WO2003102636A1 - Variable-focus lens and lens controller - Google Patents

Variable-focus lens and lens controller Download PDF

Info

Publication number
WO2003102636A1
WO2003102636A1 PCT/JP2003/006509 JP0306509W WO03102636A1 WO 2003102636 A1 WO2003102636 A1 WO 2003102636A1 JP 0306509 W JP0306509 W JP 0306509W WO 03102636 A1 WO03102636 A1 WO 03102636A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
actuator
lens according
displacement
pressure transmitting
Prior art date
Application number
PCT/JP2003/006509
Other languages
French (fr)
Japanese (ja)
Inventor
Masatoshi Ishikawa
Hiromasa Oku
Original Assignee
Masatoshi Ishikawa
Hiromasa Oku
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Masatoshi Ishikawa, Hiromasa Oku filed Critical Masatoshi Ishikawa
Priority to JP2004509463A priority Critical patent/JPWO2003102636A1/en
Priority to AU2003235425A priority patent/AU2003235425A1/en
Publication of WO2003102636A1 publication Critical patent/WO2003102636A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length

Definitions

  • the present invention relates to a varifocal lens capable of changing focus at high speed and a control device thereof.
  • the varifocal lens In order to capture an object with different optical characteristics for each frame of such a high-speed vision system, the varifocal lens must also have a response of 1 kHz or more.
  • the conventional varifocal lens is much slower than the high-speed vision frame rate of 1 kHz, which impairs the speed of high-speed vision.
  • "A new, compact and quick -response dynamic iocu sing lens (Takashi Kaneko et. Al R TRANSDUCERS '97, Vol. 1, p. 63 -66, 1997)” has the highest response speed, about 1 Variable focus lenses have been proposed that are 50 Hz.
  • the response of such varifocal lenses is an order of magnitude smaller than the frame rate of high-speed vision, and there are significant speed limitations in applications that use optical systems.
  • An object of the present invention is to provide a variable focus lens which responds at a frame rate of a high-speed vision system, and a control device thereof.
  • this variable focus lens is A transparent liquid is sealed inside a rigid container, and an elastic circular thin transparent plate is attached to the surface of the container, which is used as the lens surface. Separately from the lens surface, an elastic partition for applying pressure to the liquid inside is attached.
  • this part is called a cylinder part or a pressure transmitting part.
  • the focal length is controlled by applying pressure to the liquid inside from the outside through the cylinder to deform the lens surface.
  • the liquid inside has two roles, the medium that refracts light and the transmission of force.
  • Fig. 1 shows the principle of how the varifocal lens changes the focal length.
  • the actuator 14 by driving the actuator 14 in the direction of pressing the liquid (the direction of arrow A), the elastically deformable thin and transparent plates (lens surface) 12 and 12 are convex. , Thereby forming a convex lens.
  • the actuator 14 by driving the actuator 14 in the direction of drawing in the liquid (the direction of arrow B), the thin and transparent plates 12 and 12 become concave, thereby forming a concave lens.
  • one of the varifocal lenses according to the present invention which can be used as an actuator that satisfies the high speed characteristic, has a resonance frequency of about several tens of kHz and positioning on the order of n (nano) m There is a stacked piezo akuchie that is possible.
  • This type of actuary which has a resonance frequency of several + kHz, has a movable range of only about 10 / m. Therefore, in the present invention, the area of the part where the actuator applies pressure to the liquid is designed to be sufficiently larger (for example, about several tens times) than the area of the lens surface. By adopting such a structure, the lens surface can be deformed by amplifying the displacement of the actuator.
  • the cylinder and the lens surface need to vibrate at high speed, they were designed to have a sufficiently high natural frequency compared to the desired response speed.
  • an object of the present invention is to provide a container in which a liquid is filled, wherein the pressure transmitting portion is configured to come into contact with the actuator and transmit the vibration of the actuator, and to receive light.
  • a container provided with two light transmitting portions on a surface and an emission surface, and at least one of the incident surface and the emission surface is provided with a light in response to a displacement given from the pressure transmitting portion via a liquid.
  • One or more surface portions that can be displaced unevenly in the axial direction, and a ratio (s / S) of an area s thereof to an area S of the pressure transmitting portion is equal to or less than a predetermined value.
  • Such a surface portion is provided, and the focal length is changed by displacing the surface portion in response to the displacement of the actuator, thereby achieving a variable focal length lens.
  • the displacement from the actuator applied to the pressure transmitting section by S / s times appears as the displacement of the surface portion. Therefore, even if it has a high-speed response, such as a piezo-stacked actuator (PZT), its surface area can be sufficiently displaced in the optical axis direction even if a small movable range is used.
  • the focal length can be changed on the order of 1 kHz.
  • a flexible or elastic surface portion may be formed on both the entrance surface and the exit surface, or may be formed on only one of the surfaces and the other may be a rigid surface.
  • the diameter is expanded toward one end, a pressure transmitting portion is arranged at the expanded end, and a portion near the other end has a single diameter. Then, opposing entrance and exit surfaces are formed. With such a configuration, it is possible to form a compact varifocal lens having a sufficient response performance.
  • a projection is formed on a surface of the pressure transmitting portion that is in contact with the actuator.
  • the projection has a cross shape.
  • the container has a first portion including the first pressure transmitting portion and the incident surface in contact with the first actuator, and a second portion in contact with the second actuator.
  • the degree of freedom is "2"
  • the driving of each actuary allows only the focal length to be used. It is also possible to correct aberrations.
  • connection surface and the emission surface may be formed of materials having different refractive indexes
  • connection surface and the liquid may be formed of materials having different refractive indexes. Is also good.
  • the first portion and the second portion may be filled with liquids having different refractive indexes. Thereby, for example, chromatic aberration can be corrected.
  • connection surface is formed in close contact with a portion facing the emission surface, and a displaceable surface portion is formed in each of the incident surface, the connection surface, and the Z or emission surface.
  • the degree of freedom can be further increased in some cases, and the imaging capability of the lens can be further improved.
  • the first portion, the (n ⁇ 2) intermediate portions, and the n-th portion may be filled with liquids having different refractive indexes.
  • the connection surface and the emission surface may be formed of materials having different refractive indices, respectively, and the connection surface and the liquid may be formed of materials having different refractive indices. It may be formed.
  • each part (first part, middle part, etc.) that constitutes the container increases toward the pressure transmitting part where the actuator contacts.
  • a structure may be adopted. As a result, it is possible to provide a lens that can be variously controlled without increasing the size of the lens so much.
  • a plurality of surface portions are arranged on the entrance surface and / or at least one in a predetermined geometric arrangement.
  • Said surface portion is It has a diameter of several tens / several hundreds / m, and a microlens is formed by a surface portion formed on one of the entrance surface and the exit surface, or an opposing pair of surface portions formed on both. May be.
  • the surface portion is a rectangular shape elongated in the longitudinal direction having a width of several tens to several hundreds of meters, and is formed on one or both of the entrance surface and the exit surface.
  • a microlens may be formed by the surface portions of the pair facing each other. In the example of a rectangular microlens, it is desirable that the surface portions are arranged so that the longitudinal sides are almost touching.
  • an object of the present invention is to provide a lens control device characterized by comprising the above-mentioned variable focus lens, a control unit for supplying a signal for driving each actuator, and an amplifier for amplifying each of the signals. Is also achieved by
  • the control unit may receive a displacement of the actuator as feedback. Utilizing this feedback, the level of the drive signal for the factories can be controlled. Furthermore, a lens displacement measuring unit that measures displacement in the surface portion may be further provided, and the displacement of the surface portion may be feed-packed to the control unit. The lens displacement may be used to control the level of the drive signal for the above-mentioned factor. In addition, it is possible to feed back the distortion of the lens by these feedback signals, thereby realizing more appropriate control. The lens surface distortion is measured indirectly by estimating the displacement of the actuator. Feedback can be provided, and it can also be realized by directly measuring from the displacement of the surface part.
  • FIG. 1 is a diagram illustrating the principle of a variable focus lens according to the present invention.
  • FIG. 2 is a perspective view schematically showing the variable focus lens according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating the structure of the pressure transmitting unit according to the present embodiment in more detail.
  • FIG. 4 is a graph showing characteristics of a material used in the variable focus lens according to the present embodiment.
  • FIG. 5 schematically shows the variable focus lens and its control device according to the present embodiment. This is a block diagram.
  • 6A and 6B are diagrams showing the structure of a prototype of the variable focus lens according to the present embodiment.
  • Figure 7 is a Bode plot of the frequency response measured on the prototype.
  • FIGS. 8A to 8D are diagrams each showing an example of a multi-layered variable focal length lens in the present embodiment.
  • 9A and 9B are diagrams each showing an example of a multi-layered variable focal length lens in the present embodiment.
  • FIG. 10 is a diagram for explaining the relationship between the pressure transmitting body according to the present invention and a surface portion.
  • FIG. 11 is a diagram schematically showing an example of a microscope using the variable focus lens according to the present invention.
  • FIG. 12 is a perspective view of a varifocal lens according to another embodiment of the present invention.
  • FIG. 13 is a diagram for explaining a lens surface portion of a variable focus lens according to another embodiment of the present invention.
  • FIGS. 14A and 14B are diagrams showing an application example of such a micro variable-focus lens array.
  • FIG. 15 is a diagram showing a variable focus lens according to still another embodiment of the present invention, and shows an example in which a lens having an asymmetry is employed.
  • FIG. 16 is a diagram showing an example of a microvariable focus lens array in which lens surface portions each having an elongated rectangular shape are arranged in one direction.
  • FIG. 2 is a perspective view schematically showing the variable focus lens according to the embodiment of the present invention.
  • the varifocal lens 10 according to the present embodiment includes a rigid container 11.
  • the container 11 has, for example, a diameter that increases toward one end, and has an adhesive surface at its end that is in close contact with the actuator 14.
  • the contact surface is The opening is formed to secure a large area, and a film 15 made of a thin material is formed so that vibrations of the actuator can be transmitted to the inside of the container.
  • This part is also called a cylinder part.
  • the other end of the actuator 14 has at least one (two in the present embodiment) opening for a lens surface portion.
  • This opening has a circular shape, for example, and a lens surface portion 12 made of a thin and transparent plate that can be elastically deformed is arranged therein. It is desirable that the area of the contact surface 13 be sufficiently larger than the area of the lens surface portion 12 and that the lens surface portion be deformed by sufficiently amplifying the displacement of the actuator transmitted to the contact surface.
  • the contact surface functions as a pressure transmitting section that applies displacement for changing the focal point of the lens, while the lens surface portion functions as a receiving section that receives displacement from the pressure transmitting section.
  • the film formed on the contact surface is referred to as a pressure transmitting unit.
  • the inside of the container 11 is filled with a liquid for transmitting the displacement of the actuator.
  • the refractive index of this liquid is preferably the same as the refractive index of the lens surface portion 12.
  • emulsion oil can be used as the liquid to be filled.
  • a stacked piezo evening is used as the evening 14.
  • the stacked piezo-electric device can be driven accurately with a frequency of 1 kHz or more, but the movable range is as small as several / z m. Therefore, as described above, the area of the pressure transmitting section is made sufficiently larger than the area of the receiving section, and the displacement of the layered Piazochiue is amplified at an amplification factor corresponding to the area ratio and transmitted to the receiving section. are doing.
  • FIG. 3 is a diagram showing the structure of the pressure transmitting portion formed on the contact surface in more detail.
  • the pressure transmitting portion (membrane) 15 according to the present embodiment is made of a metal material (for example, SUS304) and has a radius of 20 mm and a thickness of 0.5 mm. It is the size.
  • a cross-shaped projection 16 is formed at the center of the surface of the film 15 facing the actuator, so that the magnification of the lens displacement is increased.
  • the protrusion is 20 mm long, 2 mm wide, and 0 height. It is 8 mm in size. By contacting this protrusion with the activist, the liquid in the container 11 is efficiently pushed out, Or you can pull in.
  • the adoption of such a structure also has the effect of increasing the resonance frequency.
  • variable focus lens According to the present invention, the principle of the variable focus lens according to the present invention will be described.
  • the surface of the lens is required to have a high natural frequency that enables high-speed response, flexibility to sufficiently deform under the pressure generated by piezo-electricity, and optical performance as a lens. These are described below. In describing the natural frequency and flexibility, it is assumed that the shape of the lens surface is disk-shaped and the periphery is fixed.
  • the natural frequency is about the first-order natural frequency. This is because in order for the disk to function as a lens, it must vibrate in a point-symmetrical shape, and it is necessary that only one vibration mode be excited.
  • the natural frequency simply refers to the first-order natural frequency.
  • n 0 3 1 3 2, ⁇ ⁇ ⁇ numbered in ascending order.
  • the focal length f at the center satisfies the following relationship.
  • radius (a) is determined by equation (2), the following relationship is satisfied.
  • the first-order natural frequency ⁇ is proportional to the thickness
  • the flexibility index S is inversely proportional to the cube of the thickness.
  • Efficiency that is, the parameter that is less likely to lose flexibility when the natural frequency is increased is the radius. If the radius is halved, the natural frequency is 4 times, and the index of flexibility is 1/4 times.
  • the material is a special design element in that the parameters ⁇ ⁇ , ⁇ and ⁇ ⁇ ⁇ cannot be freely selected.
  • the Poisson's ratio has a relatively small variation in value depending on the material, so assuming that it can be regarded as a constant, the sensitivity (index) S decreases with the reciprocal of the Young's modulus ⁇ , and the natural frequency ⁇ is the square root of ⁇ It increases. Therefore, it is important to select substances with large ⁇ / ⁇ .
  • the parameter with poor efficiency is the thickness. If the thickness is doubled, the natural frequency will be doubled and the index of flexibility will be 1/8 times smaller.
  • Glass has a high natural frequency and relatively large flexibility, and the high molecular compound polyethylene / polystyrene has great flexibility, but its natural frequency is low.
  • These materials are likely candidates for lens surface materials. The selection of these materials is desirably determined in consideration of the width (range) of displacement of the lens surface portion 12 and the required response speed.
  • the thickness should be as thick as possible within the range discussed here. However, as the thickness increases, the flexibility decreases, so the thickness should be as large as possible within the range of pressure that can be generated in the actuator.
  • the laminated piezo actuator used in the proposed varifocal lens can generate a very large force (10 to 1000 [N]), so the degree of freedom is large.
  • the cylinder Since the cylinder has the same structure as the lens surface, basically the same considerations apply as for the lens surface. Since this part also needs to oscillate at 1 kHz, it is necessary to design a high natural frequency.
  • the radius of the cylinder is determined by the movable range of the actuator and the amplification factor required to sufficiently deform the lens surface.
  • the thickness and material can be basically considered in the same way as the lens surface.
  • the pressure transmitting section (cylinder section) must have a large radius, so the material and thickness must be increased accordingly. Come out. In this case, it is more important to design a rigid and light structure.
  • the mechanism that transmits the pressure generated by the actuator to the lens surface needs to have a high-speed response to transmit the pressure that changes in the order of kHz and accurately measure the distortion of the lens surface. If the distortion of the lens surface cannot be known, the optical characteristics such as the focal length cannot be known, so that the lens cannot be used as a varifocal lens.
  • the proposed lens uses a mechanism that distorts the lens surface by applying pressure to the high refractive index oil that fills the inside of the lens.
  • This structure has a high-speed response and can accurately measure the distortion of the lens surface will be described below.
  • liquid has a low compressibility, and is suitable as a medium for efficiently transmitting pressure as represented by a hydraulic mechanism.
  • oil is stable to temperature and easy to handle, and has a low compression ratio, so it is suitable for pressure transmission.
  • the pressure required to distort the varifocal lens is estimated to be around 30 [NZm 2 ], at which oil compression is negligible. Therefore, it can be assumed that the volume extruded due to the deformation of the cylinder due to the displacement of the actuator is equal to the volume expanded by distorting the lens.
  • Actuate Since the displacement in the evening can be measured accurately, the degree of lens distortion can also be estimated from the displacement in the actuate, and the optical characteristics of the lens can be known. > Configuration and operation]
  • FIG. 5 is a block diagram schematically showing the varifocal lens and its control device according to the present embodiment.
  • a control computer 20 an amplifier 22 that receives a drive voltage output from the control computer, amplifies the drive voltage, and supplies the amplified voltage to a piezoelectric actuator 14, and a varifocal lens 10.
  • the prototype has a sensor head 24 and a sensor control unit 26 for detecting the displacement of the lens surface portion 12.
  • the displacement signal of the lens surface is returned from the sensor controller 26 to the control console 20.
  • the displacement of the piezoelectric actuator 14 is returned from the amplifier 22 to the control computer 20.
  • the signal line indicated by the broken line and the components surrounded by the broken line are used to obtain a complete set of test results. Therefore, these components can be omitted when actually used as a lens.
  • data for causing a predetermined displacement at a predetermined frequency is D / A-converted and provided to the amplifier as an analog signal.
  • the amplifier 22 amplifies the applied analog signal to a level sufficient to drive the piezo-electric device.
  • the piezoelectric element 14 is displaced, and this is applied to the pressure transmitting part 15 of the lens 10.
  • This displacement is transmitted to the lens surface portion 12 via the liquid filled in the lens container 11, thereby displacing the lens surface portion 12 in a convex or concave shape, and changing the focal point of the lens. .
  • the prototype 100 of the variable focus lens used in the system shown in Fig. 5.
  • a double glass tube having a height of 50 mm, an inner diameter of 27 mm, and an outer diameter of 35 mm was used.
  • oil was filled between the glass tube forming the inner diameter and the glass tube forming the outer diameter, and this was designated as a container 111.
  • the glass tube 120 constituting the outer diameter of the housing 1 1 1 two opposite holes (7.5 mm diameter) are formed almost at the center side surface, and there is a thickness of 20 / m Place the glass thin film and this The lens surface portion 1 1 2 was used to transform.
  • a glass plate 122 having a thickness of l mm and a hole having a diameter of 5 mm was disposed thereon, thereby fixing the lens surface portion 112 (see FIG. 6B).
  • the overnight displacement see reference numeral 501 in FIG. 5
  • the displacement of the lens surface portion see reference numeral 502
  • distortion on the lens surface is detected, and more appropriate control based on this is detected. It is also possible.
  • the lens surface distortion can be indirectly measured and fed back by estimating it using the displacement of the actuator 14 and the direct measurement of the lens surface is also possible. Can be realized. If the pressure of the liquid inside is negligible and the natural frequencies of the lens surface and cylinder are sufficiently high, there is a one-to-one correspondence between the input of the actuary and the distortion of the lens surface. A relationship can be assumed. Therefore, the lens distortion can be estimated only by measuring the displacement of the actuator 14. In other words, in the system shown in Fig. 5, it is also possible to estimate the distortion of the lens surface from the displacement of the actuator 14 and feed it back.
  • a pressure transmitting element 115 made of SUS304 is placed, and the piezo-actuator closely attached to its lower part (shown in FIGS. 6A and 6B). ) Is transmitted.
  • the pressure transmitting section 1 15 has a central portion so that the resonance frequency becomes high and the liquid in the container 1 1 1 can be pushed out efficiently with respect to the displacement of the actuator.
  • the design is reinforced.
  • a container cover having a thickness of 5 mm is arranged on the upper part of the container 111 to seal the liquid stored between the two glass tubes.
  • the prototype was designed with the primary resonance frequency of about 8.0 kHz.
  • the primary resonance frequency of the designed structure is estimated by the finite element method, the lens surface is 8. 2 kHz, the cylinder section was 7.7 kHz.
  • the displacement (see reference numeral 501) of the piezoelectric actuator shown in Fig. 5 was input.
  • the frequency response was measured using the displacement at the center of the lens surface portion 12 (see reference numeral 502) as the output.
  • a laser rangefinder LC-240 Keyence, response frequency 20 kHz
  • P-84.1.10 manufactured by PI-Polytec, primary resonance frequency 18 kHz, movable range 15 ⁇ m, built-in strain sensor.
  • the control cycle is 0. The measurement was performed at 1 ms.
  • Figure 7 is a Bode plot of the measured frequency response. From Fig. 7, it was found that the response characteristics hardly changed up to 1 kHz, confirming that the structure of the prototype varifocal lens can respond in the order of kHz.
  • the container is filled with a single liquid, but by dividing the container into a plurality of parts, a plurality of liquids having different refractive indices can be divided into parts of the container. It is also possible to fill each one.
  • the focal length of the lens is changed, the optical parameters will change accordingly, and the conditions for aberration correction will change.
  • the movement of multiple parameters was absorbed by moving multiple lenses.However, by moving the lens at a speed reaching the order of 1 kHz, It is difficult to absorb change. Therefore, in the present invention, in order to solve this problem, a structure in which the variable focus mechanism is multi-layered was invented. Multilayering increases the degree of freedom of optical parameters by the number of layers.
  • FIG. 8A to 8D are cross-sectional views each showing an example of a multi-layer variable focus lens.
  • the container 211 is divided into a first part 222 and a second part 222, and the first part 222 and the second part 222 are divided into two parts. At the end of each of them, piezoakchiyue 2 14 and 2 15 are arranged.
  • the first part 222 and the second part 222 are rigid, for example, 223
  • flexible or elastic surface portions 2 1 2 and 2 13 are formed on the outer surfaces of the first portion 2 2 1 and the second portion 2 2 2, flexible or elastic surface portions 2 1 2 and 2 13 are formed.
  • the surface portion 2 12 is displaced by driving the piezoelectric element 2 14, while the surface portion 2 13 is displaced by driving the piezoelectric element 2 15 be able to.
  • the degree of freedom becomes “2”, and two optical parameters, for example, the focal length and the spherical aberration can be adjusted.
  • a connecting portion (connecting surface) 3 13 having flexibility or elasticity is also formed between the first portion 3 21 and the second portion 3 22.
  • the surface portion 316 disposed on the outer surface of the second portion 322 has rigidity.
  • two optical parameters can be adjusted. Note that the optical parameters include coma as well as focal length and spherical aberration.
  • the container 4 11 is divided into a first portion 4 2 1, a second portion 4 2.2 and a third portion 4 2 3, and the first portion 4 2 Surface portion 4 1 2 provided on the outer surface of 1, connection portion 4 2 4 between first portion 4 2 1 and third portion 4 2 3, and provided on the outer surface of second portion 4 2 2
  • the given surface portion 4 13 has flexibility or elasticity, and can be displaced by driving the corresponding actuator.
  • the connecting portion 4 25 between the second portion and the third portion has rigidity.
  • the degree of freedom can be set to “3”. In this case, it becomes possible to adjust three optical parameters, for example, the focal length, spherical aberration, and coma.
  • FIG. 8D shows still another example of the varifocal lens having a degree of freedom of “3”.
  • the outer surface of the second part 5 2 2 is rigid (see reference numeral 5 16), while the connection between the second part 5 2 2 and the third part 5 3 3 (reference number 5 13) has flexibility or elasticity.
  • the outer surface portion 5 1 2 s of the first portion 5 2 1 and the connecting portion 5 2 4 between the first portion 5 2 1 and the third portion 5 2 3 have flexibility or elasticity. This is similar to the example in FIG. 8C.
  • each part of the container is filled with a liquid having a different refractive index. Is also good. As a result, the degree of freedom of the optical parameters can be increased, and the color difference can be adjusted.
  • FIGS. 9A and 9B show such examples.
  • the structure of the variable focus lens shown in FIG. 9A is the same as that of FIG. 8B.
  • the first portion 3 2 1 of the variable focus lens 3 1 1 is filled with a liquid having a refractive index ( ⁇ refractive index ⁇ of air), and the second portion 4 3 3 has a refractive index n 2 ( ⁇ ni and ⁇ ⁇ .) Liquid is filled.
  • the structure of the variable focus lens shown in FIG. 9D is the same as that of FIG. 8D.
  • the first part 5 2 1 contains a liquid with a refractive index ii i ( ⁇ n.)
  • the second part a liquid with a refractive index n 2 and ⁇ n 0
  • a third part Liquids with a refractive index of n 3 ( ⁇ n 15 ⁇ n 2 and ⁇ n.) Are each filled.
  • FIG. 11 is a diagram schematically showing an example of a microscope using a variable focus lens.
  • a varifocal lens 111 is disposed between the objective lens 110 and the imaging device 110.
  • This varifocal lens may have a configuration as shown in FIGS. 1 and 2 or a configuration as shown in FIGS. 8A to 8D or FIGS. 9A and 9B.
  • This microscope includes an image forming unit 1104 and a lens control unit 1106 connected to the image pickup device 1102.
  • the image forming unit 111 and the lens control unit 110 constitute an arithmetic unit 111.
  • the image forming unit 1104 receives a signal from the image sensor 111 and creates image data captured by a microscope. Further, the lens control unit 1106 extracts a component having a relatively high spatial frequency in the signal, for example, including a Laplacian filter, and determines whether or not the lens is in focus.
  • a control voltage for controlling the function (not shown) of the varifocal lens 110 is output from the lens controller 1106. Also, from the varifocal lens 1 1 1 0 A signal indicating the displacement may be returned to the lens control unit 1106.
  • the lens control unit 1 10 6 determines that the focus is out of focus, and controls the actuator to move the focal plane back and forth in the optical axis direction.
  • the lens control unit 1106 determines the in-focus position based on the image taken by the imaging device 1102 during the forward and backward movement. In this embodiment, since the control of the focal length can be realized at a rate of 1 kHz, the movement of the focal plane can be made sufficiently faster than the movement of the object. It is possible to perform appropriate focusing.
  • variable focus lens 12 10 in the varifocal lens 12 10 according to this embodiment, the configuration of the container 11, the actuator 14, the membrane 15, and the like are shown in FIGS. It is almost the same as shown in Fig. 3. Further, the inside of the container 11 is filled with a liquid for transmitting the displacement of the actuator, for example, emulsion oil.
  • a liquid for transmitting the displacement of the actuator for example, emulsion oil.
  • the varifocal lens 1 210 On the side of the varifocal lens 1 210 where the actuator 14 is not arranged, two substantially parallel surfaces are formed, and on each surface, a plurality of circular openings are formed so as to face each other.
  • a lens surface portion 12 made of a thin and transparent plate that is elastically deformable is arranged.
  • the plurality of lens surface portions 12 are arranged according to a certain geometric arrangement. For example, as shown in FIG. 13, the arrangement may be such that every other row and column are arranged, or the arrangement may be such that adjacent rows and columns are arranged. It is desirable that the refractive index of the lens surface portion 12 and the refractive index of the liquid filled in the container 11 be the same.
  • the diameter of the lens surface portion 12 is very small (for example, several tens of m to several hundreds / m), and the varifocal lens 1210 has the opposite lens surface portion 12 functioning as a micro lens. It functions as a micro variable focus lens array.
  • each lens surface portion 12 is in contact with the same liquid, and the same pressure is applied by driving the actuator 14. Therefore, the focal length is uniformly controlled It is.
  • the lens surface portion 12 may be formed only on one surface of the container.
  • FIGS. 14A and 14B are diagrams showing an application example of such a micro variable-focus lens array. In the example of Fig.
  • the lens surface part 1 2 (single lens surface part or a set of opposing lens surface parts) of the micro variable-focus lens array and the image sensor 1401 correspond one-to-one. are doing.
  • a plurality of (9) lens surface portions (or 9 sets of lens surface portions) 1 4 2 0—1 and 1 4 2 0—2 and an imaging device 1 4 1 1—1, 1 4 1 1 1 and 2 correspond.
  • a rigid transparent partition is placed in the container of the micro variable-focus lens array so that another liquid (the refractive index may be the same or different) may be in contact with that of the facing lens surface. You may. This arrangement corresponds to the structure shown in FIG.
  • FIG. 8A when focusing only on the opposing lens surface. Further, as shown in FIG. 8B, in the partition, one surface of the container and a lens surface portion facing the partition may be formed. Further, a three-layer structure as shown in FIG. 8C or FIG. 8D may be adopted.
  • Fig. 15 shows an example in which an astigmatic lens is used.
  • the lens surface portion 1512 is rectangular. Even when the lens shape is an asymmetry, as in the examples shown in FIGS. 12 and 13, the length of each side is very small (for example, several tens of meters to several hundreds of meters).
  • a micro variable focus lens array may be formed in which the lens surface portions of the above are arranged according to a certain geometrical arrangement. Further, in such a micro variable focal length lens, a transparent partition may be arranged so that another liquid comes into contact with each of the opposing lens surface portions (see FIGS. 8A to 8D). Also in this example, the lens surface portion 1512 may be formed only on one surface of the container, or the lens surface portion may be formed so as to face both surfaces.
  • FIG. 16 is a diagram showing an example of a microvariable focus lens array in which lens surface portions each having an elongated rectangular shape are arranged in one direction.
  • the lens surface portion 1612 is adjacently arranged via a rigid boundary portion 1613.
  • the center in the longitudinal direction (reference numeral 1610) is The shape of the step surface at each position becomes the same even when the pressure inside the container changes. Therefore, the center 1610 can be used as a lens.
  • the lens surface portion 1612 may be formed only on one surface of the container 1611, or the lens surface portion 1612 may be formed on both surfaces so as to face each other. May be.
  • the micro-variable-focus lens array shown in Fig. 16 can be used, for example, by placing it on the front side of an LCD (Liquid Crystal Display) and changing the lens focus to enable the display of so-called three-dimensional images.
  • LCD Liquid Crystal Display
  • each layer may be filled with the same liquid, or may be filled with liquids having different refractive indexes.
  • a pressure transmitting portion is disposed on one of the funnel-shaped expanded sides, and a flexible or elastic surface portion is arranged so as to face the thinly extended side.
  • the shape is not limited to the above-mentioned shape or the shape of the prototype.
  • the area S of the side on which the actuator 14 is mounted (the pressure transmitting section 15) is the area of the flexible or elastic surface portion functioning as a lens. Sufficiently larger than the area s (S>> s), and the pressure transmission part and the surface part are connected by a liquid such as oil, and the vibration of the pressure transmission part 15 is transmitted to the surface part 12. Any structure is acceptable. By adopting such a structure, the displacement of the surface portion can be SZs times the displacement of the pressure transmitting portion.
  • the displacement of the surface portion can be adjusted to a desired range.
  • the cross-shaped projection is formed on the side of the pressure transmitting portion that comes into contact with the actuator, but the shape of the projection is not limited to this. Triangular shape arranged at an angular interval of Further, in the above-described embodiment, an example in which the container has a two-layer structure or a three-layer structure has been described, but it goes without saying that a four-layer or more layer structure may be employed. Also in this case, it is sufficient to adopt a configuration in which a pressure transmitting unit is arranged in each layer and the displacement of the actuator can be transmitted to the connecting unit and the lens surface.
  • the surface portions and connection surfaces of some layers may be configured to be displaceable without arranging the actuators in all layers.
  • a partition almost perpendicular to the surface of the container is arranged, and It may be filled with a different liquid.
  • variable focus lens that responds at a frame rate of a high-speed vision system, and a control device therefor.
  • the present invention is particularly desirable to cooperate with a lens having a high-speed response of 1 kHz or more, and can be applied to a high-speed vision system using a vision chip.
  • This high-speed vision system can follow an image of an object moving at high speed in a focused state, generate an image of the object, or capture other objects moving at high speed. It is also possible to control devices (arms).
  • a micro variable focal length lens array in which minute lenses are arranged in a geometrical arrangement is constituted, and a plurality of images are formed by associating a single micro lens or a predetermined number of micro lenses with an image sensor. By generating them and generating new images based on them, it becomes possible to acquire more precise images.
  • a three-dimensional image can be generated by combining with LCD or the like.

Abstract

A variable-focus lens that responses at the frame rate of a high-speed visual system, and it controller. A variable-focus lens (10) comprising a container (11) filled with liquid thereinside. The container (11) comprises a pressure transmitting part (15) kept in contact with an actuator (14) to transmit its vibration, and two light transmitting parts (12, 12) on light incoming and outgoing surfaces. A surface portion, capable of being displaced convexly and concavely in an optical axis direction in response to a displacement imparted from the pressure transmitting part (15) via liquid, is provided on at least one of the light incoming and outgoing surfaces, with a ratio (s/S) between the area s of the surface portion and that S of the pressure transmitting part (15) being up to a specified value, thereby changing a focal distance when the surface portion displaces in response to the displacement of the actuator (14).

Description

明 細 書  Specification
可変焦点レンズぉよびレンズ制御装置 発明の属する技術分野  Variable focus lens and lens control device TECHNICAL FIELD
本発明は、 高速に焦点を変更可能な可変焦点レンズおよびその制御装置に関す ο  The present invention relates to a varifocal lens capable of changing focus at high speed and a control device thereof.
背景技術 Background art
近年、 1 k H zのフレームレートで高速に画像を取得 ·処理することができる 高速視覚として、 S 3 P Eに代表される超並列。超高速ビジョンチップが注目さ れている。 このような高速視覚においては、 結像に写真レンズや望遠鏡などのレ ンズで構成される光学系を用いることが多い。 もし光学系をレンズの焦点距離を 制御できる可変焦点レンズと組み合わせて構成すれば、 合焦機構やズーム機構な どが実現でき、 このような動的な光学系を積極的に利用することで、 高速視覚シ ステムの新たな応用用途を開拓できることが予想される。 Recently, a high-speed vision capable of obtaining and processing an image at high speed at a frame rate of 1 k H z, massively parallel typified by S 3 PE. Ultra-high-speed vision chips are attracting attention. In such high-speed vision, an optical system composed of a lens such as a photographic lens or a telescope is often used for image formation. If the optical system is configured in combination with a varifocal lens that can control the focal length of the lens, a focusing mechanism and a zoom mechanism can be realized, and by actively using such a dynamic optical system, It is expected that new applications for high-speed vision systems can be explored.
このような高速視覚システムのフレーム毎に異なる光学特性で対象を撮像する ためには、 可変焦点レンズも 1 k H z以上の応答を持つことが必要である。  In order to capture an object with different optical characteristics for each frame of such a high-speed vision system, the varifocal lens must also have a response of 1 kHz or more.
ところが、 従来の可変焦点レンズは高速視覚のフレームレ一トである 1 k H z に比べて、非常に遅く、高速視覚の高速性を損なうものである。たとえば、 "A new, compact and quick -response dynamic iocu sing lens (Takashi Kaneko et. Alリ TRANSDUCERS ' 97, Vol. 1, p. 63 -66, 1997) " には、 応答速度が最高で、 約 1 5 0 H zであるような可変焦点レンズが提案されている。 しかしながら、 このよう な可変焦点レンズの応答は、 高速視覚のフレームレートと比べて一桁小さく、 光 学系を利用した応用には速度の点で大きな制限が存在している。  However, the conventional varifocal lens is much slower than the high-speed vision frame rate of 1 kHz, which impairs the speed of high-speed vision. For example, "A new, compact and quick -response dynamic iocu sing lens (Takashi Kaneko et. Al R TRANSDUCERS '97, Vol. 1, p. 63 -66, 1997)" has the highest response speed, about 1 Variable focus lenses have been proposed that are 50 Hz. However, the response of such varifocal lenses is an order of magnitude smaller than the frame rate of high-speed vision, and there are significant speed limitations in applications that use optical systems.
本発明は、 高速視覚システムのフレームレートで応答する可変焦点レンズ、 お よび、 その制御装置を提供することを目的とする。  An object of the present invention is to provide a variable focus lens which responds at a frame rate of a high-speed vision system, and a control device thereof.
発明の開示 Disclosure of the invention
本発明者らは、 以下に述べるような、 1 k H zのレートで焦点距離を制御でき る可変焦点レンズの構造を考案した。 概略的にいうと、 この可変焦点レンズは十 分に堅い容器の内部に、 透明な液体を密封する構造をとり、 容器の表面に弾性を もつ円形の薄く透明な板を取り付けて、 これをレンズ表面とする。 また、 レンズ 表面とは別に内部の液体に圧力を加えるための弾性をもつ隔壁を取り付ける。 本 明細書において、 この部分をシリンダ部ないし圧力伝達部と称する。 The present inventors have devised a structure of a varifocal lens capable of controlling a focal length at a rate of 1 kHz as described below. Roughly speaking, this variable focus lens is A transparent liquid is sealed inside a rigid container, and an elastic circular thin transparent plate is attached to the surface of the container, which is used as the lens surface. Separately from the lens surface, an elastic partition for applying pressure to the liquid inside is attached. In this specification, this part is called a cylinder part or a pressure transmitting part.
焦点距離は、 外部からシリンダ部を通して内部の液体に圧力を加え、 レンズ表 面を変形させることで制御する。 内部の液体は光を屈折させる媒質と、 力の伝達 の 2つの役割をもつ。 この可変焦点レンズが焦点距離を変化させる原理を図 1に 示す。 図 1に示すように、 ァクチユエ一夕 1 4を、 液体を押圧する方向 (矢印 A 方向) に駆動することにより、 弾性変形可能な薄く透明な板 (レンズ表面部分) 1 2、 1 2が凸状となり、 これにより凸レンズが形成される。 その一方、 ァクチ ユエ一夕 1 4を、 液体を引き込む方向 (矢印 B方向) に駆動することにより、 薄 く透明な板 1 2、 1 2が凹状となり、 これにより、 凹レンズが形成される。 現時点で、 本発明にかかる可変焦点レンズの特徴である高速性を満たすァクチ ユエ一夕として利用可能なものに、 数十 k H z程度の共振周波数をもち、 n (ナ ノ) mオーダの位置決めが可能な積層型ピエゾァクチユエ一夕がある。 この種類 のァクチユエ一夕で数 + k H z程度の共振周波数を持つものは、 可動範囲が 1 0 / m程度しかない。 そこで、 本発明においては、 ァクチユエ一夕が液体に圧力を 加える部分の面積を、 レンズ表面の面積より十分に大きく (たとえば数十倍程度 に) 設計する。 このような構造を採用することにより、 ァクチユエ一夕の変位を 増幅してレンズ表面を変形させることができる。  The focal length is controlled by applying pressure to the liquid inside from the outside through the cylinder to deform the lens surface. The liquid inside has two roles, the medium that refracts light and the transmission of force. Fig. 1 shows the principle of how the varifocal lens changes the focal length. As shown in Fig. 1, by driving the actuator 14 in the direction of pressing the liquid (the direction of arrow A), the elastically deformable thin and transparent plates (lens surface) 12 and 12 are convex. , Thereby forming a convex lens. On the other hand, by driving the actuator 14 in the direction of drawing in the liquid (the direction of arrow B), the thin and transparent plates 12 and 12 become concave, thereby forming a concave lens. At present, one of the varifocal lenses according to the present invention, which can be used as an actuator that satisfies the high speed characteristic, has a resonance frequency of about several tens of kHz and positioning on the order of n (nano) m There is a stacked piezo akuchie that is possible. This type of actuary, which has a resonance frequency of several + kHz, has a movable range of only about 10 / m. Therefore, in the present invention, the area of the part where the actuator applies pressure to the liquid is designed to be sufficiently larger (for example, about several tens times) than the area of the lens surface. By adopting such a structure, the lens surface can be deformed by amplifying the displacement of the actuator.
また、 シリンダ部とレンズ表面は高速に振動する必要があるので、 目的とする 応答速度に比べて十分高い固有振動数を持つように設計した。  In addition, since the cylinder and the lens surface need to vibrate at high speed, they were designed to have a sufficiently high natural frequency compared to the desired response speed.
より詳細には、 本発明の目的は、 内部に液体が充填された収容体であって、 ァ クチユエ一夕と接触して、 当該ァクチユエ一夕の振動を伝達する圧力伝達部と、 光の入射面および射出面に、 二つの光透過部とを備えた収容体を備え、 前記入射 面および射出面の少なくとも一方に、 前記圧力伝達部から液体を介して与えられ る変位に応答して、 光軸方向に凹凸に変位可能な一以上の表面部分であって、 そ の面積 sと、 前記圧力伝達部の面積 Sとの比 ( s / S ) が、 所定の値以下である ような表面部分を設け、 前記ァクチユエ一夕の変位に応答して、 前記表面部分が 変位することにより、 焦点距離を変化させることを特徴とする可変焦点レンズよ り達成される。 More specifically, an object of the present invention is to provide a container in which a liquid is filled, wherein the pressure transmitting portion is configured to come into contact with the actuator and transmit the vibration of the actuator, and to receive light. A container provided with two light transmitting portions on a surface and an emission surface, and at least one of the incident surface and the emission surface is provided with a light in response to a displacement given from the pressure transmitting portion via a liquid. One or more surface portions that can be displaced unevenly in the axial direction, and a ratio (s / S) of an area s thereof to an area S of the pressure transmitting portion is equal to or less than a predetermined value. Such a surface portion is provided, and the focal length is changed by displacing the surface portion in response to the displacement of the actuator, thereby achieving a variable focal length lens.
本発明によれば、 圧力伝達部に与えられるァクチユエ一夕からの変位を、 S / s倍したものが、 表面部分の変位としてあらわれる。 したがって、 ピエゾ積層型 ァクチユエ一夕 (P Z T ) のように、 高速な応答性を有するが、 その可動範囲が 小さいものを利用しても、 十分に表面部分が光軸方向に、 変位することができ、 1 k H zのオーダにて焦点距離を変化させることが可能となる。 可橈性ないし弾 性を有する表面部分を、 入射面および射出面の双方に形成しても良いし、 一方に だけ形成し、 他方を剛性面としても良い。  According to the present invention, the displacement from the actuator applied to the pressure transmitting section by S / s times appears as the displacement of the surface portion. Therefore, even if it has a high-speed response, such as a piezo-stacked actuator (PZT), its surface area can be sufficiently displaced in the optical axis direction even if a small movable range is used. , The focal length can be changed on the order of 1 kHz. A flexible or elastic surface portion may be formed on both the entrance surface and the exit surface, or may be formed on only one of the surfaces and the other may be a rigid surface.
好ましい実施態様においては、 前記収容体において、 一方の端に向けて、 その 径が拡張し、 拡張した端部に圧力伝達部が配置されるとともに、 他方の端部付近 が単一の径を有し、 対向する入射面および射出面が形成される。 このような構成 により、 十分な応答性能を有するコンパクトな可変焦点レンズを形成することが できる。  In a preferred embodiment, in the container, the diameter is expanded toward one end, a pressure transmitting portion is arranged at the expanded end, and a portion near the other end has a single diameter. Then, opposing entrance and exit surfaces are formed. With such a configuration, it is possible to form a compact varifocal lens having a sufficient response performance.
より好ましい実施態様においては、 圧力伝達部において、 ァクチユエ一夕と接 触する側の面に、 突起が形成されている。 当該突起は、 十字状である。 圧力伝達 部をこのように構成することにより、 共振周波数が高くなり、 かつ、 ァクチユエ —夕の変位に対して効率よく、 収容体中の液体を押し出し、 或いは、 引き戻すこ とが可能となる。  In a more preferred embodiment, a projection is formed on a surface of the pressure transmitting portion that is in contact with the actuator. The projection has a cross shape. By configuring the pressure transmitting section in this manner, the resonance frequency is increased, and the liquid in the container can be pushed out or pulled back efficiently with respect to the actuating-evening displacement.
別の好ましい実施態様においては、 収容体が、 第 1のァクチユエ一夕と接触す る第 1の圧力伝達部および前記入射面を含む第 1の部分と、 第 2のァクチユエ一 夕と接触する第 2の圧力伝達部および前記射出面を含む第 2の部分と、 少なくと も入射面および射出面に対向する位置で第 1の部分と第 2の部分が密着した連結 面とを有し、 前記第 1の部分の入射面および連結面、 第 1の部分の入射面および 第 2の部分の射出面、 並びに、 連結面および第 2の部分の射出面の何れかの組み 合わせで、 変位可能な表面部分が形成される。 このような 2層構造をとることに より、 自由度は 「2」 となり、 各ァクチユエ一夕の駆動により、 焦点距離だけで なく、 収差を補正することも可能となる。 In another preferred embodiment, the container has a first portion including the first pressure transmitting portion and the incident surface in contact with the first actuator, and a second portion in contact with the second actuator. A second portion including the pressure transmitting portion and the exit surface, and a connection surface in which the first portion and the second portion are in close contact with each other at least at a position facing the entrance surface and the exit surface. Displaceable in any combination of the entrance surface of the first portion and the connection surface, the entrance surface of the first portion and the exit surface of the second portion, and the connection surface and the exit surface of the second portion A surface portion is formed. By adopting such a two-layer structure, the degree of freedom is "2", and the driving of each actuary allows only the focal length to be used. It is also possible to correct aberrations.
たとえば、 前記連結面と射出面とが、 それそれ、 異なる屈折率の材料で形成さ れても良いし、 また、 前記連結面と液体とが、 それそれ、 異なる屈折率の材料で 形成されても良い。  For example, the connection surface and the emission surface may be formed of materials having different refractive indexes, and the connection surface and the liquid may be formed of materials having different refractive indexes. Is also good.
さらに、 前記第 1の部分および第 2の部分に、 それそれ、 屈折率の異なる液体 が充填されても良い。 これにより、 たとえば、 色収差を補正することもできる。 さらに別の好ましい実施態様においては、 前記収容体が、 第 1のァクチユエ一 夕と接触する第 1の圧力伝達部および前記入射面を含む第 1の部分と、 第 nのァ クチユエ一夕と接触する第 nの圧力伝達部および前記射出面を含む第 nの部分と、 前記第 1の部分と第 nの部分との間に介在する、 (n— 2 ) 個の中間部分であつ て、 第 i ( i = 2 3 3 , · · · , ( n—2 ) ) ) のァクチユエ一夕と接触する第 iの圧力伝達部を含む中間部分とを有し、 隣接する中間部分において、 前記入射 面および射出面に対向する部分に密着する連結面が形成され、 かつ、 それそれの 部分において、 入射面、 連結面および Zまたは射出面において、 変位可能な表面 部分が形成される。 このような多層構造をとることにより、 場合によって、 その 自由度をさらに増大させることができ、 よりいつそう、 レンズの撮像能力を向上 させることが可能となる。 上述した例において、 前記第 1の部分、 (n—2 ) 個 の中間部分および第 nの部分に、 それぞれ、 屈折率の異なる液体が充填されても 良い。 また、 先の実施態様と同様に、 連結面と射出面とが、 それぞれ、 異なる屈 折率の材料で形成されても良いし、 連結面と液体とが、 それそれ、 異なる屈折率 の材料で形成されていても良い。 Further, the first portion and the second portion may be filled with liquids having different refractive indexes. Thereby, for example, chromatic aberration can be corrected. In still another preferred embodiment, the container has a first portion including the first pressure transmitting portion and the incident surface that is in contact with the first actuator, and a first portion that includes the n-th actuator. (N-2) intermediate portions interposed between the first portion and the n-th portion, the n-th portion including the n-th pressure transmitting portion and the emission surface; i (i = 2 3 3,..., (n−2))) and an intermediate portion including an i-th pressure transmitting portion in contact with the actuator. A connection surface is formed in close contact with a portion facing the emission surface, and a displaceable surface portion is formed in each of the incident surface, the connection surface, and the Z or emission surface. By adopting such a multilayer structure, the degree of freedom can be further increased in some cases, and the imaging capability of the lens can be further improved. In the above-described example, the first portion, the (n−2) intermediate portions, and the n-th portion may be filled with liquids having different refractive indexes. Further, as in the previous embodiment, the connection surface and the emission surface may be formed of materials having different refractive indices, respectively, and the connection surface and the liquid may be formed of materials having different refractive indices. It may be formed.
なお、 2層以上の多層構造においても、 ァクチユエ一夕が接触する圧力伝達部 に向かって、収容体を構成するそれそれの部分(第 1の部分、中間部分など)が、 その径が拡大する構造を採用していても良い。 これにより、 レンズのサイズをそ れほど大きくすることなく、 種々の制御が可能なレンズを提供することが可能と なる。  Even in a multi-layer structure of two or more layers, the diameter of each part (first part, middle part, etc.) that constitutes the container increases toward the pressure transmitting part where the actuator contacts. A structure may be adopted. As a result, it is possible to provide a lens that can be variously controlled without increasing the size of the lens so much.
別の好ましい実施態様においては、 前記入射面および少なくとも一方に、 複数 の表面部分が、 所定の幾何学的配置にて並べられている。 前記表面部分は、 それ それ、 数十/ ないし数百/ mの径を有し、 入射面および射出面の一方に形成さ れた表面部分、 或いは、 双方に形成された対向する対の表面部分によりマイクロ レンズが形成されていても良い。 或いは、 前記表面部分は、 それそれ、 数十 m ないし数百 mの幅を有する長手方向に細長い長方形状であり、 入射面および射 出面の一方に形成された表面部分、 或いは、 双方に形成された対向する対の表面 部分によりマイクロレンズが形成されていても良い。 長方形状のマイクロレンズ の例では、 表面部分が、 長手方向の辺がほぼ接するように並べられているのが望 ましい。 In another preferred embodiment, a plurality of surface portions are arranged on the entrance surface and / or at least one in a predetermined geometric arrangement. Said surface portion is It has a diameter of several tens / several hundreds / m, and a microlens is formed by a surface portion formed on one of the entrance surface and the exit surface, or an opposing pair of surface portions formed on both. May be. Alternatively, the surface portion is a rectangular shape elongated in the longitudinal direction having a width of several tens to several hundreds of meters, and is formed on one or both of the entrance surface and the exit surface. A microlens may be formed by the surface portions of the pair facing each other. In the example of a rectangular microlens, it is desirable that the surface portions are arranged so that the longitudinal sides are almost touching.
また、 本発明の目的は、 上記可変焦点レンズと、 各ァクチユエ一夕を駆動する ための信号を与える制御部と、 前記各信号を増幅する増幅器とを備えたことを特 徴とするレンズ制御装置によっても達成される。  Further, an object of the present invention is to provide a lens control device characterized by comprising the above-mentioned variable focus lens, a control unit for supplying a signal for driving each actuator, and an amplifier for amplifying each of the signals. Is also achieved by
前記制御部は、ァクチユエ一夕の変位をフィードバックとして受理しても良い。 このフィ一ドバヅクを利用して、 ァクチユエ一夕の駆動信号のレベルが制御され 得る。 また、 さらに、 前記表面部分における変位を測定するレンズ変位測定部を 備え、 当該表面部分の変位が、 前記制御部にフィードパックされても良い。 レン ズ変位は、 上記ァクチユエ一夕の駆動信号のレベルを制御するために利用しても 良い。また、これらフィ一ドバック信号によりレンズの歪みをフィ一ドバックし、 より適切な制御を実現することもできる。 レンズ表面の歪みは、 ァクチユエ一夕 の変位を用いて推定することで間接的に計測。フィ一ドバックすることもができ、 また、 表面部分の変位から直接計測することによつても実現できる。  The control unit may receive a displacement of the actuator as feedback. Utilizing this feedback, the level of the drive signal for the factories can be controlled. Furthermore, a lens displacement measuring unit that measures displacement in the surface portion may be further provided, and the displacement of the surface portion may be feed-packed to the control unit. The lens displacement may be used to control the level of the drive signal for the above-mentioned factor. In addition, it is possible to feed back the distortion of the lens by these feedback signals, thereby realizing more appropriate control. The lens surface distortion is measured indirectly by estimating the displacement of the actuator. Feedback can be provided, and it can also be realized by directly measuring from the displacement of the surface part.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明にかかる可変焦点レンズの原理を説明する図である。  FIG. 1 is a diagram illustrating the principle of a variable focus lens according to the present invention.
図 2は、 本発明の実施の形態にかかる可変焦点レンズを概略的に示す斜視図で める。  FIG. 2 is a perspective view schematically showing the variable focus lens according to the embodiment of the present invention.
図 3は、 本実施の形態にかかる圧力伝達部の構造をより詳細に示す図である。 図 4は、 本実施の形態にかかる可変焦点レンズにて用いる材料の特性を示すグ ラフである。  FIG. 3 is a diagram illustrating the structure of the pressure transmitting unit according to the present embodiment in more detail. FIG. 4 is a graph showing characteristics of a material used in the variable focus lens according to the present embodiment.
図 5は、 本実施の形態にかかる可変焦点レンズおよびその制御装置の概略を示 すプロックダイヤグラムである。 FIG. 5 schematically shows the variable focus lens and its control device according to the present embodiment. This is a block diagram.
図 6 A、 Bは、 本実施の形態にかかる可変焦点レンズの試作品の構造を示す図 である。  6A and 6B are diagrams showing the structure of a prototype of the variable focus lens according to the present embodiment.
図 7は、 試作品にて計測した周波数応答のボード線図である。  Figure 7 is a Bode plot of the frequency response measured on the prototype.
図 8 A〜Dは、 それそれ、 本実施の形態において、 多層化された可変焦点レン ズの例を示す図である。  8A to 8D are diagrams each showing an example of a multi-layered variable focal length lens in the present embodiment.
図 9 A、 Bは、 それそれ、 本実施の形態において、 多層化された可変焦点レン ズの例を示す図である。  9A and 9B are diagrams each showing an example of a multi-layered variable focal length lens in the present embodiment.
図 1 0は、 本発明にかかる圧力伝達体と表面部分との関係を説明するための図 である。  FIG. 10 is a diagram for explaining the relationship between the pressure transmitting body according to the present invention and a surface portion.
図 1 1は、 本発明にかかる可変焦点レンズを用いた顕微鏡の例を概略的に示す 図である。  FIG. 11 is a diagram schematically showing an example of a microscope using the variable focus lens according to the present invention.
図 1 2は、 本発明の他の実施例にかかる可変焦点レンズの斜視図である。  FIG. 12 is a perspective view of a varifocal lens according to another embodiment of the present invention.
図 1 3は、 本発明の他の実施例にかかる可変焦点レンズのレンズ表面部分を説 明するための図である。  FIG. 13 is a diagram for explaining a lens surface portion of a variable focus lens according to another embodiment of the present invention.
図 1 4 Aおよび図 1 4 Bは、 このようなマイクロ可変焦点レンズアレイの適用 例を示す図である。  FIGS. 14A and 14B are diagrams showing an application example of such a micro variable-focus lens array.
図 1 5は、本発明のさらに他の実施例にかかる可変焦点レンズを示す図であり、 非点対称形状のレンズを採用した例を示す。  FIG. 15 is a diagram showing a variable focus lens according to still another embodiment of the present invention, and shows an example in which a lens having an asymmetry is employed.
図 1 6は、 それそれが細長い長方形の形状をもつレンズ表面部分を、 一方向に整 列配置したマイクロ可変焦点レンズアレイの例を示す図である。 FIG. 16 is a diagram showing an example of a microvariable focus lens array in which lens surface portions each having an elongated rectangular shape are arranged in one direction.
発明を実施するための望ましい形態 BEST MODE FOR CARRYING OUT THE INVENTION
[レンズの概略]  [Lens outline]
以下、添付図面を参照して、本発明の実施の形態につき説明を加える。図 2は、 本発明の実施の形態にかかる可変焦点レンズを概略的に示す斜視図である。 図 1 および図 2に示すように、 本実施の形態にかかる可変焦点レンズ 1 0は、 剛性の 収容体 1 1を備えている。 収容体 1 1は、 たとえば、 一方の端に向かって径が拡 張し、その端部にァクチユエ一夕 1 4と密着する密着面を有している。密着面は、 その面積を大きく確保するように開口しており、 薄い材料からなる膜 1 5が形成 され、 ァクチユエ一夕の振動を収容体内部に伝達できるようになつている。 この 部分を、 シリンダ部とも称する。 また、 ァクチユエ一夕 1 4の他端には、 少なく とも 1つ (本実施の形態においては 2つ) のレンズ表面部分のための開口が形成 されている。 この開口はたとえば円形であり、 そこに、 弾性変形可能な薄く透明 な板からなるレンズ表面部分 1 2が配置される。 密着面 1 3の面積は、 レンズ表 面部分 1 2の面積より十分大きく、密着面に伝えられるァクチユエ一夕の変位を、 十分に増幅してレンズ表面部分を変形させることができるのが望ましい。つまり、 密着面は、 レンズの焦点を変えるための変位を与える圧力伝達部として機能し、 その一方、 レンズ表面部分は、 圧力伝達部からの変位を受ける受容部として機能 する。 以下、 上記密着面に形成された膜を、 圧力伝達部と称する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 2 is a perspective view schematically showing the variable focus lens according to the embodiment of the present invention. As shown in FIGS. 1 and 2, the varifocal lens 10 according to the present embodiment includes a rigid container 11. The container 11 has, for example, a diameter that increases toward one end, and has an adhesive surface at its end that is in close contact with the actuator 14. The contact surface is The opening is formed to secure a large area, and a film 15 made of a thin material is formed so that vibrations of the actuator can be transmitted to the inside of the container. This part is also called a cylinder part. The other end of the actuator 14 has at least one (two in the present embodiment) opening for a lens surface portion. This opening has a circular shape, for example, and a lens surface portion 12 made of a thin and transparent plate that can be elastically deformed is arranged therein. It is desirable that the area of the contact surface 13 be sufficiently larger than the area of the lens surface portion 12 and that the lens surface portion be deformed by sufficiently amplifying the displacement of the actuator transmitted to the contact surface. In other words, the contact surface functions as a pressure transmitting section that applies displacement for changing the focal point of the lens, while the lens surface portion functions as a receiving section that receives displacement from the pressure transmitting section. Hereinafter, the film formed on the contact surface is referred to as a pressure transmitting unit.
また、 収容体 1 1の内部には、 ァクチユエ一夕の変位を伝達するための液体が 充填される。 この液体の屈折率は、 レンズ表面部分 1 2の屈折率と同様であるの が望ましい。 たとえば、 充填される液体として、 ェマルジヨンオイルを利用する ことができる。  Further, the inside of the container 11 is filled with a liquid for transmitting the displacement of the actuator. The refractive index of this liquid is preferably the same as the refractive index of the lens surface portion 12. For example, emulsion oil can be used as the liquid to be filled.
本実施の形態において、 ァクチユエ一夕 1 4として、 積層型ピエゾァクチユエ —夕を利用している。 積層型ピエゾァクチユエ一夕は、 1 k H z以上の周波数で 精度良く駆動することができるが、 その一方、 可動範囲が数/ z mと小さい。 そこ で、 上述したように、 圧力伝達部の面積を、 受容部の面積より十分大きくし、 積 層型ピアゾァクチユエ一夕の変位を、 面積比に対応する増幅率で増幅して、 受容 部に伝達している。  In the present embodiment, a stacked piezo evening is used as the evening 14. The stacked piezo-electric device can be driven accurately with a frequency of 1 kHz or more, but the movable range is as small as several / z m. Therefore, as described above, the area of the pressure transmitting section is made sufficiently larger than the area of the receiving section, and the displacement of the layered Piazochiue is amplified at an amplification factor corresponding to the area ratio and transmitted to the receiving section. are doing.
図 3は、 密着面に形成される圧力伝達部の構造をより詳細に示す図である。 図 3に示すように、 本実施の形態にかかる圧力伝達部 (膜) 1 5は、 金属材料 (た とえば、 S U S 3 0 4 ) で作られ、 半径 2 0 mm、 厚み 0 . 5 mmのサイズとな つている。 また、 膜 1 5のァクチユエ一夕の対向面の中央部には、 十字状の突起 1 6が形成され、 レンズの変位の拡大率をより大きくするように構成している。 この突起は、 長さ 2 0 mm、 幅 2 mm、 高さ 0 。 8 mmのサイズである。 この突 起にァクチユエ一夕が接触することで、効率よく、収容体 1 1の液体を押し出し、 或いは、 引き込むことができる。 また、 このような構造を採用することにより共 振周波数を高くするという効果をも奏する。 FIG. 3 is a diagram showing the structure of the pressure transmitting portion formed on the contact surface in more detail. As shown in FIG. 3, the pressure transmitting portion (membrane) 15 according to the present embodiment is made of a metal material (for example, SUS304) and has a radius of 20 mm and a thickness of 0.5 mm. It is the size. Further, a cross-shaped projection 16 is formed at the center of the surface of the film 15 facing the actuator, so that the magnification of the lens displacement is increased. The protrusion is 20 mm long, 2 mm wide, and 0 height. It is 8 mm in size. By contacting this protrusion with the activist, the liquid in the container 11 is efficiently pushed out, Or you can pull in. The adoption of such a structure also has the effect of increasing the resonance frequency.
以下、 本発明にかかる可変焦点レンズの原理につき説明を加える。  Hereinafter, the principle of the variable focus lens according to the present invention will be described.
[本発明の原理。 レンズ表面部分]  [Principle of the present invention. Lens surface]
レンズの表面には、 高速な応答を可能とする高い固有振動数と、 ピエゾァク チユエ一夕が発生する圧力で十分に変形する可撓性、 さらにレンズとしての光学 的性能が要求される。 以下ではこれらについて述べる。 固有振動数と可撓性を説 明するにあたり、 レンズ表面部分の形状は円盤状とし、 その周囲が固定されてい るとする。  The surface of the lens is required to have a high natural frequency that enables high-speed response, flexibility to sufficiently deform under the pressure generated by piezo-electricity, and optical performance as a lens. These are described below. In describing the natural frequency and flexibility, it is assumed that the shape of the lens surface is disk-shaped and the periphery is fixed.
以下、 円盤の半径を a [m]、 厚みを d [m]、 円盤の材質の密度を p [kg/ m3]、 ヤング率を E [GP a]s ポアソン比をレとする。 Hereinafter, a radius of the disc a [m], a thickness d [m], the density of the material of the disk p [kg / m 3], the Young's modulus and record the E [GP a] s Poisson's ratio.
これを元にして、 円盤の固有振動数と、 可撓性の関係を明らかにする。 まず、 周囲を固定された円盤の固有振動について述べる。  Based on this, we clarify the relationship between the natural frequency of the disk and the flexibility. First, the natural vibration of a fixed disk is described.
ここまで、 「固有振動数」と記述してきたが、厳密には 1次の固有振動数につい てである。 これは、 円盤がレンズとして機能するためには、 点対象な形状で振動 する必要があることと、 さらに一つの振動モードだけが励起されることが必要だ からである。 以下、 単に固有振動数は 1次の固有振動数のことを指す。  So far, we have described the "natural frequency", but strictly speaking, it is about the first-order natural frequency. This is because in order for the disk to function as a lens, it must vibrate in a point-symmetrical shape, and it is necessary that only one vibration mode be excited. Hereinafter, the natural frequency simply refers to the first-order natural frequency.
この円盤周囲を完全に固定した場合の 1次の固有振動数 は、 When the circumference of this disk is completely fixed, the first natural frequency is
m, n = k2 mNV~ (D/ μ) (m, n= 0 , 1 , 2 ° m, n = k 2 m , N V ~ (D / μ) (m, n = 0, 1, 2 °
。 · ·( 1 ) である。 (なお、 本明細書において、 (a) は、 (a) 1/2であることを示す。 (「a」 は、 数値ないし数式を意味する。)) ただし、 . · · (1). (In the present specification, (a) indicates that (a) is 1/2 . (“A” means a numerical value or a mathematical expression.))
j = ρά D = E d3/ ( 1 2 ( 1—ソ 2) とする。 j = ρά D = E d 3 / (1 2 (1—so 2 ).
km, n ヽ k m, nヽ
Im (ka) Jm→ (ka) - Jm (ka) lm→ (ka) = 0 · · · (2)I m (ka) J m → (ka)-J m (ka) l m → (ka) = 0
(ただし、 Im : m次の変形された第 1種べヅセル関数 Jm : m次の第一種ぺッ セル関数) (Where I m : m-th modified Bessel function of the first kind J m : m-th Wessel function of the first kind)
の解を小さい順に、 n= 03 13 2, · · · と番号を振ったものに対応する。 本発明においては、 1次の固有振動数のみに注目しているので、 m= 0, n = 0の時のみを考えることとし、 以後簡単に、 k ( = k0> o) と記述する。 Correspond to n = 0 3 1 3 2, · · · numbered in ascending order. In the present invention, since only the first-order natural frequency is focused on, only the case where m = 0 and n = 0 is considered, and hereinafter, it is simply described as k (= k 0> o).
次にこの円盤の一方から圧力 P [P a] が加わった場合に、 円盤中心がなす曲 率と、 その曲率に対応する焦点距離について述べる。  Next, when the pressure P [Pa] is applied from one side of the disk, the curvature formed by the center of the disk and the focal length corresponding to the curvature are described.
圧力!3 [P a] がー様に加わった場合の中央の曲率半径 rcは、 pressure! 3 The radius of curvature r c at the center when [P a] is added
r c= ( 1 6D) / (a2P) 。 。 。(3) r c = (1 6D) / (a 2 P). . . (3)
で表される。 It is represented by
この時、 レンズ内部の屈折率を n、 外部を空気 (屈折率 1) とすると、 中心部 分の焦点距離 fは、 以下の関係を満たす。  In this case, assuming that the refractive index inside the lens is n and the outside is air (refractive index 1), the focal length f at the center satisfies the following relationship.
l/f = ((a2 (n- 1)) / ( 1 6D)) · P · · · (4) l / f = ((a 2 (n-1)) / (16D)) P
レンズ表面が平坦な場合は、 焦点距離が∞になるので、 1/f は 0 (ゼロ) で ある。 レンズ表面が少し歪むと焦点距離は有限の大きな値になり、 1/f は微小 な数となる。 つまり、 1/f は大きい程レンズ表面が変形していることを表す。 単位圧力に対する変形しやすさの指標 Sを、  When the lens surface is flat, 1 / f is 0 (zero) because the focal length becomes ∞. If the lens surface is slightly distorted, the focal length becomes a finite large value, and 1 / f becomes a very small number. In other words, 1 / f indicates that the larger the lens surface, the more deformed the lens surface. The index S of deformability with respect to unit pressure is
S= ( l/f ) - ( l/P) = (a2 (n- 1)) / ( 1 6D) S = (l / f)-(l / P) = (a 2 (n-1)) / (16D)
…(5)  …(Five)
と定義する。 Sは大きいほど圧力に対して簡単に変形することになり、 可撓性を 表すと考えられる。 Is defined. The larger the value of S, the more easily it deforms in response to pressure, and is considered to represent flexibility.
この固有振動数 ωと可撓性の指標 Sの二つから、 円盤のパラメ一夕がそれそれ どの程度 1次の固有振動数 ωと可撓性の指標 Sに寄与しているのかがわかる。 これらから、 どのように設計すると 1次の固有振動数を高く、 かつ可撓性を大 きくできるかにつき説明する。  From the natural frequency ω and the flexibility index S, it can be seen how much the parameter of the disk contributes to the primary natural frequency ω and the flexibility index S. From these, we explain how the design can increase the first-order natural frequency and increase the flexibility.
円盤のパラメ一夕のうち設計で選べるのは、 半径(a)、 厚み (d) および材料 (E3 p, v) の 3つであると考えられる。 まず、 半径 (a) について考える。 半径 (a) は式 (2) により決定されるので、 以下の関係を満たす。 Among the parameters of the disk, there are three choices in the design: radius (a), thickness (d), and material (E 3 p, v). First, consider the radius (a). Since the radius (a) is determined by equation (2), the following relationship is satisfied.
k∞ l/a · · · ( 6)  k∞ l / a (6)
そこで、 ここでは 1次の固有振動数 ωは半径の 2乗に反比例し、 可撓性の指標 Sは半径の 2乗に比例するとして説明を進める。 ωοο ΐ/a2 ' ' 。(7) Therefore, the explanation will be made here assuming that the first-order natural frequency ω is inversely proportional to the square of the radius, and the flexibility index S is proportional to the square of the radius. ωοο ΐ / a 2 ''. (7)
S∞a2 · , ' ( 8) S∞a 2 ·, '(8)
同様に、 厚み dに関して考えると、 1次の固有振動数 ωは厚みに比例し、 可撓 性の指標 Sは厚みの 3乗に反比例する。  Similarly, considering the thickness d, the first-order natural frequency ω is proportional to the thickness, and the flexibility index S is inversely proportional to the cube of the thickness.
ωοοά · · ■ ( 9 )  ωοοά · · ■ (9)
Soc l/d 3 · · - ( 1 0 ) Soc l / d 3
最後に、 材料について考える。 まず、 これからの説明のために、 1次の固有振 動数 ωを材料に関するパラメ一夕で記述すると、  Finally, consider the materials. First, for the sake of explanation, if the first-order natural frequency ω is described in the parameters for the material,
w = k2 d (( 1/ ( 1 2 ( 1 - ν2))) · (Ε/ )) 。 。 。( 1 1 ) となる。 材料に関係するパラメ一夕のみを抜き出すと、 w = k 2 d ((1 / (1 2 (1-ν 2 ))) · (Ε /)). . . (11). Extracting only the parameters related to the material overnight,
ωοο " (Ε/ (ρ ( 1 - ν2))) ' · - ( 1 2) ωοο "(Ε / (ρ (1-ν 2 ))) '·-(1 2)
である。 It is.
効率がよい、 つまり固有振動数の高くしたときに可撓性を失う度合いの少ない パラメ一夕は半径であり、 半径を 1/2にすると、 固有振動数は 4倍、 可撓性の 指標は 1/4倍になる。  Efficiency, that is, the parameter that is less likely to lose flexibility when the natural frequency is increased is the radius.If the radius is halved, the natural frequency is 4 times, and the index of flexibility is 1/4 times.
材料は、 そのパラメ一夕 Ε、 ρおよびレを自由に選べないという意味で特殊な 設計要素である。  The material is a special design element in that the parameters パ ラ, ρ and お よ び cannot be freely selected.
一般にポアソン比 は材料による値のばらつきが比較的小さいので、 定数とみ なせると仮定をすれば、 感度 (指標) Sはヤング率 Εの逆数で減っていき、 固有 振動数 ωは ΕΖρの平方根で増えてゆく。 したがって、 ΕΖ/Οが大きな物質を選 択することが重要である。  In general, the Poisson's ratio has a relatively small variation in value depending on the material, so assuming that it can be regarded as a constant, the sensitivity (index) S decreases with the reciprocal of the Young's modulus Ε, and the natural frequency ω is the square root of ΕΖρ It increases. Therefore, it is important to select substances with large ΕΖ / Ο.
効率が悪いパラメ一夕は厚みであり、厚みを 2倍にすると、固有振動数は 2倍、 可撓性の指標は 1 / 8倍も小さくなつてしまう。  The parameter with poor efficiency is the thickness. If the thickness is doubled, the natural frequency will be doubled and the index of flexibility will be 1/8 times smaller.
まとめると、 半径、 材料、 厚みの順に最適化をしていけば、 可撓性を保ちつつ 固有振動数を高くしゃすいということになる。  In summary, if you optimize in the order of radius, material, and thickness, you will be able to maintain high flexibility and maintain high natural frequency.
これらの結果をもとに、 実際に設計をする場合のことについて述べる。 半径は レンズ径を決定してしまうので、 光学系の要請でその下限が決まる。 ゆえに実際 の応用が決まらないと議論が難しい。 材料も光学系の要請でいろいろ制限が加わるが、 ここでは制限のないものと仮 定して考察をする。 以前の説明から、 EZ ( p (1 - V2)) が大きく、 かつ、 ャ ング率 Eが小さいほど固有振動数を上げやすいことがわかっている。 この固有振 動数の係数 EZ Cp (1—ソ 2)) を横軸に、 可撓性の係数 1ZEを縦軸にとって 様々物質をプロットしたものを、 図 4に示す。 但し、 数値は定数を乗じてプロッ トした。 図 4に示すように、 グラフ中で右や上のほうに分布している材料が、 レ ンズ面を構成した場合に、 固有振動数をあげやすく可撓性もあるので、 適した材 料であると考えられる。図 4において、 「Gr a s s # 1 (符号 401参照)」、 「G r a s s # 2 (符号 402参照)」、 「Gr a s s # 3 (符号 403参照)」、 「Gr a s s #4 (符号 404参照)」、 「Gr a s s # 5 (符号 405参照)」、 および、 「Gras s#6 (符号 406参照)」は、 それそれ、 アルカリ亜鉛硼珪酸、 鉛力 リソ一ダ、 アルミノ珪酸、 硼珪酸、 高鉛および石英ガラスを示している。 これら は、 ほぼ同じような可撓性の係数をもっている。 これらのうち、 硼珪酸 (符号 4 04)、 アル力リ亜鉛硼珪酸 (符号 401)、 石英ガラス (符号 406) およびァ ルミノ珪酸 (符号 403 ) が、 比較的高い固有振動数の係数を持つ。 Based on these results, the case of actual design is described. The radius determines the lens diameter, so the lower limit is determined by the requirements of the optical system. Therefore, it is difficult to discuss unless the actual application is determined. Materials are also subject to various restrictions due to the requirements of the optical system, but here we assume that there are no restrictions and will consider them. From the previous explanation, it is known that the larger the EZ (p (1-V 2 )) and the smaller the Young's modulus E, the higher the natural frequency. The natural vibration number of coefficients EZ Cp (1-Seo 2)) on the horizontal axis, a plot of various substances flexibility coefficient 1ZE the ordinate, shown in Fig. However, the numerical values were plotted by multiplying by a constant. As shown in Fig. 4, when the material distributed on the right or top in the graph constitutes the lens surface, it is easy to increase the natural frequency and it is flexible. It is believed that there is. In FIG. 4, "Gr ass # 1 (see sign 401)", "G rass # 2 (see sign 402)", "Gr ass # 3 (see sign 403)", "Gr ass # 4 (see sign 404)" ”,“ Gr ass # 5 (see 405) ”and“ Gras s # 6 (see 406) ”are: Alkaline zinc borosilicate, lead-based liquid, aluminosilicate, borosilicate, high Shows lead and quartz glass. They have almost the same coefficient of flexibility. Of these, borosilicate (404), zinc borosilicate (401), quartz glass (406) and aluminosilicate (403) have relatively high natural frequency coefficients.
ガラスは固有振動数が高く、 かつ比較的大きな可撓性を持ち、 高分子化合物の ポリエチレン ·ポリスチレンは大きな可撓性をもつが、 固有振動数は低くなる。 これらの材料がレンズ面の材料として有力な候補であるだろう。 これら材料の選 択は、 レンズ表面部分 12を変位の幅 (範囲) と、 求められる応答速度とを考慮 して定めるのが望ましい。  Glass has a high natural frequency and relatively large flexibility, and the high molecular compound polyethylene / polystyrene has great flexibility, but its natural frequency is low. These materials are likely candidates for lens surface materials. The selection of these materials is desirably determined in consideration of the width (range) of displacement of the lens surface portion 12 and the required response speed.
厚みは、 ここで議論している範囲内では厚ければ厚いほどよいが、 厚くなるほ ど可撓性がなくなるので、 ァクチユエ一夕で発生できる圧力の範囲内で厚くすれ ばよい。 提案している可変焦点レンズで使用する積層型ピエゾァクチユエ一夕は 非常に大きな力を発生できる (10〜1000 [N]) ので、 自由度は大きい。  The thickness should be as thick as possible within the range discussed here. However, as the thickness increases, the flexibility decreases, so the thickness should be as large as possible within the range of pressure that can be generated in the actuator. The laminated piezo actuator used in the proposed varifocal lens can generate a very large force (10 to 1000 [N]), so the degree of freedom is large.
[本発明の原理。シリンダ部 (圧力伝達部) ]  [Principle of the present invention. Cylinder section (pressure transmission section)]
シリンダ部はレンズ表面部分と同じ構造を持つので、 基本的にはレンズ表面部 分と同じ考察が成り立つ。 この部分も 1 kHzで振動する必要があるので、 固有 振動数を高く設計することが必要である。 シリンダ部の半径は、 ァクチユエ一夕の可動範囲と、 レンズ表面を十分変形さ せるのに必要な増幅率とに依存して決まる。 厚み、 材質に関しては、 基本的には レンズ表面と同様に考察できる。 Since the cylinder has the same structure as the lens surface, basically the same considerations apply as for the lens surface. Since this part also needs to oscillate at 1 kHz, it is necessary to design a high natural frequency. The radius of the cylinder is determined by the movable range of the actuator and the amplification factor required to sufficiently deform the lens surface. The thickness and material can be basically considered in the same way as the lens surface.
ただし、 レンズとして機能する必要がないので、 その形状に突起や複雑な構造 をもたせることでより堅く軽くすることが可能であり、 種々の構造を採用するこ とができる。 たとえば、 航空機などに用いられるハニカム構造をもたせれば、 高 い固有振動数かつ大きな弾性をもつ圧力伝達部を作ることも可能である。  However, since it does not need to function as a lens, it can be made stiffer and lighter by providing protrusions and complicated structures in its shape, and various structures can be adopted. For example, with a honeycomb structure used for aircraft, etc., it is possible to create a pressure transmitting section with a high natural frequency and large elasticity.
ァクチユエ一夕の変位を大きく増幅してレンズ表面に伝えることが必要な場合 は、 圧力伝達部 (シリンダ部) は大きな半径をもつことが必要になるため、 それ だけ材質や厚みを大きくする必要がでてくる。 この場合、 堅く軽い構造を設計す ることがより重要になる。  If it is necessary to greatly amplify the displacement of the actuator and transmit it to the lens surface, the pressure transmitting section (cylinder section) must have a large radius, so the material and thickness must be increased accordingly. Come out. In this case, it is more important to design a rigid and light structure.
[本発明の原理:圧力伝達油]  [Principle of the present invention: pressure transmission oil]
ァクチユエ一夕によって発生した圧力をレンズ表面に伝達する機構には、 k H zオーダで変化する圧力を伝えるための高速な応答性と、 レンズ表面の歪みを正 確に計測できることが必要である。 レンズ表面の歪みを知ることができないと、 焦点距離などの光学的特性がわからないので可変焦点レンズとして用いることが できないからである。  The mechanism that transmits the pressure generated by the actuator to the lens surface needs to have a high-speed response to transmit the pressure that changes in the order of kHz and accurately measure the distortion of the lens surface. If the distortion of the lens surface cannot be known, the optical characteristics such as the focal length cannot be known, so that the lens cannot be used as a varifocal lens.
提案するレンズでは、 レンズ内部を満たしている屈折率の高い油に圧力をかけ ることでレンズ表面を歪める機構を用いている。 この構造が高速な応答をもち、 かつレンズ表面の歪みを正確に計測できることを以下に説明する。  The proposed lens uses a mechanism that distorts the lens surface by applying pressure to the high refractive index oil that fills the inside of the lens. The fact that this structure has a high-speed response and can accurately measure the distortion of the lens surface will be described below.
一般に液体は圧縮率が低いため、 油圧機構に代表されるように圧力を効率的に 伝える媒体として適している。 とくに油は温度などに対して安定で扱いがよく、 圧縮率も低いので圧力伝達に適している。 可変焦点レンズを歪めるのに必要な圧 力は 3 0 [ NZm2 ] 程度と見積もられており、 この圧力で油の圧縮は無視でき る程小さい。 そのため、 ァクチユエ一夕の変位によってシリンダ部が変形して押 し出した体積とレンズが歪んで膨らんだ体積は等しいと仮定できる。 ァクチユエ —夕の変位は正確に測定できるので、 レンズの歪みの程度もァクチユエ一夕の変 位から見積もることができ、 レンズの光学的特性を知ることができる。 >構成および動作] In general, liquid has a low compressibility, and is suitable as a medium for efficiently transmitting pressure as represented by a hydraulic mechanism. In particular, oil is stable to temperature and easy to handle, and has a low compression ratio, so it is suitable for pressure transmission. The pressure required to distort the varifocal lens is estimated to be around 30 [NZm 2 ], at which oil compression is negligible. Therefore, it can be assumed that the volume extruded due to the deformation of the cylinder due to the displacement of the actuator is equal to the volume expanded by distorting the lens. Actuate — Since the displacement in the evening can be measured accurately, the degree of lens distortion can also be estimated from the displacement in the actuate, and the optical characteristics of the lens can be known. > Configuration and operation]
図 5は、 本実施の形態にかかる可変焦点レンズおよびその制御装置の概略を示 すブロックダイヤグラムである。 図 5に示すように、 制御コンピュータ 2 0と、 制御コンピュータから出力された駆動電圧を受理して、 これを増幅してピエゾァ クチユエ一夕 1 4に与える増幅器 2 2と、 可変焦点レンズ 1 0とを備えている。 なお、 試作品においては、 レンズ表面部分 1 2の変位を検出するセンサへヅ ド 2 4およびセンサ制御部 2 6とを有している。 センサ制御部 2 6から制御コンビュ —夕 2 0に対して、 レンズ表面部分の変位信号が返される。 また、 増幅器 2 2か らピエゾァクチユエ一夕 1 4の変位が制御コンピュータ 2 0に返される。 なお、 図 5において、 破線で示す信号線および破線にて囲んだ構成部分は、 試験結果の デ一夕を得るためのものである。 したがって、 実際にレンズとして使用する場合 には、 これら構成部分は省略され得る。  FIG. 5 is a block diagram schematically showing the varifocal lens and its control device according to the present embodiment. As shown in FIG. 5, a control computer 20, an amplifier 22 that receives a drive voltage output from the control computer, amplifies the drive voltage, and supplies the amplified voltage to a piezoelectric actuator 14, and a varifocal lens 10. It has. Note that the prototype has a sensor head 24 and a sensor control unit 26 for detecting the displacement of the lens surface portion 12. The displacement signal of the lens surface is returned from the sensor controller 26 to the control console 20. The displacement of the piezoelectric actuator 14 is returned from the amplifier 22 to the control computer 20. In FIG. 5, the signal line indicated by the broken line and the components surrounded by the broken line are used to obtain a complete set of test results. Therefore, these components can be omitted when actually used as a lens.
このように構成されたシステムにおいて、 制御コンピュータ 2 0において、 所 定の周波数で、 所定の変位をさせるためのデータが、 D /A変換されて、 アナ口 グ信号として増幅器に与えられる。 増幅器 2 2は、 与えられたアナログ信号を、 ピエゾァクチユエ一夕. 1 4を駆動するだけのレベルに増幅する。 これによりピエ ゾァクチユエ一夕 1 4が変位し、 これがレンズ 1 0の圧力伝達部 1 5に加えられ る。 この変位は、 レンズ収容体 1 1中に充填された液体を介してレンズ表面部分 1 2に伝えられ、 これによりレンズ表面部分 1 2が凸状或いは凹状に変位して、 レンズの焦点が変化する。  In the system configured as described above, in the control computer 20, data for causing a predetermined displacement at a predetermined frequency is D / A-converted and provided to the amplifier as an analog signal. The amplifier 22 amplifies the applied analog signal to a level sufficient to drive the piezo-electric device. As a result, the piezoelectric element 14 is displaced, and this is applied to the pressure transmitting part 15 of the lens 10. This displacement is transmitted to the lens surface portion 12 via the liquid filled in the lens container 11, thereby displacing the lens surface portion 12 in a convex or concave shape, and changing the focal point of the lens. .
[実施例]  [Example]
以下、 図 5に示すシステムにおいて使用した可変焦点レンズの試作品につき説 明を加える。 図 6 A、 Bに示すように、 本実施の形態にかかる可変焦点レンズの 試作品 1 0 0においては、 高さ 5 0 mm、 内径 2 7 mm、 外径 3 5 mmの二重の ガラス管をもって、 内径を構成するガラス管と外径を構成するガラス管との間に オイルを充填するように構成し、 これを収容体 1 1 1とした。 収容体 1 1 1の外 径を構成するガラス管 1 2 0において、 そのほぼ中央側面に、 正対する 2つの穴 ( 7。 5 mm径) を形成し、 そこに、 厚さ 2 0 / mのガラス薄膜を配置し、 これ を変形するレンズ表面部分 1 1 2とした。 さらに、 その上から、 厚さ l mmで、 5 mm径の穴を有するガラス板 1 2 2を配置し、 これにより、 レンズ表面部分 1 1 2を固定した (図 6 B参照) o なお、 ァクチユエ一夕の変位 (図 5の符号 5 0 1参照) やレンズ表面部分の変位 (符号 5 0 2参照) をフィードバックすること により、 レンズ表面部分の歪みを検出し、 これに基づくより適切な制御を実現す ることも可能である。 The following describes the prototype of the variable focus lens used in the system shown in Fig. 5. As shown in FIGS. 6A and 6B, in the prototype 100 of the variable focus lens according to the present embodiment, a double glass tube having a height of 50 mm, an inner diameter of 27 mm, and an outer diameter of 35 mm was used. Thus, oil was filled between the glass tube forming the inner diameter and the glass tube forming the outer diameter, and this was designated as a container 111. In the glass tube 120 constituting the outer diameter of the housing 1 1 1, two opposite holes (7.5 mm diameter) are formed almost at the center side surface, and there is a thickness of 20 / m Place the glass thin film and this The lens surface portion 1 1 2 was used to transform. Further, a glass plate 122 having a thickness of l mm and a hole having a diameter of 5 mm was disposed thereon, thereby fixing the lens surface portion 112 (see FIG. 6B). By feeding back the overnight displacement (see reference numeral 501 in FIG. 5) and the displacement of the lens surface portion (see reference numeral 502), distortion on the lens surface is detected, and more appropriate control based on this is detected. It is also possible.
たとえば、 レンズ表面の歪みは、 ァクチユエ一夕 1 4の変位を用いて推定する ことで、 間接的に計測 · フィードバックすることも可能であり、 また、 レンズ表 面を直接計測することによつても実現することができる。 内部の液体の圧力が無 視できるほど小さく、 レンズ表面およびシリンダ部分の固有振動数が十分に高け れば、 ァクチユエ一夕の入力とレンズ表面の歪みとの間には、 1対 1の対応関係 が仮定できる。 このため、 ァクチユエ一夕 1 4の変位を計測するだけで、 レンズ の歪みを推定することができる。 つまり、 図 5のシステムにおいて、 ァクチユエ —夕 1 4の変位からレンズ表面の歪みを推定してフィードバックすることもでき る。  For example, the lens surface distortion can be indirectly measured and fed back by estimating it using the displacement of the actuator 14 and the direct measurement of the lens surface is also possible. Can be realized. If the pressure of the liquid inside is negligible and the natural frequencies of the lens surface and cylinder are sufficiently high, there is a one-to-one correspondence between the input of the actuary and the distortion of the lens surface. A relationship can be assumed. Therefore, the lens distortion can be estimated only by measuring the displacement of the actuator 14. In other words, in the system shown in Fig. 5, it is also possible to estimate the distortion of the lens surface from the displacement of the actuator 14 and feed it back.
収容体 1 1 1の下部には、 たとえば、 S U S 3 0 4から作られた圧力伝達体 1 1 5を配置し、 その下部に密着されたピエゾァクチユエ一夕 (図 6 A、 Bにおい ては図示せず) の振動を伝達するようにした。 圧力伝達部 1 1 5は、 図 3に示す ように、共振周波数が高くなり、かつ、ァクチユエ一夕の変位に対して効率よく、 収容体 1 1 1中の液体を押し出すことができるように中央部を補強した設計とな つている。また、収容体 1 1 1の上部には、厚み 5 mmの収容体カバ一を配置し、 二つのガラス管の間に収容された液体を密封している。  At the lower part of the container 111, for example, a pressure transmitting element 115 made of SUS304 is placed, and the piezo-actuator closely attached to its lower part (shown in FIGS. 6A and 6B). ) Is transmitted. As shown in FIG. 3, the pressure transmitting section 1 15 has a central portion so that the resonance frequency becomes high and the liquid in the container 1 1 1 can be pushed out efficiently with respect to the displacement of the actuator. The design is reinforced. In addition, a container cover having a thickness of 5 mm is arranged on the upper part of the container 111 to seal the liquid stored between the two glass tubes.
試作においては、 1次の共振周波数が、 8 . 0 k H z程度になることを目標と して設計した。 設計した構造の 1次の共振周波数を有限要素法によって見積もる と、 レンズ表面は 8 。 2 k H z , シリンダ部は 7 . 7 k H zであった。  The prototype was designed with the primary resonance frequency of about 8.0 kHz. When the primary resonance frequency of the designed structure is estimated by the finite element method, the lens surface is 8. 2 kHz, the cylinder section was 7.7 kHz.
[レンズの応答]  [Lens response]
上記試作された可変焦点レンズが、 k H zオーダの応答性能をもつことを確認 するために、 図 5に示すピエゾァクチユエ一夕の変位 (符号 5 0 1参照) を入力 とし、 レンズ表面部分 1 2の中心の変位 (符号 5 0 2参照) を出力として周波数 応答を計測した。 In order to confirm that the prototype varifocal lens has a response performance on the order of kHz, the displacement (see reference numeral 501) of the piezoelectric actuator shown in Fig. 5 was input. The frequency response was measured using the displacement at the center of the lens surface portion 12 (see reference numeral 502) as the output.
レンズ表面部分の中心の変位を測定するため、 センサへッド 2 4およびコント ローラ 2 6として、 レーザ測距計 L C— 2 4 3 0 (キーエンス製、 応答周波数 2 0 k H z ) を用いて測定した。 ピエゾァクチユエ一夕 1 4として、 P— 8 4 1 . 1 0 ( P I— P o l y t e c製、 1次の共振周波数 1 8 k H z、 可動範囲 1 5 μ m、 歪みセンサ内臓) を利用した。 制御コンピュータ 2 0においては、 制御周期 0。 1 m sにて計測を行った。  In order to measure the displacement of the center of the lens surface, a laser rangefinder LC-240 (Keyence, response frequency 20 kHz) was used as the sensor head 24 and the controller 26. It was measured. As Piezochiyue 14, we used P-84.1.10 (manufactured by PI-Polytec, primary resonance frequency 18 kHz, movable range 15 μm, built-in strain sensor). In the control computer 20, the control cycle is 0. The measurement was performed at 1 ms.
図 7は、 計測した周波数応答のボード線図である。 図 7から、 1 k H zまで応 答特性がほぼ変化しないことがわかり、 試作された可変焦点レンズの構造が、 k H zオーダで応答可能であることが確認できた。  Figure 7 is a Bode plot of the measured frequency response. From Fig. 7, it was found that the response characteristics hardly changed up to 1 kHz, confirming that the structure of the prototype varifocal lens can respond in the order of kHz.
[応用例]  [Application example]
次に、 本発明にかかる可変焦点レンズの他の構成例につき説明を加える。 第 1 の実施の形態においては、 収容体内に単一の液体を充填しているが、 収容体を複 数の部分に区切ることにより、 異なる屈折率を有する複数の液体を、 収容体の部 分に、 それそれ充填することも可能である。  Next, another configuration example of the variable focus lens according to the present invention will be described. In the first embodiment, the container is filled with a single liquid, but by dividing the container into a plurality of parts, a plurality of liquids having different refractive indices can be divided into parts of the container. It is also possible to fill each one.
レンズの焦点距離を変化させると, それに伴い光学的なパラメ一夕が変化し、 収差補正のための条件などが変化してしまう。 従来このような場合は複数のレン ズを動かすことで複数のパラメ一夕の変化を吸収させていたが、 1 k H zのォー ダに達する高速さをもってレンズを動かすことによって、 パラメ一夕変化を吸収 するのは難しい。 そこで本発明においては、 この問題を解決するために, 可変焦 点機構を多層化した構造を発明した。 多層化により光学的なパラメ一夕の自由度 はその層の数だけ増える.  If the focal length of the lens is changed, the optical parameters will change accordingly, and the conditions for aberration correction will change. Conventionally, in such a case, the movement of multiple parameters was absorbed by moving multiple lenses.However, by moving the lens at a speed reaching the order of 1 kHz, It is difficult to absorb change. Therefore, in the present invention, in order to solve this problem, a structure in which the variable focus mechanism is multi-layered was invented. Multilayering increases the degree of freedom of optical parameters by the number of layers.
図 8 A~ Dは、 それそれ、 多層化された可変焦点レンズの例を示す断面図であ る。 たとえば、 図 8 Aに示す可変焦点レンズにおいては、 収容体 2 1 1が、 第 1 の部分 2 2 1と第 2の部分 2 2 2とに分割され、 第 1の部分および第 2の部分の それそれの端部に、 ピエゾァクチユエ一夕 2 1 4、 2 1 5が配置されている。 ま た、 第 1の部分 2 2 1と第 2の部分 2 2 2とは、 剛性をもって、 たとえば、 ガラ ス 2 2 3により連結されている。 また、 第 1の部分 2 2 1および第 2の部分 2 2 2の外面には、 可撓性ないし弾性をもつ表面部分 2 1 2、 2 1 3が形成されてい る o 8A to 8D are cross-sectional views each showing an example of a multi-layer variable focus lens. For example, in the varifocal lens shown in FIG. 8A, the container 211 is divided into a first part 222 and a second part 222, and the first part 222 and the second part 222 are divided into two parts. At the end of each of them, piezoakchiyue 2 14 and 2 15 are arranged. Also, the first part 222 and the second part 222 are rigid, for example, 223 In addition, on the outer surfaces of the first portion 2 2 1 and the second portion 2 2 2, flexible or elastic surface portions 2 1 2 and 2 13 are formed.o
このような構成により、 ピエゾァクチユエ一夕 2 1 4を駆動することにより、 表面部分 2 1 2を変位させ、 その一方、 ピエゾァクチユエ一夕 2 1 5を駆動する ことにより、 表面部分 2 1 3を変位させることができる。 これにより、 自由度が 「2」 となり、 2つの光学パラメ一夕、 たとえば、 焦点距離および球面収差を調 整することができる。  With such a configuration, the surface portion 2 12 is displaced by driving the piezoelectric element 2 14, while the surface portion 2 13 is displaced by driving the piezoelectric element 2 15 be able to. As a result, the degree of freedom becomes “2”, and two optical parameters, for example, the focal length and the spherical aberration can be adjusted.
図 8 Bに示す可変焦点レンズにおいては、 第 1の部分 3 2 1と第 2の部分 3 2 2との間も、 可撓性ないし弹性をもつ連結部 (連結面) 3 1 3が形成され、 その 一方、第 2の部分 3 2 2の外面に配置された表面部分 3 1 6は剛性をもっている。 この例でも、 2つの光学パラメ一夕が調整され得る。なお、光学パラメ一夕には、 焦点距離、 球面収差のほか、 コマ収差などが含まれる。  In the varifocal lens shown in FIG. 8B, a connecting portion (connecting surface) 3 13 having flexibility or elasticity is also formed between the first portion 3 21 and the second portion 3 22. On the other hand, the surface portion 316 disposed on the outer surface of the second portion 322 has rigidity. Also in this example, two optical parameters can be adjusted. Note that the optical parameters include coma as well as focal length and spherical aberration.
さらに、 図 8 Cに示すように、 収容体 4 1 1を、 第 1の部分 4 2 1、 第 2の部 分 4 2.2および第 3の部分 4 2 3に分割し、 第 1の部分 4 2 1の外面に設けられ た表面部分 4 1 2、 第 1の部分 4 2 1と第 3の部分 4 2 3との連結部 4 2 4、 お よび、 第 2の部分 4 2 2の外面に設けられた表面部分 4 1 3が可撓性ないし弾性 をもち、 対応するァクチユエ一夕の駆動により、 変位することができる。 また、 第 2の部分と第 3の部分との連結部 4 2 5は剛性を持っている。 この例では、 自 由度が 「3」 とすることもでき、 この場合には、 3つの光学パラメ一夕、 たとえ ば、焦点距離、球面収差およびコマ収差を調整することが可能となる。図 8 Dは、 自由度 「3」 となる可変焦点レンズのさらに他の例を示している。 ここでは、 第 2の部分 5 2 2の外面は剛性を持ち (符号 5 1 6参照) 、 その一方、 第 2の部分 5 2 2と第 3の部分 5 3 3との間の連結部 (符号 5 1 3参照) が可撓性ないし弾 性を有している。 第 1の部分 5 2 1の外面の表面部分 5 1 2 s および、 第 1の部 分 5 2 1と第 3の部分 5 2 3との間の連結部 5 2 4が可撓性ないし弾性を有する ことは、 図 8 Cの例と同様である。  Further, as shown in FIG. 8C, the container 4 11 is divided into a first portion 4 2 1, a second portion 4 2.2 and a third portion 4 2 3, and the first portion 4 2 Surface portion 4 1 2 provided on the outer surface of 1, connection portion 4 2 4 between first portion 4 2 1 and third portion 4 2 3, and provided on the outer surface of second portion 4 2 2 The given surface portion 4 13 has flexibility or elasticity, and can be displaced by driving the corresponding actuator. In addition, the connecting portion 4 25 between the second portion and the third portion has rigidity. In this example, the degree of freedom can be set to “3”. In this case, it becomes possible to adjust three optical parameters, for example, the focal length, spherical aberration, and coma. FIG. 8D shows still another example of the varifocal lens having a degree of freedom of “3”. Here, the outer surface of the second part 5 2 2 is rigid (see reference numeral 5 16), while the connection between the second part 5 2 2 and the third part 5 3 3 (reference number 5 13) has flexibility or elasticity. The outer surface portion 5 1 2 s of the first portion 5 2 1 and the connecting portion 5 2 4 between the first portion 5 2 1 and the third portion 5 2 3 have flexibility or elasticity. This is similar to the example in FIG. 8C.
また、 収容体を構成する各部分に、 それそれ、 屈折率の異なる液体を充填して も良い。 これにより、 光学パラメ一夕の自由度を増やすことができ、 また、 色収 差を調整可能とすることができる。 図 9 Aおよび図 9 Bにこのような例を示す。 図 9 Aに示す可変焦点レンズの構造は、 図 8 Bのものと同様である。 この可変焦 点レンズ 3 1 1の第 1の部分 3 2 1には、 屈折率 (≠空気の屈折率 η。) の液 体が充填され、 第 2の部分 4 3 3には、 屈折率 n 2 (≠n iかつ≠η。) の液体が 充填される。 In addition, each part of the container is filled with a liquid having a different refractive index. Is also good. As a result, the degree of freedom of the optical parameters can be increased, and the color difference can be adjusted. FIGS. 9A and 9B show such examples. The structure of the variable focus lens shown in FIG. 9A is the same as that of FIG. 8B. The first portion 3 2 1 of the variable focus lens 3 1 1 is filled with a liquid having a refractive index (≠ refractive index η of air), and the second portion 4 3 3 has a refractive index n 2 (≠ ni and ≠ η.) Liquid is filled.
図 9 Βに示す可変焦点レンズの構造は、図 8 Dのものと同様である。ここでも、 第 1の部分 5 2 1には、 屈折率 ii i (≠n。) の液体、 第 2の部分には、 屈折率 n 2 かつ≠n 0 ) の液体、 第 3の部分には、 屈折率 n 3 (≠n 1 5 ≠n 2かつ ≠n。) の液体が、 それそれ充填される。 The structure of the variable focus lens shown in FIG. 9D is the same as that of FIG. 8D. Again, the first part 5 2 1 contains a liquid with a refractive index ii i (≠ n.), The second part a liquid with a refractive index n 2 and ≠ n 0 ), and a third part Liquids with a refractive index of n 3 (≠ n 15 ≠ n 2 and ≠ n.) Are each filled.
このように、 可変焦点レンズを多層化し、 また、 各層を構成する部分に異なる 屈折率の液体を充填することで、 高い応答速度を維持しつつ、 高い撮像精度を実 現することが可能となる。  In this way, by making the varifocal lens multi-layered and filling each layer with a liquid having a different refractive index, it is possible to achieve high imaging accuracy while maintaining a high response speed. .
[上記実施例および応用例の適用] [Application of the above embodiment and application example]
次に、 上記実施例や応用例にかかる可変焦点レンズを、 顕微鏡に適用した例に ついて説明する。 図 1 1は、 可変焦点レンズを用いた顕微鏡の例を概略的に示す 図である。この例においては、対物レンズ 1 1 0 0と撮像素子 1 1 0 2との間に、 可変焦点レンズ 1 1 1 0を配置している。 この可変焦点レンズは、 図 1、 図 2に 示すような構成であっても良いし、 図 8 A〜D或いは図 9 A、 Bに示すような構 成であっても良い。 この顕微鏡は、 撮像素子 1 1 0 2と接続された画像形成部 1 1 0 4およびレンズ制御部 1 1 0 6を備えている。 この画像形成部 1 1 0 4およ びレンズ制御部 1 1 0 6により演算部 1 1 0 8が構成される。 画像形成部 1 1 0 4は、 撮像素子 1 1 0 2からの信号を受理して、 顕微鏡にて撮影された画像デー 夕を作成する。 また、 レンズ制御部 1 1 0 6は、 たとえばラプラシアンフィル夕 を含み、 信号中の空間周波数が比較的高い成分を取り出して、 レンズ焦点が合つ ているかどうかを判定している。  Next, an example in which the varifocal lens according to the above-described embodiment or application example is applied to a microscope will be described. FIG. 11 is a diagram schematically showing an example of a microscope using a variable focus lens. In this example, a varifocal lens 111 is disposed between the objective lens 110 and the imaging device 110. This varifocal lens may have a configuration as shown in FIGS. 1 and 2 or a configuration as shown in FIGS. 8A to 8D or FIGS. 9A and 9B. This microscope includes an image forming unit 1104 and a lens control unit 1106 connected to the image pickup device 1102. The image forming unit 111 and the lens control unit 110 constitute an arithmetic unit 111. The image forming unit 1104 receives a signal from the image sensor 111 and creates image data captured by a microscope. Further, the lens control unit 1106 extracts a component having a relatively high spatial frequency in the signal, for example, including a Laplacian filter, and determines whether or not the lens is in focus.
レンズ制御部 1 1 0 6からは、 可変焦点レンズ 1 1 1 0のァクチユエ一夕 (図 示せず) を制御する制御電圧が出力される。 また、 可変焦点レンズ 1 1 1 0から その変位を示す信号がレンズ制御部 1 1 0 6に返されてもよい。 このように構成 された顕微鏡においては、 対象物が移動することにより焦点面 1 1 1 2が、 顕微 鏡の光軸方向に変化すると (一点鎖線および二点鎖線参照) 、 レンズ制御部 1 1 0 6が、 焦点が合っていないことを判定し、 焦点面を光軸方向に前後に動かすよ うにァクチユエ一夕を制御する。 この前後の移動の際に撮像素子 1 1 0 2により 撮影された画像に基づいて、 レンズ制御部 1 1 0 6は焦点が合っている位置を判 定する。 本実施の形態においては、 焦点距離の制御を 1 k H zのレートで実現で きるため、 焦点面の移動を、 対象物の移動と比較して十分速くすることができ。 適切な焦点合わせをすることが可能となる。 A control voltage for controlling the function (not shown) of the varifocal lens 110 is output from the lens controller 1106. Also, from the varifocal lens 1 1 1 0 A signal indicating the displacement may be returned to the lens control unit 1106. In the microscope configured as described above, when the focal plane 1 1 1 2 changes in the optical axis direction of the microscope due to the movement of the object (see the dashed-dotted line and the dashed-dotted line), the lens control unit 1 10 6 determines that the focus is out of focus, and controls the actuator to move the focal plane back and forth in the optical axis direction. The lens control unit 1106 determines the in-focus position based on the image taken by the imaging device 1102 during the forward and backward movement. In this embodiment, since the control of the focal length can be realized at a rate of 1 kHz, the movement of the focal plane can be made sufficiently faster than the movement of the object. It is possible to perform appropriate focusing.
[他の実施例]  [Other embodiments]
次に、 本発明にかかる可変焦点レンズの他の実施例について説明する。 図 1 2 および図 1 3に示すように、 この実施例にかかる可変焦点レンズ 1 2 1 0におい て、 収容体 1 1、 ァクチユエ一夕 1 4、 膜 1 5などの構成は、 図 1ないし図 3に 示すものとほぼ同様である。 また、 収容体 1 1の内部には、 ァクチユエ一夕の変 位を伝達するための液体、 たとえばェマルジヨンオイルが充填される。  Next, another embodiment of the variable focus lens according to the present invention will be described. As shown in FIGS. 12 and 13, in the varifocal lens 12 10 according to this embodiment, the configuration of the container 11, the actuator 14, the membrane 15, and the like are shown in FIGS. It is almost the same as shown in Fig. 3. Further, the inside of the container 11 is filled with a liquid for transmitting the displacement of the actuator, for example, emulsion oil.
可変焦点レンズ 1 2 1 0のァクチユエ一夕 1 4が配置されていない側は、 ほぼ 平行な二つの面が形成され、 それそれの面に、 複数の円形の開口が、 対向するよ うに形成され、 かつ、 その開口には、 弾性変形可能な薄く透明な板からなるレン ズ表面部分 1 2が配置される。 この複数のレンズ表面部分 1 2は、 一定の幾何学 的配置にしたがって並べられる。 たとえば、 図 1 3に示すように、 一つおきの行 および列が整列されるような配置であっても良いし、 隣接する行および列が整列 されるような配置であっても良い。 また、 レンズ表面部分 1 2の屈折率と、 収容 体 1 1の内部に充填される液体の屈折率とは同一であるのが望ましい。  On the side of the varifocal lens 1 210 where the actuator 14 is not arranged, two substantially parallel surfaces are formed, and on each surface, a plurality of circular openings are formed so as to face each other. At the opening, a lens surface portion 12 made of a thin and transparent plate that is elastically deformable is arranged. The plurality of lens surface portions 12 are arranged according to a certain geometric arrangement. For example, as shown in FIG. 13, the arrangement may be such that every other row and column are arranged, or the arrangement may be such that adjacent rows and columns are arranged. It is desirable that the refractive index of the lens surface portion 12 and the refractive index of the liquid filled in the container 11 be the same.
レンズ表面部分 1 2の径は微小(たとえば、数十〃 mないし数百// m)であり、 可変焦点レンズ 1 2 1 0は、 対向するレンズ表面部分 1 2がマイクロレンズとし て機能するため、 マイクロ可変焦点レンズアレイとして機能する。 この例では、 それそれのレンズ表面部分 1 2は、 同じ液体に接し、 ァクチユエ一夕 1 4が駆動 されることにより同じ圧力が印加される。 したがって、 焦点距離が一様に制御さ れる。 無論、 収容体の一方の面にのみ、 レンズ表面部分 1 2を形成しても良い。 図 1 4 Aおよび図 1 4 Bは、 このようなマイクロ可変焦点レンズアレイの適用 例を示す図である。 図 1 4 Aの例では、 マイクロ可変焦点レンズアレイのレンズ 表面部分 1 2 (単一のレンズ表面部分、 または、 対向するレンズ表面部分の組) と撮像素子 1 4 0 1とが一対一に対応している。 これに対して、 図 1 4 Bの例で は、 複数 (9個) のレンズ表面部分 (または 9組のレンズ表面部分) 1 4 2 0— 1、 1 4 2 0— 2と、 撮像素子 1 4 1 1— 1、 1 4 1 1一 2とが対応している。 また、 マイクロ可変焦点レンズアレイの収容体に、 対向するレンズ表面部分の それそれに別の液体 (屈折率が同一でも良いし、 異なっても良い) が接するよう に、 剛性のある透明な仕切りを配置しても良い。 このような配置は、 対抗するレ ンズ表面部分のみに着目すると、 図 8 Aに示す構造に対応する。 さらに、 図 8 B に示すように、 仕切りにおいて、 収容体の一方の表面および仕切りに対向するレ ンズ表面部分を形成しても良い。 さらに、 図 8 C或いは図 8 Dに示すような三層 構造を採用しても良い。 The diameter of the lens surface portion 12 is very small (for example, several tens of m to several hundreds / m), and the varifocal lens 1210 has the opposite lens surface portion 12 functioning as a micro lens. It functions as a micro variable focus lens array. In this example, each lens surface portion 12 is in contact with the same liquid, and the same pressure is applied by driving the actuator 14. Therefore, the focal length is uniformly controlled It is. Of course, the lens surface portion 12 may be formed only on one surface of the container. FIGS. 14A and 14B are diagrams showing an application example of such a micro variable-focus lens array. In the example of Fig. 14A, the lens surface part 1 2 (single lens surface part or a set of opposing lens surface parts) of the micro variable-focus lens array and the image sensor 1401 correspond one-to-one. are doing. On the other hand, in the example of FIG. 14B, a plurality of (9) lens surface portions (or 9 sets of lens surface portions) 1 4 2 0—1 and 1 4 2 0—2 and an imaging device 1 4 1 1—1, 1 4 1 1 1 and 2 correspond. In addition, a rigid transparent partition is placed in the container of the micro variable-focus lens array so that another liquid (the refractive index may be the same or different) may be in contact with that of the facing lens surface. You may. This arrangement corresponds to the structure shown in FIG. 8A when focusing only on the opposing lens surface. Further, as shown in FIG. 8B, in the partition, one surface of the container and a lens surface portion facing the partition may be formed. Further, a three-layer structure as shown in FIG. 8C or FIG. 8D may be adopted.
図 1 5は、 非点対称形状のレンズを採用した例を示す。 この例では、 レンズ表 面部分 1 5 1 2が長方形になっている。 レンズ形状を非点対称形状とした場合に も、 図 1 2および図 1 3に示した例と同様に、 それそれの辺の長さが微小 (たと えば、 数十〃 mないし数百〃メートル) のレンズ表面部分を、 一定の幾何学的配 置にしたがって並べたようなマイクロ可変焦点レンズアレイを形成しても良い。 さらに、 このようなマイクロ可変焦点レンズにおいて、 対向するレンズ表面部 分のそれぞれに別の液体が接するように、 透明な仕切りを配置しても良い (図 8 A〜図 D参照) 。 この例でも、 収容体の一方の面のみにレンズ表面部分 1 5 1 2 を形成しても良いし、 双方の面に対向するようにレンズ表面部分を形成しても良 い。  Fig. 15 shows an example in which an astigmatic lens is used. In this example, the lens surface portion 1512 is rectangular. Even when the lens shape is an asymmetry, as in the examples shown in FIGS. 12 and 13, the length of each side is very small (for example, several tens of meters to several hundreds of meters). A micro variable focus lens array may be formed in which the lens surface portions of the above are arranged according to a certain geometrical arrangement. Further, in such a micro variable focal length lens, a transparent partition may be arranged so that another liquid comes into contact with each of the opposing lens surface portions (see FIGS. 8A to 8D). Also in this example, the lens surface portion 1512 may be formed only on one surface of the container, or the lens surface portion may be formed so as to face both surfaces.
図 1 6は、 それそれが細長い長方形の形状をもつレンズ表面部分を、 一方向に 整列配置したマイクロ可変焦点レンズアレイの例を示す図である。 レンズ表面部 分 1 6 1 2は、 剛性のある境界部 1 6 1 3を介して、 隣接して並べられる。 それ それのレンズ表面部分 1 2においては、 長手方向中央部 (符号 1 6 1 0 ) が、 収 容体の内部の圧力変化によっても、 それそれの位置における段面形状が同一とな る。 したがって、 中央部 1 6 1 0をレンズとして利用することができる。 この例 でも、 収容体 1 6 1 1の一方の面のみにレンズ表面部分 1 6 1 2を形成しても良 いし、 双方の面に、 対向するようにレンズ表面部分 1 6 1 2を形成しても良い。 図 1 6に示すマイクロ可変焦点レンズアレイを、 たとえば、 L C D (液晶表示 装置) の前面側に配置し、 レンズ焦点を変えることにより、 いわゆる三次元画像 の表示を可能にするために利用することができる o FIG. 16 is a diagram showing an example of a microvariable focus lens array in which lens surface portions each having an elongated rectangular shape are arranged in one direction. The lens surface portion 1612 is adjacently arranged via a rigid boundary portion 1613. In each lens surface part 12, the center in the longitudinal direction (reference numeral 1610) is The shape of the step surface at each position becomes the same even when the pressure inside the container changes. Therefore, the center 1610 can be used as a lens. Also in this example, the lens surface portion 1612 may be formed only on one surface of the container 1611, or the lens surface portion 1612 may be formed on both surfaces so as to face each other. May be. The micro-variable-focus lens array shown in Fig. 16 can be used, for example, by placing it on the front side of an LCD (Liquid Crystal Display) and changing the lens focus to enable the display of so-called three-dimensional images. O
さらに、 このマイクロ可変焦点レンズアレイにおいて、 対向するレンズ表面部 分のそれそれについて、図 8 A〜図 8 Dに示すような多層構造を採用しても良い。 また、 各層において、 同一の液体を充填しても良いし、 屈折率の異なる液体を充 填しても良い。  Further, in this micro variable focus lens array, a multilayer structure as shown in FIGS. 8A to 8D may be adopted for each of the opposing lens surface portions. In addition, each layer may be filled with the same liquid, or may be filled with liquids having different refractive indexes.
本発明は、 以上の実施の形態に限定されることなく、 特許請求の範囲に記載さ れた発明の範囲内で、 種々の変更が可能であり、 それらも本発明の範囲内に包含 されるものであることは言うまでもない。  The present invention is not limited to the above embodiments, and various modifications are possible within the scope of the invention described in the claims, and these are also included in the scope of the present invention. Needless to say,
たとえば、 本実施の形態において、 可変焦点レンズの構造について、 漏斗状の 拡張した一方の側に圧力伝達部を配置し、 細く延びる側に対向するように、 可撓 性ないし弾性のある表面部分を配置し、 表面部分の面積と比較して十分に大きな 面積を有する圧力伝達体の駆動により、 ピエゾァクチユエ一夕の微小な動きを、 表面部分の十分な変位に増幅できるように構成している。  For example, in the present embodiment, regarding the structure of the varifocal lens, a pressure transmitting portion is disposed on one of the funnel-shaped expanded sides, and a flexible or elastic surface portion is arranged so as to face the thinly extended side. By arranging and driving a pressure transmitter having an area that is sufficiently large compared to the surface area, it is possible to amplify the small movements of the piezo actuator to a sufficient displacement of the surface area.
しかしながら、 上記形状や、 試作品の形状に限定されるものではない。 本発明 においては、 図 1 0に示すように、 ァクチユエ一夕 1 4が取り付けられた側 (圧 力伝達部 1 5 ) の面積 Sが、 レンズとして機能する可撓性ないし弾性のある表面 部分の面積 sに比較して十分大きく (S > > s ) 、 かつ、 圧力伝達部と表面部分 とがオイルなどの液体で連結され、 圧力伝達部 1 5の振動が表面部分 1 2に伝え られるような構造であれば良い。 このような構造をとることにより、 表面部分の 変位は、 圧力伝達部の変位の S Z s倍とすることができる。 圧力伝達部の面積 S と表面部分の面積 sとの比を調整することにより、 表面部分の変位を所望の範囲 に調整することも可能である。 また、前記実施の形態において、圧力伝達部のァクチユエ一夕と接触する側に、 十字形状の突起を形成したが、 突起の形状は、 これに限定されるものではなく、 たとえば、 1 2 0度の角度間隔をもって配置された三叉状であっても良い。 さらに、 前記実施の形態において、 収容体を 2層構造、 3層構造とした例を示 したが、 4層以上の層構造を採用しても良いことは言うまでもない。 ここでも、 各層に圧力伝達部を配置し、 ァクチユエ一夕の変位を連結部やレンズ表面部分に 伝達できるような構成を採用すれば良い。 However, the shape is not limited to the above-mentioned shape or the shape of the prototype. In the present invention, as shown in FIG. 10, the area S of the side on which the actuator 14 is mounted (the pressure transmitting section 15) is the area of the flexible or elastic surface portion functioning as a lens. Sufficiently larger than the area s (S>> s), and the pressure transmission part and the surface part are connected by a liquid such as oil, and the vibration of the pressure transmission part 15 is transmitted to the surface part 12. Any structure is acceptable. By adopting such a structure, the displacement of the surface portion can be SZs times the displacement of the pressure transmitting portion. By adjusting the ratio of the area S of the pressure transmitting section to the area s of the surface portion, the displacement of the surface portion can be adjusted to a desired range. Further, in the above-described embodiment, the cross-shaped projection is formed on the side of the pressure transmitting portion that comes into contact with the actuator, but the shape of the projection is not limited to this. Triangular shape arranged at an angular interval of Further, in the above-described embodiment, an example in which the container has a two-layer structure or a three-layer structure has been described, but it goes without saying that a four-layer or more layer structure may be employed. Also in this case, it is sufficient to adopt a configuration in which a pressure transmitting unit is arranged in each layer and the displacement of the actuator can be transmitted to the connecting unit and the lens surface.
さらに、 自由度が犠牲されるが、 多層構造において、 すべての層にァクチユエ 一夕を配置せず、 一部の層の表面部分や連結面を変位可能に構成しても良い。 また、 マイクロレンズアレイの例において、 収容体の面に平行に透明な仕切り を配置する変わりに、 或いは、 これに加えて、 収容体の面にほぼ垂直な仕切りを 配置し、 仕切られた領域のそれそれに異なる液体を充填しても良い。  Further, the degree of freedom is sacrificed. However, in the multilayer structure, the surface portions and connection surfaces of some layers may be configured to be displaceable without arranging the actuators in all layers. In addition, in the example of the microlens array, instead of or in addition to arranging a transparent partition in parallel with the surface of the container, a partition almost perpendicular to the surface of the container is arranged, and It may be filled with a different liquid.
本発明によれば、 高速視覚システムのフレームレートで応答する可変焦点レン ズ、 および、 その制御装置を提供することが可能となる。  According to the present invention, it is possible to provide a variable focus lens that responds at a frame rate of a high-speed vision system, and a control device therefor.
産業上の利用分野 Industrial applications
本発明は、 特に、 1 k H z以上の高速な応答を有するレンズと協働するのが望 ましい、 ビジョンチップを利用した高速視覚システムに適用することができる。 この高速視覚システムでは、 高速度で移動する物体の画像を、 焦点があった状態 で追従することができ、 当該物体の画像を生成し、 或いは、 高速度で移動する物 体を捕捉する他の機器 (アーム) などを制御することも可能となる。  The present invention is particularly desirable to cooperate with a lens having a high-speed response of 1 kHz or more, and can be applied to a high-speed vision system using a vision chip. This high-speed vision system can follow an image of an object moving at high speed in a focused state, generate an image of the object, or capture other objects moving at high speed. It is also possible to control devices (arms).
さらに、 本発明において、 微小なレンズを幾何学的配置で並べたマイクロ可変 焦点レンズァレィを構成し、 単一のマイクロレンズ或いは所定数のマイクロレン ズと撮像素子とを対応させて、 複数の画像を生成し、 それらに基づいて新たな画 像を生成することにより、 より精密な画像を取得することも可能となる。 また、 L C Dなどと組み合わせることにより、 三次元画像を生成することもできる。  Further, in the present invention, a micro variable focal length lens array in which minute lenses are arranged in a geometrical arrangement is constituted, and a plurality of images are formed by associating a single micro lens or a predetermined number of micro lenses with an image sensor. By generating them and generating new images based on them, it becomes possible to acquire more precise images. In addition, a three-dimensional image can be generated by combining with LCD or the like.

Claims

請 求 の 範 囲 The scope of the claims
1 . 内部に液体が充填された収容体であって、 1. A container filled with liquid,
ァクチユエ一夕と接触して、 当該ァクチユエ一夕の振動を伝達する圧力伝達 部と、 光の入射面および射出面に、 二つの光透過部とを備えた収容体を備え、 前記入射面および射出面の少なくとも一方に、 前記圧力伝達部から液体を介 して与えられる変位に応答して、 光軸方向に凹凸に変位可能な一以上の表面部 分であって、 その面積 sと、 前記圧力伝達部の面積 Sとの比 (s / S ) が、 所 定の値以下であるような表面部分を設け、前記ァクチユエ一夕の変位に応答し て、 前記表面部分が変位することにより、 焦点距離を変化させることを特徴と する可変焦点レンズ。  A pressure transmitting portion that contacts the actuator and transmits the vibration of the actuator, and a container having two light transmitting portions on a light incident surface and a light emitting surface, and the incident surface and the light emitting portion. At least one of the surfaces is at least one surface portion that can be displaced unevenly in the optical axis direction in response to a displacement given from the pressure transmitting portion via the liquid, and has an area s and the pressure By providing a surface portion such that the ratio (s / S) to the area S of the transmission portion is equal to or less than a predetermined value, the focal portion is formed by the displacement of the surface portion in response to the displacement of the actuator. A varifocal lens characterized by changing the distance.
2 . 前記収容体において、 一方の端に向けて、 その径が拡張し、 拡張した端部に 圧力伝達部が配置されるとともに、 他方の端部付近が単一の径を有し、 対向す る入射面および射出面が形成されることを特徴とする請求項 1に記載の可変 焦点レンズ。  2. In the container, the diameter is expanded toward one end, a pressure transmitting portion is arranged at the expanded end, and the other end has a single diameter near the end, and is opposed to each other. The varifocal lens according to claim 1, wherein an incident surface and an exit surface are formed.
3 . 前記圧力伝達部において、 ァクチユエ一夕と接触する側の面に、 突起が形成 されたことを特徴とする請求項 1または 2に記載の可変焦点レンズ。 3. The varifocal lens according to claim 1, wherein a projection is formed on a surface of the pressure transmitting portion that comes into contact with the actuator.
4 . 前記突起が、 十字状であることを特徴とする請求項 3に記載の可変焦点レン ズ。  4. The variable focus lens according to claim 3, wherein the projection has a cross shape.
5 . 前記収容体が、 第 1のァクチユエ一夕と接触する第 1の圧力伝達部および前 記入射面を含む第 1の部分と、 第 2のァクチユエ一夕と接触する第 2の圧力伝 達部および前記射出面を含む第 2の部分と、 少なくとも入射面および射出面に 対向する位置で第 1の部分と第 2の部分が密着した連結面とを有し、  5. The first part including the first pressure transmitting portion and the incident surface, wherein the container contacts the first actuator, and the second pressure transmitting, which contacts the second actuator. A second portion including a portion and the exit surface; and a connecting surface in which the first portion and the second portion are in close contact with each other at least at a position facing the entrance surface and the exit surface,
前記第 1の部分の入射面および連結面、 第 1の部分の入射面および第 2の部 分の射出面、 並びに、 連結面および第 2の部分の射出面の何れかの組み合わせ で、 変位可能な表面部分が形成されることを特徴とする請求項 1ないし 4の何 れか一項に記載の可変焦点レンズ。  Displaceable by any combination of the incident surface and the coupling surface of the first portion, the incident surface of the first portion and the exit surface of the second portion, and the coupling surface and the exit surface of the second portion. The variable focus lens according to any one of claims 1 to 4, wherein a variable surface portion is formed.
6 . 前記連結面と射出面とが、 それそれ、 異なる屈折率の材料で形成されること を特徴とする請求項 5に記載の可変焦点レンズ。 6. The varifocal lens according to claim 5, wherein the connection surface and the emission surface are respectively formed of materials having different refractive indexes.
7。 前記連結面と液体とが、 それぞれ、 異なる屈折率の材料で形成されることを 特徴とする請求項 5または 6に記載の可変焦点レンズ。 7. 7. The varifocal lens according to claim 5, wherein the connection surface and the liquid are formed of materials having different refractive indices, respectively.
8。 前記第 1の部分および第 2の部分に、 それそれ、 屈折率の異なる液体が充填 されたことを特徴とする請求項 5ないし 7の何れか一項に記載の可変焦点レ ンズ。  8. 8. The variable focus lens according to claim 5, wherein the first portion and the second portion are filled with liquids having different refractive indexes.
9。 前記収容体が、 第 1のァクチユエ一夕と接触する第 1の圧力伝達部および前 記入射面を含む第 1の部分と、 第 nのァクチユエ一夕と接触する第 nの圧力伝 達部および前記射出面を含む第 nの部分と、 前記第 1の部分と第 nの部分との 間に介在する、 (n— 2 )個の中間部分であって、 第 i ( i = 2 , 3, ' ' ', ( n— 2 ) ) ) のァクチユエ一夕と接触する第 iの圧力伝達部を含む中間部分 とを有し、  9. A first portion including the first pressure transmitting portion and the incident surface, wherein the container is in contact with the first actuator, an n-th pressure transmitting portion in contact with the n-th actuator, and (N−2) intermediate portions interposed between the n-th portion including the emission surface and the first portion and the n-th portion, the i-th (i = 2, 3, '' ', (N-2))) and an intermediate portion including an i-th pressure transmitting portion in contact with the actuator.
隣接する中間部分において、 前記入射面および射出面に対向する部分に密着 する連結面が形成され、 かつ、 それそれの部分において、 入射面、 連結面およ び Zまたは射出面において、 変位可能な表面部分が形成されたことを特徴とす る請求項 1ないし 4の何れか一項に記載の可変焦点レンズ。  In the adjacent intermediate portion, a connecting surface is formed in close contact with a portion facing the incident surface and the emitting surface, and in each of the portions, the incident surface, the connecting surface, and the Z or the emitting surface are displaceable. The varifocal lens according to any one of claims 1 to 4, wherein a surface portion is formed.
10。 前記連結面と射出面とが、 それそれ、 異なる屈折率の材料で形成されること を特徴とする請求項 9に記載の可変焦点レンズ。  Ten. The varifocal lens according to claim 9, wherein the connection surface and the emission surface are formed of materials having different refractive indexes, respectively.
11。 前記連結面と液体とが、 それそれ、 異なる屈折率の材料で形成されることを 特徴とする請求項 9または 1 0に記載の可変焦点レンズ。  11. The varifocal lens according to claim 9 or 10, wherein the connection surface and the liquid are formed of materials having different refractive indexes, respectively.
12。 前記第 1の部分、 (η— 2 ) 個の中間部分および第 ηの部分に、 それそれ、 屈折率の異なる液体が充填されたことを特徴とする請求項 9ないし 1 1の何 れか一項に記載の可変焦点レンズ。 12. 12. The method according to claim 9, wherein the first part, the (η-2) intermediate parts and the η-th part are filled with liquids having different refractive indexes. A varifocal lens according to Item.
13. 前記入射面および少なくとも一方に、 複数の表面部分が、 所定の幾何学的配 置にて並べられたことを特徴とする請求項 1ないし 1 2の何れか一項に記載 の可変焦点レンズ。  13. The varifocal lens according to any one of claims 1 to 12, wherein a plurality of surface portions are arranged in a predetermined geometrical arrangement on the incident surface and at least one thereof. .
14. 前記表面部分が、 それぞれ、 数十〃 mないし数百// mの径を有し、 入射面お よび射出面の一方に形成された表面部分、 或いは、 双方に形成された対向する 対の表面部分によりマイクロレンズが形成されることを特徴とする請求項 1 3に記載の可変焦点レンズ。 14. The surface portions each have a diameter of several tens of m to several hundreds // m, and are formed on one of the entrance surface and the exit surface, or on opposite pairs formed on both surfaces. 2. A microlens is formed by a surface portion of the microlens. 3. The variable focus lens according to 3.
15. 前記表面部分が、 それそれ、 数十 mないし数百 mの幅を有する長手方向 に細長い長方形状であり、 入射面および射出面の一方に形成された表面部分、 或いは、 双方に形成された対向する対の表面部分によりマイクロレンズが形成 されることを特徴とする請求項 1 3に記載の可変焦点レンズ。  15. The surface portion is a longitudinally elongated rectangle having a width of several tens to several hundreds of meters, and is formed on one or both of the entrance surface and the exit surface. 14. The varifocal lens according to claim 13, wherein a micro lens is formed by the surface portions of the pair facing each other.
16. 前記表面部分が、 長手方向の辺がほぼ接するように並べられたことを特徴と する請求項 1 5に記載の可変焦点レンズ。  16. The varifocal lens according to claim 15, wherein the surface portions are arranged such that sides in a longitudinal direction thereof are substantially in contact with each other.
17. 請求項 1ないし 1 6の何れか一項に記載の可変焦点レンズと、 各ァクチユエ 一夕を駆動するための信号を与える制御部と、 前記各信号を増幅する増幅器と を備えたことを特徴とするレンズ制御装置。  17. The varifocal lens according to any one of claims 1 to 16, a control unit that supplies a signal for driving each actuator, and an amplifier that amplifies each of the signals. Characteristic lens control device.
18. 前記制御部が、 ァクチユエ一夕の変位をフィードバックとして受理すること を特徴とする請求項 1 7に記載のレンズ制御装置。  18. The lens control device according to claim 17, wherein the control unit receives the displacement of the actuator as feedback.
19. さらに、 前記表面部分における変位を測定するレンズ変位測定部を備え、 当 該表面部分の変位が、 前記制御部にフィードバックされることを特徴とする請 求項 1 7または 1 8に記載のレンズ制御装置。  19. The method according to claim 17, further comprising a lens displacement measuring unit for measuring a displacement of the surface portion, wherein the displacement of the surface portion is fed back to the control unit. Lens control device.
PCT/JP2003/006509 2002-06-04 2003-05-26 Variable-focus lens and lens controller WO2003102636A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004509463A JPWO2003102636A1 (en) 2002-06-04 2003-05-26 Variable focus lens and lens control device
AU2003235425A AU2003235425A1 (en) 2002-06-04 2003-05-26 Variable-focus lens and lens controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-162783 2002-06-04
JP2002162783 2002-06-04

Publications (1)

Publication Number Publication Date
WO2003102636A1 true WO2003102636A1 (en) 2003-12-11

Family

ID=29706615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006509 WO2003102636A1 (en) 2002-06-04 2003-05-26 Variable-focus lens and lens controller

Country Status (3)

Country Link
JP (1) JPWO2003102636A1 (en)
AU (1) AU2003235425A1 (en)
WO (1) WO2003102636A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009514A1 (en) * 2004-07-20 2006-01-26 Agency For Science, Technology And Research Variable focus microlens
JP2009217249A (en) * 2008-02-15 2009-09-24 Univ Of Tokyo Variable focus lens
WO2009133743A1 (en) 2008-04-28 2009-11-05 国立大学法人東京大学 Displacement transducer
WO2010029799A1 (en) 2008-09-13 2010-03-18 独立行政法人科学技術振興機構 Microscope device and fluorescent observing method using same
EP2184625A1 (en) 2008-11-07 2010-05-12 Commissariat à l'énergie atomique et aux énergies alternatives Optical device with deformable membrane with improved activation
US8072689B2 (en) 2007-07-19 2011-12-06 Commissariat A L'energie Atomique Optical device with means of actuating a compact deformable membrane
US8363330B2 (en) 2008-04-21 2013-01-29 Commissariat A L'energie Atomique Membrane, especially for an optical device having a deformable membrane
US8542445B2 (en) 2007-07-19 2013-09-24 Commissariat A L'energie Atomique Optical device with membrane that can be deformed by electrostatic actuation
US8830338B2 (en) 2011-11-11 2014-09-09 Hitachi Ltd Imaging device
WO2017091921A1 (en) * 2015-12-04 2017-06-08 超金光学有限公司 Method for optical zoom and module and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625201A (en) * 1985-07-01 1987-01-12 Gentaro Nakago Lens of variable focal length and irradiation field
JPS63229401A (en) * 1987-03-18 1988-09-26 Nec Corp Variable focus lens
JPH1062609A (en) * 1996-08-22 1998-03-06 Nikon Corp Micro lens and image pickup device using same
JP2002131513A (en) * 2000-10-27 2002-05-09 Fuji Photo Film Co Ltd Variable focal distance lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625201A (en) * 1985-07-01 1987-01-12 Gentaro Nakago Lens of variable focal length and irradiation field
JPS63229401A (en) * 1987-03-18 1988-09-26 Nec Corp Variable focus lens
JPH1062609A (en) * 1996-08-22 1998-03-06 Nikon Corp Micro lens and image pickup device using same
JP2002131513A (en) * 2000-10-27 2002-05-09 Fuji Photo Film Co Ltd Variable focal distance lens

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897680B2 (en) * 2004-07-20 2012-03-14 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ Variable focus micro lens
JP2008507724A (en) * 2004-07-20 2008-03-13 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Variable focus micro lens
WO2006009514A1 (en) * 2004-07-20 2006-01-26 Agency For Science, Technology And Research Variable focus microlens
US7898742B2 (en) 2004-07-20 2011-03-01 Rodriguez Fernandez Isabel Variable focus microlens
US8111466B2 (en) 2004-07-20 2012-02-07 Agency For Science, Technology And Research Variable focus microlens
US8542445B2 (en) 2007-07-19 2013-09-24 Commissariat A L'energie Atomique Optical device with membrane that can be deformed by electrostatic actuation
US8072689B2 (en) 2007-07-19 2011-12-06 Commissariat A L'energie Atomique Optical device with means of actuating a compact deformable membrane
JP2009217249A (en) * 2008-02-15 2009-09-24 Univ Of Tokyo Variable focus lens
US8363330B2 (en) 2008-04-21 2013-01-29 Commissariat A L'energie Atomique Membrane, especially for an optical device having a deformable membrane
US8511173B2 (en) 2008-04-28 2013-08-20 The University Of Tokyo Displacement transducer
WO2009133743A1 (en) 2008-04-28 2009-11-05 国立大学法人東京大学 Displacement transducer
WO2010029799A1 (en) 2008-09-13 2010-03-18 独立行政法人科学技術振興機構 Microscope device and fluorescent observing method using same
US9019360B2 (en) 2008-09-13 2015-04-28 Japan Science And Technology Agency Microscope and a fluorescent observation method using the same
US8116011B2 (en) 2008-11-07 2012-02-14 Commissariat A L'energie Atomique Membrane deformable optical device having improved actuation
EP2184625A1 (en) 2008-11-07 2010-05-12 Commissariat à l'énergie atomique et aux énergies alternatives Optical device with deformable membrane with improved activation
US8830338B2 (en) 2011-11-11 2014-09-09 Hitachi Ltd Imaging device
WO2017091921A1 (en) * 2015-12-04 2017-06-08 超金光学有限公司 Method for optical zoom and module and use thereof

Also Published As

Publication number Publication date
JPWO2003102636A1 (en) 2005-09-29
AU2003235425A1 (en) 2003-12-19

Similar Documents

Publication Publication Date Title
AU2018294509B2 (en) Lens assembly for optical image stabilization and focus adjustment
JP6360823B2 (en) Optical device having a continuous coronal forming piezoelectrically actuable deformable membrane
US10371871B2 (en) Optical device for stabilization of images
US9869802B2 (en) Optical device with focal length variation
JP5501964B2 (en) Optical device with means for operating a compact deformable membrane
US20080259463A1 (en) Variable Focal Length Lens
JP5541156B2 (en) Actuator array sheet
JP4370092B2 (en) An optical apparatus comprising a control method for an optical element having variable optical characteristics and a control means based on the control method.
JP4576058B2 (en) Deformable mirror with displacement detection function
US20040012683A1 (en) Shake compensating device for optical devices
US6801370B2 (en) Imaging optical system
JP2009519498A (en) Piezoelectric variable focus fluid lens and method of focusing
JP2005092175A (en) Variable optical-property optical element
JP2000081504A (en) Variable-focal lens
WO2003102636A1 (en) Variable-focus lens and lens controller
US20080152333A1 (en) Shake compensating device for optical devices
JP2003161873A (en) Optical system
JP2006138950A (en) Variable optical characteristic optical element, detection apparatus for detecting optical deflection action and optical apparatus using variable optical characteristic optical element
JP2005106855A (en) Lens housing for inflection optical system
JP2013142867A (en) Ultrasonic variable-focal length lens array and control method of the same
JP2009294330A (en) Variable focus lens, method for driving the same, and imaging apparatus
Bettaswamy et al. A novel concept for piezoelectric actuation of tunable silicone membrane lenses
JP2005084659A (en) Assembly tool of lens housing for bending optical system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004509463

Country of ref document: JP

122 Ep: pct application non-entry in european phase