WO2007139029A1 - 透明積層膜及びその製造方法、並びに液体レンズ - Google Patents

透明積層膜及びその製造方法、並びに液体レンズ Download PDF

Info

Publication number
WO2007139029A1
WO2007139029A1 PCT/JP2007/060723 JP2007060723W WO2007139029A1 WO 2007139029 A1 WO2007139029 A1 WO 2007139029A1 JP 2007060723 W JP2007060723 W JP 2007060723W WO 2007139029 A1 WO2007139029 A1 WO 2007139029A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
film
insulating film
target
laminated film
Prior art date
Application number
PCT/JP2007/060723
Other languages
English (en)
French (fr)
Inventor
Shina Kirita
Toshitaka Kawashima
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US12/301,595 priority Critical patent/US20090303605A1/en
Publication of WO2007139029A1 publication Critical patent/WO2007139029A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • G02B26/005Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a transparent laminated film, a method for producing the same, and a liquid lens using the transparent laminated film.
  • This liquid lens has, for example, a base material 101Z electrode 102Z aqueous solution 103Z oil 1 04Z insulating film 105Z electrode 106Z base material 107 from above, and a voltage is applied between the electrode 102 and the electrode 106 to form an aqueous solution.
  • a voltage is applied between the electrode 102 and the electrode 106 to form an aqueous solution.
  • the insulating film 105Z electrode 106Z substrate 107 has a structure in which a metal film or a transparent conductive film is formed on the substrate 107 by a sputtering method, and then formed on the electrode 106. Since the insulating film 105 having a thickness of several meters was formed by a vapor deposition method, it was produced by a separate process, and the production of the laminated film was complicated.
  • the liquid lens since it is necessary to apply a voltage of several tens of volts or more in order to cause the drive to change the focal point, the liquid lens is particularly small when used in various optical devices. When many are used, it is difficult to apply them, and it has been desired to reduce the applied voltage.
  • the present invention has been made in view of the above problems in the prior art, and provides a method for producing a transparent laminated film, which can easily form a transparent laminated film without changing the target material. Then, it aims at providing the transparent laminated film formed by the manufacturing method of this transparent laminated film, and the liquid lens using this transparent laminated film. Disclosure of the invention
  • the invention of claim 1 provided to solve the above-mentioned problem is that the reactive gas is absent, is! Or is a catalyst comprising ZnO containing any of Al 2 O 3 in the presence of the reactive gas.
  • a target is sputtered with a sputtering gas to form a transparent conductive film on the substrate, and then the target is sputtered with a sputtering gas in the presence of a reactive gas to form a transparent insulating film on the transparent conductive film.
  • a method for producing a transparent laminated film comprising forming a transparent laminated film by film formation.
  • the invention of claim 2 provided to solve the above-mentioned problem is that in the invention of claim 1, the target AlO
  • the invention of claim 3 provided to solve the above-mentioned problem is the transparent laminate according to claim 1, wherein the thickness of the transparent insulating film is: m or less. This is a method for manufacturing a membrane.
  • the invention of claim 4 provided to solve the above-mentioned problem is that, in the invention of claim 1, the resistance value of the transparent insulating film depends on a flow rate ratio of the reactive gas and the sputtering gas. It is a manufacturing method of the transparent laminated film characterized by being adjusted.
  • the invention of claim 5 provided to solve the above-mentioned problem is that a transparent conductive film and a transparent insulating film are formed on a substrate by the method for producing a transparent laminated film according to any one of claims 1 to 4.
  • a transparent laminated film characterized by being sequentially laminated.
  • the invention of claim 6 provided to solve the above-mentioned problem is that an oil and an aqueous solution are provided with the transparent insulating film on the inside by the transparent laminated film according to claim 5 and a member including an electrode.
  • the liquid lens is sealed and changes the shape of the interface between the aqueous solution and the oil on the transparent insulating film by applying a voltage between the electrode and the transparent conductive film.
  • the method for producing a transparent laminated film of the present invention it is possible to easily form a transparent laminated film with the same target without changing the target material in one sputtering film forming step. .
  • the transparent laminated film of the present invention it is possible to provide a transparent laminated film suitable for a liquid lens. it can.
  • the transparent insulating film having a high dielectric constant and a thin film thickness is provided, it can be driven at a low voltage.
  • FIG. 1 is a schematic diagram showing the configuration of a sputtering apparatus used in carrying out the method for producing a transparent laminated film according to the present invention.
  • FIG. 2 is a cross-sectional view showing a configuration of a transparent laminated film according to the present invention.
  • FIG. 3 is a cross-sectional view showing a configuration of a liquid lens according to the present invention.
  • FIG. 4 is a schematic diagram showing the state of the interface tension when no voltage is applied between the transparent conductive film and the electrode.
  • FIG. 5 is a schematic diagram showing the state of tension at the interface when a voltage is applied between the transparent conductive film and the electrode.
  • FIG. 6 is a cross-sectional view showing a configuration of a conventional transparent laminated film.
  • FIG. 7 is a graph showing the relationship between the reactive gas flow rate ratio and the specific resistance in Example 1.
  • FIG. 8 is a graph showing the relationship between the reactive gas flow rate ratio and the specific resistance in Example 2.
  • FIG. 9 is a diagram showing a connection configuration when measuring the withstand voltage of a transparent laminated film.
  • FIG. 10 is a diagram showing the results of measuring the pressure resistance of the transparent laminated film.
  • FIG. 11 is a diagram showing the measurement results of the withstand voltage of the transparent conductive film.
  • FIG. 1 is a schematic diagram showing the configuration of a sputtering apparatus used in carrying out the method for producing a transparent laminated film according to the present invention.
  • the sputtering apparatus is a direct current sputtering apparatus, in which a substrate holder 2 that holds a substrate 11 and a target holder 4 that holds a target 3 are opposed to each other in a chamber 1.
  • a voltage is applied between the substrate 11 and the target 3.
  • the substrate 11 is grounded to the ground via the substrate holder 2, and the target 3 is connected to the DC power source 5 via the target holder 4.
  • a predetermined negative voltage is applied from the power source 5.
  • the sputtering apparatus has an exhaust pump 6 as an exhaust system in the chamber 11.
  • Ar gas cylinder 7, O gas cylinder 8 and gas cylinder 7, 8 are provided as gas supply systems.
  • the gas pipe 9 has a gas pipe 9 that mixes the gas in the middle and guides the mixed gas into the chamber 11, and the mixed gas has an Ar gas flow rate controller 7a provided in the gas pipe 9 and an O gas flow.
  • the flow rate ratio and the mixed gas flow rate are controlled by the volume controller 8a, and are introduced into the chamber 11 from the process gas inlet 9a.
  • the substrate 11 is a transparent glass substrate having a clean surface or polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyolefin (PO). It is a transparent resin substrate made of a displacement force.
  • target 3 is made of ZnO with Al 2 O 3, Ga 2 O 3
  • 1.0 to: LO. Owt% is preferable.
  • a gas mixed with a predetermined amount of gas from each of 8 is introduced from the process gas inlet 9a so that the inside of the chamber 1 has a constant atmospheric pressure (for example, 0.1 to 1. OPa).
  • a constant atmospheric pressure for example, 0.1 to 1.
  • OPa the ratio of the flow rate (sccm) of the mixed gas (reactive gas flow rate ratio (O / Ar))
  • the bright film is adjusted to be less than the specified resistance and conductive (for example, 0.2% for AZO target) o Or O gas is not introduced into the chamber 11 and Ar gas Only
  • a gas mixed with a predetermined amount of gas from each of 8 is introduced from the process gas inlet 9a so that the inside of the chamber 1 has a constant atmospheric pressure (for example, 0.1 to 1. OPa).
  • a constant atmospheric pressure for example, 0.1 to 1.
  • OPa the ratio of the flow rate (sccm) of the mixed gas (reactive gas flow rate ratio (O / Ar))
  • the bright film is adjusted to have a predetermined resistance value and insulation. That is, the insulating property is ensured by adjusting the reactive gas flow rate ratio and the input power to allow excess oxygen to enter the film.
  • the reactive gas flow ratio should be 2% or less. For example, in the case of an AZO target, 1.3%.
  • (S19) Power (for example, 0.1 to 7.8 W / cm 2 ) is supplied from the DC power source 5 to start sputtering, and a transparent insulating film based on the target composition is formed on the transparent conductive film 12 13 is formed to complete the transparent laminated film.
  • the reactive gas flow rate ratio (O ZAr) is gradually increased after the start of film formation in step S16!
  • the film thickness is sputtered while
  • FIG. 2 shows a cross-sectional configuration of the transparent laminated film formed by the above method.
  • the transparent laminated film of the present invention is an optical film having a laminated structure of a transparent conductive film 12 and a transparent insulating film 13 formed on the substrate 11.
  • the transparent conductive film 12 is a transparent film based on the composition of the target 3, and has a specific resistance of, for example, 1.0 ⁇ 10 _3 to 1.0 ⁇ 10 _2 ( ⁇ -cm).
  • the average absorptance of transmitted light with a wavelength of 380 to 780 nm is 3% or less.
  • the film thickness of the transparent conductive film 12 is 20 to 200 nm.
  • the transparent insulating film 13 is a transparent film based on the composition of the target 3 on which the transparent conductive film 12 is formed, and has a specific resistance of, for example, 1. OX 10 +2 to 1. OX 10 + 7 ( ⁇ 'cm)
  • the average absorptance of transmitted light having a wavelength of 380 to 780 nm is 3% or less.
  • the film thickness of the transparent insulating film 13 is 1 ⁇ m or less, preferably 200 to 600 nm.
  • FIG. 3 is a cross-sectional view showing the configuration of the liquid lens of the present invention.
  • the optical axis of the liquid lens 20 extends in the vertical direction, and light enters the base 21 of the liquid lens 20 from the top of the figure and exits from the base 27.
  • the liquid lens 20 of the present invention includes the transparent laminated film (transparent conductive film 12, transparent insulating film 13) of the present invention provided on a transparent base material 27 provided with a recess in the center, and an electrode 22.
  • the material base material 21 and electrode 22
  • the material is sealed with oil 24 and aqueous solution 23 with the transparent insulating film 13 inside, and is transparent by applying voltage between the electrode 22 and the transparent conductive film 12.
  • the shape of the interface between the aqueous solution 23 and the oil 24 on the insulating film 13 is changed, and incident light is converged or diverged and emitted.
  • Base materials 21 and 27 are either transparent glass substrates or polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), or polyolefin (PO).
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PO polyolefin
  • the transparent conductive film 12 and the transparent insulating film 13 are formed on the base material 27 by the above-described method for manufacturing a transparent laminated film, and the aqueous solution 23 and the oil 24 include a transparent insulating film. 1 3 is touching. Further, an electrode 22 is provided between the base material 21 and the transparent insulating film 13 so as to seal the aqueous solution 23 and the oil 24. A power supply 28 is connected to the transparent conductive film 12 and the electrode 22, and a predetermined voltage is applied between them.
  • the aqueous solution 23 and the oil 24 are selected from liquids having different refractive indexes with equal specific gravity and incompatible with each other (insoluble).
  • the aqueous solution 23 is an electrolyte (conducting or polar) having a specific gravity of 1.06 and a refractive index of 1.38 at room temperature, in which water and ethyl alcohol are mixed at a predetermined ratio and a predetermined amount of NaCl is added.
  • Oil 24 is a colorless and transparent silicone oil having a specific gravity of 1.06 and a refractive index of 1.49 at room temperature.
  • FIG. 4 and FIG. 5 show the driving principle of the liquid lens 20.
  • Fig. 4 shows the state of tension at each interface of the transparent conductive film 12 and the electrode 22 when the transparent insulation film 13Z oil 24Z aqueous solution 23 is not applied
  • Fig. 5 shows the transparent conductive film 12 and the electrode. This is shown when a voltage is applied across 22.
  • is the dielectric constant of the insulating part
  • ⁇ 0 is the vacuum dielectric constant
  • d is the thickness of the insulating part
  • V is the applied voltage.
  • the relationship between the three interfacial tensions and the contact angle (0) between the transparent insulating film 13 and the oil 24 is established as follows, and the contact angle ⁇ is smaller than when no voltage is applied. It increases and the shape of the interface 25 changes. The degree of change can be controlled by changing the voltage.
  • the liquid lens 20 can change the focal length by changing the shape of the interface 25 of the aqueous solution 23 and the oil 24 having different refractive indexes, and the focal length can be controlled by the applied voltage. It will be something. [0052] Further, as compared with the conventional liquid lens, the liquid lens of the present invention exhibits excellent performance.
  • an ITO (indium stannate) film is formed on the base material 27 by a sputtering method or a vapor deposition method.
  • an insulating film 93 is deposited on the electrode film 92.
  • the insulating film 93 is formed by depositing a number of zylenes (Norylene C, Parylene N, manufactured by Japan Parylene Co., Ltd.). 6).
  • the liquid lens 20 of the present invention can make the applied voltage 1 / 65.6 as compared with the conventional liquid lens.
  • the applied voltage in the conventional liquid lens can be reduced. If the pressure is 0 to 100 V, the applied voltage can be reduced from 4.93 to 12.35 V in the liquid lens 20 of the present invention.
  • a transparent film sample was produced under the following conditions.
  • Figure 7 shows the specific resistance measurement results of the obtained sample.
  • the transparent conductive film 12 is formed with a reactive gas flow ratio of 0.2%, and then the same target 3 is used to set the reactive gas flow ratio to 1.3% with the transparent insulating film 13 Forming By doing so, the transparent laminated film of the present invention can be obtained.
  • a transparent film sample was produced under the following conditions.
  • Figure 8 shows the specific resistance measurement results of the obtained sample.
  • the specific resistance tended to increase in proportion to the reactive gas flow ratio.
  • the resistivity decreased in proportion to the input power.
  • a transparent laminated film sample was produced under the following conditions by the method for producing a transparent laminated film of the present invention.
  • a glass substrate was used as the substrate 11.
  • the obtained samples were evaluated for pressure resistance. Specifically, as shown in FIG. 9, the transparent laminated film sample and the source meter are connected, and the voltage is applied to the probe in contact with the transparent conductive film 12 while changing the voltage in the range of 0 to 60 V. The value of the current flowing through the probe in contact with the electrolytic solution on the transparent insulating film 13 was measured.
  • FIG. 10 shows the result. Moreover, the same withstand voltage measurement was performed on the sample in which the transparent insulating film 13 was omitted and only the transparent conductive film 12 was formed in the configuration of the transparent laminated film sample. The results are shown in FIG.
  • the transparent laminated film sample does not exhibit an ohmic reaction and has a conventional structure (an insulating film made of parylene shown in Fig. 6).
  • the focal length could be variably controlled by applying a voltage.

Abstract

 ターゲット材料を変更することなく簡便に透明積層膜を成膜することのできる透明積層膜の製造方法を提供し、該透明積層膜の製造方法により形成された透明積層膜、並びに該透明積層膜を用いた液体レンズを提供する。反応性ガスなし、あるいは反応性ガスの存在下で、ZnOにAl2O3、Ga2O3、SiO2のいずれかが含有されてなるターゲット3をスパッタガスによりスパッタリングして、基材上に透明導電膜を成膜し、ついで反応性ガスの存在下で前記ターゲットをスパッタガスによりスパッタリングして、前記透明導電膜上に透明絶縁膜を成膜して透明積層膜を形成する。

Description

明 細 書
透明積層膜及びその製造方法、並びに液体レンズ
技術分野
[0001] 本発明は、透明積層膜及びその製造方法、並びに前記透明積層膜を用いた液体 レンズに関するものである。
背景技術
[0002] 従来、レンズを機械的に移動させることなく可変焦点することのできる技術が提案さ れており、その中でエレクトロウエツティング効果を用いた液体レンズが注目されて ヽ る(例えば、国際公開第 99Z18456号公報、特開 2002— 162506号公報、 Bruno Berge、機構部品ゼロ量産近づく液体レンズの実力、日経エレクトロニクス、日本経 済新聞社、平成 17年 10月 24日、 p. 129〜135参照。;)。
[0003] この液体レンズとは、例えば上部から基材 101Z電極 102Z水溶液 103Zオイル 1 04Z絶縁膜 105Z電極 106Z基材 107の構造となっており、電極 102と電極 106間 に電圧を印加して水溶液 103とオイル 104の界面の形状を変化させることにより、焦 点を変化させる駆動を行うものである。
[0004] ここで前記液体レンズのうち、絶縁膜 105Z電極 106Z基材 107の構造について は、基材 107に金属膜または透明導電膜を電極 106としてスパッタリング法により成 膜し、その後電極 106上に蒸着法により数 mの膜厚の絶縁膜 105を成膜するとい つた別々のプロセスで作製されており、積層膜の製造が煩雑であった。
[0005] また、従来の液体レンズでは、焦点を変化させる駆動を起こさせるために数十 V以 上の電圧を印加する必要があることから、種々の光学装置に用いる場合、とくに小型 の液体レンズを多数用いる場合にはその適用が困難であり、印加電圧の低減が望ま れていた。
[0006] 本発明は、以上の従来技術における問題に鑑みてなされたものであり、ターゲット 材料を変更することなく簡便に透明積層膜を成膜することのできる透明積層膜の製 造方法を提供し、該透明積層膜の製造方法により形成された透明積層膜、並びに該 透明積層膜を用いた液体レンズを提供することを目的とする。 発明の開示
[0007] 前記課題を解決するために提供する請求項 1の発明は、反応性ガスなし、ある!、は 反応性ガスの存在下で、 ZnOに Al O のいずれかが含有されてなるタ
2 3、 Ga O S
2 3、 iO
2
ーゲットをスパッタガスによりスパッタリングして、基材上に透明導電膜を成膜し、つい で反応性ガスの存在下で前記ターゲットをスパッタガスによりスパッタリングして、前記 透明導電膜上に透明絶縁膜を成膜して透明積層膜を形成することを特徴とする透明 積層膜の製造方法である。
[0008] また前記課題を解決するために提供する請求項 2の発明は、請求項 1の発明にお いて、前記ターゲットの Al O
2 3、 Ga O
2 3、 SiOのいずれかの含有量は、 10wt%以下
2
であることを特徴とする透明積層膜の製造方法である。
[0009] また前記課題を解決するために提供する請求項 3の発明は、請求項 1の発明にお いて、前記透明絶縁膜の膜厚は、: m以下であることを特徴とする透明積層膜の 製造方法である。
[0010] また前記課題を解決するために提供する請求項 4の発明は、請求項 1の発明にお いて、前記透明絶縁膜の抵抗値は、前記反応性ガスとスパッタガスとの流量比により 調整されてなることを特徴とする透明積層膜の製造方法である。
[0011] 前記課題を解決するために提供する請求項 5の発明は、請求項 1〜4のいずれか 一に記載の透明積層膜の製造方法により基材上に透明導電膜、透明絶縁膜が順次 積層されてなることを特徴とする透明積層膜である。
[0012] 前記課題を解決するために提供する請求項 6の発明は、請求項 5に記載の透明積 層膜と、電極を含む部材とにより、前記透明絶縁膜を内側にしてオイル及び水溶液 が封止されてなるものであり、前記電極と透明導電膜間への電圧印加により前記透 明絶縁膜上の水溶液とオイルとの界面の形状を変化させることを特徴とする液体レン ズである。
[0013] 本発明の透明積層膜の製造方法によれば、 1つのスパッタリング成膜工程の中でタ 一ゲット材料を変更することなく同一のターゲットで簡便に透明積層膜を成膜すること ができる。
[0014] 本発明の透明積層膜によれば、液体レンズに好適な透明積層膜を提供することが できる。
[0015] 本発明の液体レンズによれば、誘電率が高く膜厚の薄い透明絶縁膜を備えている ので、低い電圧で駆動させることができる。
図面の簡単な説明
[0016] [図 1]図 1は、本発明に係る透明積層膜の製造方法を実施する上で使用するスパッタ 装置の構成を示す概略図である。
[図 2]図 2は、本発明に係る透明積層膜の構成を示す断面図である。
[図 3]図 3は、本発明に係る液体レンズの構成を示す断面図である。
[図 4]図 4は、透明導電膜、電極間に電圧を印カロしていない場合の界面の張力の状 態を示す概略図である。
[図 5]図 5は、透明導電膜、電極間に電圧を印加した場合の界面の張力の状態を示 す概略図である。
[図 6]図 6は、従来の透明積層膜の構成を示す断面図である。
[図 7]図 7は、実施例 1の反応性ガス流量比と比抵抗の関係を示す図である。
[図 8]図 8は、実施例 2の反応性ガス流量比と比抵抗の関係を示す図である。
[図 9]図 9は、透明積層膜について耐圧測定する際の接続構成を示す図である。
[図 10]図 10は、透明積層膜の耐圧測定結果を示す図である。
[図 11]図 11は、透明導電膜の耐圧測定結果を示す図である。
発明を実施するための最良の形態
[0017] 以下に、本発明に係る透明積層膜の製造方法について説明する。
[0018] 図 1は、本発明に係る透明積層膜の製造方法を実施する上で使用するスパッタ装 置の構成を示す概略図である。
[0019] 図 1に示すように、スパッタ装置は直流方式のスパッタ装置であり、チャンバ一 1内 に基板 11を保持する基板ホルダー 2とターゲット 3を保持するターゲットホルダー 4と が対向配置されており、基板 11とターゲット 3との間に電圧が印加されるようになって いる。詳しくは、基板 11は基板ホルダー 2を経由してグランドに接地され、ターゲット 3 はターゲットホルダー 4を経由して直流電源 5につながっており、基板 11のアース電 位に対してターゲット 3には直流電源 5から所定のマイナスの電圧が印加される。 [0020] また、スパッタ装置は、チャンバ一 1内の排気系として排気ポンプ 6を有している。さ らに、ガス供給系として Arガスボンベ 7、 Oガスボンベ 8及びガスボンベ 7, 8それぞ
2
れカゝらガスを途中で混合しこの混合したガスをチャンバ一 1内へ導くガス配管 9を有し ており、該混合ガスはガス配管 9に設けられた Arガス流量コントローラ 7a、 Oガス流
2 量コントローラ 8aによってそれぞれの流量比及び混合ガスとしての流量がコントロー ルされプロセスガス導入口 9aからチャンバ一 1内に導入されるようになって!/、る。
[0021] 本スパッタ装置により基板 11上に透明積層膜を成膜するに当っては、つぎの手順 で処理を行う。
[0022] (S11)基板ホルダー 2に基板 11をセットする。
[0023] ここで、基板 11は、表面が清浄な透明ガラス基板またはポリカーボネイト (PC)、ポリ エチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサル フォン (PES)、ポリオレフイン (PO)の 、ずれ力からなる透明な榭脂基板である。
[0024] (S12)ターゲットホルダー 4にターゲット 3をセットする。
[0025] ここで、ターゲット 3は、 ZnOに Al O、 Ga O
2 3 2 3、 SiOのいずれかが含有されてなるも
2
の(すなわち、 AZOターゲット、 GZOターゲット、 SZOターゲットのいずれ力)であり、 ターゲット 3の Al O、 Ga O、 SiOのいずれかの含有量は、 10wt%以下がよぐ例
2 3 2 3 2
えば 1. 0〜: LO. Owt%であることが好ましい。
[0026] (S 13)チャンバ一 1内を排気ポンプ 6により排気し真空にする。
[0027] (S14)ついで、排気を継続しながらチャンバ一 1内に Arガスボンベ 7、 Oガスボン
2 ベ 8それぞれからのガスを所定量混合したガスをプロセスガス導入口 9aから導入し、 チャンバ一 1内が一定の雰囲気圧力(例えば、 0. 1〜1. OPa)になるようにする。ここ で、混合ガスの流量 (sccm)の比 (反応性ガス流量比(O /Ar) )は、成膜される透
2
明膜が所定の抵抗値以下となり導電性をもつように調整される (例えば、 AZOターゲ ットの場合、 0. 2%) oあるいは、チャンバ一 1内に Oガスは導入せず、 Arガスのみを
2
導人するようにしてもよ ヽ。
[0028] (S 15)ついで、直流電源 5よりターゲット 3と基板 11間に直流電圧を印加し、雰囲 気ガス (O +Ar、または Ar)についてグロ
2 一放電させプラズマ状態 Pとする。
[0029] (S16)直流電源 5から電力(例えば、 0· 1〜7· 8WZcm2)を投入してスパッタリン グを開始し、基板 11上にターゲット組成に基づいた透明導電膜 12を形成する(一旦 成膜終了)。
[0030] (S17)ついで、排気を継続しながらチャンバ一 1内に Arガスボンベ 7、 Oガスボン
2 ベ 8それぞれからのガスを所定量混合したガスをプロセスガス導入口 9aから導入し、 チャンバ一 1内が一定の雰囲気圧力(例えば、 0. 1〜1. OPa)になるようにする。ここ で、混合ガスの流量 (sccm)の比 (反応性ガス流量比(O /Ar) )は、成膜される透
2
明膜が所定の抵抗値となり絶縁性をもつように調整される。すなわち、反応性ガス流 量比及び投入電力を調整して膜中に酸素を過剰に入れることにより絶縁性を確保す る。その反応性ガス流量比は 2%以下でよぐ例えば AZOターゲットの場合、 1. 3% とする。
[0031] (S18)ついで、直流電源 5よりターゲット 3と基板 11間に直流電圧を印加し、雰囲 気ガス (O +Ar)についてグロ一放電させプラズマ状態 Pとする。
2
[0032] (S19)直流電源 5から電力(例えば、 0. 1〜7. 8W/cm2)を投入してスパッタリン グを開始し、透明導電膜 12上にターゲット組成に基づいた透明絶縁膜 13を形成し て透明積層膜を完成する。
[0033] また、別の透明積層膜の製造方法として、前記ステップ S16の成膜開始後に、反応 性ガス流量比(O ZAr)を徐々に増力!]させながらスパッタ成膜するようにして、膜厚
2
方向にお 、て抵抗値が徐々に変化する傾斜膜を形成してもよ!/、。
[0034] この場合、透明導電膜、透明絶縁膜の界面がなくなるため、密着性が向上する。
[0035] 図 2に、前記方法により形成された透明積層膜の断面構成を示す。
[0036] 本発明の透明積層膜は、基板 11上に形成される透明導電膜 12、透明絶縁膜 13 の積層構造をもつ光学膜である。
[0037] 透明導電膜 12は、前述の通り、ターゲット 3の組成に基づいた透明膜であって、例 えば比抵抗が 1. 0 Χ 10_3〜1. 0 Χ 10_2 ( Ω -cm)で、波長 380〜780nmの透過光 の平均吸収率が 3%以下となっている。また、透明導電膜 12の膜厚は 20〜200nm である。
[0038] 透明絶縁膜 13は、前述の通り、前記透明導電膜 12を形成したターゲット 3の組成 に基づいた透明膜であって、例えば比抵抗が 1. O X 10+2〜1. O X 10+7 ( Ω 'cm)で 、波長 380〜780nmの透過光の平均吸収率が 3%以下となっている。また、透明絶 縁膜 13の膜厚は 1 μ m以下であり、好ましくは 200〜600nmである。
[0039] つぎに、本発明の液体レンズについて説明する。
[0040] 図 3は、本発明の液体レンズの構成を示す断面図である。図 3においては液体レン ズ 20の光軸は上下方向に伸びており、光は図中上から液体レンズ 20の基材 21に入 射し、基材 27から出射するようになっている。
[0041] 本発明の液体レンズ 20は、中央に凹部を設けた透明な基材 27上に設けられた本 発明の透明積層膜 (透明導電膜 12、透明絶縁膜 13)と、電極 22を含む部材 (基材 2 1及び電極 22)とにより、透明絶縁膜 13を内側にしてオイル 24及び水溶液 23が封止 されてなるものであり、電極 22と透明導電膜 12間への電圧印加により透明絶縁膜 13 上の水溶液 23とオイル 24との界面の形状を変化させ、入射してきた光を収斂または 発散させて出射するものである。
[0042] 基材 21, 27はともに透明ガラス基板またはポリカーボネイト(PC)、ポリエチレンテ レフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PE S)、ポリオレフイン (PO)の 、ずれかからなる透明な榭脂基板である。
[0043] また、透明導電膜 12及び透明絶縁膜 13は、前述した透明積層膜の製造方法によ り基材 27上に形成されてなるものであり、水溶液 23及びオイル 24には透明絶縁膜 1 3が接している。さらに電極 22が水溶液 23及びオイル 24を封止するように基材 21と 透明絶縁膜 13との間に設けられている。また、透明導電膜 12、電極 22には電源 28 が接続されており、両者の間に所定の電圧が印加されるようになっている。
[0044] 水溶液 23及びオイル 24は、比重が等しぐ屈折率が異なり、かつ互いに混ざること のない(不溶な)液体が選ばれる。例えば、水溶液 23は、水とエチルアルコールが所 定比率で混合され、さらに所定量の NaClが加えられた、比重 1. 06、室温での屈折 率 1. 38の電解液 (導電性又は有極性を有する液体)であり、オイル 24は、無色透明 で、比重 1. 06、室温での屈折率 1. 49のシリコーンオイルである。
[0045] 水溶液 23及びオイル 24が封止される際には、まず基材 27の凹部の透明絶縁膜 1 3上にオイル 24を滴下し、ついで封止領域の残りの空間に水溶液 23を充填する。こ れにより、水溶液 23とオイル 24は混ざり合わずにそれぞれが独立して存在し、界面 2 5を形成している。
[0046] 図 4、図 5に液体レンズ 20の駆動原理を示す。図 4は透明導電膜 12、電極 22間に 電圧を印加していない場合の透明絶縁膜 13Zオイル 24Z水溶液 23の各界面の張 力の状態を示しており、図 5は透明導電膜 12、電極 22間に電圧を印加している場合 のそれを示している。
[0047] 液体レンズ 20の内部では、透明絶縁膜 13Zオイル 24Z水溶液 23において 3つの 界面張力が発生している。すなわち、透明絶縁膜 13と水溶液 23の間の張力(SW)、 オイル 24と水溶液 23の間の張力(OW)、透明絶縁膜 13とオイル 24の間の張力(S O)であり、ここではそれぞれを γ , y , y と表す。
SW OW so
[0048] 透明導電膜 12、電極 22間に電圧を印加していない場合には、 3つの界面張力と、 透明絶縁膜 13とオイル 24の接触角度( Θ )の間にはいわゆる Young-Laplaceの方 程式力も次式の関係が成り立ち、これに基づいて界面 25の形状が決まる(図 4)。
[0049] cos θ = ( γ - y ) / y
SW SO OW
透明導電膜 12、電極 22間に電圧を印加した場合には、エレクトロウエツティング効 果により界面 25の形状が変化する。すなわち、電圧印加により透明絶縁膜 13と水溶 液 23界面には電荷が発生し、それによつて透明絶縁膜 13とオイル 24の間の張力(S
O)方向に次式に示す圧力 Πが加わるようになる。
[0050] Π = 1/2 ( ε · ε /d) V2
o
(ここで、 εは絶縁部の誘電率, ε 0は真空誘電率, dは絶縁部の厚さ、 Vは印 加電圧を表す。 )
したがって、この場合、 3つの界面張力と、透明絶縁膜 13とオイル 24の接触角度( 0 )の間には次式のような関係が成り立ち、電圧を印加しない場合に比べて接触角 度 Θは増加して界面 25の形状が変化する。また、その変化の程度は電圧を変化さ せることによって制御可能である。
[0051] cos 0 = ( γ - γ ) / y ~ 1/2 { ε - ε /d) V2 - - - ( 1)
SW SO OW 0
以上のように、液体レンズ 20は屈折率の異なる水溶液 23、オイル 24の界面 25の 形状が変化することによって、焦点距離を変化させることが可能であるとともに、その 焦点距離は印加電圧により制御可能なものとなる。 [0052] また、従来の液体レンズと比較すると、本発明の液体レンズは優れた性能を示す。
[0053] 例えば、従来の液体レンズでは、本発明の透明積層膜の代わりに、基材 27上にス ノ ッタリング法あるいは蒸着法により ITO (インジウム錫酸ィ匕物)が成膜されてなる電 極膜 92と、該電極膜 92上にノ リレン(日本パリレン株式会社製、ノ リレン C、 パリレン N)が数; z mの厚さで蒸着されてなる絶縁膜 93とが積層されている(図 6)。
[0054] ここで、従来の液体レンズとしてノ^レン力もなる絶縁膜 93 (膜厚: 2 m、誘電率: 2 . 65)を用いた場合と、本発明の液体レンズ 20において ZnO— 2wt%Al Oのター
2 3 ゲットを用いて形成した透明絶縁膜 13 (膜厚:100nm、誘電率: 8. 7)を用いた場合 とを比較すると、絶縁膜に関して膜厚で 20倍、誘電率で 3. 28倍の差がある。すなわ ち、前記式(1)より、本発明の液体レンズ 20は従来の液体レンズよりも印加電圧を 1 /65. 6にすることが可能ということであり、例えば従来の液体レンズにおける印加電 圧力 0〜100Vであったとすると、本発明の液体レンズ 20では 4. 93〜12. 35Vま で印加電圧を低減することが可能である。
実施例
[0055] 以下に本発明を検証し、実施した例を説明する。
[0056] (実施例 1)
図 1に示すスパッタ装置を使用し、以下の条件で透明膜サンプルを作製した。
[0057] '基板 11 :ガラス基板
•ターゲット 3: ζηθ - 2wt%Al O
2 3
'投入電力: 0. 1〜7. 8W/cm2
•反応性ガス流量比(O ZAr) : 0〜1. 6 (%)
2
なお、(反応性ガス流量比) = (Oガス流量)
2 Z{ (Oガス流量) + (Arガス流量) } X
2
100 (%)とした。
[0058] ·透明膜膜厚: lOOnm
図 7に、得られたサンプルの比抵抗測定結果を示す。
[0059] その結果、反応性ガス流量比に比例して比抵抗が増加する傾向を示した。この結 果に従い、例えば、反応性ガス流量比を 0. 2%として透明導電膜 12を形成し、つぎ に同じターゲット 3を使用して反応性ガス流量比を 1. 3%として透明絶縁膜 13を形成 することにより、本発明の透明積層膜を得ることができる。
[0060] (実施例 2)
図 1に示すスパッタ装置を使用し、以下の条件で透明膜サンプルを作製した。
[0061] '基板 11:ガラス基板 (面積 9cm2)
•ターゲット 3: ζηθ - 2wt%SiO
2
'投入電力: 100〜400W
•反応性ガス流量比(O ZAr) :0〜0. 5 (%)
2
'透明膜膜厚: lOOnm
図 8に、得られたサンプルの比抵抗測定結果を示す。
[0062] その結果、反応性ガス流量比に比例して比抵抗が増加する傾向を示した。また、投 入電力に比例して比抵抗が減少する傾向が見られた。
[0063] (実施例 3)
本発明の透明積層膜の製造方法により、以下の条件で透明積層膜サンプルを作 製した。なお、基板 11としてガラス基板を使用した。
[0064] (1)透明導電膜 12
•ターゲット 3: ζηθ - 2wt%Al O
2 3
•反応性ガス流量比(O ZAr) :0. 2 (%)
2
•膜厚: 100應
(2)透明絶縁膜 13
•ターゲット 3: ζηθ - 2wt%Al O
2 3
•反応性ガス流量比(O ZAr) : 1. 3 (%)
2
•膜厚: 200應
得られたサンプルについて耐圧評価を行った。具体的には、図 9に示すように、透 明積層膜サンプルとソースメータとを接続し、透明導電膜 12に接したプローブに電 圧を 0〜60Vの範囲で変化させて印加し、そのときの透明絶縁膜 13上の電解液に接 したプローブに流れる電流値を測定した。
[0065] 図 10に、その結果を示す。また、透明積層膜サンプルの構成のうち透明絶縁膜 13 を省略し透明導電膜 12のみを形成したサンプルについて同様の耐圧測定を行った 結果を図 11に示す。
[0066] 透明積層膜サンプルは、透明導電膜 12のみ形成したサンプルの結果(図 11)と比 較すると、ォーミック反応を示さず、従来の構成のもの(図 6に示すパリレンからなる絶 縁膜を有する積層膜)と同等の耐圧特性が確認された。
[0067] また、本実施例の条件の透明積層膜を有する液体レンズを作製したところ、電圧印 加によって焦点距離を可変で制御することができた。

Claims

請求の範囲
[1] 反応性ガスなし、あるいは反応性ガスの存在下で、 ZnOに Al O、 Ga O、 SiOの
2 3 2 3 2 いずれかが含有されてなるターゲットをスパッタガスによりスパッタリングして、基材上 に透明導電膜を成膜し、っ 、で反応性ガスの存在下で前記ターゲットをスパッタガス によりスパッタリングして、前記透明導電膜上に透明絶縁膜を成膜して透明積層膜を 形成することを特徴とする透明積層膜の製造方法。
[2] 前記ターゲットの Al O、 Ga O、 SiOのいずれかの含有量は、 10wt%以下である
2 3 2 3 2
ことを特徴とする請求項 1に記載の透明積層膜の製造方法。
[3] 前記透明絶縁膜の膜厚は、 1 μ m以下であることを特徴とする請求項 1に記載の透 明積層膜の製造方法。
[4] 前記透明絶縁膜の抵抗値は、前記反応性ガスとスパッタガスとの流量比により調整 されてなることを特徴とする請求項 1に記載の透明積層膜の製造方法。
[5] 請求項 1〜4のいずれか一に記載の透明積層膜の製造方法により基材上に透明導 電膜、透明絶縁膜が順次積層されてなることを特徴とする透明積層膜。
[6] 請求項 5に記載の透明積層膜と、電極を含む部材とにより、前記透明絶縁膜を内 側にしてオイル及び水溶液が封止されてなるものであり、前記電極と透明導電膜間 への電圧印加により前記透明絶縁膜上の水溶液とオイルとの界面の形状を変化させ ることを特徴とする液体レンズ。
PCT/JP2007/060723 2006-05-26 2007-05-25 透明積層膜及びその製造方法、並びに液体レンズ WO2007139029A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/301,595 US20090303605A1 (en) 2006-05-26 2007-05-25 Transparent multilayer film, method of producing the same, and liquid lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-146189 2006-05-26
JP2006146189A JP2007313764A (ja) 2006-05-26 2006-05-26 透明積層膜及びその製造方法、並びに液体レンズ

Publications (1)

Publication Number Publication Date
WO2007139029A1 true WO2007139029A1 (ja) 2007-12-06

Family

ID=38778550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060723 WO2007139029A1 (ja) 2006-05-26 2007-05-25 透明積層膜及びその製造方法、並びに液体レンズ

Country Status (4)

Country Link
US (1) US20090303605A1 (ja)
JP (1) JP2007313764A (ja)
CN (1) CN101495303A (ja)
WO (1) WO2007139029A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0803702D0 (en) 2008-02-28 2008-04-09 Isis Innovation Transparent conducting oxides
JP2010243631A (ja) * 2009-04-02 2010-10-28 Sony Corp 液体レンズ装置の製造方法及び液体レンズ装置
TWI535023B (zh) 2009-04-16 2016-05-21 半導體能源研究所股份有限公司 半導體裝置和其製造方法
US20120301710A1 (en) * 2010-02-19 2012-11-29 Lintec Corporation Transparent conductive film, process for producing same, and electronic device employing transparent conductive film
JP5343058B2 (ja) * 2010-10-15 2013-11-13 リンテック株式会社 透明導電性フィルム、その製造方法、電子デバイス用部材及び電子デバイス
US8773744B2 (en) 2011-01-28 2014-07-08 Delta Electronics, Inc. Light modulating cell, device and system
US9361913B1 (en) * 2013-06-03 2016-06-07 Western Digital (Fremont), Llc Recording read heads with a multi-layer AFM layer methods and apparatuses

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336928A (ja) * 1995-06-08 1996-12-24 Balzers & Leybold Deutsche Holding Ag 半透明の材料からなる平板ならびにその製造方法
JP2001519539A (ja) * 1997-10-08 2001-10-23 ユニヴェルシテ ジョセフ フーリエ 可変焦点レンズ
JP2002162506A (ja) * 2000-11-27 2002-06-07 Canon Inc 光学素子、光学装置および撮影装置
JP2003136665A (ja) * 2001-11-02 2003-05-14 Toyo Kohan Co Ltd 導電層積層材の製造方法および導電層積層材を用いた部品の製造方法
JP2005116674A (ja) * 2003-10-06 2005-04-28 Fcm Kk 導電性シート、それを用いた製品およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3369728B2 (ja) * 1993-09-29 2003-01-20 出光興産株式会社 積層型透明導電基材
US5789318A (en) * 1996-02-23 1998-08-04 Varian Associates, Inc. Use of titanium hydride in integrated circuit fabrication
NO314525B1 (no) * 1999-04-22 2003-03-31 Thin Film Electronics Asa Fremgangsmåte ved fremstillingen av organiske halvledende innretninger i tynnfilm
US6806988B2 (en) * 2000-03-03 2004-10-19 Canon Kabushiki Kaisha Optical apparatus
TWI254080B (en) * 2002-03-27 2006-05-01 Sumitomo Metal Mining Co Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescence device
JP2004158619A (ja) * 2002-11-06 2004-06-03 Matsushita Electric Ind Co Ltd 電子デバイスおよびその製造方法
JP4610285B2 (ja) * 2004-09-30 2011-01-12 株式会社半導体エネルギー研究所 液晶表示装置の作製方法
KR20060095331A (ko) * 2005-02-28 2006-08-31 삼성에스디아이 주식회사 전자 방출 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336928A (ja) * 1995-06-08 1996-12-24 Balzers & Leybold Deutsche Holding Ag 半透明の材料からなる平板ならびにその製造方法
JP2001519539A (ja) * 1997-10-08 2001-10-23 ユニヴェルシテ ジョセフ フーリエ 可変焦点レンズ
JP2002162506A (ja) * 2000-11-27 2002-06-07 Canon Inc 光学素子、光学装置および撮影装置
JP2003136665A (ja) * 2001-11-02 2003-05-14 Toyo Kohan Co Ltd 導電層積層材の製造方法および導電層積層材を用いた部品の製造方法
JP2005116674A (ja) * 2003-10-06 2005-04-28 Fcm Kk 導電性シート、それを用いた製品およびその製造方法

Also Published As

Publication number Publication date
JP2007313764A (ja) 2007-12-06
CN101495303A (zh) 2009-07-29
US20090303605A1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
WO2007139029A1 (ja) 透明積層膜及びその製造方法、並びに液体レンズ
US8081389B2 (en) Electro-wetting device and a method of manufacturing the same
Chen et al. High-performance transparent barrier films of SiO x∕ SiN x stacks on flexible polymer substrates
US6630980B2 (en) Transparent flexible barrier for liquid crystal display devices and method of making the same
US9297061B2 (en) Transparent electroconductive film and process for producing the same
CN108456850B (zh) 一种三明治结构薄膜及其制备方法与应用
EP2717320B1 (en) Preparation method for surface-textured conductive glass and its application for solar cells
JP2007327079A (ja) 透明導電積層膜及びその製造方法
Lin et al. Electrochromic properties of novel atmospheric pressure plasma jet-synthesized-organotungsten oxide films for flexible electrochromic devices
JPWO2004065656A1 (ja) Ito薄膜、その成膜方法、透明導電性フィルム及びタッチパネル
KR101242591B1 (ko) 지문방지층 증착방법
JP4106931B2 (ja) 透明ガスバリア薄膜被覆フィルム
JPH06234186A (ja) 高ガスバリヤー性透明電極フィルム
JP2008170667A (ja) 液晶表示装置及びその製造方法
JP2010020951A (ja) 透明導電膜の製造方法
JP2009193674A (ja) 透明導電膜の製造方法およびそれに従って製造される透明導電膜
JP3654841B2 (ja) 透明導電性フィルムおよびその製造方法
JP3840080B2 (ja) ガスバリアフィルム
JPH09226047A (ja) 透明ガスバリヤー性フィルム
CN109671781A (zh) 基于二维材料的晶体管及其制备方法
JP2008181906A (ja) 薄膜電極の製造方法
JP3872669B2 (ja) ガスバリアフィルム
JP2009135003A (ja) 透明導電膜とその製造方法
JPS62142763A (ja) スパツタ装置
JP4153185B2 (ja) 高分子樹脂フィルム、及びこれを用いたガスバリアフィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027930.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07744157

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12301595

Country of ref document: US