WO2009157273A1 - Imaging optical system, and imaging lens manufacturing method - Google Patents

Imaging optical system, and imaging lens manufacturing method Download PDF

Info

Publication number
WO2009157273A1
WO2009157273A1 PCT/JP2009/059962 JP2009059962W WO2009157273A1 WO 2009157273 A1 WO2009157273 A1 WO 2009157273A1 JP 2009059962 W JP2009059962 W JP 2009059962W WO 2009157273 A1 WO2009157273 A1 WO 2009157273A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
optical system
cut coat
imaging optical
imaging
Prior art date
Application number
PCT/JP2009/059962
Other languages
French (fr)
Japanese (ja)
Inventor
節夫 徳弘
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to CN200980115664XA priority Critical patent/CN102016654A/en
Priority to JP2010517835A priority patent/JPWO2009157273A1/en
Publication of WO2009157273A1 publication Critical patent/WO2009157273A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light

Definitions

  • the present invention relates to an imaging optical system and a method for manufacturing an imaging lens.
  • a plurality of curable resin lens portions are provided on a wafer-shaped glass substrate (so-called “wafer lens” is manufactured), and the wafer-shaped glass substrate is cut into each lens portion.
  • an IR (Infrared Rays) cut coat is formed on a glass substrate of an imaging lens.
  • Patent Document 1 There is a description that an IR cut coat is formed on at least one surface.
  • the IR cut coat is formed on both sides from the description that the IR cut coat is formed on at least one side. Since there is no mention of warping and intentional mention of no countermeasure, there is a possibility that the glass substrate is warped by the stress of the film.
  • a problem to be solved by the present invention is to provide an imaging optical system and a method for manufacturing an imaging lens that can suppress warping of the glass substrate.
  • An imaging optical system having an imaging lens in which a lens portion made of a curable resin is formed on a glass substrate, Having at least one group of the imaging lenses, An imaging optical system, wherein an IR cut coat is formed on each of the front and back surfaces of the glass substrate.
  • the total film thickness ratio r of the total film thickness r1 of the IR cut coat formed on one surface of the glass substrate and the total film thickness r2 of the IR cut coat formed on the other surface of the glass substrate is expressed by the formula An imaging optical system characterized by satisfying the condition (1).
  • the IR cut coat is an alternating multilayer film in which a plurality of low refractive index layers A made of a low refractive index material and high refractive index layers B made of a high refractive index material are alternately stacked.
  • the total film thickness ratio r (A2) to the total film thickness r (A2) satisfies the condition of the formula (2), and the high refractive index layer of the IR cut coat formed on one surface of the glass substrate
  • the total film thickness ratio r (B) between the total film thickness r (B1) of B1 and the total film thickness r (B2) of the high refractive index layer B2 of the IR cut coat formed on the other surface of the glass substrate is An imaging optical system characterized by satisfying the condition of Expression (3).
  • the thickness of the peripheral portion formed on one surface of the glass substrate is t2
  • the total film thickness of the IR cut coat formed on one surface of the glass substrate is r1
  • the total film thickness of the IR cut coat formed on the other surface of the glass substrate is r2
  • the imaging optical system according to any one of 1 to 4, Having two or more groups of imaging lenses; Of the imaging lenses, an imaging optical system in which the imaging lens in which the IR cut coat is not formed on a glass substrate is disposed on the image plane side.
  • the curable resin is a photocurable resin
  • the imaging optical system, wherein the IR cut coat has a transmittance of 50% or more with respect to light having a wavelength of 365 nm.
  • a method for manufacturing an imaging lens comprising:
  • the IR cut coat is formed on both the front and back surfaces of the glass substrate, the warp of the glass substrate during the IR cut coat film formation on one surface of the glass substrate is caused on the other surface. It is offset by the warp of the glass substrate during the IR cut coat film formation, and the warp of the glass substrate can be suppressed.
  • FIG. 4 is a view for explaining a schematic manufacturing method of an imaging unit according to a preferred embodiment of the present invention, which is a drawing subsequent to FIG. 3.
  • FIG. 4 is a schematic sectional drawing which shows the modification of the imaging optical system which concerns on preferable embodiment of this invention. It is drawing which shows the rough relationship between the wavelength of coat
  • the imaging optical system of the present invention is an imaging optical system having an imaging lens in which a lens portion made of a curable resin is formed on a glass substrate, and has at least one group of the imaging lenses.
  • An IR cut coat is formed on each of the front and back surfaces.
  • the imaging unit 1 mainly includes a lens unit 2, a sensor device 4, and a casing 5, and the lens unit 2 and the sensor device 4 are covered with the casing 5. It has a configuration.
  • the casing 5 includes a cylindrical cylindrical portion 51 and a rectangular parallelepiped base portion 53.
  • the cylindrical portion 51 and the base portion 53 are integrally formed, and the cylindrical portion 51 is erected on the base portion 53.
  • the lens unit 2 is arranged inside the cylindrical portion 51.
  • a circular light transmission hole 51 a is formed in the top plate portion of the cylindrical portion 51.
  • the sensor device 4 is disposed in the base portion 53 (bottom portion). For example, a CCD or CMOS is used as the sensor device 4.
  • the lens unit 2 is mainly composed of a diaphragm 21, an imaging lens 23, and a spacer 25. These members are overlapped with each other in a state in which the imaging lens 23 is disposed between the diaphragm 21 and the spacer 25.
  • the central portion of the imaging lens 23 has a convex shape on both the front and back surfaces, and this portion basically exhibits an optical function.
  • the diaphragm 21 is a member that adjusts the amount of light incident on the imaging lens 23, and a circular opening 21a is formed at the center thereof.
  • the spacer 25 is a member for adjusting the arrangement position (height position) of the lens unit 2 in the cylindrical portion 51 of the casing 5, and a circular opening 25 a (see the upper part of FIG. 1) is also formed at the center thereof. ing.
  • the imaging lens 23 has a glass substrate 100.
  • An IR cut coat 110 is formed on the front surface 102 of the glass substrate 100, and an IR cut coat 120 is also formed on the back surface 104 of the glass substrate 100.
  • the IR cut coats 110 and 120 are films for shielding infrared rays, and have a transmittance of 50% or more for light having a wavelength of 365 nm.
  • the IR cut coats 110 and 120 are formed by alternately laminating a plurality of low refractive index layers A1 and A2 made of a low refractive index material and high refractive index layers B1 and B2 made of a high refractive index material. It is an alternating multilayer film.
  • the low refractive index layers A1 and A2 are preferably in direct contact with the glass substrate 100.
  • the low refractive index material constituting the low refractive index layers A1 and A2 SiO 2 or the like is used.
  • the high-refractive index material constituting the high refractive index layer B1 B2 TiO 2, Ta 2 O 5, Nb 2 O 3, ZrO 2 and the like are used.
  • the low refractive index layers A1 and A2 may be made of different materials, and the high refractive index layers B1 and B2 may be made of different materials.
  • the IR cut coats 110 and 120 are usually composed of about 10 to 40 layers, but the number of layers may be the same or different.
  • the total film thickness r 1 of the IR cut coat 110 formed on the front surface 102 of the glass substrate 100 and the total film thickness r 2 of the IR cut coat 120 formed on the back surface 104 of the glass substrate 100 are preferable.
  • the total film thickness ratio r satisfies the condition of the formula (1).
  • the total film thickness ratio r (A) with the total film thickness r (A2) of the low refractive index layer A2 of the cut coat 120 satisfies the condition of the formula (2) and is formed on the surface 102 of the glass substrate 100.
  • the total film thickness ratio r (B) satisfies the condition of Expression (3).
  • a resin portion 130 is formed on the IR cut coat 110.
  • the resin part 130 is composed of a curable resin 130A.
  • the resin part 130 has a lens part 132 having a convex shape and a peripheral part 134 covering the periphery thereof, and the lens part 132 and the peripheral part 134 are integrally formed.
  • the resin part 140 is also formed under the IR cut coat 120.
  • the resin part 140 is composed of a curable resin 140A.
  • the resin part 140 has a lens part 142 having a convex shape and a peripheral part 144 covering the periphery thereof, and the lens part 142 and the peripheral part 144 are integrally formed.
  • IR In the imaging lens 23, when the thickness of the peripheral portion 134 formed on the front surface 102 side of the glass substrate 100 is t1, and the thickness of the peripheral portion 144 formed on the back surface 104 of the glass substrate 100 is t2, IR In the relationship between the total film thickness r1 of the cut coat 110 and the total film thickness r2 of the IR cut coat 120, the condition of formula (4) or formula (5) is satisfied.
  • the resin parts 130 and 140 (lens parts 132 and 142) in any one side among the surface 102 and the back surface 104 of the glass substrate 100.
  • the lens portion is provided only on one side of the glass substrate 100, and the IR cut coat on the side where the lens portion is not provided (for example, the IR cut coat 110) on the side where the lens portion is provided (for example, the IR cut coat 110).
  • the IR cut coat 120 it is possible to suppress the stress bias of the entire imaging lens 23 and further suppress the warpage.
  • a photocurable resin can be used, and preferably an acrylic resin, an allyl ester resin, an epoxy resin, or the like can be used.
  • the usable resin will be described below.
  • (1) Acrylic resin The (meth) acrylate used for the polymerization reaction is not particularly limited, and the following (meth) acrylate produced by a general production method can be used.
  • (Meth) acrylate having an alicyclic structure is particularly preferable, and may be an alicyclic structure containing an oxygen atom or a nitrogen atom.
  • 2-alkyl-2-adamantyl (meth) acrylate (refer to Japanese Patent Laid-Open No. 2002-193883), adamantyl di (meth) acrylate (Japanese Patent Laid-Open No. 57-5000785), diallyl adamantyl dicarboxylate (Japanese Patent Laid-Open No. 60-100537).
  • Perfluoroadamantyl acrylate see JP 2004-123687
  • a curable resin having an adamantane skeleton see JP 2001-322950 A), bis (hydroxyphenyl) adamantanes and bis (glycidyloxyphenyl) adamantane (JP 11-35522 A, JP 10-130371 A). For example).
  • (meth) acrylate for example, methyl acrylate, methyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate Tert-butyl methacrylate, phenyl acrylate, phenyl methacrylate, benzyl acrylate, benzyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, and the like.
  • polyfunctional (meth) acrylate examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) ) Acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, tripentaerythritol octa (meth) acrylate, tripentaerythritol septa (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tripenta Erythritol penta (meth) acrylate, tripentaerythritol tetra (meth) acrylate, tripent
  • Bromine-containing (meth) allyl ester not containing an aromatic ring see JP-A-2003-66201
  • allyl (meth) acrylate see JP-A-5-286896
  • allyl ester resin JP-A-5-286896
  • JP 2003-66201 A a copolymer of an acrylate ester and an epoxy group-containing unsaturated compound
  • JP 2003-128725 A an acrylate compound
  • an acrylic And ester compounds see JP 2005-2064 A.
  • Epoxy resin is not particularly limited as long as it has an epoxy group and is polymerized and cured by light or heat, and an acid anhydride, a cation generator, or the like can be used as a curing initiator.
  • Epoxy resin is preferable in that it has a low cure shrinkage and can be a lens with excellent molding accuracy.
  • Examples of the epoxy include novolak phenol type epoxy resin, biphenyl type epoxy resin, and dicyclopentadiene type epoxy resin.
  • Examples include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, vinyl Cyclohexene dioxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3-dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2 -Cyclopropanedicarboxylic acid bisglycidyl ester and the like.
  • the curing agent is used for constituting the curable resin material and is not particularly limited. Moreover, in this invention, when comparing the transmittance
  • an acid anhydride curing agent, a phenol curing agent, or the like can be preferably used.
  • acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride
  • acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride
  • examples thereof include an acid, a mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, and methyl nadic anhydride.
  • a hardening accelerator is contained as needed.
  • the curing accelerator is not particularly limited as long as it has good curability, is not colored, and does not impair the transparency of the thermosetting resin.
  • 2-ethyl-4-methylimidazole is not limited. Imidazoles such as (2E4MZ), tertiary amines, quaternary ammonium salts, bicyclic amidines such as diazabicycloundecene and their derivatives, phosphines, phosphonium salts, etc. can be used, Two or more kinds may be mixed and used.
  • the imaging unit 1 described above external light enters the lens unit 2 through the light transmission hole 51 a, the amount of incident light is adjusted by the opening 21 a of the diaphragm 21, passes through the imaging lens 23, and opens the spacer 25. The light is emitted from the portion 25a. Thereafter, the emitted light is configured to enter the sensor device 4.
  • a wafer-like glass substrate 100 is prepared, and IR cut coats 110 and 120 are formed on the front surface 102 and the back surface 104, respectively.
  • a method for forming the IR cut coats 110 and 120 a known vacuum deposition method, sputtering, a CVD (Chemical Vapor Deposition) method, or the like is used.
  • silane coupling treatment is performed on the IR cut coats 110 and 120 for the purpose of improving the adhesion of the resin portions 130 and 140 to the IR cut coats 110 and 120.
  • a silane coupling agent SZ-6030 manufactured by Toray Dow Corning
  • acetic acid is added to adjust the pH to 3 to 5.
  • the solution is applied on the IR cut coat 110, 120 and dried.
  • the IR cut coats 110 and 120 are formed with chemically bonded surfaces by silanol bonds.
  • the surface has good adhesion to the curable resin (130A, 140A), and the adhesion to the resin portions 130, 140 formed on the IR cut coats 110, 120 is greatly improved.
  • the cavity 202 of the mold 200 is filled with a curable resin 130A.
  • the curable resin 130A is placed on the upper part of the mold 200, and the glass substrate 100 is moved downward while pressing it, and the cavity 202 is filled with the curable resin 130A.
  • the curable resin 130A may be filled while evacuating. If the curable resin 130A is filled while evacuating, bubbles can be prevented from being mixed into the curable resin 130A.
  • the light source 210 disposed above the mold 200 is turned on, and the curable resin 130A is irradiated with light to cure the curable resin 130A.
  • a high pressure mercury lamp, a metal halide lamp, a xenon lamp, a halogen lamp, a fluorescent lamp, a black light, a G lamp, an F lamp, or the like can be used, and a linear light source or a point light source may be used. Good.
  • a plurality of linear or point light sources 210 may be arranged in a lattice shape so that the light reaches the curable resin 130A at one time, or linear or dotted.
  • the light source 210 may be scanned in parallel with the glass substrate 100 so that the light sequentially reaches the curable resin 130A.
  • a luminance distribution and an illuminance (intensity) distribution during light irradiation are measured, and the number of irradiations, irradiation amount, irradiation time, and the like are controlled based on the measurement results.
  • the IR cut coats 110 and 120 have a transmittance of 50% or more with respect to light having a wavelength of 365 nm. In other words, the IR cut coat 110, 120 is not a factor that hinders the curing of the curable resin 130A.
  • the light source 210 disposed below the mold 200 is also turned on, and both sides of the glass substrate 100 side and the mold 200 side are turned on. May be irradiated with light.
  • the resin portion 130 (lens portion 132) is formed on the surface 102 of the glass substrate 100.
  • the glass substrate 100 is released from the mold 200.
  • the glass substrate 100 is turned over and the curable resin 140 ⁇ / b> A is placed on the mold 200 in the same manner as the resin portion 130 is formed on the surface 102 of the glass substrate 100.
  • the substrate 100 is pressed, and the curable resin 140 ⁇ / b> A is irradiated with light to form the resin portion 140 (lens portion 142) on the back surface 104 of the glass substrate 100.
  • the lens array 27 in the upper part of FIG. 4 is manufactured by the above processing.
  • the IR cut coats 110 and 120 are omitted for the sake of clarity.
  • the aperture array 26 in which the same number of openings 21 a as the lens portions 132 are formed, and the same number as the lens portions 142.
  • the spacer array 28 in which the openings 25a are formed is prepared.
  • the aperture array 26 and the spacer array 28 are formed by mixing a curable resin with carbon and coloring it black, and molding the resin by an injection molding method.
  • the aperture array 26 and the spacer array 28 are joined to the lens array 27 with an adhesive to manufacture the lens unit array 29.
  • the lens unit array 29 is individually separated for each of the lens portions 132 and 142 by an end mill to produce a plurality of lens units 2, and each lens unit 2 is a cylinder of the casing 5.
  • the imaging unit 1 is manufactured by being assembled (bonded) to the part 51.
  • the IR cut coats 110 and 120 are formed on the front surface 102 and the back surface 104 of the glass substrate 100, respectively.
  • the film stress when the IR cut coat 110 is formed can be relaxed by forming the IR cut coat 120 on the other surface (back surface 104).
  • the warp of the glass substrate 100 when forming the IR cut coat 110 on one surface (front surface 102) of the glass substrate 100 is the glass substrate 100 when forming the IR cut coat 120 on the other surface (back surface 104).
  • the warpage of the glass substrate 100 as a whole can be suppressed.
  • the conditions of the above formulas (1) to (3) are satisfied (the total film thickness of the IR cut coats 110 and 120, the total film thickness of the low refractive index layers A1 and A2, the high refractive index layers B1 and B2, etc.) If the surface 102 and the back surface 104 of the glass substrate 100 are substantially the same), the warping and bending of the glass substrate 100 can be more accurately suppressed.
  • the IR cut coats 110 and 120 are respectively formed on the front surface 102 and the back surface 104 of the glass substrate 100, so that the IR region that can be shielded by the IR cut coat 110 and the IR cut coat 120 are used. It is also possible to block infrared light in a wide infrared region over two infrared regions, which can be shielded from light outside the century.
  • imaging optics is configured by a plurality of groups (two or more groups) of imaging lenses. A system may be configured.
  • the imaging optical system shown in FIG. 5 includes three groups of imaging lenses 300, 400, and 500.
  • the imaging lens 300 has a glass substrate 310, an IR cut coat 110 is formed on the front surface 312, and an IR cut coat 120 is formed on the back surface 314 thereof.
  • a resin part 320 is formed on the IR cut coat 110, and a resin part 330 is formed on the IR cut coat 120.
  • the imaging lens 400 has a glass substrate 410, and a resin portion 420 is formed on the front surface 412 and a resin portion 430 is formed on the back surface 414 thereof.
  • the imaging lens 500 also has a glass substrate 510, and a resin portion 520 is formed on the front surface 512 and a resin portion 530 is formed on the back surface 514 thereof.
  • the glass substrates 310, 410, and 510 correspond to the glass substrate 100 of the imaging lens 23, and the resin portions 320, 330, 420, 430, 520, and 530 correspond to the resin portions 130 and 140 of the imaging lens 23. Is.
  • the IR cut coats 110 and 120 are formed in the imaging lens 300 arranged at the position farthest from the sensor device 4 (the IR cut coats 110 and 120 are formed on the glass substrate 410 of the imaging lens 400.
  • the IR cut coats 110 and 120 are not formed in the imaging lens 500 disposed at the closest position facing the sensor device 4. That is, the imaging lens 500 on which the IR cut coats 110 and 120 are not formed is disposed on the image plane side.
  • the IR cut coats 110 and 120 are alternately laminated films of a total of about 10 to 40 low-refractive index films, and in the middle of forming a multilayer film of this degree by vacuum deposition,
  • dust of about several ⁇ m or the like is mixed as contamination in the film and becomes a problem as surface foreign matter. If this foreign matter forms an image on the surface of the sensor device 4, the foreign matter is reflected in the image, which causes a problem. In particular, the closer the sensor surface is, the more light is collected, and the allowable foreign matter size is severe. Become.
  • a lens part made of a photocurable resin having a predetermined shape is formed on each front and back surfaces of each of three glass substrates (planar glass wafer, size 8 inches, thickness 3 mm), and imaging lens Formed.
  • a UV lamp of 6000 mJ / cm 2 was irradiated.
  • the imaging lenses were bonded to each other via a spacer to produce a plurality of imaging optical systems similar to those in FIG.
  • Example 1 Among a plurality of imaging optical systems, the IR cut coat of “Coat Type I” in Table 1 is applied to the front surface (a surface) of the glass substrate of the first imaging lens, and “ The sample of “Example 1” was formed with an IR cut coat of “Coat Type Type II”.
  • a glass substrate is placed in a vacuum vapor deposition apparatus, and the surface (a surface) on one side is low refractive by vacuum vapor deposition in the manner shown in “Coat Type I” in Table 1.
  • An SiO 2 film as a refractive index layer and a TiO 2 film as a high refractive index layer were alternately laminated (18 layers in total) to form an IR cut coat.
  • the vacuum deposition apparatus was once opened to the atmosphere, the glass substrate was inverted, and the IR cut coat was formed on the surface.
  • the IR cut coat was formed in the mode shown in “II” (the IR cut coat forming method was the same in Examples 2 to 6 and Comparative Example 1 described later).
  • the glass substrate is taken out from the vacuum deposition apparatus and subjected to a silane coupling treatment on the IR cut coat (a silane coupling agent (SZ-6030 manufactured by Toray Dow Corning Co., Ltd.) is added in 0.1% with ethanol. Dilute to ⁇ 2.0wt%, add acetic acid to adjust pH to 3 ⁇ 5, apply the solution on IR cut coat and dry) A lens portion made of a photocurable resin having a predetermined shape was formed.
  • a silane coupling agent SZ-6030 manufactured by Toray Dow Corning Co., Ltd.
  • Example 2 Among the plurality of imaging optical systems, the IR cut coat of “Coat Type I” in Table 1 is applied to the surface (c surface) of the glass substrate of the second imaging lens, and “ An IR cut coat of “Coat Type Type II” was formed, and the lens unit was used as a sample of “Example 2”.
  • Example 3 Among a plurality of imaging optical systems, the IR cut coat of “Coat Type I” in Table 1 is applied to the surface (e surface) of the glass substrate of the third imaging lens, and “ An IR cut coat of “Coat Type Type II” was formed, and the lens unit was used as a sample of “Example 3”.
  • Example 4 Among a plurality of imaging optical systems, the IR cut coat of “Coat Type III” in Table 2 is applied to the front surface (a surface) of the glass substrate of the first imaging lens, and “ The sample of “Example 4” was formed with an IR cut coat of “coat type IV”.
  • Example 5 Among the plurality of imaging optical systems, the IR cut coat of “Coat Type V” in Table 3 is applied to the front surface (a surface) of the glass substrate of the first imaging lens, and “ The sample of Example 5 was formed with an IR cut coat of “Coat Type Type VI”.
  • Example 6 when forming the IR cut coat TiO 2 film, the film formation rate was 8 ⁇ / sec, and the film formation rate of the TiO 2 film was larger than those of the coat type types I to IV. In this case, the transmittance of the IR cut coat with respect to light having a wavelength of 365 nm decreases (see Table 4). (1.7) Example 6 Among the plurality of imaging optical systems, the IR cut coat of “Coat Type I” in Table 3 is applied to the front surface (a surface) of the glass substrate of the first imaging lens, and “ The sample of Example 6 was formed with an IR cut coat of “Coat Type Type II”.

Abstract

Provided is an imaging optical system capable of suppressing the warpage and bend of a glass substrate.  Also provided is an imaging lens manufacturing method.  The imaging optical system includes an imaging lens having a lens portion made of a hardening resin on the glass substrate.  The imaging optical system is characterized by including at least one group of imaging lenses and by having IR cut coats formed individually on both the front and back surfaces of the glass substrate.

Description

撮像光学系及び撮像用レンズの製造方法Imaging optical system and manufacturing method of imaging lens
 本発明は、撮像光学系及び撮像用レンズの製造方法に関する。 The present invention relates to an imaging optical system and a method for manufacturing an imaging lens.
 従来、光学レンズの製造分野においては、ウエハ状のガラス基板に対し硬化性樹脂製のレンズ部を複数設け(所謂「ウエハレンズ」を作製し)、そのウエハ状のガラス基板をレンズ部ごとに切断・断片化してその1つ1つを撮像用レンズとして使用しようという試みがなされている。近年では、これを応用した技術として、撮像用レンズのガラス基板に対しIR(Infrared Rays,赤外線)カットコートを形成した例が開示されており(特許文献1参照)、ガラス基板の表裏両面のうち少なくとも一方の面にIRカットコートが形成される旨の記載がされている。 Conventionally, in the field of manufacturing optical lenses, a plurality of curable resin lens portions are provided on a wafer-shaped glass substrate (so-called “wafer lens” is manufactured), and the wafer-shaped glass substrate is cut into each lens portion. An attempt has been made to fragment and use each one as an imaging lens. In recent years, an example in which an IR (Infrared Rays) cut coat is formed on a glass substrate of an imaging lens has been disclosed as a technology applying this (see Patent Document 1). There is a description that an IR cut coat is formed on at least one surface.
米国特許出願公開2007/0024958号公報US Patent Application Publication No. 2007/0024958
 しかしながら、特許文献1の手法に拠れば、少なくとも一方の面にIRカットコートを形成されるとの記載より両面にIRカットコートを形成することが示唆されるが、本発明が課題としている基板の反りに関する言及はなく、意図的にその対処に関しても言及していないことより、膜の応力によってガラス基板が反り曲がってしまう可能性がある。 However, according to the technique of Patent Document 1, it is suggested that the IR cut coat is formed on both sides from the description that the IR cut coat is formed on at least one side. Since there is no mention of warping and intentional mention of no countermeasure, there is a possibility that the glass substrate is warped by the stress of the film.
 したがって、本発明の解決課題は、ガラス基板の反り曲がりを抑制することができる撮像光学系及び撮像用レンズの製造方法を提供することである。 Therefore, a problem to be solved by the present invention is to provide an imaging optical system and a method for manufacturing an imaging lens that can suppress warping of the glass substrate.
 本発明に係る上記課題は、以下の手段により解決される。 The above-mentioned problem according to the present invention is solved by the following means.
 1.ガラス基板上に硬化性樹脂製のレンズ部を形成した撮像用レンズを有する撮像光学系であって、
 前記撮像用レンズを少なくとも1群以上有し、
 前記ガラス基板の表裏両面に対しIRカットコートがそれぞれ形成されていることを特徴とする撮像光学系。
1. An imaging optical system having an imaging lens in which a lens portion made of a curable resin is formed on a glass substrate,
Having at least one group of the imaging lenses,
An imaging optical system, wherein an IR cut coat is formed on each of the front and back surfaces of the glass substrate.
 2.前記1に記載の撮像光学系において、
 前記ガラス基板の一方の面に形成されたIRカットコートの総膜厚r1と、前記ガラス基板の他方の面に形成されたIRカットコートの総膜厚r2との総膜厚比率rが、式(1)の条件を満たすことを特徴とする撮像光学系。
2. In the imaging optical system according to 1 above,
The total film thickness ratio r of the total film thickness r1 of the IR cut coat formed on one surface of the glass substrate and the total film thickness r2 of the IR cut coat formed on the other surface of the glass substrate is expressed by the formula An imaging optical system characterized by satisfying the condition (1).
   0.9≦r(=r1/r2)≦1.1 … (1)
 3.前記1又は2に記載の撮像光学系において、
 前記IRカットコートが、低屈折率材料から構成された低屈折率層Aと、高屈折率材料から構成された高屈折率層Bとを交互に複数積層した交互多層膜であり、
 前記ガラス基板の一方の面に形成されたIRカットコートの低屈折率層A1の総膜厚r(A1)と、前記ガラス基板の他方の面に形成されたIRカットコートの低屈折率層A2の総膜厚r(A2)との総膜厚比率r(A)が、式(2)の条件を満たし、かつ、前記ガラス基板の一方の面に形成されたIRカットコートの高屈折率層B1の総膜厚r(B1)と、前記ガラス基板の他方の面に形成されたIRカットコートの高屈折率層B2の総膜厚r(B2)との総膜厚比率r(B)が、式(3)の条件を満たすことを特徴とする撮像光学系。
0.9 ≦ r (= r1 / r2) ≦ 1.1 (1)
3. In the imaging optical system according to 1 or 2,
The IR cut coat is an alternating multilayer film in which a plurality of low refractive index layers A made of a low refractive index material and high refractive index layers B made of a high refractive index material are alternately stacked.
The total thickness r (A1) of the IR cut coat low refractive index layer A1 formed on one surface of the glass substrate, and the IR cut coat low refractive index layer A2 formed on the other surface of the glass substrate. The total film thickness ratio r (A2) to the total film thickness r (A2) satisfies the condition of the formula (2), and the high refractive index layer of the IR cut coat formed on one surface of the glass substrate The total film thickness ratio r (B) between the total film thickness r (B1) of B1 and the total film thickness r (B2) of the high refractive index layer B2 of the IR cut coat formed on the other surface of the glass substrate is An imaging optical system characterized by satisfying the condition of Expression (3).
  0.9≦r(A)(=r(A1)/r(A2))≦1.1 … (2)
  0.9≦r(B)(=r(B1)/r(B2))≦1.1 … (3)
 4.前記1~3のいずれか一項に記載の撮像光学系において、
 前記撮像用レンズのガラス基板上には、前記レンズ部の周辺に設けられる硬化性樹脂製の周辺部が形成され、前記ガラス基板の一方の面に形成された前記周辺部の厚さをt1と、前記ガラス基板の一方の面に形成された前記周辺部の厚さをt2とし、
 前記ガラス基板の一方の面に形成されたIRカットコートの総膜厚をr1と、前記ガラス基板の他方の面に形成されたIRカットコートの総膜厚をr2としたとき、
 式(4)又は式(5)の条件を満たすことを特徴とする撮像光学系。
0.9 ≦ r (A) (= r (A1) / r (A2)) ≦ 1.1 (2)
0.9 ≦ r (B) (= r (B1) / r (B2)) ≦ 1.1 (3)
4). In the imaging optical system according to any one of 1 to 3,
On the glass substrate of the imaging lens, a peripheral portion made of a curable resin provided around the lens portion is formed, and the thickness of the peripheral portion formed on one surface of the glass substrate is t1. , The thickness of the peripheral portion formed on one surface of the glass substrate is t2,
When the total film thickness of the IR cut coat formed on one surface of the glass substrate is r1, and the total film thickness of the IR cut coat formed on the other surface of the glass substrate is r2,
An imaging optical system characterized by satisfying the condition of Expression (4) or Expression (5).
  t1>t2,r1<r2 … (4)
  t1<t2,r1>r2 … (5)
 5.前記1~4のいずれか一項に記載の撮像光学系において、
 前記撮像用レンズを2群以上有し、
 前記撮像用レンズのうち、ガラス基板に対し前記IRカットコートが形成されていない前記撮像用レンズが像面側に配置されることを特徴とする撮像光学系。
t1> t2, r1 <r2 (4)
t1 <t2, r1> r2 (5)
5). In the imaging optical system according to any one of 1 to 4,
Having two or more groups of imaging lenses;
Of the imaging lenses, an imaging optical system in which the imaging lens in which the IR cut coat is not formed on a glass substrate is disposed on the image plane side.
 6.前記1~5のいずれか一項に記載の撮像光学系において、
 前記硬化性樹脂が光硬化性樹脂であり、
 前記IRカットコートが、波長365nmの光に対し50%以上の透過率を有することを特徴とする撮像光学系。
6). In the imaging optical system according to any one of 1 to 5,
The curable resin is a photocurable resin,
The imaging optical system, wherein the IR cut coat has a transmittance of 50% or more with respect to light having a wavelength of 365 nm.
 7.前記6に記載の撮像光学系において、
 前記光硬化性樹脂がアクリル樹脂又はエポキシ樹脂であることを特徴とする撮像光学系。
7). The imaging optical system according to 6, wherein
An imaging optical system, wherein the photocurable resin is an acrylic resin or an epoxy resin.
 8.ガラス基板の表裏両面に対しIRカットコートを形成する工程と、
 前記IRカットコート上にシランカップリング処理を実行する工程と、
 前記シランカップリング処理後の前記IRカットコート上に複数の硬化性樹脂製のレンズ部を形成する工程と、
 前記レンズ部ごとに前記ガラス基板を切断する工程と、
 を備えることを特徴とする撮像用レンズの製造方法。
8). Forming an IR cut coat on both the front and back surfaces of the glass substrate;
Performing a silane coupling process on the IR cut coat;
Forming a plurality of curable resin lens portions on the IR cut coat after the silane coupling treatment;
Cutting the glass substrate for each lens part;
A method for manufacturing an imaging lens, comprising:
 本発明の上記手段により、ガラス基板の反り曲がりを抑制することができる撮像光学系及び撮像用レンズの製造方法を提供することができる。 By the above-mentioned means of the present invention, it is possible to provide an imaging optical system and a method for manufacturing an imaging lens that can suppress warping of the glass substrate.
 すなわち、本発明によれば、ガラス基板の表裏両面に対しIRカットコートが形成されるから、ガラス基板の一方の面へのIRカットコート成膜時のガラス基板の反りが、他方の面へのIRカットコート成膜時のガラス基板の反りで相殺され、ガラス基板の反り曲がりを抑制することができる。 That is, according to the present invention, since the IR cut coat is formed on both the front and back surfaces of the glass substrate, the warp of the glass substrate during the IR cut coat film formation on one surface of the glass substrate is caused on the other surface. It is offset by the warp of the glass substrate during the IR cut coat film formation, and the warp of the glass substrate can be suppressed.
本発明の好ましい実施形態に係る撮像ユニットの概略構成を示す分解斜視図である。It is a disassembled perspective view which shows schematic structure of the imaging unit which concerns on preferable embodiment of this invention. 本発明の好ましい実施形態に係る撮像用レンズの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the lens for imaging which concerns on preferable embodiment of this invention. 本発明の好ましい実施形態に係る撮像ユニットの概略的な製造方法を説明するための図面である。6 is a diagram for explaining a schematic manufacturing method of an imaging unit according to a preferred embodiment of the present invention. 本発明の好ましい実施形態に係る撮像ユニットの概略的な製造方法を説明するための図面であって、図3の後続の図面である。FIG. 4 is a view for explaining a schematic manufacturing method of an imaging unit according to a preferred embodiment of the present invention, which is a drawing subsequent to FIG. 3. 本発明の好ましい実施形態に係る撮像光学系の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of the imaging optical system which concerns on preferable embodiment of this invention. コート種タイプIの波長と透過率との概略的な関係を示す図面である。It is drawing which shows the rough relationship between the wavelength of coat | court seed | species type I, and the transmittance | permeability. コート種タイプIIの波長と透過率との概略的な関係を示す図面である。It is drawing which shows the rough relationship between the wavelength of coat | court seed | species type II, and the transmittance | permeability. コート種タイプIIIの波長と透過率との概略的な関係を示す図面である。It is drawing which shows the rough relationship between the wavelength of coat | court seed | species type III, and the transmittance | permeability. コート種タイプIVの波長と透過率との概略的な関係を示す図面である。It is drawing which shows the rough relationship of the wavelength and the transmittance | permeability of coat seed | species type IV. コート種タイプVの波長と透過率との概略的な関係を示す図面である。It is drawing which shows the rough relationship between the wavelength of coat | court seed | species type V, and the transmittance | permeability. コート種タイプVIの波長と透過率との概略的な関係を示す図面である。It is drawing which shows the rough relationship between the wavelength and the transmittance | permeability of coat seed | species type VI.
 本発明の撮像光学系は、ガラス基板上に硬化性樹脂製のレンズ部を形成した撮像用レンズを有する撮像光学系であって、前記撮像用レンズを少なくとも1群以上有し、前記ガラス基板の表裏両面に対しIRカットコートがそれぞれ形成されていることを特徴とする。この特徴は、請求項1から請求項8に係る発明に共通する技術的特徴である。 The imaging optical system of the present invention is an imaging optical system having an imaging lens in which a lens portion made of a curable resin is formed on a glass substrate, and has at least one group of the imaging lenses. An IR cut coat is formed on each of the front and back surfaces. This feature is a technical feature common to the inventions according to claims 1 to 8.
 以下、図面を参照しながら本発明の好ましい実施形態について詳細な説明をする。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
 図1に示す通り、本発明の好ましい実施形態に係る撮像ユニット1は主に、レンズユニット2、センサデバイス4及びケーシング5で構成されており、レンズユニット2及びセンサデバイス4がケーシング5で覆われた構成を有している。 As shown in FIG. 1, the imaging unit 1 according to a preferred embodiment of the present invention mainly includes a lens unit 2, a sensor device 4, and a casing 5, and the lens unit 2 and the sensor device 4 are covered with the casing 5. It has a configuration.
 ケーシング5は円筒状の円筒部51と直方体状のベース部53とで構成されている。円筒部51とベース部53は一体に成形されており、円筒部51がベース部53上に立設されている。円筒部51の内部にはレンズユニット2が配置されている。円筒部51の天板部には円形状の光透過孔51aが形成されている。ベース部53の内部(底部)にはセンサデバイス4が配置されている。センサデバイス4としては例えばCCDやCMOSなどが使用される。 The casing 5 includes a cylindrical cylindrical portion 51 and a rectangular parallelepiped base portion 53. The cylindrical portion 51 and the base portion 53 are integrally formed, and the cylindrical portion 51 is erected on the base portion 53. The lens unit 2 is arranged inside the cylindrical portion 51. A circular light transmission hole 51 a is formed in the top plate portion of the cylindrical portion 51. The sensor device 4 is disposed in the base portion 53 (bottom portion). For example, a CCD or CMOS is used as the sensor device 4.
 図1拡大図に示す通り、レンズユニット2は主には絞り21、撮像用レンズ23及びスペーサ25で構成されている。これら部材は、絞り21とスペーサ25との間に撮像用レンズ23が配置された状態で互いに重ね合わせられている。撮像用レンズ23の中央部は表裏両面においてそれぞれ凸状を呈しており、この部位が基本的には光学機能を発揮するようになっている。絞り21は撮像用レンズ23に入射する光の光量を調節する部材であり、その中央部には円形状の開口部21aが形成されている。スペーサ25はケーシング5の円筒部51におけるレンズユニット2の配置位置(高さ位置)を調整するための部材であり、その中央部にも円形状の開口部25a(図1上段参照)が形成されている。 As shown in the enlarged view of FIG. 1, the lens unit 2 is mainly composed of a diaphragm 21, an imaging lens 23, and a spacer 25. These members are overlapped with each other in a state in which the imaging lens 23 is disposed between the diaphragm 21 and the spacer 25. The central portion of the imaging lens 23 has a convex shape on both the front and back surfaces, and this portion basically exhibits an optical function. The diaphragm 21 is a member that adjusts the amount of light incident on the imaging lens 23, and a circular opening 21a is formed at the center thereof. The spacer 25 is a member for adjusting the arrangement position (height position) of the lens unit 2 in the cylindrical portion 51 of the casing 5, and a circular opening 25 a (see the upper part of FIG. 1) is also formed at the center thereof. ing.
 図2に示す通り、撮像用レンズ23はガラス基板100を有している。ガラス基板100の表面102にはIRカットコート110が形成されており、ガラス基板100の裏面104にもIRカットコート120が形成されている。IRカットコート110,120は赤外線を遮光するための膜であり、波長365nmの光に対しては50%以上の透過率を有している。詳しくは、IRカットコート110,120は低屈折率材料から構成された低屈折率層A1,A2と、高屈折率材料から構成された高屈折率層B1,B2とを、交互に複数積層した交互多層膜である。IRカットコート110,120においては、好ましくは低屈折率層A1,A2がガラス基板100に対し直に接している。 As shown in FIG. 2, the imaging lens 23 has a glass substrate 100. An IR cut coat 110 is formed on the front surface 102 of the glass substrate 100, and an IR cut coat 120 is also formed on the back surface 104 of the glass substrate 100. The IR cut coats 110 and 120 are films for shielding infrared rays, and have a transmittance of 50% or more for light having a wavelength of 365 nm. Specifically, the IR cut coats 110 and 120 are formed by alternately laminating a plurality of low refractive index layers A1 and A2 made of a low refractive index material and high refractive index layers B1 and B2 made of a high refractive index material. It is an alternating multilayer film. In the IR cut coats 110 and 120, the low refractive index layers A1 and A2 are preferably in direct contact with the glass substrate 100.
 低屈折率層A1,A2を構成する低屈折率材料としてはSiOなどが使用される。他方、高屈折率層B1,B2を構成する高屈折率材料としてはTiO,Ta,Nb,ZrOなどが使用される。IRカットコート110,120は低屈折率層A1,A2が互いに異なる材料で構成されていてもよいし、高屈折率層B1,B2も互いに異なる材料で構成されていてもよい。また、IRカットコート110,120は通常10~40層程度で構成されるが、その層数は互いに同じであってもよいし、異なっていてもよい。 As the low refractive index material constituting the low refractive index layers A1 and A2, SiO 2 or the like is used. On the other hand, as the high-refractive index material constituting the high refractive index layer B1, B2 TiO 2, Ta 2 O 5, Nb 2 O 3, ZrO 2 and the like are used. In the IR cut coats 110 and 120, the low refractive index layers A1 and A2 may be made of different materials, and the high refractive index layers B1 and B2 may be made of different materials. The IR cut coats 110 and 120 are usually composed of about 10 to 40 layers, but the number of layers may be the same or different.
 撮像用レンズ23では、好ましくはガラス基板100の表面102に形成されたIRカットコート110の総膜厚r1と、ガラス基板100の裏面104に形成されたIRカットコート120の総膜厚r2との総膜厚比率rが、式(1)の条件を満たしている。 In the imaging lens 23, the total film thickness r 1 of the IR cut coat 110 formed on the front surface 102 of the glass substrate 100 and the total film thickness r 2 of the IR cut coat 120 formed on the back surface 104 of the glass substrate 100 are preferable. The total film thickness ratio r satisfies the condition of the formula (1).
  0.9≦r(=r1/r2)≦1.1 … (1)
 さらに、撮像用レンズ23では、好ましくはガラス基板100の表面102に形成されたIRカットコート110の低屈折率層A1の総膜厚r(A1)と、ガラス基板の裏面104に形成されたIRカットコート120の低屈折率層A2の総膜厚r(A2)との総膜厚比率r(A)が、式(2)の条件を満たし、かつ、ガラス基板100の表面102に形成されたIRカットコート110の高屈折率層B1の総膜厚r(B1)と、ガラス基板100の裏面104に形成されたIRカットコート120の高屈折率層B2の総膜厚r(B2)との総膜厚比率r(B)が、式(3)の条件を満たしている。
0.9 ≦ r (= r1 / r2) ≦ 1.1 (1)
Further, in the imaging lens 23, preferably, the total film thickness r (A1) of the low refractive index layer A1 of the IR cut coat 110 formed on the surface 102 of the glass substrate 100 and the IR formed on the back surface 104 of the glass substrate. The total film thickness ratio r (A) with the total film thickness r (A2) of the low refractive index layer A2 of the cut coat 120 satisfies the condition of the formula (2) and is formed on the surface 102 of the glass substrate 100. The total film thickness r (B1) of the high refractive index layer B1 of the IR cut coat 110 and the total film thickness r (B2) of the high refractive index layer B2 of the IR cut coat 120 formed on the back surface 104 of the glass substrate 100. The total film thickness ratio r (B) satisfies the condition of Expression (3).
  0.9≦r(A)(=r(A1)/r(A2))≦1.1 … (2)
  0.9≦r(B)(=r(B1)/r(B2))≦1.1 … (3)
 また、図2に示す通り、IRカットコート110上には樹脂部130が形成されている。樹脂部130は硬化性樹脂130Aで構成されている。樹脂部130は凸状を呈したレンズ部132とその周辺を覆う周辺部134とを有しており、レンズ部132と周辺部134とが一体成形されている。これと同様に、IRカットコート120下にも樹脂部140が形成されている。樹脂部140は硬化性樹脂140Aで構成されている。樹脂部140は凸状を呈したレンズ部142とその周辺を覆う周辺部144とを有しており、レンズ部142と周辺部144とが一体成形されている。
0.9 ≦ r (A) (= r (A1) / r (A2)) ≦ 1.1 (2)
0.9 ≦ r (B) (= r (B1) / r (B2)) ≦ 1.1 (3)
Further, as shown in FIG. 2, a resin portion 130 is formed on the IR cut coat 110. The resin part 130 is composed of a curable resin 130A. The resin part 130 has a lens part 132 having a convex shape and a peripheral part 134 covering the periphery thereof, and the lens part 132 and the peripheral part 134 are integrally formed. Similarly, the resin part 140 is also formed under the IR cut coat 120. The resin part 140 is composed of a curable resin 140A. The resin part 140 has a lens part 142 having a convex shape and a peripheral part 144 covering the periphery thereof, and the lens part 142 and the peripheral part 144 are integrally formed.
 撮像用レンズ23では、ガラス基板100の表面102側に形成された周辺部134の厚さをt1と、ガラス基板100の裏面104に形成された周辺部144の厚さをt2としたとき、IRカットコート110の総膜厚r1とIRカットコート120の総膜厚r2との関係において、式(4)又は式(5)の条件を満たしている。 In the imaging lens 23, when the thickness of the peripheral portion 134 formed on the front surface 102 side of the glass substrate 100 is t1, and the thickness of the peripheral portion 144 formed on the back surface 104 of the glass substrate 100 is t2, IR In the relationship between the total film thickness r1 of the cut coat 110 and the total film thickness r2 of the IR cut coat 120, the condition of formula (4) or formula (5) is satisfied.
  t1>t2,r1<r2 … (4)
  t1<t2,r1>r2 … (5)
 なお、ガラス基板100の表面102と裏面104とのうち、いずれか一方の側に樹脂部130,140(レンズ部132,142)を設けてもよい。この場合には、レンズ部がガラス基板100の片側にのみ設けられ、レンズ部が設けられた側のIRカットコート(例えばIRカットコート110)よりもレンズ部が設けられない側のIRカットコート(例えばIRカットコート120)の厚みを厚くすることで、撮像用レンズ23全体の応力の偏りを抑制し、更に反りを抑制することが可能となる。
t1> t2, r1 <r2 (4)
t1 <t2, r1> r2 (5)
In addition, you may provide the resin parts 130 and 140 (lens parts 132 and 142) in any one side among the surface 102 and the back surface 104 of the glass substrate 100. FIG. In this case, the lens portion is provided only on one side of the glass substrate 100, and the IR cut coat on the side where the lens portion is not provided (for example, the IR cut coat 110) on the side where the lens portion is provided (for example, the IR cut coat 110). For example, by increasing the thickness of the IR cut coat 120), it is possible to suppress the stress bias of the entire imaging lens 23 and further suppress the warpage.
 樹脂部130,140を構成する硬化性樹脂130A,140Aとしては光硬化性樹脂が使用可能であり、好ましくはアクリル樹脂やアリルエステル樹脂、エポキシ樹脂などが使用可能である。下記では使用可能な樹脂について説明する。
(1)アクリル樹脂
 重合反応に用いられる(メタ)アクリレートは特に制限はなく、一般的な製造方法により製造された下記(メタ)アクリレートを使用することができる。エステル(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、エーテル(メタ)アクリレート、アルキル(メタ)アクリレート、アルキレン(メタ)アクリレート、芳香環を有する(メタ)アクリレート、脂環式構造を有する(メタ)アクリレートが挙げられる。これらを1種類又は2種類以上を用いることができる。
As the curable resins 130A and 140A constituting the resin portions 130 and 140, a photocurable resin can be used, and preferably an acrylic resin, an allyl ester resin, an epoxy resin, or the like can be used. The usable resin will be described below.
(1) Acrylic resin The (meth) acrylate used for the polymerization reaction is not particularly limited, and the following (meth) acrylate produced by a general production method can be used. Ester (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, ether (meth) acrylate, alkyl (meth) acrylate, alkylene (meth) acrylate, (meth) acrylate having an aromatic ring, alicyclic structure The (meth) acrylate which has is mentioned. One or more of these can be used.
 特に脂環式構造を持つ(メタ)アクリレートが好ましく、酸素原子や窒素原子を含む脂環構造であってもよい。例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘプチル(メタ)アクリレート、ビシクロヘプチル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレートや、イソボロニル(メタ)アクリレート、水添ビスフェノール類のジ(メタ)アクリレート等が挙げられる。また特にアダマンタン骨格を持つと好ましい。例えば、2-アルキル-2-アダマンチル(メタ)アクリレート(特開2002-193883号公報参照)、アダマンチルジ(メタ)アクリレート(特開昭57-500785)、アダマンチルジカルボン酸ジアリル(特開昭60―100537号公報参照)、パーフルオロアダマンチルアクリル酸エステル(特開2004-123687号公報参照)、新中村化学製 2-メチル-2-アダマンチルメタクリレート、1,3-アダマンタンジオールジアクリレート、1,3,5-アダマンタントリオールトリアクリレート、不飽和カルボン酸アダマンチルエステル(特開2000-119220号公報参照)、3,3’-ジアルコキシカルボニル-1,1’ビアダマンタン(特開2001-253835号公報参照)、1,1’-ビアダマンタン化合物(米国特許第3342880号明細書参照)、テトラアダマンタン(特開2006-169177号公報参照)、2-アルキル-2-ヒドロキシアダマンタン、2-アルキレンアダマンタン、1,3-アダマンタンジカルボン酸ジ-tert-ブチル等の芳香環を有しないアダマンタン骨格を有する硬化性樹脂(特開2001-322950号公報参照)、ビス(ヒドロキシフェニル)アダマンタン類やビス(グリシジルオキシフェニル)アダマンタン(特開平11-35522号公報、特開平10-130371号公報参照)等が挙げられる。 (Meth) acrylate having an alicyclic structure is particularly preferable, and may be an alicyclic structure containing an oxygen atom or a nitrogen atom. For example, cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, cycloheptyl (meth) acrylate, bicycloheptyl (meth) acrylate, tricyclodecyl (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, isoboronyl (meth) ) Acrylates, di (meth) acrylates of hydrogenated bisphenols, and the like. In particular, it preferably has an adamantane skeleton. For example, 2-alkyl-2-adamantyl (meth) acrylate (refer to Japanese Patent Laid-Open No. 2002-193883), adamantyl di (meth) acrylate (Japanese Patent Laid-Open No. 57-5000785), diallyl adamantyl dicarboxylate (Japanese Patent Laid-Open No. 60-100537). Perfluoroadamantyl acrylate (see JP 2004-123687), Shin-Nakamura Chemical Co., Ltd. 2-methyl-2-adamantyl methacrylate, 1,3-adamantanediol diacrylate, 1,3,5- Adamantanetriol triacrylate, unsaturated carboxylic acid adamantyl ester (see JP 2000-119220 A), 3,3′-dialkoxycarbonyl-1,1 ′ biadamantane (see JP 2001-253835 A), 1, 1'-biadamantane compound (US Patent No. No. 3342880), tetraadamantane (see JP 2006-169177), 2-alkyl-2-hydroxyadamantane, 2-alkyleneadamantane, 1,3-adamantane dicarboxylate di-tert-butyl and the like A curable resin having an adamantane skeleton (see JP 2001-322950 A), bis (hydroxyphenyl) adamantanes and bis (glycidyloxyphenyl) adamantane (JP 11-35522 A, JP 10-130371 A). For example).
 また、その他反応性単量体を含有することも可能である。(メタ)アクリレートであれば、例えば、メチルアクリレート、メチルメタアクリレート、n-ブチルアクリレート、n-ブチルメタアクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルメタアクリレート、イソブチルアクリレート、イソブチルメタアクリレート、tert-ブチルアクリレート、tert-ブチルメタアクリレート、フェニルアクリレート、フェニルメタアクリレート、ベンジルアクリレート、ベンジルメタアクリレート、シクロヘキシルアクリレート、シクロヘキシルメタアクリレート、などが挙げられる。 It is also possible to contain other reactive monomers. In the case of (meth) acrylate, for example, methyl acrylate, methyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate Tert-butyl methacrylate, phenyl acrylate, phenyl methacrylate, benzyl acrylate, benzyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, and the like.
 多官能(メタ)アクリレートとして、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリペンタエリスリトールセプタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールテトラ(メタ)アクリレート、トリペンタエリスリトールトリ(メタ)アクリレートなどが挙げられる。
(2)アリルエステル樹脂
 アリル基を持ちラジカル重合による硬化する樹脂で、例えば次のものが挙げられるが、特に以下のものに限定されるわけではない。
Examples of the polyfunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) ) Acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, tripentaerythritol octa (meth) acrylate, tripentaerythritol septa (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tripenta Erythritol penta (meth) acrylate, tripentaerythritol tetra (meth) acrylate, tripentaerythritol (Meth) acrylate.
(2) Allyl ester resin A resin having an allyl group and cured by radical polymerization. Examples thereof include the following, but are not particularly limited to the following.
 芳香環を含まない臭素含有(メタ)アリルエステル(特開2003-66201号公報参照)、アリル(メタ)アクリレート(特開平5-286896号公報参照)、アリルエステル樹脂(特開平5-286896号公報、特開2003-66201号公報参照)、アクリル酸エステルとエポキシ基含有不飽和化合物の共重合化合物(特開2003-128725号公報参照)、アクリレート化合物(特開2003-147072号公報参照)、アクリルエステル化合物(特開2005-2064号公報参照)等が挙げられる。
(3)エポキシ樹脂
 エポキシ樹脂としては、エポキシ基を持ち光又は熱により重合硬化するものであれば特に限定されず、硬化開始剤としても酸無水物やカチオン発生剤等を用いることができる。エポキシ樹脂は硬化収縮率が低いため、成形精度の優れたレンズとすることができる点で好ましい。
Bromine-containing (meth) allyl ester not containing an aromatic ring (see JP-A-2003-66201), allyl (meth) acrylate (see JP-A-5-286896), allyl ester resin (JP-A-5-286896) , JP 2003-66201 A), a copolymer of an acrylate ester and an epoxy group-containing unsaturated compound (see JP 2003-128725 A), an acrylate compound (see JP 2003-147072 A), an acrylic And ester compounds (see JP 2005-2064 A).
(3) Epoxy resin The epoxy resin is not particularly limited as long as it has an epoxy group and is polymerized and cured by light or heat, and an acid anhydride, a cation generator, or the like can be used as a curing initiator. Epoxy resin is preferable in that it has a low cure shrinkage and can be a lens with excellent molding accuracy.
 エポキシの種類としては、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂が挙げられる。その一例として、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2’-ビス(4-グリシジルオキシシクロヘキシル)プロパン、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキシド、2-(3,4-エポキシシクロヘキシル)-5,5-スピロ-(3,4-エポキシシクロヘキサン)-1,3-ジオキサン、ビス(3,4-エポキシシクロヘキシル)アジペート、1,2-シクロプロパンジカルボン酸ビスグリシジルエステル等を挙げることができる。 Examples of the epoxy include novolak phenol type epoxy resin, biphenyl type epoxy resin, and dicyclopentadiene type epoxy resin. Examples include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, vinyl Cyclohexene dioxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3-dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2 -Cyclopropanedicarboxylic acid bisglycidyl ester and the like.
 硬化剤は硬化性樹脂材料を構成する上で使用されるものであり特に限定はない。また、本発明において、硬化性樹脂材料と、添加剤を添加した後の光学材料の透過率を比較する場合、硬化剤は添加剤には含まれないものとする。硬化剤としては、酸無水物硬化剤やフェノール硬化剤等を好ましく使用することができる。酸無水物硬化剤の具体例としては、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3-メチル-ヘキサヒドロ無水フタル酸、4-メチル-ヘキサヒドロ無水フタル酸、あるいは3-メチル-ヘキサヒドロ無水フタル酸と4-メチル-ヘキサヒドロ無水フタル酸との混合物、テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸等を挙げることができる。また、必要に応じて硬化促進剤が含有される。硬化促進剤としては、硬化性が良好で、着色がなく、熱硬化性樹脂の透明性を損なわないものであれば、特に限定されるものではないが、例えば、2-エチル-4-メチルイミダゾール(2E4MZ)等のイミダゾール類、3級アミン、4級アンモニウム塩、ジアザビシクロウンデセン等の双環式アミジン類とその誘導体、ホスフィン、ホスホニウム塩等を用いることができ、これらを1種、あるいは2種以上を混合して用いてもよい。 The curing agent is used for constituting the curable resin material and is not particularly limited. Moreover, in this invention, when comparing the transmittance | permeability of the curable resin material and the optical material after adding an additive, a hardening | curing agent shall not be contained in an additive. As the curing agent, an acid anhydride curing agent, a phenol curing agent, or the like can be preferably used. Specific examples of acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride Examples thereof include an acid, a mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, and methyl nadic anhydride. Moreover, a hardening accelerator is contained as needed. The curing accelerator is not particularly limited as long as it has good curability, is not colored, and does not impair the transparency of the thermosetting resin. For example, 2-ethyl-4-methylimidazole is not limited. Imidazoles such as (2E4MZ), tertiary amines, quaternary ammonium salts, bicyclic amidines such as diazabicycloundecene and their derivatives, phosphines, phosphonium salts, etc. can be used, Two or more kinds may be mixed and used.
 以上の撮像ユニット1では、外部光が光透過孔51aを通じてレンズユニット2に入射し、その入射光は絞り21の開口部21aで光量が調節され、撮像用レンズ23を透過し、スペーサ25の開口部25aから出射される。その後、その出射光はセンサデバイス4に入射するような構成となっている。 In the imaging unit 1 described above, external light enters the lens unit 2 through the light transmission hole 51 a, the amount of incident light is adjusted by the opening 21 a of the diaphragm 21, passes through the imaging lens 23, and opens the spacer 25. The light is emitted from the portion 25a. Thereafter, the emitted light is configured to enter the sensor device 4.
 続いて、撮像ユニット1の製造方法(撮像用レンズ23の製造方法を含む。)について説明する。 Subsequently, a manufacturing method of the imaging unit 1 (including a manufacturing method of the imaging lens 23) will be described.
 始めに、ウエハ状のガラス基板100を準備し、その表面102と裏面104とに対しそれぞれIRカットコート110,120を形成する。IRカットコート110,120の形成方法としては、公知の真空蒸着法やスパッタ、CVD(Chemical Vapour Deposition)法などを使用する。 First, a wafer-like glass substrate 100 is prepared, and IR cut coats 110 and 120 are formed on the front surface 102 and the back surface 104, respectively. As a method for forming the IR cut coats 110 and 120, a known vacuum deposition method, sputtering, a CVD (Chemical Vapor Deposition) method, or the like is used.
 その後、IRカットコート110,120に対する樹脂部130,140の密着性を高める目的で、IRカットコート110,120上に対しシランカップリング処理を実行する。詳しくは、シランカップリング剤(東レダウコーニング製SZ-6030)をエタノールで0.1~2.0wt%に希釈し、これに酢酸を加えてpHを3~5に調整する。そしてその溶液をIRカットコート110,120上に塗布して乾燥させる。その結果、IRカットコート110,120にはシラノール結合による強固に化学結合した表面が形成される。当該表面は硬化性樹脂(130A,140A)との密着性がよく、IRカットコート110,120上に形成される樹脂部130,140との密着性が大きく改善される。 Thereafter, silane coupling treatment is performed on the IR cut coats 110 and 120 for the purpose of improving the adhesion of the resin portions 130 and 140 to the IR cut coats 110 and 120. Specifically, a silane coupling agent (SZ-6030 manufactured by Toray Dow Corning) is diluted with ethanol to 0.1 to 2.0 wt%, and acetic acid is added to adjust the pH to 3 to 5. Then, the solution is applied on the IR cut coat 110, 120 and dried. As a result, the IR cut coats 110 and 120 are formed with chemically bonded surfaces by silanol bonds. The surface has good adhesion to the curable resin (130A, 140A), and the adhesion to the resin portions 130, 140 formed on the IR cut coats 110, 120 is greatly improved.
 その後、図3(a)に示す通り、金型200のキャビティ202に対し硬化性樹脂130Aを充填する。この場合、金型200の上部に硬化性樹脂130Aを載置し、その上方からガラス基板100を押圧しながら下方へ移動させ、キャビティ202に硬化性樹脂130Aを充填する。硬化性樹脂130Aを充填する場合には、真空引きしながら硬化性樹脂130Aを充填してもよい。真空引きしながら硬化性樹脂130Aを充填すれば、硬化性樹脂130Aに気泡が混入するのを防止することができる。 Thereafter, as shown in FIG. 3A, the cavity 202 of the mold 200 is filled with a curable resin 130A. In this case, the curable resin 130A is placed on the upper part of the mold 200, and the glass substrate 100 is moved downward while pressing it, and the cavity 202 is filled with the curable resin 130A. When filling the curable resin 130A, the curable resin 130A may be filled while evacuating. If the curable resin 130A is filled while evacuating, bubbles can be prevented from being mixed into the curable resin 130A.
 その後、金型200の上方に配置した光源210を点灯させ、硬化性樹脂130Aに光照射して硬化性樹脂130Aを硬化させる。光源210としては、高圧水銀ランプ、メタルハライドランプ、キセノンランプ、ハロゲンランプ、蛍光灯、ブラックライト、Gランプ、Fランプ等を使用でき、線状光源であってもよいし点状光源であってもよい。 Thereafter, the light source 210 disposed above the mold 200 is turned on, and the curable resin 130A is irradiated with light to cure the curable resin 130A. As the light source 210, a high pressure mercury lamp, a metal halide lamp, a xenon lamp, a halogen lamp, a fluorescent lamp, a black light, a G lamp, an F lamp, or the like can be used, and a linear light source or a point light source may be used. Good.
 光源210から光照射する場合には、複数の線状又は点状の光源210を格子状に配置して硬化性樹脂130Aに一度に光が到達するようにしてもよいし、線状又は点状の光源210をガラス基板100に対し平行にスキャニングして硬化性樹脂130Aに順次光が到達するようにしてもよい。この場合、好ましくは光照射時の輝度分布や照度(強度)分布を測定し、その測定結果に基づき照射回数,照射量,照射時間等を制御する。 In the case of irradiating light from the light source 210, a plurality of linear or point light sources 210 may be arranged in a lattice shape so that the light reaches the curable resin 130A at one time, or linear or dotted. The light source 210 may be scanned in parallel with the glass substrate 100 so that the light sequentially reaches the curable resin 130A. In this case, preferably, a luminance distribution and an illuminance (intensity) distribution during light irradiation are measured, and the number of irradiations, irradiation amount, irradiation time, and the like are controlled based on the measurement results.
 ここで、上記の通り、IRカットコート110,120は波長365nmの光に対し50%以上の透過率を有するから、光源210から発された光は、IRカットコート110,120(ガラス基板100を含む。)を十分に透過し、IRカットコート110,120が硬化性樹脂130Aの硬化を妨げるような要因とはならない。 Here, as described above, the IR cut coats 110 and 120 have a transmittance of 50% or more with respect to light having a wavelength of 365 nm. In other words, the IR cut coat 110, 120 is not a factor that hinders the curing of the curable resin 130A.
 なお、金型200が透明な材料(ガラス,樹脂など)から構成される場合には、金型200の下方に配置した光源210をも点灯させ、ガラス基板100側と金型200側との両側から光照射してもよい。 When the mold 200 is made of a transparent material (glass, resin, etc.), the light source 210 disposed below the mold 200 is also turned on, and both sides of the glass substrate 100 side and the mold 200 side are turned on. May be irradiated with light.
 その後、光照射により硬化性樹脂130Aが硬化すると、ガラス基板100の表面102上に樹脂部130(レンズ部132)が形成される。その後、図3(b)に示す通り、ガラス基板100を金型200から離型する。その後、図3(c)に示す通り、ガラス基板100を裏返して、ガラス基板100の表面102に樹脂部130を形成したのと同様に、金型200に硬化性樹脂140Aを載置してガラス基板100を押圧し、硬化性樹脂140Aに光照射し、ガラス基板100の裏面104に樹脂部140(レンズ部142)を形成する。 Thereafter, when the curable resin 130 </ b> A is cured by light irradiation, the resin portion 130 (lens portion 132) is formed on the surface 102 of the glass substrate 100. Thereafter, as shown in FIG. 3B, the glass substrate 100 is released from the mold 200. Thereafter, as shown in FIG. 3C, the glass substrate 100 is turned over and the curable resin 140 </ b> A is placed on the mold 200 in the same manner as the resin portion 130 is formed on the surface 102 of the glass substrate 100. The substrate 100 is pressed, and the curable resin 140 </ b> A is irradiated with light to form the resin portion 140 (lens portion 142) on the back surface 104 of the glass substrate 100.
 以上の処理により図4上段のレンズアレイ27が製造される。 The lens array 27 in the upper part of FIG. 4 is manufactured by the above processing.
 なお、図3では、その内容を明瞭にするためIRカットコート110,120を省略している。 In FIG. 3, the IR cut coats 110 and 120 are omitted for the sake of clarity.
 その後、図4上段に示す通り、複数のレンズ部132,142が形成されたレンズアレイ27に加えて、レンズ部132と同数の開口部21aが形成された絞りアレイ26と、レンズ部142と同数の開口部25aが形成されたスペーサアレイ28とを、準備する。絞りアレイ26とスペーサアレイ28は硬化性樹脂にカーボンを混ぜることにより黒色に着色させ、樹脂を射出成形法にて成形したものである。 Thereafter, as shown in the upper part of FIG. 4, in addition to the lens array 27 in which the plurality of lens portions 132 and 142 are formed, the aperture array 26 in which the same number of openings 21 a as the lens portions 132 are formed, and the same number as the lens portions 142. The spacer array 28 in which the openings 25a are formed is prepared. The aperture array 26 and the spacer array 28 are formed by mixing a curable resin with carbon and coloring it black, and molding the resin by an injection molding method.
 その後、接着剤により、レンズアレイ27に対し絞りアレイ26とスペーサアレイ28とを接合し、レンズユニットアレイ29を製造する。その後、図4中段,下段に示す通り、レンズユニットアレイ29をエンドミルにてレンズ部132,142ごとに個々に個片化して複数のレンズユニット2を製造し、各レンズユニット2をケーシング5の円筒部51に組み込み(接着し)、撮像ユニット1が製造される。 Thereafter, the aperture array 26 and the spacer array 28 are joined to the lens array 27 with an adhesive to manufacture the lens unit array 29. Thereafter, as shown in the middle and lower stages of FIG. 4, the lens unit array 29 is individually separated for each of the lens portions 132 and 142 by an end mill to produce a plurality of lens units 2, and each lens unit 2 is a cylinder of the casing 5. The imaging unit 1 is manufactured by being assembled (bonded) to the part 51.
 以上の本実施形態によれば、撮像用レンズ23において、ガラス基板100の表面102と裏面104とに対しそれぞれIRカットコート110,120が形成されるから、ガラス基板100の一方の面(表面102)にIRカットコート110を形成した際の膜応力を、他方の面(裏面104)へのIRカットコート120の形成により緩和することができる。 According to the present embodiment described above, in the imaging lens 23, the IR cut coats 110 and 120 are formed on the front surface 102 and the back surface 104 of the glass substrate 100, respectively. The film stress when the IR cut coat 110 is formed can be relaxed by forming the IR cut coat 120 on the other surface (back surface 104).
 すなわち、ガラス基板100の一方の面(表面102)へのIRカットコート110成膜時のガラス基板100の反りが、他方の面(裏面104)へのIRカットコート120成膜時のガラス基板100の反りで相殺され、全体としてガラス基板100の反り曲がりを抑制することができる。 That is, the warp of the glass substrate 100 when forming the IR cut coat 110 on one surface (front surface 102) of the glass substrate 100 is the glass substrate 100 when forming the IR cut coat 120 on the other surface (back surface 104). The warpage of the glass substrate 100 as a whole can be suppressed.
 この場合、特に上記式(1)~(3)の条件を満たせば(IRカットコート110,120の総膜厚や低屈折率層A1,A2の総膜厚、高屈折率層B1,B2などをガラス基板100の表面102と裏面104とでほぼ同一とすれば)、ガラス基板100の反り曲がりをより正確に抑制することができる。 In this case, in particular, if the conditions of the above formulas (1) to (3) are satisfied (the total film thickness of the IR cut coats 110 and 120, the total film thickness of the low refractive index layers A1 and A2, the high refractive index layers B1 and B2, etc.) If the surface 102 and the back surface 104 of the glass substrate 100 are substantially the same), the warping and bending of the glass substrate 100 can be more accurately suppressed.
 さらに本実施形態によれば、ガラス基板100の表面102と裏面104とに対しそれぞれIRカットコート110,120が形成されるから、IRカットコート110で遮光できる赤外領域と、IRカットコート120で遮光できる世紀外領域との2つの赤外領域にわたり、広い赤外領域で赤外線を遮光することも可能となる。
[変形例]
 上記実施形態では、1群の撮像用レンズ23で撮像光学系を構成した例を示したが、これに代えて、図5に示すように複数群(2群以上)の撮像用レンズで撮像光学系を構成してもよい。
Furthermore, according to the present embodiment, the IR cut coats 110 and 120 are respectively formed on the front surface 102 and the back surface 104 of the glass substrate 100, so that the IR region that can be shielded by the IR cut coat 110 and the IR cut coat 120 are used. It is also possible to block infrared light in a wide infrared region over two infrared regions, which can be shielded from light outside the century.
[Modification]
In the above-described embodiment, an example in which the imaging optical system is configured by one group of imaging lenses 23 has been described. Instead, as shown in FIG. 5, imaging optics is configured by a plurality of groups (two or more groups) of imaging lenses. A system may be configured.
 図5の撮像光学系では、3群の撮像用レンズ300,400,500で構成されている。撮像用レンズ300はガラス基板310を有し、その表面312にIRカットコート110が形成されており、その裏面314にIRカットコート120が形成されている。IRカットコート110上には樹脂部320が、IRカットコート120上には樹脂部330が形成されている。 The imaging optical system shown in FIG. 5 includes three groups of imaging lenses 300, 400, and 500. The imaging lens 300 has a glass substrate 310, an IR cut coat 110 is formed on the front surface 312, and an IR cut coat 120 is formed on the back surface 314 thereof. A resin part 320 is formed on the IR cut coat 110, and a resin part 330 is formed on the IR cut coat 120.
 これとほぼ同様に、撮像用レンズ400はガラス基板410を有しており、その表面412には樹脂部420が、その裏面414には樹脂部430が形成されている。撮像用レンズ500もガラス基板510を有しており、その表面512には樹脂部520が、その裏面514には樹脂部530が形成されている。ガラス基板310,410,510は撮像用レンズ23のガラス基板100に相当するものであり、樹脂部320,330,420,430,520,530は撮像用レンズ23の樹脂部130,140に相当するものである。 In substantially the same manner, the imaging lens 400 has a glass substrate 410, and a resin portion 420 is formed on the front surface 412 and a resin portion 430 is formed on the back surface 414 thereof. The imaging lens 500 also has a glass substrate 510, and a resin portion 520 is formed on the front surface 512 and a resin portion 530 is formed on the back surface 514 thereof. The glass substrates 310, 410, and 510 correspond to the glass substrate 100 of the imaging lens 23, and the resin portions 320, 330, 420, 430, 520, and 530 correspond to the resin portions 130 and 140 of the imaging lens 23. Is.
 当該撮像光学系では、センサデバイス4から最も遠い位置に配置された撮像用レンズ300においてIRカットコート110,120が形成されており(IRカットコート110,120は撮像用レンズ400のガラス基板410に形成されてもよい。)、センサデバイス4に対向する最も近い位置に配置された撮像用レンズ500においてはIRカットコート110,120が形成されていない。すなわち、IRカットコート110,120が形成されていない撮像用レンズ500が像面側に配置されている。 In the imaging optical system, the IR cut coats 110 and 120 are formed in the imaging lens 300 arranged at the position farthest from the sensor device 4 (the IR cut coats 110 and 120 are formed on the glass substrate 410 of the imaging lens 400. The IR cut coats 110 and 120 are not formed in the imaging lens 500 disposed at the closest position facing the sensor device 4. That is, the imaging lens 500 on which the IR cut coats 110 and 120 are not formed is disposed on the image plane side.
 ここで、上記の通り、IRカットコート110,120はトータル10~40層程度の低高屈折率膜の交互積層膜であり、この程度の多層膜を真空蒸着法にて成膜する途中で、数μm程度のゴミなどが膜中にコンタミネーションとして混在し、表面異物として問題になることがある。この異物が像としてセンサデバイス4面に結像すると、画像に異物が写りこむことになって問題になり、特にセンサ面に近いほど、光が集光されるので許容できる異物の大きさは厳しくなる。これに対し、本変形例によれば、センサデバイス4のセンサ面から遠い(物体面側の)ガラス基板310上にIRカットコート110,120を形成しているので、外観許容規格が緩和され、撮像光学系としての良品率が向上する。 Here, as described above, the IR cut coats 110 and 120 are alternately laminated films of a total of about 10 to 40 low-refractive index films, and in the middle of forming a multilayer film of this degree by vacuum deposition, There are cases where dust of about several μm or the like is mixed as contamination in the film and becomes a problem as surface foreign matter. If this foreign matter forms an image on the surface of the sensor device 4, the foreign matter is reflected in the image, which causes a problem. In particular, the closer the sensor surface is, the more light is collected, and the allowable foreign matter size is severe. Become. On the other hand, according to this modification, since the IR cut coats 110 and 120 are formed on the glass substrate 310 far from the sensor surface of the sensor device 4 (on the object surface side), the appearance tolerance standard is relaxed, The non-defective product rate as an imaging optical system is improved.
(1)サンプルの作製
 3枚のガラス基板(平面硝子ウエハ,大きさ8インチ,厚さ3mm)の各表裏両面に対し所定形状を有する光硬化性樹脂製のレンズ部を形成し、撮像用レンズを形成した。レンズ部の形成(光硬化性樹脂の硬化)に際しては6000mJ/cmのUVランプを照射した。その後、各撮像用レンズ同士を、スペーサを介して張り合わせて図5と同様の撮像光学系を複数作製した。
(1.1)実施例1
 複数の撮像光学系のうち、第1の撮像用レンズのガラス基板の表面(a面)に表1中「コート種タイプI」のIRカットコートを、その裏面(b面)に表1中「コート種タイプII」のIRカットコートを形成したものを「実施例1」のサンプルとした。
(1) Preparation of sample A lens part made of a photocurable resin having a predetermined shape is formed on each front and back surfaces of each of three glass substrates (planar glass wafer, size 8 inches, thickness 3 mm), and imaging lens Formed. In forming the lens part (curing of the photocurable resin), a UV lamp of 6000 mJ / cm 2 was irradiated. Thereafter, the imaging lenses were bonded to each other via a spacer to produce a plurality of imaging optical systems similar to those in FIG.
(1.1) Example 1
Among a plurality of imaging optical systems, the IR cut coat of “Coat Type I” in Table 1 is applied to the front surface (a surface) of the glass substrate of the first imaging lens, and “ The sample of “Example 1” was formed with an IR cut coat of “Coat Type Type II”.
 IRカットコートの形成に際しては、ガラス基板を真空蒸着装置内に設置してその片側の表面(a面)に対し、表1中「コート種タイプI」に示す態様で、真空蒸着法により低屈折率層としてSiO膜を、高屈折率層としてTiO膜を交互に積層(計18層)し、IRカットコートを形成した。その後、一旦、真空蒸着装置を大気開放してガラス基板を反転させ、表面にIRカットコートを形成したのと同様に、逆側の裏面(b面)に対しても表1中「コート種タイプII」に示す態様でIRカットコートを形成した(後述の実施例2~6,比較例1においてもIRカットコートの形成方法は同じである。)。 When forming an IR cut coat, a glass substrate is placed in a vacuum vapor deposition apparatus, and the surface (a surface) on one side is low refractive by vacuum vapor deposition in the manner shown in “Coat Type I” in Table 1. An SiO 2 film as a refractive index layer and a TiO 2 film as a high refractive index layer were alternately laminated (18 layers in total) to form an IR cut coat. After that, the vacuum deposition apparatus was once opened to the atmosphere, the glass substrate was inverted, and the IR cut coat was formed on the surface. The IR cut coat was formed in the mode shown in “II” (the IR cut coat forming method was the same in Examples 2 to 6 and Comparative Example 1 described later).
 なお、IRカットコートの形成後は、真空蒸着装置からガラス基板を取り出してIRカットコート上にシランカップリング処理を施し(シランカップリング剤(東レダウコーニング製SZ-6030)をエタノールで0.1~2.0wt%に希釈し、これに酢酸を加えてpHを3~5に調整し、その溶液をIRカットコート上に塗布して乾燥させる)、その処理後のガラス基板の表裏両面に対し所定形状を有する光硬化性樹脂製のレンズ部を形成した。
(1.2)実施例2
 複数の撮像光学系のうち、第2の撮像用レンズのガラス基板の表面(c面)に表1中「コート種タイプI」のIRカットコートを、その裏面(d面)に表1中「コート種タイプII」のIRカットコートを形成し、当該レンズユニットを「実施例2」のサンプルとした。
(1.3)実施例3
 複数の撮像光学系のうち、第3の撮像用レンズのガラス基板の表面(e面)に表1中「コート種タイプI」のIRカットコートを、その裏面(f面)に表1中「コート種タイプII」のIRカットコートを形成し、当該レンズユニットを「実施例3」のサンプルとした。
(1.4)比較例1
 複数の撮像光学系のうち、第1の撮像用レンズのガラス基板の表面(a面)にのみ表1中「コート種タイプI」,「コート種タイプII」のIRカットコートを形成し、当該レンズユニットを「比較例1」のサンプルとした。
After forming the IR cut coat, the glass substrate is taken out from the vacuum deposition apparatus and subjected to a silane coupling treatment on the IR cut coat (a silane coupling agent (SZ-6030 manufactured by Toray Dow Corning Co., Ltd.) is added in 0.1% with ethanol. Dilute to ~ 2.0wt%, add acetic acid to adjust pH to 3 ~ 5, apply the solution on IR cut coat and dry) A lens portion made of a photocurable resin having a predetermined shape was formed.
(1.2) Example 2
Among the plurality of imaging optical systems, the IR cut coat of “Coat Type I” in Table 1 is applied to the surface (c surface) of the glass substrate of the second imaging lens, and “ An IR cut coat of “Coat Type Type II” was formed, and the lens unit was used as a sample of “Example 2”.
(1.3) Example 3
Among a plurality of imaging optical systems, the IR cut coat of “Coat Type I” in Table 1 is applied to the surface (e surface) of the glass substrate of the third imaging lens, and “ An IR cut coat of “Coat Type Type II” was formed, and the lens unit was used as a sample of “Example 3”.
(1.4) Comparative Example 1
Among the plurality of imaging optical systems, an IR cut coat of “coat type type I” and “coat type type II” in Table 1 is formed only on the surface (a surface) of the glass substrate of the first imaging lens. The lens unit was a sample of “Comparative Example 1”.
 なお、比較例1のサンプルでは、ガラス基板にまずコート種タイプIのIRカットコートを形成し、その上にコート種タイプIIのIRカットコートを形成した。
(1.5)実施例4
 複数の撮像光学系のうち、第1の撮像用レンズのガラス基板の表面(a面)に表2中「コート種タイプIII」のIRカットコートを、その裏面(b面)に表2中「コート種タイプIV」のIRカットコートを形成したものを「実施例4」のサンプルとした。
(1.6)実施例5
 複数の撮像光学系のうち、第1の撮像用レンズのガラス基板の表面(a面)に表3中「コート種タイプV」のIRカットコートを、その裏面(b面)に表3中「コート種タイプVI」のIRカットコートを形成したものを「実施例5」のサンプルとした。
In the sample of Comparative Example 1, an IR cut coat of coat type I was first formed on a glass substrate, and an IR cut coat of coat type II was formed thereon.
(1.5) Example 4
Among a plurality of imaging optical systems, the IR cut coat of “Coat Type III” in Table 2 is applied to the front surface (a surface) of the glass substrate of the first imaging lens, and “ The sample of “Example 4” was formed with an IR cut coat of “coat type IV”.
(1.6) Example 5
Among the plurality of imaging optical systems, the IR cut coat of “Coat Type V” in Table 3 is applied to the front surface (a surface) of the glass substrate of the first imaging lens, and “ The sample of Example 5 was formed with an IR cut coat of “Coat Type Type VI”.
 なお、実施例5のサンプルでは、IRカットコートのTiO膜の成膜時において成膜速度を8Å/秒とし、TiO膜の成膜速度をコート種タイプI~IVより大きくした。この場合、波長365nmの光に対するIRカットコートの透過率が減少する(表4参照)。
(1.7)実施例6
 複数の撮像光学系のうち、第1の撮像用レンズのガラス基板の表面(a面)に表3中「コート種タイプI」のIRカットコートを、その裏面(b面)に表3中「コート種タイプII」のIRカットコートを形成したものを「実施例6」のサンプルとした。
In the sample of Example 5, when forming the IR cut coat TiO 2 film, the film formation rate was 8 Å / sec, and the film formation rate of the TiO 2 film was larger than those of the coat type types I to IV. In this case, the transmittance of the IR cut coat with respect to light having a wavelength of 365 nm decreases (see Table 4).
(1.7) Example 6
Among the plurality of imaging optical systems, the IR cut coat of “Coat Type I” in Table 3 is applied to the front surface (a surface) of the glass substrate of the first imaging lens, and “ The sample of Example 6 was formed with an IR cut coat of “Coat Type Type II”.
 なお、実施例6のサンプルでは、IRカットコートの形成後においてシランカップリング処理を施さなかった。 In the sample of Example 6, the silane coupling treatment was not performed after the IR cut coat was formed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(2)サンプルの評価
(2.1)ガラス基板の反り量の測定
 各サンプルにおいて、ガラス基板にIRカットコートを形成した時の中心部と外周部との高さの差を測定し、ガラス基板の反り量(変形量)を算出した。その算出結果を表4に示す。表4中、「○」,「△」,「×」の基準は以下の通りとした。
(2) Sample evaluation (2.1) Measurement of glass substrate warpage In each sample, the difference in height between the central portion and the outer periphery when an IR cut coat was formed on the glass substrate was measured. The amount of warpage (deformation) was calculated. The calculation results are shown in Table 4. In Table 4, the criteria for “◯”, “Δ”, and “×” were as follows.
  ○…1mm未満の変形
  △…1~2mmの変形
  ×…2mmを超える変形
 なお、ガラス基板において2mmを超える変形があると、スペーサとの接着時において不具合があると考えられる。
(2.2)異物の許容大きさの測定
 各サンプルにおいて、IRカットコートへの異物の混入がどの程度の大きさまで許容されるかを測定した。その測定結果を表4に示す。異物の長辺が20μm以下であると外観良品率が90%を割り込み不良品とされることから、表4では異物の長辺が20μmを越える場合には「○」と、その長辺が20μm以下である場合には「△」としている。
(2.3)レンズ部の硬化性評価
 各サンプルをアセトン中に10分間浸漬させ、レンズ部(樹脂)の重量減%を測定し、その測定結果からレンズ部の硬化性を評価した。その評価結果を表4に示す。表4では、10%減に満たない場合には硬化が十分であるとして「○」と、10%減以上の溶出が認められたときに硬化不足と判断して「△」としている。
(2.4)ガラス基板とレンズ部との密着性評価
 各サンプルおいてレンズ部にテープを貼り付け、そのテープを剥がしたときにレンズ部がガラス基板から剥離するか否かを試験し(テープ剥離試験をおこない)、その試験結果からガラス基板とレンズ部との密着性を評価した。その評価結果を表4に示す。表4では、レンズ部の剥離が認められない場合は密着性は十分であるとして「○」と、レンズ部の剥離が認められる場合には密着性が不足していると判断して「△」としている。
○: Deformation of less than 1 mm Δ: Deformation of 1 to 2 mm x Deformation of more than 2 mm If there is a deformation of more than 2 mm in the glass substrate, it is considered that there is a problem when adhering to the spacer.
(2.2) Measurement of allowable size of foreign matter In each sample, the extent to which foreign matter was allowed to enter the IR cut coat was measured. The measurement results are shown in Table 4. If the long side of the foreign material is 20 μm or less, the non-defective product rate is 90%, and the defective product is interrupted. Therefore, in Table 4, when the long side of the foreign material exceeds 20 μm, “○” is indicated, and the long side is 20 μm. In the following cases, “Δ” is indicated.
(2.3) Evaluation of Curability of Lens Part Each sample was immersed in acetone for 10 minutes, the weight loss% of the lens part (resin) was measured, and the curability of the lens part was evaluated from the measurement result. The evaluation results are shown in Table 4. In Table 4, when it is less than 10% reduction, it is determined that the curing is sufficient, and when the elution of 10% reduction or more is recognized, it is determined that the curing is insufficient and is indicated by “Δ”.
(2.4) Evaluation of Adhesiveness between Glass Substrate and Lens Part A tape was applied to the lens part in each sample, and it was tested whether the lens part was peeled from the glass substrate when the tape was peeled off (tape A peel test was performed), and the adhesion between the glass substrate and the lens portion was evaluated from the test results. The evaluation results are shown in Table 4. In Table 4, if the lens part is not peeled off, it is judged that the adhesion is sufficient, and if the lens part is peeled off, it is judged that the adhesion is insufficient. It is said.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(3)まとめ
 表4の結果から、ガラス基板の表裏両面に対しそれぞれIRカットコートを形成したサンプルでは、ガラス基板の反り量が小さく、ガラス基板の表裏両面に対しIRカットコートを形成することが、ガラス基板の反り曲がりを抑制する上で有用であることがわかる。
(3) Summary From the results of Table 4, in the sample in which the IR cut coat is formed on each of the front and back surfaces of the glass substrate, the warp amount of the glass substrate is small, and the IR cut coat can be formed on both the front and back surfaces of the glass substrate. It turns out that it is useful in suppressing the curvature of a glass substrate.
 1 撮像ユニット
 2 レンズユニット
 21 絞り
 21a 開口部
 23 撮像用レンズ
 25 スペーサ
 25a 開口部
 26 絞りアレイ
 27 レンズアレイ
 28 スペーサアレイ
 4 センサデバイス
 5 ケーシング
 51 円筒部
 51a 光透過孔
 53 ベース部
 100 ガラス基板
 102 表面
 104 裏面
 110,120 IRカットコート
 130,140 樹脂部
 132,142 レンズ部
 134,144 周辺部
 200 金型
 202 キャビティ
 210 光源
 300,400,500 撮像用レンズ
 310,410,510 ガラス基板
 320,330,420,430,520,530 樹脂部
DESCRIPTION OF SYMBOLS 1 Imaging unit 2 Lens unit 21 Aperture 21a Aperture 23 Imaging lens 25 Spacer 25a Aperture 26 Aperture array 27 Lens array 28 Spacer array 4 Sensor device 5 Casing 51 Cylindrical part 51a Light transmission hole 53 Base part 100 Glass substrate 102 Surface 104 Back surface 110, 120 IR cut coat 130, 140 Resin portion 132, 142 Lens portion 134, 144 Peripheral portion 200 Mold 202 Cavity 210 Light source 300, 400, 500 Imaging lens 310, 410, 510 Glass substrate 320, 330, 420, 430, 520, 530 Resin part

Claims (8)

  1.  ガラス基板上に硬化性樹脂製のレンズ部を形成した撮像用レンズを有する撮像光学系であって、
     前記撮像用レンズを少なくとも1群以上有し、
     前記ガラス基板の表裏両面に対しIRカットコートがそれぞれ形成されていることを特徴とする撮像光学系。
    An imaging optical system having an imaging lens in which a lens portion made of a curable resin is formed on a glass substrate,
    Having at least one group of the imaging lenses,
    An imaging optical system, wherein an IR cut coat is formed on each of the front and back surfaces of the glass substrate.
  2.  請求項1に記載の撮像光学系において、
     前記ガラス基板の一方の面に形成されたIRカットコートの総膜厚r1と、前記ガラス基板の他方の面に形成されたIRカットコートの総膜厚r2との総膜厚比率rが、式(1)の条件を満たすことを特徴とする撮像光学系。
       0.9≦r(=r1/r2)≦1.1 … (1)
    The imaging optical system according to claim 1,
    The total film thickness ratio r of the total film thickness r1 of the IR cut coat formed on one surface of the glass substrate and the total film thickness r2 of the IR cut coat formed on the other surface of the glass substrate is expressed by the formula An imaging optical system characterized by satisfying the condition (1).
    0.9 ≦ r (= r1 / r2) ≦ 1.1 (1)
  3.  請求項1又は2に記載の撮像光学系において、
     前記IRカットコートが、低屈折率材料から構成された低屈折率層Aと、高屈折率材料から構成された高屈折率層Bとを交互に複数積層した交互多層膜であり、
     前記ガラス基板の一方の面に形成されたIRカットコートの低屈折率層A1の総膜厚r(A1)と、前記ガラス基板の他方の面に形成されたIRカットコートの低屈折率層A2の総膜厚r(A2)との総膜厚比率r(A)が、式(2)の条件を満たし、かつ、前記ガラス基板の一方の面に形成されたIRカットコートの高屈折率層B1の総膜厚r(B1)と、前記ガラス基板の他方の面に形成されたIRカットコートの高屈折率層B2の総膜厚r(B2)との総膜厚比率r(B)が、式(3)の条件を満たすことを特徴とする撮像光学系。
      0.9≦r(A)(=r(A1)/r(A2))≦1.1 … (2)
      0.9≦r(B)(=r(B1)/r(B2))≦1.1 … (3)
    The imaging optical system according to claim 1 or 2,
    The IR cut coat is an alternating multilayer film in which a plurality of low refractive index layers A made of a low refractive index material and high refractive index layers B made of a high refractive index material are alternately stacked.
    The total thickness r (A1) of the IR cut coat low refractive index layer A1 formed on one surface of the glass substrate, and the IR cut coat low refractive index layer A2 formed on the other surface of the glass substrate. The total film thickness ratio r (A2) to the total film thickness r (A2) satisfies the condition of the formula (2), and the high refractive index layer of the IR cut coat formed on one surface of the glass substrate The total film thickness ratio r (B) between the total film thickness r (B1) of B1 and the total film thickness r (B2) of the high refractive index layer B2 of the IR cut coat formed on the other surface of the glass substrate is An imaging optical system characterized by satisfying the condition of Expression (3).
    0.9 ≦ r (A) (= r (A1) / r (A2)) ≦ 1.1 (2)
    0.9 ≦ r (B) (= r (B1) / r (B2)) ≦ 1.1 (3)
  4.  請求項1~3のいずれか一項に記載の撮像光学系において、
     前記撮像用レンズのガラス基板上には、前記レンズ部の周辺に設けられる硬化性樹脂製の周辺部が形成され、前記ガラス基板の一方の面に形成された前記周辺部の厚さをt1と、前記ガラス基板の一方の面に形成された前記周辺部の厚さをt2とし、
     前記ガラス基板の一方の面に形成されたIRカットコートの総膜厚をr1と、前記ガラス基板の他方の面に形成されたIRカットコートの総膜厚をr2としたとき、
     式(4)又は式(5)の条件を満たすことを特徴とする撮像光学系。
      t1>t2,r1<r2 … (4)
      t1<t2,r1>r2 … (5)
    The imaging optical system according to any one of claims 1 to 3,
    On the glass substrate of the imaging lens, a peripheral portion made of a curable resin provided around the lens portion is formed, and the thickness of the peripheral portion formed on one surface of the glass substrate is t1. , The thickness of the peripheral portion formed on one surface of the glass substrate is t2,
    When the total film thickness of the IR cut coat formed on one surface of the glass substrate is r1, and the total film thickness of the IR cut coat formed on the other surface of the glass substrate is r2,
    An imaging optical system characterized by satisfying the condition of Expression (4) or Expression (5).
    t1> t2, r1 <r2 (4)
    t1 <t2, r1> r2 (5)
  5.  請求項1~4のいずれか一項に記載の撮像光学系において、
     前記撮像用レンズを2群以上有し、
     前記撮像用レンズのうち、ガラス基板に対し前記IRカットコートが形成されていない前記撮像用レンズが像面側に配置されることを特徴とする撮像光学系。
    The imaging optical system according to any one of claims 1 to 4,
    Having two or more groups of imaging lenses;
    Of the imaging lenses, an imaging optical system in which the imaging lens in which the IR cut coat is not formed on a glass substrate is disposed on the image plane side.
  6.  請求項1~5のいずれか一項に記載の撮像光学系において、
     前記硬化性樹脂が光硬化性樹脂であり、
     前記IRカットコートが、波長365nmの光に対し50%以上の透過率を有することを特徴とする撮像光学系。
    In the imaging optical system according to any one of claims 1 to 5,
    The curable resin is a photocurable resin,
    The imaging optical system, wherein the IR cut coat has a transmittance of 50% or more with respect to light having a wavelength of 365 nm.
  7.  請求項6に記載の撮像光学系において、
     前記光硬化性樹脂がアクリル樹脂又はエポキシ樹脂であることを特徴とする撮像光学系。
    The imaging optical system according to claim 6,
    An imaging optical system, wherein the photocurable resin is an acrylic resin or an epoxy resin.
  8.  ガラス基板の表裏両面に対しIRカットコートを形成する工程と、
     前記IRカットコート上にシランカップリング処理を実行する工程と、
     前記シランカップリング処理後の前記IRカットコート上に複数の硬化性樹脂製のレンズ部を形成する工程と、
     前記レンズ部ごとに前記ガラス基板を切断する工程と、
     を備えることを特徴とする撮像用レンズの製造方法。
    Forming an IR cut coat on both the front and back surfaces of the glass substrate;
    Performing a silane coupling process on the IR cut coat;
    Forming a plurality of curable resin lens portions on the IR cut coat after the silane coupling treatment;
    Cutting the glass substrate for each lens part;
    A method for manufacturing an imaging lens, comprising:
PCT/JP2009/059962 2008-06-25 2009-06-01 Imaging optical system, and imaging lens manufacturing method WO2009157273A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980115664XA CN102016654A (en) 2008-06-25 2009-06-01 Imaging optical system, and imaging lens manufacturing method
JP2010517835A JPWO2009157273A1 (en) 2008-06-25 2009-06-01 Imaging optical system and manufacturing method of imaging lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008165424 2008-06-25
JP2008-165424 2008-06-25

Publications (1)

Publication Number Publication Date
WO2009157273A1 true WO2009157273A1 (en) 2009-12-30

Family

ID=41444343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059962 WO2009157273A1 (en) 2008-06-25 2009-06-01 Imaging optical system, and imaging lens manufacturing method

Country Status (3)

Country Link
JP (1) JPWO2009157273A1 (en)
CN (1) CN102016654A (en)
WO (1) WO2009157273A1 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472839A (en) * 2010-04-27 2012-05-23 柯尼卡美能达精密光学株式会社 Image capture lens, wafer lens, wafer lens laminate, method of manufacturing image capture lens, image capture lens intermediate product, method of manufacturing image capture lens intermediate product
JP2012123239A (en) * 2010-12-09 2012-06-28 Konica Minolta Advanced Layers Inc Photographic lens, wafer lens provided with spacer and wafer lens laminate
JP2014521117A (en) * 2011-06-28 2014-08-25 ペリカン イメージング コーポレイション Optical array for use with array cameras
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US9578237B2 (en) 2011-06-28 2017-02-21 Fotonation Cayman Limited Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
US9712759B2 (en) 2008-05-20 2017-07-18 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US10412314B2 (en) 2013-03-14 2019-09-10 Fotonation Limited Systems and methods for photometric normalization in array cameras
US10455168B2 (en) 2010-05-12 2019-10-22 Fotonation Limited Imager array interfaces
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210018249A (en) * 2018-06-08 2021-02-17 소니 세미컨덕터 솔루션즈 가부시키가이샤 Imaging device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296306A (en) * 1985-06-25 1986-12-27 Horiba Ltd Infrared interference filter made of multi-layered film
JPH05100104A (en) * 1991-10-04 1993-04-23 Olympus Optical Co Ltd Composite type optical parts
JPH05127018A (en) * 1991-11-02 1993-05-25 Koshin Kogaku:Kk Strain removing method for substrate subjected to vapor deposition and filter
JPH0933719A (en) * 1995-07-21 1997-02-07 Koshin Kogaku:Kk Method and device for producing multilayered dielectric film filter
JPH11202126A (en) * 1998-01-12 1999-07-30 Japan Aviation Electron Ind Ltd Dielectric multilayer film filter
JP2006323365A (en) * 2005-05-18 2006-11-30 Samsung Electro-Mechanics Co Ltd Wafer-scale lens, and optical system equipped with the same
US20070024958A1 (en) * 2005-08-01 2007-02-01 Samsung Electro-Mechanics Co., Ltd. Lens system for ultra-small camera module and image forming lens with infrared ray filtering function used therefor
JP3976780B1 (en) * 2007-05-17 2007-09-19 マイルストーン株式会社 Imaging lens
JP2007248728A (en) * 2006-03-15 2007-09-27 Nitto Denko Corp Resin sheet for molding optical member and optical member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100394214C (en) * 2002-11-21 2008-06-11 台达电子工业股份有限公司 Film-coating method by means of film stress balance

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296306A (en) * 1985-06-25 1986-12-27 Horiba Ltd Infrared interference filter made of multi-layered film
JPH05100104A (en) * 1991-10-04 1993-04-23 Olympus Optical Co Ltd Composite type optical parts
JPH05127018A (en) * 1991-11-02 1993-05-25 Koshin Kogaku:Kk Strain removing method for substrate subjected to vapor deposition and filter
JPH0933719A (en) * 1995-07-21 1997-02-07 Koshin Kogaku:Kk Method and device for producing multilayered dielectric film filter
JPH11202126A (en) * 1998-01-12 1999-07-30 Japan Aviation Electron Ind Ltd Dielectric multilayer film filter
JP2006323365A (en) * 2005-05-18 2006-11-30 Samsung Electro-Mechanics Co Ltd Wafer-scale lens, and optical system equipped with the same
US20070024958A1 (en) * 2005-08-01 2007-02-01 Samsung Electro-Mechanics Co., Ltd. Lens system for ultra-small camera module and image forming lens with infrared ray filtering function used therefor
JP2007248728A (en) * 2006-03-15 2007-09-27 Nitto Denko Corp Resin sheet for molding optical member and optical member
JP3976780B1 (en) * 2007-05-17 2007-09-19 マイルストーン株式会社 Imaging lens

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11412158B2 (en) 2008-05-20 2022-08-09 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9712759B2 (en) 2008-05-20 2017-07-18 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US10142560B2 (en) 2008-05-20 2018-11-27 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
CN102472839A (en) * 2010-04-27 2012-05-23 柯尼卡美能达精密光学株式会社 Image capture lens, wafer lens, wafer lens laminate, method of manufacturing image capture lens, image capture lens intermediate product, method of manufacturing image capture lens intermediate product
CN102472839B (en) * 2010-04-27 2015-05-13 柯尼卡美能达精密光学株式会社 Image capture lens, wafer lens, wafer lens laminate, method of manufacturing image capture lens, image capture lens intermediate product, method of manufacturing image capture lens intermediate product
US10455168B2 (en) 2010-05-12 2019-10-22 Fotonation Limited Imager array interfaces
JP2012123239A (en) * 2010-12-09 2012-06-28 Konica Minolta Advanced Layers Inc Photographic lens, wafer lens provided with spacer and wafer lens laminate
US11423513B2 (en) 2010-12-14 2022-08-23 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US11875475B2 (en) 2010-12-14 2024-01-16 Adeia Imaging Llc Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10742861B2 (en) 2011-05-11 2020-08-11 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
JP2014521117A (en) * 2011-06-28 2014-08-25 ペリカン イメージング コーポレイション Optical array for use with array cameras
US9578237B2 (en) 2011-06-28 2017-02-21 Fotonation Cayman Limited Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing
US10375302B2 (en) 2011-09-19 2019-08-06 Fotonation Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US10275676B2 (en) 2011-09-28 2019-04-30 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US11729365B2 (en) 2011-09-28 2023-08-15 Adela Imaging LLC Systems and methods for encoding image files containing depth maps stored as metadata
US10984276B2 (en) 2011-09-28 2021-04-20 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US10430682B2 (en) 2011-09-28 2019-10-01 Fotonation Limited Systems and methods for decoding image files containing depth maps stored as metadata
US20180197035A1 (en) 2011-09-28 2018-07-12 Fotonation Cayman Limited Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata
US10019816B2 (en) 2011-09-28 2018-07-10 Fotonation Cayman Limited Systems and methods for decoding image files containing depth maps stored as metadata
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US10311649B2 (en) 2012-02-21 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US10334241B2 (en) 2012-06-28 2019-06-25 Fotonation Limited Systems and methods for detecting defective camera arrays and optic arrays
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US11022725B2 (en) 2012-06-30 2021-06-01 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US10380752B2 (en) 2012-08-21 2019-08-13 Fotonation Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US10462362B2 (en) 2012-08-23 2019-10-29 Fotonation Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US11570423B2 (en) 2013-03-10 2023-01-31 Adeia Imaging Llc System and methods for calibration of an array camera
US10225543B2 (en) 2013-03-10 2019-03-05 Fotonation Limited System and methods for calibration of an array camera
US11272161B2 (en) 2013-03-10 2022-03-08 Fotonation Limited System and methods for calibration of an array camera
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US10958892B2 (en) 2013-03-10 2021-03-23 Fotonation Limited System and methods for calibration of an array camera
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US10412314B2 (en) 2013-03-14 2019-09-10 Fotonation Limited Systems and methods for photometric normalization in array cameras
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10547772B2 (en) 2013-03-14 2020-01-28 Fotonation Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10542208B2 (en) 2013-03-15 2020-01-21 Fotonation Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US10455218B2 (en) 2013-03-15 2019-10-22 Fotonation Limited Systems and methods for estimating depth using stereo array cameras
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10638099B2 (en) 2013-03-15 2020-04-28 Fotonation Limited Extended color processing on pelican array cameras
US10674138B2 (en) 2013-03-15 2020-06-02 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10540806B2 (en) 2013-09-27 2020-01-21 Fotonation Limited Systems and methods for depth-assisted perspective distortion correction
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US10767981B2 (en) 2013-11-18 2020-09-08 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US11486698B2 (en) 2013-11-18 2022-11-01 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10708492B2 (en) 2013-11-26 2020-07-07 Fotonation Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US10574905B2 (en) 2014-03-07 2020-02-25 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US11546576B2 (en) 2014-09-29 2023-01-03 Adeia Imaging Llc Systems and methods for dynamic calibration of array cameras
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US10818026B2 (en) 2017-08-21 2020-10-27 Fotonation Limited Systems and methods for hybrid depth regularization
US11562498B2 (en) 2017-08-21 2023-01-24 Adela Imaging LLC Systems and methods for hybrid depth regularization
US11699273B2 (en) 2019-09-17 2023-07-11 Intrinsic Innovation Llc Systems and methods for surface modeling using polarization cues
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11842495B2 (en) 2019-11-30 2023-12-12 Intrinsic Innovation Llc Systems and methods for transparent object segmentation using polarization cues
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11683594B2 (en) 2021-04-15 2023-06-20 Intrinsic Innovation Llc Systems and methods for camera exposure control
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers

Also Published As

Publication number Publication date
CN102016654A (en) 2011-04-13
JPWO2009157273A1 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
WO2009157273A1 (en) Imaging optical system, and imaging lens manufacturing method
JP4924777B2 (en) Imaging lens, wafer lens, wafer lens laminate, imaging lens manufacturing method, imaging lens intermediate, imaging lens intermediate manufacturing method
WO2011055655A1 (en) Image pickup device, optical unit, wafer lens laminated body, and method for manufacturing wafer lens laminated body
US20070225466A1 (en) Curable organometallic composition, organometallic polymer material and optical component
US20110286094A1 (en) Wire-grid polarizer and process for producing the same
WO2013161767A1 (en) Optical device
JP2008266578A (en) Optical polymer material and optical component
KR20170028083A (en) Cover window plate and manufacturing method thereof
JP2021532423A (en) Anti-reflection film, polarizing plate and display device
KR102068138B1 (en) Diffraction light guide plate and manufacturing method for diffraction light guide plate
US20130118685A1 (en) Wafer lens member producing method, image pickup lens producing method, image pickup module producing method, and image pickup module-installed electronic device producing method
JP2010105357A (en) Molding device, molding die member, wafer lens, and method of manufacturing wafer lens molding die
JPWO2018110190A1 (en) Optical element, imaging element package, imaging apparatus and electronic apparatus
JP2011237472A (en) Imaging lens
US20080233417A1 (en) Optical polymer material and optical component
US20090244729A1 (en) Method for manufacturing optical element, optical element unit, and imaging unit
JP2004013081A (en) Composite optical element, method for manufacturing the same, and optical apparatus
WO2009157310A1 (en) Imaging optical system
JP2007191687A (en) Material for forming organic-inorganic composite, organic-inorganic composite, its manufacturing method and optical device
KR20150029921A (en) A colored photosensitive resin composition for forming the frontal light-shielding layer of a display device
JP5668446B2 (en) Imaging lens, wafer lens with spacer, and wafer lens laminate
US20230176249A1 (en) Hybrid Lens and Method for Manufacturing Hybrid Lens
US20230110024A1 (en) Optical element, optical equipment, and imaging apparatus
KR101808757B1 (en) Photocurable resin composition for imprint lithography
JP2009265562A (en) Optical element and method of manufacturing electronic equipment with the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115664.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769983

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517835

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09769983

Country of ref document: EP

Kind code of ref document: A1