle can be acquired from the distance information.
  • a distance-view angle table TB3 such as a PDF417 code or a two-dimensional code that is frequently used as a reading object
  • the angle of view at which the image formed on the image sensor 30 has a predetermined size is determined by the focal length of the lens module 2, and the focal length of the lens module 2 is determined by the combination of the curvatures R1 and R2 of the liquid lenses 20A and 20B. Therefore, the relationship between the focal length of the lens module 2 and the applied voltage is uniquely determined.
  • the relationship between the focal length information fd for determining the angle of view ⁇ of the lens module 2 and the voltage information V2 to be applied to the liquid lenses 20A and 20B is measured, and the focal length-voltage table TB4 is created and stored in the ASIC 40. Keep it. Note that the temperature-standby time table TB2 described above is also necessary when performing zooming. As a result, it is possible to acquire voltage information V2 corresponding to the distance to the code symbol 5 measured by the distance measuring unit 31 and the size of the code symbol by using the distance-view angle table TB3 and the focal length-voltage table TB4. Become.
  • FIG. 6 is a configuration diagram showing the arrangement of each lens in the lens module of the present embodiment.
  • the lens module 2 includes at least two liquid lenses 20A and 20B and one optical lens 27 as described above.
  • the focal length f from the principal point determined by the curvature and arrangement of each lens changes.
  • the optical lens 27 is illustrated as having a main point. Further, the focal length f is also changed by changing the distance Le between the liquid lens 20A and the liquid lens 20B.
  • the distance L between the image-side liquid lens 20A and the image FC to be read is 100 mm, and the distance Lg between the image lens 30-side liquid lens 20B and the optical lens 27 is 3 mm.
  • changes in the angle of view when the curvature R1 of the liquid lens 20A, the curvature R2 of the liquid lens 20B, and the distance Le between the liquid lens 20A and the liquid lens 20B are changed are measured.
  • the angle of view (half value) of only the optical lens 27 is 16 °.
  • FIG. 7 is a graph showing the change in the curvature of the liquid lens during zooming
  • FIG. 8 is a graph showing the relationship between the distance between the liquid lenses and the angle of view. From the result of FIG. 8, it can be seen that the zoom magnification of the lens module 2 can be increased as the distance between the liquid lens 20A and the liquid lens 20B is increased.
  • FIG. 9 to 11 are configuration diagrams showing specific examples of lens modules.
  • the zoom magnification increases as the distance Le between the liquid lens 20A and the liquid lens 20B increases.
  • the distance Le between the liquid lens 20 ⁇ / b> A and the liquid lens 20 ⁇ / b> B is increased, the ambient light does not reach the image sensor 30 by hitting the lens barrel between the liquid lenses, resulting in insufficient light quantity or so-called vignetting.
  • the distance Le between the liquid lens 20A and the liquid lens 20B is about 9.6 mm at the maximum.
  • the angle of view ⁇ can be changed from 14.329 ° to 17.8443 °, and the zoom magnification is 1.26 times.
  • the configuration includes two liquid lenses 20 ⁇ / b> A and 20 ⁇ / b> B and one optical lens 27, and a concave meniscus lens 28 is added to the top of the lens group to narrow the light.
  • the zoom magnification can be increased by separating the distance Le between the liquid lens 20A and the liquid lens 20B without reducing the peripheral light amount as compared with the configuration of FIG. 9 that does not include the concave meniscus lens. it can.
  • the distance Le between the liquid lens 20A and the liquid lens 20B is about 17 mm at the maximum.
  • the angle of view ⁇ can be changed from 13.003 ° to 17.924 °, and the zoom magnification is 1.4 times.
  • the configuration includes two liquid lenses 20A and 20B.
  • the zoom magnification can be further increased by increasing the number of liquid lenses to two or more. Therefore, in FIG. 11, four liquid lenses 20A, 20B, 20C, and 20D are provided, a concave meniscus lens 28 is provided in the front stage of the liquid lens group, and an optical lens 27 is provided in the rear stage.
  • the distance Le between the liquid lens 20A and the liquid lens 20D at both ends is about 30 mm at the maximum.
  • the angle of view ⁇ can be changed from 9.8 ° to 21.95 °, and the zoom magnification is 2.3 times.
  • FIG. 12 is a flowchart showing an example of processing of the optical information reading apparatus according to the present embodiment
  • FIGS. 13 to 15 are explanatory diagrams of the operation of the liquid lens.
  • step S1 of FIG. 12 the operation unit 45 is operated to set the type of the code symbol 5 to be read.
  • the ROM 42 stores in advance identification information for specifying the type of the code symbol 5 and the like, and the identification information of the code symbol 5 to be read is selected by the operation on the operation unit 45.
  • the ASIC 40 measures the distance from the output of the distance measuring unit 31 to the code symbol 5 in step S2 to acquire the distance information Ld, and from the outputs of the thermistors 26A and 26B, the liquid lens 20A. , 20B temperature information Tp is acquired.
  • step S3 the ASIC 40 needs to zoom the distance to the code symbol 5 from the identification information of the code symbol 5 set by the operation unit 45 and the distance information Ld to the code symbol 5 detected by the distance measuring unit 31. It is determined whether or not the value is greater than a certain value.
  • the distance-view angle table TB3 corresponding to the identification information of the code symbol 5 set in the operation unit 45 is selected in step S4. To do. Then, referring to the distance-view angle table TB3, the focal length-voltage table TB4, and the temperature-standby time table TB2, the distance information Ld up to the code symbol 5 detected by the distance measuring unit 31 and the thermistors 26A, 26B Voltage information V2 and imaging standby time information Tm corresponding to the detected temperature information Tp of the liquid lenses 20A and 20B are acquired.
  • the voltage information V2 is set for each of the liquid lenses 20A and 20B, and when the distance to the code symbol 5 is far, a voltage that increases the size of the image formed on the image sensor 30 is applied. Is done.
  • the curvatures R1 and R2 of the liquid lens 20A and the liquid lens 20B that is, the curvatures R1 and R2 of the boundary surface 24 between the aqueous solution 22 and the oil 23 in the liquid lens 20A and the liquid lens 20B are concave. Such a voltage is applied.
  • the zoom is performed so that the size of the image formed on the image sensor 30 is increased. If the distance is equal to or smaller than another fixed value, zooming may be performed so that the size of the image formed on the image sensor 30 is reduced.
  • a voltage is applied so that the curvatures R1 and R2 of the liquid lens 20A and the liquid lens 20B are convex.
  • the distance measuring unit 31 refers to the distance-voltage table TB1 and the temperature-standby time table TB2 in step S5.
  • the voltage information V1 and the imaging standby time information Tm corresponding to the detected distance information Ld to the code symbol 5 and the temperature information Tp of the liquid lenses 20A and 20B detected by the thermistors 26A and 26B are acquired.
  • the voltage information V1 is set for each of the liquid lenses 20A and 20B, and a voltage is applied so that the image of the code symbol 5 at the position specified by the distance information Ld is formed on the image sensor 30.
  • a voltage corresponding to the distance information Ld is applied from a state in which the curvatures R1, R2 of the liquid lens 20A and the liquid lens 20B are flat.
  • step S6 the ASIC 40 performs zoom control according to the identification information of the code symbol 5 and the distance information Ld to the code symbol 5, and focus control according to the distance information Ld to the code symbol 5, and the thermistors 26A, After the imaging standby time corresponding to the temperature information Tp of the liquid lenses 20A and 20B detected at 26B has elapsed, the code symbol 5 is imaged by the image sensor 30.
  • step S7 the ASIC 40 determines whether the size of the captured code symbol 5 is appropriate for decoding.
  • zoom control is performed with reference to the distance-view angle table TB3 and the focal length-voltage table TB4 based on the identification information of the code symbol 5 and the distance information Ld to the code symbol 5. Yes.
  • the optical information reader 1 can recognize the assumed size of the code symbol 5 to be read by setting the identification information of the code symbol 5 to be read in advance. Therefore, normally, an image of a desired size can be acquired by performing zoom control with reference to the distance-view angle table TB3 and the focal length-voltage table TB4.
  • step S7 it is determined whether or not the size of the captured code symbol 5 is appropriate for decoding.
  • step S8 If it is determined in step S7 that the size of the captured code symbol 5 is appropriate for decoding, in step S8, the captured image data is decoded and data indicating the content of the code symbol 5 is output. . On the other hand, if it is determined in step S7 that the size of the captured code symbol 5 is not an appropriate size for decoding, the process returns to step S4 to perform zoom control according to the size information W of the code symbol 5. The code symbol 5 is imaged and decoded again.
  • the identification information of the code symbol 5 is acquired in advance.
  • the code symbol 5 may be imaged by the image sensor 30 and the feature point is detected to identify the code symbol.
  • the present invention can be used for a barcode reader, a two-dimensional code reader, and the like, and can realize autofocus and zoom with a small device.
  • SYMBOLS 1 Optical information reader, 2 ... Lens module, 3 ... Camera module, 4 ... Decoder, 20A, 20B ... Liquid lens, 26A, 26B ... Thermistor, 27 ... ⁇ Optical lens, 30 ... Image sensor, 31 ... Ranging unit, 40 ... ASIC

Abstract

Disclosed is an optical information reading device, which is provided with a focus function and a zoom function using a liquid lens with a simple configuration. The optical information reading device (1) is provided with: a lens module (2) wherein liquid lenses (20A, 20B), which change the shapes of the boundary surfaces when a voltage is applied, are disposed at a predetermined interval with which the focal point distances can be changed by changing the shapes of the boundary surfaces, and at least one optical lens (27) is disposed; an image sensor (30) which photoelectrically converts optical signals which have passed through the lens module (2); thermistors (26A, 26B) which detect the temperatures of the liquid lenses (20A, 20B); a distance measuring unit (31) which measures the distance to a code mark (5); and an ASIC (40) which performs focus control and zoom control on the basis of the information of the distance measured by means of the distance measuring unit (31) and the information of the temperatures detected by means of the thermistors (26A, 26B).

Description

光学的情報読取装置Optical information reader
 本発明は、液体レンズによるフォーカス機能とズーム機能を備えた光学的情報読取装置に関する。 The present invention relates to an optical information reader having a focus function and a zoom function using a liquid lens.
 商品管理、在庫管理等を目的として1次元のコード情報であるバーコードが良く知られている。また、より情報密度の高いコードとして2次元コードが知られている。2次元コードを読み取る装置として、CMOSイメージセンサやCCDイメージセンサ等の固体撮像素子で2次元コードを撮影し、その画像に様々な処理を施した上で2値化し、デコードする方法が知られている。 Bar codes that are one-dimensional code information are well known for the purpose of merchandise management and inventory management. A two-dimensional code is known as a code having a higher information density. As a device for reading a two-dimensional code, a method is known in which a two-dimensional code is photographed with a solid-state imaging device such as a CMOS image sensor or a CCD image sensor, and the image is subjected to various processing and then binarized and decoded. Yes.
 2次元コードは搭載できる情報量が多いので、価格、商品名、仕入れ先等、管理する側及び販売する側に必要な情報だけでなく、産地、成分、簡単な注意事項、使用法等も情報に埋め込み、顧客に商品を販売する際のサービスとなる情報を提供することもできる。 Since the 2D code has a large amount of information that can be loaded, not only the price, product name, suppliers, etc., but also the information necessary for the management and sales side, as well as the production area, ingredients, simple precautions, usage, etc. It is also possible to provide information serving as a service when selling products to customers.
 このようなコード情報を読み取る装置に使用されるCMOSイメージセンサは、デジタルカメラ等に搭載されているものと機能的に何ら変わらないことから、普通に物体や風景などを撮影する写真機としての機能を併せ持つことが求められる。例えば、在庫管理等の場合、対象物品と共にその物品が格納されている位置を撮像し、コード情報と共にデータベースに記憶する場合に使用されるものである。 The CMOS image sensor used in such a device that reads code information is not functionally different from what is mounted on a digital camera or the like, so it functions as a photographer that normally shoots objects and landscapes. Is required. For example, in the case of inventory management or the like, it is used when an image of a position where the article is stored together with the target article is stored in a database together with code information.
 また、携帯電話機には、上述したCMOSイメージセンサを使用した小型カメラが搭載されている。携帯電話機のカメラ機能には、通常のデジタルカメラのように、風景や人物を撮像する他に、バーコード/2次元コードスキャナ及びOCR(光学式文字読取装置)を内蔵しているものが大半である。 The mobile phone is equipped with a small camera using the above-described CMOS image sensor. Most of the camera functions of mobile phones include a barcode / two-dimensional code scanner and an OCR (optical character reader), as well as images of landscapes and people, like ordinary digital cameras. is there.
 固体撮像素子で撮像を行う装置では、焦点を合わせる構成及び画像の大きさを調整する構成が必要であり、自動的に焦点位置を合わせる構成、いわゆるオートフォーカス機能と、焦点距離を変える構成、いわゆるズーム機能が必要である。オートフォーカス機能とズーム機能は、レンズの位置を機械的に光軸に沿って移動させる方法が知られているが、携帯電話等の小型の装置では、このような機構を搭載するのが困難である。そこで、レンズ自体がオートフォーカス機構とズームを持つような構成のものが求められている。その1つに液体レンズというものが知られている。 An apparatus that performs imaging with a solid-state imaging device requires a configuration for focusing and a configuration for adjusting the size of an image, a configuration for automatically adjusting a focus position, a so-called autofocus function, and a configuration for changing a focal length, a so-called configuration. A zoom function is required. For the auto focus function and zoom function, a method of mechanically moving the lens position along the optical axis is known, but it is difficult to mount such a mechanism in a small device such as a mobile phone. is there. Therefore, there is a demand for a configuration in which the lens itself has an autofocus mechanism and a zoom. One of them is a liquid lens.
 従来、ズーム機能を液体レンズで実現した技術が開示されている(例えば、特許文献1参照)。また、風景や人物などを撮影するカメラに液体レンズを適用した技術が開示されている(例えば、特許文献2、3参照)。 Conventionally, a technique for realizing a zoom function with a liquid lens has been disclosed (for example, see Patent Document 1). In addition, a technique in which a liquid lens is applied to a camera that captures a landscape or a person is disclosed (for example, see Patent Documents 2 and 3).
特開2007-128084号公報JP 2007-128084 A 特開2008-158247号公報JP 2008-158247 A 特開2006-201639号公報JP 2006-201639 A
 固体撮像素子を実装した一般的なカメラでは、画像を連像的に捕捉して、ピントの合った画像に対してのみデコードを施すという技術が提案されているが、画像を捕捉してデコードするまでに時間が掛かってしまい、商品や物品の管理を行うコードスキャナには適用できない。また、コードスキャナでは、デコード可能な所定の大きさで鮮明な画像を取得する必要があり、液体レンズを利用した構成では、温度による補償が必要となる。 For a general camera equipped with a solid-state imaging device, a technique has been proposed in which images are captured in a continuous manner and only the image in focus is decoded. However, the image is captured and decoded. Takes a long time to complete, and is not applicable to code scanners that manage merchandise and goods. Further, the code scanner needs to acquire a clear image having a predetermined size that can be decoded, and in a configuration using a liquid lens, compensation by temperature is required.
 本発明は、このような課題を解決するためになされたもので、簡単な構成で液体レンズによるフォーカス機能とズーム機能を備えた光学的情報読取装置を提供することを目的とする。 The present invention has been made to solve such a problem, and an object thereof is to provide an optical information reading apparatus having a focus function and a zoom function using a liquid lens with a simple configuration.
 上述した課題を解決するため、本発明は、異なる光屈折率を有し、互いに混和すること無く境界面が形成される第1の液体と第2の液体が容器に封止され、第1の液体と第2の液体の境界面の形状を制御する電圧が印加される液体レンズが、境界面の形状を変化させることで焦点距離が変化し得る所定の間隔を開けて2個以上配置されると共に、少なくとも1個の光学レンズが配置されたレンズモジュールと、レンズモジュールを透過した光信号を光電変換する固体撮像素子を有した撮像部と、各液体レンズの温度を検知する温度検知手段と、読取対象物までの距離を測定する距離測定手段と、距離測定手段で測定された読取対象物までの距離情報と、温度検知手段で検知された温度情報に基づき、フォーカス制御及びズーム制御を行う制御手段とを備えた光学的情報読取装置である。 In order to solve the above-described problem, the present invention provides a first liquid and a second liquid, which have different optical refractive indexes and in which a boundary surface is formed without being mixed with each other, sealed in a container, Two or more liquid lenses to which a voltage for controlling the shape of the boundary surface between the liquid and the second liquid is applied are arranged with a predetermined interval at which the focal length can be changed by changing the shape of the boundary surface. In addition, a lens module in which at least one optical lens is disposed, an imaging unit having a solid-state imaging device that photoelectrically converts an optical signal transmitted through the lens module, and a temperature detection unit that detects the temperature of each liquid lens, Control for performing focus control and zoom control based on distance measurement means for measuring the distance to the reading object, distance information to the reading object measured by the distance measurement means, and temperature information detected by the temperature detection means. It is an optical information reading and means.
 本発明の光学的情報読取装置では、各液体レンズにおいて境界面の曲率を変化させると、焦点距離を連続的に変えることができると共に、任意の距離に焦点位置を合わせることができる。そして、読取対象物までの距離情報に基づいて、液体レンズに印加すべき電圧情報が設定され、焦点位置を合わせるフォーカス制御と、デコードに適するような大きさの画像を得るズーム制御が行われる。液体レンズに印加すべき電圧情報は、温度情報により補償され、温度が変動しても、最適なフォーカス制御及びズーム制御が行われる。 In the optical information reading device of the present invention, when the curvature of the boundary surface is changed in each liquid lens, the focal length can be continuously changed and the focal position can be adjusted to an arbitrary distance. Then, voltage information to be applied to the liquid lens is set based on the distance information to the reading object, and focus control for adjusting the focal position and zoom control for obtaining an image having a size suitable for decoding are performed. The voltage information to be applied to the liquid lens is compensated by the temperature information, and optimum focus control and zoom control are performed even if the temperature fluctuates.
 本発明の光学的情報読取装置によれば、レンズを可動させることなく、フォーカス制御とズーム制御を行うことができ、簡単な構成でフォーカス機能とズーム機能を実現できる。これにより、小型の装置に組み込むことが可能となる。また、距離情報及び温度情報に基づいてフォーカス制御とズーム制御が行われるので、短時間で鮮明な画像を取得できると共に、温度が変動しても、鮮明な画像を取得できる。 According to the optical information reading apparatus of the present invention, focus control and zoom control can be performed without moving the lens, and the focus function and zoom function can be realized with a simple configuration. Thereby, it becomes possible to incorporate in a small apparatus. Further, since focus control and zoom control are performed based on the distance information and the temperature information, a clear image can be acquired in a short time, and a clear image can be acquired even if the temperature fluctuates.
本実施の形態の光学的情報読取装置の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the optical information reader of this Embodiment. 本実施の形態のレンズモジュールを構成する液体レンズの一例を示す内部構成図である。It is an internal block diagram which shows an example of the liquid lens which comprises the lens module of this Embodiment. 温度と液体レンズの応答時間の関係を示すグラフである。It is a graph which shows the relationship between temperature and the response time of a liquid lens. サーミスタで測定された温度と待機時間の関係を示すグラフである。It is a graph which shows the relationship between the temperature measured with the thermistor, and standby time. コード記号までの距離と画角の関係を示すグラフである。It is a graph which shows the relationship between the distance to a code symbol, and a field angle. 本実施の形態のレンズモジュールにおいて各レンズの配置を示す構成図である。It is a block diagram which shows arrangement | positioning of each lens in the lens module of this Embodiment. ズーム時の液体レンズの曲率の変化を示すグラフである。It is a graph which shows the change of the curvature of a liquid lens at the time of zoom. 液体レンズの間隔と画角の関係を示すグラフである。It is a graph which shows the relationship between the space | interval of a liquid lens, and a field angle. レンズモジュールの具体例を示す構成図である。It is a block diagram which shows the specific example of a lens module. レンズモジュールの具体例を示す構成図である。It is a block diagram which shows the specific example of a lens module. レンズモジュールの具体例を示す構成図である。It is a block diagram which shows the specific example of a lens module. 本実施の形態の光学的情報読取装置の処理の一例を示すフローチャートである。It is a flowchart which shows an example of a process of the optical information reader of this Embodiment. 液体レンズの動作説明図である。It is operation | movement explanatory drawing of a liquid lens. 液体レンズの動作説明図である。It is operation | movement explanatory drawing of a liquid lens. 液体レンズの動作説明図である。It is operation | movement explanatory drawing of a liquid lens.
 以下、図面を参照して、本発明のレンズモジュールを備えた光学的情報読取装置の実施の形態について説明する。 Hereinafter, an embodiment of an optical information reading apparatus provided with a lens module of the present invention will be described with reference to the drawings.
 <本実施の形態の光学的情報読取装置の構成例>
 図1は、本実施の形態の光学的情報読取装置の一例を示す機能ブロック図、図2は、本実施の形態のレンズモジュールを構成する液体レンズの一例を示す内部構成図である。
<Example of Configuration of Optical Information Reading Device of the Present Embodiment>
FIG. 1 is a functional block diagram illustrating an example of an optical information reading apparatus according to the present embodiment, and FIG. 2 is an internal configuration diagram illustrating an example of a liquid lens constituting the lens module according to the present embodiment.
 本実施の形態の光学的情報読取装置1は、レンズモジュール2を有したカメラモジュール3と、デコーダ4を備える。レンズモジュール2は、複数の液体レンズ、本例では2個の液体レンズ20A,20Bを備える。 The optical information reading apparatus 1 according to the present embodiment includes a camera module 3 having a lens module 2 and a decoder 4. The lens module 2 includes a plurality of liquid lenses, in this example, two liquid lenses 20A and 20B.
 液体レンズ20Aと液体レンズ20Bは、所定の波長の光が透過する透明な材質で入射面21aと出射面21bが形成された例えば円筒形状の容器21に、第1の液体の一例である導電性の高い水溶液22と、第2の液体の一例である絶縁体の油23が封止される。 The liquid lens 20 </ b> A and the liquid lens 20 </ b> B are made of a conductive material that is an example of a first liquid in a cylindrical container 21 in which an incident surface 21 a and an output surface 21 b are formed of a transparent material that transmits light of a predetermined wavelength. High-water solution 22 and insulating oil 23, which is an example of the second liquid, are sealed.
 水溶液22と油23は、液体レンズ20A及び液体レンズ20Bの光軸Oに沿った方向に分離して、互いに混和することなく光が透過する境界面24が形成される。液体レンズ20A及び液体レンズ20Bに封止される水溶液22と油23は異なる光屈折率を有し、入射面21aから出射面21bへ透過する光が、水溶液22と油23の境界面24で屈折される。 The aqueous solution 22 and the oil 23 are separated in a direction along the optical axis O of the liquid lens 20A and the liquid lens 20B, and a boundary surface 24 through which light is transmitted without being mixed with each other is formed. The aqueous solution 22 and the oil 23 sealed by the liquid lens 20A and the liquid lens 20B have different light refractive indexes, and the light transmitted from the incident surface 21a to the output surface 21b is refracted at the boundary surface 24 between the aqueous solution 22 and the oil 23. Is done.
 液体レンズ20Aと液体レンズ20Bは、水溶液22と接する電極25aと、絶縁部を介して水溶液22と油23の両方と接する電極25bを備える。電極25a及び電極25bから電気を流し、水溶液22に電圧を印加すると、水溶液22と油23との境界面24の形状を変化させることができる。このような現象をエレクトロウエッティング現象と称す。 The liquid lens 20A and the liquid lens 20B include an electrode 25a in contact with the aqueous solution 22 and an electrode 25b in contact with both the aqueous solution 22 and the oil 23 through an insulating portion. When electricity is applied from the electrodes 25a and 25b and a voltage is applied to the aqueous solution 22, the shape of the boundary surface 24 between the aqueous solution 22 and the oil 23 can be changed. Such a phenomenon is called an electrowetting phenomenon.
 2個の液体レンズ20Aと液体レンズ20Bを光軸Oに沿って直列に配置し、液体レンズ20A,20Bにおいて、水溶液22と油23との境界面24の曲率R1,R2を変えることで、ズームと称される焦点距離を連続的に変える機能と、フォーカスと称される焦点位置を合わせる機能を実現することができる。 Two liquid lenses 20 </ b> A and 20 </ b> B are arranged in series along the optical axis O, and in the liquid lenses 20 </ b> A and 20 </ b> B, the curvatures R <b> 1 and R <b> 2 of the boundary surface 24 between the aqueous solution 22 and the oil 23 are changed. It is possible to realize a function of continuously changing a focal distance called “focus” and a function of adjusting a focus position called “focus”.
 レンズモジュール2は、液体レンズ20Aの温度を検知するサーミスタ26Aと、液体レンズ20Bの温度を検知するサーミスタ26Bを備える。サーミスタ26A,26Bは温度検知手段の一例で、サーミスタ26Aは、例えば、液体レンズ20Aの電極と接続される図示しないフレキシブル基板に実装されることで、液体レンズ20Aの周辺の温度を的確に検知できるようにする。また、サーミスタ26Bは、例えば、液体レンズ20Bの電極と接続される図示しないフレキシブル基板に実装されることで、液体レンズ20Bの周辺の温度を的確に検知できるようにする。 The lens module 2 includes a thermistor 26A that detects the temperature of the liquid lens 20A and a thermistor 26B that detects the temperature of the liquid lens 20B. The thermistors 26A and 26B are an example of temperature detection means. The thermistor 26A is mounted on a flexible substrate (not shown) connected to the electrode of the liquid lens 20A, for example, so that the temperature around the liquid lens 20A can be accurately detected. Like that. The thermistor 26B is mounted on a flexible substrate (not shown) connected to the electrode of the liquid lens 20B, for example, so that the temperature around the liquid lens 20B can be accurately detected.
 レンズモジュール2は、少なくとも1つの光学レンズ27を備える。光学レンズ27は、例えば凸レンズで構成され、液体レンズ20Bの後段に配置される。液体レンズ20A及び液体レンズ20Bと光学レンズ27は、光軸を合わせて図示しないレンズハウジングに取り付けられる。なお、光学レンズ27は、所定の波長の光を透過するガラス、プラスチック等で構成される単一の光学レンズであっても良いし、複数の光学レンズを組み合わせたものでも良い。 The lens module 2 includes at least one optical lens 27. The optical lens 27 is composed of, for example, a convex lens, and is disposed at the subsequent stage of the liquid lens 20B. The liquid lens 20A, the liquid lens 20B, and the optical lens 27 are attached to a lens housing (not shown) with the optical axes aligned. The optical lens 27 may be a single optical lens made of glass, plastic or the like that transmits light of a predetermined wavelength, or may be a combination of a plurality of optical lenses.
 カメラモジュール3は、上述したレンズモジュール2と、撮像部を構成するイメージセンサ30と、測距部31を備える。イメージセンサ30は固体撮像素子の一例で、入力された光信号を光電変換して、電気信号を出力する。イメージセンサ30としては、例えば、CMOSイメージセンサまたはCCDイメージセンサが用いられる。イメージセンサ30は、レンズモジュール2を透過する光が、液体レンズ20A及び液体レンズ20Bと、光学レンズ27の機能で結像する位置に配置される。 The camera module 3 includes the lens module 2 described above, an image sensor 30 that forms an imaging unit, and a distance measuring unit 31. The image sensor 30 is an example of a solid-state imaging device, and photoelectrically converts an input optical signal and outputs an electrical signal. As the image sensor 30, for example, a CMOS image sensor or a CCD image sensor is used. The image sensor 30 is disposed at a position where the light transmitted through the lens module 2 forms an image by the functions of the liquid lens 20 </ b> A, the liquid lens 20 </ b> B, and the optical lens 27.
 測距部31は距離測定手段の一例で、例えば、レーザ光の受発光部等を備え、読取対象物であるコード記号5との距離を測定する。なお、カメラモジュール3は、読取対象物のコード記号5を示すガイド光を照射する照明用LED32を備えても良い。この照明用LED32は適宜備えるものであり、装置の形状、使用目的によっては搭載しなくても良い。 The distance measuring unit 31 is an example of a distance measuring unit and includes, for example, a laser light receiving and emitting unit and the like, and measures the distance from the code symbol 5 that is a reading object. The camera module 3 may include an illumination LED 32 that emits guide light indicating the code symbol 5 of the reading object. The illumination LED 32 is provided as appropriate, and may not be mounted depending on the shape of the apparatus and the purpose of use.
 デコーダ4は信号処理部の一例で、レンズモジュール2で行われるズーム及びフォーカス調整と、イメージセンサ30で行われる撮像と、イメージセンサ30から出力される信号のデコード及びデータ転送等の制御を行う制御手段としてのASIC (Application Specific Integrated Circuit)40を備える。また、デコーダ4は、ASIC40で実行されるプログラム及び各種テーブル等が格納されるRAM41及びROM42を備える。 The decoder 4 is an example of a signal processing unit, and performs control such as zoom and focus adjustment performed by the lens module 2, imaging performed by the image sensor 30, decoding of a signal output from the image sensor 30, and data transfer. An ASIC (Application Specific Specific Integrated Circuit) 40 is provided as a means. The decoder 4 includes a RAM 41 and a ROM 42 in which programs executed by the ASIC 40 and various tables are stored.
 更に、デコーダ4は、信号の入出力部として、レンズモジュール2及びカメラモジュール3と接続されて信号の授受を行うI/O43と、図示しない外部のホストコンピュータ等の情報処理装置と接続されて信号の授受を行うI/O44を備える。 Further, the decoder 4 is connected to the lens module 2 and the camera module 3 as a signal input / output unit, and is connected to an information processing apparatus such as an external host computer (not shown). I / O 44 is provided.
 光学的情報読取装置1は、撮像対象物であるコード記号5の種類を識別する識別情報を取得するため、設定手段としての操作部45を備えても良い。操作部45は、例えば、図示しないディスプレイとキーボード等により構成され、ディスプレイの表示に従って情報の入力または選択等が行われる。また、操作部45を備えずに、図示しない外部の情報処理装置よりコード記号5の識別情報を取得して、RAM41に格納するようにしても良い。 The optical information reading apparatus 1 may include an operation unit 45 as a setting unit in order to acquire identification information for identifying the type of the code symbol 5 that is an imaging target. The operation unit 45 includes, for example, a display and a keyboard (not shown), and information is input or selected according to the display on the display. Further, without providing the operation unit 45, the identification information of the code symbol 5 may be acquired from an external information processing apparatus (not shown) and stored in the RAM 41.
 光学的情報読取装置1は、例えば図示しない筐体に上述した構成要素が実装され、使用者が手に持って撮像が可能な構成である。なお、光学的情報読取装置1は、バーコード及び2次元コード等のコード記号5を読み取ることができるスキャナであるが、OCRソフトウエアを搭載すれば、文字を読み取ることも可能である。また、ASIC40は、CPUとFPGA(Field Programmable Gate Array)等のLSIとの組み合わせでもかまわない。 The optical information reader 1 has a configuration in which the above-described components are mounted in a housing (not shown), for example, and a user can take an image with the hand. The optical information reader 1 is a scanner that can read a code symbol 5 such as a bar code and a two-dimensional code. However, if the OCR software is installed, the optical information reader 1 can also read characters. The ASIC 40 may be a combination of a CPU and an LSI such as an FPGA (Field Programmable Gate Array).
 次に、光学的情報読取装置1において焦点位置を合わせるフォーカス機能について説明する。光学的情報読取装置1は、任意の距離にあるコード記号5からの反射光がイメージセンサ30に結像したとき、いわゆるフォーカスがあったときに撮像を行う。これは、画像が鮮明に捕捉されなければ、コード記号5の内容をデコードできないためである。 Next, a focus function for adjusting the focal position in the optical information reader 1 will be described. The optical information reading device 1 performs imaging when the reflected light from the code symbol 5 at an arbitrary distance forms an image on the image sensor 30, that is, when there is a so-called focus. This is because the content of the code symbol 5 cannot be decoded unless the image is clearly captured.
 光学的情報読取装置1では、撮像するコード記号5との距離を測定し、測定した距離に焦点位置が合うようにレンズモジュール2の液体レンズ20A,20Bを制御する。このため、カメラモジュール3にレーザを利用した測距部31を備えている。レーザによる測距技術は2つの方法が良く知られている。1つはパルシング技術であり、レーザパルスの始動と反射の戻りとの間の遅れ時間を計測して距離を求める。もう1つはパララックス(視差)技術であり、撮像対象物にスポットを形成するためにビームを照射し、撮像対象物上の検出スポット位置を計測する。撮像対象物の距離は、検出スポット位置から決定される。測距方法は、これらの例に限るものではないが、ASIC40では、例えばこれらの何れかの方法で測距を行うようプログラムされている。 In the optical information reader 1, the distance from the code symbol 5 to be imaged is measured, and the liquid lenses 20A and 20B of the lens module 2 are controlled so that the focal position matches the measured distance. For this reason, the camera module 3 includes a distance measuring unit 31 using a laser. There are two well-known laser distance measurement techniques. One is a pulsing technique, which measures the delay time between the start of the laser pulse and the return of the reflection to determine the distance. The other is a parallax (parallax) technique, in which a beam is irradiated to form a spot on the imaging object, and the detection spot position on the imaging object is measured. The distance of the imaging object is determined from the detected spot position. The distance measurement method is not limited to these examples, but the ASIC 40 is programmed to perform distance measurement by any one of these methods, for example.
 液体レンズ20A及び液体レンズ20Bにおいて、水溶液22と油23の境界面24の曲率R1,R2は、印加電圧に応じて変化する。液体レンズ20A,20Bの曲率R1,R2が変化すると、液体レンズ20A,20Bが持つ屈折力が変化することから、任意の距離にある読取対象物にフォーカスするために必要な印加電圧が一意に決められる。 In the liquid lens 20A and the liquid lens 20B, the curvatures R1 and R2 of the boundary surface 24 between the aqueous solution 22 and the oil 23 change according to the applied voltage. When the curvatures R1 and R2 of the liquid lenses 20A and 20B change, the refractive power of the liquid lenses 20A and 20B changes. Therefore, an applied voltage necessary for focusing on a reading object at an arbitrary distance is uniquely determined. It is done.
 そこで、光学的情報読取装置1から読取対象物であるコード記号5までの距離情報Ldと、距離情報Ldで特定される位置にあるコード記号5にフォーカスするために、各液体レンズ20A,20Bに印加すべき電圧情報V1の関係を計測して距離-電圧テーブルTB1を作成し、ASIC40に格納しておく。これにより、測距部31で測定したコード記号5までの距離に応じた電圧情報V1を取得することが可能となる。 Therefore, in order to focus on the distance information Ld from the optical information reader 1 to the code symbol 5 that is the object to be read and the code symbol 5 at the position specified by the distance information Ld, the liquid lenses 20A and 20B are focused on. The relationship between the voltage information V1 to be applied is measured to create a distance-voltage table TB1 and stored in the ASIC 40. Thereby, it is possible to acquire voltage information V1 corresponding to the distance to the code symbol 5 measured by the distance measuring unit 31.
 一方、液体レンズ20A,20Bは、電圧が印加された後に、印加電圧に応じた曲率R1,R2となって撮像可能となるまでの待機時間が必要である。この撮像待機時間は、液体レンズ20A,20Bの周辺温度によって変動する。 On the other hand, the liquid lenses 20A and 20B need a standby time after the voltage is applied until the curvatures R1 and R2 according to the applied voltage become possible and imaging becomes possible. This imaging standby time varies depending on the ambient temperature of the liquid lenses 20A and 20B.
 図3は、温度と液体レンズの応答時間の関係を示すグラフである。図3では、撮像対象物にフォーカスし得る所定の電圧を液体レンズに印加したときに、液体レンズを透過して得られる画像の鮮明度の変化を、所定の温度毎にグラフ301~303で示す。例えば、ASIC40でデコードが可能となる画像の鮮明度を閾値Thとしたときに、閾値Thに達するまでの時間を撮像待機時間とすると、一般的に高温である方が撮像待機時間は少なく、グラフ301とグラフ302に示すように、60℃における撮像待機時間は、25℃の撮像待機時間より遥かに短い。 FIG. 3 is a graph showing the relationship between the temperature and the response time of the liquid lens. In FIG. 3, when a predetermined voltage capable of focusing on the imaging target is applied to the liquid lens, changes in the sharpness of the image obtained through the liquid lens are shown by graphs 301 to 303 for each predetermined temperature. . For example, when the sharpness of an image that can be decoded by the ASIC 40 is defined as a threshold Th, and the time until reaching the threshold Th is defined as an imaging standby time, the imaging standby time is generally smaller when the temperature is high, and the graph As shown in 301 and graph 302, the imaging standby time at 60 ° C. is much shorter than the imaging standby time at 25 ° C.
 そこで、液体レンズ20A,20Bの温度情報Tpと、撮像待機時間情報Tmの関係を測定して温度-待機時間テーブルTB2を作成し、ASIC40に格納しておく。液体レンズ20A,20Bには、それぞれサーミスタ26A,26Bが備えられているので、それぞれの液体レンズ20A,20Bの周辺温度と撮像待機時間を計測しておく。 Therefore, the relationship between the temperature information Tp of the liquid lenses 20A and 20B and the imaging standby time information Tm is measured, and a temperature-standby time table TB2 is created and stored in the ASIC 40. Since the thermistors 26A and 26B are respectively provided in the liquid lenses 20A and 20B, the ambient temperature and the imaging standby time of the respective liquid lenses 20A and 20B are measured in advance.
 図4は、サーミスタで測定された温度と待機時間の関係を示すグラフである。図4では、サーミスタ26A,26Bで測定された温度に対して、ASIC40でデコードが可能な鮮明度の画像を取り込めるような最小の撮像待機時間を示す。これにより、サーミスタ26Aで測定した液体レンズ20Aの温度と、サーミスタ26Bで測定した液体レンズ20Bの温度に応じた撮像待機時間情報Tmを取得することが可能となる。 FIG. 4 is a graph showing the relationship between the temperature measured by the thermistor and the standby time. FIG. 4 shows the minimum imaging standby time at which a sharpness image that can be decoded by the ASIC 40 can be captured with respect to the temperature measured by the thermistors 26A and 26B. Thereby, it is possible to acquire imaging standby time information Tm according to the temperature of the liquid lens 20A measured by the thermistor 26A and the temperature of the liquid lens 20B measured by the thermistor 26B.
 このように、コード記号5までの距離情報Ldと各液体レンズ20A,20Bに印加すべき電圧情報V1との関係を示す距離-電圧テーブルTB1と、各液体レンズ20A,20Bの温度情報Tpと撮像待機時間情報Tmとの関係を示す温度-待機時間テーブルTB2によって、最適なフォーカス調整がされ、コード記号5の鮮明な画像を取り込むことができる。 As described above, the distance-voltage table TB1 indicating the relationship between the distance information Ld up to the code symbol 5 and the voltage information V1 to be applied to the liquid lenses 20A and 20B, the temperature information Tp of the liquid lenses 20A and 20B, and the imaging. Optimal focus adjustment is made by the temperature-standby time table TB2 showing the relationship with the wait time information Tm, and a clear image of the code symbol 5 can be captured.
 次に、光学的情報読取装置1において、焦点距離を連続的に変化させるズーム機能について説明する。光学的情報読取装置1では、イメージセンサ30に結像したコード記号5の画像をASIC40でデコードするために、イメージセンサ30の分解能等に応じて所定の大きさの画像が必要である。 Next, the zoom function for continuously changing the focal length in the optical information reader 1 will be described. In the optical information reader 1, in order to decode the image of the code symbol 5 formed on the image sensor 30 by the ASIC 40, an image having a predetermined size is required according to the resolution of the image sensor 30.
 イメージセンサ30に結像する画像の大きさは、光学的情報読取装置1から読取対象物であるコード記号5までの距離と、コード記号5の大きさで決まる。そこで、コード記号5までの距離情報Ldと、撮像するコード記号5の大きさ情報Wとから推測される画角ωの関係を計測して距離-画角テーブルTB3を作成し、ASIC40に格納しておく。 The size of the image formed on the image sensor 30 is determined by the distance from the optical information reader 1 to the code symbol 5 that is the object to be read and the size of the code symbol 5. Therefore, the relationship between the angle of view ω estimated from the distance information Ld to the code symbol 5 and the size information W of the code symbol 5 to be imaged is measured to create the distance-view angle table TB3 and store it in the ASIC 40. Keep it.
 図5は、コード記号までの距離と画角の関係を示すグラフである。図5では、一般的な1次元コードであるCode39(ピッチ0.254、幅70mm)における距離に対する画角を示す。コード記号5の大きさとコード記号5までの距離が判れば、所望の大きさの画像を取得するために必要な画角を予測することができる。これにより、読取対象物として頻繁に使用されるPDF417コードや2次元コード等の距離-画角テーブルTB3を作っておけば、距離情報から画角を取得することができる。 FIG. 5 is a graph showing the relationship between the distance to the code symbol and the angle of view. FIG. 5 shows the angle of view with respect to the distance in Code 39 (pitch 0.254, width 70 mm), which is a general one-dimensional code. If the size of the code symbol 5 and the distance to the code symbol 5 are known, it is possible to predict the angle of view necessary for obtaining an image of a desired size. Thus, if a distance-view angle table TB3 such as a PDF417 code or a two-dimensional code that is frequently used as a reading object is created, the view angle can be acquired from the distance information.
 イメージセンサ30に結像される画像を所定の大きさとする画角は、レンズモジュール2の焦点距離で決まり、レンズモジュール2の焦点距離は、液体レンズ20A,20Bの曲率R1,R2の組み合わせにより決まるので、レンズモジュール2の焦点距離と印加電圧の関係が一意に決められる。 The angle of view at which the image formed on the image sensor 30 has a predetermined size is determined by the focal length of the lens module 2, and the focal length of the lens module 2 is determined by the combination of the curvatures R1 and R2 of the liquid lenses 20A and 20B. Therefore, the relationship between the focal length of the lens module 2 and the applied voltage is uniquely determined.
 そこで、レンズモジュール2の画角ωを決める焦点距離情報fdと、各液体レンズ20A,20Bに印加すべき電圧情報V2の関係を計測して焦点距離-電圧テーブルTB4を作成し、ASIC40に格納しておく。なお、ズームを行う場合も、上述した温度-待機時間テーブルTB2が必要である。これにより、距離-画角テーブルTB3と焦点距離-電圧テーブルTB4によって、測距部31で測定したコード記号5までの距離とコード記号の大きさに応じた電圧情報V2を取得することが可能となる。 Therefore, the relationship between the focal length information fd for determining the angle of view ω of the lens module 2 and the voltage information V2 to be applied to the liquid lenses 20A and 20B is measured, and the focal length-voltage table TB4 is created and stored in the ASIC 40. Keep it. Note that the temperature-standby time table TB2 described above is also necessary when performing zooming. As a result, it is possible to acquire voltage information V2 corresponding to the distance to the code symbol 5 measured by the distance measuring unit 31 and the size of the code symbol by using the distance-view angle table TB3 and the focal length-voltage table TB4. Become.
 <本実施の形態のレンズモジュールの構成例>
 図6は、本実施の形態のレンズモジュールにおいて各レンズの配置を示す構成図である。液体レンズを利用してズーム機能を実現するためには、レンズモジュール2は、上述したように、少なくとも2枚の液体レンズ20A,20Bと、1枚の光学レンズ27を備える。
<Configuration Example of Lens Module of the Present Embodiment>
FIG. 6 is a configuration diagram showing the arrangement of each lens in the lens module of the present embodiment. In order to realize a zoom function using a liquid lens, the lens module 2 includes at least two liquid lenses 20A and 20B and one optical lens 27 as described above.
 液体レンズ20A及び液体レンズ20Bにおいて、水溶液22と油23の境界面24の曲率R1,R2を変化させると、各レンズの曲率及び配置で決まる主点からの焦点距離fが変化する。なお、図6では、便宜的に光学レンズ27に主点があるものとして図示している。また、液体レンズ20Aと液体レンズ20Bとの間の距離Leを変えることでも、焦点距離fが変化する。 In the liquid lens 20A and the liquid lens 20B, when the curvatures R1 and R2 of the boundary surface 24 between the aqueous solution 22 and the oil 23 are changed, the focal length f from the principal point determined by the curvature and arrangement of each lens changes. In FIG. 6, for convenience, the optical lens 27 is illustrated as having a main point. Further, the focal length f is also changed by changing the distance Le between the liquid lens 20A and the liquid lens 20B.
 図6に示す構成では、像側の液体レンズ20Aと読取対象である像FCまでの距離Lを100mmとし、イメージセンサ30側の液体レンズ20Bと光学レンズ27までの距離Lgを3mmとする。このような条件で、液体レンズ20Aの曲率R1と、液体レンズ20Bの曲率R2と、液体レンズ20Aと液体レンズ20Bとの間の距離Leを変えたときの画角の変化を測定する。なお、光学レンズ27のみの画角(半値)を16°としている。 In the configuration shown in FIG. 6, the distance L between the image-side liquid lens 20A and the image FC to be read is 100 mm, and the distance Lg between the image lens 30-side liquid lens 20B and the optical lens 27 is 3 mm. Under such conditions, changes in the angle of view when the curvature R1 of the liquid lens 20A, the curvature R2 of the liquid lens 20B, and the distance Le between the liquid lens 20A and the liquid lens 20B are changed are measured. The angle of view (half value) of only the optical lens 27 is 16 °.
 図7は、ズーム時の液体レンズの曲率の変化を示すグラフ、図8は、液体レンズの間隔と画角の関係を示すグラフである。図8の結果から、液体レンズ20Aと液体レンズ20Bとの間の距離を離すほど、レンズモジュール2のズーム倍率を上げることができることが判る。 FIG. 7 is a graph showing the change in the curvature of the liquid lens during zooming, and FIG. 8 is a graph showing the relationship between the distance between the liquid lenses and the angle of view. From the result of FIG. 8, it can be seen that the zoom magnification of the lens module 2 can be increased as the distance between the liquid lens 20A and the liquid lens 20B is increased.
 図9~図11は、レンズモジュールの具体例を示す構成図である。図9に示す2枚の液体レンズ20A,20Bと1枚の光学レンズ27を備えた構成では、液体レンズ20Aと液体レンズ20Bとの間の距離Leを離すほど、ズーム倍率が高くなる。一方、液体レンズ20Aと液体レンズ20Bとの間の距離Leを離して行くと、周辺光が液体レンズ間で鏡筒にぶつかってイメージセンサ30に届かなくなり、光量不足やいわゆるケラレが生じる。 9 to 11 are configuration diagrams showing specific examples of lens modules. In the configuration including two liquid lenses 20A and 20B and one optical lens 27 shown in FIG. 9, the zoom magnification increases as the distance Le between the liquid lens 20A and the liquid lens 20B increases. On the other hand, when the distance Le between the liquid lens 20 </ b> A and the liquid lens 20 </ b> B is increased, the ambient light does not reach the image sensor 30 by hitting the lens barrel between the liquid lenses, resulting in insufficient light quantity or so-called vignetting.
 このため、図9に示す構成では、液体レンズ20A,20Bの中心にアパーチャーを設定すると、液体レンズ20Aと液体レンズ20Bとの間の距離Leは、最大で約9.6mmであった。このとき、画角ωは14.329°~17.843°まで変化させることが可能で、ズーム倍率は1.26倍となった。 Therefore, in the configuration shown in FIG. 9, when the aperture is set at the center of the liquid lenses 20A and 20B, the distance Le between the liquid lens 20A and the liquid lens 20B is about 9.6 mm at the maximum. At this time, the angle of view ω can be changed from 14.329 ° to 17.8443 °, and the zoom magnification is 1.26 times.
 液体レンズ20Aと液体レンズ20Bとの間の距離Leを10mm以上に離しても、周辺光量が低下しない構成としては、例えば、図10に示すような構成が考えられる。図10では、2枚の液体レンズ20A,20Bと1枚の光学レンズ27を備えた構成で、レンズ群の一番先頭に凹メニスカスレンズ28を追加して光を絞る。 As a configuration in which the peripheral light amount does not decrease even if the distance Le between the liquid lens 20A and the liquid lens 20B is increased to 10 mm or more, for example, a configuration as shown in FIG. 10 is conceivable. In FIG. 10, the configuration includes two liquid lenses 20 </ b> A and 20 </ b> B and one optical lens 27, and a concave meniscus lens 28 is added to the top of the lens group to narrow the light.
 これにより、凹メニスカスレンズを備えていない図9の構成と比較して、周辺光量を低下させること無く、液体レンズ20Aと液体レンズ20Bとの間の距離Leを離して、ズーム倍率を上げることができる。図10に示す構成では、液体レンズ20Aと液体レンズ20Bとの間の距離Leは、最大で約17mmであった。このとき、画角ωは13.003°~17.924°まで変化させることが可能で、ズーム倍率は1.4倍となった。 Accordingly, the zoom magnification can be increased by separating the distance Le between the liquid lens 20A and the liquid lens 20B without reducing the peripheral light amount as compared with the configuration of FIG. 9 that does not include the concave meniscus lens. it can. In the configuration shown in FIG. 10, the distance Le between the liquid lens 20A and the liquid lens 20B is about 17 mm at the maximum. At this time, the angle of view ω can be changed from 13.003 ° to 17.924 °, and the zoom magnification is 1.4 times.
 図9及び図10では、2枚の液体レンズ20A,20Bを備える構成としたが、シミュレーションの結果、液体レンズの枚数を2枚以上にすると、ズーム倍率を更に上げられることが判った。そこで、図11では、4枚の液体レンズ20A,20B,20C,20Dを備えると共に、液体レンズ群の前段に凹メニスカスレンズ28を備え、後段に光学レンズ27を備える構成としたものである。図11の構成では、両端の液体レンズ20Aと液体レンズ20Dとの間の距離Leは、最大で約30mmであった。このとき、画角ωは9.8°~21.95°まで変化させることが可能で、ズーム倍率は2.3倍となった。 9 and 10, the configuration includes two liquid lenses 20A and 20B. However, as a result of simulation, it has been found that the zoom magnification can be further increased by increasing the number of liquid lenses to two or more. Therefore, in FIG. 11, four liquid lenses 20A, 20B, 20C, and 20D are provided, a concave meniscus lens 28 is provided in the front stage of the liquid lens group, and an optical lens 27 is provided in the rear stage. In the configuration of FIG. 11, the distance Le between the liquid lens 20A and the liquid lens 20D at both ends is about 30 mm at the maximum. At this time, the angle of view ω can be changed from 9.8 ° to 21.95 °, and the zoom magnification is 2.3 times.
 <本実施の形態の光学的情報読取装置の動作例>
 図12は、本実施の形態の光学的情報読取装置の処理の一例を示すフローチャート、図13~図15は、液体レンズの動作説明図であり、次に、本実施の形態の光学的情報読取装置1で、コード記号5を読み取る動作について説明する。
<Example of Operation of Optical Information Reading Device of Present Embodiment>
FIG. 12 is a flowchart showing an example of processing of the optical information reading apparatus according to the present embodiment, and FIGS. 13 to 15 are explanatory diagrams of the operation of the liquid lens. Next, the optical information reading according to the present embodiment An operation of reading the code symbol 5 by the apparatus 1 will be described.
 光学的情報読取装置1では、まず、図12のステップS1で、操作部45を操作して、読取対象となるコード記号5の種別を設定する。例えば、ROM42には、予めコード記号5の種別等を特定する識別情報が格納されており、操作部45での操作で読取対象となるコード記号5の識別情報が選択される。 In the optical information reader 1, first, in step S1 of FIG. 12, the operation unit 45 is operated to set the type of the code symbol 5 to be read. For example, the ROM 42 stores in advance identification information for specifying the type of the code symbol 5 and the like, and the identification information of the code symbol 5 to be read is selected by the operation on the operation unit 45.
 光学的情報読取装置1では、ASIC40は、ステップS2で、測距部31の出力からコード記号5までの距離を測定して距離情報Ldを取得すると共に、サーミスタ26A,26Bの出力から液体レンズ20A,20Bの温度情報Tpを取得する。 In the optical information reading device 1, the ASIC 40 measures the distance from the output of the distance measuring unit 31 to the code symbol 5 in step S2 to acquire the distance information Ld, and from the outputs of the thermistors 26A and 26B, the liquid lens 20A. , 20B temperature information Tp is acquired.
 ASIC40は、ステップS3で、操作部45で設定されたコード記号5の識別情報と、測距部31で検出したコード記号5までの距離情報Ldから、コード記号5までの距離が、ズームが必要な一定値以上であるか否かを判断する。 In step S3, the ASIC 40 needs to zoom the distance to the code symbol 5 from the identification information of the code symbol 5 set by the operation unit 45 and the distance information Ld to the code symbol 5 detected by the distance measuring unit 31. It is determined whether or not the value is greater than a certain value.
 ASIC40は、ステップS3でコード記号5までの距離が一体値以上であると判断すると、ステップS4で、操作部45で設定されたコード記号5の識別情報に応じた距離-画角テーブルTB3を選択する。そして、距離-画角テーブルTB3及び焦点距離-電圧テーブルTB4と、温度-待機時間テーブルTB2を参照して、測距部31で検出したコード記号5までの距離情報Ldと、サーミスタ26A,26Bで検出した液体レンズ20A,20Bの温度情報Tpに応じた電圧情報V2及び撮像待機時間情報Tmを取得する。 When the ASIC 40 determines in step S3 that the distance to the code symbol 5 is equal to or greater than the integral value, the distance-view angle table TB3 corresponding to the identification information of the code symbol 5 set in the operation unit 45 is selected in step S4. To do. Then, referring to the distance-view angle table TB3, the focal length-voltage table TB4, and the temperature-standby time table TB2, the distance information Ld up to the code symbol 5 detected by the distance measuring unit 31 and the thermistors 26A, 26B Voltage information V2 and imaging standby time information Tm corresponding to the detected temperature information Tp of the liquid lenses 20A and 20B are acquired.
 ここで、電圧情報V2は、液体レンズ20A,20B毎に設定されており、コード記号5までの距離が遠い場合は、イメージセンサ30に結像する画像の大きさが大きくなるような電圧が印加される。例えば、図13に示すように、液体レンズ20Aと液体レンズ20Bの曲率R1,R2、すなわち、液体レンズ20Aと液体レンズ20Bにおける水溶液22と油23の境界面24の曲率R1,R2が、互いに凹となるような電圧が印加される。 Here, the voltage information V2 is set for each of the liquid lenses 20A and 20B, and when the distance to the code symbol 5 is far, a voltage that increases the size of the image formed on the image sensor 30 is applied. Is done. For example, as shown in FIG. 13, the curvatures R1 and R2 of the liquid lens 20A and the liquid lens 20B, that is, the curvatures R1 and R2 of the boundary surface 24 between the aqueous solution 22 and the oil 23 in the liquid lens 20A and the liquid lens 20B are concave. Such a voltage is applied.
 なお、以上の例では、コード記号5までの距離が一定値以上である場合に、イメージセンサ30に結像する画像の大きさが大きくなるようなズームを行うこととしたが、コード記号5までの距離が別の一定値以下である場合には、イメージセンサ30に結像する画像の大きさが小さくなるようなズームを行うこととしても良い。コード記号5までの距離が近い場合は、例えば、図14に示すように、液体レンズ20Aと液体レンズ20Bの曲率R1,R2が、互いに凸となるような電圧が印加される。 In the above example, when the distance to the code symbol 5 is a certain value or more, the zoom is performed so that the size of the image formed on the image sensor 30 is increased. If the distance is equal to or smaller than another fixed value, zooming may be performed so that the size of the image formed on the image sensor 30 is reduced. When the distance to the code symbol 5 is short, for example, as shown in FIG. 14, a voltage is applied so that the curvatures R1 and R2 of the liquid lens 20A and the liquid lens 20B are convex.
 ASIC40は、上述したステップS3でコード記号5までの距離が一体値より小さいと判断すると、ステップS5で、距離-電圧テーブルTB1と、温度-待機時間テーブルTB2を参照して、測距部31で検出したコード記号5までの距離情報Ldと、サーミスタ26A,26Bで検出した液体レンズ20A,20Bの温度情報Tpに応じた電圧情報V1及び撮像待機時間情報Tmを取得する。 When the ASIC 40 determines that the distance to the code symbol 5 is smaller than the integrated value in step S3 described above, the distance measuring unit 31 refers to the distance-voltage table TB1 and the temperature-standby time table TB2 in step S5. The voltage information V1 and the imaging standby time information Tm corresponding to the detected distance information Ld to the code symbol 5 and the temperature information Tp of the liquid lenses 20A and 20B detected by the thermistors 26A and 26B are acquired.
 ここで、電圧情報V1は、液体レンズ20A,20B毎に設定されており、距離情報Ldで特定される位置にあるコード記号5の像がイメージセンサ30に結像するような電圧が印加される。例えば、図14に示すように、液体レンズ20Aと液体レンズ20Bの曲率R1,R2が平面となる状態から、距離情報Ldに応じた電圧が印加される。 Here, the voltage information V1 is set for each of the liquid lenses 20A and 20B, and a voltage is applied so that the image of the code symbol 5 at the position specified by the distance information Ld is formed on the image sensor 30. . For example, as shown in FIG. 14, a voltage corresponding to the distance information Ld is applied from a state in which the curvatures R1, R2 of the liquid lens 20A and the liquid lens 20B are flat.
 ASIC40は、ステップS6で、コード記号5の識別情報及びコード記号5までの距離情報Ldに応じたズーム制御と、コード記号5までの距離情報Ldに応じたフォーカス制御を行い、かつ、サーミスタ26A,26Bで検出した液体レンズ20A,20Bの温度情報Tpに応じた撮像待機時間が経過した後、イメージセンサ30でコード記号5を撮像する。 In step S6, the ASIC 40 performs zoom control according to the identification information of the code symbol 5 and the distance information Ld to the code symbol 5, and focus control according to the distance information Ld to the code symbol 5, and the thermistors 26A, After the imaging standby time corresponding to the temperature information Tp of the liquid lenses 20A and 20B detected at 26B has elapsed, the code symbol 5 is imaged by the image sensor 30.
 ASIC40は、ステップS7で、撮像したコード記号5の大きさが、デコードに適切な大きさであるか否か判断する。上述したステップS3,S4の処理で、コード記号5の識別情報及びコード記号5までの距離情報Ldに基づき、距離-画角テーブルTB3及び焦点距離-電圧テーブルTB4を参照してズーム制御を行っている。光学的情報読取装置1では、予め読取対象のコード記号5の識別情報が設定されることで、読取対象のコード記号5の想定される大きさは認識できる。このため、通常は、距離-画角テーブルTB3及び焦点距離-電圧テーブルTB4を参照してズーム制御を行うことで、所望の大きさの画像を取得できる。 In step S7, the ASIC 40 determines whether the size of the captured code symbol 5 is appropriate for decoding. In the processing of steps S3 and S4 described above, zoom control is performed with reference to the distance-view angle table TB3 and the focal length-voltage table TB4 based on the identification information of the code symbol 5 and the distance information Ld to the code symbol 5. Yes. The optical information reader 1 can recognize the assumed size of the code symbol 5 to be read by setting the identification information of the code symbol 5 to be read in advance. Therefore, normally, an image of a desired size can be acquired by performing zoom control with reference to the distance-view angle table TB3 and the focal length-voltage table TB4.
 但し、種別が同じコード記号5であっても、大きさが複数種類ある場合があり、距離-画角テーブルTB3及び焦点距離-電圧テーブルTB4では適切な大きさの画像を取得できない場合が考えられる。そこで、ステップS7で、撮像したコード記号5の大きさが、デコードに適切な大きさであるか否か判断する。 However, even if the type of code symbol 5 is the same, there may be a plurality of types, and there may be a case where an image of an appropriate size cannot be acquired with the distance-view angle table TB3 and the focal length-voltage table TB4. . Therefore, in step S7, it is determined whether or not the size of the captured code symbol 5 is appropriate for decoding.
 ステップS7で、撮像したコード記号5の大きさが、デコードに適切な大きさであると判断すると、ステップS8で、撮像した画像データをデコードして、コード記号5の内容を示すデータを出力する。これに対し、ステップS7で、撮像したコード記号5の大きさが、デコードに適切な大きさではないと判断すると、ステップS4に戻り、コード記号5の大きさ情報Wに応じたズーム制御を行い、再度コード記号5の撮像及びデコードを行う。 If it is determined in step S7 that the size of the captured code symbol 5 is appropriate for decoding, in step S8, the captured image data is decoded and data indicating the content of the code symbol 5 is output. . On the other hand, if it is determined in step S7 that the size of the captured code symbol 5 is not an appropriate size for decoding, the process returns to step S4 to perform zoom control according to the size information W of the code symbol 5. The code symbol 5 is imaged and decoded again.
 なお、以上の動作例では、予めコード記号5の識別情報を取得することとしたが、コード記号5をイメージセンサ30で撮像し、特徴点を検出してコード記号を識別しても良い。また、コード記号の大きさから識別しても良い。 In the above operation example, the identification information of the code symbol 5 is acquired in advance. However, the code symbol 5 may be imaged by the image sensor 30 and the feature point is detected to identify the code symbol. Moreover, you may identify from the magnitude | size of a code symbol.
 本発明は、バーコードリーダや2次元コードリーダ等に利用することができ、小型の装置でオートフォーカス及びズームを実現できる。 The present invention can be used for a barcode reader, a two-dimensional code reader, and the like, and can realize autofocus and zoom with a small device.
 1・・・光学的情報読取装置、2・・・レンズモジュール、3・・・カメラモジュール、4・・・デコーダ、20A,20B・・・液体レンズ、26A,26B・・・サーミスタ、27・・・光学レンズ、30・・・イメージセンサ、31・・・測距部、40・・・ASIC DESCRIPTION OF SYMBOLS 1 ... Optical information reader, 2 ... Lens module, 3 ... Camera module, 4 ... Decoder, 20A, 20B ... Liquid lens, 26A, 26B ... Thermistor, 27 ...・ Optical lens, 30 ... Image sensor, 31 ... Ranging unit, 40 ... ASIC

Claims (5)

  1.  異なる光屈折率を有し、互いに混和すること無く境界面が形成される第1の液体と第2の液体が容器に封止され、前記第1の液体と前記第2の液体の境界面の形状を制御する電圧が印加される液体レンズが、前記境界面の形状を変化させることで焦点距離が変化し得る所定の間隔を開けて2個以上配置されると共に、少なくとも1個の光学レンズが配置されたレンズモジュールと、
     前記レンズモジュールを透過した光信号を光電変換する固体撮像素子を有した撮像部と、
     前記各液体レンズの温度を検知する温度検知手段と、
     読取対象物までの距離を測定する距離測定手段と、
     前記距離測定手段で測定された読取対象物までの距離情報と、前記温度検知手段で検知された温度情報に基づき、フォーカス制御及びズーム制御を行う制御手段と
     を備えたことを特徴とする光学的情報読取装置。
    A first liquid and a second liquid having different optical refractive indexes and forming a boundary surface without being mixed with each other are sealed in a container, and the boundary surface between the first liquid and the second liquid is sealed. Two or more liquid lenses to which a voltage for controlling the shape is applied are arranged at a predetermined interval at which the focal length can be changed by changing the shape of the boundary surface, and at least one optical lens is provided. An arranged lens module;
    An imaging unit having a solid-state imaging device that photoelectrically converts an optical signal transmitted through the lens module;
    Temperature detecting means for detecting the temperature of each liquid lens;
    Distance measuring means for measuring the distance to the reading object;
    An optical device comprising: distance information to the reading object measured by the distance measuring means; and control means for performing focus control and zoom control based on the temperature information detected by the temperature detecting means. Information reader.
  2.  前記制御手段は、前記距離測定手段で測定された読取対象物までの距離情報に基づいて、読取対象物までの距離が、ズームが必要な距離であるか否かを判断し、ズームが必要な距離であると判断すると、前記距離測定手段で測定された読取対象物までの距離情報と、前記温度検知手段で検知された温度情報に基づき、フォーカス制御及びズーム制御を行い、ズームが不必要な距離であると判断すると、前記距離測定手段で測定された読取対象物までの距離情報と、前記温度検知手段で検知された温度情報に基づき、フォーカス制御を行う
     ことを特徴とする請求項1記載の光学的情報読取装置。
    The control means determines whether the distance to the reading object is a distance that needs to be zoomed based on the distance information to the reading object measured by the distance measuring means, and the zoom is necessary. If the distance is determined to be a distance, focus control and zoom control are performed based on the distance information to the reading object measured by the distance measurement unit and the temperature information detected by the temperature detection unit, and zooming is unnecessary. The focus control is performed based on the distance information to the reading object measured by the distance measuring unit and the temperature information detected by the temperature detecting unit when it is determined that the distance is detected. Optical information reader.
  3.  読取対象物を識別する識別情報が設定される設定手段を備え、
     前記制御手段は、前記設定手段で設定される識別情報に基づいて特定される読取対象物の想定される大きさと、前記距離測定手段で測定された読取対象物までの距離情報に基づきズーム制御を行う
     ことを特徴とする請求項1または2記載の光学的情報読取装置。
    Comprising setting means for setting identification information for identifying a reading object;
    The control means performs zoom control based on an assumed size of the reading target specified based on the identification information set by the setting means and distance information to the reading target measured by the distance measuring means. The optical information reader according to claim 1, wherein the optical information reader is performed.
  4.  前記制御手段は、前記撮像部で撮像した読取対象物の大きさ情報から、ズームが必要な大きさであるか否かを判断し、ズームが必要な大きさであると判断すると、大きさ情報に基づきズーム制御を行う
     ことを特徴とする請求項1、2または3記載の光学的情報読取装置。
    The control means determines whether or not the zoom is necessary based on the size information of the reading object imaged by the imaging unit, and determines that the zoom is necessary. The optical information reader according to claim 1, wherein zoom control is performed based on
  5.  前記レンズモジュールは、前記光学レンズとして、前記各液体レンズの前段に凹メニスカスレンズが配置されると共に、後段に凸レンズが配置される
     ことを特徴とする請求項1、2、3または4記載の光学的情報読取装置。
    5. The optical device according to claim 1, wherein the lens module includes a concave meniscus lens disposed in the front stage of each liquid lens and a convex lens disposed in the rear stage as the optical lens. Information reader.
PCT/JP2010/059772 2009-06-12 2010-06-09 Optical information reading device WO2010143662A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-141659 2009-06-12
JP2009141659A JP2010286740A (en) 2009-06-12 2009-06-12 Optical information reading apparatus

Publications (1)

Publication Number Publication Date
WO2010143662A1 true WO2010143662A1 (en) 2010-12-16

Family

ID=43308917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059772 WO2010143662A1 (en) 2009-06-12 2010-06-09 Optical information reading device

Country Status (2)

Country Link
JP (1) JP2010286740A (en)
WO (1) WO2010143662A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130329123A1 (en) * 2010-12-28 2013-12-12 Optoelectronics Co., Ltd. Information display device and display driving method
CN105069394A (en) * 2015-07-23 2015-11-18 福建联迪商用设备有限公司 Two-dimension code weighted average gray level method decoding method and system
US20190094424A1 (en) * 2017-09-27 2019-03-28 Cognex Corporation Optical systems having adaptable viewing angle and working distance, and methods of making and using the same
WO2020153789A1 (en) * 2019-01-25 2020-07-30 엘지이노텍(주) Liquid lens module and optical device including same
CN112398533A (en) * 2020-11-04 2021-02-23 中国科学院半导体研究所 Rapid focusing transmitting-receiving integrated antenna and rapid focusing method
CN113454976A (en) * 2018-12-18 2021-09-28 Lg伊诺特有限公司 Camera module including liquid lens
CN113748669A (en) * 2019-04-26 2021-12-03 欧姆龙株式会社 Image sensor with a plurality of pixels
CN113960704A (en) * 2021-11-02 2022-01-21 深圳技术大学 Automatic focusing method, system and device of liquid lens and storage medium
CN114097214A (en) * 2019-04-26 2022-02-25 欧姆龙株式会社 Image sensor with a plurality of pixels

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359926B1 (en) * 2012-01-26 2014-02-25 주식회사 힘스인터내셔널 Portable Magnifying Apparatus which have Auto Focusing
CN103745186B (en) * 2013-12-30 2017-11-17 宇龙计算机通信科技(深圳)有限公司 The processing method and communication terminal of 2 D code information
JP6223952B2 (en) * 2014-11-13 2017-11-01 株式会社モリテックス Telecentric lens and imaging apparatus using the same
JP2019159272A (en) * 2018-03-16 2019-09-19 学校法人自治医科大学 Optical device
KR102614746B1 (en) * 2018-05-23 2023-12-15 엘지이노텍 주식회사 Liquid lens, camera module including the lens, and method for controlling the liquid lens
JP6996526B2 (en) * 2019-03-15 2022-02-04 オムロン株式会社 Image sensor
JP7052765B2 (en) * 2019-03-20 2022-04-12 オムロン株式会社 Image sensor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238312A (en) * 1991-01-22 1992-08-26 Copal Co Ltd Subminiature extremely wide-angle lens
JPH05114038A (en) * 1991-10-24 1993-05-07 Taiyo Eretsukusu Kk Code reader
JPH10134133A (en) * 1996-11-05 1998-05-22 Olympus Optical Co Ltd Bar code reader
JP2001249203A (en) * 2000-03-03 2001-09-14 Canon Inc Optical device
WO2004038480A1 (en) * 2002-10-25 2004-05-06 Koninklijke Philips Electronics N.V. Zoom lens
JP2004240398A (en) * 2003-01-17 2004-08-26 Sony Corp Zoom lens and imaging apparatus
JP2005266223A (en) * 2004-03-18 2005-09-29 Casio Comput Co Ltd Camera system and program
JP2006094082A (en) * 2004-09-24 2006-04-06 Casio Comput Co Ltd Image photographing device, and program
JP2007140804A (en) * 2005-11-17 2007-06-07 Dainippon Printing Co Ltd Data input system to electronic form
WO2008010124A1 (en) * 2006-07-13 2008-01-24 Koninklijke Philips Electronics N. V. Zoom optical system, and camera and device therewith
WO2008078539A1 (en) * 2006-12-22 2008-07-03 Nikon Corporation Camera and optical device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238312A (en) * 1991-01-22 1992-08-26 Copal Co Ltd Subminiature extremely wide-angle lens
JPH05114038A (en) * 1991-10-24 1993-05-07 Taiyo Eretsukusu Kk Code reader
JPH10134133A (en) * 1996-11-05 1998-05-22 Olympus Optical Co Ltd Bar code reader
JP2001249203A (en) * 2000-03-03 2001-09-14 Canon Inc Optical device
WO2004038480A1 (en) * 2002-10-25 2004-05-06 Koninklijke Philips Electronics N.V. Zoom lens
JP2004240398A (en) * 2003-01-17 2004-08-26 Sony Corp Zoom lens and imaging apparatus
JP2005266223A (en) * 2004-03-18 2005-09-29 Casio Comput Co Ltd Camera system and program
JP2006094082A (en) * 2004-09-24 2006-04-06 Casio Comput Co Ltd Image photographing device, and program
JP2007140804A (en) * 2005-11-17 2007-06-07 Dainippon Printing Co Ltd Data input system to electronic form
WO2008010124A1 (en) * 2006-07-13 2008-01-24 Koninklijke Philips Electronics N. V. Zoom optical system, and camera and device therewith
WO2008078539A1 (en) * 2006-12-22 2008-07-03 Nikon Corporation Camera and optical device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130329123A1 (en) * 2010-12-28 2013-12-12 Optoelectronics Co., Ltd. Information display device and display driving method
US9225893B2 (en) 2010-12-28 2015-12-29 Optoelectronics Co., Ltd. Information display device and display driving method
CN105069394A (en) * 2015-07-23 2015-11-18 福建联迪商用设备有限公司 Two-dimension code weighted average gray level method decoding method and system
CN105069394B (en) * 2015-07-23 2017-10-10 福建联迪商用设备有限公司 Quick Response Code weighted average gray level method coding/decoding method and system
US20190094424A1 (en) * 2017-09-27 2019-03-28 Cognex Corporation Optical systems having adaptable viewing angle and working distance, and methods of making and using the same
CN109557639A (en) * 2017-09-27 2019-04-02 康耐视公司 Adaptable visual angle and the optical system of operating distance and production and preparation method thereof
EP3525028A3 (en) * 2017-09-27 2019-12-11 Cognex Corporation Optical systems having adaptable viewing angle and working distance, and methods of making and using the same
CN109557639B (en) * 2017-09-27 2023-06-30 康耐视公司 Optical system with adaptive viewing angle and working distance and methods of making and using the same
CN113454976B (en) * 2018-12-18 2023-08-04 Lg伊诺特有限公司 Camera module including liquid lens
CN113454976A (en) * 2018-12-18 2021-09-28 Lg伊诺特有限公司 Camera module including liquid lens
WO2020153789A1 (en) * 2019-01-25 2020-07-30 엘지이노텍(주) Liquid lens module and optical device including same
CN114097214A (en) * 2019-04-26 2022-02-25 欧姆龙株式会社 Image sensor with a plurality of pixels
US11689804B2 (en) 2019-04-26 2023-06-27 Omron Corporation Image sensor
CN113748669A (en) * 2019-04-26 2021-12-03 欧姆龙株式会社 Image sensor with a plurality of pixels
CN113748669B (en) * 2019-04-26 2023-10-17 欧姆龙株式会社 Image Sensor
CN112398533B (en) * 2020-11-04 2023-06-27 中国科学院半导体研究所 Rapid focusing, transmitting and receiving integrated antenna and rapid focusing method
CN112398533A (en) * 2020-11-04 2021-02-23 中国科学院半导体研究所 Rapid focusing transmitting-receiving integrated antenna and rapid focusing method
CN113960704A (en) * 2021-11-02 2022-01-21 深圳技术大学 Automatic focusing method, system and device of liquid lens and storage medium
CN113960704B (en) * 2021-11-02 2023-10-27 深圳技术大学 Automatic focusing method and device for liquid lens and storage medium

Also Published As

Publication number Publication date
JP2010286740A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
WO2010143662A1 (en) Optical information reading device
JP5637995B2 (en) Optical information reader
US9342724B2 (en) Variable depth of field barcode scanner
US10222514B2 (en) Autofocus lens system
JP4402163B1 (en) Liquid lens optical body and optical information reader
US9557166B2 (en) Dimensioning system with multipath interference mitigation
EP3112923A1 (en) Optical pattern projector
WO2010117003A1 (en) Liquid lens optical body and optical information reading apparatus
US10592712B2 (en) Compact camera module with multilevel zoom and focus distance utilizing a switchable mirror
US9234648B2 (en) Illumination apparatus and method for the generation of an illumination field
EP2572315B1 (en) Focus adjustment with liquid crystal device in imaging scanner
US9225893B2 (en) Information display device and display driving method
EP3156825A1 (en) Dimensioning system with multipath interference mitigation
JP7463247B2 (en) Optical information reading device and optical information reading method
JP2019101555A (en) Optical reading device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10786193

Country of ref document: EP

Kind code of ref document: A1