WO2005098479A1 - Double liquid-crystal aberration correcting element and its manufacturing method - Google Patents

Double liquid-crystal aberration correcting element and its manufacturing method Download PDF

Info

Publication number
WO2005098479A1
WO2005098479A1 PCT/JP2005/005500 JP2005005500W WO2005098479A1 WO 2005098479 A1 WO2005098479 A1 WO 2005098479A1 JP 2005005500 W JP2005005500 W JP 2005005500W WO 2005098479 A1 WO2005098479 A1 WO 2005098479A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
aberration correction
crystal aberration
electrode
substrate
Prior art date
Application number
PCT/JP2005/005500
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuyoshi Nakagawa
Naoko Yoshida
Original Assignee
Binit Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Binit Corporation filed Critical Binit Corporation
Priority to JP2006512022A priority Critical patent/JP4532482B2/en
Publication of WO2005098479A1 publication Critical patent/WO2005098479A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1369Active plates, e.g. liquid crystal panels or electrostrictive elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/42Arrangements for providing conduction through an insulating substrate

Definitions

  • Double liquid crystal aberration correcting element and method of manufacturing the same Double liquid crystal aberration correcting element and method of manufacturing the same
  • the present invention relates to a liquid crystal aberration correction element used in an optical disc device for correcting a difference that occurs during recording / reproducing with an optical pickup.
  • a blue-violet semiconductor laser is used as a light source, and is suitably used for a large-capacity next-generation optical disc (Blu-ray disc; BD) having a plurality of recording layers.
  • the present invention belongs to the technical field of double liquid crystal aberration correction element and its manufacturing method.
  • optical disks such as CDs and DVDs are known as information recording media.
  • These optical discs cause aberrations (distortion of the condensed spot) due to thickness shift or warpage due to rotation, so it is required to correct the aberrations and increase the recording / reproducing accuracy.
  • the former method has a problem that an optical pickup is complicated because an actuator is required, and it is not possible to cope with high-precision correction.
  • the liquid crystal aberration correcting element forms the electrodes of the liquid crystal panel in, for example, a concentric ring shape, thereby performing different phase control between the central portion and the outer edge portion of the light beam. Since the liquid crystal aberration correcting element is arranged on the same optical axis together with the objective lens in the optical pickup, it has been desired to reduce the size and weight so that good driving can be obtained.
  • BD Blu-ray discs
  • this BD will have a plurality of recording layers in the thickness direction in the future, it is necessary to adjust the focal position of the laser to different depths, and since the light source wavelength is short, variations in cover layer thickness and disc
  • the wavefront aberration that occurs when the allowable amount for the inclination is small tends to increase.
  • a double liquid crystal aberration correction element has been proposed in which the above-described two elements are combined and the detection accuracy is improved by performing aberration correction on the forward path and the return path.
  • Patent Document 1 discloses a forward path in which emitted light is directed from a light source to a magneto-optical recording medium and a directed path to a magneto-optical recording medium.
  • Two phase correction elements are provided in the optical path shared by the return path, and each phase correction element includes a pair of transparent substrates with transparent electrodes, and a liquid crystal layer is narrow between the pair of transparent substrates.
  • the transparent electrode formed on at least one of the two phase correction elements when a voltage is applied is a split electrode that is split so that the wavefront aberration of the emitted light can be corrected.
  • An example is described in which the orientation directions of the liquid crystal molecules of the liquid crystal layers constituting the two phase correction elements are orthogonal to each other when a voltage having the same retardation value as that of the two phase correction elements is not applied.
  • a substrate on one side of the device is made longer to form an electrode lead portion in that portion, and the electrode lead portion and the control circuit are connected to each other. Are connected by a flexible printed circuit board or the like.
  • the liquid crystal aberration correction element is required to achieve a storage temperature range of 40 to 90 ° C and a use temperature range of -20 to 80 ° C, particularly when considering applications such as in-vehicle use.
  • the liquid crystal and the substrate expand and contract, and at this time, the expansion rates of the liquid crystal and the substrate are different. Therefore, as described above (Patent Document 1), the substrate is formed long on one side and the terminals are concentrated there. In this case, the entire structure is deformed non-uniformly, and as a result, the obtained correction effect may be adversely affected.
  • the electrode lead-out portion is provided to protrude to the side of the element, it is necessary to perform a product inspection for each element that has been finally processed, which is inefficient. there were.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-319202 (Claim 1, Paragraph 0038, FIG. 2)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-237077 (Claim 1, Paragraph 0014)
  • an object of the present invention is to provide a novel double liquid crystal aberration correction element that can be made smaller and lighter than conventional elements.
  • the present invention comprises two liquid crystal aberration correction elements stacked in the thickness direction, and each of the liquid crystal aberration correction elements has a common electrode on one side and a segment electrode on the other side.
  • a plurality of holes are drilled in the thickness direction, and the holes are provided with terminals to be connected to the common electrode and the segment electrode.
  • An injection port for injecting liquid crystal is formed on one side of the substrate, and a double liquid crystal aberration compensating element is provided in which the liquid crystal alignment direction when no voltage is applied is orthogonal to the two liquid crystal aberration compensating elements. .
  • the terminal for connecting to the common electrode and the segment electrode, and the liquid crystal injection port are arranged on the surface of the substrate through the hole.
  • each of the liquid crystal aberration correcting elements has a pair of common electrodes formed on one side and segment electrodes formed on the other side. And a liquid crystal sandwiched between the pair of substrates.
  • segment electrode a plurality of non-electrode portions having no electrode material are sized or arranged according to positions on the segment electrode. The gap is formed by changing the distance or both, and the liquid crystal is non-uniformly aligned when a voltage is applied inside the non-electrode portion.
  • a plurality of holes are formed in each of the pair of substrates in the thickness direction.
  • the holes are provided with terminals of the common electrode and the segment electrode to be connected to each other, and an injection port for injecting liquid crystal is formed on one of the pair of substrates.
  • the present invention provides a double liquid crystal aberration corrector in which the orientation of the liquid crystal is orthogonal between two liquid crystal aberration correctors.
  • an electric field is weakly formed in a central portion of the plurality of non-electrode portions in a direction perpendicular to the electrode, and an electric field is formed at an end portion of the non-electrode portion. Since the electric field is formed in a tilted direction, the liquid crystal molecules are non-uniformly aligned along the distribution of the electric field, thereby obtaining a lens effect in which the refractive index changes continuously around the central force of the non-electrode portion. Therefore, by allowing the light beam to pass through the lens portion, a predetermined phase difference is given and the aberration is corrected. In particular, by changing the size or the arrangement interval of the non-electrode portions, the phase difference obtained in each region is changed, and optimal correction according to aberration is performed as a whole element.
  • the substrate is formed in a square shape, and the liquid crystal is sealed along a circular area of the substrate through which a light beam passes.
  • a liquid crystal injection port and a terminal are provided near a corner portion other than the circular region.
  • the vicinity of the corner of the substrate is effectively used as a space for forming a hole, and the weight balance of the element is improved. Further, when the liquid crystal expands and contracts, the whole liquid crystal is uniformly deformed.
  • the present invention provides the dual liquid crystal aberration correction element described above, wherein terminals connected to a common electrode of each of the stacked liquid crystal aberration correction elements are connected to a segment electrode of one of the liquid crystal aberration correction elements.
  • the terminals connected to each other and the terminals connected to the segment electrodes of the other liquid crystal aberration correction element are connected to each other in the thickness direction, and are provided on one substrate located outside the double liquid crystal aberration correction element. It is characterized by being aggregated in each.
  • terminals connected to a common electrode of each of the stacked liquid crystal aberration correcting elements are connected to a segment electrode of one of the liquid crystal aberration correcting elements.
  • the terminals connected to each other and the terminals connected to the segment electrodes of the other liquid crystal aberration correction element are connected to each other in the thickness direction, and are provided on one substrate located outside the double liquid crystal aberration correction element. It is characterized by being aggregated in each.
  • the terminals for driving the elements are collectively arranged on one substrate.
  • a terminal connected to a segment electrode of one liquid crystal aberration correction element and a segment electrode of the other liquid crystal aberration correction element is provided near a corner located at a diagonal of the square substrate, and the terminal connected to the common electrode and the liquid crystal injection port are provided near the remaining corner.
  • the position of each terminal is set in consideration of efficiency in manufacturing the element.
  • the present invention is the method for manufacturing a double liquid crystal aberration corrector described above, wherein a terminal and an injection port corresponding to a large number of liquid crystal aberration correctors are provided on a substrate serving as a base material.
  • This is a method for manufacturing a double liquid crystal aberration correction element, which comprises a step of stacking layers after rotating each other, and a step of dividing the element into individual double liquid crystal aberration correction elements.
  • the present invention is the method for manufacturing a double liquid crystal aberration correction element described above, wherein a step of providing terminals corresponding to a large number of liquid crystal aberration correction elements on a substrate serving as a base material, Forming a common electrode on the substrate on which the terminal and the segment electrode are formed, and providing a terminal and an injection port at a position opposite to the substrate on which the terminal and the segment electrode are formed, and combining another substrate on which the common electrode is formed. A step of injecting liquid crystal from an inlet port, and turning over another set obtained through the same steps with respect to a set in which a large number of liquid crystal aberration correcting elements manufactured through the above steps are arranged.
  • This is a method for manufacturing a double liquid crystal aberration correction element, which comprises a step of laminating after rotation by two degrees, and a step of dividing into individual double liquid crystal aberration correction elements.
  • the production of the double liquid crystal aberration correction element proceeds with the state of the base material substrate until the final step. Then, two liquid crystal aberration correction elements of the forward path and the return path in which the liquid crystal orientation directions are orthogonal to each other are manufactured by the same process.
  • an inspection wiring commonly connected to each terminal is formed on the surface of the substrate, and a large number of liquid crystal aberration correction elements are arranged.
  • the inspection using the wiring is performed before or after the step of laminating another set with respect to the set of rows, or before or during the step of cutting into individual double liquid crystal aberration correction elements.
  • the operation of the elements is checked at once in the state of the base material before being divided into individual elements.
  • a light beam is passed in a vacuum.
  • a sealing material provided in a closed state so as to surround a circular region.
  • a light beam passes in the atmosphere.
  • the sealing material is laminated via a sealing material provided in a partially opened state and an adhesive provided inside the sealing material so as to surround the circular region.
  • the process power for stacking the two liquid crystal aberration correction elements is efficiently performed in the atmosphere.
  • the dual liquid crystal aberration correction element of the present invention has a hole formed in the surface of the substrate and the hole is used as a terminal. Is not added. Therefore, a thinner substrate can be employed, and as a result, a lighter weight device can be achieved.
  • the size of the device can be reduced by that much.
  • the lens effect is reduced by aligning the liquid crystal molecules along a non-uniform electric field distribution formed at the positions of the non-electrode portions.
  • the lens effect is reduced by aligning the liquid crystal molecules along a non-uniform electric field distribution formed at the positions of the non-electrode portions.
  • the liquid crystal is sandwiched in a circle at the center of the square substrate and terminals and the like are provided at the corners of the substrate, the weight balance of the element is excellent, and even if the liquid crystal expands or contracts due to a temperature change, it is improper. Uniform deformation does not occur, and the performance of the element can be maintained.
  • the steps of forming the terminals and the step of injecting the liquid crystal are all performed in the state of the base material before being separated into individual elements.
  • production efficiency is improved and costs can be significantly reduced.
  • the inspection can be performed in the state of the base material, so that high efficiency can be achieved.
  • liquid crystal aberration correction elements to be laminated can be manufactured in exactly the same process. By simply turning one of them upside down and rotating it by 90 degrees, a double element in which the liquid crystal orientation directions are orthogonal to each other can be easily manufactured. it can. Therefore, productivity is extremely high and stable quality can be obtained.
  • FIG. 1 is a plan view showing one embodiment of a double liquid crystal aberration correction element according to the present invention.
  • FIG. 2 is a sectional view taken along line AA of FIG. 1.
  • FIG. 3 is a sectional view taken along line BB of FIG. 1.
  • FIG. 4 is an enlarged view of a portion S in FIG. 1.
  • FIG. 5 is a view for explaining an alignment state of liquid crystal when voltage is applied!
  • FIG. 6 is a flowchart showing a manufacturing process of a double liquid crystal aberration correction element.
  • FIG. 7 is a flowchart showing a manufacturing process of a double liquid crystal aberration correction element.
  • FIG. 8 is a diagram showing a state of S103 in a P direction.
  • FIG. 9 is a sectional view of a terminal portion showing a state of S103.
  • FIG. 10 is a diagram showing a state of S106 in a P direction.
  • FIG. 11 is a diagram showing a state of S108 in a P direction.
  • FIG. 12 is a diagram showing a state of S205 in the Q direction.
  • FIG. 13 is a view showing the state of S104 in the R direction.
  • FIG. 14 is a diagram showing a state of S501.
  • FIG. 15 is a diagram showing a state of S305.
  • FIG. 16 is a diagram showing a state of S504.
  • FIG. 17 is a diagram showing another embodiment of the state of S305.
  • FIG. 1 is a plan view of a double liquid crystal aberration correcting element according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line AA of FIG. 1
  • FIG. 3 is a sectional view taken along line BB of FIG.
  • the double liquid crystal aberration correction element 1 is composed of two liquid crystal difference correction elements 1A and IB having the same constituent power in the thickness direction via a conductive material 70 and a sealing material 51. It is constructed by stacking.
  • the liquid crystal aberration correcting element 1A (similarly to 1B) is schematically configured by sandwiching a liquid crystal 40 between a substrate 10 on which a common electrode 20 is formed and a substrate 11 on which a segment electrode 21 is formed. .
  • a liquid crystal alignment film and a transparent insulating layer generally provided between the common electrode 20 and the liquid crystal 40 and between the segment electrode 21 and the liquid crystal 40, and an antireflection film provided on the substrates 10 and 11 And the like are not shown. Further, the liquid crystal 40 is sealed inside by a seal material 50.
  • This double liquid crystal aberration correction element 1 allows a light beam to pass through a region where the liquid crystal 40 is provided, At this time, by applying a voltage between the common electrode 20 and the segment electrode 21, an alignment state of the liquid crystal 40, which is different depending on the position in the region, that is, a phase difference is given, thereby correcting light aberration. .
  • the liquid crystal aberration correcting elements 1A and IB make the orientation directions of the liquid crystal 40 orthogonal to each other when no voltage is applied, it is possible to satisfactorily correct the aberration in the forward path and the return path.
  • FIG. 4 which is an enlarged view of a portion S in FIG. 1, a plurality of non-electrode portions 211 having no electrode material are formed in the segment electrode 21 in a hole shape.
  • the size and arrangement interval of the plurality of non-electrode portions 211 are continuously changed according to the positions on the segment electrodes 21. It should be noted that the number of non-electrode portions 211 is small for convenience in FIG. 4. In fact, many non-electrode portions 211 are formed more finely.
  • the size dl of the non-electrode portion 211 is changed from a large diameter to a once small diameter and becomes a large diameter again. A continuous pattern is formed so that the width becomes wider and the distance becomes narrower and then becomes wider again.
  • the state of the electric field E near the non-electrode portion 211 is as shown in FIG. That is, in the part a where the common electrode 20 and the segment electrode 21 face each other, a strong electric field is formed in the direction perpendicular to the electrode, and in the part b which is the center of the non-electrode part 211, the electric field perpendicular to the electrode is also formed. A weak electric field is formed in the direction. Then, at a portion c near the boundary between the non-electrode portion 211 and the segment electrode 21, the electric field is inclined toward the segment electrode 21.
  • the liquid crystal molecules are oriented along the electric field E, so that the liquid crystal molecules are arranged perpendicularly to the electrode in the part a, and in the part b. Since the electric field is weak, the state remains parallel to the electrodes, and the portion c is obliquely oriented. That is, the liquid crystal 40 is in a non-uniform alignment state inside the non-electrode portion 211.
  • the refractive index for the light passing through the element forms a distribution that decreases continuously toward the center of the non-electrode portion 211, the effect of the convex lens on the non-electrode portion 211 is obtained. Will be shown. This can give a phase difference to the passing light it can.
  • the alignment state of the liquid crystal molecules changes accordingly. For example, when the voltage is increased, the liquid crystal molecules are vertically aligned even at the center of the non-electrode portion 211, and conversely, the refractive index increases toward the center of the non-electrode portion 211 so as to exhibit a concave lens effect. Become. In other words, since the phase difference curve obtained for the entire device can be changed by the applied voltage, for example, the correction amount is calculated based on V based on the reproduction (RF) waveform, and the voltage is controlled according to the result. It is also possible to correct the aberrations that occur in real time.
  • RF reproduction
  • the size and the arrangement interval of the non-electrode portions 211 are changed along the radial direction r. By doing so, a phase difference curve that changes concentrically according to the arrangement pattern of the non-electrode portions 211 is obtained, so that spherical aberration generated due to a disc thickness deviation can be favorably corrected. Also, since the size and arrangement interval of the non-electrode portions 211 are continuously changed, the biasing force is not a stepwise discontinuous correction like a conventional aberration correction element in which a segment electrode is divided concentrically. Linear correction is possible.
  • the arrangement interval of the non-electrode portions 211 be within each area when the segment electrode 21 is concentrically divided (for example, the area M is irregular (random arrangement) in the area.
  • the spacings hi and h2 are slightly different as shown in Fig. 4. This prevents light passing through adjacent non-electrode portions from interfering with each other and disturbing the wavefront. can do.
  • hi and h2 may be the same and arranged regularly.
  • non-electrode portions 211 As a method of forming the non-electrode portions 211, first, an electrode material is formed on the entire surface of the substrate 11, and then a plurality of non-electrode portions 211 are formed in a desired arrangement pattern by a photo process. Is preferably used. In this way, a fine arrangement pattern that changes continuously can be easily created. Alternatively, a method may be used in which the segment electrode 21 is deposited on the substrate 11 by vapor deposition, plating, or the like via a mask.
  • a transparent substrate such as a glass substrate is used.
  • a transparent electrode such as ITO on which an indium tin oxide film is formed is appropriately employed.
  • holes 30A, 30B, and 30C are formed in the thickness direction of substrate 11, and holes 30D, 30E, and 30F are similarly formed in substrate 10.
  • Each hole is provided with terminals 31A, 31B, 31C, 31D, 31E and 31F for connection to the common electrode 20 and the segment electrode 21, respectively. That is, the terminals 31A and 31D are connected to the segment electrode 21 of the liquid crystal aberration corrector 1A, the terminals 31B and 31E are connected to the common electrode 20, and the terminals 31C and 31F are connected to the segment electrode 21 of the liquid crystal aberration corrector 1B.
  • the terminals facing each other (for example, the terminal 31B and the terminal 31E) are connected via a conductive material 70.
  • Each terminal is formed by plating a metal such as Ni—Au along the inner peripheral surface of the hole.
  • the substrates 10 and 11 are thinner, for example, 0.2 mm
  • the element can be lightened. More specifically, 40% or more of the conventional level (about 10% of the effect of changing from the conventional terminal to the terminal placed on the surface, and the effect of changing the board thickness from 0.3 mm to 0.2 mm About 33%).
  • an injection port 60 for injecting the liquid crystal 40 between the substrates 10 and 11 is formed on the surface of the substrate 11.
  • the shape of the inlet 60 is circular, elliptical, or the like, and is appropriately sealed with the sealing material 61 after the liquid crystal 40 is injected.
  • all of the terminals 31A to 31F and the liquid crystal injection port 60 are arranged on the surfaces of the substrates 10 and 11, and the opposite terminals are connected to each other in the thickness direction. Since the driving terminals provided on the liquid crystal aberration correcting element 1A are integrated, the production efficiency of the element can be increased as described later.
  • the light beam passes through holes 30A-30F and liquid crystal injection port 60. Except for the circular area (the area where the segment electrode 21 and the common electrode 20 are formed), it is formed near the corner 101 on the rectangular substrate 11 (10). Further, the seal member 50 is provided in a substantially circular shape so that the liquid crystal 40 is sealed in a circular region through which the light beam passes. With this configuration, the surplus portion of the substrate 11 through which the light beam does not pass can be effectively used as the position of the terminal and the like, and the element can be further reduced in size. In addition, by arranging the terminals and the like in the corner portions 101, the weight balance of the element can be optimized. As a result, high-precision driving becomes possible, and when the liquid crystal expands and contracts due to a temperature change, pressure is applied evenly to the substrate 11, so that non-uniform deformation does not occur and the performance of the element is maintained. be able to.
  • the arrangement pattern of the plurality of non-electrode portions 211 is not limited to the above embodiment. That is, the size and / or arrangement interval of the non-electrode portions 211 can be appropriately set according to the position on the segment electrode 21 in accordance with the generated aberration and the like. Specifically, for example, contrary to FIG. 4, there is a case where the size of the non-electrode portion is continuously changed from a small diameter to a large diameter or to a small diameter with the central force of the segment electrode 21 also directed toward the periphery. No.
  • the present invention is not limited to the case where the size and the arrangement interval are concentrically changed on the segment electrode 21, but is formed so that, for example, when the segment electrode 21 is divided into left and right regions, different arrangement patterns are formed in each region. You may. In this case, coma caused by the warpage of the disk can be effectively corrected.
  • the present invention is not limited to this.
  • the type of generated aberration, the rubbing direction, and the like are taken into consideration.
  • each electrode and each terminal may be connected by a lead wire or the like.
  • the terminals provided on the substrates 10 and 11 are connected to each other in the thickness direction, and are integrated into the terminals on the uppermost substrate.
  • the case where a plurality of non-electrode portions 211 are formed has been described as an example.
  • the present invention is not limited to this case.
  • the present invention can be similarly applied to a case where a segment electrode is concentrically divided into a plurality of regions.
  • the size and weight of the device can be reduced by arranging the terminals on the substrate.
  • the segment electrode may be divided into left and right. In this case, coma generated by warpage of the optical disk can be corrected well.
  • the double liquid crystal aberration correction element 1 as described above constitutes an optical pickup together with, for example, a laser light source, a polarizer, a 1Z2 wavelength plate, a 1Z4 wavelength plate, an objective lens, a light receiving element, and the like, and is incorporated in an optical disk device.
  • a laser light source for example, a laser light source, a polarizer, a 1Z2 wavelength plate, a 1Z4 wavelength plate, an objective lens, a light receiving element, and the like
  • an optical disk device for example, a laser light source, a polarizer, a 1Z2 wavelength plate, a 1Z4 wavelength plate, an objective lens, a light receiving element, and the like.
  • the aberration in the forward path and the return path can be corrected, it can be suitably used for a high-density optical disc such as a next-generation BD (Blu-ray Disc) or a multilayer disc.
  • a high-density optical disc such as a next-generation BD (Blu-ray Disc) or a multilayer disc.
  • FIG. 8 and FIG. 11 show a state in which the force in the P direction in FIG. 2 is viewed.
  • holes 30A, 30B and 30C corresponding to a large number of liquid crystal aberration correcting elements and a liquid crystal injection port 60 are placed at predetermined positions on a substrate 110 serving as a base material. (S101).
  • an antireflection film (AR film) is formed on the entire surface of the substrate 110 serving as a base material (S102)
  • terminals 31A, 31B, and 31C are provided in the respective holes (S103).
  • the terminals 31A to 31C need to overlap each other when the substrate 110 is turned upside down and rotated by 90 degrees. Therefore, the substrate 110 as a base material is preferably square, and The same number of liquid crystal aberration correction elements are formed vertically and horizontally.
  • each terminal for example, terminal 31A
  • FIG. 9 after forming a mask 80 on a portion other than the hole 30A, forming a metal to be the terminal 31A by plating or the like, This is preferably performed by removing the mask 80.
  • wiring used for an inspection described later is formed on the side viewed from the R direction in FIG. After that (S104), an electrode material is formed at a predetermined position by vapor deposition or the like (S105), and pattern jung is performed by etching or the like to produce a segment electrode 21 (S106). This state is shown in FIG. Note that the step of providing the terminal and the step of forming a wiring used for inspection may be performed before or after.
  • a transparent insulating layer is laminated on the side in the P direction as necessary, a liquid crystal alignment film such as PVA is formed, and rubbing is performed (S 107). Further, a sealing material 50 for enclosing the liquid crystal is provided outside the segment electrode 21 by printing or the like (S108). This state is shown in FIG.
  • FIG. 12 With respect to another substrate (substrate 10 side) to be opposed, as shown in FIG. 12 viewed from the Q direction in FIG.
  • forming holes 30D, 31E, 30F in the device (S201) After forming holes 30D, 31E, 30F in the device (S201), forming an AR film (S202), providing terminals 31D, 31E, 31F (S203), depositing electrode materials, etc. (S204) Is performed to form the common electrode 20 (S205).
  • a liquid crystal alignment film is formed and rubbing is performed (S206), and a conductive material for connecting to each terminal of the substrate 110 to be opposed is provided by printing or the like (S207).
  • the injection port 60 can be formed on the substrate 10 side, or the sealing material 50 can be printed on the substrate 10 side and the conductive material can be printed on the substrate 11 side.
  • the substrate 110 and the substrate 100 on which the terminals and the like as described above are formed are combined to face each other (S301). This step is performed by bonding with an adhesive through a spacer.
  • the liquid crystal is injected into the inside of the sealing material 50 from the injection port 60 (S302), and sealed by a sealing material. Then, an operation test of the element is performed using the terminals arranged on the substrate 110 serving as a base material (S303). At this time, since the wiring 90 is previously formed on the substrate 110 as shown in FIG. 13 (S104), a 100% inspection is performed at once using the wiring 90. NG marking is performed on the parts that failed the inspection (S304).
  • the seal material 51 and the conductive material 70 are printed in advance between the sets (S305, S401).
  • the sealing material 51 and the conductive material 70 may be provided on the liquid crystal aberration correction element 1A side, respectively, or may be provided on the opposite liquid crystal aberration correction element 1B side.
  • the sealing material 51 can be provided in a closed state so as to surround a circular area through which a light beam passes.
  • the work of laminating the sets needs to be performed in a vacuum so that the lamination state is not impaired by the expansion of the gas confined inside the sealing material 51.
  • the sealing material 51 is in a closed state and the inside is vacuum, because dust and the like do not enter the inside and the light transmittance can be increased.
  • the operation of the double liquid crystal aberration correction element is inspected using the terminals arranged on the substrate 110 serving as the base material (S502). Also at this time, as in the case described above, the 100% inspection can be performed at once using the wiring 90 formed on the substrate 110. NG marking is performed on the part that failed as a result of the inspection (S503).
  • the substrate serving as a base material is cut into individual double liquid crystal aberration correction elements 1 using a dicer or the like (S 504), and the inspection process of a single product (S 505) is performed. After that, it is shipped (S507). In addition, the element which failed in the inspection of the single item is transferred to a discarding or repairing force or a regeneration process (S506).
  • each terminal and electrode, the step of injecting liquid crystal, and the like are all performed in the state of the base material before being separated into individual elements, so that the production efficiency is extremely high. High costs can also be significantly reduced. Almost accommodates production scale expansion Noh.
  • the two liquid crystal aberration correcting elements to be laminated are manufactured in the same process rather than separately, and only one of them needs to be turned upside down and rotated 90 degrees, greatly improving the overall production efficiency.
  • the inspection process performed after injecting and sealing the liquid crystal can be performed simultaneously in the state of the base material, which is extremely useful in industry.

Abstract

A novel double liquid-crystal aberration correcting element smaller and lighter than conventional ones. The double liquid-crystal aberration correcting element (1) is composed of two liquid-crystal aberration correcting elements stacked in the direction of the thickness. Each liquid-crystal aberration correcting element comprises a pair of substrates on one of which a common electrode is provided and on the other of which a segment electrode (21) having a non electrode portion is provided and a liquid crystal interposed between the paired substrates. Holes (30A, 30B, 30C) are made in the thickness direction in each of the substrates, and terminals (31A, 31B, 31C) each connected to one of the common and segment electrodes are provided to the holes respectively. An injection hole (60) through which the liquid crystal is injected is made in one of the substrates. The alignment directions of the liquid crystal of the two liquid-crystal aberration correcting elements during voltage nonapplication are perpendicular to each other.

Description

二重液晶収差補正素子、及びその製造方法  Double liquid crystal aberration correcting element and method of manufacturing the same
技術分野  Technical field
[0001] 本発明は、光ディスク装置において、光ピックアップでの記録 ·再生時に生ずる収 差を補正するために用いる液晶収差補正素子に関する。特に、青紫色半導体レー ザを光源として用い、複数の記録層を有する大容量の次世代光ディスク (Blu-ray disc; BD)等に好適に用いられ、往路 ·復路における収差補正を行うための二重液晶 収差補正素子、及びその製造方法の技術分野に属する。  [0001] The present invention relates to a liquid crystal aberration correction element used in an optical disc device for correcting a difference that occurs during recording / reproducing with an optical pickup. In particular, a blue-violet semiconductor laser is used as a light source, and is suitably used for a large-capacity next-generation optical disc (Blu-ray disc; BD) having a plurality of recording layers. The present invention belongs to the technical field of double liquid crystal aberration correction element and its manufacturing method.
背景技術  Background art
[0002] 従来、情報記録媒体として CD、 DVD等の各種光ディスクが知られて 、る。これら の光ディスクは、回転することによる厚さずれや反り等によって収差 (集光スポットの 歪)を生ずるため、この収差を補正して記録 '再生の精度を上げることが求められる。  Conventionally, various optical disks such as CDs and DVDs are known as information recording media. These optical discs cause aberrations (distortion of the condensed spot) due to thickness shift or warpage due to rotation, so it is required to correct the aberrations and increase the recording / reproducing accuracy.
[0003] 上記収差を補正する技術として、コリメータレンズをァクチユエータで駆動させる方 式と、液晶収差補正素子を利用する方式が知られている。  [0003] As a technique for correcting the aberration, a method of driving a collimator lens by an actuator and a method of using a liquid crystal aberration correction element are known.
前者の方式は、ァクチユエータが必要となるため光ピックアップが複雑になり、また 高精度な補正には対応し切れな 、と 、う問題があった。  The former method has a problem that an optical pickup is complicated because an actuator is required, and it is not possible to cope with high-precision correction.
これに対し、液晶収差補正素子は、液晶パネルの電極を例えば同心円のリング状 に形成し、これにより光束の中央部と外縁部とで異なる位相制御を行うものである。こ の液晶収差補正素子は、光ピックアップにおいて対物レンズとともに同一光軸上に配 置されるため、良好な駆動が得られるように小型化 ·軽量ィ匕することが望まれていた。  On the other hand, the liquid crystal aberration correcting element forms the electrodes of the liquid crystal panel in, for example, a concentric ring shape, thereby performing different phase control between the central portion and the outer edge portion of the light beam. Since the liquid crystal aberration correcting element is arranged on the same optical axis together with the objective lens in the optical pickup, it has been desired to reduce the size and weight so that good driving can be obtained.
[0004] ところで近年では、光源波長の短波長化や対物レンズの高 NAィヒにより、 Blu-ray disc (BD)等の大容量の光ディスクが開発されている。この BDは、将来的には厚さ方 向に複数の記録層を有するため、異なる深度にレーザの焦点位置を合わせる必要 があり、また光源波長が短いために、カバー層厚のばらつきやディスクの傾きに対す る許容量が小さぐ発生する波面収差が大きくなる傾向があった。この問題に対処す るため、上述の素子を 2枚組み合わせ、往路と復路における収差補正を行うことで検 出精度を向上させた二重液晶収差補正素子が提案されている。 [0005] 従来の二重液晶収差補正素子として、例えば (特許文献 1)には、出射光が光源か ら光磁気記録媒体に向力う往路と光磁気記録媒体力 光検出器へ向力う復路とが共 有する光路中に、 2つの位相補正素子が設置されており、いずれの位相補正素子も 、透明電極付の 1対の透明基板を備え、 1対の透明基板間に液晶層が狭持されるも のであり、電圧の印加時に 2つの位相補正素子の少なくとも 1つに形成された透明電 極は出射光の波面収差を補正できるように分割された分割電極となっており、かつ 2 つの位相補正素子の実質的なリタデーシヨン値が等しぐ電圧の非印加時に 2つの 位相補正素子を構成する液晶層の液晶分子の配向方向が互いに直交している例が 記載されている。 [0004] In recent years, large-capacity optical discs such as Blu-ray discs (BD) have been developed due to the shortening of the light source wavelength and the high NA of the objective lens. Since this BD will have a plurality of recording layers in the thickness direction in the future, it is necessary to adjust the focal position of the laser to different depths, and since the light source wavelength is short, variations in cover layer thickness and disc The wavefront aberration that occurs when the allowable amount for the inclination is small tends to increase. In order to address this problem, a double liquid crystal aberration correction element has been proposed in which the above-described two elements are combined and the detection accuracy is improved by performing aberration correction on the forward path and the return path. [0005] As a conventional double liquid crystal aberration correction element, for example, (Patent Document 1) discloses a forward path in which emitted light is directed from a light source to a magneto-optical recording medium and a directed path to a magneto-optical recording medium. Two phase correction elements are provided in the optical path shared by the return path, and each phase correction element includes a pair of transparent substrates with transparent electrodes, and a liquid crystal layer is narrow between the pair of transparent substrates. The transparent electrode formed on at least one of the two phase correction elements when a voltage is applied is a split electrode that is split so that the wavefront aberration of the emitted light can be corrected. An example is described in which the orientation directions of the liquid crystal molecules of the liquid crystal layers constituting the two phase correction elements are orthogonal to each other when a voltage having the same retardation value as that of the two phase correction elements is not applied.
[0006] 上記従来の素子では、(特許文献 1)の図 2に示すように、素子の片側の基板をより 長くしてその部分に電極引出部を形成し、その電極引出部と制御回路とをフレキシ ブルプリント基板等によって接続させて 、た。  In the above conventional device, as shown in FIG. 2 of (Patent Document 1), a substrate on one side of the device is made longer to form an electrode lead portion in that portion, and the electrode lead portion and the control circuit are connected to each other. Are connected by a flexible printed circuit board or the like.
この場合、ガラス基板上の電極引出部の部分に力が加わるため、ガラス基板を薄く しょうとすると割れ'カケ不良を生ずる恐れがあり、それゆえ厚さには強度の点で限界 (0. 3-0. 5mm程度)があった。したがって、 2つの素子を組み合わせたときには全 体が厚くなり、十分な軽量ィ匕が図れな力つた。また、片側の基板を長く形成している ため、その分素子が大きくなり、さらに素子自体の重量バランスが崩れることによって 高精度な駆動が難しくなるという問題もあった。  In this case, since a force is applied to the portion where the electrode is drawn out on the glass substrate, if the glass substrate is made thinner, there is a risk of cracking and chipping.Thus, the thickness is limited in terms of strength (0.3 -0.5 mm). Therefore, when the two elements were combined, the overall thickness was increased, and sufficient light weight could not be achieved. In addition, since the substrate on one side is formed longer, the element becomes larger by that amount, and furthermore, the weight balance of the element itself is lost, so that there is a problem that high-precision driving becomes difficult.
[0007] また、液晶収差補正素子は、特に車載用等の用途を考慮した場合、保存温度範囲 として 40— 90°C、使用温度範囲として— 20— 80°Cを達成することが要求される力 温度が変化すると液晶及び基板が膨張'収縮し、このとき液晶と基板の膨張率が異 なるため、上記 (特許文献 1)のように基板を片側に長く形成してそこに端子を集約さ せた場合には、全体が不均一に変形し、その結果、得られる補正効果に悪影響を与 える恐れがあった。  [0007] In addition, the liquid crystal aberration correction element is required to achieve a storage temperature range of 40 to 90 ° C and a use temperature range of -20 to 80 ° C, particularly when considering applications such as in-vehicle use. When the temperature changes, the liquid crystal and the substrate expand and contract, and at this time, the expansion rates of the liquid crystal and the substrate are different. Therefore, as described above (Patent Document 1), the substrate is formed long on one side and the terminals are concentrated there. In this case, the entire structure is deformed non-uniformly, and as a result, the obtained correction effect may be adversely affected.
[0008] さらに、従来の素子を製造する際には、大きさの異なる 2枚の基板を対向させ、その 基板の側面の隙間から液晶を注入 '封止していた。そのため、大きさが数 mm程度に 加工された小さ!/、基板の組み合わせを逐一作製し、それぞれに対して液晶の注入' 封止を行う必要があり、生産効率が悪ぐコストも高いという問題があった。また、側方 に設けた電極引出部の位置に対して液晶分子の配向方向が相異なる 2種類の素子 を別々に作製しなければならず、効率が悪力つた。 Further, when manufacturing a conventional device, two substrates having different sizes are opposed to each other, and a liquid crystal is injected and sealed through a gap on a side surface of the substrate. For this reason, it is necessary to manufacture each combination of substrates one by one and process the liquid crystal in each case, and to inject and seal the liquid crystal in each case, resulting in poor production efficiency and high cost. was there. Also, side Therefore, two types of devices having different alignment directions of the liquid crystal molecules with respect to the position of the electrode lead-out portion provided in the above had to be manufactured separately, which was inefficient.
また、上述のように、電極引出部が素子の側方に突出して設けられていたため、製 品の検査を最終的に加工された個々の素子ごとに行う必要があり、効率が悪いという 問題もあった。  In addition, as described above, since the electrode lead-out portion is provided to protrude to the side of the element, it is necessary to perform a product inspection for each element that has been finally processed, which is inefficient. there were.
[0009] また一方、良好な補正を行うためには、発生した収差に対して逆の位相差を加える ことが理想的である。しカゝしながら、例えば (特許文献 2)のように電極の領域を同心 円状に分割した場合には、得られる位相差が階段状になってしまうという問題があつ た。  [0009] On the other hand, in order to perform good correction, it is ideal to add an opposite phase difference to the generated aberration. However, when the electrode area is concentrically divided as in, for example, (Patent Document 2), there is a problem that the obtained phase difference becomes step-like.
それゆえ、発生する収差に対しリニアな補正を行うことのできる二重液晶収差補正 素子の開発が望まれていた。  Therefore, there has been a demand for the development of a double liquid crystal aberration correction element capable of linearly correcting the generated aberration.
[0010] 特許文献 1 :特開 2002— 319202号公報 (請求項 1、段落 0038、図 2) Patent Document 1: Japanese Patent Application Laid-Open No. 2002-319202 (Claim 1, Paragraph 0038, FIG. 2)
特許文献 2:特開 2002-237077号公報 (請求項 1、段落 0014)  Patent Document 2: Japanese Patent Application Laid-Open No. 2002-237077 (Claim 1, Paragraph 0014)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] そこで本発明は、従来の素子に比べて小型化、軽量ィ匕を図ることができる新規な二 重液晶収差補正素子を提供することを目的とする。 [0011] Therefore, an object of the present invention is to provide a novel double liquid crystal aberration correction element that can be made smaller and lighter than conventional elements.
また、光ディスクの厚さずれ等によって発生する収差をリニアに補正し、それによつ て記録 ·再生の精度を高めることができる二重液晶収差補正素子を提供することを目 的とする。  It is another object of the present invention to provide a dual liquid crystal aberration correction element capable of linearly correcting aberrations caused by a thickness deviation of an optical disc and thereby improving the recording / reproducing accuracy.
[0012] また、温度変化によって不均一な変形を生ずることなぐ素子の性能を維持すること ができる二重液晶収差補正素子を提供することを目的とする。  [0012] It is another object of the present invention to provide a double liquid crystal aberration correction element that can maintain the performance of the element without causing non-uniform deformation due to a temperature change.
[0013] さらに、生産効率に優れ、低コストであり、素子の検査も効率良く行うことができる二 重液晶収差補正素子の製造方法を提供することを目的とする。 [0013] It is still another object of the present invention to provide a method of manufacturing a double liquid crystal aberration correction element that is excellent in production efficiency, low in cost, and can perform element inspection efficiently.
課題を解決するための手段  Means for solving the problem
[0014] 上記課題を解決するため、本発明では、厚さ方向に積層した 2つの液晶収差補正 素子から構成され、前記各々の液晶収差補正素子は、一方にコモン電極が、他方に セグメント電極が形成された一対の基板と、前記一対の基板に挟まれた液晶とを備え 、前記一対の基板の各々には厚さ方向に複数の穴が穿たれるとともに前記穴には前 記コモン電極およびセグメント電極の!/、ずれかに接続される端子が設けられ、前記一 対の基板の一方には液晶を注入するための注入口が形成され、電圧の非印加時に おける液晶の配向方向が 2つの液晶収差補正素子で直交してなる二重液晶収差補 正素子を提供する。 [0014] In order to solve the above problems, the present invention comprises two liquid crystal aberration correction elements stacked in the thickness direction, and each of the liquid crystal aberration correction elements has a common electrode on one side and a segment electrode on the other side. Comprising a pair of substrates formed and a liquid crystal sandwiched between the pair of substrates. In each of the pair of substrates, a plurality of holes are drilled in the thickness direction, and the holes are provided with terminals to be connected to the common electrode and the segment electrode. An injection port for injecting liquid crystal is formed on one side of the substrate, and a double liquid crystal aberration compensating element is provided in which the liquid crystal alignment direction when no voltage is applied is orthogonal to the two liquid crystal aberration compensating elements. .
[0015] 上記構成によれば、コモン電極及びセグメント電極に接続するための端子、並びに 液晶の注入口力 穴を通じて基板の表面上に配置される。  According to the above configuration, the terminal for connecting to the common electrode and the segment electrode, and the liquid crystal injection port are arranged on the surface of the substrate through the hole.
[0016] また、本発明では、厚さ方向に積層した 2つの液晶収差補正素子力も構成され、前 記各々の液晶収差補正素子は、一方にコモン電極が、他方にセグメント電極が形成 された一対の基板と、前記一対の基板に挟まれた液晶とを備え、前記セグメント電極 には、電極材の存在しな 、複数の非電極部位が前記セグメント電極上の位置によつ て大きさもしくは配置間隔又はその両方を変化させて形成され、前記非電極部位の 内側では電圧印加時に液晶が不均一に配向するように構成され、前記一対の基板 の各々には厚さ方向に複数の穴が穿たれるとともに前記穴には前記コモン電極およ びセグメント電極の 、ずれか〖こ接続される端子が設けられ、前記一対の基板の一方 には液晶を注入するための注入口が形成され、電圧の非印加時における液晶の配 向方向が 2つの液晶収差補正素子で直交してなる二重液晶収差補正素子を提供す る。  [0016] In the present invention, two liquid crystal aberration correcting elements are also stacked in the thickness direction, and each of the liquid crystal aberration correcting elements has a pair of common electrodes formed on one side and segment electrodes formed on the other side. And a liquid crystal sandwiched between the pair of substrates. In the segment electrode, a plurality of non-electrode portions having no electrode material are sized or arranged according to positions on the segment electrode. The gap is formed by changing the distance or both, and the liquid crystal is non-uniformly aligned when a voltage is applied inside the non-electrode portion. A plurality of holes are formed in each of the pair of substrates in the thickness direction. At the same time, the holes are provided with terminals of the common electrode and the segment electrode to be connected to each other, and an injection port for injecting liquid crystal is formed on one of the pair of substrates. When no voltage is applied The present invention provides a double liquid crystal aberration corrector in which the orientation of the liquid crystal is orthogonal between two liquid crystal aberration correctors.
[0017] 上記構成によれば、上記の作用に加えて、複数形成された非電極部位の中心部で は電極に対して垂直方向に弱 、電界が形成され、非電極部位の端の部分では電界 が傾いた方向に形成されるため、その電界分布に沿って液晶分子が不均一に配向 することで、非電極部位の中心力 周辺にかけて屈折率が連続的に変化するレンズ 効果が得られる。したがって、そのレンズ部分に光束を通過させることで、所定の位 相差が与えられ収差が補正される。特に、非電極部位の大きさもしくは配置間隔を変 ィ匕させることで、それぞれの領域で得られる位相差が変わり、素子全体として収差に 応じた最適な補正が行われる。  According to the above configuration, in addition to the above-described functions, an electric field is weakly formed in a central portion of the plurality of non-electrode portions in a direction perpendicular to the electrode, and an electric field is formed at an end portion of the non-electrode portion. Since the electric field is formed in a tilted direction, the liquid crystal molecules are non-uniformly aligned along the distribution of the electric field, thereby obtaining a lens effect in which the refractive index changes continuously around the central force of the non-electrode portion. Therefore, by allowing the light beam to pass through the lens portion, a predetermined phase difference is given and the aberration is corrected. In particular, by changing the size or the arrangement interval of the non-electrode portions, the phase difference obtained in each region is changed, and optimal correction according to aberration is performed as a whole element.
[0018] また、本発明は、上記記載の二重液晶収差補正素子において、基板が四角形状 に形成され、前記基板の光束が通過する円形領域に沿って液晶がシールされ、前 記円形領域以外のコーナー部付近に、液晶の注入口および端子が設けられることを 特徴とする。 Further, according to the present invention, in the above-described double liquid crystal aberration correction element, the substrate is formed in a square shape, and the liquid crystal is sealed along a circular area of the substrate through which a light beam passes. A liquid crystal injection port and a terminal are provided near a corner portion other than the circular region.
[0019] 上記構成によれば、基板のコーナー部付近が、穴を形成するスペースとして有効 利用されるとともに、素子の重量バランスが改善される。また、液晶が膨張'収縮する 場合に全体が均一に変形する。  According to the above configuration, the vicinity of the corner of the substrate is effectively used as a space for forming a hole, and the weight balance of the element is improved. Further, when the liquid crystal expands and contracts, the whole liquid crystal is uniformly deformed.
[0020] また、本発明は、上記記載の二重液晶収差補正素子において、積層した各々の液 晶収差補正素子のコモン電極に接続される端子同士、一方の液晶収差補正素子の セグメント電極に接続される端子同士、および他方の液晶収差補正素子のセグメント 電極に接続される端子同士が厚さ方向に相互に接続され、二重液晶収差補正素子 の外側に位置する一の基板に設けられた端子にそれぞれ集約されることを特徴とす る。  [0020] Further, the present invention provides the dual liquid crystal aberration correction element described above, wherein terminals connected to a common electrode of each of the stacked liquid crystal aberration correction elements are connected to a segment electrode of one of the liquid crystal aberration correction elements. The terminals connected to each other and the terminals connected to the segment electrodes of the other liquid crystal aberration correction element are connected to each other in the thickness direction, and are provided on one substrate located outside the double liquid crystal aberration correction element. It is characterized by being aggregated in each.
[0021] また、本発明は、上記記載の二重液晶収差補正素子において、積層した各々の液 晶収差補正素子のコモン電極に接続される端子同士、一方の液晶収差補正素子の セグメント電極に接続される端子同士、および他方の液晶収差補正素子のセグメント 電極に接続される端子同士が厚さ方向に相互に接続され、二重液晶収差補正素子 の外側に位置する一の基板に設けられた端子にそれぞれ集約されることを特徴とす る。  Further, according to the present invention, in the double liquid crystal aberration correcting element described above, terminals connected to a common electrode of each of the stacked liquid crystal aberration correcting elements are connected to a segment electrode of one of the liquid crystal aberration correcting elements. The terminals connected to each other and the terminals connected to the segment electrodes of the other liquid crystal aberration correction element are connected to each other in the thickness direction, and are provided on one substrate located outside the double liquid crystal aberration correction element. It is characterized by being aggregated in each.
[0022] 上記構成によれば、素子を駆動させるための各端子が、一の基板上に集約配置さ れる。  According to the above configuration, the terminals for driving the elements are collectively arranged on one substrate.
[0023] また、本発明は、上記記載の二重液晶収差補正素子において、一方の液晶収差 補正素子のセグメント電極に接続される端子と、他方の液晶収差補正素子のセグメ ント電極に接続される端子とが、四角形状の基板の対角に位置するコーナー部付近 に設けられ、コモン電極に接続される端子と液晶の注入口とが残りのコーナー部付 近に設けられることを特徴とする。  [0023] Further, according to the present invention, in the above-described double liquid crystal aberration correction element, a terminal connected to a segment electrode of one liquid crystal aberration correction element and a segment electrode of the other liquid crystal aberration correction element. The terminal is provided near a corner located at a diagonal of the square substrate, and the terminal connected to the common electrode and the liquid crystal injection port are provided near the remaining corner.
[0024] 上記構成によれば、素子を製造する際の効率を考慮し、各端子の位置が設定され る。  According to the above configuration, the position of each terminal is set in consideration of efficiency in manufacturing the element.
[0025] また、本発明は、上記記載の二重液晶収差補正素子の製造方法であって、母材と なる基板に対し、多数個の液晶収差補正素子に対応する端子および注入口を設け る工程と、セグメント電極を形成する工程と、前記の端子、注入口、およびセグメント 電極を形成した基板に対し、対向する位置に端子を設けるとともにコモン電極を形成 した別の基板を組み合わせる工程と、組み合わせた後に注入口から液晶を注入する 工程と、前記各工程を経て製造される多数個の液晶収差補正素子が配列した組に 対し、同様の各工程を経て得られる別の組を裏返しかつ 90度回転させた上で積層さ せる工程と、個々の二重液晶収差補正素子に切り分ける工程と、を有してなる二重 液晶収差補正素子の製造方法である。 [0025] Further, the present invention is the method for manufacturing a double liquid crystal aberration corrector described above, wherein a terminal and an injection port corresponding to a large number of liquid crystal aberration correctors are provided on a substrate serving as a base material. Forming a segment electrode, combining the terminal, injection port, and the substrate on which the segment electrode is formed with a terminal provided at a position facing the substrate and another substrate on which a common electrode is formed, A step of injecting liquid crystal from the injection port after the combination, and a set in which a large number of liquid crystal aberration correction elements manufactured through the above-described steps are arranged, turn over another set obtained through the same steps and turn over. This is a method for manufacturing a double liquid crystal aberration correction element, which comprises a step of stacking layers after rotating each other, and a step of dividing the element into individual double liquid crystal aberration correction elements.
[0026] また、本発明は、上記記載の二重液晶収差補正素子の製造方法であって、母材と なる基板に対し、多数個の液晶収差補正素子に対応する端子を設ける工程と、セグ メント電極を形成する工程と、前記の端子、およびセグメント電極を形成した基板に 対し、対向する位置に端子とさらに注入口を設けるとともにコモン電極を形成した別 の基板を組み合わせる工程と、組み合わせた後に注入口カゝら液晶を注入する工程と 、前記各工程を経て製造される多数個の液晶収差補正素子が配列した組に対し、同 様の各工程を経て得られる別の組を裏返しかつ 90度回転させた上で積層させるェ 程と、個々の二重液晶収差補正素子に切り分ける工程と、を有してなる二重液晶収 差補正素子の製造方法である。  [0026] Further, the present invention is the method for manufacturing a double liquid crystal aberration correction element described above, wherein a step of providing terminals corresponding to a large number of liquid crystal aberration correction elements on a substrate serving as a base material, Forming a common electrode on the substrate on which the terminal and the segment electrode are formed, and providing a terminal and an injection port at a position opposite to the substrate on which the terminal and the segment electrode are formed, and combining another substrate on which the common electrode is formed. A step of injecting liquid crystal from an inlet port, and turning over another set obtained through the same steps with respect to a set in which a large number of liquid crystal aberration correcting elements manufactured through the above steps are arranged. This is a method for manufacturing a double liquid crystal aberration correction element, which comprises a step of laminating after rotation by two degrees, and a step of dividing into individual double liquid crystal aberration correction elements.
[0027] 上記手段によれば、二重液晶収差補正素子の製造が、最終工程まで母材となる基 板の状態のまま進められる。そして、液晶の配向方向が直交している往路'復路の 2 つの液晶収差補正素子が、同一の工程によって製造される。  [0027] According to the above means, the production of the double liquid crystal aberration correction element proceeds with the state of the base material substrate until the final step. Then, two liquid crystal aberration correction elements of the forward path and the return path in which the liquid crystal orientation directions are orthogonal to each other are manufactured by the same process.
[0028] また、本発明は、上記記載の製造方法において、基板の表面には、それぞれの端 子に共通して接続される検査用の配線を形成し、多数個の液晶収差補正素子が配 列した組に対して別の組を積層させる工程の前、もしくは個々の二重液晶収差補正 素子に切り分ける工程の前のいずれか一方又は両方の時点で前記配線を利用して 検査を行うことを特徴とする。  According to the present invention, in the above-described manufacturing method, an inspection wiring commonly connected to each terminal is formed on the surface of the substrate, and a large number of liquid crystal aberration correction elements are arranged. The inspection using the wiring is performed before or after the step of laminating another set with respect to the set of rows, or before or during the step of cutting into individual double liquid crystal aberration correction elements. Features.
[0029] 上記手段によれば、個々の素子に分ける前の母材の状態で、素子の動作確認が 一度に行われる。  [0029] According to the above means, the operation of the elements is checked at once in the state of the base material before being divided into individual elements.
[0030] また、本発明は、上記のいずれか記載の製造方法において、多数個の液晶収差補 正素子が配列した組に対して別の組を積層させる際に、真空中で、光束が通過する 円形領域を囲むように閉じた状態で設けられるシール材を介して積層させることを特 徴とする。 [0030] Further, according to any one of the above-described manufacturing methods, when another set is stacked on a set in which a large number of liquid crystal aberration correction elements are arranged, a light beam is passed in a vacuum. Do It is characterized by being laminated via a sealing material provided in a closed state so as to surround a circular region.
[0031] 上記手段によれば、 2つの液晶収差補正素子の間が真空状態となり、接着剤が存 在しないので、高い光透過率が維持される。  [0031] According to the above means, since the space between the two liquid crystal aberration correction elements is in a vacuum state and there is no adhesive, a high light transmittance is maintained.
[0032] さらに、本発明は、上記のいずれか記載の製造方法において、多数個の液晶収差 補正素子が配列した組に対して別の組を積層させる際に、大気中で、光束が通過す る円形領域を囲むように一部開 、た状態で設けられるシール材と前記シール材の内 側に設けられる接着剤とを介して積層させることを特徴とする。 Further, according to the present invention, in the manufacturing method according to any one of the above, when another set is stacked on a set in which a large number of liquid crystal aberration correcting elements are arranged, a light beam passes in the atmosphere. The sealing material is laminated via a sealing material provided in a partially opened state and an adhesive provided inside the sealing material so as to surround the circular region.
[0033] 上記手段によれば、 2つの液晶収差補正素子を積層させる工程力 大気中で効率 的に行われる。この場合、接着剤は、屈折率が基板と近いものを選択することが好ま しい。 [0033] According to the above means, the process power for stacking the two liquid crystal aberration correction elements is efficiently performed in the atmosphere. In this case, it is preferable to select an adhesive having a refractive index close to that of the substrate.
発明の効果  The invention's effect
[0034] 本発明の二重液晶収差補正素子は、基板の表面に穴を穿ち、その穴の部分を端 子としたため、端子を側方に設けた従来の素子に比べて基板に無理な力が加わるこ とがない。したがって、より薄い基板を採用することができ、結果として素子の軽量ィ匕 を達成することができる。  [0034] The dual liquid crystal aberration correction element of the present invention has a hole formed in the surface of the substrate and the hole is used as a terminal. Is not added. Therefore, a thinner substrate can be employed, and as a result, a lighter weight device can be achieved.
[0035] また、基板の表面に端子を配置したことにより、その分だけ素子の小型化を図ること ができる。  Further, by arranging the terminals on the surface of the substrate, the size of the device can be reduced by that much.
[0036] さらに、セグメント電極に複数の非電極部位を形成した場合には、その非電極部位 の位置に形成される不均一な電界分布に沿って液晶分子を配向させることで、レン ズ効果を生じさせる。これにより、光ディスクの厚さずれ等によって発生する収差をリ ユアに補正することができる。  Further, when a plurality of non-electrode portions are formed on the segment electrode, the lens effect is reduced by aligning the liquid crystal molecules along a non-uniform electric field distribution formed at the positions of the non-electrode portions. Cause. As a result, aberrations generated due to a deviation in the thickness of the optical disk or the like can be corrected freely.
[0037] また、四角形状の基板の中央部に液晶を円形に挟み込み、その基板のコーナー部 に端子等を設けたため、素子の重量バランスに優れ、温度変化によって液晶が膨張 •収縮した場合でも不均一な変形が起こらず、素子の性能を維持することができる。  [0037] In addition, since the liquid crystal is sandwiched in a circle at the center of the square substrate and terminals and the like are provided at the corners of the substrate, the weight balance of the element is excellent, and even if the liquid crystal expands or contracts due to a temperature change, it is improper. Uniform deformation does not occur, and the performance of the element can be maintained.
[0038] また、本発明の二重液晶収差補正素子の製造方法によれば、端子を形成するェ 程や、液晶を注入する工程等が、全て個々の素子に切り分ける前の母材の状態で行 われるため、生産効率が向上し、コストを大幅に低減することができる。 また、各素子を検査する際にも、母材の状態で行うことができるため、高い効率を達 成することができる。 Further, according to the method for manufacturing a double liquid crystal aberration correcting element of the present invention, the steps of forming the terminals and the step of injecting the liquid crystal are all performed in the state of the base material before being separated into individual elements. As a result, production efficiency is improved and costs can be significantly reduced. In addition, when each element is inspected, the inspection can be performed in the state of the base material, so that high efficiency can be achieved.
さらに、積層させる 2つの液晶収差補正素子を、全く同一の工程で製造でき、一方 を裏返してかつ 90度回転させるだけで、液晶の配向方向が直交した二重の素子を 容易に作製することができる。したがって、生産性は極めて高ぐ安定した品質を得る ことができる。  Furthermore, two liquid crystal aberration correction elements to be laminated can be manufactured in exactly the same process. By simply turning one of them upside down and rotating it by 90 degrees, a double element in which the liquid crystal orientation directions are orthogonal to each other can be easily manufactured. it can. Therefore, productivity is extremely high and stable quality can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0039] [図 1]本発明に係る二重液晶収差補正素子の一実施形態を示す平面図である。  FIG. 1 is a plan view showing one embodiment of a double liquid crystal aberration correction element according to the present invention.
[図 2]図 1の A— A断面図である。  FIG. 2 is a sectional view taken along line AA of FIG. 1.
[図 3]図 1の B— B断面図である。  FIG. 3 is a sectional view taken along line BB of FIG. 1.
[図 4]図 1の S部分の拡大図である。  FIG. 4 is an enlarged view of a portion S in FIG. 1.
[図 5]電圧を印力!]した際の液晶の配向状態を説明する図である。  FIG. 5 is a view for explaining an alignment state of liquid crystal when voltage is applied!
[図 6]二重液晶収差補正素子の製造工程を示すフローチャートである。  FIG. 6 is a flowchart showing a manufacturing process of a double liquid crystal aberration correction element.
[図 7]二重液晶収差補正素子の製造工程を示すフローチャートである。  FIG. 7 is a flowchart showing a manufacturing process of a double liquid crystal aberration correction element.
[図 8]P方向における S 103の状態を示す図である。  FIG. 8 is a diagram showing a state of S103 in a P direction.
[図 9]S103の状態を示す端子部分の断面図である。  FIG. 9 is a sectional view of a terminal portion showing a state of S103.
[図 10]P方向における S106の状態を示す図である。  FIG. 10 is a diagram showing a state of S106 in a P direction.
[図 11]P方向における S 108の状態を示す図である。  FIG. 11 is a diagram showing a state of S108 in a P direction.
[図 12]Q方向における S205の状態を示す図である。  FIG. 12 is a diagram showing a state of S205 in the Q direction.
[図 13]R方向における S104の状態を示す図である。  FIG. 13 is a view showing the state of S104 in the R direction.
[図 14]S501の状態を示す図である。  FIG. 14 is a diagram showing a state of S501.
[図 15]S305の状態を示す図である。  FIG. 15 is a diagram showing a state of S305.
[図 16]S504の状態を示す図である。  FIG. 16 is a diagram showing a state of S504.
[図 17]S305の状態の別の実施形態を示す図である。  FIG. 17 is a diagram showing another embodiment of the state of S305.
符号の説明  Explanation of symbols
[0040] 1 二重液晶収差補正素子  [0040] 1 Double liquid crystal aberration correction element
1A、 IB 液晶収差補正素子  1A, IB liquid crystal aberration correction element
10、 11 基板 101 コーナー部 10, 11 substrates 101 corner
20 コモン電極  20 Common electrode
21 セグメント電極  21 segment electrode
211 非電極部位  211 Non-electrode site
30A—30F 穴  30A-30F hole
31A— 31F 端子  31A- 31F terminal
40 液晶  40 LCD
50、 51、 51A シール材  50, 51, 51A Seal material
52 接着剤  52 adhesive
60 注入口  60 Inlet
61 封止材  61 Sealant
70 導通材  70 Conductive material
80 マスク  80 mask
90 配線  90 Wiring
100、 110 母材となる基板  100, 110 Base substrate
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0041] 以下、本発明を実施するための最良の形態について詳細に説明する。  Hereinafter, the best mode for carrying out the present invention will be described in detail.
図 1は、本発明に係る二重液晶収差補正素子の一実施形態における平面図である 。また、図 2は図 1の A— A断面図であり、図 3は図 1の B— B断面図を表している。図 1 一図 3に示すように、二重液晶収差補正素子 1は、同一の構成力もなる 2つの液晶収 差補正素子 1A、 IBを、導通材 70及びシール材 51を介して厚さ方向に積層させるこ とにより構成されている。そして、液晶収差補正素子 1 A (1Bも同様)は、コモン電極 2 0が形成された基板 10と、セグメント電極 21が形成された基板 11とで液晶 40を挟み 込むことにより概略構成されている。なお、コモン電極 20と液晶 40との間、及びセグ メント電極 21と液晶 40との間に一般的に設けられる液晶配向膜、透明絶縁層や、基 板 10、 11上に設けられる反射防止膜等は図示を省略している。また、液晶 40はシ ール材 50によって内側に封入されて!ヽる。  FIG. 1 is a plan view of a double liquid crystal aberration correcting element according to an embodiment of the present invention. FIG. 2 is a sectional view taken along line AA of FIG. 1, and FIG. 3 is a sectional view taken along line BB of FIG. As shown in FIG. 1 and FIG. 3, the double liquid crystal aberration correction element 1 is composed of two liquid crystal difference correction elements 1A and IB having the same constituent power in the thickness direction via a conductive material 70 and a sealing material 51. It is constructed by stacking. The liquid crystal aberration correcting element 1A (similarly to 1B) is schematically configured by sandwiching a liquid crystal 40 between a substrate 10 on which a common electrode 20 is formed and a substrate 11 on which a segment electrode 21 is formed. . A liquid crystal alignment film and a transparent insulating layer generally provided between the common electrode 20 and the liquid crystal 40 and between the segment electrode 21 and the liquid crystal 40, and an antireflection film provided on the substrates 10 and 11 And the like are not shown. Further, the liquid crystal 40 is sealed inside by a seal material 50.
[0042] この二重液晶収差補正素子 1は、液晶 40が設けられた領域内に光束を通過させ、 その際にコモン電極 20とセグメント電極 21との間に電圧を印加することにより、領域 内の位置によって異なる液晶 40の配向状態、すなわち位相差を与え、これにより光 の収差を補正するものである。このとき、液晶収差補正素子 1A、 IBは、電圧の非印 加時における液晶 40の配向方向を直交させているので、往路'復路での収差を良好 に補正することができる。 This double liquid crystal aberration correction element 1 allows a light beam to pass through a region where the liquid crystal 40 is provided, At this time, by applying a voltage between the common electrode 20 and the segment electrode 21, an alignment state of the liquid crystal 40, which is different depending on the position in the region, that is, a phase difference is given, thereby correcting light aberration. . At this time, since the liquid crystal aberration correcting elements 1A and IB make the orientation directions of the liquid crystal 40 orthogonal to each other when no voltage is applied, it is possible to satisfactorily correct the aberration in the forward path and the return path.
[0043] ここでセグメント電極 21の構成につ 、て詳細に説明する。 Here, the configuration of the segment electrode 21 will be described in detail.
この実施の形態では、図 1の S部分拡大図である図 4に示すように、セグメント電極 2 1に、電極材の存在しない複数の非電極部位 211が穴状に形成されている。そして、 複数の非電極部位 211は、セグメント電極 21上の位置によって大きさ及び配置間隔 を連続的に変化させている。なお、非電極部位 211の数は、図 4では便宜上少なく描 いている力 実際には多数の非電極部位 211がより微細に形成されている。そして、 この実施の形態では、セグメント電極 21の半径方向 rに沿って、非電極部位 211の大 きさ dlが大きい径から一旦小さい径となり再び大きい径となるように、また、配置間隔 d2が広 、間隔からー且狭い間隔となり再び広!、間隔となるように連続的なパターン を形成している。  In this embodiment, as shown in FIG. 4, which is an enlarged view of a portion S in FIG. 1, a plurality of non-electrode portions 211 having no electrode material are formed in the segment electrode 21 in a hole shape. The size and arrangement interval of the plurality of non-electrode portions 211 are continuously changed according to the positions on the segment electrodes 21. It should be noted that the number of non-electrode portions 211 is small for convenience in FIG. 4. In fact, many non-electrode portions 211 are formed more finely. Then, in this embodiment, along the radial direction r of the segment electrode 21, the size dl of the non-electrode portion 211 is changed from a large diameter to a once small diameter and becomes a large diameter again. A continuous pattern is formed so that the width becomes wider and the distance becomes narrower and then becomes wider again.
[0044] コモン電極 20とセグメント電極 21との間に電圧を印加した場合、非電極部位 211 の近傍での電界 Eの状態は図 5に示すようになる。すなわち、コモン電極 20とセグメ ント電極 21とが対向している部分 aでは、電極に垂直な方向へ強い電界が形成され 、非電極部位 211の中心部である部分 bでは、やはり電極に垂直な方向へ弱い電界 が形成される。そして、非電極部位 211とセグメント電極 21との境界に近い部分 cで は、セグメント電極 21へ向かって電界が傾いた状態となる。  When a voltage is applied between the common electrode 20 and the segment electrode 21, the state of the electric field E near the non-electrode portion 211 is as shown in FIG. That is, in the part a where the common electrode 20 and the segment electrode 21 face each other, a strong electric field is formed in the direction perpendicular to the electrode, and in the part b which is the center of the non-electrode part 211, the electric field perpendicular to the electrode is also formed. A weak electric field is formed in the direction. Then, at a portion c near the boundary between the non-electrode portion 211 and the segment electrode 21, the electric field is inclined toward the segment electrode 21.
[0045] すると、液晶 40の誘電異方性が正である場合には、液晶分子が電界 Eに沿って配 向するため、部分 aでは液晶分子が電極に対して垂直に並び、部分 bでは電界が弱 いため電極に平行な状態のままとなり、部分 cでは斜めに配向することになる。すなわ ち、非電極部位 211の内側において液晶 40が不均一な配向状態となる。このとき、 素子を通過する光 (異常光)に対する屈折率は、非電極部位 211の中心力 周辺へ 向かって連続的に小さくなる分布を形成するため、非電極部位 211の部分において は凸レンズの効果を示すことになる。これにより、通過する光に位相差を与えることが できる。 Then, when the dielectric anisotropy of the liquid crystal 40 is positive, the liquid crystal molecules are oriented along the electric field E, so that the liquid crystal molecules are arranged perpendicularly to the electrode in the part a, and in the part b. Since the electric field is weak, the state remains parallel to the electrodes, and the portion c is obliquely oriented. That is, the liquid crystal 40 is in a non-uniform alignment state inside the non-electrode portion 211. At this time, since the refractive index for the light passing through the element (extraordinary light) forms a distribution that decreases continuously toward the center of the non-electrode portion 211, the effect of the convex lens on the non-electrode portion 211 is obtained. Will be shown. This can give a phase difference to the passing light it can.
したがって、非電極部位 211の大きさ及び配置間隔をセグメント電極 21上の位置 によって連続的に変化させた場合、それぞれの位置で得られる位相差は異なるため 、発生する収差に応じて非電極部位 211の配置パターンを適宜設計することで、素 子全体として収差をリニアに補正することができる。  Therefore, when the size and arrangement interval of the non-electrode portions 211 are continuously changed depending on the position on the segment electrode 21, the phase difference obtained at each position is different. By appropriately designing the arrangement pattern, aberration can be linearly corrected as a whole element.
[0046] なお、印加する電圧を変化させた場合、それに応じて液晶分子の配向状態が変化 する。例えば、電圧を大きくした場合には、非電極部位 211の中心でも液晶分子が 垂直に配向するため、逆に、非電極部位 211の中心力 周辺にかけて屈折率が大き くなる凹レンズ効果を示すようになる。すなわち、印加する電圧によって、素子全体で 得られる位相差カーブを変化させることができるため、例えば再生 (RF)波形に基づ V、て補正量を計算し、その結果に応じて電圧を制御することで発生する収差をリアル タイムで補正することも可能である。  When the applied voltage is changed, the alignment state of the liquid crystal molecules changes accordingly. For example, when the voltage is increased, the liquid crystal molecules are vertically aligned even at the center of the non-electrode portion 211, and conversely, the refractive index increases toward the center of the non-electrode portion 211 so as to exhibit a concave lens effect. Become. In other words, since the phase difference curve obtained for the entire device can be changed by the applied voltage, for example, the correction amount is calculated based on V based on the reproduction (RF) waveform, and the voltage is controlled according to the result. It is also possible to correct the aberrations that occur in real time.
[0047] また、図 4の例では、非電極部位 211の大きさ及び配置間隔を、半径方向 rに沿つ て変化させている。このようにすると、非電極部位 211の配置パターンに対応して同 心円状に変化する位相差カーブが得られるため、ディスクの厚さずれによって発生 する球面収差を良好に補正することができる。し力も、非電極部位 211の大きさ及び 配置間隔は連続的に変化させているため、セグメント電極を同心円状に分割した従 来の収差補正素子のように階段状の不連続な補正ではなぐよりリニアな補正が可能 となる。  Further, in the example of FIG. 4, the size and the arrangement interval of the non-electrode portions 211 are changed along the radial direction r. By doing so, a phase difference curve that changes concentrically according to the arrangement pattern of the non-electrode portions 211 is obtained, so that spherical aberration generated due to a disc thickness deviation can be favorably corrected. Also, since the size and arrangement interval of the non-electrode portions 211 are continuously changed, the biasing force is not a stepwise discontinuous correction like a conventional aberration correction element in which a segment electrode is divided concentrically. Linear correction is possible.
[0048] さらに、非電極部位 211の配置間隔は、セグメント電極 21上を同心円状に分けたと きの各領域内(例えば領域 M、領域 で不規則 (ランダム配置)とすることが好ま ヽ 。すなわち、図 4に示すように、配置間隔 hiと h2とが若干異なるようにする。このよう にすると、隣接する非電極部位をそれぞれ通過する光が互いに干渉し合って波面が 乱れるような事態を防止することができる。  Further, it is preferable that the arrangement interval of the non-electrode portions 211 be within each area when the segment electrode 21 is concentrically divided (for example, the area M is irregular (random arrangement) in the area. The spacings hi and h2 are slightly different as shown in Fig. 4. This prevents light passing through adjacent non-electrode portions from interfering with each other and disturbing the wavefront. can do.
なお、光の波長と配置間隔との関係で干渉効果がほとんど無いと見込まれる場合 には、 hiと h2とを同一にして規則的に配置しても構わない。  When it is expected that there is almost no interference effect due to the relationship between the wavelength of light and the arrangement interval, hi and h2 may be the same and arranged regularly.
[0049] また、非電極部位 211を形成する方法としては、まず基板 11上の全面に電極材を 形成した後に、フォトプロセスによって複数の非電極部位 211を所望の配置パターン で形成する方法が好適に用いられる。このようにすると、連続的に変化する微細な配 置パターンを容易に作り出すことができる。あるいは、基板 11にセグメント電極 21を 蒸着、めっき等する際にマスクを介して行う方法を用いても良い。 As a method of forming the non-electrode portions 211, first, an electrode material is formed on the entire surface of the substrate 11, and then a plurality of non-electrode portions 211 are formed in a desired arrangement pattern by a photo process. Is preferably used. In this way, a fine arrangement pattern that changes continuously can be easily created. Alternatively, a method may be used in which the segment electrode 21 is deposited on the substrate 11 by vapor deposition, plating, or the like via a mask.
[0050] 次に、基板 10、 11としてはガラス基板等の透明基板が用いられる。また、コモン電 極 20、及びセグメント電極 21としては、インジゥムースズ酸ィ匕膜を形成した ITO等の 透明電極が適宜採用される。  Next, as the substrates 10 and 11, a transparent substrate such as a glass substrate is used. Further, as the common electrode 20 and the segment electrode 21, a transparent electrode such as ITO on which an indium tin oxide film is formed is appropriately employed.
[0051] そして、この実施形態では、基板 11の厚さ方向に穴 30A、 30B、 30Cと、同様に基 板 10にも穴 30D、 30E、 30Fとが穿たれている。それぞれの穴にはコモン電極 20、 及びセグメント電極 21へ接続するための端子 31A、 31B、 31C、 31D、 31E、 31F がそれぞれ設けられている。すなわち、端子 31A、 31Dが液晶収差補正素子 1Aの セグメント電極 21へ、端子 31B、 31Eがコモン電極 20へ、端子 31C、 31Fが液晶収 差補正素子 1Bのセグメント電極 21へそれぞれ接続されている。対向する端子間(例 えば、端子 31Bと端子 31E)は、導通材 70を介在させて接続している。なお、各端子 は、穴の内周面に沿って Ni— Au等の金属をめつきする等して形成される。  In this embodiment, holes 30A, 30B, and 30C are formed in the thickness direction of substrate 11, and holes 30D, 30E, and 30F are similarly formed in substrate 10. Each hole is provided with terminals 31A, 31B, 31C, 31D, 31E and 31F for connection to the common electrode 20 and the segment electrode 21, respectively. That is, the terminals 31A and 31D are connected to the segment electrode 21 of the liquid crystal aberration corrector 1A, the terminals 31B and 31E are connected to the common electrode 20, and the terminals 31C and 31F are connected to the segment electrode 21 of the liquid crystal aberration corrector 1B. The terminals facing each other (for example, the terminal 31B and the terminal 31E) are connected via a conductive material 70. Each terminal is formed by plating a metal such as Ni—Au along the inner peripheral surface of the hole.
[0052] 上記のように各端子を基板 10、 11の面上に配置することにより、基板の側方に端 子を集約配置していた従来の素子に比べて、素子に偏った力が加わることなぐ割れ •カケ等の不良が生じに《なる。したがって、基板 10、 11をより薄 例えば 0. 2mm By arranging the terminals on the surfaces of the substrates 10 and 11 as described above, a biased force is applied to the element as compared with a conventional element in which terminals are collectively arranged on the side of the substrate. Cracks that can easily be broken. Therefore, the substrates 10 and 11 are thinner, for example, 0.2 mm
)することが可能となり、素子を軽量ィ匕することができる。具体的には、従来に比して 4 0%以上 (従来の端子から面上配置の端子へ変更した効果が約 10%、基板の厚さを 0. 3mmから 0. 2mmへ変更した効果が約 33%)の軽量化となる。 ) Can be performed, and the element can be lightened. More specifically, 40% or more of the conventional level (about 10% of the effect of changing from the conventional terminal to the terminal placed on the surface, and the effect of changing the board thickness from 0.3 mm to 0.2 mm About 33%).
[0053] また、この実施形態では、基板 10、 11間に液晶 40を注入するための注入口 60が 、基板 11の面上に形成されている。注入口 60の形状は円形、楕円形等であり、液晶 40を注入した後に封止材 61により適宜封止される。  In this embodiment, an injection port 60 for injecting the liquid crystal 40 between the substrates 10 and 11 is formed on the surface of the substrate 11. The shape of the inlet 60 is circular, elliptical, or the like, and is appropriately sealed with the sealing material 61 after the liquid crystal 40 is injected.
特に、図 1の例では、端子 31A— 31F、及び液晶の注入口 60の全てが、基板 10、 11の面上に配置され、対向する端子同士が厚さ方向に相互に接続され、上側の液 晶収差補正素子 1Aに設けられた駆動用の各端子に集約されているため、後述する ように素子の生産効率を高めることができる。  In particular, in the example of FIG. 1, all of the terminals 31A to 31F and the liquid crystal injection port 60 are arranged on the surfaces of the substrates 10 and 11, and the opposite terminals are connected to each other in the thickness direction. Since the driving terminals provided on the liquid crystal aberration correcting element 1A are integrated, the production efficiency of the element can be increased as described later.
[0054] さらに、図 1の例では、穴 30A— 30F、及び液晶の注入口 60を、光束が通過する 円形領域 (セグメント電極 21、及びコモン電極 20が形成された領域)以外の、四角形 状に形成された基板 11 (10)上のコーナー部 101付近に形成している。また、シー ル材 50を略円形に設け、光束が通過する円形領域内に液晶 40をシールするように している。このようにすると、光束が通過しない基板 11上の余剰部分を、端子等の位 置として有効に利用することができるため、素子をより小型化することができる。また、 端子等をコーナー部 101に配置することにより、素子の重量バランスを最適化するこ とができる。その結果、高精度な駆動が可能となり、また、温度変化によって液晶が 膨張 '収縮した場合に、基板 11に対し均等に圧力が加わるため不均一な変形が起こ らず、素子の性能を維持することができる。 Further, in the example of FIG. 1, the light beam passes through holes 30A-30F and liquid crystal injection port 60. Except for the circular area (the area where the segment electrode 21 and the common electrode 20 are formed), it is formed near the corner 101 on the rectangular substrate 11 (10). Further, the seal member 50 is provided in a substantially circular shape so that the liquid crystal 40 is sealed in a circular region through which the light beam passes. With this configuration, the surplus portion of the substrate 11 through which the light beam does not pass can be effectively used as the position of the terminal and the like, and the element can be further reduced in size. In addition, by arranging the terminals and the like in the corner portions 101, the weight balance of the element can be optimized. As a result, high-precision driving becomes possible, and when the liquid crystal expands and contracts due to a temperature change, pressure is applied evenly to the substrate 11, so that non-uniform deformation does not occur and the performance of the element is maintained. be able to.
[0055] なお、従来の一般的な液晶を利用する素子 (液晶表示素子など)にお 、ては、表示 エリアの拡大に伴って額縁部分 (基板の余剰部分)をできるだけ狭くすることが要求さ れている。また、高分割駆動方式等に対応して端子数も増大する傾向にあるため、 基板のコーナー部分を有効利用するという発想はなぐ本発明に独自のものといえる [0055] It should be noted that in a conventional device using a general liquid crystal (such as a liquid crystal display device), it is required that the frame portion (excess portion of the substrate) be made as narrow as possible with the expansion of the display area. Have been. In addition, since the number of terminals tends to increase in accordance with the high division drive method, etc., the idea of effectively utilizing the corner portions of the substrate can be said to be unique to the present invention.
[0056] なお、複数の非電極部位 211の配置パターンは、上記実施の形態に限定されな!ヽ 。すなわち、発生する収差等に応じて、非電極部位 211の大きさもしくは配置間隔又 はその両方をセグメント電極 21上の位置によって適宜設定することができる。具体的 には、例えば、図 4とは逆に非電極部位の大きさをセグメント電極 21の中心力も周辺 に向力つて小さい径から大きい径、また小さい径へと連続的に変化させる場合等が 挙げられる。また、大きさ及び配置間隔をセグメント電極 21上で同心円状に変化させ る場合に限らず、例えばセグメント電極 21を左右の領域に分けたときに、それぞれの 領域で異なる配置パターンとなるように形成しても良い。この場合には、ディスクの反 り等によって生じるコマ収差を有効に補正することができる。 Note that the arrangement pattern of the plurality of non-electrode portions 211 is not limited to the above embodiment. That is, the size and / or arrangement interval of the non-electrode portions 211 can be appropriately set according to the position on the segment electrode 21 in accordance with the generated aberration and the like. Specifically, for example, contrary to FIG. 4, there is a case where the size of the non-electrode portion is continuously changed from a small diameter to a large diameter or to a small diameter with the central force of the segment electrode 21 also directed toward the periphery. No. Further, the present invention is not limited to the case where the size and the arrangement interval are concentrically changed on the segment electrode 21, but is formed so that, for example, when the segment electrode 21 is divided into left and right regions, different arrangement patterns are formed in each region. You may. In this case, coma caused by the warpage of the disk can be effectively corrected.
[0057] また、上記実施の形態では、複数の非電極部位 211の形状が円形の場合につい て説明したが、これに限定されず、例えば発生する収差の種類や、ラビング方向等を 考慮して、別の形状にすることができる。具体的には、楕円形状、半円形状等が挙げ られる。  Further, in the above-described embodiment, the case where the shape of the plurality of non-electrode portions 211 is circular has been described. However, the present invention is not limited to this. For example, the type of generated aberration, the rubbing direction, and the like are taken into consideration. , Can be different shapes. Specifically, an elliptical shape, a semicircular shape, and the like are given.
[0058] また、図 1の例では、セグメント電極 21のパターンを、端子 31 Aに直接接続するよう に形成している力 この他にも、例えば、閉じた円形領域力もなる各電極パターンを 形成した後に、それぞれの電極と各端子とをリード線等で接続しても良い。 In the example of FIG. 1, the pattern of the segment electrode 21 is directly connected to the terminal 31 A. Alternatively, for example, after forming each electrode pattern that also produces a closed circular area force, each electrode and each terminal may be connected by a lead wire or the like.
[0059] なお、基板 10、 11上に設けた端子同士を厚さ方向に相互に接続し、一番上の基 板上の端子に集約させたことについて、上記実施の形態ではセグメント電極 21に複 数の非電極部位 211を形成した場合を例に説明したが、これに限られず、例えばセ グメント電極を同心円状に複数の領域に分割した場合にも同様に適用可能である。 この場合にも、基板上に端子を配置することによって素子の小型化、軽量化を達成 することができる。あるいは、セグメント電極を左右に分割しても良い。この場合は、光 ディスクの反り等によって発生するコマ収差を良好に補正することができる。  In the above embodiment, the terminals provided on the substrates 10 and 11 are connected to each other in the thickness direction, and are integrated into the terminals on the uppermost substrate. The case where a plurality of non-electrode portions 211 are formed has been described as an example. However, the present invention is not limited to this case. For example, the present invention can be similarly applied to a case where a segment electrode is concentrically divided into a plurality of regions. Also in this case, the size and weight of the device can be reduced by arranging the terminals on the substrate. Alternatively, the segment electrode may be divided into left and right. In this case, coma generated by warpage of the optical disk can be corrected well.
[0060] 以上のような二重液晶収差補正素子 1は、例えばレーザ光源、偏光子、 1Z2波長 板、 1Z4波長板、対物レンズ、受光素子等とともに光ピックアップを構成し、光デイス ク装置に組み込んで使用することができる。  The double liquid crystal aberration correction element 1 as described above constitutes an optical pickup together with, for example, a laser light source, a polarizer, a 1Z2 wavelength plate, a 1Z4 wavelength plate, an objective lens, a light receiving element, and the like, and is incorporated in an optical disk device. Can be used with
特に、往路'復路における収差を補正可能であるため、次世代 BD (Blu-ray Disc) や、多層ディスク等の高密度光ディスクにも好適に用いることができる。  In particular, since the aberration in the forward path and the return path can be corrected, it can be suitably used for a high-density optical disc such as a next-generation BD (Blu-ray Disc) or a multilayer disc.
[0061] 次に、上述の図 1の例に係る二重液晶収差補正素子 1の製造方法を図 6—図 17に 基づき説明する。  Next, a method of manufacturing the double liquid crystal aberration correcting element 1 according to the example of FIG. 1 described above will be described with reference to FIGS.
[0062] まず、液晶補正素子 1Aにおける基板 11の加工工程について順に説明する。図 8 一図 11は、図 2の P方向力 見た状態を示している。最初に、図 6及び図 8に示すよう に、母材となる基板 110に、多数個の液晶収差補正素子に対応させた穴 30A、 30B 、 30Cと、液晶の注入口 60とを所定の位置に形成する(S 101)。続いて、母材となる 基板 110の全面に反射防止膜 (AR膜)を形成し (S102)た後、それぞれの穴に端子 31A、 31B、 31Cを設ける(S103)。なお、後述するように端子 31A— 31Cは、基板 110を裏返しかつ 90度回転させた場合に端子同士が重なり合う必要があるため、母 材となる基板 110は好ましくは正方形であり、また配列する多数個の液晶収差補正 素子は縦横で同数形成されている。なお、各端子 (例えば端子 31A)を設ける際には 、図 9に示すように、穴 30A以外の部分にマスク 80を形成した上で、端子 31Aとなる 金属をめつき等により形成した後、マスク 80を除去することにより好適に行われる。  First, the processing steps of the substrate 11 in the liquid crystal correction element 1A will be described in order. FIG. 8 and FIG. 11 show a state in which the force in the P direction in FIG. 2 is viewed. First, as shown in FIGS. 6 and 8, holes 30A, 30B and 30C corresponding to a large number of liquid crystal aberration correcting elements and a liquid crystal injection port 60 are placed at predetermined positions on a substrate 110 serving as a base material. (S101). Subsequently, after an antireflection film (AR film) is formed on the entire surface of the substrate 110 serving as a base material (S102), terminals 31A, 31B, and 31C are provided in the respective holes (S103). As will be described later, the terminals 31A to 31C need to overlap each other when the substrate 110 is turned upside down and rotated by 90 degrees. Therefore, the substrate 110 as a base material is preferably square, and The same number of liquid crystal aberration correction elements are formed vertically and horizontally. When providing each terminal (for example, terminal 31A), as shown in FIG. 9, after forming a mask 80 on a portion other than the hole 30A, forming a metal to be the terminal 31A by plating or the like, This is preferably performed by removing the mask 80.
[0063] 続いて、図 2の R方向から見た側に対し、後述するような検査に用いる配線を形成し た後(S104)、所定の位置に電極材を蒸着等によって形成し (S105)、エッチング等 によるパターンユングを行ってセグメント電極 21を作製する(S106)。この状態を図 1 0に示す。なお、上述の端子を設ける工程と、検査に用いる配線を形成する工程とは 前後しても良い。 Subsequently, wiring used for an inspection described later is formed on the side viewed from the R direction in FIG. After that (S104), an electrode material is formed at a predetermined position by vapor deposition or the like (S105), and pattern jung is performed by etching or the like to produce a segment electrode 21 (S106). This state is shown in FIG. Note that the step of providing the terminal and the step of forming a wiring used for inspection may be performed before or after.
[0064] 次に、 P方向の側に透明絶縁層を必要に応じて積層させ、 PVA等の液晶配向膜を 形成し、ラビングを行う(S 107)。さらに液晶を封入するためのシール材 50を、印刷 等によりセグメント電極 21の外側に設ける(S108)。この状態を図 11に示す。  Next, a transparent insulating layer is laminated on the side in the P direction as necessary, a liquid crystal alignment film such as PVA is formed, and rubbing is performed (S 107). Further, a sealing material 50 for enclosing the liquid crystal is provided outside the segment electrode 21 by printing or the like (S108). This state is shown in FIG.
[0065] 一方、対向させる別の基板 (基板 10側)については、図 2の Q方向から見た図 12に 示すように、母材となる基板 100に対して上記の基板 110と同 Cf立置に穴 30D、 31E 、 30Fを形成し(S201)、 AR膜を形成し(S202)た後、端子 31D、 31E、 31Fを設け (S203)、電極材の蒸着等を行い(S204)、パターンニングを行ってコモン電極 20を 形成する(S205)。また、液晶配向膜を形成してラビングを行い(S206)、対向させる 基板 110の各端子同士と接続するための導通材を印刷等により設ける(S207)。 なお、場合によっては、注入口 60を基板 10側に形成したり、あるいはシール材 50 を基板 10側に、導通材を基板 11側に印刷することも可能である。  On the other hand, with respect to another substrate (substrate 10 side) to be opposed, as shown in FIG. 12 viewed from the Q direction in FIG. After forming holes 30D, 31E, 30F in the device (S201), forming an AR film (S202), providing terminals 31D, 31E, 31F (S203), depositing electrode materials, etc. (S204) Is performed to form the common electrode 20 (S205). In addition, a liquid crystal alignment film is formed and rubbing is performed (S206), and a conductive material for connecting to each terminal of the substrate 110 to be opposed is provided by printing or the like (S207). In some cases, the injection port 60 can be formed on the substrate 10 side, or the sealing material 50 can be printed on the substrate 10 side and the conductive material can be printed on the substrate 11 side.
[0066] そして、上記のような端子等を形成した基板 110と基板 100とを、対向させて組み 合わせる(S301)。この工程は、スぺーサを介して接着剤で貼り合わせる等して行わ れる。  Then, the substrate 110 and the substrate 100 on which the terminals and the like as described above are formed are combined to face each other (S301). This step is performed by bonding with an adhesive through a spacer.
続いて、注入口 60からシール材 50の内側へ液晶を注入し(S302)、封止材によつ て封止する。そして、母材となる基板 110上に配列した各端子を使用して、素子の動 作検査を行う(S303)。このとき、基板 110上には、図 13に示すように予め配線 90を 形成している(S104)ため、その配線 90を利用して全数検査が一度に行われる。検 查の結果不合格であった箇所にっ ヽては NGマーキングを行う(S304)。  Subsequently, the liquid crystal is injected into the inside of the sealing material 50 from the injection port 60 (S302), and sealed by a sealing material. Then, an operation test of the element is performed using the terminals arranged on the substrate 110 serving as a base material (S303). At this time, since the wiring 90 is previously formed on the substrate 110 as shown in FIG. 13 (S104), a 100% inspection is performed at once using the wiring 90. NG marking is performed on the parts that failed the inspection (S304).
[0067] 以上の各工程 (S101— S303)を経て、液晶収差補正素子 1Aが多数個配列した 組が得られる。そして、この組に対し、同様の各工程(S101— S303)を経て製造さ れた別の組 (液晶収差補正素子 1Bが配列している)を積層させる(S501)。このとき 、図 14に示すように、別の組を Z方向に裏返し、かつ X方向に 90度回転させた状態 にして、液晶収差補正素子 1Aが配列する組の基板 100側と、液晶収差補正素子 1 Bが配列する組の基板 100側とを積層させることにより、コモン端子同士、対応するセ グメント端子同士が組み合わされ、なおかつ液晶の配向方向が直交した状態が得ら れること〖こなる。 Through the above steps (S101-S303), a set in which a large number of liquid crystal aberration correction elements 1A are arranged is obtained. Then, another set (in which the liquid crystal aberration correction elements 1B are arranged) manufactured through the same steps (S101 to S303) is laminated on this set (S501). At this time, as shown in FIG. 14, another set is turned upside down in the Z direction and rotated by 90 degrees in the X direction, and the substrate 100 side of the set in which the liquid crystal aberration correction elements 1A are arranged is connected to the liquid crystal aberration correction device. Element 1 By laminating the substrate 100 side of the set in which B is arranged, the common terminals and the corresponding segment terminals are combined, and a state in which the orientation directions of the liquid crystals are orthogonal is obtained.
[0068] また、組同士を積層させる際には、組の間に予めシール材 51及び導通材 70を印 刷等しておく(S305、 S401)。このシール材 51及び導通材 70は、それぞれ液晶収 差補正素子 1A側に設けても良いし、反対の液晶収差補正素子 1B側に設けても良 い。  When stacking the sets, the seal material 51 and the conductive material 70 are printed in advance between the sets (S305, S401). The sealing material 51 and the conductive material 70 may be provided on the liquid crystal aberration correction element 1A side, respectively, or may be provided on the opposite liquid crystal aberration correction element 1B side.
[0069] シール材 51は、図 15に示すように、光束が通過する円形領域を囲むように閉じた 状態で設けることができる。この場合、シール材 51の内側に閉じ込められる気体の膨 張によって積層状態が損なわれないように、組同士を積層させる作業は真空中で行 う必要がある。シール材 51が閉じた状態でかつ内側が真空であると、ゴミ等が内部に 侵入せず、光透過率を高くできるため好ましい。  [0069] As shown in Fig. 15, the sealing material 51 can be provided in a closed state so as to surround a circular area through which a light beam passes. In this case, the work of laminating the sets needs to be performed in a vacuum so that the lamination state is not impaired by the expansion of the gas confined inside the sealing material 51. It is preferable that the sealing material 51 is in a closed state and the inside is vacuum, because dust and the like do not enter the inside and the light transmittance can be increased.
[0070] そして、組同士を積層させた後、母材となる基板 110上に配列した各端子を使用し て、二重液晶収差補正素子の動作検査を行う(S502)。このときも、上述の場合と同 様に基板 110上に形成した配線 90を利用して全数検査を一度に行うことができる。 検査の結果不合格であった箇所にっ 、ては NGマーキングを行う(S503)。  After the sets are stacked, the operation of the double liquid crystal aberration correction element is inspected using the terminals arranged on the substrate 110 serving as the base material (S502). Also at this time, as in the case described above, the 100% inspection can be performed at once using the wiring 90 formed on the substrate 110. NG marking is performed on the part that failed as a result of the inspection (S503).
[0071] 最後に、図 16に示すように、母材となる基板を、ダイサ一等を用いて個々の二重液 晶収差補正素子 1に切り分け(S504)、単品の検査工程 (S505)を経た後に出荷す る(S507)。なお、単品の検査において不合格となった素子は、廃棄又は修理する 力 又は再生工程に移される(S506)。  Finally, as shown in FIG. 16, the substrate serving as a base material is cut into individual double liquid crystal aberration correction elements 1 using a dicer or the like (S 504), and the inspection process of a single product (S 505) is performed. After that, it is shipped (S507). In addition, the element which failed in the inspection of the single item is transferred to a discarding or repairing force or a regeneration process (S506).
[0072] なお、組同士を積層させる際、図 15で示したシール材 51に代わって、図 17に示す ような、光束が通過する円形領域を囲むように一部開いた状態で設けられるシール 材 51 Aを介在させても良い。この場合は、シール材 51 Aの内側に接着剤 52を設け、 この接着剤 52により組同士を接着させる。図 17の例では、組同士を積層させる作業 を大気中で行うことができるため、生産効率が高いという利点がある。  When laminating the sets, instead of the sealing material 51 shown in FIG. 15, a seal provided in a partially open state so as to surround a circular region through which a light beam passes as shown in FIG. Material 51A may be interposed. In this case, an adhesive 52 is provided inside the sealing material 51A, and the sets are adhered to each other by the adhesive 52. In the example of FIG. 17, since the work of stacking the sets can be performed in the atmosphere, there is an advantage that the production efficiency is high.
[0073] 以上のような製造方法によれば、各端子や電極の形成、及び液晶の注入工程等が 、個々の素子に切り分ける前の母材の状態で全て行われるため、生産効率が非常に 高ぐコストも大幅に低減することができる。また、生産規模の拡大にも容易に対応可 能である。 According to the above-described manufacturing method, the formation of each terminal and electrode, the step of injecting liquid crystal, and the like are all performed in the state of the base material before being separated into individual elements, so that the production efficiency is extremely high. High costs can also be significantly reduced. Easily accommodates production scale expansion Noh.
特に、積層させる 2つの液晶収差補正素子力 別々に作るのではなく同一の工程 で製造され、片方を裏返して 90度回転させるだけで良いので、全体の生産効率は大 きく向上する。  In particular, the two liquid crystal aberration correcting elements to be laminated are manufactured in the same process rather than separately, and only one of them needs to be turned upside down and rotated 90 degrees, greatly improving the overall production efficiency.
さらに、液晶を注入'封止した後に行われる検査工程も、母材の状態で一斉に行え るため、産業上極めて有用である。  Furthermore, the inspection process performed after injecting and sealing the liquid crystal can be performed simultaneously in the state of the base material, which is extremely useful in industry.

Claims

請求の範囲 The scope of the claims
[1] 厚さ方向に積層した 2つの液晶収差補正素子から構成され、前記各々の液晶収差 補正素子は、一方にコモン電極力 他方にセグメント電極が形成された一対の基板と 、前記一対の基板に挟まれた液晶とを備え、前記一対の基板の各々には厚さ方向に 複数の穴が穿たれるとともに前記穴には前記コモン電極およびセグメント電極のいず れかに接続される端子が設けられ、前記一対の基板の一方には液晶を注入するた めの注入口が形成され、電圧の非印加時における液晶の配向方向が 2つの液晶収 差補正素子で直交してなる二重液晶収差補正素子。  [1] Consisting of two liquid crystal aberration correction elements stacked in the thickness direction, each of the liquid crystal aberration correction elements has a pair of substrates each having a common electrode force on one side and a segment electrode formed on the other side, and the pair of substrates And a plurality of holes formed in each of the pair of substrates in a thickness direction, and a terminal connected to one of the common electrode and the segment electrode is formed in the hole. An injection hole for injecting liquid crystal is formed in one of the pair of substrates, and a double liquid crystal in which the orientation direction of the liquid crystal when no voltage is applied is orthogonal to the two liquid crystal difference correction elements. Aberration correction element.
[2] 厚さ方向に積層した 2つの液晶収差補正素子から構成され、前記各々の液晶収差 補正素子は、一方にコモン電極力 他方にセグメント電極が形成された一対の基板と 、前記一対の基板に挟まれた液晶とを備え、前記セグメント電極には、電極材の存在 しない複数の非電極部位が前記セグメント電極上の位置によって大きさもしくは配置 間隔又はその両方を変化させて形成され、前記非電極部位の内側では電圧印加時 に液晶が不均一に配向するように構成され、前記一対の基板の各々には厚さ方向に 複数の穴が穿たれるとともに前記穴には前記コモン電極およびセグメント電極のいず れかに接続される端子が設けられ、前記一対の基板の一方には液晶を注入するた めの注入口が形成され、電圧の非印加時における液晶の配向方向が 2つの液晶収 差補正素子で直交してなる二重液晶収差補正素子。  [2] Two liquid crystal aberration correction elements stacked in the thickness direction, each of the liquid crystal aberration correction elements having a common electrode force on one side, a pair of substrates having a segment electrode formed on the other side, and the pair of substrates A plurality of non-electrode portions in which no electrode material is present are formed on the segment electrode by changing the size and / or the spacing between them depending on the position on the segment electrode; The liquid crystal is non-uniformly aligned when a voltage is applied inside the electrode portion, and a plurality of holes are formed in the thickness direction in each of the pair of substrates, and the common electrode and the segment are formed in the holes. A terminal connected to one of the electrodes is provided, an injection port for injecting liquid crystal is formed in one of the pair of substrates, and the alignment direction of the liquid crystal when no voltage is applied is two. Double crystal aberration correcting element formed by orthogonal AkiraOsamu difference correction element.
[3] 請求項 2記載の二重液晶収差補正素子において、基板が四角形状に形成され、 前記基板の光束が通過する円形領域に沿って液晶がシールされ、前記円形領域以 外のコーナー部付近に、液晶の注入口および端子が設けられることを特徴とする二 重液晶収差補正素子。  3. The double liquid crystal aberration correction device according to claim 2, wherein the substrate is formed in a quadrangular shape, and the liquid crystal is sealed along a circular region of the substrate through which a light beam passes, and near a corner other than the circular region. A dual liquid crystal aberration correction element, further comprising a liquid crystal injection port and a terminal.
[4] 請求項 2記載の二重液晶収差補正素子において、積層した各々の液晶収差補正 素子のコモン電極に接続される端子同士、一方の液晶収差補正素子のセグメント電 極に接続される端子同士、および他方の液晶収差補正素子のセグメント電極に接続 される端子同士が厚さ方向に相互に接続され、二重液晶収差補正素子の外側に位 置する一の基板に設けられた端子にそれぞれ集約されることを特徴とする二重液晶 収差補正素子。 [4] In the double liquid crystal aberration correcting element according to claim 2, terminals connected to a common electrode of each of the stacked liquid crystal aberration correcting elements, and terminals connected to a segment electrode of one of the liquid crystal aberration correcting elements. And the terminals connected to the segment electrodes of the other liquid crystal aberration correction element are connected to each other in the thickness direction, and are combined into terminals provided on one substrate located outside the double liquid crystal aberration correction element. A dual liquid crystal aberration correction element.
[5] 請求項 3記載の二重液晶収差補正素子において、積層した各々の液晶収差補正 素子のコモン電極に接続される端子同士、一方の液晶収差補正素子のセグメント電 極に接続される端子同士、および他方の液晶収差補正素子のセグメント電極に接続 される端子同士が厚さ方向に相互に接続され、二重液晶収差補正素子の最も外側 である一の基板に設けられた端子にそれぞれ集約されることを特徴とする二重液晶 収差補正素子。 [5] In the double liquid crystal aberration correction element according to claim 3, terminals connected to a common electrode of each of the stacked liquid crystal aberration correction elements, and terminals connected to a segment electrode of one of the liquid crystal aberration correction elements. The terminals connected to the segment electrodes of the other liquid crystal aberration correction element are connected to each other in the thickness direction, and are collected on the terminal provided on one outermost substrate of the dual liquid crystal aberration correction element. A dual liquid crystal aberration correction element, characterized in that:
[6] 請求項 5記載の二重液晶収差補正素子において、一方の液晶収差補正素子のセ グメント電極に接続される端子と、他方の液晶収差補正素子のセグメント電極に接続 される端子とが、四角形状の基板の対角に位置するコーナー部付近に設けられ、コ モン電極に接続される端子と液晶の注入口とが残りのコーナー部付近に設けられる ことを特徴とする二重液晶収差補正素子。  [6] In the double liquid crystal aberration correction element according to claim 5, the terminal connected to the segment electrode of one liquid crystal aberration correction element and the terminal connected to the segment electrode of the other liquid crystal aberration correction element include: Double liquid crystal aberration correction characterized in that it is provided near a corner located at a diagonal of a square substrate, and a terminal connected to a common electrode and a liquid crystal injection port are provided near the remaining corner. element.
[7] 請求項 6記載の二重液晶収差補正素子の製造方法であって、母材となる基板に対 し、多数個の液晶収差補正素子に対応する端子および注入口を設ける工程と、セグ メント電極を形成する工程と、前記の端子、注入口、およびセグメント電極を形成した 基板に対し、対向する位置に端子を設けるとともにコモン電極を形成した別の基板を 組み合わせる工程と、組み合わせた後に注入ロカ 液晶を注入する工程と、前記各 工程を経て製造される多数個の液晶収差補正素子が配列した組に対し、同様の各 工程を経て得られる別の組を裏返しかつ 90度回転させた上で積層させる工程と、個 々の二重液晶収差補正素子に切り分ける工程と、を有してなる二重液晶収差補正素 子の製造方法。  7. The method for producing a double liquid crystal aberration correction element according to claim 6, wherein a step of providing terminals and injection ports corresponding to a large number of liquid crystal aberration correction elements on a substrate serving as a base material, A step of forming a contact electrode, a step of providing a terminal at a position facing the substrate on which the terminal, the injection port, and the segment electrode are formed, and combining another substrate on which a common electrode is formed. For a set in which a plurality of liquid crystal aberration correcting elements manufactured through the steps of injecting the liquid crystal and the above-described steps are arranged, another set obtained through the same steps is turned upside down and rotated 90 degrees. A method for manufacturing a double liquid crystal aberration correction element, comprising the steps of: laminating the liquid crystal aberration correction element by means of a liquid crystal aberration correction element;
[8] 請求項 6記載の二重液晶収差補正素子の製造方法であって、母材となる基板に対 し、多数個の液晶収差補正素子に対応する端子を設ける工程と、セグメント電極を形 成する工程と、前記の端子、およびセグメント電極を形成した基板に対し、対向する 位置に端子とさらに注入口を設けるとともにコモン電極を形成した別の基板を組み合 わせる工程と、組み合わせた後に注入ロカゝら液晶を注入する工程と、前記各工程を 経て製造される多数個の液晶収差補正素子が配列した組に対し、同様の各工程を 経て得られる別の組を裏返しかつ 90度回転させた上で積層させる工程と、個々の二 重液晶収差補正素子に切り分ける工程と、を有してなる二重液晶収差補正素子の製 造方法。 [8] The method for producing a double liquid crystal aberration correcting element according to claim 6, wherein a step of providing terminals corresponding to a large number of liquid crystal aberration correcting elements on a substrate serving as a base material; After the combination, a step of providing a terminal and an injection port at a position facing the substrate on which the terminal and the segment electrode are formed, and combining another substrate on which a common electrode is formed. A step of injecting liquid crystal and a set in which a large number of liquid crystal aberration correcting elements manufactured through the above-described steps are arranged, and another set obtained through the same steps is turned upside down and rotated by 90 degrees. A dual liquid crystal aberration corrector comprising the steps of: Construction method.
[9] 請求項 7又は 8記載の製造方法において、基板の表面には、それぞれの端子に共 通して接続される検査用の配線を形成し、多数個の液晶収差補正素子が配列した 組に対して別の組を積層させる工程の前、もしくは個々の二重液晶収差補正素子に 切り分ける工程の前のいずれか一方又は両方の時点で前記配線を利用して検査を 行うことを特徴とする二重液晶収差補正素子の製造方法。  [9] The manufacturing method according to claim 7 or 8, wherein a wiring for inspection connected to each terminal is formed on the surface of the substrate, and a plurality of liquid crystal aberration correction elements are arranged. On the other hand, before the step of laminating another set or before the step of separating into individual double liquid crystal aberration correcting elements, the inspection is performed using the wiring at one or both of the times. Manufacturing method of double liquid crystal aberration correction element.
[10] 請求項 7又は 8記載の製造方法において、多数個の液晶収差補正素子が配列した 組に対して別の組を積層させる際に、真空中で、光束が通過する円形領域を囲むよ うに閉じた状態で設けられるシール材を介して積層させることを特徴とする二重液晶 収差補正素子の製造方法。  [10] In the manufacturing method according to claim 7 or 8, when another set is stacked on the set in which a large number of liquid crystal aberration correction elements are arranged, a circular region through which a light beam passes is placed in a vacuum. A method for manufacturing a double liquid crystal aberration correction element, comprising laminating via a sealing material provided in a closed state.
[11] 請求項 9記載の製造方法において、多数個の液晶収差補正素子が配列した組に 対して別の組を積層させる際に、真空中で、光束が通過する円形領域を囲むように 閉じた状態で設けられるシール材を介して積層させることを特徴とする二重液晶収差 補正素子の製造方法。  [11] In the manufacturing method according to claim 9, when another set is stacked on a set in which a large number of liquid crystal aberration correction elements are arranged, the set is closed in a vacuum so as to surround a circular region through which a light beam passes. A method for manufacturing a double liquid crystal aberration correction element, comprising laminating via a sealing material provided in an inclined state.
[12] 請求項 7又は 8記載の製造方法において、多数個の液晶収差補正素子が配列した 組に対して別の組を積層させる際に、大気中で、光束が通過する円形領域を囲むよ うに一部開いた状態で設けられるシール材と前記シール材の内側に設けられる接着 剤とを介して積層させることを特徴とする二重液晶収差補正素子の製造方法。  [12] In the manufacturing method according to claim 7 or 8, when another set is stacked on the set in which a large number of liquid crystal aberration correcting elements are arranged, a circular region through which a light beam passes in the atmosphere is surrounded. A method for manufacturing a double liquid crystal aberration correction element, comprising: laminating a sealing material provided in a partially opened state and an adhesive provided inside the sealing material.
[13] 請求項 9記載の製造方法において、多数個の液晶収差補正素子が配列した組に 対して別の組を積層させる際に、大気中で、光束が通過する円形領域を囲むように 一部開いた状態で設けられるシール材と前記シール材の内側に設けられる接着剤と を介して積層させることを特徴とする二重液晶収差補正素子の製造方法。  [13] In the manufacturing method according to claim 9, when another set is stacked on the set in which a large number of liquid crystal aberration correction elements are arranged, one set is formed so as to surround a circular area through which a light beam passes in the atmosphere. A method for manufacturing a double liquid crystal aberration correction element, comprising: laminating via a sealing material provided in a partially opened state and an adhesive provided inside the sealing material.
PCT/JP2005/005500 2004-03-31 2005-03-25 Double liquid-crystal aberration correcting element and its manufacturing method WO2005098479A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006512022A JP4532482B2 (en) 2004-03-31 2005-03-25 Double liquid crystal aberration correction element and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-105099 2004-03-31
JP2004105099 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005098479A1 true WO2005098479A1 (en) 2005-10-20

Family

ID=35125206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005500 WO2005098479A1 (en) 2004-03-31 2005-03-25 Double liquid-crystal aberration correcting element and its manufacturing method

Country Status (4)

Country Link
JP (1) JP4532482B2 (en)
KR (1) KR100803340B1 (en)
CN (1) CN100409032C (en)
WO (1) WO2005098479A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009146529A1 (en) 2008-06-06 2009-12-10 Lensvector Inc. Contact structure for a tunable liquid crystal optical device
US8891006B2 (en) 2009-06-29 2014-11-18 Lensvector, Inc. Wafer level camera module with active optical element
US20150103297A1 (en) * 2013-10-10 2015-04-16 STMicroelectronics Pte. Ltd Optical assembly including electrically conductive coupling member and related methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5647887B2 (en) * 2010-12-24 2015-01-07 株式会社スマートセンシング Multi-structure liquid crystal optical element and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106219U (en) * 1985-12-25 1987-07-07
JPH05232463A (en) * 1992-02-21 1993-09-10 Matsushita Electric Works Ltd Liquid crystal element
JP2002319202A (en) * 2001-04-24 2002-10-31 Asahi Glass Co Ltd Magneto-optical head device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532202B1 (en) * 1999-07-07 2003-03-11 Matsushita Electric Industrial Co., Ltd. Optical element, optical head and optical recording reproducing apparatus
JP3781273B2 (en) * 2001-02-07 2006-05-31 パイオニア株式会社 Aberration correction element and aberration correction unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106219U (en) * 1985-12-25 1987-07-07
JPH05232463A (en) * 1992-02-21 1993-09-10 Matsushita Electric Works Ltd Liquid crystal element
JP2002319202A (en) * 2001-04-24 2002-10-31 Asahi Glass Co Ltd Magneto-optical head device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOSE T. ET AL: "Liquid Crystal Display Devices Obtained with Scattering Properties of Microlens Effects.", PROCEEDINGS OF THE 9TH INTERNATIONAL DISPLAY RESEARCH CONFERENCE., 1989, XP002990876 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009146529A1 (en) 2008-06-06 2009-12-10 Lensvector Inc. Contact structure for a tunable liquid crystal optical device
EP2297606A1 (en) * 2008-06-06 2011-03-23 Lensvector Inc. Contact structure for a tunable liquid crystal optical device
JP2011523722A (en) * 2008-06-06 2011-08-18 レンズヴェクター インコーポレイテッド Connection structure of tunable liquid crystal optical device
EP2297606A4 (en) * 2008-06-06 2012-02-01 Lensvector Inc Contact structure for a tunable liquid crystal optical device
US8558985B2 (en) 2008-06-06 2013-10-15 Lensvector Inc. Contact structure for a tunable liquid crystal optical device
JP2014160260A (en) * 2008-06-06 2014-09-04 Lensvector Inc Contact structure for tunable liquid crystal optical device
US8891006B2 (en) 2009-06-29 2014-11-18 Lensvector, Inc. Wafer level camera module with active optical element
US20150103297A1 (en) * 2013-10-10 2015-04-16 STMicroelectronics Pte. Ltd Optical assembly including electrically conductive coupling member and related methods

Also Published As

Publication number Publication date
KR100803340B1 (en) 2008-02-13
JPWO2005098479A1 (en) 2008-02-28
KR20060132935A (en) 2006-12-22
CN100409032C (en) 2008-08-06
JP4532482B2 (en) 2010-08-25
CN1938606A (en) 2007-03-28

Similar Documents

Publication Publication Date Title
KR101047830B1 (en) Liquid Crystal Lens Element and Optical Head Device
US7710536B2 (en) Liquid crystal diffraction lens element and optical head device
JP4532482B2 (en) Double liquid crystal aberration correction element and manufacturing method thereof
JP4552556B2 (en) Liquid crystal lens element and optical head device
JP4008945B2 (en) Liquid crystal aberration correction element and manufacturing method thereof
JP5491903B2 (en) Multi-layer structure liquid crystal optical element and manufacturing method thereof
JP2002319172A (en) Optical head device
JP4008944B2 (en) Liquid crystal aberration correction element
JP2011175104A (en) Liquid crystal optical element having multilayer structure, and method for manufacturing liquid crystal lens
JP4380477B2 (en) Liquid crystal lens element and optical head device
JP2011164427A (en) Multilayered liquid crystal optical element and liquid crystal lens using the same
JP4370723B2 (en) Optical head device
JP2009181142A (en) Liquid crystal aberration correction element
JP2007248986A (en) Liquid crystal aberration correction element and manufacturing method thereof
JP2009222974A (en) Liquid crystal cell, optical pick-up device, and manufacturing method for liquid crystal cell
JP4337255B2 (en) Optical head device
JP2005292326A (en) Liquid crystal element
JP2005222586A (en) Optical element for phase modulation and optical apparatus
JP4882737B2 (en) Liquid crystal element and optical head device
JP2003045062A (en) Optical head device
JP2006058713A (en) Liquid crystal optical element and optical head device
JP2002319202A (en) Magneto-optical head device
JP2011054251A (en) Liquid crystal optical element and optical pickup device using the same
JP2009186732A (en) Liquid crystal optical element, method for manufacturing the same and optical head device
JP2008059626A (en) Optical correction element, optical element, optical unit, optical pickup device, and manufacturing method of optical correction element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067018464

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006512022

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580010677.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067018464

Country of ref document: KR

122 Ep: pct application non-entry in european phase