WO1998053357A1 - A method of reducing the effect of a contaminated environment - Google Patents

A method of reducing the effect of a contaminated environment Download PDF

Info

Publication number
WO1998053357A1
WO1998053357A1 PCT/GB1998/001366 GB9801366W WO9853357A1 WO 1998053357 A1 WO1998053357 A1 WO 1998053357A1 GB 9801366 W GB9801366 W GB 9801366W WO 9853357 A1 WO9853357 A1 WO 9853357A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
rotating optical
shroud
uncontaminated gas
air
Prior art date
Application number
PCT/GB1998/001366
Other languages
French (fr)
Inventor
Stuart Wilkie
Alex John Cooper
Original Assignee
Fujifilm Electronic Imaging Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Electronic Imaging Limited filed Critical Fujifilm Electronic Imaging Limited
Publication of WO1998053357A1 publication Critical patent/WO1998053357A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation

Definitions

  • the present invention relates to a method and apparatus for reducing the effect of a contaminated environment on a rotating optical element of a scanning assembly.
  • a medium to be scanned is mounted on a scanning drum and exposed to a beam of scanning radiation.
  • the beam of scanning radiation is incident on the record medium to a high degree of accuracy. This is achieved by directing the radiation beam towards the record medium using a rotating deflector.
  • the rotating deflector is typically a deflector mounted on a spinner which is in turn mounted on an air bearing and coupled to a motor, thereby allowing rotation of the deflector about an axis.
  • the spinner may optionally be mounted in a dynamic shroud, which rotates with the spinner body to provide additional protection to the rotating deflector.
  • Such shrouds include an input lens positioned in an input aperture and an orbiting lens positioned in an output aperture, through which the beam of scanning radiation must pass . Operation of such systems in normal atmospheric conditions will lead to contamination of any exposed rotating optical elements by particulate material contained within the ambient air. In the case of an unshrouded spinner, it is the rotating deflector which is exposed, whereas in the case of a shrouded spinner, it is the orbiting lens which is exposed and therefore becomes contaminated.
  • Such contamination results m degradation of the scanned image principally by causing intolerable veiling flare. This occurs when unwanted light resulting from scatter and/or unwanted reflections is present m the image plane, or when there is insufficient laser power levels to expose the imaging media at the scanner drum surface.
  • thermal raster In an assembly m which a static closed shroud is used, the effect of this thermal raster is increased due to the warm air. The effect of thermal raster is increased with the warm air being trapped within the static shroud and it is therefore preferable to avoid the use of a static closed shroud.
  • a method of reducing the effect of a contaminated environment on a rotating optical element of a scanning assembly comprising supplying substantially uncontaminated gas into a region adjacent the rotating optical element thereby causing any contamination m the region to be displaced away from the rotating optical element.
  • the substantially uncontaminated gas may be any gas free from sub-micron particles.
  • the gas is air that has been passed through a filter to remove the contaminants, as filtering of air is a cheap process that is easily carried out.
  • the contaminated air adjacent the rotating optical element must be replaced by the substantially uncontaminated gas. This is most easily achieved by ensuring that the rotating optical element is contained within but spaced apart from an open (static) shroud such that the region to which the substantially uncontaminated gas is supplied is defined by the spaced between the rotating optical element and the open shroud. This causes the volume between the open shroud and the rotating optical element to fill with substantially uncontaminated gas ensuring that the rotating optical element is adjacent to substantially uncontaminated gas.
  • substantially uncontaminated gas is supplied to an aperture of the open shroud as this further aids the displacement of contaminated gas from the region adjacent the rotating optical element.
  • the apparatus for reducing the effect of a contaminated environment on a rotating optical element of a scanning assembly, the apparatus comprising a device for providing a supply of substantially uncontaminated gas, the device being coupled to a delivery system for directing the substantially uncontaminated gas into a region adjacent the rotating optical element.
  • the device for supplying the uncontaminated gas comprises a pump for generating a supply of compressed air and a filter, wherein the compressed air is passed through the filter to filter out sub-micron particles contained within the air.
  • a supply of purified compressed gas would be equally suitable although in general this would be more expensive and therefore less practical .
  • the delivery system preferably comprises at least one hose positioned so as to direct substantially uncontaminated gas into the region.
  • any such suitable system would be acceptable.
  • Figure 1 is a diagram showing the build up of contamination upon a rotating optical element
  • Figure 2 is a side view showing the air currents generated by a spinner mounted with a dynamic shroud
  • Figure 3 is a side view of a rotating optical element mounted m an open shroud according to an example of the present invention.
  • Figure 4 is a perspective view of the apparatus of Figure 3.
  • Figure 1 shows m plan view a rotatably mounted spinner 2 upon which is mounted a lens 1 which orbits or rotates with the spinner 2.
  • the spinner 2 is coupled to a motor (not shown) to cause rotation of the orbiting lens 1, about an axis of rotation X, m the direction shown by an arrow 3.
  • the orbiting lens 1 has a leading edge 4 which moves into the page m the view shown m Figure 1 and a trailing edge 5 which moves out of the page.
  • the trailing edge 5 impinges on the air surrounding the orbiting lens and as a consequence, contaminants in the atmosphere, which are usually m the form of sub-micron particles, become deposited on the trailing edge 5 of the orbiting lens 1.
  • FIG 2 shows a second example of a spinner 2' which includes a dynamic shroud 7.
  • the dynamic shroud 7 includes an aperture 8 containing a window 9 which is held in place by a window retaining ring 9a.
  • a modulated beam of scanning radiation passes through the window 9 as shown by an arrow 10.
  • the beam of scanning radiation typically a laser beam which has been modulated with image data, is deflected by a rotating deflector 11, mounted to and within the shroud 7, and exits the dynamic shroud 7 through an aperture 12, as shown by an arrow 13.
  • This aperture contains a lens 1, similar to that shown in Figure 1. After exiting the dynamic shroud 7, the scanning radiation will impinge on a record medium mounted on a scanner drum or flat bed 14.
  • the entire record medium may be exposed. Simultaneous modulation of the scanning beam, m accordance with image data, can therefore be used to generate an image on the record medium.
  • Figure 2 also shows the currents of air generated by rotation of the spinner 2'.
  • the ambient air surrounding the spinner 2' and m particular the dynamic shroud 7 is accelerated by rotation of the spinner 2' about the axis of rotation X causing it to be drawn toward the dynamic shroud 7 in a stream as shown by the arrows 15. It is this stream of air that introduces contaminants into the volume surrounding the orbiting lens 1.
  • the spinner 2' and dynamic shroud 7 of Figure 2 are mounted within an open static shroud 16 which is an enclosing mount made from a robust material, such as high tensile polypropylene, as shown m Figures 3 and 4.
  • the shroud 16 is mounted to a wall 24 to which it is sealed by a seal 26.
  • the shroud 16 is also coupled to a spinner bearing 27 to which it is sealed by a seal 28.
  • the wall 24 includes an aperture 30 into which is mounted a window 25 which allows the beam of scanning radiation to be directed onto the rotating deflector 11.
  • Uncontaminated air can be delivered to a volume 17 between the dynamic shroud 7 and the open shroud 16, using an air delivery system m the form of hoses 18.
  • the hoses 18 are coupled to a supply of uncontaminated gas which m the current example is m the form of filtered air.
  • the filtered air is obtained from a filter system 20, through which air is pumped using a pump 19.
  • the filter system 20 includes a filter 21 with pores smaller than 0.01 microns m diameter so as to filter out any particulate material greater than 0.01 microns m diameter. It is important to ensure that such a small size filter is used as the majority of the contamination is due to particles of size 0.01 microns and above.
  • filtered air is delivered through the delivery hoses 18 to a region 22 within the open shroud 16 and to the volume 17 as shown by the arrows 23.
  • the air entering the static open shroud 16 is then accelerated by the rotation of the dynamic shroud 7 causing it to be circulated within the volume 17.
  • the air eventually exits the open shroud 16 through the aperture 29.
  • the presence of the window 25, mounted m the aperture 30 of the wall 24, prevents the formation of the stream of air designated by the arrows 15 m Figure 2.
  • the rotation of the dynamic shroud 7 still acts to accelerate the ambient air contained within the open shroud 16 causing it to be expelled through the aperture 29, there will be a resulting decrease m pressure within the open shroud 16.
  • the filtered air supplied to the volume 17 will displace any uncontaminated air thus ensuring that the air adjacent to the rotating deflector 1 is substantially uncontaminated.
  • the levels of contamination of the rotating deflector 1 will be substantially reduced if not eliminated entirely.

Abstract

A method of reducing the effect of a contaminated environment on a rotating optical element (11) of a scanning assembly. The method comprises supplying substantially uncontaminated gas into a region (17, 22) adjacent to rotating optical element (11) thereby causing any contamination in the region to be displaced away from the rotating optical element.

Description

A METHOD OF REDUCING THE EFFECT OF A CONTAMINATED ENVIRONMENT The present invention relates to a method and apparatus for reducing the effect of a contaminated environment on a rotating optical element of a scanning assembly.
In expose scanning, a medium to be scanned is mounted on a scanning drum and exposed to a beam of scanning radiation. In order to generate a good quality image, it is essential that the beam of scanning radiation is incident on the record medium to a high degree of accuracy. This is achieved by directing the radiation beam towards the record medium using a rotating deflector. The rotating deflector is typically a deflector mounted on a spinner which is in turn mounted on an air bearing and coupled to a motor, thereby allowing rotation of the deflector about an axis.
The spinner may optionally be mounted in a dynamic shroud, which rotates with the spinner body to provide additional protection to the rotating deflector. Such shrouds include an input lens positioned in an input aperture and an orbiting lens positioned in an output aperture, through which the beam of scanning radiation must pass . Operation of such systems in normal atmospheric conditions will lead to contamination of any exposed rotating optical elements by particulate material contained within the ambient air. In the case of an unshrouded spinner, it is the rotating deflector which is exposed, whereas in the case of a shrouded spinner, it is the orbiting lens which is exposed and therefore becomes contaminated.
Studies have shown that such contamination occurs when sub-micron sized particles adhere to the trailing edge of the rotating optical element. Rotation of the rotating optical element tends to cause the movement of air toward the rotating element along the axis of rotation which draws particulate contaminants into the region surrounding the rotating optical element. These particles impinge on the rotating optical element and are deposited to form a layer of contamination which envelopes the rotating optical element from the trailing edge to the leading edge.
Such contamination results m degradation of the scanned image principally by causing intolerable veiling flare. This occurs when unwanted light resulting from scatter and/or unwanted reflections is present m the image plane, or when there is insufficient laser power levels to expose the imaging media at the scanner drum surface.
At present such contamination is generally overcome by regular cleaning of the rotating optical element, which is a time consuming and delicate job. Such cleaning is generally required once every 1-14 days depending on the level of contamination. For example, an environment which contains a 0.5 micron particle count of under 200 per cubic foot results m little or no contamination over a 7 day time period, whereas a count of 18000 per cubic foot results m gross contamination in under 24 hours. However, recent increases in speed from 12,000 rpm to 13,800 rpm have led to an increase m contamination leading to more frequent cleaning and with further speed increases to 18,500 rpm expected a more permanent solution is required. A solution has been proposed m EP-A-0683415 in which the rotating deflector is contained within a static closed shroud, thus removing the need for an exposed optical element that rotates, therefore reducing the effects of contamination. However, the motor and air bearings that drive the spinner tend to generate a substantial quantity of heat. In the case of a statically shrouded spinner, heat is dissipated by forced convection from the rotating deflector's surface. This causes localised heating of the surrounding sub-layer of air which sheds and forms vortices. This warm air containing the vortices becomes trapped within the static shroud and as a result, the beam of scanning radiation is refracted as it passes through the vortices causing the beam to be displaced relative to its intended position. This leads to further image degradation known as thermal raster. In an assembly m which a static closed shroud is used, the effect of this thermal raster is increased due to the warm air. The effect of thermal raster is increased with the warm air being trapped within the static shroud and it is therefore preferable to avoid the use of a static closed shroud.
There are additional problems m using a static closed shroud. For example, a window would need to be convex and well centred. This is far more expensive than the window for a dynamically closed shroud. Refraction of the beam caused by the curved nature of the lens on a static shroud would also cause phase errors to the imaged dot, reducing image quality.
In accordance with a first aspect of the present invention, we provide a method of reducing the effect of a contaminated environment on a rotating optical element of a scanning assembly, the method comprising supplying substantially uncontaminated gas into a region adjacent the rotating optical element thereby causing any contamination m the region to be displaced away from the rotating optical element.
We have devised a method of reducing the effect of contamination by supplying uncontaminated gas, usually air, into a region surrounding the rotating optical element. This uncontaminated gas displaces contaminated air thereby reducing the levels of contamination in the volume adjacent the rotating optical element. This results m a reduction m the level of contamination of the rotating optical element, thereby reducing the amount of cleaning required.
The substantially uncontaminated gas may be any gas free from sub-micron particles. However, preferably the gas is air that has been passed through a filter to remove the contaminants, as filtering of air is a cheap process that is easily carried out. In order for the invention to function correctly, the contaminated air adjacent the rotating optical element must be replaced by the substantially uncontaminated gas. This is most easily achieved by ensuring that the rotating optical element is contained within but spaced apart from an open (static) shroud such that the region to which the substantially uncontaminated gas is supplied is defined by the spaced between the rotating optical element and the open shroud. This causes the volume between the open shroud and the rotating optical element to fill with substantially uncontaminated gas ensuring that the rotating optical element is adjacent to substantially uncontaminated gas.
Additionally, it is preferable if substantially uncontaminated gas is supplied to an aperture of the open shroud as this further aids the displacement of contaminated gas from the region adjacent the rotating optical element.
In accordance with a second aspect of the present invention, we provide apparatus for reducing the effect of a contaminated environment on a rotating optical element of a scanning assembly, the apparatus comprising a device for providing a supply of substantially uncontaminated gas, the device being coupled to a delivery system for directing the substantially uncontaminated gas into a region adjacent the rotating optical element.
Typically the device for supplying the uncontaminated gas comprises a pump for generating a supply of compressed air and a filter, wherein the compressed air is passed through the filter to filter out sub-micron particles contained within the air. However, a supply of purified compressed gas would be equally suitable although in general this would be more expensive and therefore less practical . In order to supply the uncontaminated gas into the region, the delivery system preferably comprises at least one hose positioned so as to direct substantially uncontaminated gas into the region. However any such suitable system would be acceptable.
An example of apparatus according to the present invention will now be described and contrasted with known apparatus with reference to the accompanying drawings, in which: -
Figure 1 is a diagram showing the build up of contamination upon a rotating optical element;
Figure 2 is a side view showing the air currents generated by a spinner mounted with a dynamic shroud;
Figure 3 is a side view of a rotating optical element mounted m an open shroud according to an example of the present invention; and
Figure 4 is a perspective view of the apparatus of Figure 3.
Figure 1 shows m plan view a rotatably mounted spinner 2 upon which is mounted a lens 1 which orbits or rotates with the spinner 2. The spinner 2 is coupled to a motor (not shown) to cause rotation of the orbiting lens 1, about an axis of rotation X, m the direction shown by an arrow 3. As a consequence of this rotation, the orbiting lens 1 has a leading edge 4 which moves into the page m the view shown m Figure 1 and a trailing edge 5 which moves out of the page. Thus the trailing edge 5 impinges on the air surrounding the orbiting lens and as a consequence, contaminants in the atmosphere, which are usually m the form of sub-micron particles, become deposited on the trailing edge 5 of the orbiting lens 1.
Continuous deposition of such particles causes a layer of contamination 6 to slowly build up on the lens.
Figure 2 shows a second example of a spinner 2' which includes a dynamic shroud 7. The dynamic shroud 7 includes an aperture 8 containing a window 9 which is held in place by a window retaining ring 9a. A modulated beam of scanning radiation, passes through the window 9 as shown by an arrow 10. The beam of scanning radiation, typically a laser beam which has been modulated with image data, is deflected by a rotating deflector 11, mounted to and within the shroud 7, and exits the dynamic shroud 7 through an aperture 12, as shown by an arrow 13. This aperture contains a lens 1, similar to that shown in Figure 1. After exiting the dynamic shroud 7, the scanning radiation will impinge on a record medium mounted on a scanner drum or flat bed 14. By rotating the spinner 2' about the axis of rotation X and also traversing the spinner parallel to the axis of rotation X, the entire record medium may be exposed. Simultaneous modulation of the scanning beam, m accordance with image data, can therefore be used to generate an image on the record medium.
Figure 2 also shows the currents of air generated by rotation of the spinner 2'. The ambient air surrounding the spinner 2' and m particular the dynamic shroud 7 is accelerated by rotation of the spinner 2' about the axis of rotation X causing it to be drawn toward the dynamic shroud 7 in a stream as shown by the arrows 15. It is this stream of air that introduces contaminants into the volume surrounding the orbiting lens 1.
It will be realised by those skilled m the art that scanning may be achieved m a similar manner m the absence of the dynamic shroud 7 and that similar problems will be encountered with ambient air being drawn m by rotation of the spinner 2'. In this instance it will be the rotating deflector 11 that is subject to contamination.
In an example of the invention, the spinner 2' and dynamic shroud 7 of Figure 2 are mounted within an open static shroud 16 which is an enclosing mount made from a robust material, such as high tensile polypropylene, as shown m Figures 3 and 4. The shroud 16 is mounted to a wall 24 to which it is sealed by a seal 26. The shroud 16 is also coupled to a spinner bearing 27 to which it is sealed by a seal 28. The wall 24 includes an aperture 30 into which is mounted a window 25 which allows the beam of scanning radiation to be directed onto the rotating deflector 11. Once deflected the scanning radiation exits the dynamic snroud 7 via the lens 1 and the static shroud 16 through an aperture 29 to impinge on a record medium, not shown . Uncontaminated air can be delivered to a volume 17 between the dynamic shroud 7 and the open shroud 16, using an air delivery system m the form of hoses 18. The hoses 18 are coupled to a supply of uncontaminated gas which m the current example is m the form of filtered air. The filtered air is obtained from a filter system 20, through which air is pumped using a pump 19. The filter system 20 includes a filter 21 with pores smaller than 0.01 microns m diameter so as to filter out any particulate material greater than 0.01 microns m diameter. It is important to ensure that such a small size filter is used as the majority of the contamination is due to particles of size 0.01 microns and above.
In use, filtered air is delivered through the delivery hoses 18 to a region 22 within the open shroud 16 and to the volume 17 as shown by the arrows 23. The air entering the static open shroud 16 is then accelerated by the rotation of the dynamic shroud 7 causing it to be circulated within the volume 17. The air eventually exits the open shroud 16 through the aperture 29. The presence of the window 25, mounted m the aperture 30 of the wall 24, prevents the formation of the stream of air designated by the arrows 15 m Figure 2. However, as the rotation of the dynamic shroud 7 still acts to accelerate the ambient air contained within the open shroud 16 causing it to be expelled through the aperture 29, there will be a resulting decrease m pressure within the open shroud 16. This could lead to contaminated air being drawn m through the aperture 29. To prevent this, it is necessary to ensure that the air delivery system delivers a sufficient quantity of air to maintain the pressure within the open shroud 16 above that of the ambient air surrounding the outside of the shroud 16. Experiments have shown that for two 4mm diameter hoses 18, if the dynamic shroud 7 is rotating at a speed of 13,800 rpm, then the supply pressure of filtered air must be 15 psi. If the spinner speed increases, this will require an increase in the supply pressure of filtered air.
Thus, the filtered air supplied to the volume 17 will displace any uncontaminated air thus ensuring that the air adjacent to the rotating deflector 1 is substantially uncontaminated. As a result the levels of contamination of the rotating deflector 1 will be substantially reduced if not eliminated entirely.
It has also been found that the supply of air to the volume 17 and the subsequent acceleration by the dynamic shroud 7 results in the air in volume 17 being continuously mixed around. This causes the air to be homogenized. As described in the introduction, dynamic shrouds tend to radiate heat generated by the motor and the bearings of the spinner 2. This heat is dissipated by force convection from the surface of the dynamic shroud, which can lead to localised heating of the surrounding sub-layer of air which may shed and form vortices. As the beam of radiation passes through the vortices it is refracted causing the beam to be displaced relative to its intended position. This is known as thermal raster. However, in the present invention, the homogenization of the air caused within the volume 17 prevents the formation of vortices thereby reducing the effects thermal raster. (This problem is described also in US-A-4834520) .

Claims

1. A method of reducing the effect of a contaminated environment on a rotating optical element of a scanning assembly, the method comprising supplying substantially uncontaminated gas into a region adjacent the rotating optical element thereby causing any contamination in the region to be displaced away from the rotating optical element .
2. A method according to claim 1, wherein the uncontaminated gas is obtained by passing air through a filter to remove contaminants.
3. A method according to any of the preceding claims, wherein the rotating optical element is contained within, but spaced apart from, an open shroud, such that the region into which the substantially uncontaminated gas is supplied is defined by the space between the rotating optical element and the open shroud.
4. A method according to claim 3, wherein the substantially uncontaminated gas is further supplied to an aperture of the shroud.
5. A method according to claim 3 or claim 4, wherein the open shroud is static relative to the rotating optical element .
6. Apparatus for reducing the effect of a contaminated environment on a rotating optical element of a scanning assembly, the apparatus comprising a device for providing a supply of substantially uncontaminated gas, the device being coupled to a delivery system for directing the substantially uncontaminated gas into a region adjacent the rotating optical element.
7. Apparatus according to claim 6, wherein the device for providing a supply of uncontaminated gas comprises a pump for generating compressed air and a filter, wherein the compressed air is passed through the filter to remove the contaminants.
8. Apparatus according to claim 6 or claim 7, wherein the rotating optical element is contained within, but spaced apart from, an open shroud, such that the region into which the substantially uncontaminated gas is supplied is defined by the space between the rotating optical element and the open shroud.
9. Apparatus according to any of claims 6 to 8, wherein the substantially uncontaminated gas is further supplied to an aperture of the shroud.
10. Apparatus according to any of claims 6 to 9, wherein the delivery system comprises at least one hose positioned so as to direct substantially uncontaminated gas into the region.
11. Image scanning assembly comprising a rotating optical element; apparatus according to any of claims 6 to 10 for reducing the effect of a contaminated environment on the element; a modulated radiation beam source for generating a radiation beam modulated with image information; and a record medium support, the rotating optical element being positioned to receive the modulated radiation beam and scan it across a record medium on the support.
PCT/GB1998/001366 1997-05-16 1998-05-14 A method of reducing the effect of a contaminated environment WO1998053357A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9710021.8 1997-05-16
GBGB9710021.8A GB9710021D0 (en) 1997-05-16 1997-05-16 A method of reducing the effect of a contaminated environment

Publications (1)

Publication Number Publication Date
WO1998053357A1 true WO1998053357A1 (en) 1998-11-26

Family

ID=10812466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1998/001366 WO1998053357A1 (en) 1997-05-16 1998-05-14 A method of reducing the effect of a contaminated environment

Country Status (2)

Country Link
GB (1) GB9710021D0 (en)
WO (1) WO1998053357A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051417A1 (en) * 1999-03-02 2000-09-08 Delaval Holding Ab A protecting device for a teat localizer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197620A (en) * 1984-10-19 1986-05-16 Fuji Photo Film Co Ltd Rotary polygon mirror
US4836689A (en) * 1986-02-27 1989-06-06 Rosemount Inc. Asymmetric purge air system for cleaning a lens
US5046797A (en) * 1988-03-15 1991-09-10 Fuji Photo Film Co., Ltd. Light beam scanner with foreign matter removing feature
EP0683415A1 (en) * 1994-05-16 1995-11-22 Bayer Corporation Optical enclosure for high speed rotating beam deflector
JPH0862528A (en) * 1994-08-25 1996-03-08 Canon Inc Optical scanner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197620A (en) * 1984-10-19 1986-05-16 Fuji Photo Film Co Ltd Rotary polygon mirror
US4836689A (en) * 1986-02-27 1989-06-06 Rosemount Inc. Asymmetric purge air system for cleaning a lens
US5046797A (en) * 1988-03-15 1991-09-10 Fuji Photo Film Co., Ltd. Light beam scanner with foreign matter removing feature
EP0683415A1 (en) * 1994-05-16 1995-11-22 Bayer Corporation Optical enclosure for high speed rotating beam deflector
JPH0862528A (en) * 1994-08-25 1996-03-08 Canon Inc Optical scanner

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 274 (P - 498) 18 September 1986 (1986-09-18) *
PATENT ABSTRACTS OF JAPAN vol. 096, no. 007 31 July 1996 (1996-07-31) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051417A1 (en) * 1999-03-02 2000-09-08 Delaval Holding Ab A protecting device for a teat localizer
US6425346B1 (en) 1999-03-02 2002-07-30 Delaval Holding Ab Protecting device for a teat localizer

Also Published As

Publication number Publication date
GB9710021D0 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
EP0683415B1 (en) Optical enclosure for high speed rotating beam deflector
JP3578434B2 (en) Dynamic pressure gas bearing device and optical deflection scanning device
EP0987542A3 (en) Rotating scanner system for reading multiple storage layer radiation screens
JPS5817767A (en) Picture scanner
US5026133A (en) Large format laser scanner with wavelength insensitive scanning mechanism
WO1998053357A1 (en) A method of reducing the effect of a contaminated environment
US5046797A (en) Light beam scanner with foreign matter removing feature
JPS63261315A (en) Optical unit
EP1113305A3 (en) Optical scanning apparatus, multi-beam optical scanning apparatus, and image forming apparatus using the same
GB1576296A (en) Holographic scanning system
US5125013A (en) Method of scanning of toned image in a liquid gate
US5363231A (en) Light deflecting device
EP0382221B1 (en) Light deflecting device
US6735003B1 (en) Method and apparatus for reducing artifacts in an imaging system
EP1486816A1 (en) Method and apparatus for reducing contamination in a grating light valve imaging system.
JPH0980343A (en) Dust sticking prevention device of image scanning device
JP2844787B2 (en) Chamber with optical window shielding mechanism
JP3274779B2 (en) Optical scanning device
JPS61124938A (en) Method and device for reading and erasing radiation image information
KR100584584B1 (en) Polygon mirror device and optical scanning apparatus employing it
US7295721B2 (en) Positional control of flexible storage phosphor media during image scan
JPH0818733A (en) Radiation image reader
JPH01106032A (en) Radiograph information reader
JPH0419524Y2 (en)
JP2001154298A (en) Radiation image reading device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998550086

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase