WO2007023919A1 - Stabilizer composition for synthetic resin - Google Patents

Stabilizer composition for synthetic resin Download PDF

Info

Publication number
WO2007023919A1
WO2007023919A1 PCT/JP2006/316646 JP2006316646W WO2007023919A1 WO 2007023919 A1 WO2007023919 A1 WO 2007023919A1 JP 2006316646 W JP2006316646 W JP 2006316646W WO 2007023919 A1 WO2007023919 A1 WO 2007023919A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
synthetic resin
zinc oxide
stabilizer composition
mercapto group
Prior art date
Application number
PCT/JP2006/316646
Other languages
French (fr)
Japanese (ja)
Inventor
Ryotaro Tsuji
Yoshiharu Yonemushi
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2007532185A priority Critical patent/JPWO2007023919A1/en
Publication of WO2007023919A1 publication Critical patent/WO2007023919A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/10Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/02Anti-oxidant compositions; Compositions inhibiting chemical change containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Definitions

  • the present invention relates to a stabilizer composition for a synthetic resin, a resin composition of the stabilizer and a synthetic resin, and a film obtained by molding the resin composition.
  • Synthetic resins are deteriorated by heat and light, and finally become unusable after changes in physical properties such as strength reduction and coloring.
  • Various stabilizers have been devised and used for the purpose of suppressing such deterioration in physical properties and extending the period of use.
  • examples of such stabilizers include phenol-based antioxidants, hindered amine light stabilizers (HALS), and phosphorus-based antioxidants as described in Non-Patent Document 1.
  • HALS hindered amine light stabilizers
  • phosphorus-based antioxidants as described in Non-Patent Document 1.
  • these are all relatively low-molecular organic compounds, and the degradation of these stabilizers progresses with time, so that the stabilizing effect is insufficient or coloring occurs.
  • Non-Patent Document 2 describes the thermal stabilization effect when zinc oxide fine particles manufactured by Nanophase Technology Co., Ltd. having an average particle size of about 49 nm are added to polyolefin. According to this document, submicron-sized zinc oxide having a particle size of lOOnm or more has no thermal stabilization effect.
  • the zinc oxide fine particles cannot be uniformly dispersed in the synthetic resin. Therefore, there is a problem that the synthetic resin composition obtained is opaque or the effect of stabilization is not sufficiently exhibited.
  • the target synthetic resin was limited to polyolefin, and the effect on bulres resins such as acrylic resin and styrene resin was not clear.
  • Patent Document 1 and Patent Document 2 describe a resin composition containing inorganic fine particles whose surface is modified with a compound containing a polymer, but there is no description regarding transparency and heat resistance. It is not clear about the effect It was.
  • Patent Document 3 describes a technique related to a functional imparting agent composed of surface-modified fine particles of 1 to! OOOnm, and the effect of improving thermal stability is also confirmed.
  • the surface treatment of fine particles is insufficient, there is a problem that when dispersed in a matrix resin, it tends to aggregate and the transparency becomes low.
  • Patent Document 4 describes a resin composition obtained by mixing ultrafine particles surface-modified with a polymer having a mercapto group at one end into a resin.
  • Patent Document 1 Japanese Translation of Special Publication 2004-524396
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-307584
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-128837
  • Patent Document 4 WO2005 / 010100
  • Non-Patent Document 1 Research and Development of Polymer Additives, Satoshi Daikatsu, CMC, 1998.
  • Non-Patent Document 2 K. S. Cho et al., Polymer Engineering and Science, 2004, 44 (9), 1702.
  • the problem to be solved by the present invention is a synthesis that can improve thermal stability and light stability for a wide range of synthetic resins, and can be uniformly dispersed to obtain a transparent synthetic resin. It is to provide a stabilizer for a resin. Furthermore, it is providing the resin composition excellent in heat resistance containing the stabilizer for synthetic resins.
  • the present inventor proposes the following method.
  • the present invention relates to zinc oxide (A) having a number average particle diameter of 0.5 to 20 nm, a number average molecular weight of 1
  • a stabilizer composition for a synthetic resin comprising a 000 to 50000 mercapto group-containing compound (B) (Claim 1).
  • the number average particle diameter of zinc oxide (A) is 10 nm or less, either 1 or 2
  • a stabilizer composition for synthetic resins according to claim 3 (Claim 3).
  • the mercapto group-containing compound (B) is obtained by treating a polymer obtained by reversible addition-desorption chain transfer polymerization using a thiocarbonylthio compound as a chain transfer agent with a treatment agent.
  • the stabilizer composition for synthetic resins in any one of 1-4 (Claim 5).
  • Claim A heat-resistant resin composition comprising the stabilizer composition for synthetic resins according to any one of! To 7 and a synthetic resin (C) (claim 8).
  • Synthetic resin (C) acrylic resin, polystyrene, ethylene acetate butyl copolymer, AS resin, ABS resin, AAS resin, ACS resin, polyacetic acid butyl, polychlorinated butyl, epoxy resin, phenol resin, polyamide, polycarbonate , Polyethylene terephthalate, poly One or more selected from the group consisting of butylene terephthalate, polyarylate, polyimide, polygnorethanimide, polyvinylenorecetanol, polysenorephone, polyetherenorenorephone, polyphenylene noride, polyetherenoetherketone, polyethylene, polypropylene, and thermoplastic elastomer.
  • the heat resistant resin composition according to any one of claims 8 to 11, wherein the heat resistant resin composition (claim 12) is characterized by the above.
  • Zinc oxide (A) is contained in the range of 0.1 to 10 parts by weight and the mercapto group-containing compound (B) in the range of 0.1 to 100 parts by weight with respect to 100 parts by weight of the synthetic resin (C).
  • the heat-resistant resin composition according to any one of claims 8 to 12 (claim 13).
  • the zinc oxide (A) and the mercapto group-containing compound (B) are first mixed and then mixed with the synthetic resin (C), and then obtained according to claims 8 to 13:
  • the transparent film according to claim 15 (claim 17) having a thickness of 50 to 500 x m and a haze of 1% or less.
  • the stabilizer composition for a synthetic resin of the present invention has an effect of stabilizing a wide range of synthetic resins over a long period of time, and has an effect of improving heat resistance, weather resistance and light stability. In addition, it is highly transparent because it can be uniformly dispersed in synthetic resin. Since the composition with a synthetic resin has these effects, it can be used for applications such as glass substitute resin materials, lenses, interlayer films for laminated glass, films, sheets, coating agents, and paints.
  • the stabilizer composition for a synthetic resin of the present invention is a composition comprising zinc oxide (A) having a number average particle size of 0.5 to 20 nm and a mercapto group-containing compound (B) having a number average molecular weight of 1,000 to 50,000. is there. Furthermore, a resin composition blended with the synthetic resin (C) and a film formed by molding the resin composition. A structure in which zinc oxide is modified with the mercapto compound is preferable. Good.
  • the zinc oxide (A) having a number average particle size of 0.5 to 20 nm used in the present invention is not particularly limited, and can be prepared by a method using a conventional technique.
  • a thermal CVD method, a plasma CV D method, a flame method, a vapor phase method such as an electrostatic spray CVD method, a liquid phase method represented by a Zonorel gel method, and the like can be given.
  • the sol-gel method is preferred because the particle size can be easily controlled and particles with a narrow particle size distribution can be obtained.
  • the reaction between a zinc compound and an Arenius base in an alcohol solvent is preferred from the viewpoint of cost and reactivity.
  • zinc oxide and other carboxylates are more preferred as zinc compounds in terms of availability and reactivity
  • alkali metal hydroxides such as KOH and NaOH are more preferred as Arenius bases.
  • the reaction conditions are not particularly limited, but the concentration of zinc carboxylate is 0.001- 0.1 mol / L is preferred 0.01 to 0.05 mol / L is more preferred.
  • the concentration of alkali metal hydroxide is preferably 0.002 to 0.2 mol / L, more preferably 0.02 to 0.1 mol / L; the amount of alkali metal hydroxide relative to zinc carboxylate
  • the number of moles is preferably 1.5 to 3 times 1. 8 to 2.5 times more preferred.
  • the reaction temperature is preferably 0 to: 100 ° C, more preferably 10 to 80 ° C.
  • the reaction time is preferably 1 minute to 10 hours, more preferably 5 minutes to 5 hours. Under reaction conditions outside the above range, it is difficult to control the particle diameter of zinc oxide, the yield is low, or aggregation tends to occur.
  • Zinc carboxylate and alkali metal hydroxide may be added to the alcohol solvent simultaneously or separately. It can be mixed as a solution or added as a solid. In view of easy control of the particle size of zinc oxide, a method in which zinc carboxylate is solid or in solution in an alkali metal hydroxide alcohol solution is preferred.
  • Alcohol as a solvent is not particularly limited, but aliphatic alcohol having a boiling point of 100 ° C or less is preferred in view of cost, availability, and ease of purification. Methanolol, ethanol, n-propanol, and isopropanol are preferred. More preferred.
  • the stabilization effect by zinc oxide is more pronounced as the particle size of zinc oxide is smaller.
  • the number average particle size is preferably 10 nm or less, more preferably 6 nm or less.
  • it is preferably 0.5 nm or more, and more preferably lnm or more.
  • a range of 0.5 to 10 nm is preferable: a range of! To 10 nm is more preferable:! To 6 nm is particularly preferable.
  • the mercapto group-containing compound (B) having a number average molecular weight of 1000 to 50,000 used in the present invention is not particularly limited, and examples thereof include polyethers having a terminal SH group, polystyrene, and polymethyl methacrylate. Can do. Examples of such polymers include W. P. Wuelfing et al., J. Am. Chem. Soc., 1998, 120, 12696 and MK Corbierr e et al., J. Am. Chem. Soc., 2001, 123, 10411. It is described in the etc.
  • the mercapto group-containing compound (B) component having a number average molecular weight of 1000 to 50,000 used in the present invention is a number average molecular weight force in that it can be efficiently dispersed in the synthetic resin (C) component by modifying zinc oxide.
  • the force S is preferably in the range of 2000 to 50000, and more preferably in the range of 3000 to 40000.
  • the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 1.5 or less in terms of uniformity in the resin composition. 1. More preferably, it is 3 or less.
  • Mw and Mn can adopt values determined by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a polymer obtained by radical polymerization of a bur monomer is preferable from the viewpoint that compatibility with a synthetic resin can be widely adjusted and heat resistance and weather resistance are excellent.
  • the polymer obtained by RAFT polymerization has a dithioester structure or a trithiocarbonate structure at the molecular end or in the molecular chain.
  • This dithioester or trithiocarbonate moiety can be converted to an SH group by treating with a treating agent described later. wear.
  • the thiothio compound used as a chain transfer agent in the above RAFT polymerization is not particularly limited, and for example, compounds described in JP-T-2000-515181 can be used. The following compounds are preferable in terms of reactivity.
  • dithiobenzoic acid ester type compounds and trithiocarbonate type compounds are more preferred in terms of availability and reactivity.
  • the reaction conditions for the RAFT polymerization are not particularly limited, and conventional techniques such as those described in JP-T-2000-515181 can be applied.
  • the polymerization temperature is preferably 60 ° C or higher, more preferably 80 ° C or higher in terms of reactivity.
  • the polymerization mode is not limited to bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization and the like, but bulk polymerization and solution polymerization are preferable in that the reaction after treatment with a treating agent and conversion to SH groups is easy.
  • RAFT polymerization can be carried out using either a batch type or continuous type reactor, but it is preferable to use a continuous type reactor in terms of easy removal of polymerization heat and high productivity.
  • the initiator is preferably used in an amount of 0.4 equivalent or less with respect to the thiocarbonylthio compound in terms of good reaction control, more preferably 0.3 equivalent or less. In terms of reactivity, the initiator is preferably used in an amount of 0.05 equivalents or more, more preferably 0.08 equivalents or more, based on the thiothio compound.
  • the monomer used in the RAFT polymerization is not particularly limited, and a vinyl monomer capable of radical polymerization can be used.
  • examples of such bulle monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, and (meth) acrylic acid.
  • (Meth) acrylic acid esters such as 2-ethylhexyl, (meth) acrylic acid 2-hydroxyethyl, (meth) acrylic acid 2-methoxyethyl, (meth) acrylic acid glycidyl; (meth) acrylic acid; (meth) acrylamide , N-isopropyl (meth) acrylo amide, (meth) acrylamide monomers such as N, N-dimethyl (meth) acrylamide; styrene, monomethylstyrene, 1-burnaphthalene, 4-bulupyridine, 1, 4 —Bul aromatic monomers such as dibutylbenzene; Halogen-containing such as butyl chloride, black mouth plain, vinylidene chloride Emissions monomer; acetate Bulle, Bulle ester monomers such as Bulle propanoic acid; and N- Bulle pyrrolidone can be cited.
  • the treating agent used when converting the polymer obtained by RAFT polymerization into an SH group-containing polymer is not particularly limited, and a compound having a hydrolytic action can be used.
  • a compound having a hydrolytic action can be used.
  • One or more compounds selected from the group consisting of an Arenius base, a reducing agent, a primary amine compound, and a secondary amine compound are preferable.
  • the Arrhenius base is not particularly limited, but examples thereof include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal waters such as calcium hydroxide and magnesium hydroxide.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
  • alkaline earth metal waters such as calcium hydroxide and magnesium hydroxide.
  • oxide include aluminum hydroxide.
  • the reducing agent is not particularly limited, but examples thereof include sodium hydride, lithium hydride, calcium hydride, LiAlH, NaBH, LiBEt H, ammonia, hydrazine, hydrogen, and the like.
  • the primary amine compound is not particularly limited. , Polybuluamine, polyallylamine and the like.
  • the secondary amine compound is not particularly limited. —Methylaniline, imidazole, piperidine and the like can be mentioned.
  • These treatment agents may be used alone or in combination. From the viewpoint of reactivity and ease of handling, a reducing agent and a primary amine compound having a boiling point of 20 to 200 ° C are preferred.
  • the amount of the treatment agent used is not particularly limited, but from the viewpoint of reactivity and economy, the above-mentioned RAFT polymerization yields 100 to 100 wt. 0.1 to 50 parts by weight is more preferable.
  • the reaction conditions for treatment with the treating agent are not particularly limited, but the temperature is preferably 0 to 200 ° C. from the viewpoint of reactivity. 20 to 100 ° C. Force S is more preferable. In terms of reactivity It is preferable to use a solvent capable of dissolving the polymer. When the above RAFT polymerization is carried out by bulk polymerization or solution polymerization, it is efficient because a treatment agent can be added directly to the reaction solution.
  • Acid-zinc (A) having a number average particle size of 0.5 to 20 nm and a menolecapto group-containing compound (B) having a number average molecular weight of 1000 to 50000 can be used as a stabilizing composition by simply mixing them. However, it is preferable to modify the zinc oxide (A) with the mercapto group-containing compound (B).
  • the method of modifying zinc oxide (A) with the mercapto group-containing compound (B) is not particularly limited, and for example, the following method (1) or (2) can be employed:
  • the method of mixing as the above (1) solution is not particularly limited, and the other simple substance may be added to one solution in which zinc oxide and a mercapto group-containing compound are mixed as solutions. It is also possible to prepare both solutions by mixing them together. It does not specifically limit as a solvent to be used, A single solvent or a mixed solvent may be sufficient.
  • the temperature at the time of mixing is not particularly limited, but is preferably 0 to 100 ° C. in terms of high modification efficiency. In addition, it is effective to irradiate ultrasonic waves or microwaves during mixing.
  • the method of (2) melt kneading is not particularly limited, and various extruders, kneaders, minoles, plast mills, Banbury mixers, rolls, and the like can be used.
  • Zinc oxide and a mercapto group-containing compound may be pre-blended and melt-kneaded, or the other may be fed to the melted one.
  • the temperature of melt mixing is not particularly limited, and may be selected according to the melting point of the mercapto group-containing compound to be used.
  • the method of mixing as a solution is preferred because it can suppress the aggregation of zinc oxide.
  • Zinc oxide can be used as a solution during synthesis or as a solution during synthesis. The preferred method is to use it in a concentrated form.
  • the resulting surface-modified zinc oxide is isolated by mixing with a poor solvent and precipitating, or by distilling off the solvent, or mixed with the poor solvent. It can be isolated by distilling off the good solvent after the synthesis. Since the zinc oxide of the present invention is modified with a mercapto group-containing compound, it is highly stable and can be isolated as a solid without aggregation.
  • the method is not limited.
  • a solvent method in which mixing is performed using a solvent and a melting method in which melt-kneading is performed using an extruder can be exemplified.
  • a mercapto group-containing compound having a number average molecular weight of 1000 to 50,000 binds well to zinc oxide due to the interaction between the mercapto group and zinc oxide, and has an affinity for the synthetic resin on the surface of zinc oxide. This is preferable because a part having a property can be formed and zinc oxide can be dispersed well in the synthetic resin.
  • the amount used is not particularly limited, but it is synthesized in terms of cost effectiveness.
  • Resin (C) The synthetic resin stabilizer composition of the present invention is preferably in the range of 0.:! To 100 parts by weight with respect to 100 parts by weight of the resin. 0 to 2 to 70 parts by weight is more preferred. 5 to 50 parts by weight is especially preferred.
  • zinc oxide (A) is added to 100 parts by weight of synthetic resin (C) in terms of heat resistance improvement effect and economy.
  • mercapto group-containing compound (B) 0.1 to 100 parts by weight is preferred, and (C) 100 parts by weight (A) 0 3 to 5 parts by weight, (B):! To 30 parts by weight are preferred.
  • Such a synthetic resin (C) serves as a matrix for dispersing and holding the zinc oxide particles (A) and the mercapto group-containing compound (B) in the heat resistant resin composition of the present invention. It is a responsibility. In terms of heat resistance, weather resistance, and availability, high molecular weight compounds with a number average molecular weight of 50,000 or more that do not contain a mercapto group are preferred in terms of strength and durability.
  • Acrylic resin, polystyrene, epoxy resin, polyamide, polycarbonate, polyethylene terephthalate, and thermoplastic elastomer are more preferable. These may be used alone or in combination. In view of the efficient functioning of this matrix resin as a matrix, those capable of being compatible or homogeneously mixed with the component (B) mercapto group-containing compound are preferred.
  • the mixing order of each component is not particularly limited, and after mixing the two types first, the remaining one component may be added. You may mix at once.
  • the concept of the heat-resistant resin composition of the present invention is to obtain zinc oxide particles modified with a polymer compound by binding the mercapto group of component (B) to component (A), and in component (C). It is to disperse and dissolve. Therefore, the method in which the components (A) and (B) are first mixed and then the component (C) is preferred in that the formation of the bond between the mercapto group and the zinc oxide particles can be made more efficient.
  • the method of mixing each component is not particularly limited, and examples thereof include a method of mixing in a liquid using a solvent and a dispersion medium, and a method of melt-kneading using an extruder or a kneader.
  • a method of mixing in a liquid using a solvent and a dispersion medium When it is necessary to increase the dispersibility of the zinc oxide particles, the method of mixing in the solution state is preferable. When mass synthesis is performed at a low cost, the method of melt-kneading is preferable. Therefore, it is possible to select according to the application and purpose.
  • the heat-resistant resin composition of the present invention preferably has a higher thermal decomposition temperature in the air atmosphere by 20 ° C or more than that of the component (C) alone, because the range of use is wide. A temperature higher than 40 ° C is more preferable.
  • the pyrolysis temperature is defined in thermogravimetric analysis as “the temperature (Td) at which the weight loss is 20% when the room temperature force is also raised at 10 ° C ° C / min”.
  • Td thermogravimetric analysis
  • the effect of improving the thermal decomposition temperature in the heat resistant resin composition of the present invention is due to the action of zinc oxide particles, and the zinc oxide particles trap radical species such as oxygen radicals and organic radicals generated by polymer chain scission. This is because the decomposition of the polymer compound is suppressed.
  • the zinc oxide particles have as large a surface area as possible, and the dispersion in the resin is uniform and not aggregated. .
  • the presence of the component (B) in the present invention is important.
  • Component (B) modifies the surface of the zinc oxide particles to prevent agglomeration and enable stable and uniform dispersion in the resin.
  • the heat-resistant resin composition of the present invention may further contain components other than the components (A), (B), and (C) according to the purpose.
  • additional components include an antioxidant, an ultraviolet ray absorber, a heat ray shielding agent, a colorant, a flame retardant, an adhesion promoter, a tackifier, a plasticizer, and a release agent.
  • an antioxidant an ultraviolet ray absorber, a heat ray shielding agent, a colorant, a flame retardant, an adhesion promoter, a tackifier, a plasticizer, and a release agent.
  • the transparent film of the present invention is obtained by molding the resin composition.
  • the method for forming the film is not particularly limited, and well-known methods such as solution casting, melt extrusion molding, calendar one molding, and blow molding can be applied.
  • the transparent film of the present invention preferably has a thickness of 50 to 500 ⁇ m and a haze of 3% or less because it can be applied to optical-related applications.
  • the zinc oxide particles of component (A) have a number average particle diameter of 20 nm or less, which is a size sufficiently smaller than the wavelength of light, and can be dispersed in the resin without agglomeration by particle surface modification with component (B) This is due to the fact that it is possible.
  • the thickness is 50 to 500 ⁇ m and the haze is 1% or less because it can be applied to applications requiring more transparency.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer were determined by gel permeation chromatography (GPC) analysis.
  • GPC gel permeation chromatography
  • a Waters system was used, and Shodex K-806 and K-805 (manufactured by Showa Denko Co., Ltd.) were connected to each other, and the column was analyzed using a black mouth form as an eluent and a polystyrene standard sample.
  • the reaction rate of the monomer was determined by gas chromatography (GC) analysis.
  • GC analysis was carried out with a gas chromatograph GC-14B (manufactured by Shimadzu Corporation) using a Kyabilari Islamic Ram DB—17 Q & W SCIENTIFIC INC. Dissolved in a sampnore solution in ethyl acetate.
  • the particle size of the zinc oxide fine particles was determined by observing at an acceleration voltage of 80 kV using a transmission electron microscope (TEM) JEM-1200EX (manufactured by JEOL Ltd.).
  • the bar coater for making cast film is K303 multi-coater (RK Print Coat Instruments, LTD) was used.
  • the haze measurement was carried out using COH300A (manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the UV lamp used was 3UV-38 (manufactured by UVP).
  • Td measurement by thermogravimetric analysis is performed using DTG_ 50 (manufactured by Shimadzu Corporation).
  • the zinc oxide content in the resin composition was calculated by weighing 0.15 g of the resin composition in a crucible and measuring the amount of ash after burning in an electric furnace.
  • PMMA_SH (9 g) obtained in Production Example 1 was dissolved in dimethylformamide (DMF) (180 mL) and mixed with an isopropanol solution of ZnO fine particles obtained in Production Example 2 (180 mL: containing 0.3 g Zn). . After stirring at room temperature for 1 hour, the mixture was poured into methanol (6 L) to precipitate ZnO fine particles surface-modified with PMMA-SH, and isolated by filtration. Thus obtained The ZnO content in the obtained PMMA stabilizer was determined to be 3.4% by ash measurement.
  • a cast film was prepared using a turret. This film had a film thickness of 73 ⁇ m, a haze of 0.15%, and a Z ⁇ content (ash content) of 1.1%.
  • the Td for this film is 334.
  • Table 1 shows the film properties and weight loss after heating.
  • Example 2 ⁇ PMMA (SUMIPEX MH, manufactured by Sumitomo Chemical Co., Ltd.) (3.0 g) was dissolved in dichloromethane (12 g), a cast film was prepared using a bar coater, and the same heating test as in Example 2 was performed. It was. The results are shown in Table 1. Compared with Example 2, it does not contain both ZnO fine particles and PMMA-SH, and it can be seen that the thermal decomposition is severe and the heat resistance is poor.
  • This ZnO / PMMA and commercially available PMMA (SUMIPEX MH) (1.5 g) are dissolved in dichloromethane (12 g), a cast film is prepared using a bar coater, and the same heating test as in Example 2 is performed. It was. The results are shown in Table 1. Compared with Example 2, it does not contain PMMA—SH, so that the amount of ZnO incorporated into PMMA is small, so that the heat resistance is slightly inferior. However, because ZnO aggregated in PMMA, the haze was 5.5% despite the low ZnO content of 0.6%, and only an opaque film was obtained.
  • PMMA—SH (0.9 g) obtained in Production Example 1 was dissolved in dichloromethane (12 g), and sold ZnO fine particles (nanopowder, Aldrich, number average particle size 60 nm) (30 mg) were collected at room temperature. The mixture was stirred for an hour, and commercially available PMMA (Sumipex MH) (2. lg) was added and dissolved. A cast film was prepared from this solution using a bar coater, and the same heating test as in Example 2 was performed. The results are shown in Table 1. It can be seen that the particle size of the ZnO fine particles is larger than that of Example 2, so that the transparency of the film is low and the decomposition by heating is severe and the heat resistance is poor.
  • Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Commercial PMMA / g 2. 1 2. 1 3. 0 2. 1 3. 0 2. 1
  • MS resin commercial MMA / styrene copolymer resin
  • Mn 300,000, manufactured by Nippon Steel Chemical Co., Ltd.
  • the obtained film had a film thickness of 83 / m, a haze of 0.91%, and a ZnO content of 1.0%.
  • the Td of this film is MS resin alone.
  • Example 3 Commercial sales in Example 3 A similar experiment was conducted using commercial MS resin (Estyrene MS MS-200) instead of PMMA.
  • the resulting film had a thickness of 77 m, a haze of 0.95%, and a ZnO content of 3.1. /. Td was 45 ° C higher than the MS resin alone.
  • This PS stabilizer (0.33g) and commercially available PS (HF77, manufactured by PS Japan Co., Ltd.) (2.15g) are dissolved in dichloromethane (10mL) and cast using a bar coater. A film was made. The film thickness was 73 ⁇ m and haze was 0.13%. As a result of ash measurement, the ZnO content was determined to be 2.0%. The film was heated for 10 minutes at 400 ° C. The film slightly turned yellow and the transparency was almost unchanged, but the weight loss rate was 9%. [0079] Further, this film was irradiated with ultraviolet rays of 302 nm for 50 hours from a distance of 5 cm using a UV lamp. No discoloration or deterioration of the film was observed.
  • the stabilizer composition for a synthetic resin of the present invention can be stabilized by adding it to a highly compatible synthetic resin to improve heat resistance, weather resistance, and light stability. . Furthermore, since it is highly compatible with the synthetic resin, it can be uniformly dispersed in the synthetic resin, and a transparent material can be obtained. In addition, compared with organic stabilizers such as hindered phenol stabilizers and hindered amine stabilizers that have been widely used in the past, the degree of coloring and deterioration is extremely low.
  • the synthetic resin stabilizer composition of the present invention can be used for applications such as glass substitute resin materials, lenses, interlayer films for laminated glass, films, sheets, coating agents, paints, and the like.

Abstract

Disclosed is a stabilizer composition for synthetic resins which is capable of improving thermal stability and light stability in a wide range of synthetic resins. This stabilizer composition can be uniformly dispersed in the synthetic resins, thereby enabling to obtain transparent synthetic resins. Specifically disclosed is a stabilizer composition for synthetic resins having a structure wherein a zinc oxide having a number average particle diameter of 0.5-20 nm is modified with a mercapto group-containing compound having a number average molecular weight of 1,000-50,000. Since the stabilizer composition for synthetic resins has a small particle diameter and can be uniformly dispersed in various synthetic resins, the resulting synthetic resin compositions are able to form a transparent film. In addition, this stabilizer composition has effects of remarkably improving thermal stability and light stability of various resins.

Description

明 細 書  Specification
合成樹脂用安定化剤組成物  Stabilizer composition for synthetic resin
技術分野  Technical field
[0001] 本発明は合成樹脂用安定化剤組成物及び該安定剤と合成樹脂との樹脂組成物、 該樹脂組成物を成形して得られるフィルムに関する。  The present invention relates to a stabilizer composition for a synthetic resin, a resin composition of the stabilizer and a synthetic resin, and a film obtained by molding the resin composition.
背景技術  Background art
[0002] 合成樹脂は熱や光により劣化し、強度低下や着色などの物性変化の後最終的に 使用不能となる。このような物性低下を抑制して使用期間を長くする目的で種々の安 定化剤が考案され使用されている。このような安定化剤としては例えば非特許文献 1 に記されているようなフエノール系酸化防止剤、ヒンダードアミン光安定剤(HALS)、 リン系酸化防止剤などが挙げられる。しかしこれらはいずれも比較的低分子の有機 化合物であり、これら安定化剤自身の分解が経時で進行するためその安定化効果が 不十分であったり着色を引き起こしたりする問題があった。  [0002] Synthetic resins are deteriorated by heat and light, and finally become unusable after changes in physical properties such as strength reduction and coloring. Various stabilizers have been devised and used for the purpose of suppressing such deterioration in physical properties and extending the period of use. Examples of such stabilizers include phenol-based antioxidants, hindered amine light stabilizers (HALS), and phosphorus-based antioxidants as described in Non-Patent Document 1. However, these are all relatively low-molecular organic compounds, and the degradation of these stabilizers progresses with time, so that the stabilizing effect is insufficient or coloring occurs.
[0003] 一方熱や光に対して安定で着色などの問題のない安定化剤として無機系金属酸 化物である酸化亜鉛が知られている。非特許文献 2には、平均粒子径約 49nmのナ ノフェーズテクノロジ一社製の酸化亜鉛微粒子をポリオレフインに添カ卩した場合の熱 安定化効果が記載されている。この文献によれば、粒子径が lOOnm以上のサブミク ロンサイズの酸化亜鉛では熱安定化効果が認められない。  On the other hand, zinc oxide, which is an inorganic metal oxide, is known as a stabilizer that is stable to heat and light and has no problems such as coloring. Non-Patent Document 2 describes the thermal stabilization effect when zinc oxide fine particles manufactured by Nanophase Technology Co., Ltd. having an average particle size of about 49 nm are added to polyolefin. According to this document, submicron-sized zinc oxide having a particle size of lOOnm or more has no thermal stabilization effect.
し力 該文献の方法においては酸化亜鉛微粒子と合成樹脂との相容性を向上させ るための手段がとられていないため、酸化亜鉛微粒子を合成樹脂中に均一に分散さ せることができず、したがって得られる合成樹脂組成物が不透明であったり、安定化 の効果が充分に発揮されないといった問題があった。また対象合成樹脂がポリオレフ インに限られ、アクリル樹脂やスチレン樹脂などのビュル系樹脂に対する効果が明ら 力とされていなかった。  In the method of this document, since measures for improving the compatibility between the zinc oxide fine particles and the synthetic resin are not taken, the zinc oxide fine particles cannot be uniformly dispersed in the synthetic resin. Therefore, there is a problem that the synthetic resin composition obtained is opaque or the effect of stabilization is not sufficiently exhibited. In addition, the target synthetic resin was limited to polyolefin, and the effect on bulres resins such as acrylic resin and styrene resin was not clear.
特許文献 1および特許文献 2には、重合体を含む化合物により表面修飾された無機 微粒子を含有する樹脂組成物に関する記載があるが、透明性や耐熱性に関する記 載がなぐ酸化亜鉛微粒子による熱安定化効果については明らかとされていなかつ た。また特許文献 3には、表面修飾された 1〜: !OOOnmの微粒子からなる機能性付 与剤に関する技術が記載されており、熱安定性向上の効果についても確認されてい る。しかし該文献においては微粒子の表面処理が不充分であるため、マトリックス樹 脂中へ分散させた場合に凝集しやすく透明度が低くなるという問題があった。 Patent Document 1 and Patent Document 2 describe a resin composition containing inorganic fine particles whose surface is modified with a compound containing a polymer, but there is no description regarding transparency and heat resistance. It is not clear about the effect It was. Patent Document 3 describes a technique related to a functional imparting agent composed of surface-modified fine particles of 1 to! OOOnm, and the effect of improving thermal stability is also confirmed. However, in this document, since the surface treatment of fine particles is insufficient, there is a problem that when dispersed in a matrix resin, it tends to aggregate and the transparency becomes low.
さらに特許文献 4には片末端にメルカプト基を有するポリマーで表面修飾された超微 粒子を樹脂中に混合して得られる樹脂組成物にっレ、て述べられてレ、る。  Further, Patent Document 4 describes a resin composition obtained by mixing ultrafine particles surface-modified with a polymer having a mercapto group at one end into a resin.
特許文献 1 :特表 2004— 524396号公報  Patent Document 1: Japanese Translation of Special Publication 2004-524396
特許文献 2:特開 2004— 307584号公報  Patent Document 2: Japanese Patent Laid-Open No. 2004-307584
特許文献 3:特開 2003— 128837号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-128837
特許文献 4 :WO2005/010100  Patent Document 4: WO2005 / 010100
非特許文献 1 :高分子添加剤の開発技術(Research and Development of Po lymer Additives) ,大勝靖ー、シーエムシー、 1998.  Non-Patent Document 1: Research and Development of Polymer Additives, Satoshi Daikatsu, CMC, 1998.
非特許文献 2 : K. S. Choら、 Polymer Engineering and Science, 2004、 44 ( 9)、 1702.  Non-Patent Document 2: K. S. Cho et al., Polymer Engineering and Science, 2004, 44 (9), 1702.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明が解決しょうとする課題は、広範な合成樹脂に対して熱安定性および光安 定性を向上させることができ、かつ均一分散させて透明な合成樹脂を得ることのでき る合成樹脂用安定化剤を提供することである。さらに該合成樹脂用安定化剤を含有 する耐熱性に優れる樹脂組成物を提供することである。 [0004] The problem to be solved by the present invention is a synthesis that can improve thermal stability and light stability for a wide range of synthetic resins, and can be uniformly dispersed to obtain a transparent synthetic resin. It is to provide a stabilizer for a resin. Furthermore, it is providing the resin composition excellent in heat resistance containing the stabilizer for synthetic resins.
課題を解決するための手段  Means for solving the problem
[0005] 上記課題を解決するための手段として、本発明者は以下の方法を提案する。 As means for solving the above problems, the present inventor proposes the following method.
[0006] すなわち本発明は、数平均粒子径 0. 5〜20nmの酸化亜鉛 (A)、数平均分子量 1That is, the present invention relates to zinc oxide (A) having a number average particle diameter of 0.5 to 20 nm, a number average molecular weight of 1
000〜50000のメルカプト基含有化合物(B)からなる合成樹脂用安定化剤組成物( 請求項 1)。 A stabilizer composition for a synthetic resin comprising a 000 to 50000 mercapto group-containing compound (B) (Claim 1).
[0007] 酸化亜鉛 (A)の表面がメルカプト基含有化合物(B)で修飾された構造を有する、 請求項 1に記載の合成樹脂用安定化剤組成物 (請求項 2)。  [0007] The stabilizer composition for synthetic resins according to claim 1, wherein the surface of zinc oxide (A) has a structure modified with a mercapto group-containing compound (B) (claim 2).
[0008] 酸化亜鉛 (A)の数平均粒子径が 10nm以下である、請求項 1または 2のいずれか に記載の合成樹脂用安定化剤組成物 (請求項 3)。 [0008] The number average particle diameter of zinc oxide (A) is 10 nm or less, either 1 or 2 A stabilizer composition for synthetic resins according to claim 3 (Claim 3).
[0009] 酸化亜鉛 (A) 、アルコール中カルボン酸亜鉛とァレニウス塩基との反応により合 成されたものである、請求項 1〜3のいずれかに記載の合成樹脂用安定化剤組成物 (請求項 4)。 [0009] The synthetic resin stabilizer composition according to any one of claims 1 to 3, wherein the zinc oxide (A) is synthesized by a reaction between a zinc carboxylate in an alcohol and an Arenius base. Section 4).
[0010] メルカプト基含有化合物(B) 、チォカルボ二ルチオ化合物を連鎖移動剤とする可 逆的付加脱離連鎖移動重合により得られる重合体を処理剤で処理して得られるもの である、請求項 1〜4のいずれかに記載の合成樹脂用安定化剤組成物(請求項 5)。  [0010] The mercapto group-containing compound (B) is obtained by treating a polymer obtained by reversible addition-desorption chain transfer polymerization using a thiocarbonylthio compound as a chain transfer agent with a treatment agent. The stabilizer composition for synthetic resins in any one of 1-4 (Claim 5).
[0011] 処理剤がァレニウス塩基、還元剤、 1級ァミン化合物、 2級アミンィヒ合物からなる群 より選ばれる 1種以上の化合物である、請求項 5に記載の合成樹脂用安定化剤組成 物(請求項 6)。  The stabilizer composition for a synthetic resin according to claim 5, wherein the treating agent is at least one compound selected from the group consisting of an Arenius base, a reducing agent, a primary amin compound, and a secondary amine compound. (Claim 6).
[0012] メルカプト基含有化合物(B) 1 (メタ)アクリル酸エステル、スチレン、(メタ)アタリ口 二トリル、 N—イソプロピル(メタ)アクリルアミド、 N, N—ジメチル(メタ)アクリルアミド、 N—ビュルピロリドン、塩ィ匕ビュルからなる群より選ばれる 1種以上の単量体を重合さ せて得られる重合体由来の化合物である、請求項 1〜6のいずれかに記載の合成樹 脂用安定化剤組成物 (請求項 7)。  [0012] Mercapto group-containing compound (B) 1 (meth) acrylic acid ester, styrene, (meth) atari mouth nitrile, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-butylpyrrolidone The stabilization for synthetic resin according to any one of claims 1 to 6, which is a compound derived from a polymer obtained by polymerizing one or more monomers selected from the group consisting of salt and cellulose. Agent composition (Claim 7).
[0013] 請求項:!〜 7のいずれかに記載の合成樹脂用安定化剤組成物と合成樹脂(C)とか らなる耐熱性樹脂組成物 (請求項 8)。  [0013] Claim: A heat-resistant resin composition comprising the stabilizer composition for synthetic resins according to any one of! To 7 and a synthetic resin (C) (claim 8).
[0014] 合成樹脂(C)がメルカプト基を含まなレ、数平均分子量 50000以上の合成樹脂であ ることを特徴とする請求項 8に記載の耐熱性樹脂組成物 (請求項 9)。  The heat-resistant resin composition according to claim 8, wherein the synthetic resin (C) is a resin not containing a mercapto group and having a number average molecular weight of 50,000 or more (claim 9).
[0015] 空気雰囲気における熱分解温度が合成樹脂(C)単独の場合と比較して、 20°C以 上高いことを特徴とする、請求項 8または 9のいずれかに記載の耐熱性樹脂組成物( 請求項 10)。  [0015] The heat-resistant resin composition according to any one of claims 8 and 9, wherein a thermal decomposition temperature in an air atmosphere is 20 ° C or higher as compared with a case where the synthetic resin (C) alone is used. (Claim 10).
[0016] 空気雰囲気における熱分解温度が合成樹脂(C)単独の場合と比較して、 40°C以 上高いことを特徴とする、請求項 8または 9のいずれかに記載の耐熱性樹脂組成物( 請求項 11)。  [0016] The heat-resistant resin composition according to any one of claims 8 and 9, wherein the thermal decomposition temperature in an air atmosphere is 40 ° C or higher as compared with the case of the synthetic resin (C) alone. Goods (claim 11).
[0017] 合成樹脂(C) 、アクリル樹脂、ポリスチレン、エチレン酢酸ビュル共重合体、 AS 樹脂、 ABS樹脂、 AAS樹脂、 ACS樹脂、ポリ酢酸ビュル、ポリ塩化ビュル、エポキシ 樹脂、フエノール樹脂、ポリアミド、ポリカーボネート、ポリエチレンテレフタレート、ポリ ブチレンテレフタレート、ポリアリレート、ポリイミド、ポリグノレタノレイミド、ポリビニノレアセ ターノレ、ポリスノレホン、ポリエーテノレスノレホン、ポリフエ二レンスノレフイド、ポリエーテノレ エーテルケトン、ポリエチレン、ポリプロピレン、熱可塑性エラストマ一からなる群より選 ばれる 1種以上のものであることを特徴とする、請求項 8〜: 11のいずれかに記載の耐 熱性樹脂組成物 (請求項 12)。 [0017] Synthetic resin (C), acrylic resin, polystyrene, ethylene acetate butyl copolymer, AS resin, ABS resin, AAS resin, ACS resin, polyacetic acid butyl, polychlorinated butyl, epoxy resin, phenol resin, polyamide, polycarbonate , Polyethylene terephthalate, poly One or more selected from the group consisting of butylene terephthalate, polyarylate, polyimide, polygnorethanimide, polyvinylenorecetanol, polysenorephone, polyetherenorenorephone, polyphenylene noride, polyetherenoetherketone, polyethylene, polypropylene, and thermoplastic elastomer. The heat resistant resin composition according to any one of claims 8 to 11, wherein the heat resistant resin composition (claim 12) is characterized by the above.
[0018] 合成樹脂(C) 100重量部に対して、酸化亜鉛 (A)が 0. 1〜: 10重量部、メルカプト 基含有化合物(B)が 0.:!〜 100重量部の範囲で含有されることを特徴とする、請求 項 8〜: 12のいずれかに記載の耐熱性樹脂組成物(請求項 13)。  [0018] Zinc oxide (A) is contained in the range of 0.1 to 10 parts by weight and the mercapto group-containing compound (B) in the range of 0.1 to 100 parts by weight with respect to 100 parts by weight of the synthetic resin (C). The heat-resistant resin composition according to any one of claims 8 to 12 (claim 13).
[0019] まず酸化亜鉛 (A)とメルカプト基含有化合物 (B)を混合し、っレ、で合成樹脂(C)と 混合することにより得られることを特徴とする、請求項 8〜: 13のいずれかに記載の耐 熱性樹脂組成物 (請求項 14)。  The zinc oxide (A) and the mercapto group-containing compound (B) are first mixed and then mixed with the synthetic resin (C), and then obtained according to claims 8 to 13: The heat resistant resin composition according to any one of claims (Claim 14).
[0020] 請求項 8〜: 14のいずれかに記載の耐熱性樹脂組成物を成形して得られる透明フィ ルム(請求項 15)。  [0020] A transparent film obtained by molding the heat-resistant resin composition according to any one of claims 8 to 14 (claim 15).
[0021] 厚さ 50〜500 x mで、かつヘイズ 3%以下の請求項 15に記載の透明フィルム(請 求項 16)。  [0021] The transparent film according to claim 15, having a thickness of 50 to 500 x m and a haze of 3% or less (claim 16).
[0022] 厚さ 50〜500 x mで、かつヘイズ 1%以下の請求項 15に記載の透明フィルム(請 求項 17)である。  [0022] The transparent film according to claim 15 (claim 17) having a thickness of 50 to 500 x m and a haze of 1% or less.
発明の効果  The invention's effect
[0023] 本発明の合成樹脂用安定化剤組成物は、長期にわたって広範な合成樹脂を安定 化する効果があり、耐熱性 *耐候性 ·光安定性を向上させる効果がある。また合成樹 脂中に均一分散できるために透明性が高い。合成樹脂との組成物はこれら効果を有 するので、ガラス代替樹脂材料、レンズ、合わせガラス用中間膜、フィルム、シート、コ 一ティング剤、塗料などの用途に利用可能である。  [0023] The stabilizer composition for a synthetic resin of the present invention has an effect of stabilizing a wide range of synthetic resins over a long period of time, and has an effect of improving heat resistance, weather resistance and light stability. In addition, it is highly transparent because it can be uniformly dispersed in synthetic resin. Since the composition with a synthetic resin has these effects, it can be used for applications such as glass substitute resin materials, lenses, interlayer films for laminated glass, films, sheets, coating agents, and paints.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 本発明の合成樹脂用安定剤組成物は、数平均粒子径 0. 5〜20nmの酸化亜鉛( A)と数平均分子量 1000〜 50000のメルカプト基含有化合物(B)からなる組成物で ある。さらに合成樹脂(C)に配合した樹脂組成物、該樹脂組成物を成形してなるフィ ルムである。なお、該メルカプト化合物で酸化亜鉛が修飾された構造であることが好 ましい。 [0024] The stabilizer composition for a synthetic resin of the present invention is a composition comprising zinc oxide (A) having a number average particle size of 0.5 to 20 nm and a mercapto group-containing compound (B) having a number average molecular weight of 1,000 to 50,000. is there. Furthermore, a resin composition blended with the synthetic resin (C) and a film formed by molding the resin composition. A structure in which zinc oxide is modified with the mercapto compound is preferable. Good.
[0025] 本発明で使用する数平均粒子径 0. 5〜20nmの酸化亜鉛 (A)は、特に限定され ず、従来技術を利用した方法により調製可能である。例えば熱 CVD法、プラズマ CV D法、火炎法、静電噴霧 CVD法などの気相法、ゾノレ一ゲル法に代表される液相法 などが挙げられる。これらのうち、粒子径の制御が容易で粒径分布の狭い粒子が得 られる点で、ゾル—ゲル法が好ましレ、。なかでもコストおよび反応性の点で、アルコー ル溶媒中で亜鉛化合物とァレニウス塩基との反応が好ましい。  [0025] The zinc oxide (A) having a number average particle size of 0.5 to 20 nm used in the present invention is not particularly limited, and can be prepared by a method using a conventional technique. For example, a thermal CVD method, a plasma CV D method, a flame method, a vapor phase method such as an electrostatic spray CVD method, a liquid phase method represented by a Zonorel gel method, and the like can be given. Of these, the sol-gel method is preferred because the particle size can be easily controlled and particles with a narrow particle size distribution can be obtained. Of these, the reaction between a zinc compound and an Arenius base in an alcohol solvent is preferred from the viewpoint of cost and reactivity.
さらに入手性および反応性の点で亜鉛化合物としては酢酸亜鉛などのカルボン酸亜 鉛がより好ましぐァレニウス塩基としては KOHや NaOHなどのアルカリ金属水酸化 物がより好ましい。アルコール中カルボン酸亜鉛とアルカリ金属水酸化物から酸化亜 鉛を調製する際、反応条件は特に限定されないが、酸化亜鉛の粒子径を制御しや すい点でカルボン酸亜鉛の濃度は 0. 001〜0. lmol/Lが好ましぐ 0. 01〜0. 05 mol/Lがより好ましい。  Furthermore, zinc oxide and other carboxylates are more preferred as zinc compounds in terms of availability and reactivity, and alkali metal hydroxides such as KOH and NaOH are more preferred as Arenius bases. When preparing zinc oxide from zinc carboxylate and alkali metal hydroxide in alcohol, the reaction conditions are not particularly limited, but the concentration of zinc carboxylate is 0.001- 0.1 mol / L is preferred 0.01 to 0.05 mol / L is more preferred.
[0026] 同様にアルカリ金属水酸化物の濃度は 0. 002〜0. 2mol/Lが好ましぐ 0. 02〜 0. lmol/Lがより好ましく;カルボン酸亜鉛に対するアルカリ金属水酸化物の量は モル数で 1. 5〜3倍が好ましぐ 1. 8〜2. 5倍がより好ましレ、。反応温度は 0〜: 100 °Cが好ましぐ 10〜80°Cがより好ましい。反応時間は 1分〜 10時間が好ましぐ 5分 〜5時間がより好ましい。上記範囲を外れた反応条件では、酸化亜鉛の粒子径の制 御が困難であったり、収率が低かったり、凝集しやすくなつたりする。  [0026] Similarly, the concentration of alkali metal hydroxide is preferably 0.002 to 0.2 mol / L, more preferably 0.02 to 0.1 mol / L; the amount of alkali metal hydroxide relative to zinc carboxylate The number of moles is preferably 1.5 to 3 times 1. 8 to 2.5 times more preferred. The reaction temperature is preferably 0 to: 100 ° C, more preferably 10 to 80 ° C. The reaction time is preferably 1 minute to 10 hours, more preferably 5 minutes to 5 hours. Under reaction conditions outside the above range, it is difficult to control the particle diameter of zinc oxide, the yield is low, or aggregation tends to occur.
[0027] カルボン酸亜鉛とアルカリ金属水酸化物はアルコール溶媒中にそれぞれ同時に添 カロしてもよぐ別々に添加してもよい。溶液として混合してもよぐ固体のまま添加して もよレ、。酸化亜鉛の粒子径を制御しやすい点で、アルカリ金属水酸化物のアルコー ル溶液中にカルボン酸亜鉛を固体あるいは溶液としてカ卩える方法が好ましレ、。溶媒 としてのアルコールは特に限定されなレ、が、コスト、入手性、精製の容易さの点で沸 点 100°C以下の脂肪族アルコールが好まし メタノーノレ、エタノール、 n—プロパノ ール、イソプロパノールがより好ましい。  [0027] Zinc carboxylate and alkali metal hydroxide may be added to the alcohol solvent simultaneously or separately. It can be mixed as a solution or added as a solid. In view of easy control of the particle size of zinc oxide, a method in which zinc carboxylate is solid or in solution in an alkali metal hydroxide alcohol solution is preferred. Alcohol as a solvent is not particularly limited, but aliphatic alcohol having a boiling point of 100 ° C or less is preferred in view of cost, availability, and ease of purification. Methanolol, ethanol, n-propanol, and isopropanol are preferred. More preferred.
[0028] 本発明において酸化亜鉛による安定化効果発現は、酸化亜鉛の粒子径が小さい ほど顕著である。ただし粒子径が小さくなりすぎると粒子同士の凝集を抑制しにくくな る。したがってその数平均粒子径は 10nm以下であることが好ましぐ 6nm以下であ ることがより好ましレ、。また、 0. 5nm以上、さらには lnm以上であることが好ましレ、。さ らには、 0. 5〜10nmの範囲が好ましぐ:!〜 10nmの範囲がより好まし :!〜 6nm が特に好ましい。 [0028] In the present invention, the stabilization effect by zinc oxide is more pronounced as the particle size of zinc oxide is smaller. However, if the particle size becomes too small, it is difficult to suppress aggregation of particles. The Therefore, the number average particle size is preferably 10 nm or less, more preferably 6 nm or less. In addition, it is preferably 0.5 nm or more, and more preferably lnm or more. Furthermore, a range of 0.5 to 10 nm is preferable: a range of! To 10 nm is more preferable:! To 6 nm is particularly preferable.
[0029] 本発明で使用する数平均分子量 1000〜50000のメルカプト基含有化合物(B)と しては特に限定されず、例えば末端に SH基を有するポリエーテルやポリスチレン、 ポリメタクリル酸メチルを挙げることができる。このようなポリマーの例としては例えば W . P. Wuelfingら、 J. Am. Chem. Soc.、 1998、 120、 12696や M. K. Corbierr eら、 J. Am. Chem. Soc.、 2001、 123、 10411などに記載されてレヽる。  [0029] The mercapto group-containing compound (B) having a number average molecular weight of 1000 to 50,000 used in the present invention is not particularly limited, and examples thereof include polyethers having a terminal SH group, polystyrene, and polymethyl methacrylate. Can do. Examples of such polymers include W. P. Wuelfing et al., J. Am. Chem. Soc., 1998, 120, 12696 and MK Corbierr e et al., J. Am. Chem. Soc., 2001, 123, 10411. It is described in the etc.
[0030] 本発明で使用する数平均分子量が 1000〜50000のメルカプト基含有化合物(B) 成分は、酸化亜鉛を修飾して合成樹脂 (C)成分中に効率よく分散できる点で数平均 分子量力 2000〜50000の範囲にあること力 S好ましく、 3000〜40000の範囲にある ことがより好ましい。重量平均分子量 (Mw)と数平均分子量 (Mn)の比で表される分 子量分布(Mw/Mn)は、樹脂組成物における均一性の点で 1. 5以下であることが 好ましぐ 1. 3以下であることがより好ましい。なお本発明において、 Mwおよび Mn はゲル.パーミエーシヨン.クロマトグラフィー(GPC)により決定される値を採用するこ とができる。また合成樹脂との相溶性を幅広く調節できる点および耐熱性や耐候性 に優れる点で、ビュル系単量体をラジカル重合させて得られるポリマーであることが 好ましい。  [0030] The mercapto group-containing compound (B) component having a number average molecular weight of 1000 to 50,000 used in the present invention is a number average molecular weight force in that it can be efficiently dispersed in the synthetic resin (C) component by modifying zinc oxide. The force S is preferably in the range of 2000 to 50000, and more preferably in the range of 3000 to 40000. The molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 1.5 or less in terms of uniformity in the resin composition. 1. More preferably, it is 3 or less. In the present invention, Mw and Mn can adopt values determined by gel permeation chromatography (GPC). In addition, a polymer obtained by radical polymerization of a bur monomer is preferable from the viewpoint that compatibility with a synthetic resin can be widely adjusted and heat resistance and weather resistance are excellent.
[0031] このような数平均分子量 1000〜50000のビュル系ポリマーの末端に SH基を導入 する方法としては、従来メルカプト酢酸などのチオール系連鎖移動剤を用いてラジカ ル重合した後、末端を加水分解する方法が知られている。し力 本発明においては、 SH基を効率よく導入できる点、分子量を制御できる点、分子量分布を狭く抑えられ る点で、チォカルボ二ルチオ化合物を連鎖移動剤とする可逆的付加脱離連鎖移動( RAFT)重合により得られる重合体を処理剤で処理する方法が好ましい。 RAFT重 合により得られるポリマーは分子末端あるいは分子鎖中にジチォエステル構造ある いはトリチォカーボネート構造を有する。このジチォエステルあるいはトリチォカーボ ネート部分を後述する処理剤を用いて処理することにより、 SH基に変換することがで きる。 [0031] As a method for introducing an SH group into the terminal of a bulle polymer having a number average molecular weight of 1000 to 50,000, conventionally, after radical polymerization using a thiol chain transfer agent such as mercaptoacetic acid, the terminal is hydrolyzed. A method of decomposing is known. In the present invention, a reversible addition / desorption chain transfer using a thiocarbothio compound as a chain transfer agent in that the SH group can be efficiently introduced, the molecular weight can be controlled, and the molecular weight distribution can be kept narrow ( RAFT) A method of treating a polymer obtained by polymerization with a treating agent is preferred. The polymer obtained by RAFT polymerization has a dithioester structure or a trithiocarbonate structure at the molecular end or in the molecular chain. This dithioester or trithiocarbonate moiety can be converted to an SH group by treating with a treating agent described later. wear.
[0032] 上記 RAFT重合において連鎖移動剤として使用するチォカルボ二ルチオ化合物と しては特に限定されず、例えば特表 2000— 515181号公報に記載されている化合 物を使用可能であるが、入手性および反応性の点で以下の化合物が好ましい。  [0032] The thiothio compound used as a chain transfer agent in the above RAFT polymerization is not particularly limited, and for example, compounds described in JP-T-2000-515181 can be used. The following compounds are preferable in terms of reactivity.
[0033] [化 1] [0033] [Chemical 1]
これらのうち、入手性および反応性の点でジチォ安息香酸エステル型化合物および トリチォカーボネート型化合物がより好ましレ、。 Of these, dithiobenzoic acid ester type compounds and trithiocarbonate type compounds are more preferred in terms of availability and reactivity.
[0035] 上記 RAFT重合の反応条件としては特に限定されず、上記特表 2000— 515181 号公報などに記載されているような従来技術を適用可能である。重合温度は反応性 の点で 60°C以上が好ましぐ 80°C以上がさらに好ましい。重合形式は塊状重合、溶 液重合、乳化重合、懸濁重合など限定されないが、重合後に処理剤で処理して SH 基に変換する反応が容易である点で、塊状重合および溶液重合が好ましい。 RAFT 重合はバッチ式、連続式、いずれの反応器を用いても可能であるが、重合熱の除去 が容易で生産性が高い点で連続式反応器を使用することが好ましい。  [0035] The reaction conditions for the RAFT polymerization are not particularly limited, and conventional techniques such as those described in JP-T-2000-515181 can be applied. The polymerization temperature is preferably 60 ° C or higher, more preferably 80 ° C or higher in terms of reactivity. The polymerization mode is not limited to bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization and the like, but bulk polymerization and solution polymerization are preferable in that the reaction after treatment with a treating agent and conversion to SH groups is easy. RAFT polymerization can be carried out using either a batch type or continuous type reactor, but it is preferable to use a continuous type reactor in terms of easy removal of polymerization heat and high productivity.
重合において開始剤やその使用量 ·開始方法には特に限定はないが、ァゾ化合物 やパーオキサイドィ匕合物のように自身が分解してラジカルを発生する開始剤を使用 する場合には、反応制御が良好となる点で開始剤の使用量を上記チォカルボニル チォ化合物に対して 0. 4当量以下とすることが好ましぐ 0. 3当量以下とすることがよ り好ましレ、。また反応性の点で開始剤の使用量はチォカルボ二ルチオ化合物に対し て 0. 05当量以上が好ましぐ 0. 08当量以上がより好ましい。  There are no particular limitations on the initiator and the amount used in the polymerization and the initiation method in the polymerization, but when using an initiator that decomposes itself and generates a radical, such as an azo compound or a peroxide compound, The initiator is preferably used in an amount of 0.4 equivalent or less with respect to the thiocarbonylthio compound in terms of good reaction control, more preferably 0.3 equivalent or less. In terms of reactivity, the initiator is preferably used in an amount of 0.05 equivalents or more, more preferably 0.08 equivalents or more, based on the thiothio compound.
[0036] 上記 RAFT重合に用いる単量体としては特に限定されず、ラジカル重合可能なビ 二ル系単量体を使用可能である。このようなビュル系単量体としては例えば、(メタ) アクリル酸メチル、 (メタ)アクリル酸ェチル、(メタ)アクリル酸 n—ブチル、(メタ)アタリ ル酸 t—ブチル、(メタ)アクリル酸 2—ェチルへキシル、(メタ)アクリル酸 2—ヒドロキシ ェチル、 (メタ)アクリル酸 2—メトキシェチル、(メタ)アクリル酸グリシジルなどの(メタ) アクリル酸エステル;(メタ)アクリル酸;(メタ)アクリルアミド、 N—イソプロピル(メタ)ァ クリノレアミド、 N, N—ジメチル (メタ)アクリルアミドなどの(メタ)アクリルアミド系単量体 ;スチレン、 ひ一メチルスチレン、 1—ビュルナフタレン、 4—ビュルピリジン、 1 , 4—ジ ビュルベンゼンなどのビュル芳香族系単量体;塩化ビュル、クロ口プレン、塩化ビニリ デンなどの含ハロゲン単量体;酢酸ビュル、プロパン酸ビュルなどのビュルエステル 系単量体; N—ビュルピロリドンなどを挙げることができる。  [0036] The monomer used in the RAFT polymerization is not particularly limited, and a vinyl monomer capable of radical polymerization can be used. Examples of such bulle monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, and (meth) acrylic acid. (Meth) acrylic acid esters such as 2-ethylhexyl, (meth) acrylic acid 2-hydroxyethyl, (meth) acrylic acid 2-methoxyethyl, (meth) acrylic acid glycidyl; (meth) acrylic acid; (meth) acrylamide , N-isopropyl (meth) acrylo amide, (meth) acrylamide monomers such as N, N-dimethyl (meth) acrylamide; styrene, monomethylstyrene, 1-burnaphthalene, 4-bulupyridine, 1, 4 —Bul aromatic monomers such as dibutylbenzene; Halogen-containing such as butyl chloride, black mouth plain, vinylidene chloride Emissions monomer; acetate Bulle, Bulle ester monomers such as Bulle propanoic acid; and N- Bulle pyrrolidone can be cited.
[0037] これらは単独で用いてもよぐ複数を組み合わせて重合してもよい。複数の単量体 を使用する場合には、ランダム共重合体、ブロック共重合体、傾斜共重合体などを作 り分けることができる。上記単量体のうち入手性および酸化亜鉛との親和性の点で (メ タ)アクリル酸エステル、スチレン、 (メタ)アクリロニトリル、 N—イソプロピル(メタ)アタリ ノレアミド、 N, N—ジメチル(メタ)アクリルアミド、 N—ビュルピロリドン、塩化ビュルが 好ましい。 [0037] These may be used alone or in combination. When using multiple monomers, make random copolymers, block copolymers, gradient copolymers, etc. Can be separated. Among the above monomers, (meth) acrylic acid ester, styrene, (meth) acrylonitrile, N-isopropyl (meth) atanolenamide, N, N-dimethyl (meth) in terms of availability and affinity with zinc oxide Acrylamide, N-butyrrolidone, and butyl chloride are preferred.
[0038] RAFT重合で得られたポリマーを SH基含有ポリマーに変換する際に使用する処 理剤としては特に限定されず加水分解作用のある化合物を使用可能であるが、 SH 基に変換する効率が高い点でァレニウス塩基、還元剤、 1級アミンィ匕合物、 2級ァミン 化合物からなる群より選ばれる 1種以上の化合物が好ましい。  [0038] The treating agent used when converting the polymer obtained by RAFT polymerization into an SH group-containing polymer is not particularly limited, and a compound having a hydrolytic action can be used. One or more compounds selected from the group consisting of an Arenius base, a reducing agent, a primary amine compound, and a secondary amine compound are preferable.
[0039] 上記処理剤のうちァレニウス塩基としては特に限定されないが、例えば水酸化ナトリ ゥム、水酸化カリウムなどのアルカリ金属水酸化物;水酸化カルシウム、水酸化マグネ シゥムなどのアルカリ土類金属水酸化物;水酸化アルミニウムなどを挙げることができ る。  [0039] Among the above treatment agents, the Arrhenius base is not particularly limited, but examples thereof include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal waters such as calcium hydroxide and magnesium hydroxide. Examples of the oxide include aluminum hydroxide.
[0040] 還元剤としては特に限定されなレ、が、例えば水素化ナトリウム、水素化リチウム、水 素化カルシウム、 LiAlH、 NaBH、 LiBEt H、アンモニア、ヒドラジン、水素などを  [0040] The reducing agent is not particularly limited, but examples thereof include sodium hydride, lithium hydride, calcium hydride, LiAlH, NaBH, LiBEt H, ammonia, hydrazine, hydrogen, and the like.
4 4 3  4 4 3
挙げることができる。 1級ァミン化合物としては特に限定されないが、例えばメチルアミ ン、ェチルァミン、イソプロピルァミン、 n—ブチルァミン、 tーブチルァミン、 2—ェチル へキシルァミン、 2—アミノエタノール、エチレンジァミン、ジエチレントリァミン、シクロ へキシルァミン、ァニリン、ポリビュルァミン、ポリアリルァミンなどを挙げることができる 。 2級アミンィ匕合物としては特に限定されないが、例えばジメチルァミン、ジェチルアミ ン、ジイソブチルァミン、ジ一 2—ェチルへキシルァミン、イミノジ酢酸、ビス(ヒドロキシ ェチル)ァミン、ジ一 n—ブチルァミン、ジフエニルァミン、 N—メチルァニリン、イミダゾ ール、ピぺリジンなどを挙げることができる。  Can be mentioned. The primary amine compound is not particularly limited. , Polybuluamine, polyallylamine and the like. The secondary amine compound is not particularly limited. —Methylaniline, imidazole, piperidine and the like can be mentioned.
[0041] これら処理剤は単独で用いてもよぐ組み合わせて用いてもよい。反応性および取 り扱いやすさの点で還元剤および沸点 20〜200°Cの 1級ァミン化合物が好ましい。 処理剤の使用量は特に限定されないが、反応性と経済性の点で上記 RAFT重合に より得られたポジマー 100重量咅 Bに対して 0. 01〜: 100重量咅 B力 S好まし <、 0. 1~50 重量部がより好ましい。処理剤で処理するときの反応条件は特に限定されないが、反 応性の点で温度は 0〜200°Cが好ましぐ 20〜: 100°C力 Sより好ましい。反応性の点で ポリマーを溶解できる溶媒を用いることが好ましい。上記 RAFT重合を塊状重合ある いは溶液重合で実施した場合には、直接その反応液に処理剤を添加して処理でき るため効率的である。 [0041] These treatment agents may be used alone or in combination. From the viewpoint of reactivity and ease of handling, a reducing agent and a primary amine compound having a boiling point of 20 to 200 ° C are preferred. The amount of the treatment agent used is not particularly limited, but from the viewpoint of reactivity and economy, the above-mentioned RAFT polymerization yields 100 to 100 wt. 0.1 to 50 parts by weight is more preferable. The reaction conditions for treatment with the treating agent are not particularly limited, but the temperature is preferably 0 to 200 ° C. from the viewpoint of reactivity. 20 to 100 ° C. Force S is more preferable. In terms of reactivity It is preferable to use a solvent capable of dissolving the polymer. When the above RAFT polymerization is carried out by bulk polymerization or solution polymerization, it is efficient because a treatment agent can be added directly to the reaction solution.
[0042] 数平均粒子径 0. 5〜20nmの酸ィ匕亜鉛 (A)と数平均分子量 1000〜50000のメノレ カプト基含有化合物(B)は単に混合することでも安定剤化組成物して用いることが可 能であるが、該酸化亜鉛 (A)を該メルカプト基含有化合物(B)で修飾して用いること が好ましい。  [0042] Acid-zinc (A) having a number average particle size of 0.5 to 20 nm and a menolecapto group-containing compound (B) having a number average molecular weight of 1000 to 50000 can be used as a stabilizing composition by simply mixing them. However, it is preferable to modify the zinc oxide (A) with the mercapto group-containing compound (B).
[0043] 酸化亜鉛 (A)をメルカプト基含有化合物(B)で修飾する方法としては特に限定され ず、例えば以下の(1)または(2)の方法をとることができる:  [0043] The method of modifying zinc oxide (A) with the mercapto group-containing compound (B) is not particularly limited, and for example, the following method (1) or (2) can be employed:
( 1 )溶液として混合する方法;  (1) Method of mixing as a solution;
(2)溶融混練する方法。  (2) A method of melt kneading.
[0044] 上記(1)溶液として混合する方法としては特に限定されず、酸化亜鉛およびメルカ ブト基含有化合物をそれぞれ溶液として溶液同士を混合してもよぐ一方の溶液に他 方の単体を添カ卩してもよぐ両方をあら力じめ単体同士で混ぜておいてから溶液とし てもよい。使用する溶媒としては特に限定されず、単独溶媒でも混合溶媒でもよい。 混合する際の温度は特に限定されなレ、が、修飾効率が高くなる点で 0〜100°Cが好 ましい。また混合の際に超音波を照射したりマイクロ波を照射したりすると効果的であ る。  [0044] The method of mixing as the above (1) solution is not particularly limited, and the other simple substance may be added to one solution in which zinc oxide and a mercapto group-containing compound are mixed as solutions. It is also possible to prepare both solutions by mixing them together. It does not specifically limit as a solvent to be used, A single solvent or a mixed solvent may be sufficient. The temperature at the time of mixing is not particularly limited, but is preferably 0 to 100 ° C. in terms of high modification efficiency. In addition, it is effective to irradiate ultrasonic waves or microwaves during mixing.
[0045] 上記(2)溶融混練する方法としては特に限定されず、各種押出機、ニーダー、ミノレ 、プラストミル、バンバリ一ミキサー、ロールなどを使用可能である。酸化亜鉛とメルカ ブト基含有化合物をあら力じめブレンドしておいて溶融混練してもよぐ一方を溶融さ せたところに他方をフィードしてもよい。溶融混連の温度は特に限定されず、使用す るメルカプト基含有化合物の融点に応じて選択すればよい。  [0045] The method of (2) melt kneading is not particularly limited, and various extruders, kneaders, minoles, plast mills, Banbury mixers, rolls, and the like can be used. Zinc oxide and a mercapto group-containing compound may be pre-blended and melt-kneaded, or the other may be fed to the melted one. The temperature of melt mixing is not particularly limited, and may be selected according to the melting point of the mercapto group-containing compound to be used.
[0046] これら酸化亜鉛をメルカプト基含有化合物で修飾する方法のうち、酸化亜鉛の凝集 を抑制できる点で溶液として混合する方法が好まし 酸化亜鉛を合成時の溶液とし てあるいは合成時の溶液を濃縮した形で利用する方法が好ましレ、。溶液として混合 することにより修飾した場合、得られる表面修飾酸化亜鉛は貧溶媒と混合して析出さ せることにより単離したり、溶媒を留去することにより単離したり、あるいは貧溶媒と混 合後に良溶媒を留去することにより単離したりできる。本発明の酸化亜鉛はメルカプト 基含有化合物で修飾されているため安定性が高ぐ凝集することなく固体として単離 可能である。 [0046] Among these methods of modifying zinc oxide with a mercapto group-containing compound, the method of mixing as a solution is preferred because it can suppress the aggregation of zinc oxide. Zinc oxide can be used as a solution during synthesis or as a solution during synthesis. The preferred method is to use it in a concentrated form. When modified by mixing as a solution, the resulting surface-modified zinc oxide is isolated by mixing with a poor solvent and precipitating, or by distilling off the solvent, or mixed with the poor solvent. It can be isolated by distilling off the good solvent after the synthesis. Since the zinc oxide of the present invention is modified with a mercapto group-containing compound, it is highly stable and can be isolated as a solid without aggregation.
[0047] 本発明の表面修飾酸化亜鉛を合成樹脂用安定化剤として合成樹脂 (C)に混合す る際、その方法は限定されない。例えば溶剤を用いて混合する溶剤法や押出機など を用いて溶融混練りする溶融法などを挙げることができる。  [0047] When the surface-modified zinc oxide of the present invention is mixed with the synthetic resin (C) as a synthetic resin stabilizer, the method is not limited. For example, a solvent method in which mixing is performed using a solvent and a melting method in which melt-kneading is performed using an extruder can be exemplified.
[0048] これら修飾する手段を用いることにより、メルカプト基と酸化亜鉛との相互作用により 数平均分子量 1000〜50000のメルカプト基含有化合物が酸化亜鉛と良好に結合 し、酸化亜鉛表面に合成樹脂に親和性のある部分が生成でき酸化亜鉛が合成樹脂 に良好に分散できることになるので好ましい。  [0048] By using these modification means, a mercapto group-containing compound having a number average molecular weight of 1000 to 50,000 binds well to zinc oxide due to the interaction between the mercapto group and zinc oxide, and has an affinity for the synthetic resin on the surface of zinc oxide. This is preferable because a part having a property can be formed and zinc oxide can be dispersed well in the synthetic resin.
[0049] 本発明において上記合成樹脂用安定化剤組成物を合成樹脂 (C)と混合して耐熱 性樹脂組成物とする場合、その使用量は特に限定されないが、費用対効果の点で 合成樹脂 (C) 100重量部に対して本発明の合成樹脂用安定化剤組成物が 0.:!〜 1 00重量部の範囲が好ましぐ 0. 2〜70重量部がより好ましぐ 0. 5〜50重量部が特 には好ましレ、。合成樹脂用安定化剤組成物と合成樹脂とを混合して得られる樹脂組 成物において、耐熱性向上効果と経済性の点で、合成樹脂(C) 100重量部に対し て酸化亜鉛 (A) 0.:!〜 10重量部、メルカプト基含有化合物(B) 0. 1〜: 100重量部 の範囲で含有されるものが好ましぐさらには(C) 100重量部に対し (A) 0. 3〜5重 量部、(B):!〜 30重量部含有されるものが好ましい。  [0049] In the present invention, when the above-mentioned stabilizer composition for a synthetic resin is mixed with the synthetic resin (C) to form a heat-resistant resin composition, the amount used is not particularly limited, but it is synthesized in terms of cost effectiveness. Resin (C) The synthetic resin stabilizer composition of the present invention is preferably in the range of 0.:! To 100 parts by weight with respect to 100 parts by weight of the resin. 0 to 2 to 70 parts by weight is more preferred. 5 to 50 parts by weight is especially preferred. In a resin composition obtained by mixing a stabilizer composition for synthetic resin and synthetic resin, zinc oxide (A) is added to 100 parts by weight of synthetic resin (C) in terms of heat resistance improvement effect and economy. ) 0.:! To 10 parts by weight, mercapto group-containing compound (B) 0.1 to 100 parts by weight is preferred, and (C) 100 parts by weight (A) 0 3 to 5 parts by weight, (B):! To 30 parts by weight are preferred.
[0050] この様な合成樹脂(C)は本発明の耐熱性樹脂組成物にぉレ、て、酸化亜鉛粒子 (A )とメルカプト基含有化合物(B)を分散させて保持するマトリックスの役割を担うもので ある。強度や耐久性の点でメルカプト基を含まない数平均分子量 50000以上の高分 子化合物が好ましぐ耐熱性、耐候性、入手性の点で、アクリル樹脂、ポリスチレン、 エチレン酢酸ビニル共重合体、 AS樹脂、 ABS樹脂、 AAS樹脂、 ACS樹脂、ポリ酢 酸ビュル、ポリ塩化ビュル、エポキシ樹脂、フエノール樹脂、ポリアミド、ポリカーボネ ート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアリレート、ポリイミ ド、ポリグルタルイミド、ポリビュルァセタール、ポリスルホン、ポリエーテルスルホン、 ポリフエ二レンスルフイド、ポリエーテルエーテルケトン、ポリエチレン、ポリプロピレン、 熱可塑性エラストマ一からなる群より選ばれる 1種以上の高分子化合物が好ましい。 [0050] Such a synthetic resin (C) serves as a matrix for dispersing and holding the zinc oxide particles (A) and the mercapto group-containing compound (B) in the heat resistant resin composition of the present invention. It is a responsibility. In terms of heat resistance, weather resistance, and availability, high molecular weight compounds with a number average molecular weight of 50,000 or more that do not contain a mercapto group are preferred in terms of strength and durability. AS resin, ABS resin, AAS resin, ACS resin, polyacetic acid butyl, polychlorinated butyl, epoxy resin, phenolic resin, polyamide, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyarylate, polyimide, polyglutarimide, Polybulacetal, Polysulfone, Polyethersulfone, Polyphenylene sulfide, Polyetheretherketone, Polyethylene, Polypropylene, One or more polymer compounds selected from the group consisting of thermoplastic elastomers are preferred.
[0051] アクリル樹脂、ポリスチレン、エポキシ樹脂、ポリアミド、ポリカーボネート、ポリエチレ ンテレフタレート、熱可塑性エラストマ一がより好ましい。これらは単独で使用してもよ ぐ複数を組み合わせて使用してもよい。このマトリックス樹脂がマトリックスとして効率 よく機能する点で、上記成分 (B)メルカプト基含有化合物と相溶可能または均一混 合可能なものが好ましい。  [0051] Acrylic resin, polystyrene, epoxy resin, polyamide, polycarbonate, polyethylene terephthalate, and thermoplastic elastomer are more preferable. These may be used alone or in combination. In view of the efficient functioning of this matrix resin as a matrix, those capable of being compatible or homogeneously mixed with the component (B) mercapto group-containing compound are preferred.
[0052] 本発明の耐熱性樹脂組成物を製造する際、各成分の混合順序については特に限 定されず、 2種類をまず混合した後に残りの 1成分を添加してもよぐ 3成分を一度に 混合させてもよい。ただし本発明の耐熱性樹脂組成物のコンセプトは、成分 (B)のメ ルカプト基を成分 (A)に結合させることにより高分子化合物で修飾された酸化亜鉛粒 子を得、成分(C)中に分散相溶させるというものである。したがってメルカプト基と酸 化亜鉛粒子の結合形成を効率化できる点で、まず成分 (A)と (B)とを混合し、次いで 成分(C)と混合する方法が好ましレ、。  [0052] When the heat-resistant resin composition of the present invention is produced, the mixing order of each component is not particularly limited, and after mixing the two types first, the remaining one component may be added. You may mix at once. However, the concept of the heat-resistant resin composition of the present invention is to obtain zinc oxide particles modified with a polymer compound by binding the mercapto group of component (B) to component (A), and in component (C). It is to disperse and dissolve. Therefore, the method in which the components (A) and (B) are first mixed and then the component (C) is preferred in that the formation of the bond between the mercapto group and the zinc oxide particles can be made more efficient.
[0053] 各成分を混合する方法としては特に限定されず、溶媒や分散媒を使用して液中混 合する方法、押出機やニーダーなどを用いて溶融混練する方法などを挙げることが できる。酸化亜鉛粒子の分散性を高くする必要がある場合には溶液状態で混合する 方法が好ましぐ安価に大量合成する場合には溶融混練する方法が好ましい。した がって用途や目的に応じて選択することが可能である。  [0053] The method of mixing each component is not particularly limited, and examples thereof include a method of mixing in a liquid using a solvent and a dispersion medium, and a method of melt-kneading using an extruder or a kneader. When it is necessary to increase the dispersibility of the zinc oxide particles, the method of mixing in the solution state is preferable. When mass synthesis is performed at a low cost, the method of melt-kneading is preferable. Therefore, it is possible to select according to the application and purpose.
[0054] 本発明の耐熱性樹脂組成物としては、利用範囲が広くなる点で、空気雰囲気にお ける熱分解温度が成分 (C)単独の場合と比較して 20°C以上高いものが好ましぐ 40 °C以上高いものがより好ましい。ここで熱分解温度とは、熱重量分析において「室温 力も 10°C°C /分の条件で昇温した場合に重量減少 20%となる温度 (Td )」と定義さ れるものである。本発明の耐熱性樹脂組成物における熱分解温度向上の効果は、酸 化亜鉛粒子の作用によるものであり、酸素ラジカルや高分子鎖切断により発生する 有機ラジカルなどのラジカル種を酸化亜鉛粒子がトラップすることにより、高分子化合 物の分解が抑制されるためである。  [0054] The heat-resistant resin composition of the present invention preferably has a higher thermal decomposition temperature in the air atmosphere by 20 ° C or more than that of the component (C) alone, because the range of use is wide. A temperature higher than 40 ° C is more preferable. Here, the pyrolysis temperature is defined in thermogravimetric analysis as “the temperature (Td) at which the weight loss is 20% when the room temperature force is also raised at 10 ° C ° C / min”. The effect of improving the thermal decomposition temperature in the heat resistant resin composition of the present invention is due to the action of zinc oxide particles, and the zinc oxide particles trap radical species such as oxygen radicals and organic radicals generated by polymer chain scission. This is because the decomposition of the polymer compound is suppressed.
[0055] したがつてこの機構が効率的に働くためには、酸化亜鉛粒子はできるだけ表面積 の大きなものが好ましぐ樹脂中への分散が均一で凝集していないことが重要である 。このような点で、本発明における成分 (B)の存在が重要となる。成分 (B)が酸化亜 鉛粒子表面を修飾することにより凝集防止し、樹脂中へ安定に均一分散できるように なる。 [0055] Therefore, in order for this mechanism to work efficiently, it is important that the zinc oxide particles have as large a surface area as possible, and the dispersion in the resin is uniform and not aggregated. . In this respect, the presence of the component (B) in the present invention is important. Component (B) modifies the surface of the zinc oxide particles to prevent agglomeration and enable stable and uniform dispersion in the resin.
[0056] 本発明の耐熱性樹脂組成物は、 目的に応じて上記成分 (A)、(B)、(C)以外の成 分をさらに含有しても良レ、。このような追カ卩の成分としては例えば、酸化防止剤、紫外 線吸収剤、熱線遮蔽剤、着色剤、難燃剤、接着性付与剤、粘着性付与剤、可塑剤、 離型剤などを挙げることができるが、これらに限定されない。  [0056] The heat-resistant resin composition of the present invention may further contain components other than the components (A), (B), and (C) according to the purpose. Examples of such additional components include an antioxidant, an ultraviolet ray absorber, a heat ray shielding agent, a colorant, a flame retardant, an adhesion promoter, a tackifier, a plasticizer, and a release agent. Can be, but is not limited to.
[0057] 本発明の透明フィルムは、上記樹脂組成物を成形することにより得られる。フィルム を成形する方法としては特に限定されず、例えば溶液キャスト、溶融押出成形、カレ ンダ一成形、ブロー成形などよく知られた方法を適用可能である。  [0057] The transparent film of the present invention is obtained by molding the resin composition. The method for forming the film is not particularly limited, and well-known methods such as solution casting, melt extrusion molding, calendar one molding, and blow molding can be applied.
[0058] 本発明の透明フィルムとしては、光学関連用途に適用可能となる点で、厚さ 50〜5 00 μ mでヘイズが 3%以下であることが好ましレ、。これは成分 (A)の酸化亜鉛粒子が 数平均粒子径 20nm以下と光の波長より充分小さいサイズである点、および成分 (B) による粒子表面修飾により凝集することなく樹脂中へ分散させることが可能である点 に起因する特性である。より透明性を要求される用途への適用が可能となる点で、厚 さ 50〜500 μ mでヘイズが 1%以下であることがより好ましい。  [0058] The transparent film of the present invention preferably has a thickness of 50 to 500 µm and a haze of 3% or less because it can be applied to optical-related applications. This is because the zinc oxide particles of component (A) have a number average particle diameter of 20 nm or less, which is a size sufficiently smaller than the wavelength of light, and can be dispersed in the resin without agglomeration by particle surface modification with component (B) This is due to the fact that it is possible. It is more preferable that the thickness is 50 to 500 μm and the haze is 1% or less because it can be applied to applications requiring more transparency.
実施例  Example
[0059] 以下に本発明の実施例を示すが、これらに限定されるものではない。  [0059] Examples of the present invention are shown below, but are not limited thereto.
[0060] 本発明においてポリマーの重量平均分子量(Mw)と数平均分子量(Mn)は、ゲル パーミエーシヨンクロマトグラフィー(GPC)分析より求めた。 Waters社製システムを 使用し、カラムは Shodex K— 806と K— 805 (昭和電工(株)製)を連結して用い、 クロ口ホルムを溶出液とし、ポリスチレン標準サンプノレを基準として解析した。 In the present invention, the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer were determined by gel permeation chromatography (GPC) analysis. A Waters system was used, and Shodex K-806 and K-805 (manufactured by Showa Denko Co., Ltd.) were connected to each other, and the column was analyzed using a black mouth form as an eluent and a polystyrene standard sample.
ポリマーを重合する際、モノマーの反応率はガスクロマトグラフィー(GC)分析により 決定した。 GC分析はサンプノレ溶液を酢酸ェチルに溶解し、キヤビラリ一力ラム DB— 17 Q&W SCIENTIFIC INC.製)を使用し、ガスクロマトグラフ GC— 14B ( (株) 島津製作所製)で実施した。酸化亜鉛微粒子の粒子径は、透過型電子顕微鏡 (TE M)JEM— 1200EX (日本電子 (株)製)を使用し、加速電圧 80kVで観察して決定し た。キャストフィルムを作製するためのバーコ一ターは、 K303マルチコ一ター(RK Print Coat Instruments, LTD製)を使用した。ヘイズ測定は、 COH300A (日 本電色工業 (株)製)を使用して実施した。 UVランプは 3UV— 38 (UVP社製)を使 用した。熱重量分析による Td 測定は、 DTG_ 50 ( (株)島津製作所製)を使用して When polymerizing the polymer, the reaction rate of the monomer was determined by gas chromatography (GC) analysis. GC analysis was carried out with a gas chromatograph GC-14B (manufactured by Shimadzu Corporation) using a Kyabilari Islamic Ram DB—17 Q & W SCIENTIFIC INC. Dissolved in a sampnore solution in ethyl acetate. The particle size of the zinc oxide fine particles was determined by observing at an acceleration voltage of 80 kV using a transmission electron microscope (TEM) JEM-1200EX (manufactured by JEOL Ltd.). The bar coater for making cast film is K303 multi-coater (RK Print Coat Instruments, LTD) was used. The haze measurement was carried out using COH300A (manufactured by Nippon Denshoku Industries Co., Ltd.). The UV lamp used was 3UV-38 (manufactured by UVP). Td measurement by thermogravimetric analysis is performed using DTG_ 50 (manufactured by Shimadzu Corporation).
20  20
実施した。樹脂組成物中の酸化亜鉛含有量は、るつぼに樹脂組成物 0. 15gを枰量 し、電気炉で燃焼させた後の灰分量を測定することにより算出した。  Carried out. The zinc oxide content in the resin composition was calculated by weighing 0.15 g of the resin composition in a crucible and measuring the amount of ash after burning in an electric furnace.
[0061] (製造例 1)  [0061] (Production Example 1)
末端にメルカプト基を有するポリメタクリル酸メチル (PMMA— SH)の合成  Synthesis of poly (methyl methacrylate) (PMMA—SH) having a mercapto group at the end
1L3口フラスコにメタクリル酸メチル(501g)、トルエン(260g)、 2— (2—フエニルプ 口ピル)ジチォベンゾエート(8· 0g)、ァゾビスイソブチロニトリル(1. lg)を入れ、反 応器内を窒素置換した。溶液を攪拌しながら 90°Cで 3時間加熱することにより、反応 率 42%で PMMAを得た。次に n—ブチルァミン(25g)を添加し、 80°Cで 3時間攪拌 することにより、末端をメルカプト基に変性した。この溶液をロータリーエバポレーター で 400mLまで濃縮し、メタノール(2L)に注ぐことによって PMMA— SHを析出させ 、ろ過により単離した。得られた PMMA— SHの分子量および分子量分布は、 Mw = 14000、 Mn= 11900、 Mw/Mn= l . 17であった。  Place methyl methacrylate (501 g), toluene (260 g), 2- (2-phenylpropyl) dithiobenzoate (8.0 g), and azobisisobutyronitrile (1. lg) in a 1 L 3 neck flask. The inside of the reactor was replaced with nitrogen. The solution was heated at 90 ° C. for 3 hours with stirring to obtain PMMA with a reaction rate of 42%. Next, n-butylamine (25 g) was added, and the mixture was stirred at 80 ° C. for 3 hours to modify the terminal to a mercapto group. This solution was concentrated to 400 mL with a rotary evaporator and poured into methanol (2 L) to precipitate PMMA-SH, which was isolated by filtration. The molecular weight and molecular weight distribution of the obtained PMMA—SH were Mw = 14000, Mn = 11900, Mw / Mn = l.17.
[0062] (製造例 2)  [0062] (Production Example 2)
酸化亜鉛 (ZnO)微粒子の合成  Synthesis of zinc oxide (ZnO) fine particles
5Lセパラブルフラスコに水酸化カリウム(5g)のイソプロパノール溶液(2L)を入れ、 激しく攪拌しながら窒素置換した。この溶液を 60°Cに加熱し、酢酸亜鉛二水和物(1 0g)のイソプロパノール溶液(2L)を一度に添カ卩した。 60°Cで 3時間攪拌し、ロータリ 一エバポレーターで容量 2Lまで濃縮した。 TEM分析より数平均粒子径 5. Onmの Z ηθ微粒子の生成を確認した。  An isopropanol solution (2 L) of potassium hydroxide (5 g) was placed in a 5 L separable flask and purged with nitrogen with vigorous stirring. This solution was heated to 60 ° C., and a solution of zinc acetate dihydrate (10 g) in isopropanol (2 L) was added at once. The mixture was stirred at 60 ° C for 3 hours, and concentrated to a volume of 2 L using a rotary evaporator. The generation of Z ηθ fine particles with a number average particle size of 5. Onm was confirmed by TEM analysis.
[0063] (実施例 1)  [0063] (Example 1)
PMMA用安定化剤の調製  Preparation of stabilizer for PMMA
製造例 1で得られた PMMA_SH (9g)をジメチルホルムアミド(DMF) (180mL) に溶解させ、製造例 2で得られた ZnO微粒子のイソプロパノール溶液(180mL : Zn 〇約 0. 3g含有)と混合した。室温で 1時間攪拌した後、メタノール(6L)に注いで PM MA—SHで表面修飾された Zn〇微粒子を析出させ、ろ過により単離した。こうして得 られた PMMA用安定化剤中の ZnO含有量は灰分測定より 3. 4%と決定された。 PMMA_SH (9 g) obtained in Production Example 1 was dissolved in dimethylformamide (DMF) (180 mL) and mixed with an isopropanol solution of ZnO fine particles obtained in Production Example 2 (180 mL: containing 0.3 g Zn). . After stirring at room temperature for 1 hour, the mixture was poured into methanol (6 L) to precipitate ZnO fine particles surface-modified with PMMA-SH, and isolated by filtration. Thus obtained The ZnO content in the obtained PMMA stabilizer was determined to be 3.4% by ash measurement.
[0064] (実施例 2) [0064] (Example 2)
PMMA用安定化剤の効果確認  Confirmation of effect of stabilizer for PMMA
実施例 1の PMMA用安定化剤(0. 9g)と巿販 PMMA (スミペックス MH ; Mn = 86 000、住友化学 (株)製) (2. lg)をジクロロメタン(12g)に溶解させ、バーコ一ターを 用いてキャストフィルムを作製した。このフィルムは膜厚 73 x mで、ヘイズ 0. 15%、 Z ηθ含有量(灰分) 1. 1 %であった。このフィルムの Td は 334。Cであり、巿販 PMM  The stabilizer for PMMA (0.9 g) of Example 1 and the commercial PMMA (SUMIPEX MH; Mn = 86 000, manufactured by Sumitomo Chemical Co., Ltd.) (2.lg) were dissolved in dichloromethane (12 g). A cast film was prepared using a turret. This film had a film thickness of 73 × m, a haze of 0.15%, and a Z ηθ content (ash content) of 1.1%. The Td for this film is 334. C and selling PMM
20  20
A単独の Td (306°C)よりも 28°C高力つた。このフィルムを 230°Cで 2時間、さらに 2  A higher 28 ° C than Td (306 ° C) alone. This film is kept at 230 ° C for 2 hours and 2 more
20  20
80°Cで 1時間加熱した。加熱後のフィルムの性状および重量減少率を表 1に示す。  Heated at 80 ° C for 1 hour. Table 1 shows the film properties and weight loss after heating.
[0065] (実施例 3)  [Example 3]
製造例 1で得られた PMMA— SH (9g)を DMF (180mL)に溶解させ、製造例 2で 得られた ZnO微粒子のイソプロパノール溶液(553mL ; ZnO約 0. 9g含有)を攪拌し ながらゆっくり加えた。室温で 1時間攪拌した後、メタノール(6L)に注いで PMMA— SHで表面修飾された Zn〇微粒子を析出させ、ろ過により単離した。こうして得られた ZnO/PMMA-SH (0. 9g)と巿販 PMMA (スミペックス MH) (2. lg)をジクロロメ タン(12g)に溶解させ、バーコ一ターを用いてキャストフィルムを作製し、実施例 2と 同様の加熱試験を行った。物性を表 1に示す。実施例 2と比較して ZnO含有量が高 くなり、耐熱性も向上していることがわかる。  PMMA—SH (9 g) obtained in Production Example 1 was dissolved in DMF (180 mL), and the ZnO fine particle isopropanol solution obtained in Production Example 2 (553 mL; containing about 0.9 g of ZnO) was slowly added with stirring. It was. After stirring at room temperature for 1 hour, the mixture was poured into methanol (6 L) to precipitate ZnO fine particles whose surface was modified with PMMA-SH and isolated by filtration. ZnO / PMMA-SH (0.9 g) and PMMA (Sumipex MH) (2. lg) thus obtained were dissolved in dichloromethane (12 g), and a cast film was prepared using a bar coater. The same heating test as in Example 2 was performed. Table 1 shows the physical properties. Compared to Example 2, it can be seen that the ZnO content is higher and the heat resistance is also improved.
[0066] (比較例 1)  [0066] (Comparative Example 1)
巿販 PMMA (スミペックス MH、住友化学(株)製) (3. 0g)をジクロロメタン(12g) に溶解させ、バーコ一ターを用いてキャストフィルムを作製し、実施例 2と同様の加熱 試験を行った。結果を表 1に示す。実施例 2と比較して Zn〇微粒子および PMMA— SHの両方を含んでおらず、加熱による分解が激しく耐熱性に劣ることがわかる。  巿 PMMA (SUMIPEX MH, manufactured by Sumitomo Chemical Co., Ltd.) (3.0 g) was dissolved in dichloromethane (12 g), a cast film was prepared using a bar coater, and the same heating test as in Example 2 was performed. It was. The results are shown in Table 1. Compared with Example 2, it does not contain both ZnO fine particles and PMMA-SH, and it can be seen that the thermal decomposition is severe and the heat resistance is poor.
[0067] (比較例 2)  [0067] (Comparative Example 2)
製造例 1の PMMA— SH (0. 9g)と巿販 PMMA (スミペックス MH、住友化学(株) 製)(2. lg)をジクロロメタン(12g)に溶解させ、バーコ一ターを用いてキャストフィノレ ムを作製し、実施例 2と同様の加熱試験を行った。結果を表 1に示す。このフィルムの Td は 307°Cであり、巿販 PMMA単独のフィルム(比較例 1)とほぼ同じであった。 実施例 2と比較して ZnO微粒子を含んでおらず、加熱による分解が激しく耐熱性に 劣ることがわかる。 PMMA-SH (0. 9 g) and巿販PMMA of Preparation 1 (Sumipex MH, manufactured by Sumitomo Chemical (Co.)) (2. Lg) was dissolved in dichloromethane (12 g), cast Fino les using barcode one coater The same heating test as in Example 2 was performed. The results are shown in Table 1. The Td of this film was 307 ° C, which was almost the same as the film of PMMA alone (Comparative Example 1). Compared to Example 2, it does not contain ZnO fine particles, and it can be seen that decomposition by heating is severe and inferior in heat resistance.
[0068] (比較例 3)  [0068] (Comparative Example 3)
PMMA—SHを使用せずに Zn〇微粒子を含有する PMMAフィルムの作成を試み た。巿販 PMMA (スミペックス MH) (1. 5g)を DMF (18mL)に溶解させ、製造例 2 で得られた Zn〇微粒子のイソプロパノール溶液( 18mL; Zn〇約 30mg含有)と混合 した。室温で 1時間攪拌した後、メタノール(600mL)に注いで Zn〇/PMMA混合 物を析出させ、ろ過により単離した。この Zn〇/PMMAと巿販 PMMA (スミペックス MH) (1. 5g)をジクロロメタン(12g)に溶解させ、バーコ一ターを用いてキャストフィ ルムを作製し、実施例 2と同様の加熱試験を行った。結果を表 1に示す。実施例 2と 比較して PMMA— SHを含んでおらず、そのため PMMA中への ZnO取り込み量が 少なレ、ために耐熱性が若干劣る結果となってレ、る。し力も PMMA中で Zn〇が凝集し ているために、 ZnO含有量が 0. 6%と低いにもかかわらずヘイズが 5. 5%もあり、不 透明なフィルムしか得られなかった。  An attempt was made to create a PMMA film containing ZnO fine particles without using PMMA-SH. Commercially available PMMA (SUMIPEX MH) (1.5 g) was dissolved in DMF (18 mL) and mixed with an isopropanol solution of ZnO fine particles obtained in Production Example 2 (18 mL; containing about 30 mg of Zn). After stirring at room temperature for 1 hour, the mixture was poured into methanol (600 mL) to precipitate a ZnO / PMMA mixture and isolated by filtration. This ZnO / PMMA and commercially available PMMA (SUMIPEX MH) (1.5 g) are dissolved in dichloromethane (12 g), a cast film is prepared using a bar coater, and the same heating test as in Example 2 is performed. It was. The results are shown in Table 1. Compared with Example 2, it does not contain PMMA—SH, so that the amount of ZnO incorporated into PMMA is small, so that the heat resistance is slightly inferior. However, because ZnO aggregated in PMMA, the haze was 5.5% despite the low ZnO content of 0.6%, and only an opaque film was obtained.
[0069] (比較例 4)  [0069] (Comparative Example 4)
製造例 1で得られた PMMA— SH (0. 9g)をジクロロメタン(12g)に溶解させ、巿販 ZnO微粒子(nanopowder、アルドリッチ社製、数平均粒子径 60nm) (30mg)をカロ えて室温で 1時間攪拌し、巿販 PMMA (スミペックス MH) (2. lg)を加えて溶解させ た。この溶液からバーコ一ターを用いてキャストフィルムを作製し、実施例 2と同様の 加熱試験を行った。結果を表 1に示す。実施例 2と比較して Zn〇微粒子の粒子径が 大きいため、フィルムの透明性が低ぐまた加熱による分解が激しく耐熱性に劣ること がわかる。  PMMA—SH (0.9 g) obtained in Production Example 1 was dissolved in dichloromethane (12 g), and sold ZnO fine particles (nanopowder, Aldrich, number average particle size 60 nm) (30 mg) were collected at room temperature. The mixture was stirred for an hour, and commercially available PMMA (Sumipex MH) (2. lg) was added and dissolved. A cast film was prepared from this solution using a bar coater, and the same heating test as in Example 2 was performed. The results are shown in Table 1. It can be seen that the particle size of the ZnO fine particles is larger than that of Example 2, so that the transparency of the film is low and the decomposition by heating is severe and the heat resistance is poor.
[0070] [表 1] 実施例 2 実施例 3 比較例 1 比較例 2 比較例 3 比較例 4 市販 PMMA/g 2. 1 2. 1 3. 0 2. 1 3. 0 2. 1[0070] [Table 1] Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Commercial PMMA / g 2. 1 2. 1 3. 0 2. 1 3. 0 2. 1
PMMA-SH/g 0. 9 0. 9 0 0. 9 0 0. 9 灰分 (ZnO) /% 1. 1 3. 3 0 0 0. 6 1. 0 膜厚 Z 11 m 73 76 65 73 80 67 ヘイズ Z% 0. 15 0. 85 0. 19 0. 13 5. 5 28. 1 加熱後の色 無色透明 無色透明 褐色 褐色 薄黄色 褐色 加熱後の厚み 維持 維持 薄化 薄化 維持 薄化 重量減少率 % 1 1 6 51 57 19 45PMMA-SH / g 0. 9 0. 9 0 0. 9 0 0. 9 Ash (ZnO) /% 1. 1 3. 3 0 0 0. 6 1. 0 Film thickness Z 11 m 73 76 65 73 80 67 Haze Z% 0. 15 0. 85 0. 19 0. 13 5. 5 28.1 Color after heating Colorless and transparent Colorless and clear Brown Brown Light yellow Brown Brown Thickness after heating Maintenance Maintenance Thinning Thinning Maintenance Thinning Weight loss rate % 1 1 6 51 57 19 45
Td20/°C 334 349 306 307 329 310 Td 20 / ° C 334 349 306 307 329 310
[0071] (実施例 4) [Example 4]
実施例 2における巿販 PMMAの代わりに、アクリル樹脂の一種である巿販 MMA /スチレン共重合樹脂(MS樹脂)(エスチレン MS MS— 200; Mn = 300000、新 日鐵化学 (株)製)を用いて同様の実験を行った。得られたフィルムは膜厚 83 / mで ヘイズ 0.91%、 Zn〇含有量 1.0%であった。このフィルムの Td は巿販 MS樹脂単  Commercial sales in Example 2 Instead of PMMA, commercial MMA / styrene copolymer resin (MS resin) (Estyrene MS MS—200; Mn = 300,000, manufactured by Nippon Steel Chemical Co., Ltd.) is a type of acrylic resin. A similar experiment was performed. The obtained film had a film thickness of 83 / m, a haze of 0.91%, and a ZnO content of 1.0%. The Td of this film is MS resin alone.
20  20
独の場合と比較して 27°C高力つた。  It was 27 ° C higher than in Germany.
[0072] (実施例 5) [Example 5]
実施例 3における巿販 PMMAの代わりに、巿販 MS樹脂(エスチレン MS MS-2 00)を用いて同様の実験を行った。得られたフィルムは膜厚 77 mでヘイズ 0.95% 、 ZnO含有量 3.1。 /。であり、 Td は巿販 MS樹脂単独よりも 45°C高かった。  Commercial sales in Example 3 A similar experiment was conducted using commercial MS resin (Estyrene MS MS-200) instead of PMMA. The resulting film had a thickness of 77 m, a haze of 0.95%, and a ZnO content of 3.1. /. Td was 45 ° C higher than the MS resin alone.
20  20
[0073] (比較例 5)  [0073] (Comparative Example 5)
比較例 3における巿販 PMMAの代わりに、巿販 MS樹脂(エスチレン MS MS— 2 00)を用いて同様の実験を行った。得られたフィルムは膜厚 75 mでヘイズが 7.7 %もあり不透明であった。 ZnO含有量は 0.7%であった。このフィルムの Td は巿販  Commercial sales in Comparative Example 3 A similar experiment was conducted using commercial MS resin (Estyrene MS MS-200) instead of PMMA. The resulting film was opaque with a film thickness of 75 m and a haze of 7.7%. The ZnO content was 0.7%. The Td of this film is for sale
20 20
MS樹脂単独よりも 17°Cだけ高かった。 It was 17 ° C higher than MS resin alone.
[0074] (比較例 6) [0074] (Comparative Example 6)
比較例 4における巿販 PMMAの代わりに巿販 MS樹脂(エスチレン MS MS— 20 0)を用いて同様の実験を行った。得られたフィルムは膜厚 75 μΐηでヘイズが 31.1 %と不透明であり、 Td は市販 MS樹脂単独とほぼ同じであり、耐熱性向上効果は  Commercial sales in Comparative Example 4 A similar experiment was conducted using commercial MS resin (Estyrene MS MS—200) instead of PMMA. The resulting film is opaque with a film thickness of 75 μΐη and a haze of 31.1%, and Td is almost the same as the commercial MS resin alone.
20  20
認められなかった。灰分測定の結果、 ZnO含有量は 1.0%と決定された。 [0075] (比較例 7) I was not able to admit. As a result of ash measurement, the ZnO content was determined to be 1.0%. [0075] (Comparative Example 7)
比較例 2における巿販 PMMAの代わりに巿販 MS樹脂(エスチレン MS MS— 20 0)を用いて同様の実験を行った。得られたフィルムは膜厚 80 x mでヘイズ 0. 86% であり、 Td は巿販 MS樹脂単独とほぼ同じであり、 Zn〇を含んでいないため耐熱性  Commercial sales in Comparative Example 2 The same experiment was conducted using commercial MS resin (Estyrene MS MS—200) instead of PMMA. The resulting film has a film thickness of 80 x m and a haze of 0.86%, Td is almost the same as MS resin alone, and does not contain ZnO.
20  20
向上効果は認められな力つた。  The improvement effect was unacceptable.
[0076] (製造例 3)  [0076] (Production Example 3)
末端にメルカプト基を有するポリスチレン (PS— SH)の合成  Synthesis of polystyrene with terminal mercapto group (PS—SH)
50mL3口フラスコにスチレン(10g)、トルエン(9· 8g)、 2— (2—フエニルプロピル )ジチォベンゾエート(0. 32g)、ァゾビスイソプチロニトリル(0. 06g)を入れ、反応器 内を窒素置換した。溶液を攪拌しながら 80°Cで 14時間加熱することにより、反応率 3 0%で PStを得た。次にジェチルァミン(2. 5g)を加えて 50°Cで 8時間加熱すること により、末端をメルカプト基に変性した。この溶液をロータリーエバポレーターで約半 量まで濃縮し、メタノール(200mL)に注いで PS— SHを析出させ、ろ過により単離し た。得られた PS— SHの分子量および分子量分布は、 Mw=4300、 Mn= 3700、 Mw/Mn= l . 16であった。  In a 50 mL three-necked flask, add styrene (10 g), toluene (9.8 g), 2- (2-phenylpropyl) dithiobenzoate (0.32 g), and azobisisoptyronitrile (0.06 g). The inside was replaced with nitrogen. The solution was heated at 80 ° C. for 14 hours with stirring to obtain PSt with a reaction rate of 30%. Next, jetylamine (2.5 g) was added and the mixture was heated at 50 ° C. for 8 hours to modify the end to a mercapto group. This solution was concentrated to about half by a rotary evaporator, poured into methanol (200 mL) to precipitate PS-SH, and isolated by filtration. The molecular weight and molecular weight distribution of the obtained PS—SH were Mw = 4300, Mn = 3700, and Mw / Mn = l.16.
[0077] (実施例 6)  [0077] (Example 6)
PS用安定化剤  PS stabilizer
製造例 3で得られた PS _SH (0. 3g)をジメチルァセトアミド(DMAC) (15mL)に 溶解し、製造例 2で得られた Zn〇微粒子のイソプロパノール溶液(30mL)と混合し、 1時間攪拌した。この溶液をロータリーエバポレーターで約 10mLまで濃縮し、メタノ ール(200mL)に注いで PS— SHで表面修飾された Zn〇微粒子を析出させ、ろ過に より単離した。こうして得られた PS用安定化剤中の Zn〇含有量は灰分測定より 14% と決定された。  Dissolve PS _SH (0.3 g) obtained in Production Example 3 in dimethylacetamide (DMAC) (15 mL) and mix with the ZnO fine particle solution obtained in Production Example 2 (30 mL). Stir for hours. This solution was concentrated to about 10 mL with a rotary evaporator, poured into methanol (200 mL), precipitated ZnO fine particles surface-modified with PS-SH, and isolated by filtration. The content of ZnO in the PS stabilizer thus obtained was determined to be 14% from the ash content measurement.
[0078] この PS用安定化剤(0. 33g)と巿販 PS (HF77、 PSジャパン (株)製)(2. 15g)とを ジクロロメタン(10mL)に溶解させ、バーコ一ターを用いてキャストフィルムを作製した 。このフィルムの膜厚は 73 μ m、ヘイズは 0. 13%であった。灰分測定の結果、 ZnO 含有量は 2. 0%と決定された。このフィルムを 400°Cで 10分間加熱した力 若干黄 変した程度で透明性はほとんどかわらず、重量減少率は 9%であった。 [0079] またこのフィルムに UVランプを用いて、 5cmの距離から 302nmの紫外線を 50時 間照射した。フィルムの変色や劣化は認められなかつた。 [0078] This PS stabilizer (0.33g) and commercially available PS (HF77, manufactured by PS Japan Co., Ltd.) (2.15g) are dissolved in dichloromethane (10mL) and cast using a bar coater. A film was made. The film thickness was 73 μm and haze was 0.13%. As a result of ash measurement, the ZnO content was determined to be 2.0%. The film was heated for 10 minutes at 400 ° C. The film slightly turned yellow and the transparency was almost unchanged, but the weight loss rate was 9%. [0079] Further, this film was irradiated with ultraviolet rays of 302 nm for 50 hours from a distance of 5 cm using a UV lamp. No discoloration or deterioration of the film was observed.
[0080] (比較例 8)  [0080] (Comparative Example 8)
巿販 PS (HF77、 PSジャパン(株)製)(2. 5g)をジクロロメタン(10mUに溶解させ 、バーコ一ターを用いてキャストフィルムを作製した。このフィルムの膜厚は 80 x m、 ヘイズは 0. 11 %であった。このフィルムを 400°Cで 10分間加熱したところ、濃褐色 に変色し不透明になった。重量減少率は 27%であった。このフィルムは ZnOを含ん でおらず耐熱性が低い。  Commercial PS (HF77, manufactured by PS Japan Co., Ltd.) (2.5 g) was dissolved in dichloromethane (10 mU) and a cast film was prepared using a bar coater. The film thickness was 80 xm, and haze was 0 When this film was heated at 400 ° C for 10 minutes, it turned dark brown and became opaque, and the weight loss rate was 27% .This film did not contain ZnO and was heat resistant. The nature is low.
[0081] またこのフィルムに UVランプを用いて、 5cmの距離から 302nmの紫外線を 50時 間照射したところ、褐色に変色してしまった。  [0081] When this film was irradiated with UV light of 302 nm from a distance of 5 cm for 50 hours using a UV lamp, the film turned brown.
産業上の利用可能性  Industrial applicability
[0082] 本発明の合成樹脂用安定化剤組成物は、相溶性の高い合成樹脂に配合すること により、該合成樹脂を安定化し、耐熱性 ·耐候性 ·光安定性を向上させることができる 。さらに合成樹脂との相溶性が高いため合成樹脂中に均一分散させることが可能で あり、透明な材料を得ることができる。また従来広く用いられているヒンダードフエノー ル系安定化剤ゃヒンダードアミン系光安定化剤などの有機系安定化剤と比較して安 定性が高ぐ着色や劣化の度合いが非常に小さい。本発明の合成樹脂用安定化剤 組成物は、ガラス代替樹脂材料、レンズ、合わせガラス用中間膜、フィルム、シート、 コ一ティング剤、塗料などの用途に利用可能である。 [0082] The stabilizer composition for a synthetic resin of the present invention can be stabilized by adding it to a highly compatible synthetic resin to improve heat resistance, weather resistance, and light stability. . Furthermore, since it is highly compatible with the synthetic resin, it can be uniformly dispersed in the synthetic resin, and a transparent material can be obtained. In addition, compared with organic stabilizers such as hindered phenol stabilizers and hindered amine stabilizers that have been widely used in the past, the degree of coloring and deterioration is extremely low. The synthetic resin stabilizer composition of the present invention can be used for applications such as glass substitute resin materials, lenses, interlayer films for laminated glass, films, sheets, coating agents, paints, and the like.

Claims

請求の範囲 The scope of the claims
[I] 数平均粒子径 0· 5〜20nmの酸ィ匕亜鉛 (Α)、数平均分子量 1000〜50000のメノレ カプト基含有化合物 (B)からなる合成樹脂用安定化剤組成物。  [I] A synthetic resin stabilizer composition comprising acid zinc (Α) having a number average particle diameter of 0.5 to 20 nm and a menolecapto group-containing compound (B) having a number average molecular weight of 1,000 to 50,000.
[2] 酸化亜鉛 (A)の表面がメルカプト基含有化合物(B)で修飾された構造を有する、 請求項 1に記載の合成樹脂用安定化剤組成物。 [2] The stabilizer composition for synthetic resin according to claim 1, wherein the surface of zinc oxide (A) has a structure modified with a mercapto group-containing compound (B).
[3] 酸化亜鉛 (A)の数平均粒子径が 10nm以下である、請求項 1または 2のいずれか に記載の合成樹脂用安定化剤組成物。 [3] The stabilizer composition for synthetic resin according to any one of claims 1 and 2, wherein the number average particle diameter of zinc oxide (A) is 10 nm or less.
[4] 酸化亜鉛 (A) 1S アルコール中カルボン酸亜鉛とァレニウス塩基との反応により合 成されたものである、請求項:!〜 3のいずれかに記載の合成樹脂用安定化剤組成物 [4] Zinc oxide (A) 1S Synthetic resin stabilizer composition according to any one of claims 3 to 3, which is synthesized by a reaction of zinc carboxylate in an alcohol and an Arenius base.
[5] メルカプト基含有化合物(B) 、チォカルボ二ルチオ化合物を連鎖移動剤とする可 逆的付加脱離連鎖移動重合により得られる重合体を処理剤で処理して得られるもの である、請求項 1〜4のいずれかに記載の合成樹脂用安定化剤組成物。 [5] The mercapto group-containing compound (B), which is obtained by treating a polymer obtained by reversible addition / desorption chain transfer polymerization using a thiocarboylthio compound as a chain transfer agent with a treatment agent. The stabilizer composition for synthetic resins in any one of 1-4.
[6] 処理剤がァレニウス塩基、還元剤、 1級ァミン化合物、 2級アミンィ匕合物からなる群 より選ばれる 1種以上の化合物である、請求項 5に記載の合成樹脂用安定化剤組成 物。  [6] The stabilizer composition for a synthetic resin according to claim 5, wherein the treating agent is at least one compound selected from the group consisting of an Arenius base, a reducing agent, a primary amine compound, and a secondary amine compound. object.
[7] メルカプト基含有化合物(B) 、 (メタ)アクリル酸エステル、スチレン、(メタ)アタリ口 二トリル、 N—イソプロピル(メタ)アクリルアミド、 N, N—ジメチル(メタ)アクリルアミド、 N_ビュルピロリドン、塩ィ匕ビュルからなる群より選ばれる 1種以上の単量体を重合さ せて得られる重合体由来の化合物である、請求項 1〜6のいずれかに記載の合成樹 脂用安定化剤組成物。  [7] Mercapto group-containing compound (B), (meth) acrylic acid ester, styrene, (meth) atari mouth nitrile, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N_Buylpyrrolidone The stabilization for synthetic resin according to any one of claims 1 to 6, which is a compound derived from a polymer obtained by polymerizing one or more monomers selected from the group consisting of salt and cellulose. Agent composition.
[8] 請求項:!〜 7のいずれかに記載の合成樹脂用安定化剤組成物と合成樹脂(C)とか らなる耐熱性樹脂組成物。  [8] Claims: A heat-resistant resin composition comprising the synthetic resin stabilizer composition according to any one of! To 7 and a synthetic resin (C).
[9] 合成樹脂 (C)がメルカプト基を含まなレ、数平均分子量 50000以上の合成樹脂であ ることを特徴とする請求項 8に記載の耐熱性樹脂組成物。 [9] The heat resistant resin composition according to claim 8, wherein the synthetic resin (C) is a resin not containing a mercapto group and having a number average molecular weight of 50,000 or more.
[10] 空気雰囲気における熱分解温度が合成樹脂(C)単独の場合と比較して、 20°C以 上高いことを特徴とする、請求項 8または 9のいずれかに記載の耐熱性樹脂組成物。 [10] The heat-resistant resin composition according to any one of claims 8 and 9, wherein the thermal decomposition temperature in an air atmosphere is 20 ° C or higher as compared with the case of the synthetic resin (C) alone. object.
[I I] 空気雰囲気における熱分解温度が合成樹脂(C)単独の場合と比較して、 40°C以 上高いことを特徴とする、請求項 8または 9のいずれかに記載の耐熱性樹脂組成物。 合成樹脂(C)が、アクリル樹脂、ポリスチレン、エチレン酢酸ビュル共重合体、 AS 樹脂、 ABS樹脂、 AAS樹脂、 ACS樹脂、ポリ酢酸ビュル、ポリ塩化ビュル、エポキシ 樹脂、フエノール樹脂、ポリアミド、ポリカーボネート、ポリエチレンテレフタレート、ポリ ブチレンテレフタレート、ポリアリレート、ポリイミド、ポリグノレタノレイミド、ポリビニノレアセ ターノレ、ポリスノレホン、ポリエーテノレスノレホン、ポリフエ二レンスノレフイド、ポリエーテノレ エーテルケトン、ポリエチレン、ポリプロピレン、熱可塑性エラストマ一からなる群より選 ばれる 1種以上のものであることを特徴とする、請求項 8〜: 11のいずれかに記載の耐 熱性樹脂組成物。 [II] Thermal decomposition temperature in air atmosphere is 40 ° C or higher compared to the case of synthetic resin (C) alone. 10. The heat resistant resin composition according to claim 8, wherein the heat resistant resin composition is high. Synthetic resin (C) is acrylic resin, polystyrene, ethylene acetate butyl copolymer, AS resin, ABS resin, AAS resin, ACS resin, polyacetic acid butyl, polychlorinated butyl, epoxy resin, phenolic resin, polyamide, polycarbonate, polyethylene It is selected from the group consisting of terephthalate, polybutylene terephthalate, polyarylate, polyimide, polygnorethanimide, polyvinylenorecetanol, polysenorephone, polyetherenorenolephone, polyphenylenenorethreido, polyetheretheretherketone, polyethylene, polypropylene, thermoplastic elastomer. 12. The heat resistant resin composition according to claim 8, wherein the heat resistant resin composition is one or more kinds.
合成樹脂(C) 100重量部に対して、酸化亜鉛 (A)が 0. 1〜: 10重量部、メルカプト 基含有化合物(B)が 0.:!〜 100重量部の範囲で含有されることを特徴とする、請求 項 8〜: 12のいずれかに記載の耐熱性樹脂組成物。  Zinc oxide (A) is contained in the range of 0.1 to 10 parts by weight and the mercapto group-containing compound (B) in the range of 0.1 to 100 parts by weight with respect to 100 parts by weight of the synthetic resin (C). The heat-resistant resin composition according to any one of claims 8 to 12, characterized by:
まず酸化亜鉛 (A)とメルカプト基含有化合物 (B)を混合し、次レ、で合成樹脂 (C)と 混合することにより得られることを特徴とする、請求項 8〜: 13のいずれかに記載の耐 熱性樹脂組成物。  The zinc oxide (A) and the mercapto group-containing compound (B) are first mixed, and then mixed with the synthetic resin (C) in the next step, to obtain any one of claims 8 to 13: The heat resistant resin composition as described.
請求項 8〜: 14のいずれかに記載の耐熱性樹脂組成物を成形して得られる透明フィ ルム。  A transparent film obtained by molding the heat-resistant resin composition according to claim 8.
厚さ 50〜500 μ mで、かつヘイズ 3%以下の請求項 15に記載の透明フィルム。 厚さ 50〜500 x mで、かつヘイズ 1%以下の請求項 15に記載の透明フィルム。  The transparent film according to claim 15, having a thickness of 50 to 500 μm and a haze of 3% or less. The transparent film according to claim 15, which has a thickness of 50 to 500 x m and a haze of 1% or less.
PCT/JP2006/316646 2005-08-24 2006-08-24 Stabilizer composition for synthetic resin WO2007023919A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007532185A JPWO2007023919A1 (en) 2005-08-24 2006-08-24 Stabilizer composition for synthetic resin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-243451 2005-08-24
JP2005243451 2005-08-24
JP2006-004226 2006-01-11
JP2006004226 2006-01-11

Publications (1)

Publication Number Publication Date
WO2007023919A1 true WO2007023919A1 (en) 2007-03-01

Family

ID=37771662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316646 WO2007023919A1 (en) 2005-08-24 2006-08-24 Stabilizer composition for synthetic resin

Country Status (2)

Country Link
JP (1) JPWO2007023919A1 (en)
WO (1) WO2007023919A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520870A (en) * 2005-12-20 2009-05-28 ザ テキサス エイ アンド エム ユニヴァーシティ システム Stabilization of polymers by zinc oxide nanoparticles
JP2012500303A (en) * 2008-08-13 2012-01-05 ピーピージー インダストリーズ オハイオ,インコーポレイテッド Light weight particles and compositions comprising light weight particles
US8344054B2 (en) 2007-07-24 2013-01-01 The Texas A & M University System Polymer nanocomposites including dispersed nanoparticles and inorganic nanoplatelets
JP2013543021A (en) * 2010-09-22 2013-11-28 コモンウェルス サイエンティフィック アンドインダストリアル リサーチ オーガナイゼーション Continuous flow polymerization process
CN107312300A (en) * 2017-06-29 2017-11-03 上海锦湖日丽塑料有限公司 Transparent resin composition that mobility improves and preparation method thereof
JP2020529037A (en) * 2018-06-29 2020-10-01 エルジー・ケム・リミテッド UV blocking film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000515181A (en) * 1996-07-10 2000-11-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Polymerization with living properties
JP3256544B2 (en) * 1994-03-23 2002-02-12 株式会社クラレ Method for producing polymer having functional group which may be protected at the terminal
JP2003105158A (en) * 2001-07-24 2003-04-09 Kuraray Co Ltd Thermoplastic acrylic resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256544B2 (en) * 1994-03-23 2002-02-12 株式会社クラレ Method for producing polymer having functional group which may be protected at the terminal
JP2000515181A (en) * 1996-07-10 2000-11-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Polymerization with living properties
JP2003105158A (en) * 2001-07-24 2003-04-09 Kuraray Co Ltd Thermoplastic acrylic resin composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520870A (en) * 2005-12-20 2009-05-28 ザ テキサス エイ アンド エム ユニヴァーシティ システム Stabilization of polymers by zinc oxide nanoparticles
US8344054B2 (en) 2007-07-24 2013-01-01 The Texas A & M University System Polymer nanocomposites including dispersed nanoparticles and inorganic nanoplatelets
JP2012500303A (en) * 2008-08-13 2012-01-05 ピーピージー インダストリーズ オハイオ,インコーポレイテッド Light weight particles and compositions comprising light weight particles
JP2013543021A (en) * 2010-09-22 2013-11-28 コモンウェルス サイエンティフィック アンドインダストリアル リサーチ オーガナイゼーション Continuous flow polymerization process
CN107312300A (en) * 2017-06-29 2017-11-03 上海锦湖日丽塑料有限公司 Transparent resin composition that mobility improves and preparation method thereof
JP2020529037A (en) * 2018-06-29 2020-10-01 エルジー・ケム・リミテッド UV blocking film
US11549025B2 (en) 2018-06-29 2023-01-10 Lg Chem, Ltd. Film for blocking ultraviolet rays

Also Published As

Publication number Publication date
JPWO2007023919A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
WO2007023919A1 (en) Stabilizer composition for synthetic resin
JP5825919B2 (en) Resin base for light reflector
WO2006093271A1 (en) Polymer particle, resin composition containing same, and molded body
KR20170027861A (en) Methacrylic resin-containing cover for vehicle members
TWI509035B (en) Hard coating with a dispersion composition, a hard coat coating composition, and a hard coat coating
JP5175443B2 (en) Stabilized unsaturated polyester resin mixture
JP5227587B2 (en) Ultrafine metal particle-containing resin composition and method for producing the composition
JP5286879B2 (en) Oval or acicular polymer particles containing fine particles and method for producing the same
TWI448476B (en) Production method of methyl methacrylate polymer
Zhang et al. Preparation of styrene‐acrylic emulsion by using nano‐SiO2 as seeds
Monteiro et al. Stabilization of nano-TiO2 aqueous dispersions with poly (ethylene glycol)-b-poly (4-vinyl pyridine) block copolymer and their incorporation in photocatalytic acrylic varnishes
JP2018104721A (en) Method for producing methacrylic resin, methacrylic resin, and molded article
TW201226049A (en) Dispersant and dispersion composition
CN112154185B (en) Methacrylic resin composition and molded article
JP6874154B2 (en) Vinyl chloride resin latex composition and its manufacturing method
WO2012077674A1 (en) Resin composition and uses thereof
CN102304206B (en) The method preparing the dispersion of polymer particle of surfactant-free insensitive for pH in aqueous medium
JP2013032509A (en) Methacrylic resin composition and molding
JP4141770B2 (en) Manufacturing method of organic-inorganic composite plastic material
JP2022034316A (en) Carbon nanotube dispersion, and coating including the same
JP6560136B2 (en) Hydroxide mineral dispersion and method for producing the same
JP2009179691A (en) Method for producing methacrylic resin composition
JPH06329891A (en) Weather-resistant resin composition
JP7110609B2 (en) Thermoplastic resin composition and molded article thereof
JP2017137478A (en) Composite aggregation resin particle group, and method for producing particle group and composition containing particle group

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007532185

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796759

Country of ref document: EP

Kind code of ref document: A1