WO2008041469A1 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
WO2008041469A1
WO2008041469A1 PCT/JP2007/067921 JP2007067921W WO2008041469A1 WO 2008041469 A1 WO2008041469 A1 WO 2008041469A1 JP 2007067921 W JP2007067921 W JP 2007067921W WO 2008041469 A1 WO2008041469 A1 WO 2008041469A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
transparent member
imaging
imaging device
electric field
Prior art date
Application number
PCT/JP2007/067921
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Nishizawa
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006271441A external-priority patent/JP2008090026A/en
Priority claimed from JP2006271443A external-priority patent/JP2008092314A/en
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Publication of WO2008041469A1 publication Critical patent/WO2008041469A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/04Focusing arrangements of general interest for cameras, projectors or printers adjusting position of image plane without moving lens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Definitions

  • the present invention relates to an image pickup apparatus using a semiconductor image pickup device, and more particularly to an image pickup apparatus that switches autofocus or shooting mode.
  • FIG. 6 is a diagram showing an outline of a conventional imaging apparatus with an autofocus function.
  • Image pickup devices that integrate a lens and an image sensor as shown in Fig. 6 are often used for mobile terminals with cameras.
  • the lens 42 is composed of two aspheric lenses.
  • the lens 42 is held by a resin lens barrel 43.
  • a part of the lens barrel 43 is configured to engage with an actuator 41 using a piezoelectric element.
  • a lens 42 and a semiconductor imaging device 44 are disposed on the optical axis, and an IR filter 45 is inserted therebetween.
  • the imaging device shown in FIG. 6 Light from the subject is collected by the lens 42.
  • the condensed light is incident on the semiconductor imaging device 44 after the infrared light is limited by the IR filter 45.
  • the semiconductor imaging device 44 converts light from the subject into an electric signal, and then performs focusing processing based on the high-frequency component signal by a signal processing circuit (not shown).
  • the imaging apparatus determines that the in-focus state is achieved when the high frequency component becomes higher than a predetermined threshold value.
  • a method such as mountain climbing is used for the sequence up to this focusing. Focusing is performed while pressing the shutter button (halfway). After the in-focus determination is made, the imaging operation is completed by further depressing the shutter button.
  • the actuator 41 determines whether the lens is based on an external signal.
  • the actuator 41 determines whether the lens is based on an external signal.
  • Japanese Patent Laid-Open No. 2005-300671 discloses that in a foldable mobile phone with a camera, when taking a QR code, the mobile phone can be opened at a substantially right angle so that macro photography can be performed. It is disclosed that the shooting mode is switched.
  • Japanese Patent Application Laid-Open No. 2005-276743 discloses an invention that changes the in-focus distance by operating a focus switching lever arranged on the side of a mobile phone in a mobile phone with a camera. ing.
  • the entire lens is moved in the optical axis direction by a lever or the like, and switching between the normal imaging mode and the macro imaging mode is performed. Disclosure of the invention
  • the actuator moves the lens in the optical axis direction.
  • the lens is moved by the actuator.
  • the overall size of the imaging device is larger than that of an equivalent fixed-focus imaging device, which hinders downsizing of the imaging device.
  • the guide component (guide component) and the lens component slide. This sliding generates wear powder, which causes the captured image to deteriorate.
  • the entire lens moves in the optical axis direction.
  • the entire lens moves to the subject side during macro photography.
  • the size of the entire imaging device in the optical axis direction becomes larger during macro shooting, so the imaging device with macro switching is downsized compared to a fixed-focus imaging device that does not have the same macro switching function. Was inhibited.
  • the size of the imaging device is the maximum length during macro shooting. Therefore, when the imaging device is mounted on a portable terminal device such as a mobile phone, the imaging device The space that can store the maximum length must be secured! /, So the movement of the lens hindered the thinning of the mobile terminal device.
  • the entire lens moves by rotating a lever or the like.
  • the parts slide between the lever and the contact portion of the lens (lens barrel) or between the lens barrel and the guide portion. This sliding may cause wear powder and dust adhering to the parts to move or scatter, and there is a problem that these wear powder causes deterioration of the captured image.
  • the present invention has been made to solve the above-mentioned problems, and the object thereof is to realize autofocus without moving the lens, thereby being effective for downsizing of the imaging device.
  • An object of the present invention is to realize an imaging apparatus with little image degradation.
  • an object of the present invention is to realize switching of the shooting mode without moving the lens when changing the shooting mode, thereby realizing a reduction in the size of the imaging device or a reduction in the thickness of the portable terminal device. Rukodomi.
  • an object of the present invention is to realize an imaging apparatus that can prevent generation of wear powder due to sliding and eliminate image degradation by eliminating a mechanical sliding portion that moves a lens. .
  • an object of the present invention is to constitute a mobile terminal device such as a camera-equipped mobile phone using this imaging device, thereby reducing the size and thickness of the mobile terminal device and reducing image degradation. This is to realize a small number of portable terminal devices with cameras.
  • the imaging apparatus of the present invention includes an optical system that collects light from a subject, an imaging element that receives the light collected by the optical system and generates an imaging signal, the optical system, and the imaging Between the elements And a transparent member whose refractive index changes according to the applied electric field.
  • FIG. 1 is a perspective view showing an imaging apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an imaging apparatus which exerts a force on the first embodiment of the present invention.
  • Fig. 3 is a cross-sectional view showing a transparent member which exerts a force on the first embodiment of the present invention.
  • FIG. 4 is a graph showing the electric field and refractive index characteristics of the transparent member according to the first embodiment of the present invention.
  • FIG. 5 is a plan view showing a mobile terminal device according to a second embodiment of the present invention.
  • FIG. 6 is a diagram showing an outline of a conventional imaging apparatus with an autofocus function.
  • the imaging apparatus of the present embodiment includes an optical system that collects light from a subject, an imaging device that receives the light collected by the optical system and generates an imaging signal, and an optical system and an imaging device. And a transparent member having a refractive index that changes in accordance with the applied electric field.
  • the refractive index of the transparent member changes, and the optical distance (optical path length) between the optical system and the imaging device is changed.
  • the imaging position of the light from the subject can be changed without mechanically and physically moving the lens barrel by the actuator.
  • the imaging apparatus can be downsized.
  • the imaging position of light from the subject can be changed without a mechanical operation such as lever rotation.
  • the mechanical movement of the lens it is possible to eliminate the sliding portion, to prevent the generation of wear powder due to sliding, and to realize an imaging device that does not deteriorate the image.
  • the refractive index of the transparent member continuously changes according to the applied electric field.
  • the imaging position of light from the subject can be continuously changed.
  • the imaging apparatus includes a control unit that performs autofocus adjustment by controlling the electric field to be applied and continuously changing the refractive index of the transparent member.
  • autofocus can be performed by continuously changing the refractive index of the transparent member.
  • the imaging apparatus can be miniaturized, and the generation of abrasion powder associated with the operation of the actuator can be prevented.
  • the imaging apparatus includes a switching unit that switches the refractive index of the transparent member by controlling the applied electric field according to the imaging mode.
  • this configuration it is possible to switch from the normal shooting mode force to the macro shooting mode by changing the refractive index of the transparent member. This makes it possible to switch to the macro shooting mode without mechanical operation such as lever rotation, so that the imaging device can be miniaturized and wear powder from the sliding portion can be prevented. be able to.
  • the transparent member includes transparent electrodes for applying an electric field on both the optical system side surface and the imaging element side surface.
  • the transparent member includes an infrared light limiting unit that limits transmission of infrared light on either the optical system side or the imaging element side.
  • the transparent member has a filter function of cutting infrared light, so that it is not necessary to use a separate filter, and the number of parts can be reduced.
  • the degree of freedom in designing the imaging device is increased, and the imaging device can be easily reduced in thickness.
  • the transparent member is provided on the optical system side and the imaging element side. That is, an antireflection part for preventing light reflection is provided on the side opposite to the infrared light limiting part.
  • a member whose refractive index increases when an electric field is applied is used as the transparent member.
  • the refractive index of the transparent member is increased, and the optical path length can be substantially increased.
  • a cellular phone device includes the above-described imaging device.
  • the shooting mode can be switched by a simple operation such as pressing a button, which eliminates the complication of mode switching and forgetting to switch.
  • a portable terminal device can be realized.
  • FIG. 1 is a perspective view showing an imaging apparatus according to the first embodiment of the present invention.
  • the imaging device 8 includes a three-dimensional substrate 1, a lens 2, an aperture 3, a semiconductor imaging device 4, a transparent member 5, an FPC (flexible printed circuit) 15, a joint 16, a lens holder 20, and an adjustment ring 21.
  • the three-dimensional substrate 1 includes a pedestal portion 7 and a lens barrel portion 17.
  • the lens barrel portion 17 is provided on the upper portion of the pedestal portion 7 whose planar shape is a rectangle.
  • Glass-reinforced PPA polyphthalamide resin
  • a black material is used to prevent light from being transmitted from the outside.
  • the pedestal portion 7 includes a terminal portion 7a provided for connection to the outside. Below the pedestal 7, an FPC 15 is provided for exchanging signals with external devices.
  • the terminal portion 7 a is connected to a connection land 15 a formed on the FPC 15 by a joint portion 16.
  • the joint 16 is solder.
  • a resin lens 2 fitted in the lens holder 20 is disposed inside the lens barrel portion 17.
  • the lens holder 20 is fixed to the outside of the lens barrel portion 17 through an adjustment ring 21 disposed on the outside thereof.
  • the lens holder 20 is provided with a diaphragm 3.
  • the semiconductor image sensor 4 and the transparent member 5 are arranged inside the pedestal part 7 and the lens barrel part 17.
  • FIG. 2 is a cross-sectional view of the imaging device 8 of FIG. 1 cut along a spring XX.
  • a partition wall 11 is formed on the inner side of the three-dimensional substrate 1 constituting the pedestal portion 7 and the lens barrel portion 17.
  • An opening 10 is formed at the center of the partition wall 11.
  • the upper and lower surfaces of the partition wall 11 surrounding the opening 10 form a plane parallel to each other.
  • a transparent member 5 is disposed above the partition wall 11, and a semiconductor imaging element 4 is disposed below the partition wall 11.
  • the transparent member 5 is fixed at a predetermined position on the upper surface of the partition wall 11 with an adhesive or the like.
  • the opening 10 is formed in a rectangular shape corresponding to the imaging area of the semiconductor imaging device 4. All these components are structured to be assembled to the three-dimensional board 1!
  • a wiring pattern is formed on the back side of the pedestal 7 by electroless plating or the like. Further, a connection land for bare mounting the semiconductor image pickup device 4 is provided inside the three-dimensional substrate 1. The connection land and the terminal portion 7a are connected by a wiring pattern.
  • the semiconductor image pickup device 4 is, for example, a CCD or CMOS called a 1/4 inch UXGA type having about 2 million pixels.
  • the semiconductor image pickup device 4 is face-down mounted on the three-dimensional substrate 1 and is electrically connected. Has been. This is because the mounting is performed without using a package in order to reduce the thickness of the imaging device. Face-down mounting uses, for example, SBB (Stud Bump Bond) or BGA (Ball Grid Array) using a bump formed of gold and a conductive adhesive (conductive material such as Ag paste) applied to the tip of the bump. ) Etc. are used.
  • the semiconductor image sensor 4 is sealed with a sealant 9 after face-down mounting.
  • Video signals obtained by the semiconductor imaging device 4 and chip components are output to the outside through electrical wiring.
  • control signals are input from the outside by electric wiring, and power is supplied.
  • These electric wirings are formed so as to pass through the wiring pattern and the connection land 15a of the FPC 15 shown in FIG.
  • a metal foil 14 is pasted on the back surface of the FPC 15 in order to prevent intrusion of visible light / infrared light from the back surface into the semiconductor image sensor 4.
  • the lens 2 built in the lens barrel portion 17 includes two aspheric lenses (hereinafter abbreviated as “lenses”) 2a and 2b having different optical characteristics.
  • the lenses 2a and 2b are fitted in the lens holder 20 so that a certain positional relationship can be maintained.
  • Screws 20a and 21a that are screwed to each other are formed on the outer periphery of the lens holder 20 and the inner periphery of the adjustment ring 21 arranged on the outer side thereof, so that the optical axis position of the lens holder 20 can be adjusted. ing.
  • FIG. 3 is a cross-sectional view of the transparent member 5.
  • the transparent member 5 includes a base part 53, an electrode 51a, an electrode 51b, an IR (Infra Red) film 50 that is an infrared light limiting part, and an AR film 52 that is an antireflection part.
  • IR Infra Red
  • the base part 53 is made of a material whose refractive index changes when an electric field is applied.
  • a material whose refractive index changes when an electric field is applied for example, lithium niobate can be used.
  • an optical crystal (KTN crystal) made of potassium, tantalum, niobium, or oxygen can be used.
  • the electrodes 51 a and 51 b are provided on both surfaces of the base material portion 53, respectively, and apply an electric field to the base material portion 53.
  • the electrodes 51a and 51b are configured by a transparent electrode such as an indium tin oxide (ITO) film. Electrodes 51a and 51b are connected to an external DSP (Digital Signal) via FPC15.
  • DSP Digital Signal
  • the DSP It functions as a control unit that performs single-point control, and controls the voltages of the electrodes 51a and 51b to continuously change the refractive index of the base member 53.
  • the IR film 50 is provided below the electrode 51a and includes a multilayer film for limiting the transmission of infrared light.
  • the IR film 50 has a transmittance of about 93% or more with respect to a visible light region having a wavelength of about 400 nm to 800 nm, and has a sufficiently low transmittance for other bands.
  • the IR film 50 includes, for example, a multilayer film such as silicon dioxide and titanium oxide (TiO 2).
  • the AR film 52 is provided on the surface of the IR film 50 on the opposite side of the base material portion 53.
  • AR membrane 52 is provided on the surface of the IR film 50 on the opposite side of the base material portion 53.
  • the AR film 52 prevents light reflection.
  • the AR film 52 includes a multilayer film such as magnesium fluoride (MgF 3), titanium oxide (TiO 2), and zirconium oxide (ZrO 2).
  • the configuration and the number of laminated layers of the IR film 50 and the AR film 52 can be appropriately selected depending on the visible light region and the characteristics relating to transmission or reflection outside the region.
  • the IR film 50 is disposed on the imaging element side of the transparent member 5, but may be disposed on the optical system side opposite to the imaging element side.
  • the AR film 52 may be disposed on the force S disposed on the optical system side of the transparent member 5 and on the image sensor side.
  • the transparent member 5 is provided with the IR film 50 and the AR film 52 together with the electrode 51a and the electrode 51b.
  • the IR film 50 and the AR film 52 are provided on the other base material. Is also possible.
  • the lens 2 a resin satisfying required optical characteristics such as transmittance and refractive index is used.
  • the lens 2 is formed by injection molding, for example.
  • the lens 2 is composed of two lenses 2a and 2b, and can form a subject farther than a predetermined distance without performing autofocus.
  • a lens in a focus (pan focus) mode is provided for a subject farther than about 30 cm from the imaging device.
  • the subject is imaging If it is closer than about 30cm from the device, it will be focused by performing an autofocus operation, as described in detail later.
  • the configuration and characteristics of the lens can be selected as appropriate.
  • the IR film 50 provided on the transmissive member 5 shown in FIG. 3 restricts the transmission of infrared light / ultraviolet light in the light from the subject, and the visible light is incident on the semiconductor imaging device 4.
  • the incident light passes through a micro lens or a lens called an on-chip lens provided on the surface of the light receiving surface of the semiconductor image sensor 4 and passes through a dye-based color filter therebelow to be a photodiode. Is converted into a required electrical signal.
  • the semiconductor image sensor 4 outputs, for example, an image signal having a screen aspect ratio of 4: 3 and a frame rate of 30 per second.
  • the lens 2 is configured to focus on a subject whose distance from the subject is more than about 30 cm. It is necessary to increase the distance between the lens 2 and the light receiving surface of the semiconductor image sensor 4. These relationships are known as Newton's equations. In other words, if the distance between the subject and the lens is a, the distance between the lens and the imaging position is b, and the focal length of the lens is f, equation (1) holds.
  • optical adjustment from the lens 2 to the semiconductor image sensor 4 is performed using the refractive index adjustment function of the transparent member 5 as described below without physically moving the lens.
  • the long length (optical path length) is made substantially longer, and thus autofocus is performed.
  • the optical path length L is expressed as follows, where nd is the refractive index of the transmitting medium and t is the length of the transmitting medium. It is expressed by (2).
  • the refractive index in order to increase the optical path length L, the refractive index may be increased.
  • the refractive index of the transparent member 5 arranged between the lens 2 and the semiconductor image sensor 4 is changed in order to increase the optical path length from the lens 2 to the semiconductor image sensor 4 during autofocus. .
  • autofocus is achieved.
  • FIG. 4 is a characteristic diagram showing the relationship between the electric field applied to the transparent member 5 and the refractive index in the present embodiment.
  • the refractive index is nd.
  • the refractive index when 1 field E is applied is nd.
  • the linear change in applied electric field and refractive index is called the first-order electro-optic effect (Pockels effect), which has the effect that the refractive index change is proportional to the square of the applied electric field.
  • This is called the second-order electro-optic effect (Kerr effect).
  • the Kerr effect that allows a large change in refractive index is used.
  • the present invention is not limited to this. For example, it is possible to use a transparent member in which the relationship between the applied voltage and the refractive index is not continuous.
  • a voltage is also applied to the transparent member 5 disposed between the lens 2 and the semiconductor imaging device 4 through the FPC 15 as an external circuit force, and the electrodes 51a, An electric field is applied to the base material portion 53 through 51 b. Then, as shown in FIG. 4, when the electric field E is applied to the base part 53 of the transparent member 5, the refractive index of the base part 53 becomes the nd force,
  • the refractive index is nd ⁇ nd.
  • the optical path length between 2 and the semiconductor image sensor 4 becomes longer.
  • the optical path length is changed without mechanically moving the lens 2.
  • the applied voltage the refractive index is continuously changed, and a required optical path length is set.
  • the lens 2 does not actually move in the optical axis direction, the same result as that in which the lens 2 continuously moves in the optical axis direction is produced. Accordingly, it is not necessary to perform the focusing operation by driving the actuator 41 shown in FIG. 6 and moving the lens barrel 43 together with the lens 42 in the direction of the optical axis as in the prior art.
  • various methods such as a so-called hill climbing method can be applied to the focusing sequence.
  • the refractive index of the transparent member 5 changes, and the optical system and the semiconductor image pickup device 4 are changed.
  • the optical distance optical path length
  • the image forming position can be continuously changed without mechanically and physically moving the lens barrel by the actuator.
  • the imaging device 8 can be downsized.
  • the mechanical sliding portion can be eliminated, the generation of wear powder due to sliding can be prevented, and an image pickup apparatus free from image deterioration can be realized.
  • the lens 2 since the lens 2 does not move mechanically and physically in the optical axis direction, the lens 2 moves in a direction perpendicular to the optical axis of the image, or the image is inclined with respect to the imaging surface. (Flip) does not occur and autofocus performance is improved.
  • FIG. 5 is a plan view of a portable terminal device according to the second embodiment of the present invention.
  • the portable terminal device 30 is equipped with an imaging device with an autofocus function that is effective in the first embodiment of the present invention.
  • the mobile terminal device 30 is a foldable mobile terminal device including an upper housing 31 and a lower housing 32, and the upper housing 31 is in use.
  • the lower casing 32 is opened, and the upper casing 31 and the lower casing 32 are folded when not in use.
  • the portable terminal device 30 is configured to be foldable.
  • the upper housing 31 includes a speaker 33, a liquid crystal display screen 34, a transmission / reception antenna 36, and an imaging device 38.
  • the lower housing 32 includes an input key 37 and a microphone 39.
  • the input key 37 has an autofocus input key 37a.
  • the imaging device 38 includes the imaging device with an autofocus function according to the first embodiment.
  • the imaging direction of the imaging device 38 is perpendicular to the paper surface of FIG.
  • the imaging device 38 When the autofocus input key 37a is pressed halfway, the imaging device 38 performs focusing by autofocus. Then, the blinking display displayed on the liquid crystal display screen 34 changes to a lighting display, and the user is notified of the in-focus state. In this state, enter key 37a When is further pressed, an imaging operation is performed, and the captured image is displayed on the liquid crystal display screen 34. Further, the imaging device 38 is set so as to be able to take an image with pan focus at the time of activation. Therefore, when autofocus is not required, the image pickup device 38 takes an image of the subject by pan focus by pressing the input key 37a without pressing it halfway.
  • the subject is imaged with pan focus in the normal shooting mode (pan focus mode) that is generally used frequently, an electric field is applied to the transparent member 5 shown in FIG. Not applied. As a result, the power consumption of the mobile terminal device 30 can be kept low.
  • the mobile terminal device 30 is reduced in size and thickness.
  • autofocus is performed by applying a voltage to the transparent member 5
  • the mobile terminal device 30 that requires a mechanism for mechanically and physically moving the lens 2 is reduced in weight, and the mobile terminal device 30 is dropped. Improves the impact resistance against.
  • the lens 2 does not move mechanically and physically, the problem of image quality degradation due to dust generation accompanying the movement of the lens can be solved.
  • the basic configuration of the imaging device of the third embodiment is the same as that of the imaging device of the first embodiment (see Figs. 1 to 4), but it is based on a DSP connected via the FPC15.
  • the control details are different.
  • the DSP functions as a switching unit that switches the shooting mode, and is applied to the base unit 53 by controlling the voltage applied to the electrodes 51a and 51b. Control the electric field of the electric field! /, And switch the refractive index of the base 53 according to the shooting mode.
  • the lens 2 is configured to focus on a subject whose distance to the subject is more than about 30 cm. In order to adjust the focal point, it is necessary to increase the distance between the lens 2 and the light receiving surface of the semiconductor image sensor 4. These relationships are known as Newton's equation (1) above.
  • the entire lens is moved by a switching lever or the like so that the physical distance from the semiconductor image sensor increases.
  • the optical length from the lens 2 to the semiconductor image sensor 4 is utilized by using the refractive index adjustment function of the transparent member 5 as described below without physically moving the lens.
  • the length (optical path length) is substantially lengthened, and the mode is switched to the macro photography mode.
  • the refractive index may be increased.
  • the transparent member 5 disposed between the lens 2 and the semiconductor image sensor 4 Change the refractive index.
  • the macro shooting mode can be switched by adjusting the optical path length without moving the lens 2.
  • a voltage is applied to the transparent member 5 disposed between the lens 2 and the semiconductor image pickup device 4 through an FPC 15 from an external circuit (not shown).
  • An electric field is applied to the base member 53 through the electrodes 51a and 51b shown in FIG.
  • the refractive index of the base material portion 53 changes to nd force, nd.
  • the refractive index is nd ⁇ nd.
  • the optical path length between the semiconductor 2 and the semiconductor image sensor 4 becomes longer. As a result, the optical path length is changed without mechanically moving the lens 2.
  • the refractive index of the transparent member 5 is changed by changing the voltage to be applied, and the required optical path length is set.
  • the optical path length can be changed without rotating the lens moving lever and mechanically moving the lens, and the force S for switching between the normal shooting mode and the macro shooting mode can be obtained depending on whether or not an electric field is applied.
  • the imaging device 8 can be downsized.
  • the problem of image quality degradation due to dust generation can be solved. Become.
  • the shooting mode may be switched between three or more shooting modes.
  • the basic configuration of the imaging device of the fourth embodiment is the same as that of the mobile phone device of the second embodiment (see FIG. 5), but the mobile phone device of the fourth embodiment is The difference is that it has the macro shooting switching function described in the third embodiment. Note that the shooting direction in the macro shooting mode is also a direction perpendicular to the paper surface.
  • the imaging device 38 changes the shooting mode from the normal shooting mode to the macro shooting mode and from the macro shooting mode to the normal shooting mode in response to the repeated pressing of the shooting mode switching input key 37a. It is comprised so that it may switch. In addition, the imaging device 38 is set to be in the normal shooting mode when it is activated.
  • an electric field is not applied to the transparent member 5 shown in FIG. 3 in the normal photographing mode that is generally used frequently. As a result, the power consumption of the mobile terminal device 30 can be kept low.
  • the mobile terminal device 30 such as a mobile phone is reduced in size and thickness, and the design of the mobile terminal device 30 can be simplified. Furthermore, since the shooting mode can be easily displayed on the liquid crystal display screen 34, the shooting mode can be confirmed on the liquid crystal display screen 34, and forgetting to switch the shooting mode can be prevented, improving the convenience of the mobile terminal device 30.
  • the photographing mode is switched by applying a voltage to the transparent member 5 from the circuit of the mobile terminal device 30, it is necessary to provide a mechanism for mechanically moving the lens 2. It is possible to improve the impact resistance against dropping of the material. In addition, the lens 2 is not moved mechanically by rotating the lever. It is possible to solve the problem of image quality degradation due to the above.
  • the mobile phone has been described as the mobile terminal device.
  • the mobile phone of the present embodiment is not limited to this configuration.
  • the imaging device according to the present invention can be applied to various types of portable information devices.
  • the imaging apparatus according to the present invention can also be applied to PDAs (personal 'digital' assistants), personal computers, and portable information devices such as personal computer external devices.
  • PDAs personal 'digital' assistants
  • personal computers personal computers
  • portable information devices such as personal computer external devices.
  • the image pickup apparatus that is effective in the present invention has autofocus without mechanically and physically moving a lens mechanism, and can switch the shooting mode, so that the image pickup apparatus can be downsized. It is. Also, by displaying the shooting mode on the liquid crystal display screen, forgetting to switch the shooting mode can be prevented. In addition, since the image pickup apparatus that is effective in the present invention can eliminate the mechanical sliding portion for moving the lens, dust generation can be prevented and the image quality of the image pickup apparatus can be prevented from deteriorating. In addition, since there is no moving part of the lens, it is possible to improve the impact resistance S and to improve the reliability of the imaging device.
  • the imaging device according to the present invention has the effects as described above, and is useful as a camera or the like mounted on a portable terminal device or the like.

Abstract

An imaging device having an optical system for collecting light from an object, a semiconductor imaging element (4) for receiving the light collected by the optical system and creating an imaging signal, and a transparent member (5) provided between the optical system and the semiconductor imaging element (4) and having a refraction index continuously varying according to an applied electric field. When an electric field is applied to the transparent member (5), its refraction index varies continuously to continuously change the length of the light path. This realizes auto-focusing without movement of a lens, which is effective to downsize the imaging device and reduces degradation in image quality.

Description

明 細 書  Specification
撮像装置  Imaging device
関連する出願  Related applications
[0001] 本出願では、 2006年 10月 3日に日本国に出願された特許出願番号 2006— 271 441および特許出願番号 2006— 271443の禾 IJ益を主張し、当該出願の内容は引 用することによりここに組み込まれているものとする。  [0001] This application claims 禾 IJ benefits of patent application number 2006-271 441 and patent application number 2006-271443 filed in Japan on October 3, 2006, and the contents of this application are incorporated It is hereby incorporated by reference.
技術分野  Technical field
[0002] 本発明は、半導体撮像素子を用いた撮像装置に関し、特に、オートフォーカスある いは撮影モードの切り替えを行う撮像装置に関する。  The present invention relates to an image pickup apparatus using a semiconductor image pickup device, and more particularly to an image pickup apparatus that switches autofocus or shooting mode.
背景技術  Background art
[0003] 従来から、特開 2005— 121950号公報、特開 2006— 119247号公報に見られる ように、オートフォーカス機能付きの撮像装置が知られていた。  Conventionally, an imaging apparatus with an autofocus function has been known, as can be seen in Japanese Unexamined Patent Application Publication Nos. 2005-121950 and 2006-119247.
[0004] 図 6は、従来のオートフォーカス機能付き撮像装置の概要を示す図である。カメラ付 き携帯端末などには、図 6に示すようなレンズと撮像素子とを一体化した撮像装置が 多用されている。レンズ 42は、 2枚の非球面レンズにより構成されている。レンズ 42は 、樹脂製の鏡筒 43に保持されている。鏡筒 43は、その一部が圧電素子を用いたァク チユエータ 41に係合するように構成されている。そして、光軸上に、レンズ 42と半導 体撮像素子 44が配置されており、その間に IRフィルター 45が揷入されている。  FIG. 6 is a diagram showing an outline of a conventional imaging apparatus with an autofocus function. Image pickup devices that integrate a lens and an image sensor as shown in Fig. 6 are often used for mobile terminals with cameras. The lens 42 is composed of two aspheric lenses. The lens 42 is held by a resin lens barrel 43. A part of the lens barrel 43 is configured to engage with an actuator 41 using a piezoelectric element. A lens 42 and a semiconductor imaging device 44 are disposed on the optical axis, and an IR filter 45 is inserted therebetween.
[0005] 次に、図 6に示す撮像装置の動作について説明する。被写体からの光は、レンズ 4 2によって集光される。集光された光は、 IRフィルター 45によって赤外光が制限され た後、半導体撮像素子 44に入射する。半導体撮像素子 44は、被写体からの光を電 気信号に変換した後、信号処理回路(図示せず)によって、高周波成分の信号に基 づいて合焦の処理を行う。この処理では、撮像装置は、高周波成分が所定の閾値よ り高くなつたときに合焦したと判断する。この合焦までのシーケンスには、山登り法な どの方法が用いられる。合焦動作は、シャッターボタンを押す途中(半押し状態)で行 われる。合焦判断が行われた後に、シャッターボタンを更に押し下げることで、撮像 動作が完了する。この時、ァクチユエータ 41は、外部からの信号に基づいて、レンズ 42に対して鏡筒 43全体を光軸方向に移動させることにより、レンズ 42と半導体撮像 素子 44との距離を変化させ、バックフォーカスを調整して合焦動作を行う。 Next, the operation of the imaging device shown in FIG. 6 will be described. Light from the subject is collected by the lens 42. The condensed light is incident on the semiconductor imaging device 44 after the infrared light is limited by the IR filter 45. The semiconductor imaging device 44 converts light from the subject into an electric signal, and then performs focusing processing based on the high-frequency component signal by a signal processing circuit (not shown). In this process, the imaging apparatus determines that the in-focus state is achieved when the high frequency component becomes higher than a predetermined threshold value. A method such as mountain climbing is used for the sequence up to this focusing. Focusing is performed while pressing the shutter button (halfway). After the in-focus determination is made, the imaging operation is completed by further depressing the shutter button. At this time, the actuator 41 determines whether the lens is based on an external signal. By moving the entire lens barrel 43 in the optical axis direction with respect to 42, the distance between the lens 42 and the semiconductor imaging device 44 is changed, and the back focus is adjusted to perform the focusing operation.
[0006] また、カメラ付き携帯電話などには、レンズと撮像素子とを一体化した薄型'小型の 撮像装置が多用されている。これらの撮像装置は、特開 2006— 99072号公報に開 示されているように、通常撮影モードとマクロ撮影モードとをレバーによって切り替え ていた。例えば、レバーの回転によって、レンズ全体が光軸方向へ移動するように構 成され、撮像素子とレンズ全体との物理的な距離が変更されることによって、撮影モ ードの切り替えが行われて!/、た。  [0006] Furthermore, for mobile phones with cameras, thin and small imaging devices in which a lens and an imaging element are integrated are often used. As disclosed in Japanese Patent Application Laid-Open No. 2006-99072, these image pickup apparatuses are switched between a normal shooting mode and a macro shooting mode by a lever. For example, the entire lens is moved in the optical axis direction by the rotation of the lever, and the shooting mode is switched by changing the physical distance between the image sensor and the entire lens. ! /
[0007] また、特開 2005— 300671号公報には、カメラ付きの折り畳み型の携帯電話にお いて、 QRコードを読み取る際に、携帯電話をほぼ直角に開くことによって、マクロ撮 影できるように撮影モードを切り替えることが開示されている。  [0007] In addition, Japanese Patent Laid-Open No. 2005-300671 discloses that in a foldable mobile phone with a camera, when taking a QR code, the mobile phone can be opened at a substantially right angle so that macro photography can be performed. It is disclosed that the shooting mode is switched.
[0008] また、特開 2005— 277643号公報には、カメラ付きの携帯電話において、携帯電 話の側面に配置されたピント切り替えレバーを操作することで焦点の合う距離を変更 する発明が開示されている。  [0008] Also, Japanese Patent Application Laid-Open No. 2005-276743 discloses an invention that changes the in-focus distance by operating a focus switching lever arranged on the side of a mobile phone in a mobile phone with a camera. ing.
[0009] このように、従来の撮像装置においては、レバーなどによって、レンズ全体を光軸方 向に移動させ、通常撮影モードとマクロ撮影モードの切り替えが行われている。 発明の開示  As described above, in the conventional imaging apparatus, the entire lens is moved in the optical axis direction by a lever or the like, and switching between the normal imaging mode and the macro imaging mode is performed. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] しかしながら、従来の撮像装置では、オートフォーカスの際に、ァクチユエ一タがレ ンズを光軸方向へ移動させるようになつており、この場合、ァクチユエータによってレ ンズが移動することに起因して、画像が光軸方向と直交する方向にずれたり、画像の 撮像面に対する傾き(ァオリ)が発生したりするという課題があった。また、ァクチユエ ータを設けなければならないため、同等の固定焦点の撮像装置と比較して、撮像装 置全体の寸法が大きくなり、撮像装置の小型化を阻害していた。更に、レンズが移動 するので、案内部品(ガイド部品)とレンズ部品が摺動する。この摺動により磨耗粉が 発生し、撮像画像を劣化させる原因となっている。 [0010] However, in the conventional imaging apparatus, during autofocus, the actuator moves the lens in the optical axis direction. In this case, the lens is moved by the actuator. As a result, there is a problem that the image is shifted in a direction perpendicular to the optical axis direction or the image is inclined with respect to the imaging surface. In addition, since an actuator must be provided, the overall size of the imaging device is larger than that of an equivalent fixed-focus imaging device, which hinders downsizing of the imaging device. Further, since the lens moves, the guide component (guide component) and the lens component slide. This sliding generates wear powder, which causes the captured image to deteriorate.
[0011] また、従来の撮像装置では、通常撮影モードとマクロ撮影モードとを切り替える場合 [0011] In the conventional imaging device, when switching between the normal shooting mode and the macro shooting mode
、レバーなどを回転させることによって、レンズ全体が光軸方向へ移動するようになつ ており、マクロ撮影時にはレンズ全体が被写体側へと移動する。これにより、マクロ撮 影時には、撮像装置全体の光軸方向の寸法が大きくなるために、同等のマクロ切り 替え機能のない固定焦点の撮像装置と比較して、マクロ切り替え付きの撮像装置の 小型化が阻害されていた。 By rotating the lever, etc., the entire lens moves in the optical axis direction. The entire lens moves to the subject side during macro photography. As a result, the size of the entire imaging device in the optical axis direction becomes larger during macro shooting, so the imaging device with macro switching is downsized compared to a fixed-focus imaging device that does not have the same macro switching function. Was inhibited.
[0012] また、従来の撮像装置では、マクロ撮影時にお!/、て撮像装置の寸法が最大長とな るので、撮像装置を携帯電話など携帯端末装置に実装する場合には、撮像装置の 最大長を収納できるスペースが確保されなければならな!/、ことから、レンズの移動ス ペースによって携帯端末装置の薄型化が阻害されていた。  [0012] In addition, in the conventional imaging device, the size of the imaging device is the maximum length during macro shooting. Therefore, when the imaging device is mounted on a portable terminal device such as a mobile phone, the imaging device The space that can store the maximum length must be secured! /, So the movement of the lens hindered the thinning of the mobile terminal device.
[0013] また、マクロ撮影モードへの切り替えに伴い、レバーなどを回転させてレンズ全体が 移動する。この際、レバーとレンズ (レンズ鏡筒)の当接部との間、またはレンズ鏡筒と ガイド部分との間において、部品同士が摺動する。この摺動により、磨耗粉や部品に 付着しているゴミが移動したり、飛散したりする場合があり、これらの磨耗粉ゃゴミが、 撮像画像を劣化させる原因となるという問題があった。  [0013] In addition, with the switching to the macro shooting mode, the entire lens moves by rotating a lever or the like. At this time, the parts slide between the lever and the contact portion of the lens (lens barrel) or between the lens barrel and the guide portion. This sliding may cause wear powder and dust adhering to the parts to move or scatter, and there is a problem that these wear powder causes deterioration of the captured image.
[0014] 本発明は、上記課題を解決するためになされたものであり、その目的は、レンズの 移動なくオートフォーカスを実現し、これにより、撮像装置の小型化に有効であると共 に、画像の劣化が少ない撮像装置を実現することにある。  [0014] The present invention has been made to solve the above-mentioned problems, and the object thereof is to realize autofocus without moving the lens, thereby being effective for downsizing of the imaging device. An object of the present invention is to realize an imaging apparatus with little image degradation.
[0015] また、本発明の目的は、撮影モードを変更する際に、レンズを移動させずに撮影モ ードの切り替えを実現し、撮像装置の小型化または携帯端末装置の薄型化を実現す るこどにめる。  [0015] In addition, an object of the present invention is to realize switching of the shooting mode without moving the lens when changing the shooting mode, thereby realizing a reduction in the size of the imaging device or a reduction in the thickness of the portable terminal device. Rukodomi.
[0016] また、本発明の目的は、レンズを移動させる機械的な摺動部をなくすことにより、摺 動による磨耗粉の発生を防止でき、画像の劣化が少ない撮像装置を実現することに ある。  [0016] Further, an object of the present invention is to realize an imaging apparatus that can prevent generation of wear powder due to sliding and eliminate image degradation by eliminating a mechanical sliding portion that moves a lens. .
[0017] 更には、本発明の目的は、この撮像装置を用いて、カメラ付き携帯電話などの携帯 端末装置を構成することで、携帯端末装置の小型化'薄型化を図り、画像の劣化が 少ないカメラ付き携帯端末装置を実現することにある。  [0017] Furthermore, an object of the present invention is to constitute a mobile terminal device such as a camera-equipped mobile phone using this imaging device, thereby reducing the size and thickness of the mobile terminal device and reducing image degradation. This is to realize a small number of portable terminal devices with cameras.
課題を解決するための手段  Means for solving the problem
[0018] 本発明の撮像装置は、被写体からの光を集光する光学系と、前記光学系が集光し た光を受光し、撮像信号を生成する撮像素子と、前記光学系と前記撮像素子の間に 設けられ、印加された電界に応じて屈折率が変化する透明部材とを備える。 [0018] The imaging apparatus of the present invention includes an optical system that collects light from a subject, an imaging element that receives the light collected by the optical system and generates an imaging signal, the optical system, and the imaging Between the elements And a transparent member whose refractive index changes according to the applied electric field.
[0019] 以下に説明するように、本発明には他の態様が存在する。したがって、この発明の 開示は、本発明の一部の提供を意図しており、ここで記述され請求される発明の範 囲を制限することは意図していない。 [0019] As described below, there are other aspects of the present invention. Accordingly, the disclosure of the present invention is intended to provide part of the present invention and is not intended to limit the scope of the invention described and claimed herein.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]図 1は、本発明の第 1の実施の形態にかかる撮像装置を示す斜視図  FIG. 1 is a perspective view showing an imaging apparatus according to a first embodiment of the present invention.
[図 2]図 2は、本発明の第 1の実施の形態に力、かる撮像装置を示す断面図  [Fig. 2] Fig. 2 is a cross-sectional view showing an imaging apparatus which exerts a force on the first embodiment of the present invention.
[図 3]図 3は、本発明の第 1の実施の形態に力、かる透明部材を示す断面図  [Fig. 3] Fig. 3 is a cross-sectional view showing a transparent member which exerts a force on the first embodiment of the present invention.
[図 4]図 4は、本発明の第 1の実施の形態に力、かる透明部材の電界と屈折率の特性 を示す図  [FIG. 4] FIG. 4 is a graph showing the electric field and refractive index characteristics of the transparent member according to the first embodiment of the present invention.
[図 5]図 5は、本発明の第 2の実施の形態にかかる携帯端末装置を示す平面図  FIG. 5 is a plan view showing a mobile terminal device according to a second embodiment of the present invention.
[図 6]図 6は、従来のオートフォーカス機能付き撮像装置の概要を示す図  [FIG. 6] FIG. 6 is a diagram showing an outline of a conventional imaging apparatus with an autofocus function.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下に、本発明の詳細な説明を述べる。以下に説明する実施の形態は本発明の 単なる例であることが理解され、本発明が様々な態様に変形することができる。従つ て、以下に開示する特定の構成および機能は、請求の範囲を限定するものではない [0021] Hereinafter, a detailed description of the present invention will be described. It will be understood that the embodiments described below are merely examples of the present invention, and the present invention can be modified in various ways. Accordingly, the specific configurations and functions disclosed below do not limit the scope of the claims.
[0022] 本実施の形態の撮像装置は、被写体からの光を集光する光学系と、光学系が集光 した光を受光し、撮像信号を生成する撮像素子と、光学系と撮像素子の間に設けら れ、印加された電界に応じて屈折率が変化する透明部材とを備える。 [0022] The imaging apparatus of the present embodiment includes an optical system that collects light from a subject, an imaging device that receives the light collected by the optical system and generates an imaging signal, and an optical system and an imaging device. And a transparent member having a refractive index that changes in accordance with the applied electric field.
[0023] この構成によれば、透明部材に電界を印加することにより、透明部材の屈折率が変 化し、光学系と撮像素子との間の光学的な距離 (光路長)が変更される。これにより、 ァクチユエータによって鏡筒を機械的及び物理的に移動させることなぐ被写体から の光の結像位置を変化させることができる。この結果、ァクチユエータを設ける必要が なくなり、撮像装置の小型化が可能となる。また、レバー回転のような機械的な動作を 伴わずに、被写体からの光の結像位置を変化させることができる。この結果、レンズ 移動用のレバーなどを設ける必要がなくなり、撮像装置の小型化が可能となる。また 、透明部材の屈折率を変えることにより制御するので、レンズを移動させる機械的な 摺動部をなくすことができ、摺動による磨耗粉の発生を防止でき画像の劣化のない 撮像装置を実現できる。 [0023] According to this configuration, by applying an electric field to the transparent member, the refractive index of the transparent member changes, and the optical distance (optical path length) between the optical system and the imaging device is changed. Thereby, the imaging position of the light from the subject can be changed without mechanically and physically moving the lens barrel by the actuator. As a result, it is not necessary to provide an actuator, and the imaging apparatus can be downsized. In addition, the imaging position of light from the subject can be changed without a mechanical operation such as lever rotation. As a result, it is not necessary to provide a lens moving lever or the like, and the imaging apparatus can be downsized. In addition, since it is controlled by changing the refractive index of the transparent member, the mechanical movement of the lens It is possible to eliminate the sliding portion, to prevent the generation of wear powder due to sliding, and to realize an imaging device that does not deteriorate the image.
[0024] 本実施の形態の撮像装置において、透明部材は、印加された電界に応じて連続的 に屈折率が変化する。 [0024] In the imaging device of the present embodiment, the refractive index of the transparent member continuously changes according to the applied electric field.
[0025] この構成により、被写体からの光の結像位置を連続的に変化させることができる。  With this configuration, the imaging position of light from the subject can be continuously changed.
[0026] 本実施の形態の撮像装置は、印加する電界を制御して、透明部材の屈折率を連 続して変化させることによりオートフォーカス調整を行う制御部を備える。 The imaging apparatus according to the present embodiment includes a control unit that performs autofocus adjustment by controlling the electric field to be applied and continuously changing the refractive index of the transparent member.
[0027] この構成によれば、透明部材の屈折率を連続して変化させることによってオートフォ 一カスを行うことができる。これにより、オートフォーカスを行うァクチユエータを設ける 必要がなくなり、撮像装置の小型化が実現され、ァクチユエータの作動に伴う磨耗粉 の発生を防止することができる。 [0027] According to this configuration, autofocus can be performed by continuously changing the refractive index of the transparent member. As a result, there is no need to provide an autofocusing actuator, the imaging apparatus can be miniaturized, and the generation of abrasion powder associated with the operation of the actuator can be prevented.
[0028] 本実施の形態の撮像装置は、撮影モードに応じて、印加する電界を制御して、透 明部材の屈折率を切り替える切替部を備える。 The imaging apparatus according to the present embodiment includes a switching unit that switches the refractive index of the transparent member by controlling the applied electric field according to the imaging mode.
[0029] この構成によれば、透明部材の屈折率を変化させることによって、通常撮影モード 力、らマクロ撮影モードへと切り替えることができる。これにより、レバー回転のような機 械的な動作を伴わずにマクロ撮影モードへの切り替えを行えるので、撮像装置の小 型化を実現でき、また、摺動部による磨耗粉の発生を防止することができる。 According to this configuration, it is possible to switch from the normal shooting mode force to the macro shooting mode by changing the refractive index of the transparent member. This makes it possible to switch to the macro shooting mode without mechanical operation such as lever rotation, so that the imaging device can be miniaturized and wear powder from the sliding portion can be prevented. be able to.
[0030] 本実施の形態の撮像装置において、透明部材は、光学系側の面と撮像素子側の 面の両面に、電界を印加するための透明電極を備える。 [0030] In the imaging device of the present embodiment, the transparent member includes transparent electrodes for applying an electric field on both the optical system side surface and the imaging element side surface.
[0031] この構成によれば、透明電極によって透明部材に直接に電界を印加することができ るので、構造を簡単にできる。また、透明電極を用いるため、撮像した画像の特に色 再現性にっレ、ての劣化を低減できる。 [0031] According to this configuration, since the electric field can be directly applied to the transparent member by the transparent electrode, the structure can be simplified. In addition, since a transparent electrode is used, deterioration of the picked-up image, particularly color reproducibility, can be reduced.
[0032] 本実施の形態の撮像装置にお!/、て、透明部材は、光学系側及び撮像素子側の何 れかに、赤外光の透過を制限する赤外光制限部を備える。 [0032] In the imaging apparatus according to the present embodiment, the transparent member includes an infrared light limiting unit that limits transmission of infrared light on either the optical system side or the imaging element side.
[0033] この構成によれば、透明部材が赤外光をカットするフィルター機能を有するので、 別にフィルターを用いる必要がなくなり、部品点数が削減できる。これにより、撮像装 置の設計自由度が増し、撮像装置の薄型化が容易に実現できる。 [0033] According to this configuration, the transparent member has a filter function of cutting infrared light, so that it is not necessary to use a separate filter, and the number of parts can be reduced. As a result, the degree of freedom in designing the imaging device is increased, and the imaging device can be easily reduced in thickness.
[0034] 本実施の形態の撮像装置にお!/、て、透明部材は、光学系側及び撮像素子側のう ち、赤外光制限部とは反対側に、光の反射を防止する反射防止部を備える。 [0034] In the imaging apparatus of the present embodiment, the transparent member is provided on the optical system side and the imaging element side. That is, an antireflection part for preventing light reflection is provided on the side opposite to the infrared light limiting part.
[0035] この構成によれば、光の反射を防止することにより、ゴーストの発生しにくい撮像装 置を実現できる。 [0035] According to this configuration, it is possible to realize an imaging device in which ghost is hardly generated by preventing reflection of light.
[0036] 本実施の形態の撮像装置は、透明部材として、電界が印加されると屈折率が大きく なる部材を用いる。  [0036] In the imaging device of the present embodiment, a member whose refractive index increases when an electric field is applied is used as the transparent member.
[0037] この構成によれば、透明部材に電界を印加することにより、透明部材の屈折率が大 きくなり、光路長を実質的に長くすることができる。これにより、例えば、オートフォー力 スを行わなレ、場合や、マクロ撮影モードへの切替えを行わなレ、通常撮影モードの場 合は、透明部材に通電する必要がなくなり、撮像装置の省電力化を実現できる。  [0037] According to this configuration, by applying an electric field to the transparent member, the refractive index of the transparent member is increased, and the optical path length can be substantially increased. As a result, for example, when auto force is not performed, when switching to macro shooting mode is not performed, and in normal shooting mode, it is not necessary to energize the transparent member, and power saving of the imaging device Can be realized.
[0038] 本実施の形態の携帯電話装置は、上記の撮像装置を備える。  A cellular phone device according to the present embodiment includes the above-described imaging device.
[0039] この構成によれば、透明部材の屈折率を連続して変化させることにより合焦する撮 像素子を備えることで、鏡筒を機械的に移動させるァクチユエータが必要なくなり、小 型化と画質劣化の少ない優れた携帯端末装置を実現できる。また、ァクチユエータが ないので、騒音を発生させることがなぐ携帯端末装置の耐衝撃性を向上させること 力 Sできる。また、レンズの移動がないので、レンズの移動に伴う光軸の移動がなくなる 。この結果、利便性と信頼性の高いカメラ付き携帯端末装置を実現できる。また、透 明部材の屈折率を変化させることにより合焦する撮像素子を備えることで、レバー回 転のような機械的な動作を伴わずにマクロ撮影モードへの切り替えを行えるので、撮 像装置の小型化を実現でき、また、摺動部による磨耗粉の発生を防止することができ る。また、レバーを切り替える操作に代えて、ボタンを押すというような、より簡単な操 作によって撮影モードが切り替えられるので、モード切り替えの煩雑さや切り替え忘 れが解消されるため、利便性のより高いカメラ付き携帯端末装置を実現できる。  [0039] According to this configuration, by providing the imaging element that is focused by continuously changing the refractive index of the transparent member, an actuator that mechanically moves the lens barrel is not necessary, and the size can be reduced. An excellent portable terminal device with little image quality deterioration can be realized. Also, since there is no actuator, it is possible to improve the impact resistance of mobile terminal devices that do not generate noise. Further, since there is no movement of the lens, the movement of the optical axis accompanying the movement of the lens is eliminated. As a result, a portable terminal device with a camera with high convenience and reliability can be realized. In addition, by providing an image sensor that focuses by changing the refractive index of the transparent member, it is possible to switch to the macro shooting mode without mechanical operation such as lever rotation. It is possible to reduce the size of the device and to prevent generation of wear powder by the sliding portion. Also, instead of switching the lever, the shooting mode can be switched by a simple operation such as pressing a button, which eliminates the complication of mode switching and forgetting to switch. A portable terminal device can be realized.
[0040] 以下、本発明の実施の形態に係る撮像装置について、図面を参照して説明する。  Hereinafter, an imaging apparatus according to an embodiment of the present invention will be described with reference to the drawings.
(第 1の実施の形態)  (First embodiment)
図 1は、本発明の第 1の実施の形態にかかる撮像装置を示す斜視図である。撮像 装置 8は、立体基板 1、レンズ 2、絞り 3、半導体撮像素子 4、透明部材 5、 FPC (フレ キシブルプリント回路) 15、接合部 16、レンズホルダー 20、及び調整リング 21を備え [0041] 立体基板 1は、台座部 7と鏡筒部 17を備え、鏡筒部 17は、平面形状が長方形であ る台座部 7の上部に設けられる。立体基板 1の材料として、ガラス強化 PPA (ポリフタ ルアミド樹脂)などが用いられ、外部からの光の透過を防ぐために黒色の材料が用い られる。 FIG. 1 is a perspective view showing an imaging apparatus according to the first embodiment of the present invention. The imaging device 8 includes a three-dimensional substrate 1, a lens 2, an aperture 3, a semiconductor imaging device 4, a transparent member 5, an FPC (flexible printed circuit) 15, a joint 16, a lens holder 20, and an adjustment ring 21. [0041] The three-dimensional substrate 1 includes a pedestal portion 7 and a lens barrel portion 17. The lens barrel portion 17 is provided on the upper portion of the pedestal portion 7 whose planar shape is a rectangle. Glass-reinforced PPA (polyphthalamide resin) or the like is used as the material of the three-dimensional substrate 1, and a black material is used to prevent light from being transmitted from the outside.
[0042] 台座部 7は、外部との接続のために設けられた端子部 7aを備える。台座部 7の下部 には、外部機器との間で信号の授受を行うための FPC15が配置される。そして、端 子部 7aは、 FPC15に形成された接続用ランド 15aと接合部 16により接続されている 。例えば、接合部 16は半田である。  [0042] The pedestal portion 7 includes a terminal portion 7a provided for connection to the outside. Below the pedestal 7, an FPC 15 is provided for exchanging signals with external devices. The terminal portion 7 a is connected to a connection land 15 a formed on the FPC 15 by a joint portion 16. For example, the joint 16 is solder.
[0043] 鏡筒部 17の内側には、レンズホルダー 20に嵌め込まれた樹脂製のレンズ 2が配置 されている。レンズホルダー 20は、その外側に配置された調整リング 21を介して、鏡 筒部 17の外側に固定されている。レンズホルダー 20には、絞り 3が設けられている。 台座部 7と鏡筒部 17の内側には、半導体撮像素子 4と、透明部材 5が配置されてい  [0043] Inside the lens barrel portion 17, a resin lens 2 fitted in the lens holder 20 is disposed. The lens holder 20 is fixed to the outside of the lens barrel portion 17 through an adjustment ring 21 disposed on the outside thereof. The lens holder 20 is provided with a diaphragm 3. Inside the pedestal part 7 and the lens barrel part 17, the semiconductor image sensor 4 and the transparent member 5 are arranged.
[0044] 図 2を参照して、撮像装置の構造についてより詳細に説明する。図 2は、図 1の撮像 装置 8を泉 X— Xで切断した断面図である。 [0044] The structure of the imaging device will be described in more detail with reference to FIG. FIG. 2 is a cross-sectional view of the imaging device 8 of FIG. 1 cut along a spring XX.
[0045] 台座部 7と鏡筒部 17を構成する立体基板 1の内側には、隔壁 11が形成されている 。隔壁 11の中央部には、開口部 10が形成されている。開口部 10を囲む隔壁 11の 上下面は、互いに平行な平面を形成している。隔壁 11の上部には透明部材 5が配 置され、隔壁 11の下部には半導体撮像素子 4が配置されている。透明部材 5は、接 着剤などによって、隔壁 11の上面の所定の位置に固定されている。開口部 10は、半 導体撮像素子 4の撮像エリアに対応して、長方形に形成されている。これら構成部品 は、すべて立体基板 1に組み付けられる構造となって!/、る。  A partition wall 11 is formed on the inner side of the three-dimensional substrate 1 constituting the pedestal portion 7 and the lens barrel portion 17. An opening 10 is formed at the center of the partition wall 11. The upper and lower surfaces of the partition wall 11 surrounding the opening 10 form a plane parallel to each other. A transparent member 5 is disposed above the partition wall 11, and a semiconductor imaging element 4 is disposed below the partition wall 11. The transparent member 5 is fixed at a predetermined position on the upper surface of the partition wall 11 with an adhesive or the like. The opening 10 is formed in a rectangular shape corresponding to the imaging area of the semiconductor imaging device 4. All these components are structured to be assembled to the three-dimensional board 1!
[0046] 図示しないが、台座部 7の裏側には、無電解メツキなどにより配線パターンが形成さ れている。また、立体基板 1の内側には、半導体撮像素子 4をベア実装するための接 続ランドが設けられている。接続ランドと端子部 7aは、配線パターンにより接続されて いる。  Although not shown, a wiring pattern is formed on the back side of the pedestal 7 by electroless plating or the like. Further, a connection land for bare mounting the semiconductor image pickup device 4 is provided inside the three-dimensional substrate 1. The connection land and the terminal portion 7a are connected by a wiring pattern.
[0047] 半導体撮像素子 4は、例えば、約 200万画素数の 1/4インチ UXGA型と呼ばれる CCDまたは CMOSであって、立体基板 1にフェースダウン実装され、電気的に接続 されている。これは、撮像装置の薄型化を実現するために、パッケージを用いないベ ァ実装を行うためである。フェースダウン実装は、例えば、金で形成されたバンプとそ の先端に付与された導電性接着剤 (Agペーストなどの導電材料)を用いた、 SBB (S tud Bump Bond)や BGA (Ball Grid Array)などと呼ばれる接続方法によって 行われる。半導体撮像素子 4は、フェースダウン実装を行った後に封止剤 9にて封止 される。 [0047] The semiconductor image pickup device 4 is, for example, a CCD or CMOS called a 1/4 inch UXGA type having about 2 million pixels. The semiconductor image pickup device 4 is face-down mounted on the three-dimensional substrate 1 and is electrically connected. Has been. This is because the mounting is performed without using a package in order to reduce the thickness of the imaging device. Face-down mounting uses, for example, SBB (Stud Bump Bond) or BGA (Ball Grid Array) using a bump formed of gold and a conductive adhesive (conductive material such as Ag paste) applied to the tip of the bump. ) Etc. are used. The semiconductor image sensor 4 is sealed with a sealant 9 after face-down mounting.
[0048] 半導体撮像素子 4及びチップ部品(図示せず)などにより得られた映像信号は、電 気配線によって、外部へ出力される。また、電気配線によって、外部から制御信号が 入力され、電源が供給される。これらの電気配線は、配線パターン及び図 1に示す F PC15の接続用ランド 15aを経由するように形成されている。図 2に示すように、半導 体撮像素子 4への裏面からの可視光 ·赤外光の侵入を防止するため、 FPC15の裏 面には、金属箔 14が貼られている。  [0048] Video signals obtained by the semiconductor imaging device 4 and chip components (not shown) are output to the outside through electrical wiring. In addition, control signals are input from the outside by electric wiring, and power is supplied. These electric wirings are formed so as to pass through the wiring pattern and the connection land 15a of the FPC 15 shown in FIG. As shown in FIG. 2, a metal foil 14 is pasted on the back surface of the FPC 15 in order to prevent intrusion of visible light / infrared light from the back surface into the semiconductor image sensor 4.
[0049] 鏡筒部 17に内蔵されたレンズ 2は、光学的特性の異なる 2つの非球面レンズ (以下 、「レンズ」と略す) 2aと 2bを備える。レンズ 2a及び 2bは、一定の位置関係が保持でき るようにレンズホルダー 20に嵌め込まれている。レンズホルダー 20の外周、及びその 外側に配置された調整リング 21の内周には、互いに螺合するネジ 20a、 21aがそれ ぞれ形成され、レンズホルダー 20の光軸方向位置が調整可能になっている。  The lens 2 built in the lens barrel portion 17 includes two aspheric lenses (hereinafter abbreviated as “lenses”) 2a and 2b having different optical characteristics. The lenses 2a and 2b are fitted in the lens holder 20 so that a certain positional relationship can be maintained. Screws 20a and 21a that are screwed to each other are formed on the outer periphery of the lens holder 20 and the inner periphery of the adjustment ring 21 arranged on the outer side thereof, so that the optical axis position of the lens holder 20 can be adjusted. ing.
[0050] 次に、図 3により、透明部材 5の構成を説明する。図 3は、透明部材 5の断面図であ る。透明部材 5は、基材部 53、電極 51a、電極 51b、赤外光制限部である IR (Infra Red)膜 50、及び反射防止部である AR膜 52を備える。  Next, the configuration of the transparent member 5 will be described with reference to FIG. FIG. 3 is a cross-sectional view of the transparent member 5. The transparent member 5 includes a base part 53, an electrode 51a, an electrode 51b, an IR (Infra Red) film 50 that is an infrared light limiting part, and an AR film 52 that is an antireflection part.
[0051] 基材部 53は、電界を印加すると屈折率が変化する材料で構成され、例えば、ニォ ブ酸リチウムなどを用いることができる。また、例えば、カリウム、タンタル、ニオブ、酸 素からなる光学結晶(KTN結晶)を用いることも可能である。  [0051] The base part 53 is made of a material whose refractive index changes when an electric field is applied. For example, lithium niobate can be used. For example, an optical crystal (KTN crystal) made of potassium, tantalum, niobium, or oxygen can be used.
[0052] 電極 51a、 51bは、基材部 53の両面にそれぞれ設けられ、基材部 53に電界を印加 する。電極 51a、 51bは、例えば、インジウムスズ酸化物(ITO)膜のような透明電極に より構成される。電極 51a、 51bは、 FPC15を経由して外部の DSP (Digital Signal The electrodes 51 a and 51 b are provided on both surfaces of the base material portion 53, respectively, and apply an electric field to the base material portion 53. The electrodes 51a and 51b are configured by a transparent electrode such as an indium tin oxide (ITO) film. Electrodes 51a and 51b are connected to an external DSP (Digital Signal) via FPC15.
Processor)などに電気的に接続され、電極 51a、 51bに電圧が印加されることで、 基材部 53に電界が印加されるように構成されている。この場合、 DSPは、オートフォ 一カス制御を行う制御部として機能し、電極 51a、 51bの電圧を制御して、基材部 53 の屈折率を連続して変化させる。 And the like, and an electric field is applied to the base member 53 by applying a voltage to the electrodes 51a and 51b. In this case, the DSP It functions as a control unit that performs single-point control, and controls the voltages of the electrodes 51a and 51b to continuously change the refractive index of the base member 53.
[0053] IR膜 50は、電極 51aの下部に設けられ、赤外光の透過を制限するための多層膜を 備える。 IR膜 50は、波長約 400nmから 800nmの可視光領域に対して約 93%以上 の透過率を有し、それ以外の帯域に対しては透過率を充分低くしてある。 IR膜 50は 、例えば、二酸化ケイ素 ば )及び酸化チタン (TiO )などの多層膜を備える。  The IR film 50 is provided below the electrode 51a and includes a multilayer film for limiting the transmission of infrared light. The IR film 50 has a transmittance of about 93% or more with respect to a visible light region having a wavelength of about 400 nm to 800 nm, and has a sufficiently low transmittance for other bands. The IR film 50 includes, for example, a multilayer film such as silicon dioxide and titanium oxide (TiO 2).
[0054] AR膜 52は、 IR膜 50に対して基材部 53の反対側の面に設けられている。 AR膜  The AR film 52 is provided on the surface of the IR film 50 on the opposite side of the base material portion 53. AR membrane
52は、光の反射を防止する。 AR膜 52は、例えば、フッ化マグネシウム(MgF )、酸 化チタン (TiO )、及び酸化ジルコニウム(ZrO )などの多層膜を備える。  52 prevents light reflection. The AR film 52 includes a multilayer film such as magnesium fluoride (MgF 3), titanium oxide (TiO 2), and zirconium oxide (ZrO 2).
[0055] IR膜 50や AR膜 52の構成及び積層数については、可視光領域及び領域外の透 過または反射に関する特性により適宜選択することができる。また、本実施の形態に おいては、 IR膜 50は、透明部材 5の撮像素子側に配置されているが、撮像素子側と は反対の光学系側に配置されてもよい。また、本実施の形態においては、 AR膜 52 は、透明部材 5の光学系側に配置されている力 S、撮像素子側に配置されてもよい。ま た、本実施の形態においては、透明部材 5に、電極 51a、電極 51bと共に、 IR膜 50、 AR膜 52を設けたが、他の基材に、 IR膜 50、 AR膜 52を設けることも可能である。  [0055] The configuration and the number of laminated layers of the IR film 50 and the AR film 52 can be appropriately selected depending on the visible light region and the characteristics relating to transmission or reflection outside the region. Further, in the present embodiment, the IR film 50 is disposed on the imaging element side of the transparent member 5, but may be disposed on the optical system side opposite to the imaging element side. In the present embodiment, the AR film 52 may be disposed on the force S disposed on the optical system side of the transparent member 5 and on the image sensor side. In the present embodiment, the transparent member 5 is provided with the IR film 50 and the AR film 52 together with the electrode 51a and the electrode 51b. However, the IR film 50 and the AR film 52 are provided on the other base material. Is also possible.
[0056] 次に、上記構成を有する本実施の形態に力、かる撮像装置の光学系について説明 する。被写体からの光は、図 2に示すレンズホルダー 20の中央に設けられた絞り 3を 通過して、レンズ 2により集光され、透明部材 5を通って半導体撮像素子 4に入射 '結 像する。絞り 3は、被写体側に向力、うほど開口が広くなるように設計されている。これ は、レンズ 2に入射する光が絞り 3の光軸方向の壁面に当たって散乱し、これによつ て生じる不要な光がレンズに入射するのを防止するためである。  [0056] Next, an optical system of the image pickup apparatus, which is effective in the present embodiment having the above-described configuration, will be described. Light from the subject passes through a diaphragm 3 provided in the center of the lens holder 20 shown in FIG. 2, is condensed by the lens 2, enters the semiconductor image sensor 4 through the transparent member 5, and forms an image. Aperture 3 is designed so that the opening becomes wider toward the subject side. This is to prevent light incident on the lens 2 from striking the wall surface of the diaphragm 3 in the optical axis direction and being scattered, thereby preventing unnecessary light from entering the lens.
[0057] レンズ 2には、透過率や屈折率などの所要の光学特性を満たす樹脂が用いられて いる。本実施の形態においては、レンズ 2には、例えば、射出成型により成型されたも のを用いる。レンズ 2の構成については、レンズ 2a、 2bの 2枚で構成され、オートフォ 一カスを行わなくても、所定の距離より遠方の被写体を結像できる構成となっている。 本実施の形態においては、例えば、撮像装置から約 30cmより遠方での被写体に対 して焦点が合う(パンフォーカス)モードのレンズが設けられる。そして、被写体が撮像 装置から約 30cmより近い場合には、後で詳細に説明するように、オートフォーカスの 動作を行うことにより合焦させる。なお、レンズの構成や特性については、適宜選定 することが可能である。 [0057] For the lens 2, a resin satisfying required optical characteristics such as transmittance and refractive index is used. In the present embodiment, the lens 2 is formed by injection molding, for example. The lens 2 is composed of two lenses 2a and 2b, and can form a subject farther than a predetermined distance without performing autofocus. In the present embodiment, for example, a lens in a focus (pan focus) mode is provided for a subject farther than about 30 cm from the imaging device. And the subject is imaging If it is closer than about 30cm from the device, it will be focused by performing an autofocus operation, as described in detail later. The configuration and characteristics of the lens can be selected as appropriate.
[0058] 被写体からの光は、レンズ 2を通って、透明部材 5に達する。そして、図 3に示す透 明部材 5に設けられた IR膜 50により、被写体からの光のうち赤外光 ·紫外光の透過 が制限され、可視光が半導体撮像素子 4に入射する。図示しないが、入射した光は、 半導体撮像素子 4の受光面の表面に設けられたマイクロレンズあるいはオンチップレ ンズと呼ばれるレンズを通って、その下部にある色素系の色フィルターを通過し、フォ トダイオードによって所要の電気信号に変換される。その結果、半導体撮像素子 4は 、例えば、画面のアスペクト比が 4 : 3で、毎秒 30のフレームレートの画像信号を出力 する。  The light from the subject passes through the lens 2 and reaches the transparent member 5. Then, the IR film 50 provided on the transmissive member 5 shown in FIG. 3 restricts the transmission of infrared light / ultraviolet light in the light from the subject, and the visible light is incident on the semiconductor imaging device 4. Although not shown, the incident light passes through a micro lens or a lens called an on-chip lens provided on the surface of the light receiving surface of the semiconductor image sensor 4 and passes through a dye-based color filter therebelow to be a photodiode. Is converted into a required electrical signal. As a result, the semiconductor image sensor 4 outputs, for example, an image signal having a screen aspect ratio of 4: 3 and a frame rate of 30 per second.
[0059] 上述のように、レンズ 2は、被写体との距離が約 30cmより遠方での被写体に対して 焦点が合うように構成される力 より近くの被写体に対して焦点を合わせるためには、 レンズ 2と半導体撮像素子 4の受光面の距離を長くする必要がある。これらの関係は 、 Newtonの式として知られている。つまり、被写体とレンズの距離を a、レンズと結像 位置の距離を b、レンズの焦点距離を fとすると、式(1)が成立する。  [0059] As described above, the lens 2 is configured to focus on a subject whose distance from the subject is more than about 30 cm. It is necessary to increase the distance between the lens 2 and the light receiving surface of the semiconductor image sensor 4. These relationships are known as Newton's equations. In other words, if the distance between the subject and the lens is a, the distance between the lens and the imaging position is b, and the focal length of the lens is f, equation (1) holds.
(l/a) + (l/b) = (l/f) …… (1)  (l / a) + (l / b) = (l / f) ...... (1)
[0060] 式(1)によると、レンズ 2の焦点距離 fが一定の場合、被写体までの距離 aが短くな れば、レンズと結像位置の距離 bが長くなる。したがって、被写体とレンズの距離が短 い場合、被写体を半導体撮像素子 4の受光面に結像させるためには、レンズ 2と半導 体撮像素子 4の受光面の距離を長くする必要がある。この距離調整を自動的に行う の力 オートフォーカス機能である。  [0060] According to equation (1), when the focal length f of the lens 2 is constant, the distance b between the lens and the imaging position increases as the distance a to the subject decreases. Therefore, when the distance between the subject and the lens is short, it is necessary to increase the distance between the lens 2 and the light receiving surface of the semiconductor image sensor 4 in order to form an image of the subject on the light receiving surface of the semiconductor image sensor 4. The power of auto-focusing this distance adjustment automatically.
[0061] 従来は、ァクチユエータにより、半導体撮像素子からの物理的な距離が増加するよ うに、レンズ全体を移動させてオートフォーカスを行っていた。一方、本実施の形態で は、レンズを物理的に動かさないで、以下に説明するように、透明部材 5の屈折率調 整機能を利用して、レンズ 2から半導体撮像素子 4までの光学的な長さ (光路長)を 実質的に長くし、これにより、オートフォーカスを行う。  Conventionally, auto focus has been performed by moving the entire lens so that the physical distance from the semiconductor imaging device is increased by an actuator. On the other hand, in the present embodiment, the optical adjustment from the lens 2 to the semiconductor image sensor 4 is performed using the refractive index adjustment function of the transparent member 5 as described below without physically moving the lens. The long length (optical path length) is made substantially longer, and thus autofocus is performed.
[0062] 光路長 Lは、透過する媒体の屈折率を ndとし、透過する媒体の長さを tとすると、式 (2)で表される。 [0062] The optical path length L is expressed as follows, where nd is the refractive index of the transmitting medium and t is the length of the transmitting medium. It is expressed by (2).
L = nd * t (2)  L = nd * t (2)
[0063] 式(2)によると、光路長 Lを長くするためには、屈折率を高くすればよい。本実施の 形態では、オートフォーカスに際して、レンズ 2から半導体撮像素子 4までの光路長を 長くするために、レンズ 2から半導体撮像素子 4の間に配置されている透明部材 5の 屈折率を変化させる。この結果、レンズ 2を移動させることなぐ光路長を調整すること で、オートフォーカスが fiわれる。  According to equation (2), in order to increase the optical path length L, the refractive index may be increased. In the present embodiment, the refractive index of the transparent member 5 arranged between the lens 2 and the semiconductor image sensor 4 is changed in order to increase the optical path length from the lens 2 to the semiconductor image sensor 4 during autofocus. . As a result, by adjusting the optical path length without moving the lens 2, autofocus is achieved.
[0064] 図 4は、本実施の形態において、透明部材 5に対して印加される電界と屈折率の関 係を示した特性図である。電界を印加しないとき(E = 0)の屈折率は、 ndとなり、電  FIG. 4 is a characteristic diagram showing the relationship between the electric field applied to the transparent member 5 and the refractive index in the present embodiment. When no electric field is applied (E = 0), the refractive index is nd.
1 界 Eを印加したときの屈折率は ndとなる。ここで、印加される電界と屈折率の変化が 、直線的になるものは、 1次の電気光学効果 (ポッケルス効果)と呼ばれ、印加される 電界の二乗に屈折率変化が比例する効果を 2次の電気光学効果 (カー効果)と呼ば れる。本実施の形態では、屈折率変化の大きく取れるカー効果を用いている。但し、 本発明は、これに限定されない。例えば、印加電圧と屈折率との関係が連続的でな い透明部材を用いることも可能である。  The refractive index when 1 field E is applied is nd. Here, the linear change in applied electric field and refractive index is called the first-order electro-optic effect (Pockels effect), which has the effect that the refractive index change is proportional to the square of the applied electric field. This is called the second-order electro-optic effect (Kerr effect). In the present embodiment, the Kerr effect that allows a large change in refractive index is used. However, the present invention is not limited to this. For example, it is possible to use a transparent member in which the relationship between the applied voltage and the refractive index is not continuous.
[0065] 図 2を用いて説明したように、レンズ 2と半導体撮像素子 4の間に配置された透明部 材 5には、外部回路力も FPC15を通して電圧が印加され、図 3に示す電極 51a、 51 bを介して基材部 53に電界が印加されるようになっている。そして、図 4に示すように 、電界 Eが透明部材 5の基材部 53に印加されると、基材部 53の屈折率が nd力、ら nd As described with reference to FIG. 2, a voltage is also applied to the transparent member 5 disposed between the lens 2 and the semiconductor imaging device 4 through the FPC 15 as an external circuit force, and the electrodes 51a, An electric field is applied to the base material portion 53 through 51 b. Then, as shown in FIG. 4, when the electric field E is applied to the base part 53 of the transparent member 5, the refractive index of the base part 53 becomes the nd force,
2 1 へと変化する。この場合、屈折率は nd <ndであるので、式(2)より、レンズ  Change to 2 1. In this case, the refractive index is nd <nd.
2と半導体撮像素子 4の間の光路長が長くなる。この結果、機械的にレンズ 2を移動さ せることなく光路長が変更される。このように、印加する電圧を変化させることによって 、屈折率を連続的に変化させ、所要の光路長が設定される。これによつて、レンズ 2 が実際に光軸方向へ移動しなくても、レンズ 2が連続的に光軸方向へ移動したのと 同様の結果が生じる。したがって、従来のように、図 6に示すァクチユエータ 41を駆動 させて、鏡筒 43をレンズ 42と共に光軸方向に移動させて合焦動作を行う必要がなく なる。本実施の形態において、合焦のシーケンスについては、いわゆる山登り法など の様々な方法を適用することができる。 [0066] 以上説明したように、本実施の形態によれば、透明部材 5に電界を印加することに より、透明部材 5の屈折率が変化し、光学系と半導体撮像素子 4との間の光学的な距 離 (光路長)が実質的に連続して変更される。これにより、ァクチユエータによって鏡 筒を機械的及び物理的に移動させることなぐ結像位置を連続して変化させることが できる。この結果、ァクチユエータを設ける必要がなくなり、撮像装置 8の小型化が可 能となる。また、レンズ 2が移動することがないので、機械的な摺動部をなくすことがで き、摺動による磨耗粉の発生を防止でき画像の劣化のない撮像装置を実現できる。 The optical path length between 2 and the semiconductor image sensor 4 becomes longer. As a result, the optical path length is changed without mechanically moving the lens 2. Thus, by changing the applied voltage, the refractive index is continuously changed, and a required optical path length is set. As a result, even if the lens 2 does not actually move in the optical axis direction, the same result as that in which the lens 2 continuously moves in the optical axis direction is produced. Accordingly, it is not necessary to perform the focusing operation by driving the actuator 41 shown in FIG. 6 and moving the lens barrel 43 together with the lens 42 in the direction of the optical axis as in the prior art. In the present embodiment, various methods such as a so-called hill climbing method can be applied to the focusing sequence. [0066] As described above, according to the present embodiment, by applying an electric field to the transparent member 5, the refractive index of the transparent member 5 changes, and the optical system and the semiconductor image pickup device 4 are changed. The optical distance (optical path length) is changed substantially continuously. As a result, the image forming position can be continuously changed without mechanically and physically moving the lens barrel by the actuator. As a result, it is not necessary to provide an actuator, and the imaging device 8 can be downsized. In addition, since the lens 2 does not move, the mechanical sliding portion can be eliminated, the generation of wear powder due to sliding can be prevented, and an image pickup apparatus free from image deterioration can be realized.
[0067] また、本実施の形態によれば、レンズ 2は機械的及び物理的に光軸方向に移動し ないので、画像の光軸と直行する方向への移動や、画像の撮像面に対する傾き(ァ オリ)が発生しなくなり、オートフォーカスの性能が向上する。  [0067] Further, according to the present embodiment, since the lens 2 does not move mechanically and physically in the optical axis direction, the lens 2 moves in a direction perpendicular to the optical axis of the image, or the image is inclined with respect to the imaging surface. (Flip) does not occur and autofocus performance is improved.
[0068] (第 2の実施の形態)  [0068] (Second Embodiment)
図 5は、本発明の第 2の実施の形態にかかる携帯端末装置の平面図である。携帯 端末装置 30は、本発明の第 1の実施の形態に力、かるオートフォーカス機能付の撮像 装置を搭載する。  FIG. 5 is a plan view of a portable terminal device according to the second embodiment of the present invention. The portable terminal device 30 is equipped with an imaging device with an autofocus function that is effective in the first embodiment of the present invention.
[0069] 図 5に示すように、本実施の形態にかかる携帯端末装置 30は、上側筐体 31及び下 側筐体 32を備えた折り畳み型の携帯端末装置であり、使用時には上側筐体 31と下 側筐体 32を開き、不使用時には上側筐体 31と下側筐体 32を折り畳む形態となって いる。上側筐体 31と下側筐体 32がヒンジ 35を介して連結されることにより、携帯端末 装置 30は折り畳み可能な構成となっている。上側筐体 31は、スピーカ 33、液晶表示 画面 34、送受信用アンテナ 36、及び撮像装置 38を備える。下側筐体 32は、入力キ 一 37及びマイク 39を備える。入力キー 37は、オートフォーカス用入力キー 37aを備 X·る。  As shown in FIG. 5, the mobile terminal device 30 according to the present embodiment is a foldable mobile terminal device including an upper housing 31 and a lower housing 32, and the upper housing 31 is in use. The lower casing 32 is opened, and the upper casing 31 and the lower casing 32 are folded when not in use. By connecting the upper housing 31 and the lower housing 32 via the hinge 35, the portable terminal device 30 is configured to be foldable. The upper housing 31 includes a speaker 33, a liquid crystal display screen 34, a transmission / reception antenna 36, and an imaging device 38. The lower housing 32 includes an input key 37 and a microphone 39. The input key 37 has an autofocus input key 37a.
[0070] 撮像装置 38は、第 1の実施の形態にかかるオートフォーカス機能付の撮像装置を 備える。この場合、撮像装置 38の撮像方向は、図 5の紙面に対して垂直方向である The imaging device 38 includes the imaging device with an autofocus function according to the first embodiment. In this case, the imaging direction of the imaging device 38 is perpendicular to the paper surface of FIG.
Yes
[0071] オートフォーカス用入力キー 37aが、半押し状態にされることで、撮像装置 38では オートフォーカスにより合焦が行われる。そして、液晶表示画面 34に表示される点滅 表示が点灯表示に変化して合焦がユーザに知らされる。この状態で、入力キー 37a を更に押し込むと、撮像動作が行われ、撮像された画像が液晶表示画面 34に表示 される。また、撮像装置 38は、起動時にはパンフォーカスで撮像できるように設定さ れている。したがって、オートフォーカスが必要ないときには、入力キー 37aを半押し 状態にせずに押し込むことで、パンフォーカスによって撮像装置 38は被写体を撮像 する。 [0071] When the autofocus input key 37a is pressed halfway, the imaging device 38 performs focusing by autofocus. Then, the blinking display displayed on the liquid crystal display screen 34 changes to a lighting display, and the user is notified of the in-focus state. In this state, enter key 37a When is further pressed, an imaging operation is performed, and the captured image is displayed on the liquid crystal display screen 34. Further, the imaging device 38 is set so as to be able to take an image with pan focus at the time of activation. Therefore, when autofocus is not required, the image pickup device 38 takes an image of the subject by pan focus by pressing the input key 37a without pressing it halfway.
[0072] このように、本実施の形態では、一般的に使用頻度が多い通常撮影モード (パンフ オーカスモード)で被写体がパンフォーカスで撮像されるため、図 3に示す透明部材 5 には電界が印加されない。この結果、携帯端末装置 30の消費電力を低く抑えること ができる。  As described above, in the present embodiment, since the subject is imaged with pan focus in the normal shooting mode (pan focus mode) that is generally used frequently, an electric field is applied to the transparent member 5 shown in FIG. Not applied. As a result, the power consumption of the mobile terminal device 30 can be kept low.
[0073] また、本実施の形態では、既に第 1の実施の形態で説明したように、従来のようなァ クチユエータを設ける必要がないので、携帯端末装置 30が小型化'薄型化される。ま た、透明部材 5に電圧を印加することでオートフォーカスが行われるので、レンズ 2を 機械的及び物理的に移動させる機構が必要なぐ携帯端末装置 30が軽量化され、 携帯端末装置 30の落下などに対する耐衝撃値が向上する。また、レンズ 2が機械的 及び物理的に移動しないので、レンズの移動に伴う発塵などによる画質劣化の問題 も解消される。  In the present embodiment, as already described in the first embodiment, there is no need to provide an actuator as in the prior art, and thus the mobile terminal device 30 is reduced in size and thickness. In addition, since autofocus is performed by applying a voltage to the transparent member 5, the mobile terminal device 30 that requires a mechanism for mechanically and physically moving the lens 2 is reduced in weight, and the mobile terminal device 30 is dropped. Improves the impact resistance against. In addition, since the lens 2 does not move mechanically and physically, the problem of image quality degradation due to dust generation accompanying the movement of the lens can be solved.
[0074] (第 3の実施の形態)  [0074] (Third embodiment)
次に、第 3の実施の形態の撮像装置について説明する。第 3の実施の形態の撮像 装置の基本的な構成は、第 1の実施の形態の撮像装置と同じであるが(図 1〜図 4参 照)、 FPC15を経由して接続された DSPによる制御内容が異なる。第 3の実施の形 態の撮像装置においては、 DSPは、撮影モードの切替えを行う切替部として機能し 、電極 51a、 51bに印加される電圧を制御することによって、基材部 53に印加される 電界の電界制御を行!/、、撮影モードに応じて基材部 53の屈折率を切り替える。  Next, an imaging device according to a third embodiment will be described. The basic configuration of the imaging device of the third embodiment is the same as that of the imaging device of the first embodiment (see Figs. 1 to 4), but it is based on a DSP connected via the FPC15. The control details are different. In the imaging apparatus according to the third embodiment, the DSP functions as a switching unit that switches the shooting mode, and is applied to the base unit 53 by controlling the voltage applied to the electrodes 51a and 51b. Control the electric field of the electric field! /, And switch the refractive index of the base 53 according to the shooting mode.
[0075] 上記した第 1の実施の形態と同様に、レンズ 2は、被写体との距離が約 30cmより遠 方での被写体に対して焦点が合うように構成されるが、より近くの被写体に対して焦 点を合わせるためには、レンズ 2と半導体撮像素子 4の受光面の距離を長くする必要 がある。これらの関係は、上記した Newtonの式(1)として知られている。  [0075] Similar to the first embodiment described above, the lens 2 is configured to focus on a subject whose distance to the subject is more than about 30 cm. In order to adjust the focal point, it is necessary to increase the distance between the lens 2 and the light receiving surface of the semiconductor image sensor 4. These relationships are known as Newton's equation (1) above.
[0076] 式(1)によると、レンズ 2の焦点距離 fが一定の場合、被写体までの距離 aが短くな れば、レンズと結像位置の距離 bが長くなる。したがって、被写体とレンズの距離が短 い場合、被写体を半導体撮像素子 4の受光面に結像させるためには、レンズ 2と半導 体撮像素子 4の受光面の距離を長くする必要がある。この距離調整が、被写体に接 近した位置で撮影を行うマクロ撮影モードで必要となる。 [0076] According to equation (1), when the focal length f of the lens 2 is constant, the distance a to the subject is short. If so, the distance b between the lens and the imaging position becomes longer. Therefore, when the distance between the subject and the lens is short, it is necessary to increase the distance between the lens 2 and the light receiving surface of the semiconductor image sensor 4 in order to form an image of the subject on the light receiving surface of the semiconductor image sensor 4. This distance adjustment is necessary in the macro shooting mode in which shooting is performed at a position close to the subject.
[0077] 従来は、マクロ撮影モードでは、切り替えレバーなどにより、半導体撮像素子からの 物理的な距離が増加するように、レンズ全体を移動させていた。一方、本実施の形態 では、レンズを物理的に動かさないで、以下に説明するように、透明部材 5の屈折率 調整機能を利用して、レンズ 2から半導体撮像素子 4までの光学的な長さ (光路長) を実質的に長くし、これにより、マクロ撮影モードへの切り替えを行う。  Conventionally, in the macro photography mode, the entire lens is moved by a switching lever or the like so that the physical distance from the semiconductor image sensor increases. On the other hand, in the present embodiment, the optical length from the lens 2 to the semiconductor image sensor 4 is utilized by using the refractive index adjustment function of the transparent member 5 as described below without physically moving the lens. The length (optical path length) is substantially lengthened, and the mode is switched to the macro photography mode.
[0078] 上記した式(2)に示すとおり、光路長 Lを長くするためには、屈折率を高くすればよ い。本実施の形態では、マクロ撮影モードへの切り替えに際して、レンズ 2から半導体 撮像素子 4までの光路長を長くするために、レンズ 2から半導体撮像素子 4の間に配 置されている透明部材 5の屈折率を変化させる。この結果、レンズ 2を移動させること なぐ光路長を調整することで、マクロ撮影モードへの切り替えを行える。  As shown in the above equation (2), in order to increase the optical path length L, the refractive index may be increased. In the present embodiment, when switching to the macro photography mode, in order to increase the optical path length from the lens 2 to the semiconductor image sensor 4, the transparent member 5 disposed between the lens 2 and the semiconductor image sensor 4 Change the refractive index. As a result, the macro shooting mode can be switched by adjusting the optical path length without moving the lens 2.
[0079] 図 2を用いて説明したように、レンズ 2と半導体撮像素子 4の間に配置された透明部 材 5には、外部回路(図示せず)から FPC15を通して電圧が印加され、図 3に示す電 極 51 a、 51bを介して基材部 53に電界が印加されるようになっている。そして、図 4に 示すように、電界 Eが透明部材 5の基材部 53に印加されると、基材部 53の屈折率が nd力、ら ndへと変化する。この場合、屈折率は nd < ndであるので、式(2)より、レン As described with reference to FIG. 2, a voltage is applied to the transparent member 5 disposed between the lens 2 and the semiconductor image pickup device 4 through an FPC 15 from an external circuit (not shown). An electric field is applied to the base member 53 through the electrodes 51a and 51b shown in FIG. Then, as shown in FIG. 4, when the electric field E is applied to the base material portion 53 of the transparent member 5, the refractive index of the base material portion 53 changes to nd force, nd. In this case, the refractive index is nd <nd.
1 2 1 2 1 2 1 2
ズ 2と半導体撮像素子 4の間の光路長が長くなる。この結果、機械的にレンズ 2を移 動させることなく光路長が変更される。  The optical path length between the semiconductor 2 and the semiconductor image sensor 4 becomes longer. As a result, the optical path length is changed without mechanically moving the lens 2.
[0080] このように、本実施の形態に力、かる撮像装置によれば、印加する電圧を変化させる ことによって、透明部材 5の屈折率を変化させ、所要の光路長が設定される。これに よって、レンズ移動用のレバーを回転させて機械的にレンズを移動させることなく光 路長を変更でき、電界の印加の有無によって、通常撮影モードとマクロ撮影モードを 切り替えること力 Sできる。この結果、従来のようなレバーなどを設ける必要がなくなるた め、撮像装置 8の小型化を実現することができる。また、レンズ 2全体を光軸方向へ機 械的に移動する必要がなくなるため、発塵などによる画質劣化の問題も解消可能と なる。 As described above, according to the imaging apparatus which is effective in the present embodiment, the refractive index of the transparent member 5 is changed by changing the voltage to be applied, and the required optical path length is set. As a result, the optical path length can be changed without rotating the lens moving lever and mechanically moving the lens, and the force S for switching between the normal shooting mode and the macro shooting mode can be obtained depending on whether or not an electric field is applied. As a result, there is no need to provide a conventional lever or the like, and the imaging device 8 can be downsized. In addition, since it is not necessary to mechanically move the entire lens 2 in the direction of the optical axis, the problem of image quality degradation due to dust generation can be solved. Become.
[0081] 本実施の形態においては、通常撮影モードとマクロ撮影モードを切り替える場合を 説明したが、 3つ以上の撮影モードの間で、撮影モードの切り替えを行ってよい。この 場合は、それぞれ異なる電圧を透明部材 5に印加して、 3つ以上の屈折率を生じさせ ることによって、 3つ以上の撮影モードの切り替えが可能となる。  In this embodiment, the case of switching between the normal shooting mode and the macro shooting mode has been described, but the shooting mode may be switched between three or more shooting modes. In this case, it is possible to switch between three or more photographing modes by applying different voltages to the transparent member 5 to generate three or more refractive indexes.
[0082] (第 4の実施の形態)  [0082] (Fourth embodiment)
次に、本発明の第 4の実施の形態に係る携帯電話装置について説明する。第 4の 実施の形態の撮像装置の基本的な構成は、第 2の実施の形態の携帯電話装置と同 じであるが(図 5参照)、第 4の実施の形態の携帯電話装置は、第 3の実施の形態で 説明したマクロ撮影切り替え機能を有する点が異なる。なお、マクロ撮影モードによる 撮像方向も紙面に垂直の方向である。  Next, a mobile phone device according to a fourth embodiment of the present invention will be described. The basic configuration of the imaging device of the fourth embodiment is the same as that of the mobile phone device of the second embodiment (see FIG. 5), but the mobile phone device of the fourth embodiment is The difference is that it has the macro shooting switching function described in the third embodiment. Note that the shooting direction in the macro shooting mode is also a direction perpendicular to the paper surface.
[0083] 撮像装置 38は、撮影モード切替用入力キー 37aが繰り返し押されるのに応じて、 通常撮影モードからマクロ撮影モードへ、そして、マクロ撮影モードから通常撮影モ ードへと、撮影モードが切り替わるように構成されている。また、撮像装置 38は、起動 時には、通常撮影モードとなるように設定されている。  The imaging device 38 changes the shooting mode from the normal shooting mode to the macro shooting mode and from the macro shooting mode to the normal shooting mode in response to the repeated pressing of the shooting mode switching input key 37a. It is comprised so that it may switch. In addition, the imaging device 38 is set to be in the normal shooting mode when it is activated.
[0084] このように、本実施の形態では、一般的に使用頻度が多い通常撮影モードの際は 、図 3に示す透明部材 5に電界が印加されない。この結果、携帯端末装置 30の消費 電力を低く抑えることができる。  As described above, in the present embodiment, an electric field is not applied to the transparent member 5 shown in FIG. 3 in the normal photographing mode that is generally used frequently. As a result, the power consumption of the mobile terminal device 30 can be kept low.
[0085] また、本実施の形態では、既に第 1の実施の形態で説明した通り、従来のような切り 替えレバーなどを設ける必要がな!/、ので、レバーの移動範囲を考慮する必要がなく なることから、携帯電話などの携帯端末装置 30が小型化 ·薄型化され、携帯端末装 置 30のデザインを簡素にすることができる。更に、撮影モードを液晶表示画面 34に 表示させることが容易にできるので、撮影モードを液晶表示画面 34で確認でき、撮 影モードの切り替え忘れを防止できることから、携帯端末装置 30の利便性が向上す る。また、透明部材 5に携帯端末装置 30の回路から電圧を印加することによって撮影 モードの切り替えが行われるので、レンズ 2を機械的に移動させる機構を設ける必要 カ¾いことから、携帯端末装置 30の落下などに対する耐衝撃値の向上が可能となる 。なお、レバーを回転させて機械的にレンズ 2を移動させることがないので、発塵など による画質劣化の問題も解消可能となる。 [0085] Also, in this embodiment, as already described in the first embodiment, it is necessary to provide a conventional switching lever or the like! /, So it is necessary to consider the movement range of the lever. As a result, the mobile terminal device 30 such as a mobile phone is reduced in size and thickness, and the design of the mobile terminal device 30 can be simplified. Furthermore, since the shooting mode can be easily displayed on the liquid crystal display screen 34, the shooting mode can be confirmed on the liquid crystal display screen 34, and forgetting to switch the shooting mode can be prevented, improving the convenience of the mobile terminal device 30. The In addition, since the photographing mode is switched by applying a voltage to the transparent member 5 from the circuit of the mobile terminal device 30, it is necessary to provide a mechanism for mechanically moving the lens 2. It is possible to improve the impact resistance against dropping of the material. In addition, the lens 2 is not moved mechanically by rotating the lever. It is possible to solve the problem of image quality degradation due to the above.
[0086] 本実施の形態では、携帯端末装置として携帯電話について説明したが、本実施の 形態の携帯電話はこの構成に限定されない。また、本発明にかかる撮像装置は、様 々な形態の携帯情報装置に適用可能である。例えば、 PDA (パーソナル 'デジタル' アシスタント)や、パーソナルコンピュータ、パーソナルコンピュータの外付け機器など の携帯情報装置などにも、本発明にかかる撮像装置を応用することができる。  In the present embodiment, the mobile phone has been described as the mobile terminal device. However, the mobile phone of the present embodiment is not limited to this configuration. The imaging device according to the present invention can be applied to various types of portable information devices. For example, the imaging apparatus according to the present invention can also be applied to PDAs (personal 'digital' assistants), personal computers, and portable information devices such as personal computer external devices.
[0087] なお、本発明は上記実施の形態に限定されるものではなぐその他種々の態様で 実施可能である。  Note that the present invention is not limited to the above-described embodiment, and can be implemented in various other modes.
[0088] 以上に現時点で考えられる本発明の好適な実施の形態を説明した力 本実施の形 態に対して多様な変形が可能なことが理解され、そして、本発明の真実の精神と範 囲内にあるそのようなすべての変形を添付の請求の範囲が含むことが意図されてい 産業上の利用可能性  [0088] The power of explaining the preferred embodiment of the present invention considered at the present time. It will be understood that various modifications can be made to the present embodiment, and the true spirit and scope of the present invention can be understood. It is intended that the appended claims cover all such variations that are within the scope Industrial Applicability
[0089] 本発明に力、かる撮像装置は、機械的及び物理的にレンズを移動させる機構を設け ずにオートフォーカスある!/、は撮影モードの切り替えを行えるので、撮像装置の小型 化が可能である。また、撮影モードを液晶表示画面に表示させることにより、撮影モ ードの切り替え忘れを防止することができる。また、本発明に力、かる撮像装置は、レン ズを移動させる機械的な摺動部をなくすことができるので、発塵を防止し、撮像装置 の画質の劣化を防止できる。また、レンズの移動部分がないので、耐衝撃性能を向 上させること力 Sでき、撮像装置の信頼性を高めることができる。本発明にかかる撮像 装置は、上記のような効果を有し、携帯端末装置などに搭載されるカメラ等として有 用である。  [0089] The image pickup apparatus that is effective in the present invention has autofocus without mechanically and physically moving a lens mechanism, and can switch the shooting mode, so that the image pickup apparatus can be downsized. It is. Also, by displaying the shooting mode on the liquid crystal display screen, forgetting to switch the shooting mode can be prevented. In addition, since the image pickup apparatus that is effective in the present invention can eliminate the mechanical sliding portion for moving the lens, dust generation can be prevented and the image quality of the image pickup apparatus can be prevented from deteriorating. In addition, since there is no moving part of the lens, it is possible to improve the impact resistance S and to improve the reliability of the imaging device. The imaging device according to the present invention has the effects as described above, and is useful as a camera or the like mounted on a portable terminal device or the like.

Claims

請求の範囲 The scope of the claims
[1] 被写体からの光を集光する光学系と、 [1] an optical system that collects light from the subject;
前記光学系が集光した光を受光し、撮像信号を生成する撮像素子と、 前記光学系と前記撮像素子の間に設けられ、印加された電界に応じて屈折率が変 化する透明部材と、  An imaging element that receives light collected by the optical system and generates an imaging signal; and a transparent member that is provided between the optical system and the imaging element and has a refractive index that changes in accordance with an applied electric field; ,
を備える撮像装置。  An imaging apparatus comprising:
[2] 前記透明部材は、印加された電界に応じて連続的に屈折率が変化する請求項 1に 記載の撮像装置。  [2] The imaging device according to [1], wherein the refractive index of the transparent member continuously changes in accordance with an applied electric field.
[3] 印加する電界を制御して、前記透明部材の屈折率を連続して変化させることにより オートフォーカス調整を行う制御部を備える請求項 2に記載の撮像装置。  [3] The imaging apparatus according to [2], further comprising a control unit that performs autofocus adjustment by controlling an electric field to be applied and continuously changing a refractive index of the transparent member.
[4] 撮影モードに応じて、印加する電界を制御して、前記透明部材の屈折率を切り替え る切替部を備える請求項 1または 2に記載の撮像装置。 [4] The imaging device according to [1] or [2], further comprising a switching unit that controls an electric field to be applied and switches a refractive index of the transparent member according to a photographing mode.
[5] 前記透明部材は、前記光学系側の面と前記撮像素子側の面の両面に、電界を印 加するための透明電極を備える請求項 1〜4のいずれかに記載の撮像装置。 [5] The imaging device according to any one of [1] to [4], wherein the transparent member includes transparent electrodes for applying an electric field on both the optical system side surface and the imaging element side surface.
[6] 前記透明部材は、前記光学系側及び前記撮像素子側の何れかに、赤外光の透過 を制限する赤外光制限部を備える請求項 1〜5のいずれかに記載の撮像装置。 [6] The imaging device according to any one of [1] to [5], wherein the transparent member includes an infrared light limiting unit that limits transmission of infrared light on either the optical system side or the imaging element side. .
[7] 前記透明部材は、前記光学系側及び前記撮像素子側のうち、前記赤外光制限部 とは反対側に、光の反射を防止する反射防止部を備える請求項 6に記載の撮像装置7. The imaging according to claim 6, wherein the transparent member includes an antireflection portion for preventing light reflection on the optical system side and the imaging element side on the side opposite to the infrared light limiting portion. apparatus
Yes
[8] 前記透明部材は、電界が印加されると屈折率が大きくなる請求項 1〜7のいずれか に記載の撮像装置。  8. The imaging device according to claim 1, wherein the transparent member has a refractive index that is increased when an electric field is applied.
[9] 請求項;!〜 8のいずれかに記載の撮像装置を備える携帯端末装置。 [9] A portable terminal device comprising the imaging device according to any one of claims 8 to 8.
PCT/JP2007/067921 2006-10-03 2007-09-14 Imaging device WO2008041469A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-271443 2006-10-03
JP2006271441A JP2008090026A (en) 2006-10-03 2006-10-03 Image pickup device
JP2006-271441 2006-10-03
JP2006271443A JP2008092314A (en) 2006-10-03 2006-10-03 Photographing apparatus

Publications (1)

Publication Number Publication Date
WO2008041469A1 true WO2008041469A1 (en) 2008-04-10

Family

ID=39268331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067921 WO2008041469A1 (en) 2006-10-03 2007-09-14 Imaging device

Country Status (1)

Country Link
WO (1) WO2008041469A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010129460A1 (en) * 2009-05-03 2010-11-11 Lensvector Inc. Camera module with tolerance adjustment using embedded active optics
US8891006B2 (en) 2009-06-29 2014-11-18 Lensvector, Inc. Wafer level camera module with active optical element
US9065991B2 (en) 2010-11-04 2015-06-23 Lensvector Inc. Methods of adjustment free manufacture of focus free camera modules

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922010A (en) * 1982-07-28 1984-02-04 Sorigoole Japan:Kk Method and device for automatic focus adjustment
JPS6291914A (en) * 1985-10-18 1987-04-27 Hitachi Ltd Variable focus optical system and autofocusing device using it
JPH0410777A (en) * 1990-04-27 1992-01-14 Hitachi Ltd Control device for depth of filed of image pickup device
JPH0436737A (en) * 1990-05-31 1992-02-06 Minolta Camera Co Ltd Range-finding mechanism provided with zoom lens
JPH07333539A (en) * 1994-04-14 1995-12-22 Ricoh Co Ltd Light beam scanner
JP2000197604A (en) * 1998-10-28 2000-07-18 Olympus Optical Co Ltd Endoscope device
WO2005101083A1 (en) * 2004-04-13 2005-10-27 Matsushita Electric Industrial Co., Ltd. Camera module
JP2005326621A (en) * 2004-05-14 2005-11-24 Sony Corp Imaging device, auto-focus device and auto-focus method
JP2006209122A (en) * 2005-01-27 2006-08-10 Samsung Electro-Mechanics Co Ltd Inner focus type zoom lens system
JP2006243572A (en) * 2005-03-07 2006-09-14 Citizen Watch Co Ltd Camera lens unit
JP2006243573A (en) * 2005-03-07 2006-09-14 Citizen Watch Co Ltd Liquid crystal lens and camera module

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922010A (en) * 1982-07-28 1984-02-04 Sorigoole Japan:Kk Method and device for automatic focus adjustment
JPS6291914A (en) * 1985-10-18 1987-04-27 Hitachi Ltd Variable focus optical system and autofocusing device using it
JPH0410777A (en) * 1990-04-27 1992-01-14 Hitachi Ltd Control device for depth of filed of image pickup device
JPH0436737A (en) * 1990-05-31 1992-02-06 Minolta Camera Co Ltd Range-finding mechanism provided with zoom lens
JPH07333539A (en) * 1994-04-14 1995-12-22 Ricoh Co Ltd Light beam scanner
JP2000197604A (en) * 1998-10-28 2000-07-18 Olympus Optical Co Ltd Endoscope device
WO2005101083A1 (en) * 2004-04-13 2005-10-27 Matsushita Electric Industrial Co., Ltd. Camera module
JP2005326621A (en) * 2004-05-14 2005-11-24 Sony Corp Imaging device, auto-focus device and auto-focus method
JP2006209122A (en) * 2005-01-27 2006-08-10 Samsung Electro-Mechanics Co Ltd Inner focus type zoom lens system
JP2006243572A (en) * 2005-03-07 2006-09-14 Citizen Watch Co Ltd Camera lens unit
JP2006243573A (en) * 2005-03-07 2006-09-14 Citizen Watch Co Ltd Liquid crystal lens and camera module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010129460A1 (en) * 2009-05-03 2010-11-11 Lensvector Inc. Camera module with tolerance adjustment using embedded active optics
US8854527B2 (en) 2009-05-03 2014-10-07 Lensvector, Inc. Optical lens having fixed lenses and embedded active optics
US8891006B2 (en) 2009-06-29 2014-11-18 Lensvector, Inc. Wafer level camera module with active optical element
US9065991B2 (en) 2010-11-04 2015-06-23 Lensvector Inc. Methods of adjustment free manufacture of focus free camera modules

Similar Documents

Publication Publication Date Title
US11665421B2 (en) Camera module having image sensor located between first and second circuit boards
KR20130127780A (en) Camera module
JP4462197B2 (en) Optical low-pass filter
WO2008041739A1 (en) Imaging device, method for manufacturing the imaging device and cellular phone
US20070103580A1 (en) Image capturing apparatus
US20080080847A1 (en) Lens module and camera module using the lens module
CN210839753U (en) Periscopic zooming camera module
CN109327571B (en) Camera assembly and electronic device
EP4092455A1 (en) Plastic light-folding element, imaging lens assembly module and electronic device
JP4781187B2 (en) Imaging device
WO2008041469A1 (en) Imaging device
JP2008051877A (en) Micro lens, imaging apparatus, and personal digital assistant
JP2011013578A (en) Zoom lens, camera module and electronic equipment
JP2008092314A (en) Photographing apparatus
JP2008090026A (en) Image pickup device
WO2023098660A1 (en) Imaging assembly and electronic device
CN113114811B (en) Electronic equipment
JP2007148051A (en) Photographing lens unit
TWI700540B (en) Camera module and electronic device having the same
KR101036365B1 (en) Camera module
KR20210061799A (en) Camera module
JP2009003058A (en) Camera module, pedestal mount, and imaging apparatus
CN116360092B (en) Liquid lens, camera module and electronic equipment
JP2005148197A (en) Imaging apparatus and portable terminal equipped with the same
KR20100122721A (en) Camera module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807328

Country of ref document: EP

Kind code of ref document: A1