WO2000037156A1 - Kontinuierliches verfahren zur trennung von stoffen nach molekülgrösse - Google Patents

Kontinuierliches verfahren zur trennung von stoffen nach molekülgrösse Download PDF

Info

Publication number
WO2000037156A1
WO2000037156A1 PCT/EP1999/009495 EP9909495W WO0037156A1 WO 2000037156 A1 WO2000037156 A1 WO 2000037156A1 EP 9909495 W EP9909495 W EP 9909495W WO 0037156 A1 WO0037156 A1 WO 0037156A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation
processes
sec
smb
continuous
Prior art date
Application number
PCT/EP1999/009495
Other languages
English (en)
French (fr)
Inventor
Lothar Britsch
Michael Schulte
Jochen Strube
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to AT99963388T priority Critical patent/ATE307649T1/de
Priority to DE59912722T priority patent/DE59912722D1/de
Priority to EP99963388A priority patent/EP1140316B1/de
Priority to US09/857,975 priority patent/US6551512B1/en
Priority to JP2000589262A priority patent/JP2002532730A/ja
Publication of WO2000037156A1 publication Critical patent/WO2000037156A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1814Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
    • B01D15/1821Simulated moving beds
    • B01D15/1828Simulated moving beds characterized by process features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2215/00Separating processes involving the treatment of liquids with adsorbents
    • B01D2215/02Separating processes involving the treatment of liquids with adsorbents with moving adsorbents
    • B01D2215/023Simulated moving beds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography

Definitions

  • the invention relates to the transfer of chromatographic separation processes according to the size exclusion chromatography (SEC) principle to continuous chromatography processes, in particular to simulated countercurrent chromatography (Simulated Moving Bed (SMB) chromatography).
  • SEC size exclusion chromatography
  • SMB Simulated Moving Bed
  • the SEC is based on a completely different principle: for analytes of different molecular sizes, different volumes are available for distribution because of the pore size distribution in the sorbent; thus larger molecules elute earlier than smaller ones.
  • the SEC is therefore based on a diffusive mechanism including a size exclusion mechanism; the analytes are not adsorbed on the sorbent. There are therefore no phase equilibria as in adsorption chromatography.
  • the previously known modeling processes that provide the parameters for SMB chromatography cannot be used for the SEC.
  • the object of the invention is therefore to develop models and processes which allow separation parameters for continuous separation processes which allow stable operation to be obtained in a targeted manner for SEC separation processes.
  • the invention relates to continuous separation processes, in particular using SMB processes, in which the analytes are separated by size exclusion chromatography (gel permeation chromatography).
  • Figure 1 shows the SEC separation of skimmed milk powder on a Superformance ® column 600 * 16 mm, filled with Fractogel ® EMD BioSEC (S)
  • Figures 2 - 4 show the chromatograms of the individual components: Figure 2 Casein fraction RT 39.5; 53.92 min
  • Figure 5 shows an elution chromatogram of the individual components, which was determined as a result of the rigorous modeling of the individual substances according to the invention.
  • Figure 6 shows the internal axial concentration profile of a SEC-SMB system with the concentrations of the individual components in the individual zones at the end of a cycle time.
  • SEC separations in SMB processes can be obtained if the procedure according to the invention is as follows: a) The residence times of the substances to be separated in the separation column and the band broadening of the substance peaks are calculated. The method already mentioned by Tien Gu (1995), for example, is used to calculate the residence times. b) The effective porosities for each component and the residence times are calculated from the data obtained using (analytical) batch chromatograms. c) The band broadening can be calculated, for example, from the effective molecular diffusion coefficients. The effective molecular diffusion coefficients can be estimated on the basis of the Stokes-Einstein relation and the molecular weights of the components.
  • step b) and c) The correspondence of the calculated data (steps b) and c)) with the observed elution profile is checked and, if necessary, the calculated data are better adapted to the experimental data in further iteration steps.
  • step e) From the parameters of the adapted model calculation, in principle known methods, as described for example in the publications G. Storti et al. (1993) or PhD thesis Strube (1996), the necessary net flow rate ratios of the SMB processes are calculated.
  • the proposed model proved to be sufficiently accurate when it was checked for different concentrations and linear velocities on a single column.
  • the distribution of the residence times is determined by the diffusion parameters as they apply to the internal volumes of the sorbent particles.
  • the effective molecular diffusion coefficients are estimated from the molecular weights of the components according to the Stokes-Einstein relation and taken into account in the model as mass transfer coefficients.
  • SEC carriers can be used; pressure-stable SEC carriers, which are also commercial, are preferred for example, Fractogel ® EMD BioSEC, as is disclosed in DE 43 16 136 are offered.
  • SMB systems are used, as are also commercially available. These are, for example, systems that are constructed by connecting two-way valves, or systems with a multi-port valve. The separation is carried out under isocratic conditions and can therefore be automated in a simulated moving bed system.
  • components that elute first or last can be removed directly in pure form.
  • a combination of several SMB cleaning steps, e.g. in WO 97/34 918, purification can be achieved.
  • the so-called open mode with 3 zones without closing the circuit stream is particularly well suited to discharge large-molecular impurities or enrichments from the process if the low-molecular fraction is to be obtained , and also to pull off large molecular products directly.
  • the mode of operation with the discharge of columns in Zone 1 or 4 (with the functions adsorbent regeneration and desorbent cleaning) and rinsing as well as regeneration and cleaning of the adsorbent and in some sections also the pipeline parts and components with e.g. NaOH is crucial for functionality and to avoid enrichment.
  • the separation method according to the invention allows an improved separation of proteins by molecular size, since it can be carried out continuously and fully automatically in large plants; these separation processes are particularly applicable in the following areas of application:
  • the aim is to deliver drugs specifically to the place of action.
  • drug-loaded liposomes used.
  • One problem with the preparation of these liposomes is the separation of non-entrapped drug from the loaded liposomes. This can be done through a continuous SEC process on a large scale.
  • the process can of course also be applied to synthetic polymers, e.g. Polyethylene oxides, silicones etc. can be used.
  • reaction and separation can be carried out in one step.
  • a possible application is the cleavage of the TAG units of recombinant proteins by a protease and the simultaneous separation of the TAG units from the target proteins by SEC-SMB.
  • methods according to the invention are suitable for removing viruses from biological products, removing endotoxins, especially in aggregated form, or also for cleaning up viruses. Further application possibilities result from the variation of the pore size distribution of the supports used. For example, systems with small-pore gels can be used to purify peptides, such as insulin.
  • Figure 1 shows the SEC separation of skimmed milk powder on a Superformance ® column 600 * 16 mm, filled with Fractogel ® EMD BioSEC (S),
  • Figures 2 - 4 show the chromatograms of the individual components:
  • Figure 5 shows an elution chromatogram of the individual components, which was determined as a result of the iterations in the rigorous modeling of the individual substances provided according to the invention.
  • Figure 6 shows the internal axial concentration profile of a SEC separation in an SMB system with the concentrations of the individual components in the individual zones at the end of a cycle time.
  • the process parameters were determined using the method according to the invention.

Abstract

Kontinuierliche Trennverfahren, insbesondere unter Verwendung von SMB-Verfahren, werden offenbart, wobei die Analyte durch Size Exclusion Chromatographie (Gelpermeationschromatographie) getrennt werden.

Description

Kontinuierliches Verfahren zur Trennung von Stoffen nach Molekülgröße
Die Erfindung betrifft die Übertragung von chromatographischen Trenn- verfahren nach dem Size Exclusion Prinzip (Size Exclusion Chromato- graphy; SEC) auf kontinuierliche Chromatographieverfahren, insbesondere auf die simulierte Gegenstrom-Chromatographie (Simulated Moving Bed (SMB) Chromatographie).
Die Trennung von Stoffen, insbesondere Makromolekülen, nach Molekülgröße ist ein verbreitetes chromatographisches Trennprinzip. Besonders in der Aufreinigung von Peptiden und Proteinen werden Verfahren wie die Size Exclusion Chromatographie (SEC), häufig auch Gelpermeations- chromatographie genannt, im großem Umfang eingesetzt. So werden beispielsweise in dem Übersichtsartikel von G. Subramanian, Process scale liquid chromatography (VCH Weinheim 1995) präparative Anwendungen dieser Trennmethode dargestellt. Alle diese Anwendungen beruhen jedoch auf batch-Verfahren, die sich durch eine schlechte Raum-Zeit- Ausbeute auszeichnen. Die Ursache liegt zum einen in den langen Retentionszeiten der Komponenten, die eine große Zykluszeit (Zeit zwischen zwei Injektionen) bedingen. Da die meisten in der SEC eingesetzten Materialien nur eine geringe Druckstabilität aufweisen, können die Flußraten nicht erhöht werden, um eine schnellere Trennung zu erzielen. Zudem weisen die meisten Trägermaterialien eine schlechte Beladbarkeit auf (< 5% des Gelvolumens). Manche dieser Probleme ließen sich durch die Anwendung kontinuierlicher Verfahren verbessern. Es ist bisher jedoch nicht möglich, diese SEC-Trennverfahren auf kontinuierliche Verfahrensweisen anzuwenden; die Parameter für ein derartiges kontinuierliches Trennverfahren müßten durch geeignete Modellrechnun- gen bestimmt werden. Außerdem müssen die erhaltenen Prozeßparameter einen stabilen kontinuierlichen Betrieb erlauben. Kontinuierliche chromatographische Verfahren, wie z.B. die Simulated Moving Bed (SMB)- Chromatographie werden traditionell im großen Maßstab in der petrochemischen und der Zuckerindustrie eingesetzt. Mittlerweile finden diese Verfahren jedoch auch in der feinchemischen und pharmazeutischen Industrie Anwendung, hauptsächlich zur Trennung von Isomeren und Enantiomeren, d.h. bei Trennproblemen von klassischen Zweistoffgemischen. Erste Versuche zur Isolierung von Komponenten aus Mehrstoffgemischen wurden ebenfalls beschrieben.
Um geeignete Prozeßparameter für die SMB-Chromatographie zu gewinnen, wurden mehrere Simulationsmodelle entwickelt, von denen das rigorose SMB-Prozeßmodell den weitreichensten Ansatz aufweist. Simulationsansätze sind beispielsweise von Nicoud et al. (Nancy, 1993) und in WO 97/34 918 offenbart. Gemeinsam ist diesen Verfahren, daß für die
Analyte Adsorptionsisotherme ermittelt werden; diese Meßergebnisse sind dann die Grundlage der Modellrechnungen. Bei Weiterentwicklungen aus jüngerer Zeit wurden auf der Grundlage des True Counter Current Modells Trennungen von binären Mischungen im Modell dargestellt: G. Storti et al. (1993) AlChE Journal 39, Seiten 471 - 472 und von E. Francotte et al. (1998) J. Chromatogr. A 796, Seiten 239 - 248. Bei einer weiteren Entwicklung werden ausgehend von einem ersten Parametersatz unter Anwendung von detaillierter Prozeßsimulation die Parameter optimiert: J. Strube, U. Altenhöner, M. Meurer und H. Schmidt-Traub (1997) Chem.-Ing. Tech. 69, Seiten 328 - 331 , sowie Dissertation J. Strube (Universität
Dortmund, 1996). Alle diese Modelle beruhen jedoch auf der Bestimmung von Adsorptionsisothermen.
Während bisher für SMB-Verfahren angewandte chromatographische Trennverfahren, beispielsweise die Enantiomerentrennung oder die lonenaustauschchromatographie, auf adsorptiven Vorgängen beruht, beruht die SEC auf einem gänzlich anderen Prinzip: Für Analyte unterschiedlicher Molekülgröße stehen wegen der Porengrößenverteilung im Sorbens unterschiedliche Volumina zur Verteilung offen; somit eluieren größere Moleküle früher als kleinere. Die SEC beruht also auf einem diffusiven Mechanismus unter Einschluß eines Größenausschluß- mechanismus, eine Adsorption der Analyte an das Sorbens findet nicht statt. Phasengleichgewichte wie bei der Adsorptionschromatographie liegen folglich nicht vor. Somit sind die bisher bekannten Modellierungsverfahren, die die Parameter für die SMB-Chromatographie liefern, für die SEC nicht anwendbar. Insbesondere tritt das Problem auf, die
Raffinatfront der am kürzesten retinierten Komponente im Bereich der Sektion IV, d.h. zwischen Raffinat- und Eluentenleitung, zu stabilisieren. Dieses Problem wird weiter verstärkt, da bei vielen SEC Trennverfahren ein Teil der Analyte im Ausschlußvolumen (void volume) eluiert. Solche Komponenten werden durch die Zone IV transportiert und verunreinigen die Extraktkomponente. Es ist bisher unmöglich, für SEC-Trennverfahren die Prozeßparameter von batch-Rechnermodellen auf kontinuierliche Trennverfahren (z.B. SMB-Trennverfahren) zu übertragen, und somit gezielt Trennparameter für kontinuierliche Trennverfahren zu gewinnen, die einen stabilen Betrieb erlauben.
Aufgabe der Erfindung ist es also, Modelle und Verfahren zu entwickeln, die es erlauben, für SEC-Trennverfahren gezielt Trennparameter für kontinuierliche Trennverfahren zu gewinnen, die einen stabilen Betrieb erlauben.
Gegenstand der Erfindung sind kontinuierliche Trennverfahren, insbesondere unter Verwendung von SMB-Verfahren, bei denen die Analyte durch Size Exclusion Chromatographie (Gelpermeationschromatographie) getrennt werden. Abbildung 1 zeigt die SEC-Trennung von Magermilchpulver auf einer Superformance® Säule 600 * 16 mm, gefüllt mit Fractogel® EMD BioSEC (S), die Abbildungen 2 - 4 zeigen die Chromatogramme der Einzelkomponenten: Abbildung 2 Casein-Fraktion RT 39,5; 53,92 min
Abbildung 3 ß-lactoglobulin A RT 63.52 min
Abbildung 4 alpha-Lactalbumin RT 71 ,60 min
Abbildung 5 stellt ein Elutionschromatogramm der Einzelkomponenten dar, das als Ergebnis der erfindungsgemäßen rigorose Modellierung der Einzelsubstanzen ermittelt wurde.
Abbildung 6 zeigt das interne axiale Konzentrations-Profil einer SEC-SMB Anlage mit den Konzentrationen der Einzelkomponenten in den einzelnen Zonen zum Ende einer Taktzeit.
Eine theoretische Modellrechnung für einfache Stoffsysteme für SEC- Trennungen im batch-Verfahren wurde von Tien Gu beschrieben (Mathe- matic Modelling of Liquid Chromatography; Springer Verlag, 1995).
Es wurde gefunden, daß stabile Prozeßparameter für die Anwendung von
SEC Trennungen in SMB-Verfahren erhalten werden können, wenn man erfindungsgemäß folgendermaßen vorgeht: a) Die Verweilzeiten der zu trennenden Substanzen in der Trennsäule und die Bandenverbreiterung der Substanzpeaks werden berechnet. Für die Berechnung der Verweilzeiten dient beispielsweise das bereits genannte von Tien Gu (1995) angegebene Verfahren. b) Aus den Daten, die mittels (analytischer) batch-Chromatogramme erhalten werden, werden die effektiven Porositäten für jede Komponente und die Verweilzeiten berechnet. c) Die Bandenverbreiterung kann beispielsweise aus den effektiven molekularen Diffusionskoeffizienten berechnet werden. Die effektiven molekularen Diffusionskoeffizienten können auf der Grundlage der Stokes-Einstein-Relation und den Molekulargewichten der Komponen- ten abgeschätzt werden. d) Die Übereinstimmung der berechneten Daten (Schritte b) und c)) mit dem beobachteten Elutionsprofil wird überprüft und gegebenenfalls die berechneten Daten in weiteren Iterationsschritten besser an die experimentellen Daten angepaßt. e) Aus den Parametern der angepaßten Modellrechnung werden, nach prinzipiell bekannten Verfahren, wie sie beispielsweise in den bereits genannten Publikationen G. Storti et al. (1993) oder Dissertation Strube (1996) angegeben sind, die notwendigen Nettoflußraten- verhältnisse des SMB-Prozesse berechnet.
Durch die oben angegebene Vorgehensweise zur Berechnung von Verweilzeit und Bandenverbreiterung und den daraus resultierenden Parametern, können die vorbekannten Modelle (G. Storti et al. (1993) oder Dissertation Strube (1996)) auch ohne Ermittlung von Adsorptionsisothermen angewandt werden.
Das vorgeschlagene Modell erwies sich als hinreichend genau als es für verschiedene Konzentrationen und lineare Geschwindigkeiten an einer Einzelsäule überprüft wurde. Dabei wird die Verteilung der Verweilzeiten durch die Diffusionsparameter bestimmt, wie sie für die Innenvolumina der Sorbenspartikel gelten. Aus den Molekulargewichten der Komponenten werden nach der Stokes-Einstein Relation die effektiven molekularen Diffusionskoeffizienten abgeschätzt und in dem Modell als Stofftransportkoeffizienten berücksichtigt.
Erfindungsgemäß können allgemein bekannte SEC-Träger verwendet werden; bevorzugt sind druckstabile SEC-Träger, die ebenfalls kommerziell angeboten werden, beispielsweise Fraktogel® EMD BioSEC, wie es in DE 43 16 136 offenbart ist.
Erfindungsgemäß werden SMB-Anlagen verwendet, wie sie ebenfalls kommerziell erhältlich sind. Dies sind beispielsweise Anlagen, welche durch Verschaltung von Zweiwegeventilen aufgebaut sind, oder Anlagen mit einem Multiportventil. Die Trennung wird unter isokratischen Bedingungen durchgeführt und kann somit in einem Simulated Moving Bed-System automatisiert werden.
Bei der Isolierung von Komponenten aus Mehrstoffgemischen können Komponenten, die als erste oder letzte eluieren direkt in reiner Form abgezogen werden. Zur Isolierung von Substanzen, die von beiden Seiten durch Verunreinigungen flankiert werden, kann durch Kombination mehrerer SMB-Reinigungsschritte, wie z.B. in WO 97/34 918 offenbart, eine Aufreinigung erzielt werden.
Um den speziellen Anforderungen von biotechnologischen Aufgabenstellungen an den Prozeß zur Mehrkomponententrennung gerecht zu werden, ist die sogenannte offene Betriebsweise mit 3-Zonen ohne Schließen des Kreislaufstroms besonders gut geeignet, um großmolekulare Verunreinigungen oder Anreicherungen aus dem Prozeß auszuschleusen, wenn die niedermolekulare Fraktion gewonnen werden soll, und auch um großmolekulare Produkte direkt abzuziehen.
Um CIP (Cleaning in Place) Anforderungen nachzukommen, ist die Betriebsweise mit Ausschleusen von Säulen in der Zone 1 oder 4 (mit den Funktionen Adsorbensregeneration und Desorbensreinigung) und Spülen sowie Regeneration und Reinigung des Adsorbens und abschnittsweise auch der Rohrleitungsteile und Bauelemente mit z.B. NaOH entscheidend zur Funktionsfähigkeit und um Anreicherungen zu vermeiden. Das erfindungsgemäße Trennverfahren erlaubt eine verbesserte Auftrennung von Proteinen nach Molekülgröße, da es sich in großen Anlagen kontinuierlich und vollautomatisch durchführen läßt; diese Trennverfahren sind insbesondere auf folgenden Anwendungsgebieten anwendbar:
• Aufreinigung von Proteinen aus Milch transgener Tiere;
• Aufreinigung von Proteinen, beispielsweise der Faktoren VIII, vW oder IX, aus Blutplasma; • Aufreinigung von Plasmiden;
• ein weiteres großvolumiges Verfahren stellt die Entsalzung von Feedgemischen dar, dessen Ökonomie durch ein kontinuierliches SEC- Verfahren verbessert wird.
• Im sogenannten Drug Targeting wird angestrebt, Arzneistoffe gezielt an den Ort der Wirkung zu befördern. Hierzu werden u.A. mit Arzneistoff beladene Liposomen eingesetzt. In der Herstellung dieser Liposomen besteht ein Problem in der Abtrennung nicht-eingeschlossenen Arzneistoffs von den beladenen Liposomen. Dies kann durch ein kontinuierliches SEC-Verfahren im großen Maßstab geleistet werden.
• Neben der Fraktionierung natürlicher Makromoleküle kann das Verfahren natürlich auch auf synthetische Polymere, z.B. Poiyethylen- oxide, Silicone etc., angewendet werden.
• In der Kombination mit einem Reaktivträger, wie sie in der Reaktiv-SMB eingesetzt werden, können Reaktion und Trennung in einem Schritt durchgeführt werden. Ein denkbarer Einsatzzweck ist die Abspaltung der TAG-Einheiten rekombinanter Proteine durch eine Protease und die gleichzeitige Abtrennung der TAG-Einheiten von den Zielproteinen durch SEC-SMB.
• Weiterhin sind erfindungsgemäße Verfahren geeignet, Viren aus biologischen Produkten abzureichem, Endotoxine, besonders in aggregierter Form, zu entfernen oder auch Viren aufzureinigen. Weitere Anwendungsmöglichkeiten ergeben sich aus der Variation der Porengrößenverteilung der verwendeten Träger. Beispielsweise können Systeme mit kleinporigen Gelen zur Aufreinigung von Peptiden, wie beispielsweise Insulin, eingesetzt werden.
Auch ohne weitere Ausführungen wird davon ausgegangen, daß ein Fachmann die obige Beschreibung im weitesten Umfang nutzen kann. Die bevorzugten Ausführungsformen und Beispiele sind deswegen lediglich als beschreibende, keineswegs als in irgendeiner Weise limitierende Offenbarung aufzufassen.
Die vollständige Offenbarung aller vor- und nachstehend aufgeführten Anmeldungen, Patente und Veröffentlichungen sind durch Bezugnahme in diese Anmeldung eingeführt.
Anwendungsbeispiel
Die Abtrennung der Casein-Fraktion aus Magermilchpulver wird beschrieben: Für die Ermittlung der Prozeßparameter wird die Probe, sowie die wesentlichen Einzelkomponenten im batch chromatographiert: Abbildung 1 zeigt die SEC-Trennung von Magermilchpulver auf einer Superformance® Säule 600 * 16 mm, gefüllt mit Fractogel® EMD BioSEC (S), die Abbildungen 2 - 4 zeigen die Chromatogramme der Einzelkomponenten:
Abbildung 2 Casein-Fraktion RT 39,5; 53,92 min Abbildung 3 ß-lactoglobulin A RT 63.52 min Abbildung 4 alpha-Lactalbumin RT 71 ,60 min
Abbildung 5 stellt ein Elutionschromatogramm der Einzelkomponenten dar, das als Ergebnis der Iterationen bei der erfindungsgemäß vorgesehenen rigorosen Modellierung der Einzelsubstanzen ermittelt wurde.
Abbildung 6 zeigt das interne axiale Konzentrations-Profil einer SEC-Trennung in einer SMB Anlage mit den Konzentrationen der Einzelkomponenten in den einzelnen Zonen zum Ende einer Taktzeit. Die Prozeßparameter wurden nach dem erfindungsgemäßen Verfahren bestimmt.
Zuordnung der Komponenten:
Figure imgf000011_0001
Eine SMB-Anlage mit folgenden Parametern ist in der Lage die Komponenten E und F (Casein) und A-D in Reinheiten > 99% zu produzieren:
Prozeßparameter
Figure imgf000012_0001
Vergleich Batch-Verfahren gegenüber erfindungsgemäßem SMB- Verfahren:
Figure imgf000012_0002
Figure imgf000013_0001
Ein Vergleich der Produktivitäten von Batch- und SMB-Verfahren zeigt den großen Vorteil des kontinuierlichen Gegenstromverfahrens aufgrund der wesentlich ökonomischeren Ausnutzung der stationären Phase:
Erfindungsgemäß werden im Gegensatz zu adsorptiven Trennmechanismen keine Phasengleichgewichtsisothermen beschrieben, sondern erstmals für kontinuierliche Verfahren die für die Stofftrennung nach dem SEC- Verfahren charakteristischen unterschiedlichen Diffusionsgeschwindig- keiten in den Sorbenspartikeln sowie die unterschiedlichen verfügbaren Porenvolumina als Kenngrößen verwendet. Beide für die Trenneffekte von SEC-Trennverfahren charakteristischen Größen werden erstmals in dem der Erfindung zugrundeliegenden Modell realistisch berücksichtigt.

Claims

Ansprüche
1. Kontinuierliches chromatographisches Trennverfahren, dadurch gekennzeichnet, daß die Analyte durch Size Exclusion Chromatographie (Gelpermeationschromatographie) getrennt werden.
2. Trennverfahren nach Anspruch 1 , wobei das kontinuierliche chromatographische Trennverfahren ein SMB-Verfahren darstellt.
PCT/EP1999/009495 1998-12-19 1999-12-04 Kontinuierliches verfahren zur trennung von stoffen nach molekülgrösse WO2000037156A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT99963388T ATE307649T1 (de) 1998-12-19 1999-12-04 Kontinuierliches verfahren zur trennung von stoffen nach molekülgrösse
DE59912722T DE59912722D1 (de) 1998-12-19 1999-12-04 Kontinuierliches verfahren zur trennung von stoffen nach molekülgrösse
EP99963388A EP1140316B1 (de) 1998-12-19 1999-12-04 Kontinuierliches verfahren zur trennung von stoffen nach molekülgrösse
US09/857,975 US6551512B1 (en) 1998-12-19 1999-12-04 Continuous method for separating substances according to molecular size
JP2000589262A JP2002532730A (ja) 1998-12-19 1999-12-04 分子サイズによる物質の連続分離方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19858892A DE19858892A1 (de) 1998-12-19 1998-12-19 Kontinuierliches Verfahren zur Trennung von Stoffen nach Molekülgröße
DE19858892.5 1998-12-19

Publications (1)

Publication Number Publication Date
WO2000037156A1 true WO2000037156A1 (de) 2000-06-29

Family

ID=7891862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/009495 WO2000037156A1 (de) 1998-12-19 1999-12-04 Kontinuierliches verfahren zur trennung von stoffen nach molekülgrösse

Country Status (7)

Country Link
US (1) US6551512B1 (de)
EP (1) EP1140316B1 (de)
JP (1) JP2002532730A (de)
AT (1) ATE307649T1 (de)
CZ (1) CZ20012183A3 (de)
DE (2) DE19858892A1 (de)
WO (1) WO2000037156A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004045540A2 (en) * 2002-11-18 2004-06-03 Taurus Hsa Llc Method for continuous, automated blending of solutions from acids and bases
US8608960B2 (en) 2002-09-13 2013-12-17 Biogen Idec Inc. Method of purifying polypeptides by simulated moving bed chromatography
US11521632B2 (en) 2006-07-08 2022-12-06 Staton Techiya, Llc Personal audio assistant device and method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100735738B1 (ko) 2003-12-05 2007-07-06 학교법인 인하학원 Smb 크로마토그래피를 이용하여 단백질을 재접힘시키는방법
US7087177B2 (en) * 2004-04-16 2006-08-08 Baxter International Inc. Methods for determining flow rates of biological fluids
US20060062889A1 (en) * 2004-09-17 2006-03-23 Solae, Llc. Soy protein-containing composition
US7169425B2 (en) * 2004-09-17 2007-01-30 Solae, Llc Size exclusion chromatography process for the preparation of an improved soy protein-containing composition
US7544293B2 (en) 2005-09-26 2009-06-09 Semba Inc. Valve and process for interrupted continuous flow chromatography
US7790040B2 (en) 2006-08-30 2010-09-07 Semba Biosciences, Inc. Continuous isocratic affinity chromatography
US8807164B2 (en) * 2006-08-30 2014-08-19 Semba Biosciences, Inc. Valve module and methods for simulated moving bed chromatography
EP4023330A1 (de) * 2009-12-15 2022-07-06 Waters Technologies Corporation Vorrichtung und verfahren zur durchführung einer grössenausschlusschromatographie
EP2682168A1 (de) 2012-07-02 2014-01-08 Millipore Corporation Reinigung biologischer Moleküle
SG10201709131UA (en) 2013-03-08 2017-12-28 Genzyme Corp Continuous purification of therapeutic proteins
TWI709570B (zh) 2014-01-17 2020-11-11 美商健臻公司 無菌層析法及製法
TWI709569B (zh) 2014-01-17 2020-11-11 美商健臻公司 無菌層析樹脂及其用於製造方法的用途
FR3018450B1 (fr) * 2014-03-11 2016-04-15 Lab Francais Du Fractionnement Procede de preparation de proteines plasmatiques humaines
JP6900378B2 (ja) * 2015-12-22 2021-07-07 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se ポリエーテルブロックコポリマーの精製方法
BR112021003420A2 (pt) 2018-08-31 2021-05-18 Genzyme Corporation resina cromatográfica estéril e uso da mesma em processos de manufatura
EP3742160B1 (de) * 2019-05-24 2023-08-09 Sartorius Stedim Biotech GmbH Chromatografieverfahren, verfahren zur bestimmung der konzentration von mindestens einer verbindung in einem chromatografieverfahren und verfahren zur gewinnung von mindestens einem chromatografieverfahrensparameter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4316136A1 (de) * 1993-05-13 1994-11-17 Merck Patent Gmbh Verfahren und Träger für die Gelpermeationschromatographie
WO1997034918A1 (de) * 1996-03-21 1997-09-25 Arzneimittelwerk Dresden Gmbh Chromatographisches verfahren zur gewinnung von hochgereinigtem cyclosporin a und verwandten cyclosporinen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3010816B2 (ja) * 1991-08-22 2000-02-21 ダイセル化学工業株式会社 光学分割における光学異性体と溶媒との回収方法、溶媒の循環使用方法、および光学異性体の再利用方法
US5465748A (en) * 1994-05-24 1995-11-14 Millipore Corporation Sanitizable slider diaphragm valve
US5630943A (en) * 1995-11-30 1997-05-20 Merck Patent Gesellschaft Mit Beschrankter Haftung Discontinuous countercurrent chromatographic process and apparatus
US6063284A (en) * 1997-05-15 2000-05-16 Em Industries, Inc. Single column closed-loop recycling with periodic intra-profile injection
US5968362A (en) * 1997-08-04 1999-10-19 Controlled Enviromental Systems Corporation Method for the separation of acid from sugars
US5939565A (en) * 1997-11-03 1999-08-17 Cultor Food Science, Inc. Recovery of γ-pyrones
US6293999B1 (en) * 1999-11-30 2001-09-25 Uop Llc Process for separating propylene from propane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4316136A1 (de) * 1993-05-13 1994-11-17 Merck Patent Gmbh Verfahren und Träger für die Gelpermeationschromatographie
WO1997034918A1 (de) * 1996-03-21 1997-09-25 Arzneimittelwerk Dresden Gmbh Chromatographisches verfahren zur gewinnung von hochgereinigtem cyclosporin a und verwandten cyclosporinen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8608960B2 (en) 2002-09-13 2013-12-17 Biogen Idec Inc. Method of purifying polypeptides by simulated moving bed chromatography
WO2004045540A2 (en) * 2002-11-18 2004-06-03 Taurus Hsa Llc Method for continuous, automated blending of solutions from acids and bases
WO2004045540A3 (en) * 2002-11-18 2004-08-19 Taurus Hsa Llc Method for continuous, automated blending of solutions from acids and bases
US11521632B2 (en) 2006-07-08 2022-12-06 Staton Techiya, Llc Personal audio assistant device and method

Also Published As

Publication number Publication date
EP1140316B1 (de) 2005-10-26
EP1140316A1 (de) 2001-10-10
US6551512B1 (en) 2003-04-22
ATE307649T1 (de) 2005-11-15
CZ20012183A3 (cs) 2002-02-13
JP2002532730A (ja) 2002-10-02
DE19858892A1 (de) 2000-06-21
DE59912722D1 (de) 2005-12-01

Similar Documents

Publication Publication Date Title
EP1140316B1 (de) Kontinuierliches verfahren zur trennung von stoffen nach molekülgrösse
DE60022280T2 (de) Verfahren zu Herstellung von gereinigte Tocotrienolen und Tocopherolen mit Hilfe von Flüssigechromatographie
Aerts et al. On-line combination of dialysis and column-switching liquid chromatography as a fully automated sample preparation technique for biological samples: determination of nitrofuran residues in edible products
US6802969B2 (en) Preparative chromatography system and separation/purification method using same
UA39135C2 (uk) Спосіб фракціонування розчину
AT399095B (de) Verfahren zur auftrennung von proteinen mittels gradientenelution und vorrichtung zur durchführung des verfahrens
DE60127713T2 (de) Insulinreinigung unter verwendung der simulierten wanderbett-technologie
Yamamoto Electrostatic interaction chromatography process for protein separations: Impact of engineering analysis of biorecognition mechanism on process optimization
Feins et al. Novel internally staged ultrafiltration for protein purification
DE19611094A1 (de) Chromatographisches Verfahren zur Gewinnung von hochgereinigtem Cyclosporin A und verwandten Cyclosporinen
WO2001087451A2 (en) Standing wave design of a nine-zone smb for the recovery of a solute with intermediate affinity in a ternary mixture
EP0586385B1 (de) Verfahren zur trennung von enantiomeren an chiralen trennphasen mit hilfe eines kontinuierlichen gegenstrom-chromatographieverfahrens
WO1998003242A1 (de) Verwendung nicht-partikulärer sorbentien für &#39;simulated moving bed&#39; trennverfahren
EP2032230B1 (de) Verfahren zur optimierung chromatographischer reinigungsverfahren für biomoleküle
EP0928418B1 (de) Verfahren und vorrichtung zur isoelektrischen teilchentrennung
DE60034676T2 (de) Verdrängungsreagenzien mit niedrigem molekulargewicht und hoher affinität zur reinigung von oligonukleotiden
EP1080112B1 (de) Verfahren zur trennung und/oder isolierung von plasmaproteinen mit annularer chromatographie
DE19711173A1 (de) Verfahren und Anlage für die adsorptive Stofftrennung
EP0321597A1 (de) Selektives Adsorbens zur Bindung von Lipoproteinen niedriger Dichte
Snyder et al. Preparative high-performance liquid chromatography under gradient conditions: II. A computer program for the design of reversed-phase gradient-elution separations of peptide and protein samples
EP1231992A1 (de) Verfahren zur separation von zellen und biomolekülen mittels gegenstromchromatographie
EP3167283A1 (de) Vorrichtung, verwendung dieser vorrichtung und verfahren für die stofftrennung mit verbesserter ausnutzung der kapazität chromatographischer medien
Buhlert et al. Construction and development of a new single-column simulated moving bed system on the laboratory scale
Baur Design, modeling and optimization of multi-column chromatographic processes
DE19860354A1 (de) Eine Methode zur modellbasierten on-line Optimierung und Parameterschätzung von Batch-Chromatographieprozessen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CZ JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999963388

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09857975

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PV2001-2183

Country of ref document: CZ

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 589262

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1999963388

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2001-2183

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1999963388

Country of ref document: EP