WO2008018387A1 - Varifocal lens device - Google Patents

Varifocal lens device Download PDF

Info

Publication number
WO2008018387A1
WO2008018387A1 PCT/JP2007/065276 JP2007065276W WO2008018387A1 WO 2008018387 A1 WO2008018387 A1 WO 2008018387A1 JP 2007065276 W JP2007065276 W JP 2007065276W WO 2008018387 A1 WO2008018387 A1 WO 2008018387A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
focus lens
variable focus
lens device
opening member
Prior art date
Application number
PCT/JP2007/065276
Other languages
English (en)
French (fr)
Inventor
Kazuo Yokoyama
Atsushi Ono
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to JP2008512632A priority Critical patent/JP4209936B2/ja
Priority to US12/160,125 priority patent/US7643217B2/en
Publication of WO2008018387A1 publication Critical patent/WO2008018387A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism

Definitions

  • the present invention relates to a variable focus lens device, and more specifically to a lens device that changes the focus by driving the shape of a liquid interface with an actuator.
  • variable focus lens device there is one in which a part of a combination of a plurality of solid lenses is movable in the optical axis direction. In this method, it is difficult to reduce the thickness due to the restriction of the moving distance in the optical axis direction, and a variable focus lens using a liquid lens that can be reduced has been proposed.
  • a droplet formed by a two-liquid interface having a different refractive index is used as a lens, and one liquid is ion-conductive and the other liquid is insulative.
  • the shape of the droplet is changed by applying a voltage between the electrode provided at the interface between these two liquids and the counter electrode provided in the ion conductive liquid.
  • Patent Document 1 discloses a liquid lens having such a configuration! The shape of the two-liquid interface can be changed by applying voltage.
  • the main drive is that the surface tension balance of the liquid-liquid-solid (electrode) interface, which consists of the two-liquid interface and the electrode, changes with voltage application. This principle is called electrowetting phenomenon.
  • the voltage to be applied is 250 V, and a relatively high voltage application is required.
  • Patent Document 2 discloses another variable focus lens device using an electrowetting phenomenon.
  • an insulating layer on the electrode surface and a lubricating layer in contact with the liquid interface are placed on it.
  • the structure to be formed is disclosed.
  • a thin film of a highly fluorinated polymer is formed on a polyimide dielectric layer.
  • liquid Because it involves the movement of the position of the body-solid interface point, it must be controlled on a surface with sufficiently controlled wettability, and because it is controlled with a very small balance of surface tension, it is vulnerable to external disturbances. ! / There are difficulties.
  • Patent Document 1 Special Table 2001—519539
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-177219
  • the varifocal lens device using the electrowetting phenomenon described in the background art has a drawback that it is vulnerable to external disturbances because it is controlled with a very small balance of surface tension.
  • an object of the present invention is to provide a variable focus lens device that can stably maintain the shape of a liquid lens against disturbance caused by an external force, in order to solve the above-described problem.
  • the present invention is configured as follows.
  • a first liquid According to the present invention, a first liquid
  • a second liquid capable of forming an interface with the first liquid without being mixed with the first liquid and having a refractive index different from that of the first liquid;
  • An opening member movable in a state where an interface between the two liquids of the first liquid and the second liquid is fixed at an edge portion and is in contact with the interface between the two liquids in the cell; By moving the aperture member, the shape of the interface between the two liquids of the liquid lens formed in the aperture of the aperture member is controlled to change the focal position of the liquid lens.
  • a variable focus lens apparatus is provided.
  • the interface between the two liquids is the two liquids.
  • the edge portion of the opening member that is in contact with the interface of the opening member is fixed, and the opening member is driven by the actuator connected to the opening member, thereby controlling the shape of the interface between the two liquids,
  • the interface between the two liquids is fixed at the edge of the opening member, so that the shape of the liquid lens can be stably maintained against external disturbances.
  • variable focus lens using the electrowetting phenomenon described in the background art has a drawback that it requires a relatively large voltage application.
  • electrowetting requires a high voltage for driving. Since this phenomenon is not used, it can be driven by a low-voltage drive type actuator. Therefore, a booster circuit can be omitted, and a power-saving variable focus lens device can be provided.
  • FIG. 1A is a cross-sectional view of a variable focus lens device according to a first embodiment of the present invention.
  • FIG. 1B is a sectional view of the variable focus lens device according to the first embodiment of the present invention.
  • FIG. 1C is a plan view of the variable focus lens device according to the first embodiment of the present invention.
  • FIG. 1E is a principle explanatory view for explaining a physical mechanism for forming a liquid lens of the variable focus lens device, which is applied to the first embodiment of the present invention. Is a diagram showing a state after pushing the liquid into the first liquid side,
  • FIG. 2 is an actuator of the variable focus lens device according to the first embodiment of the present invention. Is a sectional view showing the operating principle of
  • FIG. 5 is a cross-sectional view of a variable focus lens device according to a third embodiment of the present invention.
  • FIG. 6 is an operation of the actuator of the variable focus lens device according to the third embodiment of the present invention. It is a sectional view showing the principle,
  • FIG. 7A is a plan view of an opening member of the variable focus lens device according to the first to third embodiments of the present invention.
  • FIG. 8A is a cross-sectional view of the opening member of the variable focus lens device according to the first embodiment of the present invention.
  • FIG. 9A is an enlarged cross-sectional view of an edge portion having a certain radius of curvature of the aperture member of the variable focus lens device according to the first embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing another example of the edge portion of the opening member of the variable focus lens device according to the first embodiment of the present invention.
  • FIG. 11 is a block diagram of an imaging apparatus to which the variable focus lens device according to any one of the first to third embodiments of the present invention is applied according to the fourth embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION Before the description of the present invention is continued, the same reference numerals are given to the same components in the accompanying drawings.
  • the first liquid According to the first aspect of the present invention, the first liquid
  • a second liquid capable of forming an interface with the first liquid without being mixed with the first liquid and having a refractive index different from that of the first liquid;
  • variable focal length lens device characterized by comprising the following:
  • the interface between the two liquids is fixed at the edge of the movable opening member that contacts the interface between the two liquids.
  • the shape of the liquid lens can be stably maintained. Furthermore, since an electrowetting phenomenon that requires a high voltage for driving is not used, it is possible to use a low voltage drive type actuator to move the horse.
  • the first liquid is water-insoluble
  • the actuator is an electrostimulation polymer actuator
  • the electrostimulation polymer actuator Is provided in the water-insoluble first liquid.
  • the actuator is an electrostimulation type polymer actuator and is contained in the water-insoluble first liquid, the polymer is used in an environment where moisture is blocked.
  • the actuator can be operated, can prevent deterioration in the presence of moisture, and can have excellent cycle life and reliability.
  • the water-insoluble first liquid is an ionic liquid
  • the electrically stimulated polymer actuator is an ion-driven polymer actuator associated with the entry / exit of an anion or a cation of the ionic liquid.
  • the first water-insoluble liquid is ethylmethylimidazole trifluoromethanesulfonyl imide (EMI'TFSI).
  • EMI'TFSI ethylmethylimidazole trifluoromethanesulfonyl imide
  • the second liquid is water-soluble, and the water-soluble second liquid is an aqueous solution of a substance having a specific gravity greater than that of water.
  • the varifocal lens device according to the aspect is provided.
  • the force S can be adjusted to precisely adjust the density of the aqueous solution.
  • variable focus lens device according to the fifth aspect, wherein the water-soluble second liquid is an aqueous solution of sodium polytungstate.
  • an aqueous solution having a wide range of density can be obtained with respect to a relatively high density ionic liquid.
  • the activator is a thin plate-like electrostimulation polymer activator that bends, and the variable focus lens according to the first aspect is characterized in that Providing equipment.
  • variable focus lens according to the first aspect, wherein the first liquid, the second liquid, and the opening member force S have substantially the same density. Provide equipment.
  • variable focus lens device that can further stably maintain the shape of the liquid lens against disturbance caused by an external force.
  • variable focus lens device according to the eighth aspect, wherein the opening member is a composite material composed of a plurality of members having different densities.
  • the density of the opening member can be precisely adjusted by changing the content ratio of a plurality of members having different densities.
  • variable focus lens device according to the first aspect, wherein the opening member is subjected to a water-repellent or hydrophobic surface treatment.
  • the opening member is circular, and the plurality of actuators are point symmetric along the tangential direction of the circular opening member and around the optical axis of the liquid lens.
  • the variable focus lens device according to the first aspect is provided, wherein all of the actuators are driven and controlled synchronously.
  • the opening member can be reliably translated along the optical axis direction by the plurality of actuators, and the liquid lens formed in the opening of the opening member can be
  • the shape of the interface between the two liquids can be controlled with high precision, and the position of the focal point by the liquid lens can be variably adjusted with high precision.
  • FIG. 1A and 1B are cross-sectional views of the variable-focus lens device according to the first embodiment of the present invention.
  • FIG. 1C is a plan view of the variable-focus lens device according to the first embodiment of the present invention (cross-sectional views of FIGS. 1A and 1B). Is a plan view of the cross section of the actuator viewed from below.
  • the difference between Fig. 1A and Fig. 1B is that the curvature of the liquid lens 6 is different.
  • Figures 1A and 1B show how the focal point 11 is connected to different positions on the optical axis 9 due to the different curvatures.
  • the position of the focal point 11 in FIG. 1A is closer to the liquid lens 6 than the position of the focal point 11 in FIG.
  • the insulating second liquid 2 positioned on the insulating first liquid 1 and the first liquid 1 is not mixed and forms an interface 3.
  • the densities of the first liquid 1 and the second liquid 2 may be made substantially equal.
  • the density of the two liquids of the first liquid 1 and the second liquid 2 are almost equal to prevent distortion of the liquid lens 6 due to the influence of gravity and to resist disturbance caused by external forces such as dropping and collision. More desirable to do.
  • the edge portion 5A of the insulating ring-shaped opening member 4 is in contact with the interface 3 between the first liquid 1 and the second liquid 2, and the interface between the two liquids 1 and 2 (two liquids). Interface) 3A and 3B are formed.
  • the two-liquid interface 3A inside the opening member 4 is a two-liquid interface forming the liquid lens 6, and the two-liquid interface 3B outside the opening member 4 is a two-liquid interface that does not function as the liquid lens 6. is there.
  • the opening member 4 has a ring-like circular opening 4a, and the two-liquid interface 3A of the circular opening 4a forms a liquid lens 6 due to the surface tension of the two-liquid interface 3A.
  • the two-liquid interface is fixed at these edges without getting wet over the edges 5A and 5B.
  • the reason for providing the two-liquid interface 3A that forms the liquid lens 6 and the other liquid interface 3B that does not function as the liquid lens 6 is that the first liquid 1 and the second liquid 2 are provided. Since both are sealed in the cell 14, the respective volumes are constant, and the volume changes at the site of the liquid lens 6 formed in the opening 4a of the opening member 4. This is so that it can be absorbed. As with the edge portion 5A of the opening member 4, fixing this liquid interface with the edge portion 5B provided on the sealing member 13 has a favorable effect in strengthening disturbance due to external force.
  • each of the plurality of actuators 7 is connected point-symmetrically around the optical axis 9 to the circular convex portion 4d on the lower surface of the opening member 4 (as an example, around the optical axis 9 in FIG. 1C).
  • One end of each of four actuators 7 arranged at 90 ° intervals and along the tangential direction of the circular opening member 4 is connected to the opening member 4 and the other end is a sealing member 13 to be described later. All the actuators 7 are driven and controlled in synchronism by one actuator drive control unit 54.
  • actuator drive control Under the drive control of the unit 54, the opening member 4 is driven to advance and retreat so as to translate in the direction of the optical axis 9 by the synchronous bending operation of all the actuators 7 in the bending direction 8.
  • the light beam 10 incident on the liquid lens 6 at infinity is condensed at the focal point 11, and the curvature of the liquid lens 6 changes according to the position of the aperture member 4 in the direction of the optical axis 9, and the position of the focal point 11 changes. Move as shown in Fig. 1A and Fig. 1B.
  • the first liquid 1 and the second liquid 2, the movable opening member 4 and the actuator 7 are made of an insulating and circular plate-like transparent plates 12A and 12B and circular plates on the outer peripheral portions of the transparent plates 12A and 12B. It is accommodated in an insulating cell 14 formed by an insulating sealing member 13 that is arranged in an annular shape and seals the first liquid 1 and the second liquid 2.
  • variable focus lens device is composed of a disk-shaped transparent plate 12A, 12B and a sealing member 13 arranged in an annular shape on the outer periphery of the transparent plates 12A, 12B.
  • the first liquid 1 and the second liquid 2 positioned above the first liquid 1 are accommodated in the internal space 14, and the interface 3 between the first liquid 1 and the second liquid 2.
  • the aperture member 4 is brought into contact with the actuator, and the aperture member 4 moves forward and backward along the direction of the optical axis 6 by the drive of the plurality of actuators 7 based on the control of the actuator drive control unit 54, and the circular aperture of the aperture member 4
  • the liquid lens 6 is configured by the two-liquid interface 3A in the portion 4a.
  • the liquid interface 3 is fixed by the edge portion 5A of the opening member 4 which is in contact with the interface 3 of the two liquids and is movable in the direction of the optical axis 9, so The shape of the liquid lens 6 can be stably maintained against disturbance. Further, since an electrowetting phenomenon that requires a high voltage for driving is not used, it can be driven by a low voltage driving type actuator 7 as described below.
  • FIGS. 1D and 1E show the same as those in FIGS. 1A, IB, and 1C. However, for convenience of explanation, the components of the drive portion by the actuator 7 are omitted in FIGS. 1D and 1E.
  • FIG. 1D shows a state before the opening member 4 is in the second liquid 2 and the interfaces 3A and 3B of the two liquids (two liquids 1 and 2) are pushed into the first liquid 1.
  • FIG. 1E shows a state after the opening member 4 is pushed into the first liquid 1 side.
  • the two-liquid interfaces 3A and 3B are assumed to be flat for convenience of explanation.
  • the two-liquid interfaces 3A and 3B in E bend upwardly as the opening member 4 is pushed.
  • the volumes of the first liquid 1 and the second liquid 2 are not changed, respectively, and the first liquid 1 and the second liquid 2 are sealed and sealed in the cell 14.
  • the volume portion A1 is the volume of the portion where the opening member 4 is pushed into the first liquid 1.
  • the volume portion A2 is such that the second liquid 2 in the vicinity of the inside of the opening 4a of the opening member 4 is in the first liquid 1 together with the opening member 4. It is the volume of the part that is pushed into.
  • the volume portion A3 is such that the second liquid 2 near the outside of the opening 4a of the opening member 4 is the first liquid together with the opening member 4. It is the volume of the part pushed into 1.
  • the volume portion B1 When the opening member 4 is pushed into the first liquid 1, the volume portion B1 is curved so that the first liquid 1 located inside the opening 4a of the opening member 4 is convex upward in the opening 4a. The volume of the part that rises like this.
  • the volume portion B2 When the opening member 4 is pushed into the first liquid 1, the volume portion B2 is curved so that the first liquid 1 located outside the opening 4a of the opening member 4 protrudes upwards outside the opening 4a. It is the volume of the part that rises like this.
  • the liquid interface 3A inside the opening 4a of the opening member 4 is known to be a spherical surface under zero gravity.
  • the first embodiment of the present invention Also in the liquid lens 6 which has a shape, the liquid lens 6 becomes a substantially spherical lens when the shape of the edge portion 5 of the opening member 4 is a circle.
  • the interface of the two liquids is equivalent to weightlessness, and the interface of the two liquids is truly spherical. It is possible to move closer to S.
  • FIG. 2 is a cross-sectional view showing the operating principle of the actuator 7 of the first embodiment.
  • a strip-shaped electrostimulated polymer actuator 7 is formed by sandwiching a conductive polymer layer 20A, 20B force S, and a solid electrolyte 21, and the actuator 7 is fixed. It is fixed by an insulating fixing member 32 at the end.
  • the sealing member 13 also functions as the fixing member 32.
  • Conductive polymer A power supply 30 and a switch 31 that are controlled by the actuator drive control unit 54 are connected to the layers 20A and 20B, respectively, and a voltage is applied to the conductive polymer layers 20A and 20B by the power supply 30.
  • ions of the solid electrolyte 21 are bent and driven by entering and exiting the conductive polymer 20A and the conductive polymer 20B.
  • the two actuator drive control units 54 appear to be present for ease of force understanding, and are actually shown in FIG. 1C.
  • one actuator drive control unit 54 is preferable to control all the power supplies 30 and the switches 31.
  • part or all of the actuator drive control unit 54, the power source 30, and the switch 31 are omitted as appropriate.
  • cations positive ions escape from the conductive polymer layer 20A toward the solid electrolyte 21, and the conductive polymer layer 20A contracts.
  • cations enter the conductive polymer layer 20B from the solid electrolyte 21, and the conductive polymer layer 20B expands due to the increase in the volume of ions, whereby the actuator 7 is bent and driven to be convex downward.
  • cations positive ions escape from the conductive polymer layer 20B to the solid electrolyte 21, shrinking the conductive polymer layer 20B, and conversely cations are present in the conductive polymer layer 20A.
  • the actuator 7 When the conductive polymer layer 20A is expanded by entering from the solid electrolyte 21 and the volume of ions is increased, the actuator 7 is driven to bend upward and convex.
  • the bending operation principle of the actuator 7 is explained by the entry / exit of cations. However, the bending operation can be similarly performed by the entry / exit of anions (negative ions).
  • each of these bent type actuators 7 is a flat plate, it is suitable for forming a thin variable focus lens device.
  • the thickness of the conductive polymer layers 20A and 20B constituting the actuator 7 can be about 10 m to 25 ⁇ m, and the thickness of the solid electrolyte 21 can be about 10 m to about 100 m.
  • the total thickness of the actuator 7 can be from 30 m to about 150 m.
  • the thickness of the opening member 4 can be about 1 mm
  • the thickness of the actuator 7 is a thin cell with a thickness of several millimeters that does not become a limitation in reducing the thickness of the cell 14. of A variable focus lens device can be configured.
  • the electrical stimulation type actuator 7 is arranged so as to be included in the first liquid 1, and the first liquid 1 is made into a water-insoluble liquid, so that the moisture is blocked.
  • the polymer actuator can be operated, deterioration in the presence of moisture can be prevented, and cycle life and reliability can be improved.
  • the conductive polymer constituting the conductive polymer layer 20A, 20B constituting the actuator 7 the polymer itself has electronic conductivity, for example, organic conductive such as polyaniline, polypyrrole, polythiophene, etc. Conductive polymers and conductive polymers in which carbon-based fine particles are dispersed can act on the aforementioned operating principle.
  • polypyrrole As a conductive polymer, polypyrrole was synthesized by electropolymerization in a galvanostatic mode (constant current control mode) using a carbon electrode as a deposition electrode in an organic solvent in which pyrrole monomer was dissolved in propylene carbonate as a supporting electrolyte layer.
  • a membrane and gelling the ionic liquid ethylmethylimidazolium 'trifluoromethanesulfonyl imide (EMI'TFSI) as the solid electrolyte the actuator with the configuration shown in Fig. 2 is used. Got.
  • EMI'TFSI ionic liquid ethylmethylimidazolium 'trifluoromethanesulfonyl imide
  • methylphenyl silicone oil was used as the first liquid. This oil is water insoluble. A sodium chloride aqueous solution was used as the second water-soluble liquid. As shown in FIG. 2, the above-mentioned actuator was placed in silicone oil, which is the first water-insoluble liquid. An actuator having such a configuration can be driven with a low driving voltage of ⁇ 1V to 2V.
  • EMI force which is an organic cation with a relatively large ionic radius, can utilize the expansion and contraction of the polymer as the thione enters and leaves, making it possible to provide an actuator with a large amount of generated displacement.
  • the first liquid is used to prevent distortion of the lens due to the influence of gravity and to be strong against disturbance due to external force such as dropping or collision. It is more desirable that the density of the two liquids of the liquid and the second liquid be approximately equal.
  • the density of the silicone oil used in the present first embodiment was measured by a vibration type density meter was 1. 07g / cm 2.
  • a sodium chloride aqueous solution was used as the second water-soluble liquid.
  • an aqueous solution with a density of 1.07 g / cm 2 could be precisely adjusted. Both were transparent liquids, and liquid lenses could be formed without mixing.
  • the refractive index was measured using an Abbe refractometer, the refractive index of silicone oil was 1.51, and the refractive index of the sodium chloride aqueous solution was 1.35, so liquid lenses with different refractive indexes could be formed. It is a component, that is.
  • the refractive index difference be large.
  • various organic substances and mixtures thereof can be applied as the first water-insoluble liquid in addition to the silicone oil system.
  • a thickener is added for the purpose of suppressing its fluidity, or the gelation has a polymer cross-link structure. It may be a fluid.
  • an antifreeze liquid such as an ethylene glycol aqueous solution should be used to enable use at a low temperature. Is more preferable.
  • Example 1 in a galvanostatic mode (constant current control mode) using a carbon electrode as a deposition electrode in an organic solvent in which a pyrrole monomer is dissolved in propylene carbonate as a supporting electrolyte layer as a conductive polymer.
  • a membrane prepared by electropolymerization of polypyrrole in, and using a membrane gelled with ionic liquid ethylmethylimidazolium trifluoromethanesulfonylimide (EMI ⁇ TF SI) as the solid electrolyte An actuator with the configuration shown in 2 was obtained.
  • EMI ⁇ TF SI ionic liquid ethylmethylimidazolium trifluoromethanesulfonylimide
  • EMI'TFSI ethylmethylimidazolium.trifluoromethanesulfonylimide
  • This electrolyte is a room temperature molten salt that is an ionic organic normal temperature liquid consisting of EMI organic cations and TFSI anions, and is insoluble in water.
  • the actuator having such a structure can be driven with a low driving voltage of ⁇ 1 V to 2 V and can be supplied from an ionic liquid which is an anion or a cation power required for driving. It is convenient to have the necessary electrolyte layer.
  • EMI force which is an organic cation with a relatively large ionic radius, can utilize the expansion and contraction of the polymer as the thione enters and leaves, making it possible to provide an actuator with a large amount of generated displacement.
  • E chill methylimidazo Riu beam Trifluoromethanesulfonate sulfonyl Louis bromide (E MI'TFSI) was measured by a vibration type density meter was 1. 52 g / cm 2.
  • a sodium polytungstate aqueous solution was used as the second water-soluble liquid.
  • Sodium polytungstate is a water-soluble substance with a specific gravity greater than that of water, and can produce aqueous solutions with a wide range of densities.
  • an aqueous solution with a density of 1.52 g / cm 2 can be precisely adjusted. I was able to get it. Both were transparent liquids, and liquid lenses that could be mixed were formed.
  • the refractive index of ethylmethylimidazolium trifluoromethanesulfonylimide was 1.43
  • the refractive index of the aqueous sodium polytungstate solution was The ratio is 1.40, and it is possible to form liquid lenses with different refractive indexes.
  • a glass fiber-containing polyamide (density 1.65 g / cm 2 ) as a composite material composed of a plurality of members having different densities, respectively, and from a plurality of members having different densities
  • Three types of composite materials glass fiber-containing polyphenylene sulfide (density 1.66 g / cm 2 ), polyether ether ketone (density 1 ⁇ 30 g / cm 2 ), and PTFE (density 2.14 g / cm 2 )
  • an excitation test was conducted at a gravitational acceleration of 1 G.
  • the variable focus lens device according to the first embodiment of the present invention resistant to disturbance caused by external force such as dropping or collision, the two liquids of the first liquid 1 and the second liquid 2 are used.
  • the density of the aperture member 4 is preferably approximately the same (specifically, for example, the difference is preferably within ⁇ 0.3 g / cm 2 ).
  • the glass fiber-containing plastic used in the experiment had a glass fiber content ratio of 50%. By adjusting this content ratio, the density of the opening member 4 was adjusted to the first liquid 1 and the second liquid. It can be precisely matched to the density of liquid 2.
  • the ring-shaped opening member used in the experiment is! /, A force that tends to be difficult to get wet with the ionic liquid, and the opening member 4 is subjected to a water-repellent or hydrophilic surface treatment.
  • the two-liquid interface 3 fixed by the edge portion 5A has an effect of more stably fixing, and the material of the opening member 4 can be selected in a wide range.
  • the edge portion 5A can be fixed more firmly by adjusting the wettability of the portion of the opening member 4 in contact with the first liquid 1 and the second liquid 2 by surface treatment. .
  • FIGS. 8B and 8C enlarged cross-sectional views of the edge portion 5A are shown in FIGS. 8B and 8C.
  • 8B shows the case where the angle ⁇ of the edge portion 5A is formed at an acute angle
  • FIG. 8C shows the case where the angle ⁇ is made an obtuse angle.
  • a ring-shaped opening member 4 made of glass fiber-containing polysulfide sulfide with an inner diameter of 4.5 mm, an outer diameter of 9 mm, and a thickness of 0.8 mm is used. Made.
  • Ethylmethylimidazole 'trifluoromethanesulfonyl imide (EMI'TFSI) is used as the first liquid 1 and the second liquid 2 is used for the convenience of the experiment using pure water that is not matched in density.
  • EMI'TFSI Ethylmethylimidazole 'trifluoromethanesulfonyl imide
  • FIG. 9A shows the state of the two-liquid interface 3A at the stage where the ring-shaped member 4 has started to be pushed into the two-liquid interface 3A. It was observed that the two-liquid interface 3A wets the chamfered portion 5A having a curvature radius of 0.5 mm, which is the edge portion 5A.
  • FIG. 9B shows a state in which the ring-shaped opening member 4 is further pushed in.
  • the inner diameter of the opening 4a of the ring-shaped opening member 4 may be about several tens of mm from the microlens region of 1 mm or less, but the smaller diameter is more effective from the viewpoint of external disturbance. preferable.
  • the thickness of the ring-shaped opening member 4 is as thin as about 0.2 mm to 0.5 mm within a range where the shape can be maintained in terms of strength, and the mass of the ring-shaped opening member 4 is small. ! /, I like things.
  • FIG. 10 is a cross-sectional view showing another example of the configuration of the edge portion 5A of the opening member 4.
  • a hydrophilic surface treatment film 15A is formed on the second liquid 2 on the second liquid side (eg, the upper half side in FIG. 10) of the inner wall surface of the opening 4a of the opening member 4 and repels the second liquid 2.
  • An aqueous surface treatment film 15B is formed on the first liquid side (for example, the lower half side in FIG.
  • edge portion 5A is configured.
  • a silane coupling agent film is formed as a hydrophilic treatment
  • a Teflon (registered trademark) film is formed as a water repellent treatment.
  • the edge portion 5A can be configured.
  • Such an edge portion 5A is not limited to being formed at the central portion of the inner wall surface of the opening 4a of the opening member 4, but by appropriately adjusting the regions of the surface treatment film 15A and the surface treatment film 15B. It can be formed at any location on the inner wall.
  • variable focus lens device according to a second embodiment of the present invention will be described.
  • FIG. 3 is a cross-sectional view of the variable focus lens device according to the second embodiment of the present invention. Since the arrangement of the actuator 7A is the same as the arrangement of the actuator 7 in the plan view of FIG. 1B, the plan view is omitted.
  • FIG. 4 is a cross-sectional view showing the operating principle of the activator 7A of the variable focus lens device in the second embodiment of the present invention.
  • an electrostimulator type actuator 7A force is utilized in the first liquid 1, and the other liquid (counter electrode) is used in the first liquid 1.
  • the actuator 7A is also driven and controlled under the control of the actuator drive control unit 54, like the actuator 7 of the first embodiment.
  • a carbon electrode is used in an organic solvent in which pyrrole monomer is dissolved in propylene carbonate serving as a supporting electrolyte layer.
  • an ionic liquid such as ethylmethylimidazolium trifluoromethanesulfonylimide (a galvanostat mode (constant current control mode)) is used as a deposition electrode.
  • an actuator 7A having the structure shown in FIG. 4 was obtained using a membrane in which E MI'TFSI) was gelled.
  • the first liquid used was ethylmethylimidazolium trifluoromethanesulfonylimide (EMI'TFSI), which is an ionic liquid used as the electrolyte material for this solid electrolyte gel.
  • EMI'TFSI ethylmethylimidazolium trifluoromethanesulfonylimide
  • the actuator 7A having such a configuration is applied to the counter electrode 22A and the counter electrode 22B in the polarity shown in Fig. 4 (in other words, the conductive polymer layers 20A and 20B and the counter electrode 22A). And the opposite electrode 22B so that the polarities of the electrodes opposed to each other through the first liquid 1 are different) by applying a voltage from the power source 30, both surfaces of the conductive polymer layers 20A and 20B are expanded and contracted. (From both interfaces on the solid electrolyte 21 side and the electrolyte side, which is the first liquid 1), ions can enter and exit, resulting in large drive displacement and rapid ion entry and exit. Because of this, it is possible to make the actuator 7A operate at high speed. In FIG.
  • cations positive ions
  • the conductive polymer layer 20A shrinks as shown by an arrow 40B, and conversely, the conductive polymer layer 20B has cations from the solid electrolyte 21 and between the conductive polymer layer 20B and the counter electrode 22B.
  • the actuator 7A is bent and driven downward. If the voltage is applied in reverse, the reverse operation is performed.
  • variable focus lens device according to a third embodiment of the present invention will be described.
  • FIG. 5 is a cross-sectional view of the variable focus lens device according to the third embodiment of the present invention. Since the arrangement of the actuator 7B is the same as the arrangement of the actuator 7 in the plan view of FIG. 1B, the plan view is omitted.
  • FIG. 6 is a cross-sectional view showing the operating principle of the actuator 7B of the variable focus lens device according to the third embodiment of the present invention.
  • This third embodiment is different from the first and second embodiments described so far in the case of an actuator 7B of a type that does not use the solid electrolyte 21, and is an electrostimulator type actuator 7B force S, the first Taking advantage of the features contained in the electrolyte, which is the liquid 1, the structure of the actuator 7A can be simplified by providing another electrode 22 in the electrolyte 1 and therefore, it is made into a shading structure for manufacturing. is there. In the same way as the actuator 7 of the first embodiment, the actuator 7B is the same as the actuator 7B. Drive control is performed under the control of the drive control unit 54.
  • the actuator 7 A having this configuration performs a bending operation by applying a voltage from the power source 30 between the conductive polymer layer 20 and the counter electrode 22.
  • the stretchable conductive polymer layer 20 is bonded to the non-stretchable member 23.
  • the conductive polymer layer 20 stretches when ions enter and exit, whereas the nonstretchable member 23 stretches. Therefore, as a result, the actuator 7A constituted by occupying the conductive polymer layer 20 and the non-stretchable member 23 is bent and driven.
  • the actuator 7A having this configuration could be manufactured by a simple process as follows.
  • an electrode for deposition is necessary. Therefore, a gold thin film is first deposited on the surface of the polyimide film functioning as the non-stretchable member 23, and this electrode (not shown) It was possible to obtain such a structure bonded as the actuator 7A by directly forming the polypyrrole film functioning as a stretchable member by electrolytic polymerization.
  • the counter electrode 22 is a transparent electrode formed on the cell inner surface of the transparent plate 12B.
  • a polypyrrole film was used as the conductive polymer, and ethylmethylimidazole.trifluoromethanesulfonylimide (EMI'TFSI), which is an ionic liquid, was used as the first liquid.
  • EMI'TFSI ethylmethylimidazole.trifluoromethanesulfonylimide
  • a fourth embodiment of the present invention is an example in which the variable focus lens device according to the first to third embodiments of the present invention is applied to an imaging apparatus.
  • An example of a block diagram of the imaging device is shown in FIG.
  • the imaging apparatus includes the varifocal lens device 50 including the actuator drive control unit 54, an imaging in-focus determination unit 55, an imaging plate 51, and an image recording / reproducing unit 56.
  • an image of the subject 52 near the optical axis 9 of the variable focus lens device 50 having the liquid lens 6 driven by the actuator 7, 7A, or 7B is placed on the imaging plate 51 on the subject.
  • the determination unit 55 determines the in-focus point based on the imaging signal output from the imaging plate 51.
  • the signal from the determination unit 55 that has determined the focal point is input to the actuator drive control unit 54, and the actuator is driven based on the input signal.
  • the controller 54 controls drive of all the actuators 7, 7A, or 7B in synchronization. Specifically, if the determination unit 55 determines that the focus is not in focus, the actuator drive signal is input from the determination unit 55 to the actuator drive control unit 54, and the actuator drive is performed based on the input signal.
  • All the actuators 7, 7A, or 7B are driven synchronously by the control unit 54, and the aperture member 4 moves in parallel along the direction of the optical axis 9 to change the curvature of the liquid lens 6. Adjust the position of the focus 11.
  • the actuator drive control unit 54 stops driving all the actuators 7, 7A, or 7B, and the focused image signal is output from the determination unit 55. It is sent to the recording / reproducing unit 56 and recorded or reproduced by the image recording / reproducing unit 56.
  • the opening member 4 of the first to third embodiments described above has a ring-shaped and circular opening 4a as shown in FIG. 7A. It is useful as a variable focus lens device for a camera mounted on a thin portable terminal such as a mobile phone. Further, as shown in FIG. 7B, the distortion of the peripheral part of the horizontally long image can be corrected by making the opening 4b of the elliptical opening member 4B elliptical.
  • the liquid lens 6 forms a cylindrical lens.
  • a lens is useful, for example, as a variable focus lens device for a printer optical system.
  • variable focus lens device of the present invention can be used as a device for providing a variable function (optical modulation function) of a focal position of various optical devices mounted on a portable device, a portable terminal, electronic paper, or the like. is there.

Description

明 細 書
可変焦点レンズ装置
技術分野
[0001] 本発明は、可変焦点レンズ装置に関するものであり、より具体的には液体界面の形 状をァクチユエータで駆動することにより焦点を可変とするレンズ装置に関するもので ある。
背景技術
[0002] 従来の可変焦点レンズ装置の代表的なものとして、複数組み合わせした固体レン ズの一部を光軸方向に可動とするものがある。し力、し、この方式では光軸方向への移 動距離の制約から薄型化が困難であり、これに対して薄型化が可能な液体レンズを 用いた可変焦点レンズが提案されている。
[0003] 従来の液体レンズを用いた可変焦点レンズ装置としては、屈折率の異なる 2液界面 により形成された液滴をレンズとし、かつ一方の液体をイオン導電性、もう一方の液体 を絶縁性とし、これらの 2液界面に設けた電極と、イオン導電性の液体中に設けた対 向電極との間に電圧を印加することにより、液滴の形状を変化させるものがあった。 例えば特許文献 1にはこのような構成の液体レンズが開示されて!/、る。電圧の印加で このような 2液界面の形状を変化できるのは 2液界面と電極よりなる、液体一液体一 固体(電極)界面の表面張力バランスが、電圧印加により変化することを主な駆動原 理としており、このような現象は、エレクトロウエツティング現象と呼ばれている。特許 文献 1の模範的な実施形態では、印加する電圧は 250Vとしており、比較的高い電 圧印加を要する。
[0004] また、特許文献 2には、エレクトロウエツティング現象を利用した別の可変焦点レン ズ装置が開示されている。電圧印加によりレンズ形状の優れた調整性能を実現する 目的で、 2液界面の接触角のヒステリシスやスティックスリップを軽減するため、電極 表面に絶縁層と、さらに液界面と接する潤滑層をその上に形成する構成が開示され ている。特許文献 2中の実施形態の一例としては、ポリイミド誘電体層の上に高フッ化 ポリマーの薄膜を形成するとしている。 2液界面の接触角変化には、同時に液体一液 体一固体界面点の位置移動を伴うのでその制御は十分に濡れ性を制御された表面 上でなされる必要があり、非常に小さな表面張力のバランスで制御されているため、 外力による外乱に弱!/、難点がある。
[0005] 特許文献 1:特表 2001— 519539号公報
特許文献 2 :特開 2003— 177219号公報
発明の開示
発明が解決しょうとする課題
[0006] 前記背景技術で述べたエレクトロウエツティング現象を利用した可変焦点レンズ装 置では、非常に小さな表面張力のバランスで制御されているため、外力による外乱に 弱い欠点がある。
[0007] 従って、本発明の目的は、前記問題を解決することにあって、外力による外乱に対 して液体レンズの形状を安定に保持できる可変焦点レンズ装置を提供するものであ 課題を解決するための手段
[0008] 前記目的を達成するために、本発明は以下のように構成する。
[0009] 本発明によれば、第 1の液体と、
前記第 1の液体と混和せずに前記第 1の液体との間で界面を形成可能でかつ前記 第 1の液体とは異なる屈折率を持つ第 2の液体と、
前記第 1の液体と前記第 2の液体が封止されるセルと、
前記セル内で前記第 1の液体と前記第 2の液体の 2つの液体の界面がエッジ部で 固定されかつ前記 2つの液体の界面に当接した状態で移動可能な開口部材と、 前記開口部材に連結されて、前記開口部材を移動させることにより、前記開口部材 の開口部内に形成された液体レンズの前記 2つの液体の界面の形状を制御して、前 記液体レンズによる焦点の位置を可変とするァクチユエ一タとを備える可変焦点レン ズ装置を提供する。
発明の効果
[0010] 以下説明するように、本発明によれば、前記 2つの液体の界面が、前記 2つの液体 の界面に当接する前記開口部材の前記エッジ部で固定されており、前記開口部材 に連結された前記ァクチユエータで前記開口部材を駆動することにより、前記 2つの 液体の界面の形状を制御して、前記液体レンズによる焦点の位置を可変とする構成 により、前記 2つの液体の界面が前記開口部材の前記エッジ部で固定されているた め、外力による外乱に対して液体レンズの形状を安定に保持できるという効果を有す
[0011] さらに、前記背景技術で述べたエレクトロウエツティング現象を利用した可変焦点レ ンズでは、比較的大きな電圧印加を要するという欠点があった力 本発明では、駆動 に高電圧を要するエレクトロウエツティング現象を用いないため、低電圧駆動型のァ クチユエータで駆動することができ、従って昇圧回路を省くことができて省電力の可 変焦点レンズ装置を提供することができる。
図面の簡単な説明
[0012] 本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形 態に関連した次の記述から明らかになる。この図面においては、
[図 1A]図 1Aは、本発明の第 1実施形態における可変焦点レンズ装置の断面図であ り、
[図 1B]図 1Bは、本発明の第 1実施形態における可変焦点レンズ装置の断面図であ り、
[図 1C]図 1Cは、本発明の第 1実施形態における可変焦点レンズ装置の平面図であ り、
[図 1D]図 1Dは、本発明の前記第 1実施形態に力、かる可変焦点レンズ装置の液体レ ンズが形成される物理的メカニズムを説明するための原理説明図であって、開口部 材が第 2の液体中にあって、 2液の界面を第 1の液体に押し込む前の状態を示す図 であり、
[図 1E]図 1Eは、本発明の前記第 1実施形態に力、かる可変焦点レンズ装置の液体レ ンズが形成される物理的メカニズムを説明するための原理説明図であって、開口部 材を第 1の液体の側に押し込んだ後の状態を示す図であり、
[図 2]図 2は、本発明の第 1実施形態における可変焦点レンズ装置のァクチユエータ の動作原理を示す断面図であり、
[図 3]図 3は、本発明の第 2実施形態における可変焦点レンズ装置の断面図であり、 [図 4]図 4は、本発明の第 2実施形態における可変焦点レンズ装置のァクチユエータ の動作原理を示す断面図であり、
[図 5]図 5は、本発明の第 3実施形態における可変焦点レンズ装置の断面図であり、 [図 6]図 6は、本発明の第 3施形態における可変焦点レンズ装置のァクチユエータの 動作原理を示す断面図であり、
[図 7A]図 7Aは、本発明の前記第 1〜第 3実施形態にかかる可変焦点レンズ装置の 開口部材の平面図であり、
[図 7B]図 7Bは、本発明の前記実施形態の変形例にかかる可変焦点レンズ装置の楕 円形状の開口部材の平面図であり、
[図 7C]図 7Cは、本発明の前記実施形態の別の変形例に力、かる可変焦点レンズ装置 の矩形状の開口部材の平面図であり、
[図 8A]図 8Aは、本発明の前記第 1実施形態にかかる可変焦点レンズ装置の開口部 材の断面図であり、
[図 8B]図 8Bは、本発明の前記第 1実施形態にかかる可変焦点レンズ装置の開口部 材の 1つの例のエッジ部の拡大断面図であり、
[図 8C]図 8Cは、本発明の前記第 1実施形態にかかる可変焦点レンズ装置の開口部 材の別の例のエッジ部の拡大断面図であり、
[図 9A]図 9Aは、本発明の前記第 1実施形態にかかる可変焦点レンズ装置の開口部 材のある曲率半径を有するエッジ部の拡大断面図であり、
[図 9B]図 9Bは、本発明の前記第 1実施形態にかかる可変焦点レンズ装置の開口部 材の別の曲率半径を有するエッジ部の拡大断面図であり、
[図 10]図 10は、本発明の前記第 1実施形態にかかる可変焦点レンズ装置の開口部 材のエッジ部の構成する別の例を示す断面図であり、
[図 11]図 11は、本発明の第 4実施形態であって、本発明の前記第 1から第 3実施形 態のいずれかの可変焦点レンズ装置を適用した撮像装置のブロック図である。 発明を実施するための最良の形態 [0013] 本発明の記述を続ける前に、添付図面において同じ部品については同じ参照符号 を付している。
[0014] 以下に、本発明に力、かる実施の形態を図面に基づいて詳細に説明する前に、先ず 本発明の種々の態様について説明する。
[0015] 本発明の第 1態様によれば、第 1の液体と、
前記第 1の液体と混和せずに前記第 1の液体との間で界面を形成可能でかつ前記 第 1の液体とは異なる屈折率を持つ第 2の液体と、
前記第 1の液体と前記第 2の液体が封止されるセルと、
前記セル内で前記第 1の液体と前記第 2の液体の 2つの液体の界面がエッジ部で 固定されかつ前記 2つの液体の界面に当接した状態で移動可能な開口部材と、 前記開口部材に連結されて、前記開口部材を移動させることにより、前記開口部材 の開口部内に形成された液体レンズの前記 2つの液体の界面の形状を制御して、前 記液体レンズによる焦点の位置を可変とするァクチユエ一タとを備えることを特徴とす る可変焦点レンズ装置を提供する。
[0016] このような構成によれば、前記 2つの液体の界面が、前記 2つの液体の界面に当接 する前記可動な開口部材のエッジ部で固定されているから、外力による外乱に対し て前記液体レンズの形状を安定に保持することができる。さらに、駆動に高電圧を要 するエレクトロウエツティング現象を用いないため、低電圧駆動型のァクチユエータで 馬区動すること力 Sでさる。
[0017] 本発明の第 2態様によれば、前記第 1の液体が非水溶性であり、前記ァクチユエ一 タが電気刺激型のポリマーァクチユエータであり、かつ前記電気刺激型のポリマーァ クチユエータが、前記非水溶性の前記第 1の液体中に内包されていることを特徴とす る第 1の態様に記載の可変焦点レンズ装置を提供する。
[0018] このような構成によれば、ァクチユエータが電気刺激型のポリマーァクチユエータで あり、前記非水溶性の第 1の液体中に内包されているため、水分を遮断した環境下 でポリマーァクチユエータを動作させることができ、水分の存在下での劣化を防止す ること力 Sでき、サイクル寿命、信頼性に優れたものとすることができる。
[0019] 本発明の第 3態様によれば、前記非水溶性の第 1の液体がイオン性液体であり、前 記電気刺激型のポリマーァクチユエータが、前記イオン性液体のァニオン又はカチ オンの出入りに伴うイオン駆動型のポリマーァクチユエータである第 2の態様に記載 の可変焦点レンズ装置を提供する。
[0020] このような構成によれば、低い電圧で駆動可能であるとともに、駆動に要するァニォ ン又はカチオンが第 1の液体であるイオン性液体から供給できるため、ァクチユエ一 タに必要な電解質層を兼ね備えることができ好都合である。
[0021] 本発明の第 4態様によれば、前記非水溶性の第 1の液体がェチルメチルイミダゾリ ゥム ·トリフロロメタンスルフォニルイミド(EMI'TFSI)であることを特徴とする第 3の態 様に記載の可変焦点レンズ装置を提供する。
[0022] このような構成によれば、イオン半径が比較的大きい有機カチオン又はァニオンの 出入りに伴うポリマーの伸縮を利用することができるので、発生変位の大きなァクチュ エータとすること力 Sできる。
[0023] 本発明の第 5態様によれば、前記第 2の液体が水溶性であり、前記水溶性の第 2の 液体が水より比重の大きい物質の水溶液であることを特徴とする第 2の態様に記載の 可変焦点レンズ装置を提供する。
[0024] このような構成によれば、水溶液濃度を変えることにより、水溶液の密度を精密に調 整すること力 S可倉 となる。
[0025] 本発明の第 6態様によれば、前記水溶性の第 2の液体がポリタングステン酸ナトリウ ム水溶液であることを特徴とする第 5の態様に記載の可変焦点レンズ装置を提供す
[0026] このような構成によれば、比較的密度の大きレ、イオン性液体に対して、広範囲の密 度の水溶液を得ることができる。
[0027] 本発明の第 7態様によれば、前記ァクチユエータが、薄板状の屈曲動作する電気 刺激型のポリマーァクチユエータであることを特徴とする第 1の態様に記載の可変焦 点レンズ装置を提供する。
[0028] このような構成によれば、 2つの液体の界面の形状変化に要する開口部材の移動 距離は小さレ、ので薄型とすることができる液体レンズの特徴を活かし、薄型の可変焦 点レンズ装置を提供することができる。 [0029] 本発明の第 8態様によれば、前記第 1の液体と前記第 2の液体及び前記開口部材 力 Sほぼ同じ密度を持つことを特徴とする第 1の態様に記載の可変焦点レンズ装置を 提供する。
[0030] このような構成によれば、外力による外乱に対してさらに液体レンズの形状を安定 に保持できる可変焦点レンズ装置を提供することができる。
[0031] 本発明の第 9態様によれば、前記開口部材が、密度の異なる複数の部材よりなる複 合材料であることを特徴とする第 8の態様に記載の可変焦点レンズ装置を提供する。
[0032] このような構成によれば、開口部材の密度を、密度の異なる複数部材の含有比率 を変化させることにより精密に調整することが可能となる。
[0033] 本発明の第 10態様によれば、前記開口部材に撥水性又は疎水性の表面処理を施 すことを特徴とする第 1の態様に記載の可変焦点レンズ装置を提供する。
[0034] このような構成によれば、開口部材のエッジ部で固定された 2つの液体の界面がよ り安定に固定される効果を有するとともに、広範囲な開口部材の材質を選択すること が可能となる。
[0035] 本発明の第 11態様によれば、前記開口部材が円形であり、前記ァクチユエータが 、複数個かつ前記円形の開口部材の接線方向沿いにかつ前記液体レンズの光軸回 りに点対称に配置され、かつ、前記ァクチユエータの全てが同期して駆動制御される ことを特徴とする第 1の態様に記載の可変焦点レンズ装置を提供する。
[0036] このような構成によれば、前記複数のァクチユエータにより、開口部材を光軸方向 沿いに確実に平行移動させることができて、前記開口部材の開口部内に形成された 液体レンズの前記 2つの液体の界面の形状を精度良く制御できて、前記液体レンズ による焦点の位置を精度よく可変調節させることができる。
[0037] 以下、本発明の実施の形態を、図面に基づいて詳細に説明する。
[0038] (第 1実施形態)
図 1A及び図 1Bは、本発明の第 1実施形態における可変焦点レンズ装置の断面図 、図 1Cは本発明の第 1実施形態における可変焦点レンズ装置の平面図(図 1A及び 図 1Bの断面図を下から眺めた、ァクチユエータの断面の平面図)を示している。図 1 Aと図 1Bの違いは、液体レンズ 6の曲率が異なることであり、このように液体レンズ 6 の曲率が異なることにより、光軸 9上の異なる位置に焦点 11をそれぞれ結ぶ様子を 図 1Aと図 1Bに示している。ここでは、図 1Aの焦点 11の位置が、図 1Bの焦点 11の 位置よりも液体レンズ 6に近!/、位置となって!/、る。
[0039] 絶縁性の第 1の液体 1と第 1の液体 1との上に位置する絶縁性の第 2の液体 2とは混 和せず界面 3を形成している。このように混和せず界面 3を形成させるためには、第 1 の液体 1と第 2の液体 2の密度をほぼ等しくすればよい。すなわち、重力の影響による 液体レンズ 6の歪防止や、落下、衝突等の外力による外乱に強くするには、第 1の液 体 1と第 2の液体 2との 2つの液体の密度がほぼ等しくすること力 より望ましい。
[0040] 絶縁性のリング状の開口部材 4のエッジ部 5Aは、第 1の液体 1と第 2の液体 2との界 面 3に当接して、 2つの液体 1 , 2の界面(2液界面) 3A, 3Bを形作っている。ここで、 開口部材 4の内側の 2液界面 3Aは、液体レンズ 6を形成する 2液界面であり、開口部 材 4の外側の 2液界面 3Bは、液体レンズ 6として機能しない 2液界面である。開口部 材 4はリング状で円形の開口部 4aを有し、 2液界面 3Aの表面張力により円形開口部 4aの 2液界面 3Aは液体レンズ 6を形成している。 2液界面はエッジ部 5A、 5Bを越え て濡れ進むことなくこれらのエッジ部で固定される。
[0041] ここで、液体レンズ 6を形成する 2液界面 3Aと、液体レンズ 6として機能しな!/、別の 液界面 3Bを設けた理由は、第 1の液体 1と第 2の液体 2ともセル 14に封止されている ので、それぞれの体積は一定であり、開口部材 4の開口部 4aに形成される液体レン ズ 6の部位で容積が変わるのを、この別の液界面 3Bで吸収することができるようにす るためである。開口部材 4のエッジ部 5Aと同様に、封止部材 13に設けたエッジ部 5B でこの液界面を固定することは、外力による外乱に強くする上で好ましい効果がある
[0042] 開口部材 4の下面の円形凸部 4dには、複数のァクチユエータ 7のそれぞれの一端 が光軸 9回りに点対称に連結されており(一例として、図 1Cでは、光軸 9回りに 90度 間隔にかつ円形の開口部材 4の接線方向沿!/、に配置された 4個のァクチユエータ 7 のそれぞれの一端が開口部材 4に連結されかつそれぞれの他端が後述する封止部 材 13に連結されており)、全てのァクチユエータ 7は、 1つのァクチユエータ駆動制御 部 54により同期して駆動制御されるようにしている。よって、ァクチユエータ駆動制御 部 54の駆動制御の下に、全てのァクチユエータ 7の屈曲方向 8への同期した屈曲動 作により、開口部材 4は光軸 9の方向に平行移動するように進退駆動される。無限遠 力、ら液体レンズ 6に入射する光線 10は焦点 11に集光され、開口部材 4の光軸 9の方 向の位置に応じて、液体レンズ 6の曲率が変わり、焦点 11の位置が図 1Aと図 1Bのよ うに移動する。
[0043] 第 1の液体 1と第 2の液体 2、可動な開口部材 4及びァクチエータ 7は、絶縁性でか つ円板状の透明板 12A, 12Bと透明板 12A, 12Bの外周部に円環状に配置されて 第 1の液体 1と第 2の液体 2とを封止する絶縁性の封止部材 13により形成される絶縁 性のセル 14の内部に収容されている。
[0044] このように、前記可変焦点レンズ装置は、円板状の透明板 12A, 12Bと透明板 12 A, 12Bの外周部に円環状に配置された封止部材 13とで構成されたセル 14の内部 空間に、第 1の液体 1と第 1の液体 1との上に位置する第 2の液体 2とが収納され、 つ、第 1の液体 1と第 2の液体 2との界面 3に開口部材 4が当接され、ァクチユエータ 駆動制御部 54の制御に基づく複数のァクチユエータ 7の駆動により開口部材 4が光 軸 6の方向沿いに進退かつ平行移動するとともに、開口部材 4の円形の開口部 4a内 の 2液界面 3Aで液体レンズ 6を構成するようにしている。
[0045] このような構成によれば、液界面 3が、前記 2液の界面 3に当接しかつ光軸 9の方向 に可動な開口部材 4のエッジ部 5Aで固定されているから、外力による外乱に対して 液体レンズ 6の形状を安定に保持することができる。さらに、駆動に高電圧を要する エレクトロウエツティング現象を用いないため、下記するように、低電圧駆動型のァク チユエータ 7で駆動することができる。
[0046] なお、液体レンズ 6が形成される物理的メカニズムを、図 1D及び図 1Eに示す原理 説明図(端面図)により説明する。図 1D及び図 1Eの構成要素は、図 1A、図 IB及び 図 1Cと同様であるが、説明の便宜上、ァクチユエータ 7による駆動部分の構成要素 は図 1D及び図 1Eでは省略している。図 1Dは、開口部材 4が第 2の液体 2中にあつ て、 2液(2つの液体 1 , 2)の界面 3A, 3Bを第 1の液体 1に押し込む前の状態を示し ている。図 1Eは、開口部材 4を第 1の液体 1の側に押し込んだ後の状態を示している 。図 1Dにおける 2液の界面 3A及び 3Bは、説明の都合上、平面であるとすると、図 1 Eにおける 2液の界面 3A及び 3Bは、開口部材 4の押し込みによって、上向き凸に湾 曲する。このとき、第 1の液体 1及び第 2の液体 2の容積はそれぞれ変わらず、かつ、 第 1の液体 1及び第 2の液体 2はセル 14内に密閉されて封止されているから、図 1E のハッチングで示した容積部分 Al , A2, A3, Bl , B2の容積には次の関係が成り 立つ。
A1 +A2 + A3 = B1 +B2
[0047] ここで、容積部分 A1は、開口部材 4が第 1の液体 1内に押し込まれた部分の容積で ある。容積部分 A2は、開口部材 4が第 1の液体 1内に押し込まれたときに、開口部材 4の開口部 4aの内側の近傍の第 2の液体 2が開口部材 4とともに第 1の液体 1内に押 し込まれる部分の容積である。容積部分 A3は、開口部材 4が第 1の液体 1内に押し 込まれたときに、開口部材 4の開口部 4aの外側の近傍の第 2の液体 2が開口部材 4と ともに第 1の液体 1内に押し込まれる部分の容積である。容積部分 B1は、開口部材 4 が第 1の液体 1内に押し込まれたときに、開口部材 4の開口部 4aの内側に位置する 第 1の液体 1が開口部 4a内で上向き凸に湾曲するように盛り上がる部分の容積であ る。容積部分 B2は、開口部材 4が第 1の液体 1内に押し込まれたときに、開口部材 4 の開口部 4aの外側に位置する第 1の液体 1が開口部 4a外で上向き凸に湾曲するよう に盛り上がる部分の容積である。
[0048] 2液の界面 3A, 3Bにおける表面張力により、開口部材 4の開口部 4aの内側の液 界面 3Aは、無重力下では球面になることが知られている力 本発明の前記第 1実施 形態に力、かる液体レンズ 6においても、開口部材 4のエッジ部 5の形状が円の場合に は、液体レンズ 6は、ほぼ球面レンズになる。特に、 2液の密度と開口部材 4の密度を 合わせることによって構成される、より好ましい実施例の場合には、 2液の界面は、無 重力と等価な状態となり、 2液の界面を真球に、より近づけること力 Sできる。
[0049] 図 2は第 1実施形態のァクチユエータ 7の動作原理を示す断面図である。ァクチュ エータ 7の一例として、導電性のポリマー層 20A、 20B力 S、固体電解質 21を挟むこと により短冊状の電気刺激型のポリマーァクチユエータ 7を構成しており、ァクチユエ一 タ 7の固定端となる絶縁性の固定部材 32により固定されている。なお、図 1A、図 IB 及び図 1Cでは封止部材 13がこの固定部材 32の機能を兼ねている。導電性のポリマ 一層 20A、 20Bには、ァクチユエータ駆動制御部 54の制御の下にそれぞれ動作制 御される電源 30及びスィッチ 31が接続されており、電源 30により電圧を導電性のポ リマー層 20A、 20Bに印カロすることにより、固体電解質 21のイオンが導電性ポリマー 20Aと導電性ポリマー 20Bとに出入りすることにより屈曲駆動される。なお、図 1Aで は、一見すると、 2つのァクチユエータ駆動制御部 54が存在するように見える力 理 解しやすくするためにそれぞれ図示しているだけであって、実際には、図 1 Cに示す ように、 1つのァクチユエータ駆動制御部 54ですベての電源 30及びスィッチ 31を制 御すること力 S好ましい。図 1Bなど、他の図では、説明しやすくするため、ァクチユエ一 タ駆動制御部 54と電源 30とスィッチ 31は、その一部又は全ての図示を適宜省略し ている。
イオンは、印加電圧の極性に応じた方向に移動し、図 2で示す場合では、カチオン( 正イオン)が導電性ポリマー層 20Aから固体電解質 21の方に抜けて導電性ポリマー 層 20 Aが縮み、導電性ポリマー層 20Bには逆にカチオンが固体電解質 21から入り 込み、イオンの嵩が増すことにより導電性ポリマー層 20Bが伸びることにより、このァ クチユエータ 7は下向き凸に屈曲駆動される。図 2とは逆の場合では、カチオン (正ィ オン)が導電性ポリマー層 20Bから固体電解質 21の方に抜けて導電性ポリマー層 2 0Bが縮み、導電性ポリマー層 20Aには逆にカチオンが固体電解質 21から入り込み 、イオンの嵩が増すことにより導電性ポリマー層 20Aが伸びることにより、このァクチュ エータ 7は上向き凸に屈曲駆動される。前記説明ではカチオンの出入りでァクチユエ ータ 7の屈曲動作原理を説明したが、ァニオン (負イオン)の出入り、あるいは両者の 出入りでも同様に屈曲動作させることができる。
なお、これらの各屈曲型のァクチユエータ 7は平板の薄板状であるので、薄型の可 変焦点レンズ装置を構成するのに適している。ここで、一例として、ァクチユエータ 7 を構成する導電性ポリマー層 20A及び 20Bの厚みはそれぞれ 10 m〜25 μ m程 度、固体電解質 21の厚みは 10 m〜; 100 m程度とすることができ、ァクチユエ一 タ 7の総厚みは 30 m〜; 150 m程度の厚みとすることができる。また、一例として、 開口部材 4の厚みは lmm程度の厚みとすることができるので、ァクチユエータ 7の厚 みはセル 14の厚みを薄くする上で制約となることがなぐセル厚みが数 mmの薄型の 可変焦点レンズ装置を構成することができる。
[0051] この電気刺激型のァクチユエータ 7は、第 1の液体 1中に内包するよう配置しており 、この第 1の液体 1を非水溶性の液体とすることで、水分を遮断した環境下で、ポリマ ーァクチユエータを動作させることができ、水分の存在下での劣化を防止することが でき、サイクル寿命、信頼性に優れたものとすることができる。
[0052] ァクチユエータ 7を構成する導電性のポリマー層 20A, 20Bを構成する導電性のポ リマーとしては、ポリマーそれ自体で電子導電性を有する、例えばポリア二リン、ポリピ ロール、ポリチォフェインなどの有機導電性ポリマーや、炭素系微粒子を分散した導 電性のポリマーなどが、前述の動作原理で作用させることができる。
[0053] 以下、この第 1実施形態のいくつかの実施例について説明する。
[0054] (実施例 1)
導電性のポリマーとして、ピロールのモノマーを支持電解質層となるプロピレンカー ボネート中に溶解した有機溶媒中で、カーボン電極を析出電極としてガルバノスタツ トモード(定電流制御モード)にてポリピロールを電解重合により合成した膜を用い、 固体電解質として、イオン性液体であるェチルメチルイミダゾリゥム 'トリフロロメタンス ルフォ二ルイミド(EMI'TFSI)をゲル化した膜を用いて、図 2で示した構成のァクチ ユエータを得た。
[0055] 第 1の液体として、メチルフエニル系のシリコーンオイルを用いた。このオイルは非 水溶性である。第 2の水溶性の液体として、塩化ナトリウム水溶液を用いた。図 2に示 すごとぐ前記ァクチユエータは、非水溶性の第 1の液体であるシリコーンオイル中に 配置した。このような構成のァクチユエータは、 ± 1V〜2Vの低駆動電圧で駆動可能 である。
[0056] このポリマーァクチユエータでは、主に、 EMIカチオンがポリピロール膜に出入りす ることにより屈曲駆動される。イオン半径が比較的大きい有機カチオンである EMI力 チオンの出入りに伴うポリマーの伸縮を利用することができるので、発生変位の大き なァクチユエータとすることができる。
[0057] 本発明のこの第 1実施形態に力、かる可変焦点レンズ装置において、重力の影響に よるレンズの歪防止や、落下、衝突等の外力による外乱に強くするには、第 1の液体 と第 2の液体との 2液の密度がほぼ等しくすることが、より望ましい。
[0058] 本第 1実施例で用いたシリコーンオイルの密度を、振動式密度計で計測したところ 、 1. 07g/cm2であった。第 2の水溶性の液体としては、塩化ナトリウム水溶液を用い た。振動式密度計で塩化ナトリウムと水との混合比を調整することにより、密度 1. 07g /cm2の水溶液を精密に調整して得ることができた。両者とも透明の液体で、かつ混 和することなく液体レンズが形成できた。屈折率をアッベ屈折率計を用いて測定した ところ、シリコーンオイルの屈折率は 1. 51であり、前記塩化ナトリウム水溶液の屈折 率は 1. 35であり、異なる屈折率を持つ液体レンズが形成可能であることが分力、つた 。小さい曲率変化で大きな焦点位置変化を得る上で、屈折率差は大きいほうが望ま しい。同等の密度及び異なる屈折率を持つ材料の組み合わせを得るために、第 1の 非水溶性の液体として、前記シリコーンオイル系以外にも、各種有機物とその混合物 を適用することが可能である。さらに、前記第 1の非水溶性の液体は、外力による外 乱に強くするため、その流動性を抑制する目的で増粘剤を添加したものであったり、 高分子クロスリンク構造を有するゲル化された流動体であってもよい。
[0059] なお、本実施例の第 2の水溶性の液体として塩化ナトリウム水溶液の例を述べたが 、低温での使用を可能とするためエチレングリコール水溶液等の不凍性の液を使用 することがより好ましい。
[0060] (実施例 2)
実施例 1と同様、導電性のポリマーとして、ピロールのモノマーを支持電解質層とな るプロピレンカーボネート中に溶解した有機溶媒中で、カーボン電極を析出電極とし てガルバノスタツトモード(定電流制御モード)にてポリピロールを電解重合により合成 した膜を用い、固体電解質として、イオン性液体であるェチルメチルイミダゾリゥム 'ト リフロロメタンスルフォニルイミド(EMI · TF S I)をゲル化した膜を用いて、図 2で示した 構成のァクチユエータを得た。
[0061] 第 1の液体として、この固体電解質ゲルの電解質材料として用いたイオン性液体で あるェチルメチルイミダゾリゥム.トリフロロメタンスルフォニルイミド(EMI'TFSI)を用 いた。この電解液は、 EMI有機カチオンと TFSIァニオンよりなるイオン結合性の常 温で液体である常温溶融塩であり、非水溶性である。 [0062] このような構成のァクチユエータは、 ± 1V〜2Vの低駆動電圧で駆動可能であると ともに、駆動に要するァニオン又はカチオン力 第 1の液体であるイオン性液体から 供給できるため、ァクチユエータに必要な電解質層を兼ね備えることができて好都合 である。
[0063] このポリマーァクチユエータでは、主に、 EMIカチオンがポリピロール膜に出入りす ることにより屈曲駆動される。イオン半径が比較的大きい有機カチオンである EMI力 チオンの出入りに伴うポリマーの伸縮を利用することができるので、発生変位の大き なァクチユエータとすることができる。
[0064] イオン性液体であるェチルメチルイミダゾリゥム.トリフロロメタンスルフォニルイミド(E MI'TFSI)の密度を振動式密度計で計測したところ、 1. 52g/cm2であった。第 2の 水溶性の液体として、ポリタングステン酸ナトリウム水溶液を用いた。ポリタングステン 酸ナトリウムは、水より比重の大きい水溶性の物質で、広範囲の密度を持った水溶液 を得ること力できる。ポリタングステン酸ナトリウムを質量比で 40%〜42%の水溶液を 作製し、振動式密度計で水との混合比を調整することにより、密度 1. 52g/cm2の 水溶液を精密に調整して得ることができた。両者とも透明の液体で、かつ混和するこ となぐ液体レンズが形成できた。
[0065] 屈折率をアッベ屈折率計を用いて測定したところ、ェチルメチルイミダゾリゥム 'トリ フロロメタンスルフォニルイミド(EMI'TFSI)の屈折率は 1. 43、前記ポリタングステン 酸ナトリウム水溶液の屈折率は 1. 40であり、異なる屈折率を持つ液体レンズが形成 可能であることが分力、つた。
[0066] 次に、リング状の開口部材の材質として、それぞれ、密度の異なる複数の部材より なる複合材料としてガラス繊維含有ポリアミド (密度 1. 65g/cm2)、密度の異なる複 数の部材よりなる複合材料としてガラス繊維含有ポリフエ二レンサルファイド (密度 1. 66g/cm2)、ポリエーテルエーテルケトン(密度 1 · 30g/cm2)、 PTFE (密度 2· 14 g/cm2)の 3種類を用いて、前記 2液界面にこのリング状の開口部材を当接させた状 態で 1Gの重力加速度で加振試験を実施したところ、ガラス繊維含有ポリアミドのリン グ状の開口部材の場合と、ガラス繊維含有ポリフエ二レンサルファイドのリング状の開 口部材の場合には、液体レンズ界面の乱れがほとんど認められなかった力 PTFE のリング状の開口部材の場合には明らかな液体レンズ界面の乱れが認められた。こ の結果、本発明のこの第 1実施形態にかかる可変焦点レンズ装置を、落下や衝突な どの外力による外乱に強くするためには、第 1の液体 1と第 2の液体 2との 2液の密度 に合せて、開口部材 4の密度もほぼ同じ(具体的には、例えば、差が ± 0. 3g/cm2 以内)にすることが好ましいことが分力、つた。
[0067] 実験に用いたガラス繊維含有プラスチックはガラス繊維の含有比が 50%のもので あつたが、この含有比を調整することにより、開口部材 4の密度を第 1の液体 1と第 2 の液体 2の密度に精密に合せることができる。
[0068] 実験に用いたリング状の開口部材は!/、ずれもイオン性液体と濡れにくい傾向があつ た力 開口部材 4に撥水性又は親水性の表面処理を施すことにより、開口部材 4のェ ッジ部 5Aで固定された 2液界面 3が、より安定に固定される効果を有するとともに、開 ロ部材 4の材質を広範囲に選択することが可能である。特に、開口部材 4の、第 1の 液体 1と第 2の液体 2と接する部位の濡れ性を、表面処理により調整することにより、 エッジ部 5Aの固定を、より強固なものにすることができる。
[0069] (実施例 3)
次に、リング状の開口部材のエッジ部の形状について実験した結果について述べ
[0070] 図 8Aに示すリング状の開口部材 4の断面図において、エッジ部 5Aを拡大した断面 図を図 8B及び図 8Cに示す。図 8Bはエッジ部 5Aの角度 Θを鋭角に形成した場合、 図 8Cはその角度 Θを鈍角にした場合をそれぞれ示す。ガラス繊維含有ポリフエユレ ンサルファイド製の内径 4. 5mm、外径 9mm、厚み 0. 8mmのリング状の開口部材 4 を用い、その内径のエッジ部 5Aが様々な角度を持つリング状の開口部材 4を作製し た。ェチルメチルイミダゾリゥム 'トリフロロメタンスルフォニルイミド(EMI'TFSI)を第 1 の液体 1として用い、第 2の液体 2として、実験の便宜上、密度合わせをしていない純 水を用いて、これらの 2液界面 3に、リング状の開口部材 4を第 2の液体 2から押し込 み、エッジ部 5Aで 2液界面が固定される様子を観察した。
[0071] 以下の表 1はこの実験の結果をまとめたもので、図 8Bのようにエッジ部 5Aの角度
Θが鋭角の場合(30° 、 45° 、 70° )及び直角(90° )の場合、エッジ部 5Aによる 2 液界面 3の固定はいずれも良好であった。し力、し、図 8Cのようにエッジ部 5Aの角度 Θが鈍角の場合、 110° ではリング状の開口部材 4の押し込みが進み、液面曲率が 小さくなると、 2液界面 3がリング状の開口部材 4の内側の側面 4A側に濡れ進む現象 が観測された。さらにエッジ部 5Aの角度 Θ力 135° 及び 150° の場合には、 2液界 面 3はエッジ部 5Aではなぐエッジ部の反対側のエッジ部 5A— 1で固定することが観 測された。以上の観察結果から、エッジ部 5Aの角度 Θは鋭角又は直角が好ましぐ 鈍角は適用可能な範囲はある力 好ましくな!/、ことがわかった。
[表 1]
o
o X m
液界面の 2
ジ部でのエッ
性着固
o
10 X 液液曲率が界は面面 2
O
他ジ部さくなる小とのエッ
着'固さが液A界面で 52
側ぬれた面Aに 4。
進れだん。
o
o <
o
o o 〇 o
σ
ト o O o
寸 o o o
o
CO O O
の実験で用いたリング状の開口部材 4のエッジ部 5Aの曲率は RO. 1mm以下 であったが、この曲率半径を 0. 5mmとしたものを作製し、これを用いてエッジ部 5A の固定の様子を観測した。図 9A及び図 9Bにエッジ部 5Aの断面図を示す。図 9Aは 、リング状部材 4を 2液界面 3Aに押し込み開始した段階での 2液界面 3Aの様子を示 す。 2液界面 3Aは、エッジ部 5Aである、曲率半径 0. 5mmの面取り部 5Aを濡れ進 むことが観測された。図 9Bは、さらに、リング状の開口部材 4を押し込んだ状態を示し ており、 2液界面 3Aがエッジ部 5Aである面取り部 5Aと側面 4Aの境界部まで濡れ進 んだ以降は、この部位で 2液界面 3Aが固定されているのが観測された。以上の観察 力、らエッジ部 5Aに曲率を持たせることは適用可能である力 固定を強固にする観点 では、シャープなエッジ部 5Aであることが望まし!/、。
[0074] リング状の開口部材 4の開口部 4aの内径は、 1mm以下のマイクロレンズの領域か ら数 10mm程度のものが適用可能と思われるが外力による外乱に強くする観点では 小径の方が好ましい。リング状の開口部材 4の厚みは、同様に外力による外乱に強く する観点では、強度上、その形状を保持できる範囲で例えば 0. 2mm〜0. 5mm程 度の薄く、それ自体の質量が小さ!/、ものが好ましレ、。
[0075] 開口部材 4のエッジ部 5Aは、開口部材 4の開口部 4aの上下!/、ずれかの端縁に限 るものではなぐ開口部材 4の開口部 4aの内壁面の中間部に形成されるようにしても よい。例えば、図 10は、開口部材 4のエッジ部 5Aの構成の別の例を示す断面図であ る。第 2の液体 2に親水性の表面処理膜 15Aを開口部材 4の開口部 4aの内壁面の 第 2の液体側(図 10では例えば上半分側)に形成し、第 2の液体 2に撥水性の表面 処理膜 15Bを開口部材 4の開口部 4aの内壁面の第 1の液体側(図 10では例えば下 半分側)に形成し、その表面処理膜 15Aと表面処理膜 15Bとの境界にエッジ部 5Aを 構成した例である。具体的には、第 2の液体 2が水溶液の場合、親水性処理としてシ ランカップリング剤膜を形成し、撥水性処理としてテフロン (登録商標)系膜を形成す ることにより、このようなエッジ部 5Aを構成することができる。このようなエッジ部 5Aは 、開口部材 4の開口部 4aの内壁面の中央部分に形成するものに限らず、表面処理 膜 15Aと表面処理膜 15Bとの領域を適宜調整して形成することにより、内壁面の任 意の場所に形成することができる。
[0076] 以上、 2液の界面 3Aを開口部材 4のエッジ部 5Aで固定する方法に関して述べた 1S、 2液界面 3Aがこのエッジ部 5Aを越えて濡れ進み、 2液界面 3A力 S、より確実に破 壊されないようにするため、開口部材 4の可動範囲を制限することにより、 2液界面 3 Aのエッジ部 5Aでの変化角度に制限を加えることがより望ましい。開口部材 4の可動 範囲を制限する具体的な例としては、図 1Eに示すように、ストツバとして機能する突 起 4pを透明板 12Bの内面に配置して、開口部材 4が突起 4pに接触することにより、 開口部材 4の下限位置を規制するようにしてもよい。
[0077] (第 2実施形態)
次に、本発明の第 2実施形態における可変焦点レンズ装置について説明する。
[0078] 図 3は、本発明の第 2実施形態における可変焦点レンズ装置の断面図である。ァク チユエータ 7Aの配置は、図 1Bの平面図でのァクチユエータ 7の配置と同様であるの で、平面図は省略した。図 4は、本発明の第 2実施形態における可変焦点レンズ装 置のァクチユエータ 7Aの動作原理を示す断面図である。この第 2実施形態では、電 気刺激型のァクチユエータ 7A力 第 1の液体 1である電解液中に内包させている特 長を活かし、この第 1の液体 1中に、他の電極(対向電極 22A, 22B)を別に設けるこ とにより、ァクチユエータ 7Aの駆動性能を向上させるものである。ァクチユエータ 7Aも 、第 1実施形態のァクチユエータ 7と同様に、ァクチユエータ駆動制御部 54の制御の 下に駆動制御される。
[0079] 第 1実施形態と同様、導電性のポリマー層 20A, 20Bを構成する導電性のポリマー として、ピロールのモノマーを支持電解質層となるプロピレンカーボネート中に溶解し た有機溶媒中で、カーボン電極を析出電極としてガルバノスタツトモード(定電流制 御モード)にてポリピロールを電解重合により合成した膜を用い、固体電解質として、 イオン性液体であるェチルメチルイミダゾリゥム ·トリフロロメタンスルフォニルイミド(E MI'TFSI)をゲル化した膜を用いて、図 4で示した構成のァクチユエータ 7Aを同様 に得た。第 1の液体として、この固体電解質ゲルの電解質材料として用いたイオン性 液体であるェチルメチルイミダゾリゥム ·トリフロロメタンスルフォニルイミド(EMI'TFSI )を用いた。
[0080] このような構成のァクチユエータ 7Aは、対向電極 22A及び対向電極 22Bにも、図 4 中で示した極性で(言い換えれば、導電性のポリマー層 20A, 20Bと対向電極 22A 及び対向電極 22Bとは、第 1の液体 1を介して互いに対向する電極同士の極性は異 なるように)電源 30から電圧を印加することにより、伸縮する導電性のポリマー層 20A 及び 20Bの両面から(固体電解質 21側及び第 1の液体 1である電解液側の両方の 界面から)イオンの出入りが可能であるため、大きな駆動変位が得られるとともに、速 やかにイオンの出入りが可能であることから、ァクチユエータ 7Aに高速な駆動動作を させること力 Sできる。なお、図 4では、一例として、カチオン(正イオン)が、導電性ポリ マー層 20Aから、導電性ポリマー層 20Aと対向電極 22Aとの間の第 1液体 1の方に 及び固体電解質 21の方に抜けて、導電性ポリマー層 20Aが矢印 40Bのように縮み 、導電性ポリマー層 20Bには、逆に、カチオンが、固体電解質 21から及び導電性ポ リマー層 20Bと対向電極 22Bとの間の第 1液体 1からそれぞれ入り込み、イオンの嵩 が増すことにより導電性ポリマー層 20Bが矢印 40Aのように伸びることにより、このァ クチユエータ 7Aは下向き凸に屈曲駆動されている。電圧を逆に印加すれば、逆の動 作がそれぞれ行なわれる。
[0081] なお、本発明においては、前記実施例 1及び実施例 2で述べた 2液材料以外にも、 各種オイルと有機溶媒との組み合わせ、例えばシリコーンオイルとアルコール類の組 み合わせや、各種イオン液体と有機溶媒との組み合わせ等、混和せず屈折率の異 なる 2液の組み合わせを用いるようにしてもよ!/、。
[0082] (第 3実施形態)
次に、本発明の第 3実施形態における可変焦点レンズ装置について説明する。
[0083] 図 5は本発明の第 3実施形態における可変焦点レンズ装置の断面図である。ァクチ ユエータ 7Bの配置は、図 1Bの平面図のァクチユエータ 7の配置と同様であるので、 平面図は省略した。図 6は、本発明の第 3実施形態における可変焦点レンズ装置の ァクチユエータ 7Bの動作原理を示す断面図である。この第 3実施形態はこれまでに 述べた第 1及び第 2実施形態と異なり、固体電解質 21を用いない形式のァクチユエ ータ 7Bの場合であり、電気刺激型のァクチユエータ 7B力 S、第 1の液体 1である電解 液中に内包させている特長を活かし、電解液 1中に他の電極 22を別に設けることに よりァクチユエータ 7Aの構成を簡便化でき、従って製造のしゃすい構成としたもので ある。ァクチユエータ 7Bも、第 1実施形態のァクチユエータ 7と同様に、ァクチユエータ 駆動制御部 54の制御の下に駆動制御される。
[0084] 図 6に示した通り、この構成のァクチユエータ 7Aでは、導電性のポリマー層 20と対 向電極 22との間に電圧を電源 30から印加することにより、屈曲動作するものである。 伸縮する導電性のポリマー層 20は、非伸縮性部材 23と貼り合わされた構成となって おり、導電性のポリマー層 20がイオンの出入りにより伸縮するのに対して、非伸縮性 部材 23は伸縮しないため、結果として、導電性のポリマー層 20と非伸縮性部材 23と 力 ^占り合わされて構成されたァクチユエータ 7Aが屈曲駆動されることになる。
[0085] この構成のァクチユエータ 7Aは次ように簡便なプロセスで製作することができた。ポ リピロールを電解重合法で形成するためには、析出させるための電極が必要である ので、非伸縮性部材 23として機能するポリイミド膜の表面に、先ず金薄膜を蒸着し、 この電極(図示せず。)上に伸縮部材として機能するポリピロール膜を直接電解重合 して形成することにより、このような、ァクチユエータ 7Aとして貼り合わせた構造を得る こと力 Sできた。また対向電極 22は、透明板 12Bのセル内面上に形成した透明電極と することあでさる。
[0086] 導電性のポリマーとして、ポリピロール膜を用い、第 1の液体としてイオン性液体で あるェチルメチルイミダゾリゥム.トリフロロメタンスルフォニルイミド(EMI'TFSI)を用 いた。
[0087] (第 4実施形態)
次に、本発明の第 4実施形態は、本発明の前記第 1〜第 3実施形態にかかる可変 焦点レンズ装置を撮像装置に適用した例である。前記撮像装置のブロック図の一例 を図 11に示す。
[0088] 撮像装置は、ァクチユエータ駆動制御部 54を含む前記可変焦点レンズ装置 50と、 撮像合焦点判定部 55と、撮像板 51と、像記録再生部 56とより構成されている。
[0089] この撮像装置では、ァクチユエータ 7, 7A,又は 7Bにより駆動される液体レンズ 6を 有する可変焦点レンズ装置 50の光軸 9の付近にある被写体 52の像を、撮像板 51上 に、被写体の像 53として像を結ばせるため、撮像板 51から出力された撮像信号によ り判定部 55で合焦点を判断する。合焦点を判断した判定部 55からの信号がァクチュ エータ駆動制御部 54に入力されて、入力された信号に基づき、ァクチユエータ駆動 制御部 54により、全てのァクチユエータ 7, 7A,又は 7Bを同期して駆動制御する。具 体的には、判定部 55で焦点が合っていないと判断された場合には、ァクチユエータ 駆動信号が判定部 55からァクチユエータ駆動制御部 54に入力されて、入力された 信号に基づき、ァクチユエータ駆動制御部 54により、全てのァクチユエータ 7, 7A, 又は 7Bを同期して駆動されて、開口部材 4が光軸 9の方向沿いに進退するように平 行移動して、液体レンズ 6の曲率を変化させて、焦点 11の位置を調節する。判定部 5 5で合焦点と判断されたとき、ァクチユエータ駆動制御部 54による全てのァクチユエ ータ 7, 7A,又は 7Bの駆動を停止するとともに、合焦点された像信号は判定部 55か ら像記録再生部 56に送られて、像記録再生部 56で記録又は再生される。
[0090] なお、前記第 1〜第 3実施形態の開口部材 4は、図 7Aに示すようにリング状で円形 の開口部 4aを持ったものについて述べた力 このような液体レンズ 6は、例えば、携 帯電話等の薄型携帯端末に搭載するカメラ用可変焦点レンズ装置として有用である 。また、図 7Bに示すように楕円形の開口部材 4Bの開口部 4bを楕円にすることにより 横長画像の周辺部の歪を補正するようにすることができる。
[0091] さらに、開口部材 4Cが図 7Cに示すように矩形状で矩形の開口部 4cを持ったもの の場合には液体レンズ 6はシリンドリカルレンズを形成する。このようなレンズは例え ばプリンター光学系用の可変焦点レンズ装置として有用である。
[0092] なお、前記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより 、それぞれの有する効果を奏するようにすること力 Sできる。
産業上の利用可能性
[0093] 本発明の可変焦点レンズ装置は、携帯機器、携帯端末機、電子ペーパーなどに装 着される各種光学装置の焦点位置の可変機能 (光学変調機能)を付与する装置とし て利用可能である。
[0094] 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載され ているが、この技術の熟練した人々にとつては種々の変形や修正は明白である。そ のような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限り において、その中に含まれると理解されるべきである。

Claims

請求の範囲
[1] 第 1の液体と、
前記第 1の液体と混和せずに前記第 1の液体との間で界面を形成可能でかつ前記 第 1の液体とは異なる屈折率を持つ第 2の液体と、
前記第 1の液体と前記第 2の液体が封止されるセルと、
前記セル内で前記第 1の液体と前記第 2の液体の 2つの液体の前記界面がエッジ 部で固定されかつ前記 2つの液体の界面に当接した状態で移動可能な開口部材と 前記開口部材に連結されて、前記開口部材を移動させることにより、前記開口部材 の開口部内に形成された液体レンズの前記 2つの液体の界面の形状を制御して、前 記液体レンズによる焦点の位置を可変とするァクチユエ一タとを備える可変焦点レン ズ装置。
[2] 前記第 1の液体が非水溶性であり、前記ァクチユエータが、電気刺激型のポリマー ァクチユエータであり、かつ前記電気刺激型のポリマーァクチユエ一タカ S、前記非水 溶性の前記第 1の液体中に内包されている請求項 1に記載の可変焦点レンズ装置。
[3] 前記非水溶性の第 1の液体がイオン性液体であり、前記電気刺激型のポリマーァク チュエータが、前記イオン性液体のァニオン又はカチオンの出入りに伴うイオン駆動 型のポリマーァクチユエータである請求項 2に記載の可変焦点レンズ装置。
[4] 前記非水溶性の第 1の液体がェチルメチルイミダゾリゥム 'トリフロロメタンスルフォニ ノレイミド(EMI'TFSI)である請求項 3に記載の可変焦点レンズ装置。
[5] 前記第 2の液体が水溶性であり、前記水溶性の第 2の液体が水より比重の大き!/ヽ物 質の水溶液である請求項 2に記載の可変焦点レンズ装置。
[6] 前記水溶性の第 2の液体がポリタングステン酸ナトリウム水溶液である請求項 5に記 載の可変焦点レンズ装置。
[7] 前記ァクチユエ一タカ 薄板状の屈曲動作する電気刺激型のポリマーァクチユエ一 タである請求項 1に記載の可変焦点レンズ装置。
[8] 前記第 1の液体と前記第 2の液体及び前記開口部材がほぼ同じ密度を持つ請求 項 1に記載の可変焦点レンズ装置。 前記開口部材が、密度の異なる複数の部材よりなる複合材料である請求項 8に記 載の可変焦点レンズ装置。
前記開口部材に撥水性又は親水性の表面処理を施す請求項 1に記載の可変焦点 レンズ装置。
前記開口部材が円形であり、前記ァクチユエータが、複数個かつ前記円形の開口 部材の接線方向沿いにかつ前記液体レンズの光軸回りに点対称に配置され、かつ、 前記ァクチユエータの全てが同期して駆動制御される請求項 1に記載の可変焦点レ ンズ装置。
PCT/JP2007/065276 2006-08-10 2007-08-03 Varifocal lens device WO2008018387A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008512632A JP4209936B2 (ja) 2006-08-10 2007-08-03 可変焦点レンズ装置
US12/160,125 US7643217B2 (en) 2006-08-10 2007-08-03 Varifocal lens device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-218235 2006-08-10
JP2006218235 2006-08-10

Publications (1)

Publication Number Publication Date
WO2008018387A1 true WO2008018387A1 (en) 2008-02-14

Family

ID=39032918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065276 WO2008018387A1 (en) 2006-08-10 2007-08-03 Varifocal lens device

Country Status (4)

Country Link
US (1) US7643217B2 (ja)
JP (1) JP4209936B2 (ja)
CN (1) CN101427160A (ja)
WO (1) WO2008018387A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009217249A (ja) * 2008-02-15 2009-09-24 Univ Of Tokyo 可変焦点レンズ
WO2010015095A1 (en) * 2008-08-08 2010-02-11 Optotune Ag Electroactive optical device
US7948683B2 (en) 2006-05-14 2011-05-24 Holochip Corporation Fluidic lens with manually-adjustable focus
JP2011141438A (ja) * 2010-01-07 2011-07-21 Fujifilm Corp 可変焦点レンズ及びその駆動方法
US8064142B2 (en) 2005-05-14 2011-11-22 Holochip Corporation Fluidic lens with reduced optical aberration
US9164202B2 (en) 2010-02-16 2015-10-20 Holochip Corporation Adaptive optical devices with controllable focal power and aspheric shape
US9442225B2 (en) 2005-05-14 2016-09-13 Holochip Corporation Fluidic lens with manually-adjustable focus
CN110546543A (zh) * 2017-02-09 2019-12-06 康宁股份有限公司 液体透镜
WO2020138242A1 (ja) * 2018-12-26 2020-07-02 日東電工株式会社 電気変位材料、これを用いた光学素子、マイクロレンズアレイ、及び光学素子の作製方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2034338A1 (en) * 2007-08-11 2009-03-11 ETH Zurich Liquid Lens System
US8659835B2 (en) * 2009-03-13 2014-02-25 Optotune Ag Lens systems and method
EP2239600A1 (en) 2010-06-02 2010-10-13 Optotune AG Adjustable optical lens
US8944647B2 (en) 2010-09-02 2015-02-03 Optotune Ag Illumination source with variable divergence
KR20130139952A (ko) 2010-10-26 2013-12-23 옵토투네 아게 두 개의 액체 챔버가 구비된 가변 초점 렌즈
CN102466825A (zh) * 2010-11-16 2012-05-23 中国科学院兰州化学物理研究所 基于离子液体的电润湿变焦透镜
CN102096126A (zh) * 2011-01-07 2011-06-15 南京邮电大学 基于离子液体的微流控液体变焦透镜
CN102103220A (zh) * 2011-02-28 2011-06-22 南京邮电大学 基于离子液体的微流控液体变焦透镜
KR20150018924A (ko) * 2013-08-09 2015-02-25 한국전자통신연구원 가변형 광학 소자
JP7315327B2 (ja) * 2016-03-02 2023-07-26 ネクストレンズ スウィッツァーランド アーゲー 光学デバイス、具体的には特に自動焦点調節、画像安定化、および超解像を含むカメラ
JP7063921B6 (ja) * 2017-06-30 2022-06-28 ポライト アーエスアー 光学式手ぶれ補正およびフォーカス調整のためのレンズアセンブリ
KR20190133543A (ko) * 2018-05-23 2019-12-03 엘지이노텍 주식회사 액체 렌즈 및 이를 포함하는 카메라 모듈 및 광학기기
KR20200137590A (ko) * 2019-05-31 2020-12-09 엘지이노텍 주식회사 렌즈 및 이 렌즈를 포함하는 렌즈 어셈블리
CN112276346B (zh) * 2020-10-22 2021-11-09 温州大学 一种超高功率激光切割自动精准调焦加工头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347005A (ja) * 1999-06-02 2000-12-15 Canon Inc 可変焦点レンズ装置
JP2001519539A (ja) * 1997-10-08 2001-10-23 ユニヴェルシテ ジョセフ フーリエ 可変焦点レンズ
JP2002169110A (ja) * 2000-11-30 2002-06-14 Canon Inc 光学素子、光学装置および撮影装置
JP2003029005A (ja) * 2001-07-19 2003-01-29 Canon Inc 光学素子および光学機器
JP2006351971A (ja) * 2005-06-17 2006-12-28 Fujikura Ltd 多層配線用基材および多層配線板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302301A (ja) 1988-05-31 1989-12-06 Asahi Optical Co Ltd 液体封入光学素子
US20050002113A1 (en) 1997-10-08 2005-01-06 Varioptic Drop centering device
JP2003057410A (ja) 2001-08-21 2003-02-26 Canon Inc 光学素子および光学機器
US6545815B2 (en) 2001-09-13 2003-04-08 Lucent Technologies Inc. Tunable liquid microlens with lubrication assisted electrowetting
US7545430B2 (en) * 2003-11-25 2009-06-09 Panasonic Corporation Moving mechanism, and compact camera, goniometer and fiberscope using the moving mechanism
JP2005351971A (ja) 2004-06-08 2005-12-22 Casio Comput Co Ltd レンズ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001519539A (ja) * 1997-10-08 2001-10-23 ユニヴェルシテ ジョセフ フーリエ 可変焦点レンズ
JP2000347005A (ja) * 1999-06-02 2000-12-15 Canon Inc 可変焦点レンズ装置
JP2002169110A (ja) * 2000-11-30 2002-06-14 Canon Inc 光学素子、光学装置および撮影装置
JP2003029005A (ja) * 2001-07-19 2003-01-29 Canon Inc 光学素子および光学機器
JP2006351971A (ja) * 2005-06-17 2006-12-28 Fujikura Ltd 多層配線用基材および多層配線板

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10073199B2 (en) 2005-05-14 2018-09-11 Holochip Corporation Fluidic lens with adjustable focus
US8064142B2 (en) 2005-05-14 2011-11-22 Holochip Corporation Fluidic lens with reduced optical aberration
US8605361B2 (en) 2005-05-14 2013-12-10 Holochip Cororation Fluidic lens with reduced optical aberration
US9442225B2 (en) 2005-05-14 2016-09-13 Holochip Corporation Fluidic lens with manually-adjustable focus
US7948683B2 (en) 2006-05-14 2011-05-24 Holochip Corporation Fluidic lens with manually-adjustable focus
JP2009217249A (ja) * 2008-02-15 2009-09-24 Univ Of Tokyo 可変焦点レンズ
WO2010015095A1 (en) * 2008-08-08 2010-02-11 Optotune Ag Electroactive optical device
WO2010015093A1 (en) * 2008-08-08 2010-02-11 Optotune Ag Electroactive optical device
US10401537B2 (en) 2009-04-20 2019-09-03 Holochip Corporation Adaptive optical devices with controllable focal power and aspheric shape
JP2011141438A (ja) * 2010-01-07 2011-07-21 Fujifilm Corp 可変焦点レンズ及びその駆動方法
US9500782B2 (en) 2010-02-16 2016-11-22 Holochip Corporation Adaptive optical devices with controllable focal power and aspheric shape
US9164202B2 (en) 2010-02-16 2015-10-20 Holochip Corporation Adaptive optical devices with controllable focal power and aspheric shape
CN110546543A (zh) * 2017-02-09 2019-12-06 康宁股份有限公司 液体透镜
CN110546543B (zh) * 2017-02-09 2022-03-08 康宁股份有限公司 液体透镜
US11346984B2 (en) 2017-02-09 2022-05-31 Corning Incorporated Liquid lenses
WO2020138242A1 (ja) * 2018-12-26 2020-07-02 日東電工株式会社 電気変位材料、これを用いた光学素子、マイクロレンズアレイ、及び光学素子の作製方法

Also Published As

Publication number Publication date
JP4209936B2 (ja) 2009-01-14
US7643217B2 (en) 2010-01-05
US20090002838A1 (en) 2009-01-01
CN101427160A (zh) 2009-05-06
JPWO2008018387A1 (ja) 2009-12-24

Similar Documents

Publication Publication Date Title
JP4209936B2 (ja) 可変焦点レンズ装置
CN100342258C (zh) 变焦透镜
US6952313B2 (en) Method and device for image zooming
TWI336788B (ja)
JP4501085B2 (ja) 光学素子モジュール及び撮像装置
CN100434940C (zh) 变焦光学系统
JP4626697B2 (ja) 光学素子、撮像装置及び駆動方法
JP2009271095A (ja) 可変焦点レンズ、オートフォーカス装置、および撮像装置
CN102103231B (zh) 一种电调谐光衰减器
CN1844959A (zh) 基于介质上电润湿的电控流体变焦透镜
Shahini et al. Individually tunable liquid lens arrays using transparent graphene for compound eye applications
JP2000356751A (ja) 光スイッチ
CN113495355B (zh) 基于浸润表面复合介电层的电润湿液体透镜以及制作方法
JP2011053706A (ja) 光学素子、撮像装置及び駆動方法
KR100686018B1 (ko) 광학기기
KR100843371B1 (ko) 액체 렌즈 모듈
Clement et al. Focal point control using an EWOD-based tuneable Fresnel lens
JP5045975B2 (ja) 駆動制御装置および方法、並びにプログラム
Zou et al. MEMS tunable optics
EP3904941A1 (en) Electrical displacement material, optical element using same, micro lens array, and method of developing optical element
Yongchao et al. MEMS tunable opticsLiquid and solid methods
Cheng et al. Experimental study on the focal length of Alvarez lens actuated by dielectric elastomer with different pre-stretched ratios and diameters
Yun et al. Design of micromirror actuator by ionic polymer metal composites
Shahini Actuation of droplets using transparent graphene electrodes for tunable lenses and biomedical applications
Yeh et al. 5 Tunable Liquid Lenses

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008512632

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791949

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12160125

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780014591.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791949

Country of ref document: EP

Kind code of ref document: A1