WO2006125556A1 - Intraokularlinse - Google Patents

Intraokularlinse Download PDF

Info

Publication number
WO2006125556A1
WO2006125556A1 PCT/EP2006/004668 EP2006004668W WO2006125556A1 WO 2006125556 A1 WO2006125556 A1 WO 2006125556A1 EP 2006004668 W EP2006004668 W EP 2006004668W WO 2006125556 A1 WO2006125556 A1 WO 2006125556A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
intraocular lens
eye
lens according
intraocular
Prior art date
Application number
PCT/EP2006/004668
Other languages
English (en)
French (fr)
Inventor
Christof Donitzky
Klaus Vogler
Original Assignee
Wavelight Laser Technologie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wavelight Laser Technologie Ag filed Critical Wavelight Laser Technologie Ag
Priority to KR1020077028328A priority Critical patent/KR101257101B1/ko
Priority to US11/915,001 priority patent/US8460376B2/en
Priority to CN2006800186432A priority patent/CN101184452B/zh
Priority to JP2008512736A priority patent/JP5027119B2/ja
Priority to BRPI0610464A priority patent/BRPI0610464B8/pt
Publication of WO2006125556A1 publication Critical patent/WO2006125556A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1624Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside
    • A61F2/1635Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside for changing shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1637Correcting aberrations caused by inhomogeneities; correcting intrinsic aberrations, e.g. of the cornea, of the surface of the natural lens, aspheric, cylindrical, toric lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0001Means for transferring electromagnetic energy to implants

Definitions

  • the invention relates to an intraocular lens which is suitable for insertion into a human eye.
  • intraocular lenses are widely known, for example, in a clouding of the originally clear eye lens ("cataract” or cataract) intraocular lenses are implanted.
  • a particular problem in ophthalmology is the age-related hyperopia (presbyopia), cf. e.g. The article "Intraocular lenses", in DER AUGENSPIEGEL, 7-8 / 2002: 28-34
  • the age-related loss of elasticity of the natural eye lens prevents its refractive power adaptation and thus accommodation of the eye on objects lying in close proximity to the eye and their sharp imaging Although the loss of accommodation capability can be corrected by reading glasses, this is associated with the known expense and inconvenience.
  • IOL intraocular lenses
  • Another attempt at resolving presbyopia is the generation of monovision by corneal refractive laser surgery.
  • one eye is corrected to the near point and left the other eye set to the far point or corrected to that effect, the latter is then usually the so-called guide eye.
  • both eyes provide different information that has to be processed by the brain and accepted by the patient.
  • the present invention takes a different approach to restoring the accommodation ability of the human eye.
  • the invention teaches an intraocular lens whose refractive power is variable by applying electrical voltages.
  • the subject of the invention is thus an artificial intraocular lens which is suitable for insertion into the human eye and which is designed such that its refractive power can be changed by electrical voltages or fields, so that the accommodating ability of the eye is restored.
  • so-called liquid lenses have been known for some time. In them, by the application of electrical voltages, a change in shape of the liquid lens and thus causes a change in the focal length.
  • the underlying physical effect is also called "electro-wetting"
  • liquid lens also encompasses other deformable, in particular liquid-like materials.Through suitably designed electrodes, selected viscosities and densities of the lens material and suitable dimensioning of the lens, as well as measures to ensure the positional stability of the lens, a very high dynamic can be achieved, ie For example, a frequency of the focal length change in the range of about 2 kHz is currently possible, this dynamic is much better than would be possible with a mechanical zoom, such as electrically operated liquid lenses with diameters in the Range from 3 to 6 mm.
  • the prior art is referred to the following publications in this regard i5:
  • the intraocular liquid lens according to the invention is dimensioned and designed so that it can be inserted into the capsular bag of an eye. Also, the intraocular fluid lens may be sized and configured to be insertable into a sulcus.
  • the so usable IOL means, so by applying a electrical voltage, the mechanical surface tension of the lens to change its focal length is variable.
  • the lens is dimensioned and the means for applying an electrical voltage are designed so that the electrical voltage causes a sphero-symmetrical deformation of the lens.
  • a radial symmetry is predetermined in the lens.
  • the lens may also be dimensioned and designed such that the electrical voltages compensate for astigmatism and aberrations, in particular spherical aberrations, ie higher-order aberrations.
  • electro-wetting changes the mechanical surface tension of the liquid or liquid-like or otherwise suitable material, wherein the lens is designed and / or exposed to external forces, that due to the changed surface tension their shape compared to a state without tension or at other voltages changes.
  • fixation elements can be provided on the lens in order to position them in the eye in the desired manner.
  • the shaping of the IOL according to the invention in a capsular bag in the tension-free state can be achieved by introducing supplementary hydrophobic
  • the intraocular lens is provided with electrodes for applying said electrical voltages.
  • the electrodes are at least partially transparent. Also, according to a preferred embodiment of the invention, the electrodes arranged at suitable intervals virtually all around the IOL.
  • the electrical voltages required for the control of the IOLs according to the invention can be obtained and used in various ways. For example, it is possible to use highly miniaturized electronic components. Today, such components are already implanted in the human eye, cf. e.g. "A prosthesis for vision", in EYE LIGHT 2003; 1: 26-27
  • the prior art knows some means of introducing energy and signals into the human eye, see HG Sachs and VP Gabel in Graefe's Arch. Clin. Exp. Ophthalmol (2004) 242: 717-723; Essay "The Implantation of Visual Prostheses in Progressive Retinal Dystrophies" by P. Walter, in the AUGENSPIEGEL, 11/2004, p. 32; T. Laube, C.
  • the voltage required for the accommodation voltage can be derived directly from a movement of the eye, in particular by a triboelectric voltage generation, that is, a voltage generated by the frictional effect. With the aid of an implanted microchip, this voltage can be amplified to the required extent and applied to the suitably designed electrodes of the lens to adjust its surface curvature.
  • a triboelectric voltage generation that is, a voltage generated by the frictional effect.
  • this voltage can be amplified to the required extent and applied to the suitably designed electrodes of the lens to adjust its surface curvature.
  • an operation of the ciliary muscle is associated with the natural accommodation process. The ciliary muscle causes a deformation of the lens for accommodation in the young, fully functioning eye.
  • a particular embodiment of the present invention provides means for deriving, from said action of the ciliary muscle, an electrical voltage which, if necessary, is applied to said electrodes of the lens in a sufficiently amplified manner desired accommodation in response to the natural movement of the ciliary muscle.
  • Figure 1 is a schematic section through an eye, in which an intraocular lens according to the invention is installed, wherein the lens is not accommodated;
  • FIG. 2 shows a representation corresponding to FIG. 1, the lens being accommodated
  • FIG 3 shows a further embodiment of an IOL with a microchip for
  • the refractive power or focal length change of a lens can be represented by the simple lens equation, with the radii of curvature of the lens determining its focal length (see, for example, the above-cited textbook by E. Hecht):
  • an intraocular lens (IOL) according to the invention is inserted into the previously suitably prepared capsular bag of the eye, this essentially results in a centered position of the lens in the optical beam path of the eye. It is also possible to surround the liquid lens with its own membrane and provided with additional Fixa tion elements to ensure their central location on the optical axis of the eye. This technique is known as such from conventional IOLs.
  • the refractive power change of a liquid lens is basically quadratically dependent on the applied voltage and inversely proportional to the diameter of the lens. Therefore, for small lens diameters, such as here, and suitable dielectric isolation layers, only relatively low voltages are needed to achieve significant refractive power changes (see the article by T. Krupenkin et al cited above).
  • the eye lens achieves an accommodation range of about 25 10 D to about 14 D depending on the age.
  • Figure 1 shows an intraocular lens 10 which is inserted into a capsular bag 12 of a human eye. Shown are also the iris 14, the cornea 16 and the anterior chamber 18 of the eye.
  • the intraocular lens 10 of a liquid material of the type described above is surrounded by an insulating liquid 20.
  • electrodes 22a, 22b, 22c, 22d, 22e, 22f are arranged either around the capsular bag 12 (FIGS. 1 and 2) or on the inside of the capsular bag (FIG. 3).
  • the electrodes can also be arranged in the equatorial plane of the capsular bag.
  • a completely encapsulated intraocular lens with internal electrodes can be used.
  • the natural ciliary muscle 24 attacks the capsular bag perpendicular to the optical axis of the "eye" system.
  • the intraocular lens is electrostrictively contracted (accommodated) and a force perpendicular to the optical axis different from zero, that is causing the shape change in the desired manner, so that the radius of curvature of the interface of the lens 10 varies greatly and thus the refractive power is increased.
  • Figure 3 shows a modified embodiment in which a microchip 26 belongs to the system, which is also shown in the installed state in Figure 3. Functionally similar or functionally similar components are provided in the figures with the same reference numerals.
  • a triboelectric voltage generation is utilized.
  • a force is associated with the natural accommodation process, for example, that exerted by the ciliary muscle on the natural lens of the eye.
  • a voltage is derived from this force effect and amplified sufficiently in order to be applied to the electrodes 22a,..., 22f and thus to effect a corresponding deformation of the interface and thus its accommodation.
  • the triboelectric voltage generation is similar to the piezoelectric effect writable, there as charge generation by a force, here by a motion-triggering force and a charge separation, see.
  • a force here by a motion-triggering force and a charge separation
  • This triboelectric voltage is amplified via the implanted microchip 26 and this chip is connected via lines (not shown) to the individual electrodes 22a,..., 22f and controls them in such a way that the desired accommodation is achieved.

Abstract

Eine Intraokularlinse (10) ist so gestaltet, dass sie in den Kapselsack eines Auges einbaubar ist und ihre Brechkraft durch Anlegen elektrischer Spannungen veränderbar ist.

Description

Intraokularlinse
Die Erfindung betrifft eine Intraokularlinse, die geeignet ist, in ein menschliches Auge eingesetzt zu werden.
In der Ophthalmologie sind Intraokularlinsen weithin bekannt, zum Beispiel werden bei einer Eintrübung der ursprünglich klaren Augenlinse („grauer Star" bzw. Katarakt) Intraokularlinsen implantiert.
Ein besonders Problem in der Ophthalmologie ist die altersbedingte Weitsichtigkeit (Presbyopie), vgl. z.B. den Aufsatz „Intraokularlinsen", in DER AUGENSPIEGEL, 7- 8/2002: 28-34. Der altersbedingte Verlust der Elastizität der natürlichen Augenlinse verhindert deren Brechkraftanpassung und damit eine Akkommodation des Auges auf im Nahbereich vor dem Auge liegende Objekte und deren scharfe Abbildung auf der Netzhaut. Zwar lässt sich der Verlust der Akkommodationsfähigkeit durch eine Lesebrille korrigieren, jedoch ist dies mit dem bekannten Aufwand und Unbequemlichkeiten verbunden.
Der Stand der Technik kennt vielfältige Bemühungen, das Problem der Presbyopie zu lösen:
So gab es den Versuch, künstliche Intraokularlinsen (IOL) durch Wirkung des Ziliarmuskels des Auges zu verschieben (vgl. den oben zitierten Aufsatz in „Der Augenspiegel"). Jedoch ergab sich dabei eine nur ungenügende Verschiebung der IOL in Axialrichtung (üblicherweise als z-Achse bezeichnet) und somit auch nur eine ungenügende Brennpunktverschiebung.
Es wurde auch versucht, eine eingesetzte IOL durch den Ziliarmuskel mechanisch zu deformieren, wobei allerdings der Erfolg noch nicht überzeugend nachgewiesen werden konnte. Ein anderer Ansatz versucht die Wiederherstellung der Elastizität der natürlichen Augenlinse durch radiale Schnitte in der kristallinen Augenlinse mit einem nichtinvasiven FS-Laser, vgl. O. Kermani in „Neues aus Wissenschaft und Forschung", J. Refract Surgery: 2004; 20:651-658. Allerdings ändert sich dabei die Elastizität kaum und es besteht die Gefahr eines induzierten Kataraktes.
Weiterhin wurden multifokale IOL implantiert, allerdings mit den bekannten Schwierigkeiten, insbesondere störenden Doppelbildern und Unscharfe, da zumindest zwei Brennweiten mit unterschiedlichen Abbildungseigenschaften simultane Bilder auf der Netzhaut erzeugen, vgl. „Neue Multifokallinsen, individuelle Lösungen und postoperative Funktionalität", in Der Augenspiegel, 09/2004:42-47.
Ein weiterer Versuch der Behebung der Presbyopie ist die Erzeugung einer Monovision durch refraktive Laserchirurgie der Hornhaut. Dabei wird ein Auge auf den Nahpunkt korrigiert und das andere Auge auf den Fernpunkt eingestellt belassen oder dahingehend korrigiert, letzteres ist dann meist das sogenannte Führungsauge. Dabei liefern aber beide Auge unterschiedliche Informationen, die vom Gehirn verarbeitet und vom Patienten angenommen werden müssen.
Die vorliegende Erfindung geht einen anderen Weg zur Wiederherstellung der Akkommodationsfähigkeit des menschlichen Auges.
Hierzu lehrt die Erfindung eine Intraokularlinse, deren Brechkraft durch Anlegen elektrischer Spannungen veränderbar ist. Gegenstand der Erfindung ist also eine künstliche Intraokularlinse, die geeignet ist, in das menschliche Auge eingesetzt zu werden und die so gestaltet ist, dass ihre Brechkraft durch elektrische Spannungen oder Felder veränderbar ist, sodass die Akkommodationsfähigkeit des Auges wiederhergestellt ist. In anderen Anwendungsbereichen sind sogenannten Flüssigkeitslinsen seit einiger Zeit bekannt. Bei ihnen wird durch das Anlegen von elektrischen Spannungen eine Formänderung der Flüssigkeitslinse und damit eine Änderung von deren Brennweite bewirkt. Der zugrundeliegende physikalische Effekt wird auch mit „Elektro-Wetting"
5 bezeichnet. Der Begriff „Flüssigkeitslinse" erfasst hier auch andere verformbare, insbesondere liquidartige Materialien. Durch geeignet gestaltete Elektroden, ausgewählte Viskositäten und Dichten des Linsenmaterials und eine geeignete Dimensionierung der Linse sowie Vorkehrungen zur Sicherung der Lagestabilität der Linse lässt sich eine sehr hohe Dynamik erreichen, d.h. eine sehr schnelle Änderung lo der Linsenform, zum Beispiel ist z.Z. schon eine Frequenz der Brennweitenänderung im Bereich von etwa 2 kHz möglich. Diese Dynamik ist wesentlich besser als es mit einem mechanischen Zoom möglich wäre. Es lassen sich solche durch elektrische Spannungen betätigbare Flüssigkeitslinsen mit Durchmessern im Bereich von 3 bis 6 mm herstellen. Zum Stand der Technik wird insoweit auf folgende Veröffentlichungen i5 verwiesen:
Kuiper S., Hendriks BHW.: Variable-focus Liquid Lens for Miniature Cameras, Appl Phys Lett 2004; 85:1128-1130;
Hecht E., Opitics-Second Edition. Addison-Wesley Publishing Company, Chapter 5: 2o Geometrical Optics-Paraxial Theory: p- 138;
Krupenkin T., Yang S., Mach P.: Tunable Liquid Microlens, Appl Phys Lett 2003; 82:316-318 und
Berge B., Peseux J.: Variable focal lens controlled by an external voltage: An application of electrowetting. Eur Phys J 2000; E3: 159-163.
25
Die erfindungsgemäße Intraokular-Flüssigkeitslinse ist so dimensioniert und gestaltet, dass sie in den Kapselsack eines Auges einsetzbar ist. Auch kann die Intraokular- Flüssigkeitslinse so dimensioniert und gestaltet sein, dass sie in einen Sulkus einsetzbar ist.
30
Weiterhin weist die derart einsetzbare IOL Mittel auf, damit durch Anlegen einer elektrischen Spannung die mechanische Oberflächenspannung der Linse zur Änderung ihrer Brennweite veränderbar ist.
Gemäß einer bevorzugten Ausgestaltung ist die Linse so dimensioniert und sind die Mittel zum Anlegen einer elektrischen Spannung so gestaltet, dass die elektrische Spannung eine sphäro-symmetrische Deformation der Linse bewirkt. Dabei ist in der Linse eine Radialsymmetrie vorgegeben. Auch kann die Linse so dimensioniert und gestaltet sein, dass die elektrischen Spannungen einen Astigmatismus sowie Aberrationen, insbesondere sphärische Aberrationen, also Augenfehler höherer Ordnung kompensieren.
Das sogenannte „Elektro- Wetting" verändert die mechanische Oberflächenspannung der Flüssigkeit bzw. des liquidartigen oder anders geeigneten Materials, wobei die Linse so gestaltet und/oder so äußeren Kräften ausgesetzt ist, dass sich aufgrund der veränderten Oberflächenspannung ihre Form gegenüber einem Zustand ohne Spannung oder bei anderen Spannungen ändert.
Gemäß besonderen Ausgestaltungen der erfindungsgemäßen IOL können diese ganz oder teilweise von einer Membran bedeckt sein und gegebenenfalls zusätzliche Fixationselemente aufweisen, wie letzteres bei herkömmlichen Intraokularlinsen bekannt ist. Fixationselemente können an der Linse vorgesehen sein, um diese im Auge in der gewünschten Weise positionieren zu können.
Die Formgebung der erfindungsgemäßen IOL in einem Kapselsack im spannungsfreien Zustand kann durch das Einbringen ergänzender hydrophober
Oberflächen und einer damit einhergehenden Veränderung der Oberflächenspannung in gewünschter Weise beeinflusst werden.
Gemäß besonderen Ausgestaltungen der Erfindung ist die intraokulare Linse mit Elektroden versehen zum Anlegen der genannten elektrischen Spannungen. Dabei sind die Elektroden zumindest teilweise transparent. Auch sind gemäß einer bevorzugten Ausgestaltung der Erfindung die Elektroden in geeigneten Abständen quasi rundum um die IOL angeordnet.
Die für die Steuerung der erfindungsgemäßen IOLs erforderlichen elektrischen Spannungen können in verschiedener Weise gewonnen und eingesetzt werden. Zum Beispiel ist es möglich, stark miniaturisierte elektronischen Komponenten einzusetzen. Es werden heute schon solche Komponenten in das menschliche Auge implantiert, vgl. z.B. „Eine Prothese zum Sehen", in AUGENLICHT 2003; 1:26-27. Der Stand der Technik kennt einige Mittel, Energie und Signale in das humane Auge einzubringen, vgl. H.G. Sachs und V.P. Gabel in Graefe's Arch. Clin. Exp. Ophthalmol. (2004) 242:717-723; Aufsatz „Die Implantation von Sehprothesen bei progressiven Netzhautdystrophien" von P. Walter, in der AUGENSPIEGEL, 11/2004, S. 32; T. Laube, C. Brockmann, R. Büß, C. Lau, K. Hock, N. Stawski, T. Stieglitz, H.A. Richter und H. Schilling in Graefe's Arch. Clin. Exp. Ophthalmol. (2004) 242:661-667; und T. Stieglitz, R. Keller, H. Beutel und J. U. Meyer, „Microsystem Integration Techniques for Intraocular Vision Prostheses Using Flexible Polyimide FoMs".
Andererseits ist auch eine physiologische Bereitstellung der elektrischen Spannungen möglich: Zum Beispiel kann die für die Akkommodation benötigte Spannung direkt aus einer Bewegung des Auges abgeleitet werden, insbesondere durch eine triboelektrische Spannungserzeugung, also eine Spannungserzeugung durch den Reibungseffekt. Mit Hilfe eines implantierten Mikrochips kann diese Spannung auf das erforderliche Maß verstärkt und an die geeignet gestalteten Elektroden der Linse angelegt werden, um deren Oberflächenkrümmung einzustellen. So ist zum Beispiel mit dem natürlichen Akkommodationsvorgang eine Betätigung des Ziliarmuskels verbunden. Der Ziliarmuskel bewirkt beim jungen, voll funktionsfähigen Auge eine Verformung der Linse zur Akkommodation. Eine besondere Ausgestaltung der vorliegenden Erfindung stellt Mittel bereit, mit denen aus dieser Wirkung des Ziliarmuskels eine elektrische Spannung abgeleitet wird, die dann, falls erforderlich, ausreichend verstärkt an die genannten Elektroden der Linse angelegt wird, um die gewünschte Akkommodation in Abhängigkeit von der natürlichen Bewegung des Ziliarmuskels zu bewirken.
Durch besondere Anordnung der Elektroden können auch Abbildungsfehler höherer 5 Ordnung sowie astigmatische Abbildungsfehler überwunden werden, vgl. EP 1 091 758 Bl und US 6,369,954 Bl.
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der Zeichnung näher beschrieben. Es zeigt:
10
Figur 1 einen schematischen Schnitt durch ein Auge, in das eine erfindungsgemäße Intraokularlinse eingebaut ist, wobei die Linse nicht akkommodiert ist;
i5 Figur 2 eine Darstellung entsprechend Figur 1, wobei die Linse akkommodiert ist;
Figur 3 eine weitere Ausgestaltung einer IOL mit einem Mikrochip zur
Spannungssteuerung, wiederum in einem in das Auge einbauten 2o Zustand zur Illustration der Wirkungsweise.
Grundsätzlich kann die Brechkraft- bzw. Brennweitenänderung einer Linse durch die einfache Linsengleichung dargestellt werden, wobei die Krümmungsradien der Linse deren Brennweite bestimmen (vgl. z.B. das oben zitierte Lehrbuch von E. Hecht):
25
Ri- Krümmungsradien der (1)
— = (« -I)-I - - I Linsenoberfläche
n- Brechzahl Wird eine erfindungsgemäße Intraokularlinse (IOL) in den zuvor entsprechend präparierten Kapselsack des Auges eingesetzt, ergibt sich im wesentlichen eine zentrierte Position der Linse im optischen Strahlengang des Auges. Es ist auch möglich, die Flüssigkeitslinse mit einer eigenen Membran zu umgeben und mit zusätzlichen Fixa-tionselementen zu versehen, um ihre zentrale Lage auf der optischen Achse des Auges zu gewährleisten. Diese Technik ist als solches von herkömmlichen IOLs bekannt.
Die Änderung der Brechkraft D einer Flüssigkeitslinse kann durch folgende Gleichung lo beschrieben werden:
u2 D = Do+κ— K= Materialkonstante (2) d d=Durchmesser der Linse i5 U=Spannung
Somit ist die Brechkraftänderung einer Flüssigkeitslinse grundsätzlich quadratisch abhängig von der angelegten Spannung und umgekehrt proportional zum Durchmesser der Linse. Deshalb werden bei kleinen Linsendurchmessern, wie hier, 2o und geeigneten dielektrischen Isolationsschichten nur relativ geringe Spannungen benötigt, um merkliche Brechkraftänderungen zu erzielen (vgl. den oben zitierten Aufsatz von T. Krupenkin et al.).
Im menschlichen Auge vollbringt die Augenlinse einen Akkommodationshub von ca. 25 10 dpt auf etwa 14 dpt in Abhängigkeit des Alters.
Nimmt man zur Zeit zur Verfügung stehende elektro-optische Konstanten für das Flüssiglinsenmaterial an (vgl. die obigen Arbeiten von S. Kuiper et al., und T. Krupenkin et al.) so können mit den heute bekannten Materialien bereits mit Spannungen im Bereich von U=20-30 V solche Brechkraftänderungen erreicht werden.
Figur 1 zeigt eine Intraokularlinse 10, die in einen Kapselsack 12 eines menschlichen Auges eingesetzt ist. Dargestellt sind weiterhin die Iris 14, die Kornea 16 und die Vorderkammer 18 des Auges.
Die Intraokularlinse 10 aus einem Flϋssigmaterial der oben beschriebenen Art ist von einer isolierenden Flüssigkeit 20 umgeben.
Gemäß den Figuren sind Elektroden 22a, 22b, 22c, 22d, 22e, 22f entweder um den Kapselsack 12 herum (Figuren 1 und 2) oder innenseitig am Kapselsack (Figur 3) angeordnet. Auch können die Elektroden in der Äquatorebene des Kapselsacks angeordnet werden. Andererseits kann eine komplett gekapselte Intraokularlinse mit innenliegenden Elektroden verwendet werden.
Der natürliche Ziliarmuskel 24 greift senkrecht zur optischen Achse des Systems „Auge" am Kapselsack an.
Figur 1 zeigt schematisch den nicht akkommodierten Zustand der Intraokularlinse 20, also den Zustand, in dem an den Elektroden keine Spannung anliegt und somit in der obigen Gleichung (2) D=D0 gilt. Die senkrecht zur optischen Achse wirkende Streckkraft bzw. Stauchkraft F ist ebenfalls gleich null F=O.
Figur 2 zeigt einen Zustand, in dem eine Spannung U an die Elektroden 22 angelegt ist. Es gilt D=Do+KU2. Die Intraokularlinse wird elektrostriktiv kontrahiert (akkommodiert) und es wirkt eine Kraft senkrecht zur optischen Achse, die verschieden von null ist, also die Formänderung in der gewünschten Weise bewirkt, sodass der Krümmungsradius der Grenzfläche der Linse 10 stark variiert und somit die Brechkraft vergrößert wird. Figur 3 zeigt ein abgewandeltes Ausführungsbeispiel, bei dem ein Mikrochip 26 zum System gehört, der ebenfalls im eingebauten Zustand in Figur 3 dargestellt ist. Einander funktionsgleiche oder funktionsähnliche Bauteile sind in den Figuren mit gleichen Bezugszeichen versehen.
Beim Ausführungsbeispiel gemäß Figur 3 wird eine triboelektrische Spannungserzeugung ausgenutzt. Wie oben beschrieben, ist mit dem natürlichen Akkommodationsvorgang eine Kraft verknüpft, zum Beispiel diejenige, die durch den Ziliarmuskel auf die natürliche Augenlinse ausgeübt wird. Beim Ausführungsbeispiel gemäß Figur 3 wird aus dieser Kraftwirkung eine Spannung abgeleitet und ausreichend verstärkt, um an die Elektroden 22a, ...., 22f angelegt zu werden und so eine entsprechende Deformation der Grenzfläche und damit deren Akkommodation zu bewirken.
Die triboelektrische Spannungserzeugung ist ähnlich dem piezoelektrischen Effekt beschreibbar, dort als Ladungserzeugung durch eine Kraft, hier durch eine bewegungsauslösende Kraft und eine Ladungstrennung, vgl. Benz W., Heinks P., Starke L.: Tabellenbuch Elektronik für Industrie-Elektroniker und Kommunikationselektroniker. Kohl + Noltemeyer Verlag: S.87. Es gilt:
Ae/e ~eι2-^- βn ~ Elastizitätsmodul (3)
A
Δe/e- relative Längenänderung Fi2 - Kraftkomponente
A - Fläche
U = % = ^Sx2Fn S11 - piezoelektrisches Modul (4)
C c }\2λ 12
C - Kapazität Diese triboelektrische Spannung wird über den implantierten Mikrochip 26 verstärkt und dieser Chip ist über Leitungen (nicht gezeigt) mit den einzelnen Elektroden 22a, ...., 22f verbunden und steuert diese so, dass die gewünschte Akkommodation erreicht wird.

Claims

Patentansprüche
1. Intraokularlinse (10), deren Form durch Anlegen einer elektrischen Spannung und eine dadurch geänderte mechanische Oberflächenspannung veränderbar
5 ist.
2. Intraokularlinse nach Anspruch 1, die so gestaltet ist, dass sie in den Kapselsack eines Auges einsetzbar ist.
lo 3. Intraokularlinse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektrische Spannung eine sphäro-symmetrische Deformation der Linse bewirkt.
4. Intraokularlinse nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, i5 dass die elektrische Spannung eine Deformation der Linse zur Kompensation eines Astigmatismus oder zur Kompensation von Aberrationen höherer Ordnung erzeugt.
5. Intraokularlinse nach einem der vorhergehenden Ansprüche, dadurch 20 gekennzeichnet, dass die Linse von einer Membran bedeckt ist.
6. Intraokularlinse nach einem der vorhergehenden Ansprüche mit Fixationselementen zur Positionierung im Auge.
25 7. Intraokularlinse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Linse (10) mit Elektroden (22a, 22b, 22c, 22d, 22e, 22f) zum Anlegen elektrischer Spannungen versehen ist.
8. Intraokularlinse nach Anspruch 7, dadurch gekennzeichnet, dass die 30 Elektroden zumindest teilweise transparent sind.
9. Intraokularlinse nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen Mikrochip (26) zum Verarbeiten und Verstärken triboelektrischer Spannungen.
PCT/EP2006/004668 2005-05-27 2006-05-17 Intraokularlinse WO2006125556A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020077028328A KR101257101B1 (ko) 2005-05-27 2006-05-17 안내 렌즈
US11/915,001 US8460376B2 (en) 2005-05-27 2006-05-17 Intraocular lens
CN2006800186432A CN101184452B (zh) 2005-05-27 2006-05-17 眼内透镜
JP2008512736A JP5027119B2 (ja) 2005-05-27 2006-05-17 眼内レンズ
BRPI0610464A BRPI0610464B8 (pt) 2005-05-27 2006-05-17 lente intra-ocular

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05011483.4 2005-05-27
EP05011483A EP1726272B1 (de) 2005-05-27 2005-05-27 Intraokularlinse

Publications (1)

Publication Number Publication Date
WO2006125556A1 true WO2006125556A1 (de) 2006-11-30

Family

ID=35789009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/004668 WO2006125556A1 (de) 2005-05-27 2006-05-17 Intraokularlinse

Country Status (9)

Country Link
US (1) US8460376B2 (de)
EP (1) EP1726272B1 (de)
JP (1) JP5027119B2 (de)
KR (1) KR101257101B1 (de)
CN (1) CN101184452B (de)
BR (1) BRPI0610464B8 (de)
DE (1) DE502005007656D1 (de)
ES (1) ES2326742T3 (de)
WO (1) WO2006125556A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004094A1 (en) * 2008-07-09 2010-01-14 Tampereen Yliopisto A foldable intraocular lens implant

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008023726B4 (de) * 2008-05-15 2011-01-27 Karlsruher Institut für Technologie Implantierbare Vorrichtung zur Herstellung der Akkomodationsfähigkeit unter Nutzung interner Energie
JP2011526817A (ja) * 2008-07-03 2011-10-20 オキュラー・オプティクス・インコーポレイテッド 遠近調節のトリガーを検出するセンサー
MX2011003671A (es) * 2008-10-15 2011-05-10 Alcon Inc Lentes intraoculares adaptables.
WO2011137191A1 (en) 2010-04-27 2011-11-03 Ramgopal Rao Accommodating intraocular lens device
CA2817017A1 (en) 2010-11-15 2012-05-24 Elenza, Inc. Adaptive intraocular lens
WO2012143304A2 (en) * 2011-04-18 2012-10-26 Parrot Sa Liquid formulation for ophtalmic devices
TWI588560B (zh) 2012-04-05 2017-06-21 布萊恩荷登視覺協會 用於屈光不正之鏡片、裝置、方法及系統
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
EP2908773B1 (de) 2012-10-17 2024-01-03 Brien Holden Vision Institute Linsen, vorrichtungen, verfahren und systeme für brechungsfehler
US9186244B2 (en) 2012-12-21 2015-11-17 Lensgen, Inc. Accommodating intraocular lens
DE102013000429A1 (de) * 2013-01-10 2014-07-24 Karlsruher Institut für Technologie Sensorsystem für die Erfassung der Ansteuersignale eines Ziliarmuskels
WO2015066502A1 (en) 2013-11-01 2015-05-07 Thomas Silvestrini Accomodating intraocular lens device
JP2016534816A (ja) 2013-11-01 2016-11-10 レンスゲン、インコーポレイテッド 2部分調節性眼内レンズデバイス
US10004596B2 (en) 2014-07-31 2018-06-26 Lensgen, Inc. Accommodating intraocular lens device
JP6754755B2 (ja) 2014-09-23 2020-09-16 レンスゲン、インコーポレイテッド 調節性眼内レンズ用の高分子材料
CN108778185B (zh) 2015-12-01 2021-04-27 雷恩斯根公司 调节性人工晶状体装置
IL262626B (en) * 2016-05-02 2022-08-01 Barzilay Gilad Intraocular lens and method and/or accessories associated therewith
US10526353B2 (en) 2016-05-27 2020-01-07 Lensgen, Inc. Lens oil having a narrow molecular weight distribution for intraocular lens devices
US10918476B2 (en) 2017-03-30 2021-02-16 Verily Life Sciences Llc Electrowetting intraocular lens with isotonic aqueous phase
US11409134B2 (en) 2017-04-19 2022-08-09 Amo Groningen B.V. Electrowetting and photo curing for manufacturing of ophthalmic lenses
US10869753B1 (en) 2017-05-05 2020-12-22 Verily Life Sciences Llc Electrowetting lens comprising phase change fluids
US11197752B2 (en) 2017-05-05 2021-12-14 Verily Life Sciences Llc Situ filling and sealing of electrowetting intraocular lenses
US11191636B2 (en) 2017-08-22 2021-12-07 Verily Life Sciences Llc Electrowetting lenses having oleophobic surfaces
US10866431B2 (en) 2017-09-08 2020-12-15 Verily Life Sciences Llc Self healing lead wires in humid environments
CN109481084B (zh) * 2018-10-30 2021-02-09 田东华 一种具有薄膜涂层的眼科透镜
DE102020129721B3 (de) * 2020-11-11 2022-04-07 Helmut Binder Selbst akkommodierende Linse sowie Verfahren zu deren Steuerung sowie Set

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4373218A (en) * 1980-11-17 1983-02-15 Schachar Ronald A Variable power intraocular lens and method of implanting into the posterior chamber
US4787903A (en) * 1985-07-24 1988-11-29 Grendahl Dennis T Intraocular lens
US5171266A (en) * 1990-09-04 1992-12-15 Wiley Robert G Variable power intraocular lens with astigmatism correction
US5443506A (en) * 1992-11-18 1995-08-22 Garabet; Antoine L. Lens with variable optical properties
US20030060878A1 (en) * 2001-08-31 2003-03-27 Shadduck John H. Intraocular lens system and method for power adjustment
US6730123B1 (en) * 2000-06-22 2004-05-04 Proteus Vision, Llc Adjustable intraocular lens
US20040169932A1 (en) * 2002-11-20 2004-09-02 Powervision Lens system and methods for power adjustment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769375B1 (fr) 1997-10-08 2001-01-19 Univ Joseph Fourier Lentille a focale variable
US6638304B2 (en) * 2001-07-20 2003-10-28 Massachusetts Eye & Ear Infirmary Vision prosthesis
KR20040053147A (ko) * 2001-10-05 2004-06-23 이-비젼 엘엘씨 하이브리드 전기-활성 렌즈
EP1728117A1 (de) * 2004-03-05 2006-12-06 Koninklijke Philips Electronics N.V. Linse mit variablem brennpunkt
US8216306B2 (en) * 2005-01-13 2012-07-10 Minas Theodore Coroneo Ocular auto-focusing lenses
JP4694953B2 (ja) * 2005-11-30 2011-06-08 セイコーインスツル株式会社 圧電振動片の製造方法、圧電振動片、圧電振動子、発振器、電子機器及び電波時計

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4373218A (en) * 1980-11-17 1983-02-15 Schachar Ronald A Variable power intraocular lens and method of implanting into the posterior chamber
US4787903A (en) * 1985-07-24 1988-11-29 Grendahl Dennis T Intraocular lens
US5171266A (en) * 1990-09-04 1992-12-15 Wiley Robert G Variable power intraocular lens with astigmatism correction
US5443506A (en) * 1992-11-18 1995-08-22 Garabet; Antoine L. Lens with variable optical properties
US6730123B1 (en) * 2000-06-22 2004-05-04 Proteus Vision, Llc Adjustable intraocular lens
US20030060878A1 (en) * 2001-08-31 2003-03-27 Shadduck John H. Intraocular lens system and method for power adjustment
US20040169932A1 (en) * 2002-11-20 2004-09-02 Powervision Lens system and methods for power adjustment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004094A1 (en) * 2008-07-09 2010-01-14 Tampereen Yliopisto A foldable intraocular lens implant

Also Published As

Publication number Publication date
JP2008541805A (ja) 2008-11-27
EP1726272A1 (de) 2006-11-29
CN101184452A (zh) 2008-05-21
US20080306589A1 (en) 2008-12-11
EP1726272B1 (de) 2009-07-08
KR20080016828A (ko) 2008-02-22
DE502005007656D1 (de) 2009-08-20
KR101257101B1 (ko) 2013-04-22
BRPI0610464B8 (pt) 2021-06-22
CN101184452B (zh) 2012-05-30
BRPI0610464B1 (pt) 2018-02-14
ES2326742T3 (es) 2009-10-19
JP5027119B2 (ja) 2012-09-19
BRPI0610464A2 (pt) 2012-10-23
US8460376B2 (en) 2013-06-11

Similar Documents

Publication Publication Date Title
EP1726272B1 (de) Intraokularlinse
DE69729573T2 (de) Selbstzentrierende korrektur-intraokularlinse
DE69809697T3 (de) Intraokulare linse
DE60038372T2 (de) Intraokularlinsenkombinationen
DE69433855T3 (de) Intraokularlinse zur Akkommodation
DE69633110T2 (de) Anpassbare intraokulare linse mit t-förmigen haltebügeln
DE102007008375B3 (de) Implantierbares System zur Bestimmung des Akkommodationsbedarfes durch optische Messung des Pupillendurchmessers und der Umfeldleuchtdichte
DE102007008374B4 (de) Implantierbares System zur Bestimmung des Akkommodationsbedarfes durch Messung der Augapfelorientierung unter Nutzung eines externen Magnetfelds
DE60017745T2 (de) Implantat mit positiver brechkraft für die vordere augenkammer
DE102006021521A1 (de) Asphärische künstliche Augenlinse und Verfahren für die Konstruktion einer solchen
BRPI0616779A2 (pt) lente intra-ocular deformável e sistemas de lente
EP2874569B1 (de) Weitwinkeloptik für ophthalmologische implantate
EP3829488B1 (de) Akkomodative intraokularlinse
EP1667612B1 (de) Fokussionsfähige künstliche linse für ein auge
DE602004003509T2 (de) Optisches akkomodatives kompensationssystem
EP1863411B1 (de) Intraokularlinse
DE10155345C2 (de) Halterung für eine künstliche Intraokularlinse (IOL)
DE60127676T2 (de) Zusätzliche endo-linsenkapsel
EP4210631A1 (de) Akkommodative intraokularlinse
EP2535019B1 (de) Akkommodative intraokulare phake kunstlinse mit hochbrechendem medium
DE102021125295B3 (de) Akkommodative intraokularlinse zum erzeugen einer rückstellkraft
DE112020003939T5 (de) Akkommodative Intraokularlinsen-Kombination mit unabhängigen Linsenteilen mit fester und variabler Brechkraft
EP1719475A1 (de) Augenimplantat
Moura et al. Mechanically adjustable lenses
DE102019134386A1 (de) Intraokularlinse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008512736

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680018643.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077028328

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 4774/KOLNP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWE Wipo information: entry into national phase

Ref document number: 11915001

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06742955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0610464

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071126