US6117171A - Encapsulated accommodating intraocular lens - Google Patents

Encapsulated accommodating intraocular lens Download PDF

Info

Publication number
US6117171A
US6117171A US09/219,039 US21903998A US6117171A US 6117171 A US6117171 A US 6117171A US 21903998 A US21903998 A US 21903998A US 6117171 A US6117171 A US 6117171A
Authority
US
United States
Prior art keywords
intraocular lens
lens
elongated member
power
haptic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/219,039
Inventor
Bernt Christian Skottun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/219,039 priority Critical patent/US6117171A/en
Application granted granted Critical
Publication of US6117171A publication Critical patent/US6117171A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1624Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside
    • A61F2/1635Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside for changing shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0053Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in optical properties

Definitions

  • This invention relates to intraocular lenses, specifically to such intraocular lenses as can be used to restore accommodation.
  • Cataract surgery typically involves removing the cataractous natural lens and replacing it with an artificial intraocular lens.
  • These artificial intraocular lenses in most cases, have one fixed focus, or in some cases, a few fixed foci. This means that these intraocular lenses lack the natural lens' ability to accommodate. That is to say, they lack the ability to adjust their power over a continuous range. This means that they are not able to bring to a sharp focus light rays coming from objects over a continuous range of distances.
  • an accommodating intraocular lens In the normal case the eye accommodates by having the ciliary muscle cause the crystalline lens to alter its shape.
  • the amount of muscle power available is highly limited. Also, the amount of movement generated in the course of accommodation is quite small. Therefore, it is highly desireable for an accommodating intraocular lens to have high gain.
  • high gain is meant that small changes in position, shape, or force are capable of creating large changes in optical power.
  • high gain may be achieved by utilizing different optical materials with substantially different refractive indices.
  • optical power of a single spherical surface separating two materials with different refractive indices is given by the formula:
  • the refractive index of the aqueous i.e. the liquid filling the eye, is close to that of water which is about 1.33. Most fluids have refractive indices which are relatively similar to this value. This means that by relying on the interface between one of these materials and aqueous, relatively large shape changes are needed in order to significantly alter the overall power of the lens.
  • U.S. Pat. No. 5,489,302 to Skottun has described the use of a gas, e.g. room-air, as a refractive medium. Gases typically have a refractive index of 1.0, which is substantially different from the 1.33 of water. Thus, a lens using a gas as the optic medium may be able to generate substantial changes in optical power with the application of a relatively small force and small degrees of movement.
  • a gas e.g. room-air
  • using a gas has the advantage of allowing the intraocular lens to be lightweight and to have little mass. Light weight and little mass make the intraocular lens exert little stress on the delicate internal structures of the eye, thereby reducing the likelihood that the intraocular lens will cause damage to the intraocular environment.
  • a gas is compressible, thus making a lens using gas as its optic medium potentially susceptible to changes in intraocular pressure. That is to say, changes in intraocular pressure could potentially alter the optical power of such a lens.
  • an accommodating intraocular lens which may use a gas as an optical medium in which the gas inside the intraocular lens is separated from the surrounding aqueous in such a manner so as to prevent, or substantially limit, transfer of gas between the inside of the intraocular lens and the surrounding aqueous.
  • FIGS. 1A to 1B illustrate the basic principle of the encapsulated accommodating intraocular lens.
  • FIG. 2 shows a cross section through the encapsulated intraocular lens.
  • FIG. 3 shows a cross section through the encapsulated intraocular lens after it has been made to increase its power.
  • FIG. 4 shows a frontal view of the encapsulated intraocular lens.
  • FIG. 5 shows a side view of the encapsulated intraocular lens.
  • FIG. 6 shows a cross-section through the encapsulated intraocular lens in a plane perpendicular to the optical axis.
  • FIG. 7 shows a cross-section through the encapsulated intraocular lens as its haptics are being deflected toward the center of the lens.
  • FIG. 8 shows a detail of the place where a haptic crosses the rigid outer shell.
  • FIG. 9 shows a cross-section through an encapsulated intraocular lens which has been given an overall biconcave shape.
  • An accommodating intraocular lens which has an outward rigid encapsulating surface which shields the interior of the lens from changes in the intraocular environment.
  • the interior of the intraocular lens is divided into two separate spaces: an anterior space and a posterior space. These two spaces are separated by a transparent flexible membrane. Altering the curvature of this membrane makes it possible to alter the overall optical power of the lens.
  • To the encapsulated intraocular lens are attached means whereby the ciliary muscle may alter the shape of the transparent membrane, thereby altering the overall optical power of the intraocular lens.
  • haptics in the form of elongated members which extend into the interior of the intraocular lens and which are attached to the intraocular lens so as to be able to pivot around the point where they cross the encapsulating surface of the intraocular lens.
  • the encapsulated intraocular lens comprises an anterior space 15 and a posterior space 25.
  • Anterior space 15 and posterior space 25 are separated by a flexible transparent membrane 30.
  • Anterior space 15 and posterior space 25 together are separated from the intraocular environment outside the lens by an anterior rigid surface 10, a posterior rigid surface 20 and a rigid side wall 60.
  • Anterior space 15 and posterior space 25 are filled with optical media having different refractive indices.
  • the intraocular lens is created so that the medium with the highest refractive index is in anterior space 15 and the medium with the lower refractive index is in posterior space 25.
  • the medium with the high refractive index has a refractive index which is higher than that of the surrounding aqueous; the other medium is assumed to have a refractive index which is lower than that of the aqueous (for example, a gas).
  • FIG. 1A and FIG. 1B it can be seen that an optical ray 50 approaching the intraocular lens in a direction parallel to the optical axis 70 is refracted first as it encounters anterior rigid surface 10, then again as it encounters flexible transparent membrane 30 and finally at posterior rigid surface 20.
  • Each of these refractions causes optic ray 50 to be deflected toward optic axis 70 in such a manner that a focal point 75 is formed.
  • transparent flexible membrane 30 By controlling the shape of transparent flexible membrane 30 it is possible to control the overall power of the intraocular lens (without altering the shape of either anterior rigid surface 10 or posterior rigid surface 20). For example, by making transparent flexible membrane 30 more concave, as is indicated with open arrows in FIG. 1B, the overall focal length of the intraocular lens is decreased. The decrease in focal length is shown with a filled arrow in FIG. 1B, indicating an upward displacement of focal point 75.
  • FIG. 2 shows a cross section through the preferred embodiment of the encapsulated intraocular lens.
  • Moveable inner sidewalls 90 are fashioned so as to be able to move away from and toward the center of the lens.
  • Movable inner sidewall 90 is connected to inner member 80 and to the inside of rigid outer shell 100 with a flexible seal 110.
  • Flexible seal 110 prevents the medium in posterior space 25 from leaking out into auxiliary space 120 and the fluid from auxiliary space 120 from leaking into posterior space 25 while providing movable inner sidewall 90 the freedom to move.
  • Movable inner sidewall 90 is free to move in a radial direction away from and toward optical axis 70.
  • an auxiliary space 120 inside of rigid outer shell 100 is provided.
  • Auxiliary space 120 is in fluid communication with anterior space 15 and is filled with the same fluid medium as anterior space 15. The communication between anterior space 15 and auxiliary space 120 allows fluid medium to be redistributed between anterior space 15 and auxiliary space 120 as movable inner side wall 90 is being displaced.
  • FIG. 3 shows the effect upon flexible transparent membrane 30 of displacing movable inner sidewalls 90 outward.
  • the outward displacements of movable inner sidewalls 90 are indicated with filled arrows. These displacements cause flexible transparent membrane 30 to take on a more curved shape (i.e. they cause the transparent membrane to be displaced downward in FIG. 3), as indicated by the open arrows. This causes the overall power of the intraocular lens to increase.
  • movable inner sidewalls 90 are deflected outward, the volume of auxiliary spaces 120 is decreased. This makes fluid medium flow out of auxiliary space 120 into anterior space 15 which contributes to the downward displacement of flexible transparent membrane 30.
  • this intraocular lens In order for this intraocular lens to be able to alter its power in response to changes in the ciliary muscle it is necessary that the tension in the ciliary muscle, or some intraocular structure which is controlled by the ciliary muscle, to be able to alter the position of movable inner sidewalls 90.
  • FIG. 4 shows a frontal view of the encapsulated intraocular lens equipped with a pair of haptics 125. A side view of the same lens is shown in FIG. 5.
  • Haptics 125 extend from outside the intraocular lens through outer rigid shell 100 into auxiliary space 120.
  • the part extending into auxiliary space 120 has been labelled extension of haptic 135.
  • Haptics 125 and extensions of haptics 135 are connected to rigid outer shell 100 in such a manner so as to be able to rotate around the point where haptic 125 crosses the wall of rigid outer shell 100 forming a pivot 140 at this location.
  • Extensions of haptics 135 are attached to movable inner sidewall 90 with the use of a pair of attachments 150.
  • haptics 125 The connection between haptics 125 and movable inner sidewalls 90 allows movement of haptics 125 to manipulate the position of movable inner sidewall 90.
  • FIG. 7 Straight filled arrows indicate compression of haptics 125, i.e. deflection of haptics 125 toward the center of the intraocular lens. As indicated with open arrows in FIG. 7, this causes extension of haptics 135 and movable inner sidewalls 90 to be displaced outward, i.e. away from the center of the intraocular lens. This causes flexible membrane 30 to become more concave and gives the intraocular lens increased optical power. As is indicated with long curved arrows, the compression of haptics 125 may cause the main body of the encapsulated intraocular lens to rotate somewhat in the course of the compression of haptics 125.
  • FIG. 8 shows in more detail how haptics 125 may be able to cross the wall of rigid outer shell 100 in such manner so as to prevent, or severely limit, changes in intraocular pressure from being transmitted from the outside of the intraocular lens to the interior of the lens. Also, this arrangement prevents the fluid medium filling auxiliary space 120 from leaking out into the surrounding aqueous. Because haptic 125 pivots at the point where it crosses the wall of rigid outer shell 100 the movement at this place, as a result of displacements of haptics 125, will be minimal. This makes it easy to seal any opening in rigid outer shell with a flexible sheet 160.
  • anterior space 25 is filled with a gas and anterior space 15 is filled with a heavier material with a higher refractive index.
  • anterior space 15 is filled with a heavier material with a higher refractive index.
  • anterior rigid surface 10 be concave. This may cause anterior rigid surface 10 to have negative lens power.
  • flexible transparent membrane 30 and posterior rigid surface 20 will nevertheless have positive power, which makes it possible for the overall net power of the encapsulated intraocular lens to be positive.
  • a goal of the encapsulated accommodating intraocular lens is to be able to utilize a gas as an optical medium in an accommodating intraocular lens, and to do so (1) in a manner in which changes in intraocular pressure may not alter the power of the intraocular lens by compressing any of its content, and (2) by using an arrangement in which the gas contained in the intraocular lens is separated from the aqueous so as to minimize the possibility of exchange of gas between the surrounding aqueous and the interior of the intraocular lens.
  • the present invention seeks to achieve these two goals by encapsulating the intraocular lens using an external substantially rigid outer surface made up of anterior rigid surface 10, posterior rigid surface 20 and rigid outer shell 100.
  • the second objective i.e. the separation of the gas inside the intraocular lens in such a manner so as to minimize the exchange of gases between the interior of the intraocular lens and the surrounding aqueous
  • the gas filled space inside the intraocular lens i.e. posterior space 25
  • the gas filled space inside the intraocular lens i.e. posterior space 25
  • Anterior rigid surface 10, posterior rigid surface 20 and rigid outer shell 100 are all fashioned from substantially gas impermeable materials, and auxiliary space 120 and anterior space 15 are filled with a medium which hampers the transport of gas.
  • a further goal of the present intraocular lens is to achieve high gain, i.e. to provide a large amount of change in optical power for small changes in the ciliary muscle of the eye.
  • it is desireable to have two optical media which differ as much as possible with regard to refractive index. If one of the two media is a gas, it would be desireable to have the other medium have a high refractive index, for example such as an oil.
  • displacements of movable inner sidewall 90 effect changes in the shape of flexible transparent membrane 30 by two different mechanisms: Firstly, this is achieved by redistributing fluid medium between auxiliary space 120 and anterior space 15. Secondly, a displacement of movable inner sidewall 90 directly causes a change in curvature of flexible transparent membrane 30 in order for the volume of posterior space 25 to remain unaltered as movable inner side walls 90 are displaced. Together these two mechanisms form an effective push-pull arrangement.
  • the encapsulated accommodating intraocular lens is intended to be placed in the emptied lens capsule.
  • Typical cataract surgery involves extracapsular extraction. This leaves the lens capsule available for housing the artificial intraocular lens.
  • the lens capsule is connected to the ciliary body and thus the ciliary muscle with a series of zonules, also know as suspensory ligaments. These zonules transmit changes in ciliary muscle tension to the lens capsule. When the ciliary muscle is relaxed the zonules are taut, thus pulling the equator of the lens capsule outward causing it to be flattened. Increased tension in the ciliary muscle reduces the tension in the zonules, thus allowing the lens capsule to contract.
  • This contraction will increase the tension exerted on haptics 125 from the lens capsule.
  • At least one haptic 125 is connected to elongated inner member 80 in such a manner that movement in haptic 125 will be transmitted to inner member 80.
  • Haptic 125 and inner member 80 are attached to each other and are together attached to rigid side wall 60 in such a manner as to be able to pivot around the place at which inner member 80 crosses rigid side wall 60. This makes it possible for movement to be transmitted from the outside of the intraocular lens to the interior of the intraocular lens with minimal movement at the point where inner member 80 crosses rigid side wall 60.
  • the encapsulated accommodating intraocular lens of this invention can be used to restore accommodation in a human eye. Furthermore the intraocular lens has the advantages that

Abstract

An accommodating intraocular lens which is contained inside an encapsulating rigid shell so as to make it substantially insensitive to changes in the intraocular environment. A flexible transparent membrane divides the interior of the intraocular lens into two separate spaces containing fluid media with different refractive indices. The overall optical power of the intraocular lens may be altered by altering the curvature of the transparent membrane. The intraocular lens is equipped with haptics which extend inward into the interior of the intraocular lens and are attached to the encapsulating rigid shell in such a manner so as to be able to rotate around the place where the haptic crosses from the exterior to the interior of the intraocular lens. This allows the movement of the haptic to be transmitted to the interior of the intraocular lens where these movements are used to control the shape of the transparent membrane. By having the haptics rotate around the place where they cross the rigid shell, there need be only minimal motion at this point, which makes it possible to make the intraocular lens essentially insensitive to changes in the intraocular pressure.

Description

BACKGROUND
1. Field of Invention
This invention relates to intraocular lenses, specifically to such intraocular lenses as can be used to restore accommodation.
2. Description of Prior Art
Cataract surgery typically involves removing the cataractous natural lens and replacing it with an artificial intraocular lens. These artificial intraocular lenses, in most cases, have one fixed focus, or in some cases, a few fixed foci. This means that these intraocular lenses lack the natural lens' ability to accommodate. That is to say, they lack the ability to adjust their power over a continuous range. This means that they are not able to bring to a sharp focus light rays coming from objects over a continuous range of distances.
In the normal case the eye accommodates by having the ciliary muscle cause the crystalline lens to alter its shape. The amount of muscle power available is highly limited. Also, the amount of movement generated in the course of accommodation is quite small. Therefore, it is highly desireable for an accommodating intraocular lens to have high gain. By "high gain" is meant that small changes in position, shape, or force are capable of creating large changes in optical power.
In the case of an intraocular lens which accommodates by altering its shape, high gain may be achieved by utilizing different optical materials with substantially different refractive indices.
The optical power of a single spherical surface separating two materials with different refractive indices is given by the formula:
P=(n'-n)/r
where P denotes lens power, r denotes the radius of curvature of the spherical surface and n' and n denote the refractive indices in the two optical materials. This formula shows that, for a given radius of curvature, the power is proportional to the difference in refractive indices, i.e. to the difference between n' and n. In order to better realize how the magnitude of the difference in refractive indices affects the changes in lens power as a result of change in lens shape we take the derivative of this function:
dP/dr=-(n'-n)/r.sup.2
which means that the change in lens power created by a given change in curvature (i.e. shape) is proportional to the magnitude of the difference in refractive indices across the surface. In other words, in order to obtain high gain (i.e. large change in power for small changes in surface shape) it is important to have optical materials with highly different refractive indices [i.e. to have the magnitude of (n'-n) be large].
The refractive index of the aqueous, i.e. the liquid filling the eye, is close to that of water which is about 1.33. Most fluids have refractive indices which are relatively similar to this value. This means that by relying on the interface between one of these materials and aqueous, relatively large shape changes are needed in order to significantly alter the overall power of the lens.
U.S. Pat. No. 5,489,302 to Skottun has described the use of a gas, e.g. room-air, as a refractive medium. Gases typically have a refractive index of 1.0, which is substantially different from the 1.33 of water. Thus, a lens using a gas as the optic medium may be able to generate substantial changes in optical power with the application of a relatively small force and small degrees of movement.
Additionally, using a gas has the advantage of allowing the intraocular lens to be lightweight and to have little mass. Light weight and little mass make the intraocular lens exert little stress on the delicate internal structures of the eye, thereby reducing the likelihood that the intraocular lens will cause damage to the intraocular environment.
Unfortunately, using a gas as a medium is not without difficulties. One potential problem is that a gas is compressible, thus making a lens using gas as its optic medium potentially susceptible to changes in intraocular pressure. That is to say, changes in intraocular pressure could potentially alter the optical power of such a lens.
Another potential problem is that thin and flexible membranes, such as are likely to used in a lens, may not be gas impermeable. An accommodating intraocular lens using gas as its optical medium will need to be able to have a flexible and transparent interface between the gas and another fluid medium. In order to be sufficiently flexible this interface will need to be fashioned out of a membrane. This membrane needs to be thin, transparent and flexible. Thin and flexible membranes tend not to be gas impermeable. Thus, it is possible that there will be some amount of gas exchange between the gas inside the intraocular lens and the surrounding aqueous. This may cause a net transport of gas either into (i.e. dissolved gases in the aqueous moving into the intraocular lens) or out of (i.e. gas moving from the lens into the aqueous) the intraocular lens.
ADVANTAGES
The main advantages of the present invention are:
(a) to provide an accommodating intraocular lens which may use a gas as an optical medium.
(b) to provide an accommodating intraocular lens which is insensitive, or only minimally sensitive, to changes in intraocular pressure.
(c) to provide an accommodating intraocular lens which may use a gas as an optical medium in which the gas inside the intraocular lens is separated from the surrounding aqueous in such a manner so as to prevent, or substantially limit, transfer of gas between the inside of the intraocular lens and the surrounding aqueous.
(d) to provide an accommodating intraocular lens which has high gain.
Further advantages of the present invention are to be light in weight and to have little mass. Also, it will have the advantage of being simple to insert into the eye so as to not require exceptional skills on the part of the surgeon. Additional advantages and objectives will become apparent from a consideration of the ensuing description and drawings.
DRAWING-FIGURES
FIGS. 1A to 1B illustrate the basic principle of the encapsulated accommodating intraocular lens.
FIG. 2 shows a cross section through the encapsulated intraocular lens.
FIG. 3 shows a cross section through the encapsulated intraocular lens after it has been made to increase its power.
FIG. 4 shows a frontal view of the encapsulated intraocular lens.
FIG. 5 shows a side view of the encapsulated intraocular lens.
FIG. 6 shows a cross-section through the encapsulated intraocular lens in a plane perpendicular to the optical axis.
FIG. 7 shows a cross-section through the encapsulated intraocular lens as its haptics are being deflected toward the center of the lens.
FIG. 8 shows a detail of the place where a haptic crosses the rigid outer shell.
FIG. 9 shows a cross-section through an encapsulated intraocular lens which has been given an overall biconcave shape.
REFERENCE NUMERALS IN DRAWINGS
______________________________________                                    
10   anterior rigid surface                                               
                       15     anterior space                              
20   posterior rigid surface                                              
                       25     posterior space                             
30   flexible transparent membrane                                        
                       60     rigid side wall                             
50   optical ray       75     focal point                                 
70   optical axis      90     movable inner sidewall                      
80   inner member      110    flexible seal                               
100  rigid outer shell 125    haptic                                      
120  auxiliary space   140    pivot                                       
135  extension of haptic                                                  
                       160    flexible sheet                              
150  attachment                                                           
______________________________________                                    
SUMMARY
An accommodating intraocular lens which has an outward rigid encapsulating surface which shields the interior of the lens from changes in the intraocular environment. The interior of the intraocular lens is divided into two separate spaces: an anterior space and a posterior space. These two spaces are separated by a transparent flexible membrane. Altering the curvature of this membrane makes it possible to alter the overall optical power of the lens. To the encapsulated intraocular lens are attached means whereby the ciliary muscle may alter the shape of the transparent membrane, thereby altering the overall optical power of the intraocular lens.
These means are so arranged as to allow the ciliary muscle to control the internal state of the intraocular lens without allowing changes in intraocular pressure to be transmitted to the interior of the intraocular lens. This is achieved by having haptics in the form of elongated members which extend into the interior of the intraocular lens and which are attached to the intraocular lens so as to be able to pivot around the point where they cross the encapsulating surface of the intraocular lens.
DESCRIPTION OF FIGS. 1 TO 9
The basic principle behind the encapsulated accommodating intraocular lens is illustrated in FIG. 1A and FIG. 1B. In its most basic embodiment the encapsulated intraocular lens comprises an anterior space 15 and a posterior space 25. Anterior space 15 and posterior space 25 are separated by a flexible transparent membrane 30. Anterior space 15 and posterior space 25 together are separated from the intraocular environment outside the lens by an anterior rigid surface 10, a posterior rigid surface 20 and a rigid side wall 60. Anterior space 15 and posterior space 25 are filled with optical media having different refractive indices. In FIGS. 1A and 1B the intraocular lens is created so that the medium with the highest refractive index is in anterior space 15 and the medium with the lower refractive index is in posterior space 25. In the preferred embodiment the medium with the high refractive index has a refractive index which is higher than that of the surrounding aqueous; the other medium is assumed to have a refractive index which is lower than that of the aqueous (for example, a gas).
In FIG. 1A and FIG. 1B it can be seen that an optical ray 50 approaching the intraocular lens in a direction parallel to the optical axis 70 is refracted first as it encounters anterior rigid surface 10, then again as it encounters flexible transparent membrane 30 and finally at posterior rigid surface 20. Each of these refractions causes optic ray 50 to be deflected toward optic axis 70 in such a manner that a focal point 75 is formed.
By controlling the shape of transparent flexible membrane 30 it is possible to control the overall power of the intraocular lens (without altering the shape of either anterior rigid surface 10 or posterior rigid surface 20). For example, by making transparent flexible membrane 30 more concave, as is indicated with open arrows in FIG. 1B, the overall focal length of the intraocular lens is decreased. The decrease in focal length is shown with a filled arrow in FIG. 1B, indicating an upward displacement of focal point 75.
FIG. 2 shows a cross section through the preferred embodiment of the encapsulated intraocular lens. As can be seen, a pair of movable inner sidewalls 90 along with inner member 80, posterior rigid surface 20 and flexible transparent membrane 30 delineate posterior space 25. Moveable inner sidewalls 90 are fashioned so as to be able to move away from and toward the center of the lens. Movable inner sidewall 90 is connected to inner member 80 and to the inside of rigid outer shell 100 with a flexible seal 110. Flexible seal 110 prevents the medium in posterior space 25 from leaking out into auxiliary space 120 and the fluid from auxiliary space 120 from leaking into posterior space 25 while providing movable inner sidewall 90 the freedom to move.
Movable inner sidewall 90 is free to move in a radial direction away from and toward optical axis 70. In order to provide movable inner side wall 90 sufficient space to move, an auxiliary space 120 inside of rigid outer shell 100 is provided. Auxiliary space 120 is in fluid communication with anterior space 15 and is filled with the same fluid medium as anterior space 15. The communication between anterior space 15 and auxiliary space 120 allows fluid medium to be redistributed between anterior space 15 and auxiliary space 120 as movable inner side wall 90 is being displaced.
FIG. 3 shows the effect upon flexible transparent membrane 30 of displacing movable inner sidewalls 90 outward. The outward displacements of movable inner sidewalls 90 are indicated with filled arrows. These displacements cause flexible transparent membrane 30 to take on a more curved shape (i.e. they cause the transparent membrane to be displaced downward in FIG. 3), as indicated by the open arrows. This causes the overall power of the intraocular lens to increase. As movable inner sidewalls 90 are deflected outward, the volume of auxiliary spaces 120 is decreased. This makes fluid medium flow out of auxiliary space 120 into anterior space 15 which contributes to the downward displacement of flexible transparent membrane 30.
In order for this intraocular lens to be able to alter its power in response to changes in the ciliary muscle it is necessary that the tension in the ciliary muscle, or some intraocular structure which is controlled by the ciliary muscle, to be able to alter the position of movable inner sidewalls 90.
FIG. 4 shows a frontal view of the encapsulated intraocular lens equipped with a pair of haptics 125. A side view of the same lens is shown in FIG. 5.
The connections between haptics 125 and movable inner sidewalls 90 are shown in FIG. 6. Haptics 125 extend from outside the intraocular lens through outer rigid shell 100 into auxiliary space 120. The part extending into auxiliary space 120 has been labelled extension of haptic 135. Haptics 125 and extensions of haptics 135 are connected to rigid outer shell 100 in such a manner so as to be able to rotate around the point where haptic 125 crosses the wall of rigid outer shell 100 forming a pivot 140 at this location. Extensions of haptics 135 are attached to movable inner sidewall 90 with the use of a pair of attachments 150. The connection between haptics 125 and movable inner sidewalls 90 allows movement of haptics 125 to manipulate the position of movable inner sidewall 90. This is illustrated in FIG. 7. Straight filled arrows indicate compression of haptics 125, i.e. deflection of haptics 125 toward the center of the intraocular lens. As indicated with open arrows in FIG. 7, this causes extension of haptics 135 and movable inner sidewalls 90 to be displaced outward, i.e. away from the center of the intraocular lens. This causes flexible membrane 30 to become more concave and gives the intraocular lens increased optical power. As is indicated with long curved arrows, the compression of haptics 125 may cause the main body of the encapsulated intraocular lens to rotate somewhat in the course of the compression of haptics 125.
FIG. 8 shows in more detail how haptics 125 may be able to cross the wall of rigid outer shell 100 in such manner so as to prevent, or severely limit, changes in intraocular pressure from being transmitted from the outside of the intraocular lens to the interior of the lens. Also, this arrangement prevents the fluid medium filling auxiliary space 120 from leaking out into the surrounding aqueous. Because haptic 125 pivots at the point where it crosses the wall of rigid outer shell 100 the movement at this place, as a result of displacements of haptics 125, will be minimal. This makes it easy to seal any opening in rigid outer shell with a flexible sheet 160.
In the preferred embodiment of the present invention posterior space 25 is filled with a gas and anterior space 15 is filled with a heavier material with a higher refractive index. In order to make the encapsulated lens as light as possible it may be desireable to keep anterior space 15 as small as possible. As is shown in FIG. 9, in order to do so, it may be desireable to have anterior rigid surface 10 be concave. This may cause anterior rigid surface 10 to have negative lens power. However flexible transparent membrane 30 and posterior rigid surface 20 will nevertheless have positive power, which makes it possible for the overall net power of the encapsulated intraocular lens to be positive.
OPERATION
A goal of the encapsulated accommodating intraocular lens is to be able to utilize a gas as an optical medium in an accommodating intraocular lens, and to do so (1) in a manner in which changes in intraocular pressure may not alter the power of the intraocular lens by compressing any of its content, and (2) by using an arrangement in which the gas contained in the intraocular lens is separated from the aqueous so as to minimize the possibility of exchange of gas between the surrounding aqueous and the interior of the intraocular lens. The present invention seeks to achieve these two goals by encapsulating the intraocular lens using an external substantially rigid outer surface made up of anterior rigid surface 10, posterior rigid surface 20 and rigid outer shell 100. Together these parts form an enclosed space which is separated from the surrounding aqueous in such a manner that changes in intraocular pressure will not, or only minimally, be transmitted to the interior of the enclosed space. This allows the use of a compressible material, such as a gas, as a refractive medium in the intraocular lens.
With regard to the second objective, i.e. the separation of the gas inside the intraocular lens in such a manner so as to minimize the exchange of gases between the interior of the intraocular lens and the surrounding aqueous, this is addressed by having the gas filled space inside the intraocular lens, i.e. posterior space 25, be separated from the aqueous anterior space 15, posterior rigid surface 20, auxiliary space 120 and rigid outer shell 100. Anterior rigid surface 10, posterior rigid surface 20 and rigid outer shell 100 are all fashioned from substantially gas impermeable materials, and auxiliary space 120 and anterior space 15 are filled with a medium which hampers the transport of gas. Thus there is little opportunity for gas exchange between posterior space 25 and the aqueous.
A further goal of the present intraocular lens is to achieve high gain, i.e. to provide a large amount of change in optical power for small changes in the ciliary muscle of the eye. As explained above, in order to achieve this, it is desireable to have two optical media which differ as much as possible with regard to refractive index. If one of the two media is a gas, it would be desireable to have the other medium have a high refractive index, for example such as an oil.
In the preferred embodiment, as illustrated in FIGS. 2 and 3, displacements of movable inner sidewall 90 effect changes in the shape of flexible transparent membrane 30 by two different mechanisms: Firstly, this is achieved by redistributing fluid medium between auxiliary space 120 and anterior space 15. Secondly, a displacement of movable inner sidewall 90 directly causes a change in curvature of flexible transparent membrane 30 in order for the volume of posterior space 25 to remain unaltered as movable inner side walls 90 are displaced. Together these two mechanisms form an effective push-pull arrangement.
The encapsulated accommodating intraocular lens is intended to be placed in the emptied lens capsule. Typical cataract surgery involves extracapsular extraction. This leaves the lens capsule available for housing the artificial intraocular lens. The lens capsule is connected to the ciliary body and thus the ciliary muscle with a series of zonules, also know as suspensory ligaments. These zonules transmit changes in ciliary muscle tension to the lens capsule. When the ciliary muscle is relaxed the zonules are taut, thus pulling the equator of the lens capsule outward causing it to be flattened. Increased tension in the ciliary muscle reduces the tension in the zonules, thus allowing the lens capsule to contract. This contraction will increase the tension exerted on haptics 125 from the lens capsule. This deflects haptics 125 inward, which causes movable inner sidewall 90 to be deflected outward; this in turn causes flexible transparent membrane 30 to become more curved, which causes the lens to increase its lens power as described above. In this manner increased tension in the ciliary muscle causes the lens to increase its power.
In order for changes in the ciliary muscle to be able to be transmitted to the interior of the intraocular lens at least one haptic 125 is connected to elongated inner member 80 in such a manner that movement in haptic 125 will be transmitted to inner member 80. Haptic 125 and inner member 80 are attached to each other and are together attached to rigid side wall 60 in such a manner as to be able to pivot around the place at which inner member 80 crosses rigid side wall 60. This makes it possible for movement to be transmitted from the outside of the intraocular lens to the interior of the intraocular lens with minimal movement at the point where inner member 80 crosses rigid side wall 60. Because the amount of movement at this place will be very small it will be possible to effectively seal the openings in rigid side wall 60 around the point where inner member 80 crosses rigid side wall 60 using flexible sheet 160 which needs to cover only a small area and needs only to be flexible to a minor degree. This means that changes in the intraocular pressure have only a small opportunity to be transmitted to the interior of the intraocular lens at this place. This makes it possible for the intraocular lens to be substantially insensitive to changes in intraocular pressure.
CONCLUSION, RAMIFICATION AND SCOPE
Accordingly, the reader will see that the encapsulated accommodating intraocular lens of this invention can be used to restore accommodation in a human eye. Furthermore the intraocular lens has the advantages that
it is substantially unaffected by changes in intraocular pressure;
it can be made so as to present a substantially gas-impermeable outer surface to the surrounding aqueous;
it has high gain;
it is of light weight;
it is compatible with currently established surgical procedures for cataract extraction and intraocular lens implantation.
Although the description above contains many specificities, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. The scope of the invention should be determined by the appended claims and their legal equivalents, rather than by the examples given.

Claims (19)

I claim:
1. An intraocular lens comprising an encapsulating outer surface, at least a part of said surface being transparent, said encapsulating surface forms an internal cavity, said internal cavity contains an internal optical element, said internal optical element has the ability to vary its optical power, to said intraocular lens is attached at least one haptic, said haptic have the shape of an elongated member, said haptic is located outside of said intraocular lens, to said haptic is attached firmly an elongated inner member, said inner member extends into the interior of said intraocular lens, said inner member and said haptic together are able to rotate around the point where said inner member crosses from the outside of said intraocular lens to the interior of said intraocular lens allowing movement of said haptic to be transmitted to the parts of said inner member which are located inside said intraocular lens, said haptic is equipped with means whereby the movement of said inner member may alter the lens power of said internal optical element, thereby allowing movement of said haptic to control the lens power of said inner optical element thereby controlling the overall optical power of said intraocular lens.
2. An intraocular lens as described in claim 1 in which said intraocular lens contains a gas.
3. An intraocular lens as described in claim 1 in which some part of the elongated member is in contact with the lens capsule of the eye.
4. An intraocular lens as described in claim 1 in which the power of said intraocular lens is substantially controlled by the tension in the ciliary muscle.
5. An intraocular lens as described in claim 1 in which the power of said intraocular lens is substantially controlled by the position of said elongated member.
6. An intraocular lens as described in claim 1 in which the power of said intraocular lens is substantially altered by changes in the force exerted by the lens capsule onto said elongated member.
7. An intraocular lens comprising an encapsulating outer surface, at least part of said surface being transparent, said encapsulating surface forms an internal cavity, said internal cavity contains an internal optical element, said internal optical element has the ability to vary its optical power, said internal element is connected to at least one elongated member, one end of said elongated member being inside of said internal cavity, the other end of said elongated member being outside of said encapsulating outer surface, said elongated member is attached to said encapsulating outer surface in such a manner so that said member has some freedom to pivot around the point where said member crosses said encapsulating outer surface.
8. An intraocular lens as described in claim 7 in which said intraocular lens contains a gas.
9. An intraocular lens as described in claim 7 in which said intraocular lens contains a medium which is substantially impermeable to gases.
10. An intraocular lens as described in claim 7 in which some part of said elongated member is attached to a haptic, said haptic being in direct contact with an anatomical structure in the eye.
11. An intraocular lens as described in claim 7 in which the power of said intraocular lens is substantially controlled by the tension in the ciliary muscle.
12. An intraocular lens as described in claim 7 in which the power of said intraocular lens is substantially controlled by the position of said elongated member.
13. An intraocular lens as described in claim 7 in which the power of said intraocular lens is substantially altered by changes in the force exerted by the lens capsule onto said elongated member.
14. An intraocular lens comprising an encapsulating outer surface, at least part of said encapsulating surface being transparent, said encapsulating surface forms an internal cavity, said internal cavity being divided into an anterior space and a posterior space by a flexible transparent membrane, said anterior space and said posterior space being filled with transparent fluid media having different refractive indices, to said intraocular lens is attached at least one elongated member, one end of said elongated member is located inside of said encapsulating surface, the other end of said elongated member is located outside of said encapsulating outer surface, said elongated member is attached to said encapsulating outer surface in such a manner so that said member has some freedom to pivot around the point where said member crosses said encapsulating outer surface, and means whereby the position of said member may alter the shape of said flexible membrane so as to alter the optical power of said intraocular lens.
15. An intraocular lens as described in claim 14 in which said intraocular lens contains a gas.
16. An intraocular lens as described in claim 14 in which some part of the elongated member is in contact with the lens capsule of the eye.
17. An intraocular lens as described in claim 14 in which the power of said intraocular lens is substantially controlled by the tension in the ciliary muscle.
18. An intraocular lens as described in claim 14 in which the power of said intraocular lens is substantially altered by changes in the force exerted by the lens capsule onto said elongated member.
19. An intraocular lens as described in claim 14 in which the end of said elongated member which is located outside of said intraocular lens serves as a haptic to attach said intraocular lens to an anatomical structure inside an eye.
US09/219,039 1998-12-23 1998-12-23 Encapsulated accommodating intraocular lens Expired - Fee Related US6117171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/219,039 US6117171A (en) 1998-12-23 1998-12-23 Encapsulated accommodating intraocular lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/219,039 US6117171A (en) 1998-12-23 1998-12-23 Encapsulated accommodating intraocular lens

Publications (1)

Publication Number Publication Date
US6117171A true US6117171A (en) 2000-09-12

Family

ID=22817579

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/219,039 Expired - Fee Related US6117171A (en) 1998-12-23 1998-12-23 Encapsulated accommodating intraocular lens

Country Status (1)

Country Link
US (1) US6117171A (en)

Cited By (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020116057A1 (en) * 2001-01-25 2002-08-22 Ting Albert C. Optic configuration for intraocular lens system
US6461384B1 (en) * 1999-06-17 2002-10-08 Bausch & Lomb Incorporated Intraocular lenses
US6464725B2 (en) * 2001-01-23 2002-10-15 Bernt Christian Skotton Two-lens adjustable intraocular lens system
WO2003015669A1 (en) 2001-08-21 2003-02-27 Nulens Ltd. Accommodating lens assembly
US20030078657A1 (en) * 2001-01-25 2003-04-24 Gholam-Reza Zadno-Azizi Materials for use in accommodating intraocular lens system
US20030109926A1 (en) * 2001-12-10 2003-06-12 Valdemar Portney Accommodating intraocular lens
US6645246B1 (en) * 1999-09-17 2003-11-11 Advanced Medical Optics, Inc. Intraocular lens with surrounded lens zone
US20040015236A1 (en) * 1991-11-18 2004-01-22 Sarfarazi Faezeh M. Sarfarazi elliptical accommodative intraocular lens for small incision surgery
US20040082994A1 (en) * 2002-10-25 2004-04-29 Randall Woods Accommodating intraocular lens implant
US20040100704A1 (en) * 2002-08-12 2004-05-27 Shadduck John H. Adaptive optic lens system and method of use
US20040127984A1 (en) * 2002-01-14 2004-07-01 Paul Marlene L Multi-mechanistic accommodating intraocular lenses
US20040125298A1 (en) * 2002-12-13 2004-07-01 Sung-Hun Oh Liquid crystal display device having variable viewing angle
US20040156880A1 (en) * 2002-11-13 2004-08-12 Nathan Ravi Reversible hydrogel systems and methods therefor
US20040160575A1 (en) * 2003-02-14 2004-08-19 Ian Ayton Method and device for compacting an intraocular lens
US20050021138A1 (en) * 2002-10-25 2005-01-27 Randall Woods Telescopic intraocular lens implant for treating age-related macular degeneration
WO2005020857A1 (en) * 2003-08-26 2005-03-10 Carl Zeiss Meditec Ag Accommodative lens implant, controlled by the ciliary muscle
US6884261B2 (en) 2001-01-25 2005-04-26 Visiogen, Inc. Method of preparing an intraocular lens for implantation
US20050119740A1 (en) * 2002-12-12 2005-06-02 Powervision Accommodating intraocular lens system and method
US20050131535A1 (en) * 2003-12-15 2005-06-16 Randall Woods Intraocular lens implant having posterior bendable optic
US20050137703A1 (en) * 2003-12-05 2005-06-23 Vanderbilt University Accommodative intraocular lens
US20050149183A1 (en) * 2001-08-31 2005-07-07 Shadduck John H. Intraocular lens system and method for power adjustment
US20050182419A1 (en) * 2004-02-02 2005-08-18 George Tsai Injector for intraocular lens system
EP1585563A2 (en) * 2002-12-12 2005-10-19 PowerVision Accommodating intraocular lens system and method
WO2005096999A1 (en) * 2004-04-07 2005-10-20 Carl Zeiss Surgical Gmbh Focusable artificial lens for an eye
US20060041307A1 (en) * 2002-12-12 2006-02-23 Powervision Accommodating intraocular lens system and method
US7018410B1 (en) 2002-08-05 2006-03-28 Mehdi Vazeen Accommodating intraocular lens
US20060069433A1 (en) * 2001-02-20 2006-03-30 Nulens, Ltd., Intraocular lens
WO2006040759A1 (en) 2004-10-13 2006-04-20 Nulens Ltd Accommodating intraocular lens (aiol), and aiol assemblies including same
US20070032868A1 (en) * 2005-08-08 2007-02-08 Randall Woods Capsular shape-restoring device
US7198640B2 (en) 2001-01-25 2007-04-03 Visiogen, Inc. Accommodating intraocular lens system with separation member
US20070195194A1 (en) * 2003-12-17 2007-08-23 Koninklijke Philips Electronic, N.V. Image format conversion
US20070260310A1 (en) * 2006-05-08 2007-11-08 Richardson Gary A Accommodative Intraocular Lens Having Defined Axial Compression Characteristics
US20070260309A1 (en) * 2006-05-08 2007-11-08 Richardson Gary A Accommodating intraocular lens having a recessed anterior optic
US20070269488A1 (en) * 2002-11-13 2007-11-22 Nathan Ravi Hydrogel Nanocompsites for Ophthalmic Applications
US20080154364A1 (en) * 2006-12-22 2008-06-26 Richardson Gary A Multi-Element Accommodative Intraocular Lens
US20080188930A1 (en) * 2007-02-02 2008-08-07 Khalid Mentak Interfacial refraction accommodating lens (iral)
US7438723B2 (en) 2002-12-12 2008-10-21 Powervision, Inc. Lens system and method for power adjustment using externally actuated micropumps
US20090005865A1 (en) * 2002-02-02 2009-01-01 Smiley Terry W Post-Implant Accommodating Lens Modification
US7591849B2 (en) 2005-07-01 2009-09-22 Bausch & Lomb Incorpoted Multi-component accommodative intraocular lens with compressible haptic
US20090264998A1 (en) * 2007-02-02 2009-10-22 Key Medical Technologies, Inc. Interfacial refraction accommodating lens (iral)
US7637947B2 (en) 2002-12-12 2009-12-29 Powervision, Inc. Accommodating intraocular lens system having spherical aberration compensation and method
US20100030332A1 (en) * 2003-08-26 2010-02-04 Carl Zeiss Meditec Ag Accommodative lens implant, controlled by the ciliary muscle
US7662179B2 (en) 1999-04-09 2010-02-16 Sarfarazi Faezeh M Haptics for accommodative intraocular lens system
US20100094415A1 (en) * 2008-10-14 2010-04-15 Advanced Medical Optics, Inc. Intraocular lens and capsular ring
US7713299B2 (en) 2006-12-29 2010-05-11 Abbott Medical Optics Inc. Haptic for accommodating intraocular lens
US20100121444A1 (en) * 2007-03-05 2010-05-13 Nulens Ltd. Unitary Accommodating Intraocular Lenses (AIOLs) and Discrete Base Members For Use Therewith
US7763069B2 (en) 2002-01-14 2010-07-27 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
WO2010089689A1 (en) * 2009-02-08 2010-08-12 Nir Betser Accommodative intraocular lens assembly
US7780729B2 (en) 2004-04-16 2010-08-24 Visiogen, Inc. Intraocular lens
US20100217387A1 (en) * 2002-12-05 2010-08-26 Abbott Medical Optics Inc. Accommodating intraocular lens and method of manufacture thereof
US20100283164A1 (en) * 2009-05-08 2010-11-11 Leonard Pinchuk Ocular Lens
US7842087B2 (en) 2004-04-29 2010-11-30 Nulens Ltd. Accommodating intraocular lens assemblies and accommodation measurement implant
US7871437B2 (en) 2006-12-22 2011-01-18 Amo Groningen B.V. Accommodating intraocular lenses and associated systems, frames, and methods
US20110040379A1 (en) * 2009-08-03 2011-02-17 Abbott Medical Optics Inc. Intraocular lens and methods for providing accommodative vision
US20110054601A1 (en) * 2009-08-27 2011-03-03 Abbott Medical Optics Inc. Fixation of opthalmic implants
US20110054600A1 (en) * 2009-06-26 2011-03-03 Abbott Medical Optics Inc. Accommodating intraocular lenses
US20110071628A1 (en) * 2009-09-24 2011-03-24 Rainbow Medical Ltd. Accommodative intraocular lens
US8025823B2 (en) 2001-01-25 2011-09-27 Visiogen, Inc. Single-piece accommodating intraocular lens system
US8034108B2 (en) 2008-03-28 2011-10-11 Abbott Medical Optics Inc. Intraocular lens having a haptic that includes a cap
US8048155B2 (en) 2002-02-02 2011-11-01 Powervision, Inc. Intraocular implant devices
US8048156B2 (en) 2006-12-29 2011-11-01 Abbott Medical Optics Inc. Multifocal accommodating intraocular lens
US8052752B2 (en) 2002-10-25 2011-11-08 Abbott Medical Optics Inc. Capsular intraocular lens implant having a refractive liquid therein
US8062361B2 (en) 2001-01-25 2011-11-22 Visiogen, Inc. Accommodating intraocular lens system with aberration-enhanced performance
US8158712B2 (en) 2007-02-21 2012-04-17 Powervision, Inc. Polymeric materials suitable for ophthalmic devices and methods of manufacture
US20120150292A1 (en) * 2009-02-18 2012-06-14 Khalid Mentak Interfacial refraction accommodating lens (iral)
WO2012105843A1 (en) * 2011-02-03 2012-08-09 Akkolens International B.V. Haptic combinations for accommodating intraocular lenses
US8241355B2 (en) 2005-10-28 2012-08-14 Abbott Medical Optics Inc. Haptic for accommodating intraocular lens
US8303656B2 (en) 2003-03-06 2012-11-06 Powervision, Inc. Adaptive optic lens and method of making
US8314927B2 (en) 2007-07-23 2012-11-20 Powervision, Inc. Systems and methods for testing intraocular lenses
US8328869B2 (en) 2002-12-12 2012-12-11 Powervision, Inc. Accommodating intraocular lenses and methods of use
US8361145B2 (en) 2002-12-12 2013-01-29 Powervision, Inc. Accommodating intraocular lens system having circumferential haptic support and method
US8377123B2 (en) 2004-11-10 2013-02-19 Visiogen, Inc. Method of implanting an intraocular lens
US8398709B2 (en) 2008-07-24 2013-03-19 Nulens Ltd. Accommodating intraocular lens (AIOL) capsules
US8403984B2 (en) 2006-11-29 2013-03-26 Visiogen, Inc. Apparatus and methods for compacting an intraocular lens
US8425597B2 (en) 1999-04-30 2013-04-23 Abbott Medical Optics Inc. Accommodating intraocular lenses
US8425595B2 (en) 2008-03-12 2013-04-23 Visiogen, Inc. Method for inserting an intraocular lens
US8447086B2 (en) 2009-08-31 2013-05-21 Powervision, Inc. Lens capsule size estimation
US8454688B2 (en) 2002-12-12 2013-06-04 Powervision, Inc. Accommodating intraocular lens having peripherally actuated deflectable surface and method
US8500806B1 (en) 2012-01-31 2013-08-06 Andrew F. Phillips Accommodating intraocular lens
US8556967B2 (en) 1999-04-09 2013-10-15 Faezeh Mona Sarfarazi Interior bag for a capsular bag and injector
US8668734B2 (en) 2010-07-09 2014-03-11 Powervision, Inc. Intraocular lens delivery devices and methods of use
USD702346S1 (en) 2007-03-05 2014-04-08 Nulens Ltd. Haptic end plate for use in an intraocular assembly
US20140257478A1 (en) * 2013-03-07 2014-09-11 Sean J. McCafferty Accommodating fluidic intraocular lens with flexible interior membrane
US8834565B2 (en) 2005-03-30 2014-09-16 Nulens Ltd. Foldable accommodating intraocular lens
US8900298B2 (en) 2010-02-23 2014-12-02 Powervision, Inc. Fluid for accommodating intraocular lenses
US8945215B2 (en) 2012-05-10 2015-02-03 Abbott Medical Optics Inc. Accommodating intraocular lens with a compressible inner structure
US8956408B2 (en) 2007-07-23 2015-02-17 Powervision, Inc. Lens delivery system
US8968396B2 (en) 2007-07-23 2015-03-03 Powervision, Inc. Intraocular lens delivery systems and methods of use
US9039760B2 (en) 2006-12-29 2015-05-26 Abbott Medical Optics Inc. Pre-stressed haptic for accommodating intraocular lens
US9084674B2 (en) 2012-05-02 2015-07-21 Abbott Medical Optics Inc. Intraocular lens with shape changing capability to provide enhanced accomodation and visual acuity
US9186244B2 (en) 2012-12-21 2015-11-17 Lensgen, Inc. Accommodating intraocular lens
US9421089B2 (en) 2007-07-05 2016-08-23 Visiogen, Inc. Intraocular lens with post-implantation adjustment capabilities
WO2016133558A1 (en) * 2015-02-16 2016-08-25 Novartis Ag Curvature-changing, accommodative intraocular lenses with expandable peripheral reservoirs
US9439754B2 (en) 2012-02-22 2016-09-13 Omega Opthalmics LLC Prosthetic capsular bag and method of inserting the same
US9504558B2 (en) 2015-02-10 2016-11-29 Omega Ophthalmics Llc Attachable optic prosthetic capsular devices
US9610155B2 (en) 2008-07-23 2017-04-04 Powervision, Inc. Intraocular lens loading systems and methods of use
US9636213B2 (en) 2005-09-30 2017-05-02 Abbott Medical Optics Inc. Deformable intraocular lenses and lens systems
US9642699B2 (en) 2014-06-19 2017-05-09 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
EP3081192A4 (en) * 2013-12-13 2017-08-09 Xlens Technologies Inc. Adjustable intraocular lens
US9814570B2 (en) 1999-04-30 2017-11-14 Abbott Medical Optics Inc. Ophthalmic lens combinations
US9872763B2 (en) 2004-10-22 2018-01-23 Powervision, Inc. Accommodating intraocular lenses
US9913712B2 (en) 2011-02-04 2018-03-13 Forsight Labs, Llc Intraocular accommodating lens and methods of use
US9925039B2 (en) 2012-12-26 2018-03-27 Rainbow Medical Ltd. Accommodative intraocular lens
US9993336B2 (en) 2016-06-06 2018-06-12 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US10004596B2 (en) 2014-07-31 2018-06-26 Lensgen, Inc. Accommodating intraocular lens device
US10111746B2 (en) 2016-10-21 2018-10-30 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US10159564B2 (en) 2013-11-01 2018-12-25 Lensgen, Inc. Two-part accomodating intraocular lens device
WO2019018264A1 (en) * 2017-07-17 2019-01-24 Verily Life Sciences Llc Accommodating intraocular lens with meniscus
US10195020B2 (en) 2013-03-15 2019-02-05 Powervision, Inc. Intraocular lens storage and loading devices and methods of use
US10258462B2 (en) 2012-12-26 2019-04-16 Rainbow Medical Ltd. Accommodative intraocular lens
US10285805B2 (en) 2014-03-28 2019-05-14 Forsight Labs, Llc Accommodating intraocular lens
US10299913B2 (en) 2009-01-09 2019-05-28 Powervision, Inc. Accommodating intraocular lenses and methods of use
US10327886B2 (en) 2016-06-01 2019-06-25 Rainbow Medical Ltd. Accomodative intraocular lens
US10390937B2 (en) 2007-07-23 2019-08-27 Powervision, Inc. Accommodating intraocular lenses
US10433949B2 (en) 2011-11-08 2019-10-08 Powervision, Inc. Accommodating intraocular lenses
US10441411B2 (en) 2016-12-29 2019-10-15 Rainbow Medical Ltd. Accommodative intraocular lens
US10526353B2 (en) 2016-05-27 2020-01-07 Lensgen, Inc. Lens oil having a narrow molecular weight distribution for intraocular lens devices
US10603162B2 (en) 2018-04-06 2020-03-31 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US10647831B2 (en) 2014-09-23 2020-05-12 LensGens, Inc. Polymeric material for accommodating intraocular lenses
US10687936B2 (en) 2016-05-22 2020-06-23 Rayner Intraocular Lenses Limited Hybrid accommodating intraocular lens assemblages
US10722612B2 (en) 2013-12-04 2020-07-28 Alcon Inc. Soft hydrophobic acrylic materials
US10722400B2 (en) 2011-09-12 2020-07-28 Amo Development, Llc Hybrid ophthalmic interface apparatus and method of interfacing a surgical laser with an eye
US10772721B2 (en) 2010-04-27 2020-09-15 Lensgen, Inc. Accommodating intraocular lens
US10835373B2 (en) 2002-12-12 2020-11-17 Alcon Inc. Accommodating intraocular lenses and methods of use
US10842616B2 (en) 2013-11-01 2020-11-24 Lensgen, Inc. Accommodating intraocular lens device
US11065107B2 (en) 2015-12-01 2021-07-20 Lensgen, Inc. Accommodating intraocular lens device
US11224505B2 (en) 2018-11-02 2022-01-18 Rayner Intraocular Lenses Limited Hybrid accommodating intraocular lens assemblages including discrete lens unit with segmented lens haptics
US11364107B2 (en) 2020-10-12 2022-06-21 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US11426270B2 (en) 2015-11-06 2022-08-30 Alcon Inc. Accommodating intraocular lenses and methods of manufacturing
US11471272B2 (en) 2019-10-04 2022-10-18 Alcon Inc. Adjustable intraocular lenses and methods of post-operatively adjusting intraocular lenses
US11523898B2 (en) 2016-10-28 2022-12-13 Forsight Vision6, Inc. Accommodating intraocular lens and methods of implantation
US11707354B2 (en) 2017-09-11 2023-07-25 Amo Groningen B.V. Methods and apparatuses to increase intraocular lenses positional stability

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731078A (en) * 1985-08-21 1988-03-15 Kingston Technologies Limited Partnership Intraocular lens
US4790847A (en) * 1987-05-26 1988-12-13 Woods Randall L Intraocular lens implant having eye focusing capabilities
US4842601A (en) * 1987-05-18 1989-06-27 Smith S Gregory Accommodating intraocular lens and method of implanting and using same
US4888012A (en) * 1988-01-14 1989-12-19 Gerald Horn Intraocular lens assemblies
US4892543A (en) * 1989-02-02 1990-01-09 Turley Dana F Intraocular lens providing accomodation
US4932966A (en) * 1988-08-15 1990-06-12 Storz Instrument Company Accommodating intraocular lens
US5489302A (en) * 1994-05-24 1996-02-06 Skottun; Bernt C. Accommodating intraocular lens

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731078A (en) * 1985-08-21 1988-03-15 Kingston Technologies Limited Partnership Intraocular lens
US4842601A (en) * 1987-05-18 1989-06-27 Smith S Gregory Accommodating intraocular lens and method of implanting and using same
US4790847A (en) * 1987-05-26 1988-12-13 Woods Randall L Intraocular lens implant having eye focusing capabilities
US4888012A (en) * 1988-01-14 1989-12-19 Gerald Horn Intraocular lens assemblies
US4932966A (en) * 1988-08-15 1990-06-12 Storz Instrument Company Accommodating intraocular lens
US4892543A (en) * 1989-02-02 1990-01-09 Turley Dana F Intraocular lens providing accomodation
US5489302A (en) * 1994-05-24 1996-02-06 Skottun; Bernt C. Accommodating intraocular lens

Cited By (302)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040015236A1 (en) * 1991-11-18 2004-01-22 Sarfarazi Faezeh M. Sarfarazi elliptical accommodative intraocular lens for small incision surgery
US9149356B2 (en) 1999-04-09 2015-10-06 Faezeh Mona Sarfarazi Interior bag for a capsular bag and injector
US7662179B2 (en) 1999-04-09 2010-02-16 Sarfarazi Faezeh M Haptics for accommodative intraocular lens system
US8556967B2 (en) 1999-04-09 2013-10-15 Faezeh Mona Sarfarazi Interior bag for a capsular bag and injector
US9814570B2 (en) 1999-04-30 2017-11-14 Abbott Medical Optics Inc. Ophthalmic lens combinations
US8425597B2 (en) 1999-04-30 2013-04-23 Abbott Medical Optics Inc. Accommodating intraocular lenses
US6461384B1 (en) * 1999-06-17 2002-10-08 Bausch & Lomb Incorporated Intraocular lenses
US6645246B1 (en) * 1999-09-17 2003-11-11 Advanced Medical Optics, Inc. Intraocular lens with surrounded lens zone
US6464725B2 (en) * 2001-01-23 2002-10-15 Bernt Christian Skotton Two-lens adjustable intraocular lens system
US7744646B2 (en) 2001-01-25 2010-06-29 Visiogen, Inc. Method of preparing an intraocular lens for implantation
US6884261B2 (en) 2001-01-25 2005-04-26 Visiogen, Inc. Method of preparing an intraocular lens for implantation
US20020116057A1 (en) * 2001-01-25 2002-08-22 Ting Albert C. Optic configuration for intraocular lens system
US7198640B2 (en) 2001-01-25 2007-04-03 Visiogen, Inc. Accommodating intraocular lens system with separation member
US7744603B2 (en) 2001-01-25 2010-06-29 Visiogen, Inc. Method of implanting an intraocular lens system
US8025823B2 (en) 2001-01-25 2011-09-27 Visiogen, Inc. Single-piece accommodating intraocular lens system
US7452378B2 (en) 2001-01-25 2008-11-18 Visiogen, Inc. Distending portion for intraocular lens system
US20050049700A1 (en) * 2001-01-25 2005-03-03 Gholam-Reza Zadno-Azizi Distending portion for intraocular lens system
US7452362B2 (en) 2001-01-25 2008-11-18 Visiogen, Inc. Method of implanting an intraocular lens system
US20060178741A1 (en) * 2001-01-25 2006-08-10 Gholam-Reza Zadno-Azizi Materials for use in intraocular lens system
US7087080B2 (en) 2001-01-25 2006-08-08 Visiogen, Inc. Materials for use in intraocular lens system
US8062361B2 (en) 2001-01-25 2011-11-22 Visiogen, Inc. Accommodating intraocular lens system with aberration-enhanced performance
US8187325B2 (en) 2001-01-25 2012-05-29 Visiogen, Inc. Materials for use in accommodating intraocular lens system
US20030078657A1 (en) * 2001-01-25 2003-04-24 Gholam-Reza Zadno-Azizi Materials for use in accommodating intraocular lens system
US20050165410A1 (en) * 2001-01-25 2005-07-28 Gholam-Reza Zadno-Azizi Method of implanting an intraocular lens system
US7226478B2 (en) 2001-01-25 2007-06-05 Visiogen, Inc. Optic configuration for intraocular lens system
US20060069433A1 (en) * 2001-02-20 2006-03-30 Nulens, Ltd., Intraocular lens
US20070185574A1 (en) * 2001-08-21 2007-08-09 Yehoshua Ben Nun Accommodating lens assembly
US8382831B2 (en) 2001-08-21 2013-02-26 Nulens Ltd. Method and apparatus for anchoring an intraocular lens assembly
US20110082544A1 (en) * 2001-08-21 2011-04-07 Nulens Ltd. Accommodating lens assembly
US7854764B2 (en) 2001-08-21 2010-12-21 Nulens Ltd. Accommodating lens assembly
US7998199B2 (en) 2001-08-21 2011-08-16 Nulens, Ltd. Method of anchoring an accommodating intraocular lens assembly
US7220279B2 (en) 2001-08-21 2007-05-22 Nulens Ltd Accommodating lens assembly
WO2003015669A1 (en) 2001-08-21 2003-02-27 Nulens Ltd. Accommodating lens assembly
US20040181279A1 (en) * 2001-08-21 2004-09-16 Yehoshua Nun Accommodating lens assembly
US7776088B2 (en) 2001-08-31 2010-08-17 Powervision, Inc. Intraocular lens system and method for power adjustment
US20050149183A1 (en) * 2001-08-31 2005-07-07 Shadduck John H. Intraocular lens system and method for power adjustment
US8992609B2 (en) 2001-08-31 2015-03-31 Powervision, Inc. Intraocular lens system and method for power adjustment
US7097660B2 (en) * 2001-12-10 2006-08-29 Valdemar Portney Accommodating intraocular lens
US20030109926A1 (en) * 2001-12-10 2003-06-12 Valdemar Portney Accommodating intraocular lens
US8343216B2 (en) 2002-01-14 2013-01-01 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
US9504560B2 (en) 2002-01-14 2016-11-29 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
US7763069B2 (en) 2002-01-14 2010-07-27 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
US20040127984A1 (en) * 2002-01-14 2004-07-01 Paul Marlene L Multi-mechanistic accommodating intraocular lenses
US10045844B2 (en) * 2002-02-02 2018-08-14 Powervision, Inc. Post-implant accommodating lens modification
US10433950B2 (en) 2002-02-02 2019-10-08 Powervision, Inc. Accommodating intraocular lenses
US20090005865A1 (en) * 2002-02-02 2009-01-01 Smiley Terry W Post-Implant Accommodating Lens Modification
US8048155B2 (en) 2002-02-02 2011-11-01 Powervision, Inc. Intraocular implant devices
US9456895B2 (en) 2002-02-02 2016-10-04 Powervision, Inc. Accommodating intraocular lens
US8425599B2 (en) 2002-02-02 2013-04-23 Powervision, Inc. Accommodating intraocular lenses and methods of use
US7018410B1 (en) 2002-08-05 2006-03-28 Mehdi Vazeen Accommodating intraocular lens
US20040100704A1 (en) * 2002-08-12 2004-05-27 Shadduck John H. Adaptive optic lens system and method of use
US7278739B2 (en) 2002-08-12 2007-10-09 Powervision, Inc. Adaptive optic lens system and method of use
US20060087614A1 (en) * 2002-08-12 2006-04-27 Shadduck John H Adaptive optic lens system and method of use
US6966649B2 (en) 2002-08-12 2005-11-22 John H Shadduck Adaptive optic lens system and method of use
US20050021138A1 (en) * 2002-10-25 2005-01-27 Randall Woods Telescopic intraocular lens implant for treating age-related macular degeneration
US8545556B2 (en) 2002-10-25 2013-10-01 Abbott Medical Optics Inc. Capsular intraocular lens implant
US8585758B2 (en) 2002-10-25 2013-11-19 Abbott Medical Optics Inc. Accommodating intraocular lenses
US8052752B2 (en) 2002-10-25 2011-11-08 Abbott Medical Optics Inc. Capsular intraocular lens implant having a refractive liquid therein
US7125422B2 (en) 2002-10-25 2006-10-24 Quest Vision Technology, Inc. Accommodating intraocular lens implant
US20040082994A1 (en) * 2002-10-25 2004-04-29 Randall Woods Accommodating intraocular lens implant
US20070269488A1 (en) * 2002-11-13 2007-11-22 Nathan Ravi Hydrogel Nanocompsites for Ophthalmic Applications
US8192485B2 (en) 2002-11-13 2012-06-05 The United States of America, as represented by the Department of Veterens Affairs Reversible hydrogel systems and methods therefor
US8153156B2 (en) 2002-11-13 2012-04-10 The United States Of America As Represented By The Department Of Veteran Affairs Hydrogel nanocompsites for ophthalmic applications
US20040156880A1 (en) * 2002-11-13 2004-08-12 Nathan Ravi Reversible hydrogel systems and methods therefor
US20100217387A1 (en) * 2002-12-05 2010-08-26 Abbott Medical Optics Inc. Accommodating intraocular lens and method of manufacture thereof
US9271830B2 (en) 2002-12-05 2016-03-01 Abbott Medical Optics Inc. Accommodating intraocular lens and method of manufacture thereof
US10206773B2 (en) 2002-12-05 2019-02-19 Johnson & Johnson Surgical Vision, Inc. Accommodating intraocular lens and method of manufacture thereof
US9855137B2 (en) * 2002-12-12 2018-01-02 Powervision, Inc. Accommodating intraocular lenses and methods of use
US9277987B2 (en) 2002-12-12 2016-03-08 Powervision, Inc. Accommodating intraocular lenses
US20130103146A1 (en) * 2002-12-12 2013-04-25 Terah Whiting Smiley Accommodating Intraocular Lenses and Methods of Use
US8454688B2 (en) 2002-12-12 2013-06-04 Powervision, Inc. Accommodating intraocular lens having peripherally actuated deflectable surface and method
US8361145B2 (en) 2002-12-12 2013-01-29 Powervision, Inc. Accommodating intraocular lens system having circumferential haptic support and method
US20060041307A1 (en) * 2002-12-12 2006-02-23 Powervision Accommodating intraocular lens system and method
US9795473B2 (en) 2002-12-12 2017-10-24 Powervision, Inc. Accommodating intraocular lenses
US7485144B2 (en) 2002-12-12 2009-02-03 Powervision, Inc. Methods of adjusting the power of an intraocular lens
US8328869B2 (en) 2002-12-12 2012-12-11 Powervision, Inc. Accommodating intraocular lenses and methods of use
US7122053B2 (en) 2002-12-12 2006-10-17 Powervision, Inc. Accommodating intraocular lens system and method
US7438723B2 (en) 2002-12-12 2008-10-21 Powervision, Inc. Lens system and method for power adjustment using externally actuated micropumps
EP2559405A3 (en) * 2002-12-12 2013-06-26 PowerVision, Inc. Accommodating intraocular lens system
US11751991B2 (en) 2002-12-12 2023-09-12 Alcon Inc. Accommodating intraocular lenses and methods of use
US20050119740A1 (en) * 2002-12-12 2005-06-02 Powervision Accommodating intraocular lens system and method
US9872762B2 (en) 2002-12-12 2018-01-23 Powervision, Inc. Accommodating intraocular lenses
US10835373B2 (en) 2002-12-12 2020-11-17 Alcon Inc. Accommodating intraocular lenses and methods of use
EP1585563A4 (en) * 2002-12-12 2012-03-21 Powervision Inc Accommodating intraocular lens system and method
EP1585563A2 (en) * 2002-12-12 2005-10-19 PowerVision Accommodating intraocular lens system and method
US7261737B2 (en) 2002-12-12 2007-08-28 Powervision, Inc. Accommodating intraocular lens system and method
US7247168B2 (en) 2002-12-12 2007-07-24 Powervision, Inc. Accommodating intraocular lens system and method
US7637947B2 (en) 2002-12-12 2009-12-29 Powervision, Inc. Accommodating intraocular lens system having spherical aberration compensation and method
US20040125298A1 (en) * 2002-12-13 2004-07-01 Sung-Hun Oh Liquid crystal display device having variable viewing angle
US20040160575A1 (en) * 2003-02-14 2004-08-19 Ian Ayton Method and device for compacting an intraocular lens
US9095426B2 (en) 2003-02-14 2015-08-04 Visiogen, Inc. Method and device for compacting an intraocular lens
US7615056B2 (en) 2003-02-14 2009-11-10 Visiogen, Inc. Method and device for compacting an intraocular lens
US10534113B2 (en) 2003-03-06 2020-01-14 Powervision, Inc. Adaptive optic lens and method of making
US8303656B2 (en) 2003-03-06 2012-11-06 Powervision, Inc. Adaptive optic lens and method of making
US8197541B2 (en) 2003-08-26 2012-06-12 Carl Zeiss Meditec Ag Accommodative lens implant, controlled by the ciliary muscle
WO2005020857A1 (en) * 2003-08-26 2005-03-10 Carl Zeiss Meditec Ag Accommodative lens implant, controlled by the ciliary muscle
US20100030332A1 (en) * 2003-08-26 2010-02-04 Carl Zeiss Meditec Ag Accommodative lens implant, controlled by the ciliary muscle
US20070129799A1 (en) * 2003-08-26 2007-06-07 Carl Zeiss Meditec Ag Accommodative lens implant, controlled by the ciliary muscle
US20050137703A1 (en) * 2003-12-05 2005-06-23 Vanderbilt University Accommodative intraocular lens
US9198752B2 (en) 2003-12-15 2015-12-01 Abbott Medical Optics Inc. Intraocular lens implant having posterior bendable optic
US20050131535A1 (en) * 2003-12-15 2005-06-16 Randall Woods Intraocular lens implant having posterior bendable optic
US20070195194A1 (en) * 2003-12-17 2007-08-23 Koninklijke Philips Electronic, N.V. Image format conversion
US8142498B2 (en) 2004-02-02 2012-03-27 Visiogen, Inc. Injector for intraocular lens system
US7645300B2 (en) 2004-02-02 2010-01-12 Visiogen, Inc. Injector for intraocular lens system
US20050182419A1 (en) * 2004-02-02 2005-08-18 George Tsai Injector for intraocular lens system
US9498326B2 (en) 2004-02-02 2016-11-22 Visiogen, Inc. Injector for intraocular lens system
US9603701B2 (en) 2004-04-07 2017-03-28 Carl Zeiss Meditec Ag Flexible artificial lens accommodated by means of pressure or electrical condictivity
CN1878515B (en) * 2004-04-07 2011-03-02 卡尔·蔡斯外科有限公司 Focusable artificial lens for an eye
US20080039937A1 (en) * 2004-04-07 2008-02-14 Andreas Obrebski Focusable Artificial Lens For An Eye
DE102004017283A1 (en) * 2004-04-07 2005-11-03 Carl Zeiss Artificial lens for an eye
WO2005096999A1 (en) * 2004-04-07 2005-10-20 Carl Zeiss Surgical Gmbh Focusable artificial lens for an eye
US7780729B2 (en) 2004-04-16 2010-08-24 Visiogen, Inc. Intraocular lens
US9005283B2 (en) 2004-04-16 2015-04-14 Visiogen Inc. Intraocular lens
US8246679B2 (en) 2004-04-16 2012-08-21 Visiogen, Inc. Intraocular lens
US8956409B2 (en) 2004-04-29 2015-02-17 Nulens Ltd. Accommodating intraocular lens assemblies and accommodation measurement implant
US20150150676A1 (en) * 2004-04-29 2015-06-04 Joshua Ben Nun Accommodating intraocular lens assemblies and accommodation measurement implant
US20110112635A1 (en) * 2004-04-29 2011-05-12 Nulens Ltd. Accommodating intraocular lens measurement implant
US10912643B2 (en) 2004-04-29 2021-02-09 Forsight Vision6, Inc. Accommodating intraocular lens assemblies and accommodation measurement implant
US20210259826A1 (en) * 2004-04-29 2021-08-26 Forsight Vision6, Inc. Accommodating intraocular lens assemblies and accommodation measurement implant
US7842087B2 (en) 2004-04-29 2010-11-30 Nulens Ltd. Accommodating intraocular lens assemblies and accommodation measurement implant
WO2006040759A1 (en) 2004-10-13 2006-04-20 Nulens Ltd Accommodating intraocular lens (aiol), and aiol assemblies including same
US7815678B2 (en) 2004-10-13 2010-10-19 Nulens Ltd. Accommodating intraocular lens (AIOL), and AIOL assemblies including same
US20070244561A1 (en) * 2004-10-13 2007-10-18 Nulens Ltd. Accommodating Intraocular Lens (Aiol), and Aiol Assemblies Including Same
US9872763B2 (en) 2004-10-22 2018-01-23 Powervision, Inc. Accommodating intraocular lenses
US8377123B2 (en) 2004-11-10 2013-02-19 Visiogen, Inc. Method of implanting an intraocular lens
US8834565B2 (en) 2005-03-30 2014-09-16 Nulens Ltd. Foldable accommodating intraocular lens
US10966818B2 (en) 2005-03-30 2021-04-06 Forsight Vision6, Inc. Accommodating intraocular lens (AIOL) assemblies, and discrete components therefor
US10166096B2 (en) 2005-03-30 2019-01-01 Forsight Vision6, Inc. Foldable accommodating intraocular lens
US9814568B2 (en) 2005-03-30 2017-11-14 Forsight Vision6, Inc. Accommodating intraocular lens having dual shape memory optical elements
US7591849B2 (en) 2005-07-01 2009-09-22 Bausch & Lomb Incorpoted Multi-component accommodative intraocular lens with compressible haptic
WO2007005778A3 (en) * 2005-07-01 2007-11-15 Powervision Inc Accommodating intraocular lens system and method
US20070032868A1 (en) * 2005-08-08 2007-02-08 Randall Woods Capsular shape-restoring device
US9636213B2 (en) 2005-09-30 2017-05-02 Abbott Medical Optics Inc. Deformable intraocular lenses and lens systems
US9554893B2 (en) 2005-10-28 2017-01-31 Abbott Medical Optics Inc. Haptic for accommodating intraocular lens
US8241355B2 (en) 2005-10-28 2012-08-14 Abbott Medical Optics Inc. Haptic for accommodating intraocular lens
US20070260310A1 (en) * 2006-05-08 2007-11-08 Richardson Gary A Accommodative Intraocular Lens Having Defined Axial Compression Characteristics
US20070260309A1 (en) * 2006-05-08 2007-11-08 Richardson Gary A Accommodating intraocular lens having a recessed anterior optic
US8403984B2 (en) 2006-11-29 2013-03-26 Visiogen, Inc. Apparatus and methods for compacting an intraocular lens
US10368979B2 (en) 2006-12-19 2019-08-06 Powervision, Inc. Accommodating intraocular lenses
US8496701B2 (en) 2006-12-22 2013-07-30 Amo Groningen B.V. Accommodating intraocular lenses and associated systems, frames, and methods
US7871437B2 (en) 2006-12-22 2011-01-18 Amo Groningen B.V. Accommodating intraocular lenses and associated systems, frames, and methods
US20080154364A1 (en) * 2006-12-22 2008-06-26 Richardson Gary A Multi-Element Accommodative Intraocular Lens
US8613766B2 (en) 2006-12-22 2013-12-24 Bausch-Lomb Incorporated Multi-element accommodative intraocular lens
US8182531B2 (en) 2006-12-22 2012-05-22 Amo Groningen B.V. Accommodating intraocular lenses and associated systems, frames, and methods
US8048156B2 (en) 2006-12-29 2011-11-01 Abbott Medical Optics Inc. Multifocal accommodating intraocular lens
US7713299B2 (en) 2006-12-29 2010-05-11 Abbott Medical Optics Inc. Haptic for accommodating intraocular lens
US9039760B2 (en) 2006-12-29 2015-05-26 Abbott Medical Optics Inc. Pre-stressed haptic for accommodating intraocular lens
US8465544B2 (en) 2006-12-29 2013-06-18 Abbott Medical Optics Inc. Accommodating intraocular lens
US8062362B2 (en) 2006-12-29 2011-11-22 Abbott Medical Optics Inc. Accommodating intraocular lens
US20100198349A1 (en) * 2006-12-29 2010-08-05 Abbott Medical Optics Inc. Accommodating intraocular lens
US8814934B2 (en) 2006-12-29 2014-08-26 Abbott Medical Optics Inc. Multifocal accommodating intraocular lens
US8734509B2 (en) 2007-02-02 2014-05-27 Hoya Corporation Interfacial refraction accommodating lens (IRAL)
US20080188930A1 (en) * 2007-02-02 2008-08-07 Khalid Mentak Interfacial refraction accommodating lens (iral)
US7857850B2 (en) * 2007-02-02 2010-12-28 Adoptics Ag Interfacial refraction accommodating lens (IRAL)
US8034106B2 (en) * 2007-02-02 2011-10-11 Adoptics Ag Interfacial refraction accommodating lens (IRAL)
US20090264998A1 (en) * 2007-02-02 2009-10-22 Key Medical Technologies, Inc. Interfacial refraction accommodating lens (iral)
US20110160852A1 (en) * 2007-02-02 2011-06-30 Khalid Mentak Interfacial refraction accommodating lens (iral)
US8158712B2 (en) 2007-02-21 2012-04-17 Powervision, Inc. Polymeric materials suitable for ophthalmic devices and methods of manufacture
USD702346S1 (en) 2007-03-05 2014-04-08 Nulens Ltd. Haptic end plate for use in an intraocular assembly
US20100121444A1 (en) * 2007-03-05 2010-05-13 Nulens Ltd. Unitary Accommodating Intraocular Lenses (AIOLs) and Discrete Base Members For Use Therewith
US8273123B2 (en) 2007-03-05 2012-09-25 Nulens Ltd. Unitary accommodating intraocular lenses (AIOLs) and discrete base members for use therewith
US9421089B2 (en) 2007-07-05 2016-08-23 Visiogen, Inc. Intraocular lens with post-implantation adjustment capabilities
US10390937B2 (en) 2007-07-23 2019-08-27 Powervision, Inc. Accommodating intraocular lenses
US10350060B2 (en) 2007-07-23 2019-07-16 Powervision, Inc. Lens delivery system
US8968396B2 (en) 2007-07-23 2015-03-03 Powervision, Inc. Intraocular lens delivery systems and methods of use
US8956408B2 (en) 2007-07-23 2015-02-17 Powervision, Inc. Lens delivery system
US8314927B2 (en) 2007-07-23 2012-11-20 Powervision, Inc. Systems and methods for testing intraocular lenses
US11759313B2 (en) 2007-07-23 2023-09-19 Alcon Inc. Lens delivery system
US9855139B2 (en) 2007-07-23 2018-01-02 Powervision, Inc. Intraocular lens delivery systems and methods of use
US8784485B2 (en) 2008-03-12 2014-07-22 Visiogen, Inc. Method and device for inserting an intraocular lens
US8425595B2 (en) 2008-03-12 2013-04-23 Visiogen, Inc. Method for inserting an intraocular lens
US9968441B2 (en) 2008-03-28 2018-05-15 Johnson & Johnson Surgical Vision, Inc. Intraocular lens having a haptic that includes a cap
US8034108B2 (en) 2008-03-28 2011-10-11 Abbott Medical Optics Inc. Intraocular lens having a haptic that includes a cap
US9610155B2 (en) 2008-07-23 2017-04-04 Powervision, Inc. Intraocular lens loading systems and methods of use
US8398709B2 (en) 2008-07-24 2013-03-19 Nulens Ltd. Accommodating intraocular lens (AIOL) capsules
US8043372B2 (en) 2008-10-14 2011-10-25 Abbott Medical Optics Inc. Intraocular lens and capsular ring
US20100094415A1 (en) * 2008-10-14 2010-04-15 Advanced Medical Optics, Inc. Intraocular lens and capsular ring
US8585759B2 (en) 2008-10-14 2013-11-19 Abbott Medical Optics Inc. Intraocular lens and capsular ring
US10299913B2 (en) 2009-01-09 2019-05-28 Powervision, Inc. Accommodating intraocular lenses and methods of use
US11166808B2 (en) 2009-01-09 2021-11-09 Alcon Inc. Accommodating intraocular lenses and methods of use
US10357356B2 (en) 2009-01-09 2019-07-23 Powervision, Inc. Accommodating intraocular lenses and methods of use
WO2010089689A1 (en) * 2009-02-08 2010-08-12 Nir Betser Accommodative intraocular lens assembly
US20120150292A1 (en) * 2009-02-18 2012-06-14 Khalid Mentak Interfacial refraction accommodating lens (iral)
CN102316825A (en) * 2009-02-18 2012-01-11 阿多普提克斯股份公司 Interfacial refraction accommodating lens (IRAL)
WO2010104654A1 (en) * 2009-02-18 2010-09-16 Key Medical Technologies, Inc. Interfacial refraction accommodating lens (iral)
US8657878B2 (en) * 2009-02-18 2014-02-25 Hoya Corporation Interfacial refraction accommodating lens (IRAL)
US8585940B2 (en) 2009-05-08 2013-11-19 Innolene Llc Ocular lens
US20100283164A1 (en) * 2009-05-08 2010-11-11 Leonard Pinchuk Ocular Lens
US20110054600A1 (en) * 2009-06-26 2011-03-03 Abbott Medical Optics Inc. Accommodating intraocular lenses
US9011532B2 (en) 2009-06-26 2015-04-21 Abbott Medical Optics Inc. Accommodating intraocular lenses
US10052194B2 (en) 2009-06-26 2018-08-21 Johnson & Johnson Surgical Vision, Inc. Accommodating intraocular lenses
US8486142B2 (en) 2009-06-26 2013-07-16 Abbott Medical Optics Inc. Accommodating intraocular lenses
US10105215B2 (en) 2009-08-03 2018-10-23 Johnson & Johnson Surgical Vision, Inc. Intraocular lens and methods for providing accommodative vision
US9603703B2 (en) 2009-08-03 2017-03-28 Abbott Medical Optics Inc. Intraocular lens and methods for providing accommodative vision
US8343217B2 (en) 2009-08-03 2013-01-01 Abbott Medical Optics Inc. Intraocular lens and methods for providing accommodative vision
US20110040379A1 (en) * 2009-08-03 2011-02-17 Abbott Medical Optics Inc. Intraocular lens and methods for providing accommodative vision
US20110054601A1 (en) * 2009-08-27 2011-03-03 Abbott Medical Optics Inc. Fixation of opthalmic implants
US9072599B2 (en) 2009-08-27 2015-07-07 Abbott Medical Optics Inc. Fixation of ophthalmic implants
US8447086B2 (en) 2009-08-31 2013-05-21 Powervision, Inc. Lens capsule size estimation
US20110071628A1 (en) * 2009-09-24 2011-03-24 Rainbow Medical Ltd. Accommodative intraocular lens
US8900298B2 (en) 2010-02-23 2014-12-02 Powervision, Inc. Fluid for accommodating intraocular lenses
US11737862B2 (en) 2010-02-23 2023-08-29 Alcon Inc. Fluid for accommodating intraocular lenses
US10980629B2 (en) 2010-02-23 2021-04-20 Alcon Inc. Fluid for accommodating intraocular lenses
US10772721B2 (en) 2010-04-27 2020-09-15 Lensgen, Inc. Accommodating intraocular lens
US8668734B2 (en) 2010-07-09 2014-03-11 Powervision, Inc. Intraocular lens delivery devices and methods of use
US10595989B2 (en) 2010-07-09 2020-03-24 Powervision, Inc. Intraocular lens delivery devices and methods of use
US11779456B2 (en) 2010-07-09 2023-10-10 Alcon Inc. Intraocular lens delivery devices and methods of use
US9044317B2 (en) 2010-07-09 2015-06-02 Powervision, Inc. Intraocular lens delivery devices and methods of use
US9693858B2 (en) 2010-07-09 2017-07-04 Powervision, Inc. Intraocular lens delivery devices and methods of use
US9744028B2 (en) 2011-02-03 2017-08-29 Akkolens International B.V. Haptic combinations for accommodating intraocular lenses
WO2012105843A1 (en) * 2011-02-03 2012-08-09 Akkolens International B.V. Haptic combinations for accommodating intraocular lenses
US10639141B2 (en) 2011-02-04 2020-05-05 Forsight Vision6, Inc. Intraocular accommodating lens and methods of use
US9913712B2 (en) 2011-02-04 2018-03-13 Forsight Labs, Llc Intraocular accommodating lens and methods of use
US11076947B2 (en) 2011-02-04 2021-08-03 Forsight Vision6, Inc. Intraocular accommodating lens and methods of use
US11918458B2 (en) 2011-02-04 2024-03-05 Forsight Vision6, Inc. Intraocular accommodating lens and methods of use
US10722400B2 (en) 2011-09-12 2020-07-28 Amo Development, Llc Hybrid ophthalmic interface apparatus and method of interfacing a surgical laser with an eye
US11484402B2 (en) 2011-11-08 2022-11-01 Alcon Inc. Accommodating intraocular lenses
US10433949B2 (en) 2011-11-08 2019-10-08 Powervision, Inc. Accommodating intraocular lenses
US8500806B1 (en) 2012-01-31 2013-08-06 Andrew F. Phillips Accommodating intraocular lens
EP2623067A1 (en) * 2012-01-31 2013-08-07 Andrew Phillips Accommodating intraocular lens
US11013592B1 (en) 2012-02-22 2021-05-25 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US11033381B2 (en) 2012-02-22 2021-06-15 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US11607307B2 (en) 2012-02-22 2023-03-21 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US11224504B2 (en) 2012-02-22 2022-01-18 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US10136989B2 (en) 2012-02-22 2018-11-27 Omega Ophthalmics Llc Prosthetic implant devices
US9439754B2 (en) 2012-02-22 2016-09-13 Omega Opthalmics LLC Prosthetic capsular bag and method of inserting the same
US11007050B1 (en) 2012-02-22 2021-05-18 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US10820985B2 (en) 2012-02-22 2020-11-03 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US10492903B1 (en) 2012-02-22 2019-12-03 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US9987125B2 (en) 2012-05-02 2018-06-05 Johnson & Johnson Surgical Vision, Inc. Intraocular lens with shape changing capability to provide enhanced accomodation and visual acuity
US9084674B2 (en) 2012-05-02 2015-07-21 Abbott Medical Optics Inc. Intraocular lens with shape changing capability to provide enhanced accomodation and visual acuity
US8945215B2 (en) 2012-05-10 2015-02-03 Abbott Medical Optics Inc. Accommodating intraocular lens with a compressible inner structure
US9186244B2 (en) 2012-12-21 2015-11-17 Lensgen, Inc. Accommodating intraocular lens
US10111745B2 (en) 2012-12-21 2018-10-30 Lensgen, Inc. Accommodating intraocular lens
US9925039B2 (en) 2012-12-26 2018-03-27 Rainbow Medical Ltd. Accommodative intraocular lens
US11278393B2 (en) 2012-12-26 2022-03-22 Rainbow Medical Ltd. Accommodative intraocular lens
US10646330B2 (en) 2012-12-26 2020-05-12 Rainbow Medical Ltd. Accommodative intraocular lens
US10258462B2 (en) 2012-12-26 2019-04-16 Rainbow Medical Ltd. Accommodative intraocular lens
US20140257478A1 (en) * 2013-03-07 2014-09-11 Sean J. McCafferty Accommodating fluidic intraocular lens with flexible interior membrane
US10195020B2 (en) 2013-03-15 2019-02-05 Powervision, Inc. Intraocular lens storage and loading devices and methods of use
US11793627B2 (en) 2013-03-15 2023-10-24 Alcon Inc. Intraocular lens storage and loading devices and methods of use
US11071622B2 (en) 2013-03-15 2021-07-27 Alcon Inc. Intraocular lens storage and loading devices and methods of use
US11464624B2 (en) 2013-11-01 2022-10-11 Lensgen, Inc. Two-part accommodating intraocular lens device
US11471273B2 (en) 2013-11-01 2022-10-18 Lensgen, Inc. Two-part accommodating intraocular lens device
US11464622B2 (en) 2013-11-01 2022-10-11 Lensgen, Inc. Two-part accommodating intraocular lens device
US10159564B2 (en) 2013-11-01 2018-12-25 Lensgen, Inc. Two-part accomodating intraocular lens device
US10842616B2 (en) 2013-11-01 2020-11-24 Lensgen, Inc. Accommodating intraocular lens device
US10722612B2 (en) 2013-12-04 2020-07-28 Alcon Inc. Soft hydrophobic acrylic materials
EP3081192A4 (en) * 2013-12-13 2017-08-09 Xlens Technologies Inc. Adjustable intraocular lens
US10285805B2 (en) 2014-03-28 2019-05-14 Forsight Labs, Llc Accommodating intraocular lens
US11331182B2 (en) 2014-03-28 2022-05-17 Forsight Vision6, Inc. Accommodating intraocular lens
US11554008B2 (en) 2014-06-19 2023-01-17 Omega Opthalmics LLC Prosthetic capsular devices, systems, and methods
US9642699B2 (en) 2014-06-19 2017-05-09 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US10004594B2 (en) 2014-06-19 2018-06-26 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US10842615B2 (en) 2014-06-19 2020-11-24 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US11464621B2 (en) 2014-07-31 2022-10-11 Lensgen, Inc. Accommodating intraocular lens device
US10485654B2 (en) 2014-07-31 2019-11-26 Lensgen, Inc. Accommodating intraocular lens device
US10004596B2 (en) 2014-07-31 2018-06-26 Lensgen, Inc. Accommodating intraocular lens device
US11826246B2 (en) 2014-07-31 2023-11-28 Lensgen, Inc Accommodating intraocular lens device
US10647831B2 (en) 2014-09-23 2020-05-12 LensGens, Inc. Polymeric material for accommodating intraocular lenses
US9925037B2 (en) 2015-02-10 2018-03-27 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US11213381B2 (en) 2015-02-10 2022-01-04 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US9554890B2 (en) 2015-02-10 2017-01-31 Omega Ophthalmics Llc Medicament delivery devices
US11638641B2 (en) 2015-02-10 2023-05-02 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US9522060B2 (en) 2015-02-10 2016-12-20 Omega Ophthalmics Llc Attachment structure prosthetic capsular devices
US9597176B2 (en) 2015-02-10 2017-03-21 Omega Ophthalmics Llc Overlapping side prosthetic capsular devices
US10743983B2 (en) 2015-02-10 2020-08-18 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US9763771B1 (en) 2015-02-10 2017-09-19 Omega Ophthalmics, LLC Prosthetic capsular devices, systems, and methods
US9522059B2 (en) 2015-02-10 2016-12-20 Omega Ophthalmics Llc Insulated prosthetic capsular devices
US9517127B2 (en) 2015-02-10 2016-12-13 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US9504558B2 (en) 2015-02-10 2016-11-29 Omega Ophthalmics Llc Attachable optic prosthetic capsular devices
JP2018504993A (en) * 2015-02-16 2018-02-22 ノバルティス アーゲー Curvature change adjustable intraocular lens with inflatable peripheral reservoir
US9987126B2 (en) 2015-02-16 2018-06-05 Novartis Ag Curvature-changing, accommodative intraocular lenses with expandable peripheral reservoirs
CN107624057A (en) * 2015-02-16 2018-01-23 诺华股份有限公司 Variable curvature type with inflatable peripheral reservoir can adjust intra-ocular lens
WO2016133558A1 (en) * 2015-02-16 2016-08-25 Novartis Ag Curvature-changing, accommodative intraocular lenses with expandable peripheral reservoirs
AU2015383131B2 (en) * 2015-02-16 2020-05-21 Alcon Inc. Curvature-changing, accommodative intraocular lenses with expandable peripheral reservoirs
US11426270B2 (en) 2015-11-06 2022-08-30 Alcon Inc. Accommodating intraocular lenses and methods of manufacturing
US11471270B2 (en) 2015-12-01 2022-10-18 Lensgen, Inc. Accommodating intraocular lens device
US11065107B2 (en) 2015-12-01 2021-07-20 Lensgen, Inc. Accommodating intraocular lens device
US10687936B2 (en) 2016-05-22 2020-06-23 Rayner Intraocular Lenses Limited Hybrid accommodating intraocular lens assemblages
US11589980B2 (en) 2016-05-22 2023-02-28 Rayner Intraocular Lenses Limited Hybrid accommodating intraocular lens assemblages
US10526353B2 (en) 2016-05-27 2020-01-07 Lensgen, Inc. Lens oil having a narrow molecular weight distribution for intraocular lens devices
US10327886B2 (en) 2016-06-01 2019-06-25 Rainbow Medical Ltd. Accomodative intraocular lens
US11696824B2 (en) 2016-06-06 2023-07-11 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US11278394B2 (en) 2016-06-06 2022-03-22 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US10271945B2 (en) 2016-06-06 2019-04-30 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US9993336B2 (en) 2016-06-06 2018-06-12 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US10813745B2 (en) 2016-06-06 2020-10-27 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US11654016B2 (en) 2016-10-21 2023-05-23 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US10111746B2 (en) 2016-10-21 2018-10-30 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US10898315B2 (en) 2016-10-21 2021-01-26 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US11523898B2 (en) 2016-10-28 2022-12-13 Forsight Vision6, Inc. Accommodating intraocular lens and methods of implantation
US10441411B2 (en) 2016-12-29 2019-10-15 Rainbow Medical Ltd. Accommodative intraocular lens
US10716661B2 (en) 2017-07-17 2020-07-21 Verily Life Sciences Llc Accommodating intraocular lens with meniscus
CN110868961A (en) * 2017-07-17 2020-03-06 威里利生命科学有限责任公司 Accommodating intraocular lens with meniscus
WO2019018264A1 (en) * 2017-07-17 2019-01-24 Verily Life Sciences Llc Accommodating intraocular lens with meniscus
US11707354B2 (en) 2017-09-11 2023-07-25 Amo Groningen B.V. Methods and apparatuses to increase intraocular lenses positional stability
US10603162B2 (en) 2018-04-06 2020-03-31 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US11224505B2 (en) 2018-11-02 2022-01-18 Rayner Intraocular Lenses Limited Hybrid accommodating intraocular lens assemblages including discrete lens unit with segmented lens haptics
US11660182B2 (en) 2019-10-04 2023-05-30 Alcon Inc. Adjustable intraocular lenses and methods of post-operatively adjusting intraocular lenses
US11471272B2 (en) 2019-10-04 2022-10-18 Alcon Inc. Adjustable intraocular lenses and methods of post-operatively adjusting intraocular lenses
US11364107B2 (en) 2020-10-12 2022-06-21 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods

Similar Documents

Publication Publication Date Title
US6117171A (en) Encapsulated accommodating intraocular lens
US5489302A (en) Accommodating intraocular lens
US9198752B2 (en) Intraocular lens implant having posterior bendable optic
US8734509B2 (en) Interfacial refraction accommodating lens (IRAL)
US20130110234A1 (en) Dual optic accommodating iol with low refractive index gap material
US5522891A (en) Intraocular lens
CA2740732C (en) Intraocular lens and capsular ring
EP2131786B1 (en) Intraocular lens
US9090033B2 (en) Presbyopia-correcting IOL using curvature change of an air chamber
US20040111152A1 (en) Accommodating multifocal intraocular lens
US8034106B2 (en) Interfacial refraction accommodating lens (IRAL)
US8070806B2 (en) Accommodative intra-ocular lens
AU2006309112B2 (en) Haptic for accommodating intraocular lens
EP3217923B1 (en) Curvature-changing, accommodative intraocular lenses with expandable peripheral reservoirs
US20100016963A1 (en) Intraocular Lens Assembly
WO2009120908A2 (en) Intraocular lens having a haptic that includes a cap
JPS6216760A (en) Intraocular lens
AU5121599A (en) Fluid modulated intraocular lens
US20230210655A1 (en) Accommodating Intraocular Lens with Rigid Tapered Flanges
AU2011218619B2 (en) Intraocular lens implant having posterior bendable optic

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 20040912

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362