US5424756A - Track pad cursor positioning device and method - Google Patents

Track pad cursor positioning device and method Download PDF

Info

Publication number
US5424756A
US5424756A US08/060,839 US6083993A US5424756A US 5424756 A US5424756 A US 5424756A US 6083993 A US6083993 A US 6083993A US 5424756 A US5424756 A US 5424756A
Authority
US
United States
Prior art keywords
pointer
cursor
movement
velocity
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/060,839
Inventor
Yung-Lung Ho
Kwok-Leung Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US08/060,839 priority Critical patent/US5424756A/en
Priority to TW084105050A priority patent/TW270987B/zh
Application granted granted Critical
Publication of US5424756A publication Critical patent/US5424756A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/169Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being an integrated pointing device, e.g. trackball in the palm rest area, mini-joystick integrated between keyboard keys, touch pads or touch stripes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen

Definitions

  • the present invention relates generally to cursor positioning devices for computers and video display units and more particularly to a pad-shaped cursor positioning device and method which involves sensing the velocity of a digit or a pointer moving across a pad.
  • Computers normally use a cursor which appears on the video screen and moves under the control of a cursor control device.
  • cursor control devices are merely keys on the computer keyboard to move the cursor in a horizontal or vertical direction.
  • Key control requires the use of a plurality of keys and is a time consuming method for achieving a desired cursor position.
  • Cursor positioning has been accomplished with a mechanical joy stick of the type commonly used for video games, and although more rapid control may be achieved in this manner than with key control, joysticks are subject to wear which ultimately results in cursor positioning inaccuracies.
  • a very popular form of cursor control is the small, hand held "mouse" which is moved by hand over a working surface to provide cursor control signals which cause a controlled movement of a cursor on a display screen.
  • a mouse may be mechanical or optical, but both require a considerable extent of working surface for operation. The mechanical mouse counts the revolutions of a ball or orthogonal wheels which turn as the mouse moves over a surface, while the optical mouse senses a grid to produce cursor command signals.
  • touch pad control units have been developed in the past. These are generally pressure sensitive or capacitive sensitive touch pads where either the pressure of an operator's finger on a membrane switch array or a change in capacitance resulting from contact by an operator's finger with an array or a single conductive plate provides output control signals for a cursor. These are primarily position sensing units which sense the actual position of a finger or pointer on a touch pad using some type of electronic array which provides a coordinate type of response indicative of position. The output signals from such an array, as illustrated by U.S. Pat. No. 4,550,221 to Mabusth, represent the x and y coordinates of a desired cursor position. A device which provides a velocity control signal by calculating the differences in sensed finger position versus time is disclosed in U.S. Pat. No. 4,988,982 to Rayner.
  • Pressure sensitive and capacitive or resistive touch pads are subject to wear, friction and the effects of stray electrostatic and electromagnetic fields, and are additionally subject to damage from moisture or liquid spilled on the pad and electronic array. Moreover, the manufacturer may be restricted in choosing a suitable material for the pad surface.
  • optical touch entry systems have been developed using opto-matrix light arrays to create a switch matrix and to detect the presence and location of an element in an irradiated field.
  • the number of light emitting and detecting elements corresponds directly to the number of positions at which the cursor can be positioned in each direction. As such, accurate positioning will not occur without the use of an unacceptably large number of detectors. These systems require large amounts of energy to drive the light emitters and detectors and are often subject to inaccuracy due to ambient light and glare unless complex light modulation systems or ambient light compensation systems are provided.
  • the track-ball controller has proven superior as a cursor position controller for portable personal computers and video games. Like other mechanical controllers, however, the track-ball controller has several drawbacks. It can be uncomfortable on the hand, and difficult to use if the ball is small, while a large track-ball controller is difficult to implement on notebook sized personal computers. Finally, being mechanical, it requires maintenance, is subject to wear, and is less reliable than solid state devices.
  • Another object of the present invention is to provide a novel and improved track pad cursor positioning device and method wherein the velocity of movement of a pointer in an x and y direction is optically sensed and a velocity control signal is generated, the velocity control signal is compared to a predetermined threshold value and when the velocity control signal exceeds the threshold value, the signal is used to cause cursor movement in a two dimensional vector at a speed which is a function of the magnitude of the sensed velocity of movement. When the velocity control signal is less than the threshold value in a sensed direction, only limited movement of the cursor in that direction is permitted.
  • a further object of the present invention is to provide a novel and improved track pad cursor positioning device and method which simulates the operation of a track-ball cursor controller.
  • the velocity of a pointer across a track pad is sensed by an optical system which employs a pair of orthogonal, directionally oriented light curtains to generate a velocity control signal to control cursor movement, and the velocity control signal is terminated to halt cursor movement when the sensed pointer is present but pointer movement stops.
  • Yet another object of the present invention is to provide a novel and improved track pad cursor positioning device and method which simulates the movement of a track-ball cursor controller by causing cursor movement to continue but to decelerate after a sensed pointer is removed from a track pad sensing area.
  • a still further object of the present invention is to provide a novel and improved track pad cursor positioning device which employs directional light curtains to create a sharply defined shadow created by the leading and/or trailing edge of a pointer in two orthogonal directions of movement which is optically sensed to determine pointer velocity. Sensing is accomplished using the light curtain with densely packed light sensors. Alternatively, pointer velocity can be determined by sensing the infrared emission from a human finger. No contact between the pointer and an underlying track is necessary, thus facilitating the incorporation of the track pad as a personal computer while permitting flexibility in choosing the shape and texture of the surface material for the track pad.
  • Yet a further object of the present invention is to provide a novel and improved track pad cursor positioning device of small size which can be mounted directly on a laptop computer or a personal computer keyboard.
  • FIG. 1 is a diagram of the track pad structure for the track pad cursor positioning device of the present invention
  • FIG. 2 is a diagram of a second embodiment of the track pad structure for the track pad cursor positioning device of the present invention
  • FIG. 3 is a sectional view of the track pad of FIG. 2;
  • FIG. 4 is a diagram of a third embodiment of the track pad structure for the track pad cursor positioning device of the present invention.
  • FIG. 5 is a diagram of a fourth embodiment of the track pad structure for the track pad cursor positioning device of the present invention.
  • FIG. 6 is a block diagram of the track pad cursor positioning device of the present invention.
  • FIG. 7 is a flow diagram illustrating the operation of the microcontroller of FIGS. 4 and 6;
  • FIG. 8 is a perspective view showing the track pad cursor positioning device of the present invention mounted to slide under a computer keyboard
  • FIG. 9 is a perspective view of the track pad cursor positioning device of the present invention formed as an integral part of a computer keyboard
  • FIG. 10 is a perspective view of the track pad cursor positioning device of the present invention formed as an integral part of a computer keyboard space bar;
  • FIG. 11 is a perspective view of the track pad cursor positioning device of the present invention mounted by an extendable arm on a computer keyboard.
  • the track pad cursor positioning device and method of the present invention electronically models the action of a track-ball by optically sensing the motion of a finger, thumb, or other pointer across a sensing area having a surface that can be shaped and textured for comfort and tactile feedback. In fact, there is actually no need for the pointer or finger to actually contact the surface of the sensing area if such should be desirable. In addition, only the velocity of the moving digit, instead of its absolute position, will be sensed. Given the velocity input in two orthogonal directions, e.g., Vx in the horizontal x, Vy in the vertical, y direction, simplified the expressions for the spin rates of the model track-ball can be written as
  • Sx and Sy are the spin rates of the ball in the x and y directions
  • r is the modeled ball radius
  • f is the friction coefficient that will model the slow down rate of the ball when it is not being spun manually.
  • the coefficient H is set to 0 when physical contact between the manipulating digit and the pad is present and is set to 1 otherwise.
  • the ball radius r can be a function of velocity, i.e., as Vx and Vy increases, r may decrease. This allows for rapid, albeit less accurate positioning of the cursor.
  • the values of r and f are software parameters that can be selected by the user.
  • the track pad cursor positioning device of the present invention indicated generally at 10 employs a detection system 12 which is adapted to directly measure the motion of any optically opaque object.
  • This detection system involves the use of a track pad 14 provided with a sensing area 16 which may be a curved or flat surface as desired.
  • the detection system 12 is an optical system, so that highly directional light (preferably infrared) is sent across the sensing area in orthogonal x and y directions.
  • a light source 18 is provided at the focal point of a two dimensional parabolic mirror 20 to operate through the parabolic mirror to send a highly directional curtain of light across the sensing area 16 in the x direction.
  • a second light source 24 combined with a two dimensional parabolic mirror 26 creates a curtain of highly directional light in the y direction across the sensing area 16.
  • the light sources 18 and 24 may be single light emitting diodes (LEDs) while the light detectors are small semiconductor detection devices such as light detecting diodes.
  • densely packed light detector arrays 30 and 32 Positioned opposite to the light sources 18-20 and 24-26 are densely packed light detector arrays 30 and 32 responsive to light in a limited frequency range (such as infrared) which, in combination with the highly directional light curtains, reduce or substantially eliminate the effects of ambient light and glare created thereby on the sensing area 16 of track pad cursor positioning device.
  • the individual detectors within each array are spaced 0.05 inches or less apart. If the incoming light to the detector arrays 30 and 32 is not sufficiently directional to facilitate a sharp definition of the edges of a pointer, light conduits 34 and 36 may be placed in front of each detector of the arrays to narrow the detector field of view. These conduits can be simple, narrow long holes or optical fibers.
  • a collimated directional light curtain can be directed across the sensing area 16 by replacing the two dimensional parabolic mirrors of FIG. 1 with frosted glass light diffusers 38 and 40 that receive light from LED's 42 and 44. Collimation of the light from the light diffusers is provided by narrow light conduits or optical fibers 46 and 48 which are opposite to but correspond with the conduits or fibers 34 and 36.
  • the detection system 12 uses infrared detectors tuned to detect the 98° F. black-body radiation emitted by the human body, then the light sources 18 and 24 of FIGS. 1 and 2 can be eliminated as shown in FIG. 4.
  • the human finger is used as a pointer, and the black-body radiation emitted by the finger is sensed to define the distance to each of the detectors.
  • the intensity of black-body radiation emitted by the human body falls off with distance.
  • three infrared detection diodes 50, 52 and 54 with suitable lenses 56, 58 and 60 to create a field of view encompassing the sensing area 16, it is possible to measure the motion of living tissues in the field of view for the detector diodes.
  • the conduits 42, 44, 46 and 48 in the track pad 14 are replaced by three arcuate slits 62, 64 and 66 which open around the periphery of the sensing area 16 and extend horizontally outward to a second opening opposite the lenses 56, 58 and 60 to provide a vertically limited field of view for the diodes 50, 52 and 54.
  • This field of view and the extent of the slits is illustrated by broken lines for two of the diodes in FIG. 2.
  • Each diode 50, 52 and 54 will have a different proportionality constant depending on the initial position of the black-body radiation emitter on the sensing area 16. These can be set for each diode to the light level at the time of physical contact with the sensing area, and a simple pressure transducer beneath the sensing area can be used to signal such a contact. In addition, the pressure transducer output can be used to set the coefficient H of equations 1 and 2 which is set in the optical system of FIGS. 1 and 2 by the detection of any obstructed light path.
  • the diodes 50, 52 and 54 provide an analog output to the multiplexer and circuit of FIG. 6 to be described.
  • FIG. 5 illustrates an embodiment of the track pad of FIGS. 1-4 where either a finger or a pointer may be used to move across the sensing area 16.
  • the sensing area is circular in configuration and is substantially surrounded by arcuate shaped illumination strips 68 which are equally spaced from the perimeter of the sensing area. These illumination strips are substantially equal in length and between the ends thereof at approximately the 0, 120 and 240 degree positions on the circle formed by the illumination strips are light sensing detectors 70.
  • In front of each detector are two superimposed vertically spaced flat plates, the top plate of which is shown at 72. These plates are opaque and limit the vertical angle of view for each detector, thereby providing a two dimensional viewing systems.
  • Each detector has a viewing angle in a vertically limited plane such as the single detector viewing angle indicated at 74.
  • the illumination strips 68 may be back illuminated frosted glass, and the detectors 70 are tuned to the emitted light frequency of light emitted by the illumination strips. These detectors will detect the decrease in light intensity due to the presence of a pointer at various positions in the sensing area, and the light decrease sensed by any detector is a function of the distance of the pointer from the detector. Therefore, by using the three detectors to sense light intensity, the velocity of movement of the pointer in the x and y directions can be tracked.
  • the track pad cursor positioning device is controlled by a single chip microcontroller 69 which scans the outputs provided by x and y multiplexers 71 and 73 respectively.
  • a single chip microcontroller 69 which scans the outputs provided by x and y multiplexers 71 and 73 respectively.
  • Each of the closely packed detectors in the detector arrays 30 and 32 has an output terminal which is connected to the multiplexer 71 for the array 30 and to the multiplexer 73 for array 32.
  • the single chip microcontroller causes the multiplexers 71 and 73 to scan the outputs of their associated detector arrays once during each scan period, and a plurality of scan periods per second are initiated by the single chip microcontroller.
  • the outputs from the multiplexers are provided to the single chip microcontroller, and since the period between scans is known, the microcontroller is enabled to compute the velocity of movement of a finger or pointer in the sensing area 16 in both the x and y directions. This computed velocity is then output as a cursor control signal to the cursor control section of a computer 75.
  • the multiplexers 71 and 73 are shown connected to the sensor arrays of FIGS. 1 or 2.
  • each of the light detectors 50, 52 and 54 or 70 are connected to a single multiplexer 71 and then through an analog to digital converter 77 to the single chip microcontroller 69 as shown in FIG. 4.
  • the manner in which the single chip microcontroller operates to compute velocity may best be understood with reference to the flow diagram of FIG. 7.
  • the microcontroller is initialized at 79 when power is applied to the unit, and the microcontroller then enters a sleep mode 80. Cyclically at 81, the unit checks the light detectors which scan the scanning area 16 to sense the edges of a pointer, and if a pointer is not present at 82, a determination is made at 83 as to whether or not the cursor was previously moving. If the cursor was previously moving, a deceleration control operation is generated at 84 and a command is sent to the cursor control at 85 to decelerate the cursor. If no previous cursor movement is sensed at 83, the sleep mode continues.
  • the leading and/or trailing edges of the pointer are sensed at 81 and generally, the movement of both edges is subsequently determined to calculate velocity and direction of movement, although this calculation can be made if only the leading edge or the trailing edge of the pointer is sensed.
  • different individual detectors in the arrays 30 and 32 will become blocked by the opaque pointer, or different intensities indicative of distance will be sensed from the detectors 50, 52, 54 and 70.
  • the sensing area 16 is scanned separately in both the x and y directions by scanning either the multiplexers 71 and 73 in FIG. 6 or the multiplexer 71 in FIG. 4, and since the time between scans is a known time, velocity can be calculated at 86 by determining the distance that at least one edge of the pointer travelled in both the x and y directions during the elapsed time between successive scans in the x and y directions. Each direction is separately scanned to arrive at a velocity calculation for that direction. The calculated velocity for each direction is compared with a threshold velocity at 88, and if the calculated velocity for any direction is less than the threshold value, then it is determined at 90 if this velocity is greater than 0.
  • a signal is provided at 92 to the cursor movement control 85 to move the cursor pixel by pixel in the relevant direction.
  • a stop command is generated at 94 and sent to the cursor control 85 to stop cursor movement.
  • the vector movement and velocity of cursor movement is computed at 96 and provided to the cursor movement control 85.
  • the velocity vector controlling the cursor is a two dimensional vector, and the scaling coefficient between the pointer and the cursor velocity depends on the magnitude of the pointer velocity. If a pointer velocity has previously been sensed and then the pointer is completely removed from the scanning area 16, velocity control signals which decelerate the cursor in the same manner as would be achieved with a rotating track ball are provided. On the other hand, when the pointer stops all movement but is still present in the sensing area 16, all movement of the cursor is stopped in the same manner that a track ball would be stopped if held in place by a finger.
  • the rate of slow down of the cursor without a pointer input, the maximum velocity threshold, and the scaling coefficient are all software controlled and could in fact be configured by the central processor unit 75 or alternatively by software contained in the microcontroller 69.
  • the track pad cursor positioning device 10 Since velocity rather than position sensing is accomplished by the track pad cursor positioning device 10, it is possible to employ a track pad 14 of very limited size, for multiple passes of a pointer across the sensing area 16 can be accomplished to move the cursor across the extent of a CRT screen. Since movement of the cursor in the previously determined vector continues when a finger or pointer is removed from the sensing area 16 to initiate a subsequent pass across the sensing area, no time is lost in moving the cursor by requiring multiple passes of the pointer to cause the cursor to traverse the CRT screen. Of course, the cursor can be stopped at any desired position by stopping all motion of the pointer or finger relative to the sensing area while maintaining the pointer or finger in the sensing area.
  • the small size of the sensing area 16 permits the use of a track pad 14 of limited size that may be easily incorporated in the structure of a personal computer 106.
  • the track pad is in the form of a pull out drawer which may slide beneath the keyboard 108 of a personal computer.
  • the track pad 14 is formed as an integral portion of the keyboard 108 adjacent to the computer operating keys.
  • the detection system 12 Since a pointer or finger used with the track pad cursor positioning device 10 does not need to physically contact or apply pressure to the sensing area 16, it is possible to mount the detection system 12 on a personal computer 106 in a manner which would not be possible if it was necessary to apply pressure to the sensing area.
  • the detection system 12 may be incorporated in the space bar 110 for a personal computer 106, while in FIG. 11, the detection system is mounted on a pivotal retractable and extendable arm 112 connected to the face of the computer keyboard.
  • the track pad cursor positioning device 10 converts the sensed velocity of a pointer on the pad to a cursor velocity which is a function of the sensed pointer velocity.
  • Velocity sensing can be accomplished with no contact or only minimal contact with the track pad surface, and the function of a track ball can be easily simulated for both fine positioning and full screen coverage capability.
  • minute movements can be detected, and a velocity which is a vector of two dimensions can be achieved.
  • the unit can be made to consume very little power and can be constructed in a small, thin package suitable for incorporation in laptop computers. This package is liquid impervious with no moving parts, and gravity or a surrounding environment is not required for operation of the device.
  • the track pad cursor positioning device 10 is immune to electrostatic and electromagnetic effects present in the surrounding environment, for the sensing area does not include a large area incorporating an electronic structure which is receptive to such effects. Thus the device is ideal for military use or use in noisy factory environments.

Abstract

The track pad cursor positioning device and method simulate the movement of a track-ball cursor controller by generating directional light curtains which facilitate optical sensing of the velocity and direction of movement of a pointer across a tracking area to generate a cursor control signal as a function thereof to control cursor movement. If a pointer is sensed but there is no pointer movement relative to the tracking surface, no control signal to move a cursor is generated, but if the presence of a pointer is not sensed after a cursor control signal has been generated, then a cursor control signal is provided which results in continued movement but deceleration of the cursor. The track pad cursor positioning device provides a miniature package which may be incorporated as part of a personal computer keyboard.

Description

TECHNICAL FIELD
The present invention relates generally to cursor positioning devices for computers and video display units and more particularly to a pad-shaped cursor positioning device and method which involves sensing the velocity of a digit or a pointer moving across a pad.
BACKGROUND OF THE INVENTION
Computers normally use a cursor which appears on the video screen and moves under the control of a cursor control device. Some cursor control devices are merely keys on the computer keyboard to move the cursor in a horizontal or vertical direction. Key control requires the use of a plurality of keys and is a time consuming method for achieving a desired cursor position.
Cursor positioning has been accomplished with a mechanical joy stick of the type commonly used for video games, and although more rapid control may be achieved in this manner than with key control, joysticks are subject to wear which ultimately results in cursor positioning inaccuracies.
A very popular form of cursor control is the small, hand held "mouse" which is moved by hand over a working surface to provide cursor control signals which cause a controlled movement of a cursor on a display screen. A mouse may be mechanical or optical, but both require a considerable extent of working surface for operation. The mechanical mouse counts the revolutions of a ball or orthogonal wheels which turn as the mouse moves over a surface, while the optical mouse senses a grid to produce cursor command signals.
Alternatively, a number of touch pad control units have been developed in the past. These are generally pressure sensitive or capacitive sensitive touch pads where either the pressure of an operator's finger on a membrane switch array or a change in capacitance resulting from contact by an operator's finger with an array or a single conductive plate provides output control signals for a cursor. These are primarily position sensing units which sense the actual position of a finger or pointer on a touch pad using some type of electronic array which provides a coordinate type of response indicative of position. The output signals from such an array, as illustrated by U.S. Pat. No. 4,550,221 to Mabusth, represent the x and y coordinates of a desired cursor position. A device which provides a velocity control signal by calculating the differences in sensed finger position versus time is disclosed in U.S. Pat. No. 4,988,982 to Rayner.
Pressure sensitive and capacitive or resistive touch pads are subject to wear, friction and the effects of stray electrostatic and electromagnetic fields, and are additionally subject to damage from moisture or liquid spilled on the pad and electronic array. Moreover, the manufacturer may be restricted in choosing a suitable material for the pad surface. In an attempt to circumvent these problems, optical touch entry systems have been developed using opto-matrix light arrays to create a switch matrix and to detect the presence and location of an element in an irradiated field. These systems, as illustrated by U.S. Pat. No. 5,164,714 to Wehner are not subject to wear in high use environments, but they generally require the use of a large surface area, such as a computer screen, bordered by an extensive array of light emitting and detecting elements. The number of light emitting and detecting elements corresponds directly to the number of positions at which the cursor can be positioned in each direction. As such, accurate positioning will not occur without the use of an unacceptably large number of detectors. These systems require large amounts of energy to drive the light emitters and detectors and are often subject to inaccuracy due to ambient light and glare unless complex light modulation systems or ambient light compensation systems are provided.
Of the known, small mechanical cursor positioning devices, the track-ball controller has proven superior as a cursor position controller for portable personal computers and video games. Like other mechanical controllers, however, the track-ball controller has several drawbacks. It can be uncomfortable on the hand, and difficult to use if the ball is small, while a large track-ball controller is difficult to implement on notebook sized personal computers. Finally, being mechanical, it requires maintenance, is subject to wear, and is less reliable than solid state devices.
DISCLOSURE OF THE INVENTION
It is a primary object of the present invention to provide a novel and improved track pad cursor positioning device and method wherein the velocity of movement of a pointer in an x and y direction is optically sensed and a velocity control signal is generated to cause cursor movement in a two dimensional vector. Movement of the pointer relative to a miniature track pad is facilitated so that the track pad may be part of a laptop computer, may be hidden within a laptop computer or positioned on pivot arms attached to a personal computer.
Another object of the present invention is to provide a novel and improved track pad cursor positioning device and method wherein the velocity of movement of a pointer in an x and y direction is optically sensed and a velocity control signal is generated, the velocity control signal is compared to a predetermined threshold value and when the velocity control signal exceeds the threshold value, the signal is used to cause cursor movement in a two dimensional vector at a speed which is a function of the magnitude of the sensed velocity of movement. When the velocity control signal is less than the threshold value in a sensed direction, only limited movement of the cursor in that direction is permitted.
A further object of the present invention is to provide a novel and improved track pad cursor positioning device and method which simulates the operation of a track-ball cursor controller. The velocity of a pointer across a track pad is sensed by an optical system which employs a pair of orthogonal, directionally oriented light curtains to generate a velocity control signal to control cursor movement, and the velocity control signal is terminated to halt cursor movement when the sensed pointer is present but pointer movement stops.
Yet another object of the present invention is to provide a novel and improved track pad cursor positioning device and method which simulates the movement of a track-ball cursor controller by causing cursor movement to continue but to decelerate after a sensed pointer is removed from a track pad sensing area.
A still further object of the present invention is to provide a novel and improved track pad cursor positioning device which employs directional light curtains to create a sharply defined shadow created by the leading and/or trailing edge of a pointer in two orthogonal directions of movement which is optically sensed to determine pointer velocity. Sensing is accomplished using the light curtain with densely packed light sensors. Alternatively, pointer velocity can be determined by sensing the infrared emission from a human finger. No contact between the pointer and an underlying track is necessary, thus facilitating the incorporation of the track pad as a personal computer while permitting flexibility in choosing the shape and texture of the surface material for the track pad.
Yet a further object of the present invention is to provide a novel and improved track pad cursor positioning device of small size which can be mounted directly on a laptop computer or a personal computer keyboard.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram of the track pad structure for the track pad cursor positioning device of the present invention;
FIG. 2 is a diagram of a second embodiment of the track pad structure for the track pad cursor positioning device of the present invention;
FIG. 3 is a sectional view of the track pad of FIG. 2;
FIG. 4 is a diagram of a third embodiment of the track pad structure for the track pad cursor positioning device of the present invention;
FIG. 5 is a diagram of a fourth embodiment of the track pad structure for the track pad cursor positioning device of the present invention;
FIG. 6 is a block diagram of the track pad cursor positioning device of the present invention;
FIG. 7 is a flow diagram illustrating the operation of the microcontroller of FIGS. 4 and 6;
FIG. 8 is a perspective view showing the track pad cursor positioning device of the present invention mounted to slide under a computer keyboard;
FIG. 9 is a perspective view of the track pad cursor positioning device of the present invention formed as an integral part of a computer keyboard;
FIG. 10 is a perspective view of the track pad cursor positioning device of the present invention formed as an integral part of a computer keyboard space bar; and
FIG. 11 is a perspective view of the track pad cursor positioning device of the present invention mounted by an extendable arm on a computer keyboard.
PREFERRED EMBODIMENT OF THE INVENTION
The track pad cursor positioning device and method of the present invention electronically models the action of a track-ball by optically sensing the motion of a finger, thumb, or other pointer across a sensing area having a surface that can be shaped and textured for comfort and tactile feedback. In fact, there is actually no need for the pointer or finger to actually contact the surface of the sensing area if such should be desirable. In addition, only the velocity of the moving digit, instead of its absolute position, will be sensed. Given the velocity input in two orthogonal directions, e.g., Vx in the horizontal x, Vy in the vertical, y direction, simplified the expressions for the spin rates of the model track-ball can be written as
S.sub.x =V.sub.x /r-Hf∫S.sub.x dt                     (1)
and
S.sub.y =V.sub.y /r-Hf∫S.sub.y dt                     (2)
Here, Sx and Sy are the spin rates of the ball in the x and y directions, r is the modeled ball radius, and f is the friction coefficient that will model the slow down rate of the ball when it is not being spun manually. The coefficient H is set to 0 when physical contact between the manipulating digit and the pad is present and is set to 1 otherwise. Note that being a virtual ball, the ball radius r can be a function of velocity, i.e., as Vx and Vy increases, r may decrease. This allows for rapid, albeit less accurate positioning of the cursor. The values of r and f are software parameters that can be selected by the user.
Referring now to FIGS. 1-3, the track pad cursor positioning device of the present invention indicated generally at 10 employs a detection system 12 which is adapted to directly measure the motion of any optically opaque object. This detection system involves the use of a track pad 14 provided with a sensing area 16 which may be a curved or flat surface as desired. In FIG. 1, the detection system 12 is an optical system, so that highly directional light (preferably infrared) is sent across the sensing area in orthogonal x and y directions. Thus, a light source 18 is provided at the focal point of a two dimensional parabolic mirror 20 to operate through the parabolic mirror to send a highly directional curtain of light across the sensing area 16 in the x direction. Similarly, a second light source 24 combined with a two dimensional parabolic mirror 26 creates a curtain of highly directional light in the y direction across the sensing area 16. The light sources 18 and 24 may be single light emitting diodes (LEDs) while the light detectors are small semiconductor detection devices such as light detecting diodes.
Positioned opposite to the light sources 18-20 and 24-26 are densely packed light detector arrays 30 and 32 responsive to light in a limited frequency range (such as infrared) which, in combination with the highly directional light curtains, reduce or substantially eliminate the effects of ambient light and glare created thereby on the sensing area 16 of track pad cursor positioning device. The individual detectors within each array are spaced 0.05 inches or less apart. If the incoming light to the detector arrays 30 and 32 is not sufficiently directional to facilitate a sharp definition of the edges of a pointer, light conduits 34 and 36 may be placed in front of each detector of the arrays to narrow the detector field of view. These conduits can be simple, narrow long holes or optical fibers.
By employing curtains of light across the sensing area 16 combined with closely packed individual light detectors, it is possible to cause a finger or pointer in the sensing area to cast a sharply defined shadow on the light detectors 30 and 32 which then identify both the leading and the trailing edge of the shadow. By repeatedly sensing at a known rate the leading and/or trailing edge locations of a finger or pointer, it is possible to determine the velocity at which the finger or pointer is moving in the x and y directions. This calculation can be easily made since the scan repeat time for each of the group of detectors 30 and 32 and the distance between detectors is known. Additional lenses or mirrors may be added in certain configurations to facilitate sensors which may be packed less than 0.05 inches apart.
As illustrated in FIG. 2, a collimated directional light curtain can be directed across the sensing area 16 by replacing the two dimensional parabolic mirrors of FIG. 1 with frosted glass light diffusers 38 and 40 that receive light from LED's 42 and 44. Collimation of the light from the light diffusers is provided by narrow light conduits or optical fibers 46 and 48 which are opposite to but correspond with the conduits or fibers 34 and 36.
If the detection system 12 uses infrared detectors tuned to detect the 98° F. black-body radiation emitted by the human body, then the light sources 18 and 24 of FIGS. 1 and 2 can be eliminated as shown in FIG. 4. Here the human finger is used as a pointer, and the black-body radiation emitted by the finger is sensed to define the distance to each of the detectors. As with all types of radiation, the intensity of black-body radiation emitted by the human body falls off with distance. Thus, by using three infrared detection diodes 50, 52 and 54 with suitable lenses 56, 58 and 60 to create a field of view encompassing the sensing area 16, it is possible to measure the motion of living tissues in the field of view for the detector diodes. To simplify the evaluation of distance from detected radiation, it may be necessary to limit the field of view of the diodes in the vertical direction to cause the system to reduce to two dimensions the infrared light level detected at each diode, and thus this light level should be directly proportional to the distance to the emitter or finger. To achieve this, the conduits 42, 44, 46 and 48 in the track pad 14 are replaced by three arcuate slits 62, 64 and 66 which open around the periphery of the sensing area 16 and extend horizontally outward to a second opening opposite the lenses 56, 58 and 60 to provide a vertically limited field of view for the diodes 50, 52 and 54. This field of view and the extent of the slits is illustrated by broken lines for two of the diodes in FIG. 2.
Each diode 50, 52 and 54 will have a different proportionality constant depending on the initial position of the black-body radiation emitter on the sensing area 16. These can be set for each diode to the light level at the time of physical contact with the sensing area, and a simple pressure transducer beneath the sensing area can be used to signal such a contact. In addition, the pressure transducer output can be used to set the coefficient H of equations 1 and 2 which is set in the optical system of FIGS. 1 and 2 by the detection of any obstructed light path. The diodes 50, 52 and 54 provide an analog output to the multiplexer and circuit of FIG. 6 to be described.
FIG. 5 illustrates an embodiment of the track pad of FIGS. 1-4 where either a finger or a pointer may be used to move across the sensing area 16. The sensing area is circular in configuration and is substantially surrounded by arcuate shaped illumination strips 68 which are equally spaced from the perimeter of the sensing area. These illumination strips are substantially equal in length and between the ends thereof at approximately the 0, 120 and 240 degree positions on the circle formed by the illumination strips are light sensing detectors 70. In front of each detector are two superimposed vertically spaced flat plates, the top plate of which is shown at 72. These plates are opaque and limit the vertical angle of view for each detector, thereby providing a two dimensional viewing systems. Each detector has a viewing angle in a vertically limited plane such as the single detector viewing angle indicated at 74.
The illumination strips 68 may be back illuminated frosted glass, and the detectors 70 are tuned to the emitted light frequency of light emitted by the illumination strips. These detectors will detect the decrease in light intensity due to the presence of a pointer at various positions in the sensing area, and the light decrease sensed by any detector is a function of the distance of the pointer from the detector. Therefore, by using the three detectors to sense light intensity, the velocity of movement of the pointer in the x and y directions can be tracked.
Turning now to FIG. 6, the track pad cursor positioning device is controlled by a single chip microcontroller 69 which scans the outputs provided by x and y multiplexers 71 and 73 respectively. Each of the closely packed detectors in the detector arrays 30 and 32 has an output terminal which is connected to the multiplexer 71 for the array 30 and to the multiplexer 73 for array 32. The single chip microcontroller causes the multiplexers 71 and 73 to scan the outputs of their associated detector arrays once during each scan period, and a plurality of scan periods per second are initiated by the single chip microcontroller. The outputs from the multiplexers are provided to the single chip microcontroller, and since the period between scans is known, the microcontroller is enabled to compute the velocity of movement of a finger or pointer in the sensing area 16 in both the x and y directions. This computed velocity is then output as a cursor control signal to the cursor control section of a computer 75.
In FIG. 6, the multiplexers 71 and 73 are shown connected to the sensor arrays of FIGS. 1 or 2. In the systems of FIGS. 4 and 5, each of the light detectors 50, 52 and 54 or 70 are connected to a single multiplexer 71 and then through an analog to digital converter 77 to the single chip microcontroller 69 as shown in FIG. 4.
The manner in which the single chip microcontroller operates to compute velocity may best be understood with reference to the flow diagram of FIG. 7. The microcontroller is initialized at 79 when power is applied to the unit, and the microcontroller then enters a sleep mode 80. Cyclically at 81, the unit checks the light detectors which scan the scanning area 16 to sense the edges of a pointer, and if a pointer is not present at 82, a determination is made at 83 as to whether or not the cursor was previously moving. If the cursor was previously moving, a deceleration control operation is generated at 84 and a command is sent to the cursor control at 85 to decelerate the cursor. If no previous cursor movement is sensed at 83, the sleep mode continues.
On the other hand, once a pointer is sensed in the scanning area 16, the leading and/or trailing edges of the pointer are sensed at 81 and generally, the movement of both edges is subsequently determined to calculate velocity and direction of movement, although this calculation can be made if only the leading edge or the trailing edge of the pointer is sensed. As the pointer moves, different individual detectors in the arrays 30 and 32 will become blocked by the opaque pointer, or different intensities indicative of distance will be sensed from the detectors 50, 52, 54 and 70.
At 81, the sensing area 16 is scanned separately in both the x and y directions by scanning either the multiplexers 71 and 73 in FIG. 6 or the multiplexer 71 in FIG. 4, and since the time between scans is a known time, velocity can be calculated at 86 by determining the distance that at least one edge of the pointer travelled in both the x and y directions during the elapsed time between successive scans in the x and y directions. Each direction is separately scanned to arrive at a velocity calculation for that direction. The calculated velocity for each direction is compared with a threshold velocity at 88, and if the calculated velocity for any direction is less than the threshold value, then it is determined at 90 if this velocity is greater than 0. If this velocity is greater than 0, a signal is provided at 92 to the cursor movement control 85 to move the cursor pixel by pixel in the relevant direction. On the other hand, if the velocity calculated is 0, a stop command is generated at 94 and sent to the cursor control 85 to stop cursor movement.
When the velocity at 88 is greater than the threshold value, then the vector movement and velocity of cursor movement is computed at 96 and provided to the cursor movement control 85.
Since movement of the pointer in both the x and y directions is sensed, the velocity vector controlling the cursor is a two dimensional vector, and the scaling coefficient between the pointer and the cursor velocity depends on the magnitude of the pointer velocity. If a pointer velocity has previously been sensed and then the pointer is completely removed from the scanning area 16, velocity control signals which decelerate the cursor in the same manner as would be achieved with a rotating track ball are provided. On the other hand, when the pointer stops all movement but is still present in the sensing area 16, all movement of the cursor is stopped in the same manner that a track ball would be stopped if held in place by a finger. The rate of slow down of the cursor without a pointer input, the maximum velocity threshold, and the scaling coefficient are all software controlled and could in fact be configured by the central processor unit 75 or alternatively by software contained in the microcontroller 69.
Since velocity rather than position sensing is accomplished by the track pad cursor positioning device 10, it is possible to employ a track pad 14 of very limited size, for multiple passes of a pointer across the sensing area 16 can be accomplished to move the cursor across the extent of a CRT screen. Since movement of the cursor in the previously determined vector continues when a finger or pointer is removed from the sensing area 16 to initiate a subsequent pass across the sensing area, no time is lost in moving the cursor by requiring multiple passes of the pointer to cause the cursor to traverse the CRT screen. Of course, the cursor can be stopped at any desired position by stopping all motion of the pointer or finger relative to the sensing area while maintaining the pointer or finger in the sensing area.
With references to FIGS. 8 and 9, it will be appreciated that the small size of the sensing area 16 permits the use of a track pad 14 of limited size that may be easily incorporated in the structure of a personal computer 106. In FIG. 8, the track pad is in the form of a pull out drawer which may slide beneath the keyboard 108 of a personal computer. In FIG. 9, the track pad 14 is formed as an integral portion of the keyboard 108 adjacent to the computer operating keys.
Since a pointer or finger used with the track pad cursor positioning device 10 does not need to physically contact or apply pressure to the sensing area 16, it is possible to mount the detection system 12 on a personal computer 106 in a manner which would not be possible if it was necessary to apply pressure to the sensing area. For example, as shown in FIG. 10, the detection system 12 may be incorporated in the space bar 110 for a personal computer 106, while in FIG. 11, the detection system is mounted on a pivotal retractable and extendable arm 112 connected to the face of the computer keyboard.
Industrial Applicability
The track pad cursor positioning device 10 converts the sensed velocity of a pointer on the pad to a cursor velocity which is a function of the sensed pointer velocity. Velocity sensing can be accomplished with no contact or only minimal contact with the track pad surface, and the function of a track ball can be easily simulated for both fine positioning and full screen coverage capability. By sensing either or both of the leading or trailing edges of a pointer, minute movements can be detected, and a velocity which is a vector of two dimensions can be achieved. The unit can be made to consume very little power and can be constructed in a small, thin package suitable for incorporation in laptop computers. This package is liquid impervious with no moving parts, and gravity or a surrounding environment is not required for operation of the device. Since the unit can be operated with either the finger or a pointer, handicapped people who use typing sticks attached to the body may use the device effectively. The track pad cursor positioning device 10 is immune to electrostatic and electromagnetic effects present in the surrounding environment, for the sensing area does not include a large area incorporating an electronic structure which is receptive to such effects. Thus the device is ideal for military use or use in noisy factory environments.

Claims (25)

What is claimed is:
1. A method for controlling the movement of a cursor on a video screen using a pointer and a separate track pad having a sensing area which is smaller than the area of the video screen which includes the steps of:
transmitting two directional orthogonally oriented light curtains substantially parallel to and simultaneously across the entirety of said sensing area to create a sharply defined shadow of at least one edge of a pointer in two orthogonal directions x and y of pointer movement when said pointer is contacted by said light curtains,
optically sensing only the velocities and direction of movement of said pointer in a first direction x and a second orthogonal direction y by detecting movement of the edges of said shadows when a pointer is moved in contact with said light curtains over the touch pad regardless of the actual position of the pointer within the sensing area of the touch pad;
generating a velocity control signal as a function of the velocity of movement of the pointer in each of the x and y directions; and
using the velocity control signal to cause movement of the cursor on the video screen in the x and y directions at a velocity which is a function of the sensed velocities of the pointer.
2. The method according to claim 1 which includes forming said velocity control signal to be indicative of a vector in two dimensions formed from the velocities of said pointer in the x and y directions when the sensed velocity in the x and y directions exceeds a predetermined threshold velocity.
3. The method according to claim 2 which includes generating a first velocity control signal to control the movement and direction of movement of said cursor in a vector of the x and y directions at a speed which is a function of pointer velocity when the sensed velocity of the pointer in the x and y directions exceeds a predetermined threshold velocity and a second velocity control signal to cause only a more limited movement of said cursor in one or both of the x and y directions when the sensed velocity of the pointer in such direction is less than said predetermined threshold velocity.
4. The method of claim 3 which includes terminating the generation of said velocity control signals to terminate movement of said cursor after initially sensing the velocity of movement of said pointer when sensed movement of said pointer terminates and the presence of the pointer continues to be sensed.
5. The method of claim 4 which includes generating a velocity control signal to progressively decelerate the movement of said cursor after initially sensing the velocity of movement of said pointer and then the presence of said pointer ceases to be sensed.
6. A method for controlling the movement of a cursor on a video screen divided into pixels using a track pad having a sensing area which is smaller than the area of the video screen which includes the steps of:
transmitting two directional orthogonally oriented light curtains substantially parallel to and simultaneously across the entirety of said sensing area to create a sharply defined shadow of at least one edge of a pointer in two orthogonal directions x and y of pointer movement when said pointer is contacted by said light curtains,
optically sensing the velocities of movement of the pointer in the x and y directions over the track pad regardless of the actual position of the pointer on the track pad;
comparing each of said sensed velocities to a predetermined threshold velocity and
generating a velocity control signal and causing the velocity control signal to move the cursor in a two dimensional vector but only one pixel at a time in an x or y direction when the velocity of movement of the pointer in that direction is greater than zero but less than said threshold velocity and causing the control signal to move the cursor in a two dimensional vector at a velocity dependent upon the actual pointer velocity when the sensed velocity of movement of the pointer in the x and y directions is greater than said threshold velocity.
7. A method for controlling the movement of a cursor on a video screen which includes the steps of:
optically sensing the presence and velocities of movement of a pointer in a first direction x and a second orthogonal direction y over a touch pad regardless of the actual position of the pointer on the touch pad;
generating a velocity control signal as a function of the velocity of movement of the pointer in each of the x and y directions;
using the velocity control signal to cause movement of the cursor in the x and y directions at a velocity which is a function of the sensed velocities of the pointer; and causing the velocity control signal to continue but progressively decelerate the movement of said cursor after the velocity of movement of said pointer has been sensed for a period of time and after the presence of said pointer is no longer sensed, whereby the pointer movement provides control analogous to a trackball input.
8. The method of claim 7 which includes terminating the generation of said velocity control signal to terminate movement of said cursor after initially sensing the velocity of movement of said pointer when sensed movement of said pointer terminates and the presence of the pointer continues to be sensed.
9. A track pad cursor positioning device for controlling the position of a cursor on a video screen by providing a cursor control signal for controlling the speed and direction of movement of a cursor to a cursor control means comprising:
a track pad having a track surface, x sensing means mounted on said track pad for sensing the presence and velocity of movement of a pointer in an x direction above said track surface, y sensing means for sensing the presence and velocity of movement of said pointer in a y direction orthogonal to said x direction above said track surface; said x and y sensing means including a plurality of optical sensors; and
means for generating a cursor control signal as a function of said sensed velocities in said x and y directions connected to said x and y sensing means, said means for generating a cursor control signal operating once a cursor control signal has been generated and cursor movement initiated to generate a cursor control signal which will progressively decelerate the movement of the cursor for a period of time after said x and y sensing means no longer sense the presence of said pointer, whereby the pointer movement provides control analogous to a trackball input.
10. The track pad cursor positioning device of claim 9 wherein said means for generating a cursor control signal operates to provide no cursor control signal upon the failure of said x and y sensing means to sense movement of said pointer while sensing the presence of said pointer.
11. The track pad cursor positioning device of claim 9 wherein said means for generating a cursor control signal operates to compare the sensed velocities of said pointer to a predetermined threshold value and to generate a cursor control signal to move said cursor for only a limited distance when said sensed velocities are less than said predetermined threshold value.
12. The track pad cursor positioning device of claim 9 wherein said x and y sensing means operate to sense the velocity of said pointer without requiring contact between said pointer and said tracking surface.
13. A track pad cursor positioning device for controlling the movement of a cursor on a video screen with a pointer by providing a cursor control signal for controlling the speed and direction of movement of the cursor to a cursor control means comprising:
a track pad having a track surface which is smaller in area than the area of said video screen;
first light transmitting means mounted on said track pad and operative to transmit a first collimated directional curtain of light simultaneously extending across the entirety of said track surface in a direction x;
second light transmitting means mounted on said track pad and operative to transmit a second collimated directional curtain of light simultaneously extending across the entirety of said track surface in a direction y orthogonal to the direction x;
said first and second light transmitting means operating to form first and second light curtains which create a sharply defined shadow at at least one edge of a pointer in two orthogonal directions of pointer movement when said light curtains are contacted by said pointer;
first and second light receiving means mounted on said track pad in opposed, spaced relationship to said first and second light transmitting means respectively and operative to sense the presence and movement of said pointer by sensing the sharply defined edges of said shadows and to provide output signals indicative of the sharply defined edges of the shadows from said pointer; and
means for generating a cursor control signal connected to receive the output signals from said first and second light receiving means to obtain therefrom the velocity and movement of said pointer in the x and y directions, said means for generating a cursor control signal operating in response to said output signals from said first and second light receiving means to generate a cursor control signal operative to move said cursor in a vector of two dimensions which is a function of the movement of said pointer in the x and y directions at a speed which is a function of the velocity of movement of said pointer in the x and y directions.
14. The track pad cursor positioning device of claim 13 wherein said first and second light transmitting means each include at least one light source and a two dimensional parabolic mirror having a focal point, said light source being positioned at the focal point of said parabolic mirror.
15. The track pad cursor positioning device of claim 13 wherein said first and second light transmitting means each include at least one light source and light diffuser means to transmit at least as one component a collimated curtain of light from said light source.
16. The track pad cursor positioning device of claim 13 wherein said first and second light receiving means each include an array of closely packed individual light detectors spaced no more than 0.05 inches apart, and means to limit the field of view of each light detector which operates to cause the light detector to ignore non-directional components of light in the event that such non-directional components are present in the light transmitted by said first and second light transmitting means.
17. The track pad cursor positioning device of claim 13 wherein said first and second light receiving means each include an array of closely packed individual light detector means, each of which provides a detector output signal which is a function of the amount of light received thereby, said means for generating a cursor control signal including scanning means to scan the individual light detector means at a known repetitive scan rate to receive said detector output signal.
18. The track pad cursor positioning device of claim 17 wherein said scanning means separately scans the light detector means of said first and second light receiving means.
19. The track pad cursor positioning device of claim 17 wherein said means for generating a cursor control signal operates to generate a cursor control signal to progressively decelerate the movement of the cursor after the presence and movement of the pointer has been sensed by the first or second light receiving means and then the presence of the pointer is no longer sensed during cursor movement.
20. The track pad cursor positioning device of claim 18 wherein said means for generating a cursor control signal operates to compare the sensed velocities of said pointer to a predetermined threshold value and to generate a cursor control signal to move said cursor for only a limited distance when said sensed velocities are said predetermined threshold value.
21. The track pad cursor positioning device of claim 18 wherein said video screen is divided into pixels, and wherein said means for generating a cursor control signal provides a first velocity signal indicative of the velocity of movement of said pointer in the x direction from the detector output signals obtained from the scanning by said scanning means of said first light receiving means and a second velocity signal indicative of the velocity of movement of said pointer in the y direction from the detector output signals obtained from scanning by said scanning means of said second light receiving means, said means for generating a cursor control signal operating to compare each of said first and second velocity signals with a predetermined threshold velocity signal and to provide a cursor control signal operative to move the cursor pixel by pixel in the x direction of a two dimensional vector when the first velocity signal is greater than zero but less than the predetermined threshold velocity signal and a cursor control signal operative to move the cursor pixel by pixel in the y direction of a two dimensional vector when the second velocity signal is greater than zero but less than the predetermined velocity signal.
22. A track pad cursor positioning device for controlling the position of a cursor on a video screen for a computer having a keyboard by providing a cursor control signal for controlling the speed and direction of movement of the cursor to a cursor control means on the computer in response to the velocity and direction of movement of a pointer comprising:
a track pad having a track surface which is smaller in area than the area of said video screen, said track pad being directly mounted upon said computer keyboard;
sensing means mounted on said track pad to sense the presence and movement of said pointer relative to said track surface in two orthogonal directions x and y by sensing black body radiation emitted by said pointer, and to provide output signals indicative of the location of said pointer relative to said sensing means; and
means for generating a cursor control signal connected to receive the output signals from said sensing means and operative to sense the velocity and movement of said pointer in the x and y directions, said means for generating a cursor control signal operating in response to said output signals to generate a cursor control signal operative to move said cursor in a vector of two dimensions which is a function of the movement of said pointer in the x and y directions, and at a speed which is a function of the velocity of movement of said pointer in the x and y directions, and causing the cursor control signal to continue but progressively decelerate the movement of said cursor after the velocity of movement of said pointer has been sensed for a period of time and after the presence of said pointer is no longer sensed, whereby the pointer movement provides control analogous to a trackball input.
23. The track pad cursor positioning device of claim 22 which includes mounting means on said computer keyboard to mount said track pad for sliding movement relative to said keyboard.
24. The track pad cursor positioning device of claim 22 wherein said computer keyboard includes a space bar, said track pad being formed on said space bar.
25. The track pad cursor positioning device of claim 22 which includes an extendable mounting arm having a first end connected to said track pad and a second end connected to said computer keyboard.
US08/060,839 1993-05-14 1993-05-14 Track pad cursor positioning device and method Expired - Fee Related US5424756A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/060,839 US5424756A (en) 1993-05-14 1993-05-14 Track pad cursor positioning device and method
TW084105050A TW270987B (en) 1993-05-14 1995-05-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/060,839 US5424756A (en) 1993-05-14 1993-05-14 Track pad cursor positioning device and method

Publications (1)

Publication Number Publication Date
US5424756A true US5424756A (en) 1995-06-13

Family

ID=22032069

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/060,839 Expired - Fee Related US5424756A (en) 1993-05-14 1993-05-14 Track pad cursor positioning device and method

Country Status (2)

Country Link
US (1) US5424756A (en)
TW (1) TW270987B (en)

Cited By (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558329A (en) * 1995-03-01 1996-09-24 Liu; William S. Y. Photoelectric digitized joystick
GB2309325A (en) * 1996-01-05 1997-07-23 Dell Usa Lp Trackpad for a computer
EP0794502A1 (en) * 1996-03-04 1997-09-10 Hewlett-Packard Company Pointing device with wrap-around buttons
US5675361A (en) * 1995-08-23 1997-10-07 Santilli; Donald S. Computer keyboard pointing device
US5707160A (en) * 1992-08-24 1998-01-13 Bowen; James H. Infrared based computer input devices including keyboards and touch pads
US5777605A (en) * 1995-05-12 1998-07-07 Sony Corporation Coordinate inputting method and apparatus, and information processing apparatus
US5856822A (en) * 1995-10-27 1999-01-05 02 Micro, Inc. Touch-pad digital computer pointing-device
EP0929028A2 (en) * 1998-01-13 1999-07-14 STMicroelectronics, Inc. Capacitive semiconductor user input device
US6096984A (en) * 1997-01-21 2000-08-01 Dell Usa, L.P. Adjustable touchpad
US6130663A (en) * 1997-07-31 2000-10-10 Null; Nathan D. Touchless input method and apparatus
US6201534B1 (en) 1997-10-03 2001-03-13 Siemens Information And Communications Networks, Inc. Trackball for single digit control of wireless terminal
US6204839B1 (en) * 1997-06-27 2001-03-20 Compaq Computer Corporation Capacitive sensing keyboard and pointing device
US6215471B1 (en) 1998-04-28 2001-04-10 Deluca Michael Joseph Vision pointer method and apparatus
WO2001031429A1 (en) * 1999-10-28 2001-05-03 Fujitsu Limited Information processor
US6279048B1 (en) * 1997-11-14 2001-08-21 Lucent Technologies, Inc. System wake-up based on joystick movement
US6333735B1 (en) * 1999-03-16 2001-12-25 International Business Machines Corporation Method and apparatus for mouse positioning device based on infrared light sources and detectors
US6373463B1 (en) * 1998-10-14 2002-04-16 Honeywell International Inc. Cursor control system with tactile feedback
WO2002035459A1 (en) * 2000-10-27 2002-05-02 Telefonaktiebolaget L M Ericsson (Publ) A portable radio communications device
US6384743B1 (en) 1999-06-14 2002-05-07 Wisconsin Alumni Research Foundation Touch screen for the vision-impaired
EP1204070A1 (en) * 2000-10-27 2002-05-08 Telefonaktiebolaget L M Ericsson (Publ) A portable radio communications device
WO2002056243A2 (en) * 2001-01-16 2002-07-18 Baran Advanced Technologies (86) Ltd. Optical mouse
US6478432B1 (en) * 2001-07-13 2002-11-12 Chad D. Dyner Dynamically generated interactive real imaging device
US6480187B1 (en) * 1997-08-07 2002-11-12 Fujitsu Limited Optical scanning-type touch panel
US6496181B1 (en) 1997-10-03 2002-12-17 Siemens Information And Communication Mobile Llc Scroll select-activate button for wireless terminals
US6552713B1 (en) * 1999-12-16 2003-04-22 Hewlett-Packard Company Optical pointing device
US20030076301A1 (en) * 2001-10-22 2003-04-24 Apple Computer, Inc. Method and apparatus for accelerated scrolling
US6762751B2 (en) * 2001-12-17 2004-07-13 Behavior Tech Computer Corporation Optical pointing device
US6920619B1 (en) * 1997-08-28 2005-07-19 Slavoljub Milekic User interface for removing an object from a display
US20050233809A1 (en) * 1999-10-25 2005-10-20 Silverbrook Research Pty Ltd Method for performing games
US20070013671A1 (en) * 2001-10-22 2007-01-18 Apple Computer, Inc. Touch pad for handheld device
US7184026B2 (en) * 2001-03-19 2007-02-27 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Impedance sensing screen pointing device
US20070052044A1 (en) * 2005-09-06 2007-03-08 Larry Forsblad Scrolling input arrangements using capacitive sensors on a flexible membrane
US20070152967A1 (en) * 2006-01-01 2007-07-05 Dobbs-Stanford Corporation Waterproof and impact resistant mouse
US20070229468A1 (en) * 2006-03-30 2007-10-04 Cypress Semiconductor Corporation Apparatus and method for reducing average scan rate to detect a conductive object on a sensing device
US20070241262A1 (en) * 2006-04-18 2007-10-18 Kye Systems Corp. Optical sensing unit for an optical input device
US20070273560A1 (en) * 2006-05-25 2007-11-29 Cypress Semiconductor Corporation Low pin count solution using capacitance sensing matrix for keyboard architecture
US20070291003A1 (en) * 2006-06-14 2007-12-20 The Hesed Consortia, Llc Lap positioned computer cursor control /input device
US20080007534A1 (en) * 2006-07-10 2008-01-10 Cypress Semiconductor Corporation Touch-sensor with shared capacitive sensors
US7333092B2 (en) 2002-02-25 2008-02-19 Apple Computer, Inc. Touch pad for handheld device
US7345671B2 (en) 2001-10-22 2008-03-18 Apple Inc. Method and apparatus for use of rotational user inputs
US20080155413A1 (en) * 2006-12-22 2008-06-26 Apple Inc. Modified Media Presentation During Scrubbing
US20090015559A1 (en) * 2007-07-13 2009-01-15 Synaptics Incorporated Input device and method for virtual trackball operation
US20090013780A1 (en) * 2006-12-22 2009-01-15 Gao Shawn X Single light source uniform parallel light curtain
US7495659B2 (en) 2003-11-25 2009-02-24 Apple Inc. Touch pad for handheld device
US7499040B2 (en) 2003-08-18 2009-03-03 Apple Inc. Movable touch pad with added functionality
US20090240658A1 (en) * 2008-03-20 2009-09-24 Alex You-Jen Chang Search button on input device
US20100001978A1 (en) * 2008-07-02 2010-01-07 Stephen Brian Lynch Ambient light interference reduction for optical input devices
US20100048301A1 (en) * 2008-08-19 2010-02-25 Sony Computer Entertainment America Inc. Gaming peripheral including rotational element
US20100079411A1 (en) * 2008-09-30 2010-04-01 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Optical finger navigation utilizing quantized movement information
US7795553B2 (en) 2006-09-11 2010-09-14 Apple Inc. Hybrid button
US7880729B2 (en) 2005-10-11 2011-02-01 Apple Inc. Center button isolation ring
US20110057882A1 (en) * 2003-07-31 2011-03-10 Kye Systems Corporation Computer input device for automatically scrolling
US7910843B2 (en) 2007-09-04 2011-03-22 Apple Inc. Compact input device
US20110074828A1 (en) * 2009-09-25 2011-03-31 Jay Christopher Capela Device, Method, and Graphical User Interface for Touch-Based Gestural Input on an Electronic Canvas
US7932897B2 (en) 2004-08-16 2011-04-26 Apple Inc. Method of increasing the spatial resolution of touch sensitive devices
US20110134079A1 (en) * 2009-12-03 2011-06-09 Stmicroelectronics (Research & Development) Limited Touch screen device
US20110141014A1 (en) * 2009-12-16 2011-06-16 Chung Shan Institute Of Science And Technology, Armaments Bureau, M.N.D Movable touchpad with high sensitivity
US8022935B2 (en) 2006-07-06 2011-09-20 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
USRE42738E1 (en) 1997-10-28 2011-09-27 Apple Inc. Portable computers
US8059099B2 (en) 2006-06-02 2011-11-15 Apple Inc. Techniques for interactive input to portable electronic devices
US8058937B2 (en) 2007-01-30 2011-11-15 Cypress Semiconductor Corporation Setting a discharge rate and a charge rate of a relaxation oscillator circuit
US8077147B2 (en) 2005-12-30 2011-12-13 Apple Inc. Mouse with optical sensing surface
US8125461B2 (en) 2008-01-11 2012-02-28 Apple Inc. Dynamic input graphic display
USRE43318E1 (en) * 1997-08-28 2012-04-17 Flatworld Interactives, Llc User interface for removing an object from a display
US8248084B2 (en) 2006-03-31 2012-08-21 Cypress Semiconductor Corporation Touch detection techniques for capacitive touch sense systems
US8258986B2 (en) 2007-07-03 2012-09-04 Cypress Semiconductor Corporation Capacitive-matrix keyboard with multiple touch detection
US8274479B2 (en) 2006-10-11 2012-09-25 Apple Inc. Gimballed scroll wheel
US8314773B2 (en) 2002-09-09 2012-11-20 Apple Inc. Mouse having an optically-based scrolling feature
US8321174B1 (en) 2008-09-26 2012-11-27 Cypress Semiconductor Corporation System and method to measure capacitance of capacitive sensor array
US8358142B2 (en) 2008-02-27 2013-01-22 Cypress Semiconductor Corporation Methods and circuits for measuring mutual and self capacitance
US8395590B2 (en) 2008-12-17 2013-03-12 Apple Inc. Integrated contact switch and touch sensor elements
US20130063374A1 (en) * 2011-09-12 2013-03-14 Ping-Han Lee Method for converting control input of input domain into control output of control domain using variable control resolution technique, and related control apparatus thereof
US8416198B2 (en) 2007-12-03 2013-04-09 Apple Inc. Multi-dimensional scroll wheel
US8482530B2 (en) 2006-11-13 2013-07-09 Apple Inc. Method of capacitively sensing finger position
US8514185B2 (en) 2006-07-06 2013-08-20 Apple Inc. Mutual capacitance touch sensing device
US8525798B2 (en) 2008-01-28 2013-09-03 Cypress Semiconductor Corporation Touch sensing
US8536902B1 (en) 2007-07-03 2013-09-17 Cypress Semiconductor Corporation Capacitance to frequency converter
US8537132B2 (en) 2005-12-30 2013-09-17 Apple Inc. Illuminated touchpad
US8547114B2 (en) 2006-11-14 2013-10-01 Cypress Semiconductor Corporation Capacitance to code converter with sigma-delta modulator
US8564313B1 (en) 2007-07-03 2013-10-22 Cypress Semiconductor Corporation Capacitive field sensor with sigma-delta modulator
US8570052B1 (en) 2008-02-27 2013-10-29 Cypress Semiconductor Corporation Methods and circuits for measuring mutual and self capacitance
GB2502087A (en) * 2012-05-16 2013-11-20 St Microelectronics Res & Dev Gesture recognition
US8660300B2 (en) 2008-12-12 2014-02-25 Silicon Laboratories Inc. Apparatus and method for optical gesture recognition
US8683378B2 (en) 2007-09-04 2014-03-25 Apple Inc. Scrolling techniques for user interfaces
US20140132510A1 (en) * 2012-11-14 2014-05-15 Pixart Imaging Inc. Handheld Electronic Apparatus, Operating Method Thereof, and Non-Transitory Computer Readable Medium Thereof
US8743060B2 (en) 2006-07-06 2014-06-03 Apple Inc. Mutual capacitance touch sensing device
US8760637B2 (en) 2010-08-30 2014-06-24 Alcon Research, Ltd. Optical sensing system including electronically switched optical magnification
US8816967B2 (en) 2008-09-25 2014-08-26 Apple Inc. Capacitive sensor having electrodes arranged on the substrate and the flex circuit
US8820133B2 (en) 2008-02-01 2014-09-02 Apple Inc. Co-extruded materials and methods
US20140247214A1 (en) * 2013-02-19 2014-09-04 Pixart Imaging Inc. Handheld pointer device and tilt angle adjustment method thereof
US8872771B2 (en) 2009-07-07 2014-10-28 Apple Inc. Touch sensing device having conductive nodes
US8976124B1 (en) 2007-05-07 2015-03-10 Cypress Semiconductor Corporation Reducing sleep current in a capacitance sensing system
US9098182B2 (en) 2010-07-30 2015-08-04 Apple Inc. Device, method, and graphical user interface for copying user interface objects between content regions
US20160011664A1 (en) * 2014-07-08 2016-01-14 Apple Inc. Haptic notifications utilizing haptic input devices
US9280262B2 (en) 2006-12-22 2016-03-08 Apple Inc. Select drag and drop operations on video thumbnails across clip boundaries
US9310907B2 (en) 2009-09-25 2016-04-12 Apple Inc. Device, method, and graphical user interface for manipulating user interface objects
US9354751B2 (en) 2009-05-15 2016-05-31 Apple Inc. Input device with optimized capacitive sensing
US9367151B2 (en) 2005-12-30 2016-06-14 Apple Inc. Touch pad with symbols based on mode
US9417728B2 (en) 2009-07-28 2016-08-16 Parade Technologies, Ltd. Predictive touch surface scanning
US9454256B2 (en) 2008-03-14 2016-09-27 Apple Inc. Sensor configurations of an input device that are switchable based on mode
US9500686B1 (en) 2007-06-29 2016-11-22 Cypress Semiconductor Corporation Capacitance measurement system and methods
US9594429B2 (en) 2014-03-27 2017-03-14 Apple Inc. Adjusting the level of acoustic and haptic output in haptic devices
US9626098B2 (en) 2010-07-30 2017-04-18 Apple Inc. Device, method, and graphical user interface for copying formatting attributes
US9654104B2 (en) 2007-07-17 2017-05-16 Apple Inc. Resistive force sensor with capacitive discrimination
US9710061B2 (en) 2011-06-17 2017-07-18 Apple Inc. Haptic feedback device
US9804689B2 (en) 2013-02-19 2017-10-31 Pixart Imaging Inc. Handheld pointer device and pointer positioning method thereof
US9829981B1 (en) 2016-05-26 2017-11-28 Apple Inc. Haptic output device
US9959907B2 (en) 2006-12-22 2018-05-01 Apple Inc. Fast creation of video segments
US10133351B2 (en) 2014-05-21 2018-11-20 Apple Inc. Providing haptic output based on a determined orientation of an electronic device
US10254927B2 (en) 2009-09-25 2019-04-09 Apple Inc. Device, method, and graphical user interface for manipulating workspace views
US10254840B2 (en) 2015-07-21 2019-04-09 Apple Inc. Guidance device for the sensory impaired
US10372214B1 (en) 2016-09-07 2019-08-06 Apple Inc. Adaptable user-selectable input area in an electronic device
US10437359B1 (en) 2017-02-28 2019-10-08 Apple Inc. Stylus with external magnetic influence
US10556252B2 (en) 2017-09-20 2020-02-11 Apple Inc. Electronic device having a tuned resonance haptic actuation system
US10585480B1 (en) 2016-05-10 2020-03-10 Apple Inc. Electronic device with an input device having a haptic engine
US10613678B1 (en) 2018-09-17 2020-04-07 Apple Inc. Input device with haptic feedback
US10649529B1 (en) 2016-06-28 2020-05-12 Apple Inc. Modification of user-perceived feedback of an input device using acoustic or haptic output
US10768738B1 (en) 2017-09-27 2020-09-08 Apple Inc. Electronic device having a haptic actuator with magnetic augmentation
US10768747B2 (en) 2017-08-31 2020-09-08 Apple Inc. Haptic realignment cues for touch-input displays
US10772394B1 (en) 2016-03-08 2020-09-15 Apple Inc. Tactile output for wearable device
US10775889B1 (en) 2017-07-21 2020-09-15 Apple Inc. Enclosure with locally-flexible regions
US10845878B1 (en) 2016-07-25 2020-11-24 Apple Inc. Input device with tactile feedback
US10936071B2 (en) 2018-08-30 2021-03-02 Apple Inc. Wearable electronic device with haptic rotatable input
US10942571B2 (en) 2018-06-29 2021-03-09 Apple Inc. Laptop computing device with discrete haptic regions
US10966007B1 (en) 2018-09-25 2021-03-30 Apple Inc. Haptic output system
US11024135B1 (en) 2020-06-17 2021-06-01 Apple Inc. Portable electronic device having a haptic button assembly
US11054932B2 (en) 2017-09-06 2021-07-06 Apple Inc. Electronic device having a touch sensor, force sensor, and haptic actuator in an integrated module
US11334229B2 (en) 2009-09-22 2022-05-17 Apple Inc. Device, method, and graphical user interface for manipulating user interface objects

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110330A (en) * 1979-02-16 1980-08-25 Mitsubishi Electric Corp Information input unit
US4409479A (en) * 1981-12-03 1983-10-11 Xerox Corporation Optical cursor control device
GB2152250A (en) * 1983-11-23 1985-07-31 Marconi Instruments Ltd Information display arrangements
JPS60178526A (en) * 1984-02-24 1985-09-12 Hitachi Ltd Touch sensor for display screen
US4550221A (en) * 1983-10-07 1985-10-29 Scott Mabusth Touch sensitive control device
US4578674A (en) * 1983-04-20 1986-03-25 International Business Machines Corporation Method and apparatus for wireless cursor position control
US4734685A (en) * 1983-07-28 1988-03-29 Canon Kabushiki Kaisha Position control apparatus
US4880967A (en) * 1988-02-04 1989-11-14 Kwang Chien Fong Coordinate vector method for optical input device
US4899138A (en) * 1987-01-10 1990-02-06 Pioneer Electronic Corporation Touch panel control device with touch time and finger direction discrimination
US4905174A (en) * 1987-09-07 1990-02-27 Alps Electric Co., Ltd. Optical coordinate input apparatus
US4916308A (en) * 1988-10-17 1990-04-10 Tektronix, Inc. Integrated liquid crystal display and optical touch panel
US4988982A (en) * 1987-03-25 1991-01-29 The Grass Valley Group, Inc. Touch pad machine control
EP0419145A1 (en) * 1989-09-22 1991-03-27 Psion Plc Input device
US5105186A (en) * 1990-05-25 1992-04-14 Hewlett-Packard Company Lcd touch screen
US5164714A (en) * 1988-06-20 1992-11-17 Amp Incorporated Modulated touch entry system and method with synchronous detection
US5195179A (en) * 1986-01-29 1993-03-16 Hitachi, Ltd. Coordinate input apparatus
US5231380A (en) * 1989-08-09 1993-07-27 Microtouch Systems, Inc. Input keyboard touch-sensitive adjunct
US5274361A (en) * 1991-08-15 1993-12-28 The United States Of America As Represented By The Secretary Of The Navy Laser optical mouse

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110330A (en) * 1979-02-16 1980-08-25 Mitsubishi Electric Corp Information input unit
US4409479A (en) * 1981-12-03 1983-10-11 Xerox Corporation Optical cursor control device
US4578674A (en) * 1983-04-20 1986-03-25 International Business Machines Corporation Method and apparatus for wireless cursor position control
US4734685A (en) * 1983-07-28 1988-03-29 Canon Kabushiki Kaisha Position control apparatus
US4550221A (en) * 1983-10-07 1985-10-29 Scott Mabusth Touch sensitive control device
GB2152250A (en) * 1983-11-23 1985-07-31 Marconi Instruments Ltd Information display arrangements
JPS60178526A (en) * 1984-02-24 1985-09-12 Hitachi Ltd Touch sensor for display screen
US5195179A (en) * 1986-01-29 1993-03-16 Hitachi, Ltd. Coordinate input apparatus
US4899138A (en) * 1987-01-10 1990-02-06 Pioneer Electronic Corporation Touch panel control device with touch time and finger direction discrimination
US4988982A (en) * 1987-03-25 1991-01-29 The Grass Valley Group, Inc. Touch pad machine control
US4905174A (en) * 1987-09-07 1990-02-27 Alps Electric Co., Ltd. Optical coordinate input apparatus
US4880967A (en) * 1988-02-04 1989-11-14 Kwang Chien Fong Coordinate vector method for optical input device
US5164714A (en) * 1988-06-20 1992-11-17 Amp Incorporated Modulated touch entry system and method with synchronous detection
US4916308A (en) * 1988-10-17 1990-04-10 Tektronix, Inc. Integrated liquid crystal display and optical touch panel
US5231380A (en) * 1989-08-09 1993-07-27 Microtouch Systems, Inc. Input keyboard touch-sensitive adjunct
EP0419145A1 (en) * 1989-09-22 1991-03-27 Psion Plc Input device
US5105186A (en) * 1990-05-25 1992-04-14 Hewlett-Packard Company Lcd touch screen
US5274361A (en) * 1991-08-15 1993-12-28 The United States Of America As Represented By The Secretary Of The Navy Laser optical mouse

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"IBM Technical Disclosure Bulletin" vol. 28, No. 5 Oct. 1985 pp. 1840-1842.
IBM Technical Disclosure Bulletin vol. 28, No. 5 Oct. 1985 pp. 1840 1842. *
The Unmouse Microtouch Systems Inc. by MicroTouch. *
The Unmouse PC User s Guide, 1992, Microtouch Systems, Inc., pp. 1 63. *
The Unmouse PC User's Guide, 1992, Microtouch Systems, Inc., pp. 1-63.

Cited By (213)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707160A (en) * 1992-08-24 1998-01-13 Bowen; James H. Infrared based computer input devices including keyboards and touch pads
US5558329A (en) * 1995-03-01 1996-09-24 Liu; William S. Y. Photoelectric digitized joystick
US5777605A (en) * 1995-05-12 1998-07-07 Sony Corporation Coordinate inputting method and apparatus, and information processing apparatus
US5675361A (en) * 1995-08-23 1997-10-07 Santilli; Donald S. Computer keyboard pointing device
US5856822A (en) * 1995-10-27 1999-01-05 02 Micro, Inc. Touch-pad digital computer pointing-device
GB2309325A (en) * 1996-01-05 1997-07-23 Dell Usa Lp Trackpad for a computer
EP0794502A1 (en) * 1996-03-04 1997-09-10 Hewlett-Packard Company Pointing device with wrap-around buttons
US5914702A (en) * 1996-03-04 1999-06-22 Hewlett-Packard Company Pointing device with wrap-around buttons
US6096984A (en) * 1997-01-21 2000-08-01 Dell Usa, L.P. Adjustable touchpad
US6204839B1 (en) * 1997-06-27 2001-03-20 Compaq Computer Corporation Capacitive sensing keyboard and pointing device
US6130663A (en) * 1997-07-31 2000-10-10 Null; Nathan D. Touchless input method and apparatus
US6480187B1 (en) * 1997-08-07 2002-11-12 Fujitsu Limited Optical scanning-type touch panel
USRE43318E1 (en) * 1997-08-28 2012-04-17 Flatworld Interactives, Llc User interface for removing an object from a display
US6920619B1 (en) * 1997-08-28 2005-07-19 Slavoljub Milekic User interface for removing an object from a display
US6201534B1 (en) 1997-10-03 2001-03-13 Siemens Information And Communications Networks, Inc. Trackball for single digit control of wireless terminal
US6496181B1 (en) 1997-10-03 2002-12-17 Siemens Information And Communication Mobile Llc Scroll select-activate button for wireless terminals
USRE44103E1 (en) 1997-10-28 2013-03-26 Apple Inc. Portable computers
USRE45559E1 (en) 1997-10-28 2015-06-09 Apple Inc. Portable computers
USRE46548E1 (en) 1997-10-28 2017-09-12 Apple Inc. Portable computers
USRE42738E1 (en) 1997-10-28 2011-09-27 Apple Inc. Portable computers
USRE44855E1 (en) 1997-10-28 2014-04-22 Apple Inc. Multi-functional cellular telephone
US6279048B1 (en) * 1997-11-14 2001-08-21 Lucent Technologies, Inc. System wake-up based on joystick movement
US6408087B1 (en) * 1998-01-13 2002-06-18 Stmicroelectronics, Inc. Capacitive semiconductor user input device
EP2085862A3 (en) * 1998-01-13 2009-12-30 UPEK, Inc. Capacitive semiconductor user input device
EP0929028A2 (en) * 1998-01-13 1999-07-14 STMicroelectronics, Inc. Capacitive semiconductor user input device
EP0929028A3 (en) * 1998-01-13 2000-10-25 STMicroelectronics, Inc. Capacitive semiconductor user input device
US6215471B1 (en) 1998-04-28 2001-04-10 Deluca Michael Joseph Vision pointer method and apparatus
US6373463B1 (en) * 1998-10-14 2002-04-16 Honeywell International Inc. Cursor control system with tactile feedback
US6333735B1 (en) * 1999-03-16 2001-12-25 International Business Machines Corporation Method and apparatus for mouse positioning device based on infrared light sources and detectors
US6384743B1 (en) 1999-06-14 2002-05-07 Wisconsin Alumni Research Foundation Touch screen for the vision-impaired
US7477987B2 (en) * 1999-10-25 2009-01-13 Silverbrook Research Pty Ltd Method for performing games
US20050233809A1 (en) * 1999-10-25 2005-10-20 Silverbrook Research Pty Ltd Method for performing games
US20090088251A1 (en) * 1999-10-25 2009-04-02 Selverbrook Research Pty Ltd System for Performing Games
WO2001031429A1 (en) * 1999-10-28 2001-05-03 Fujitsu Limited Information processor
US6552713B1 (en) * 1999-12-16 2003-04-22 Hewlett-Packard Company Optical pointing device
EP1204070A1 (en) * 2000-10-27 2002-05-08 Telefonaktiebolaget L M Ericsson (Publ) A portable radio communications device
WO2002035459A1 (en) * 2000-10-27 2002-05-02 Telefonaktiebolaget L M Ericsson (Publ) A portable radio communications device
WO2002056243A3 (en) * 2001-01-16 2002-10-10 Baran Advanced Tech Ltd Optical mouse
WO2002056243A2 (en) * 2001-01-16 2002-07-18 Baran Advanced Technologies (86) Ltd. Optical mouse
US7184026B2 (en) * 2001-03-19 2007-02-27 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Impedance sensing screen pointing device
US6478432B1 (en) * 2001-07-13 2002-11-12 Chad D. Dyner Dynamically generated interactive real imaging device
US20070013671A1 (en) * 2001-10-22 2007-01-18 Apple Computer, Inc. Touch pad for handheld device
US8952886B2 (en) 2001-10-22 2015-02-10 Apple Inc. Method and apparatus for accelerated scrolling
US20030076301A1 (en) * 2001-10-22 2003-04-24 Apple Computer, Inc. Method and apparatus for accelerated scrolling
US7345671B2 (en) 2001-10-22 2008-03-18 Apple Inc. Method and apparatus for use of rotational user inputs
US7348967B2 (en) 2001-10-22 2008-03-25 Apple Inc. Touch pad for handheld device
US7312785B2 (en) 2001-10-22 2007-12-25 Apple Inc. Method and apparatus for accelerated scrolling
US7710409B2 (en) 2001-10-22 2010-05-04 Apple Inc. Method and apparatus for use of rotational user inputs
US9009626B2 (en) 2001-10-22 2015-04-14 Apple Inc. Method and apparatus for accelerated scrolling
US7710394B2 (en) 2001-10-22 2010-05-04 Apple Inc. Method and apparatus for use of rotational user inputs
US7710393B2 (en) 2001-10-22 2010-05-04 Apple Inc. Method and apparatus for accelerated scrolling
US9977518B2 (en) 2001-10-22 2018-05-22 Apple Inc. Scrolling based on rotational movement
US6762751B2 (en) * 2001-12-17 2004-07-13 Behavior Tech Computer Corporation Optical pointing device
US10353565B2 (en) 2002-02-25 2019-07-16 Apple Inc. Input apparatus and button arrangement for handheld device
US7333092B2 (en) 2002-02-25 2008-02-19 Apple Computer, Inc. Touch pad for handheld device
US8446370B2 (en) 2002-02-25 2013-05-21 Apple Inc. Touch pad for handheld device
US8314773B2 (en) 2002-09-09 2012-11-20 Apple Inc. Mouse having an optically-based scrolling feature
US20110057882A1 (en) * 2003-07-31 2011-03-10 Kye Systems Corporation Computer input device for automatically scrolling
US8217896B2 (en) * 2003-07-31 2012-07-10 Kye Systems Corporation Computer input device for automatically scrolling
US7499040B2 (en) 2003-08-18 2009-03-03 Apple Inc. Movable touch pad with added functionality
US8749493B2 (en) 2003-08-18 2014-06-10 Apple Inc. Movable touch pad with added functionality
US8552990B2 (en) 2003-11-25 2013-10-08 Apple Inc. Touch pad for handheld device
US7495659B2 (en) 2003-11-25 2009-02-24 Apple Inc. Touch pad for handheld device
US8933890B2 (en) 2003-11-25 2015-01-13 Apple Inc. Techniques for interactive input to portable electronic devices
US7932897B2 (en) 2004-08-16 2011-04-26 Apple Inc. Method of increasing the spatial resolution of touch sensitive devices
US7671837B2 (en) 2005-09-06 2010-03-02 Apple Inc. Scrolling input arrangements using capacitive sensors on a flexible membrane
US20070052044A1 (en) * 2005-09-06 2007-03-08 Larry Forsblad Scrolling input arrangements using capacitive sensors on a flexible membrane
US7880729B2 (en) 2005-10-11 2011-02-01 Apple Inc. Center button isolation ring
US8537132B2 (en) 2005-12-30 2013-09-17 Apple Inc. Illuminated touchpad
US8077147B2 (en) 2005-12-30 2011-12-13 Apple Inc. Mouse with optical sensing surface
US9367151B2 (en) 2005-12-30 2016-06-14 Apple Inc. Touch pad with symbols based on mode
US20070152967A1 (en) * 2006-01-01 2007-07-05 Dobbs-Stanford Corporation Waterproof and impact resistant mouse
US9152284B1 (en) 2006-03-30 2015-10-06 Cypress Semiconductor Corporation Apparatus and method for reducing average scan rate to detect a conductive object on a sensing device
US8493351B2 (en) 2006-03-30 2013-07-23 Cypress Semiconductor Corporation Apparatus and method for reducing average scan rate to detect a conductive object on a sensing device
US20070229468A1 (en) * 2006-03-30 2007-10-04 Cypress Semiconductor Corporation Apparatus and method for reducing average scan rate to detect a conductive object on a sensing device
US8144125B2 (en) * 2006-03-30 2012-03-27 Cypress Semiconductor Corporation Apparatus and method for reducing average scan rate to detect a conductive object on a sensing device
US9494627B1 (en) 2006-03-31 2016-11-15 Monterey Research, Llc Touch detection techniques for capacitive touch sense systems
US8248084B2 (en) 2006-03-31 2012-08-21 Cypress Semiconductor Corporation Touch detection techniques for capacitive touch sense systems
US20070241262A1 (en) * 2006-04-18 2007-10-18 Kye Systems Corp. Optical sensing unit for an optical input device
US9019133B1 (en) 2006-05-25 2015-04-28 Cypress Semiconductor Corporation Low pin count solution using capacitance sensing matrix for keyboard architecture
US20070273560A1 (en) * 2006-05-25 2007-11-29 Cypress Semiconductor Corporation Low pin count solution using capacitance sensing matrix for keyboard architecture
US8482437B1 (en) 2006-05-25 2013-07-09 Cypress Semiconductor Corporation Capacitance sensing matrix for keyboard architecture
US8059015B2 (en) 2006-05-25 2011-11-15 Cypress Semiconductor Corporation Capacitance sensing matrix for keyboard architecture
US8059099B2 (en) 2006-06-02 2011-11-15 Apple Inc. Techniques for interactive input to portable electronic devices
US20070291003A1 (en) * 2006-06-14 2007-12-20 The Hesed Consortia, Llc Lap positioned computer cursor control /input device
US9360967B2 (en) 2006-07-06 2016-06-07 Apple Inc. Mutual capacitance touch sensing device
US10890953B2 (en) 2006-07-06 2021-01-12 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
US8743060B2 (en) 2006-07-06 2014-06-03 Apple Inc. Mutual capacitance touch sensing device
US10139870B2 (en) 2006-07-06 2018-11-27 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
US8022935B2 (en) 2006-07-06 2011-09-20 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
US8514185B2 (en) 2006-07-06 2013-08-20 Apple Inc. Mutual capacitance touch sensing device
US10359813B2 (en) 2006-07-06 2019-07-23 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
US9405421B2 (en) 2006-07-06 2016-08-02 Apple Inc. Mutual capacitance touch sensing device
US20080007534A1 (en) * 2006-07-10 2008-01-10 Cypress Semiconductor Corporation Touch-sensor with shared capacitive sensors
US8040321B2 (en) 2006-07-10 2011-10-18 Cypress Semiconductor Corporation Touch-sensor with shared capacitive sensors
US8044314B2 (en) 2006-09-11 2011-10-25 Apple Inc. Hybrid button
US7795553B2 (en) 2006-09-11 2010-09-14 Apple Inc. Hybrid button
US8274479B2 (en) 2006-10-11 2012-09-25 Apple Inc. Gimballed scroll wheel
US10180732B2 (en) 2006-10-11 2019-01-15 Apple Inc. Gimballed scroll wheel
US8482530B2 (en) 2006-11-13 2013-07-09 Apple Inc. Method of capacitively sensing finger position
US8547114B2 (en) 2006-11-14 2013-10-01 Cypress Semiconductor Corporation Capacitance to code converter with sigma-delta modulator
US9154160B2 (en) 2006-11-14 2015-10-06 Cypress Semiconductor Corporation Capacitance to code converter with sigma-delta modulator
US9166621B2 (en) 2006-11-14 2015-10-20 Cypress Semiconductor Corporation Capacitance to code converter with sigma-delta modulator
US9959907B2 (en) 2006-12-22 2018-05-01 Apple Inc. Fast creation of video segments
US9280262B2 (en) 2006-12-22 2016-03-08 Apple Inc. Select drag and drop operations on video thumbnails across clip boundaries
US9335892B2 (en) 2006-12-22 2016-05-10 Apple Inc. Select drag and drop operations on video thumbnails across clip boundaries
US20090013780A1 (en) * 2006-12-22 2009-01-15 Gao Shawn X Single light source uniform parallel light curtain
US9830063B2 (en) 2006-12-22 2017-11-28 Apple Inc. Modified media presentation during scrubbing
US8943410B2 (en) * 2006-12-22 2015-01-27 Apple Inc. Modified media presentation during scrubbing
US20080155413A1 (en) * 2006-12-22 2008-06-26 Apple Inc. Modified Media Presentation During Scrubbing
US7872746B2 (en) * 2006-12-22 2011-01-18 Alcon, Inc. Single light source uniform parallel light curtain
US8058937B2 (en) 2007-01-30 2011-11-15 Cypress Semiconductor Corporation Setting a discharge rate and a charge rate of a relaxation oscillator circuit
US10788937B2 (en) 2007-05-07 2020-09-29 Cypress Semiconductor Corporation Reducing sleep current in a capacitance sensing system
US8976124B1 (en) 2007-05-07 2015-03-10 Cypress Semiconductor Corporation Reducing sleep current in a capacitance sensing system
US9500686B1 (en) 2007-06-29 2016-11-22 Cypress Semiconductor Corporation Capacitance measurement system and methods
US8536902B1 (en) 2007-07-03 2013-09-17 Cypress Semiconductor Corporation Capacitance to frequency converter
US8258986B2 (en) 2007-07-03 2012-09-04 Cypress Semiconductor Corporation Capacitive-matrix keyboard with multiple touch detection
US11549975B2 (en) 2007-07-03 2023-01-10 Cypress Semiconductor Corporation Capacitive field sensor with sigma-delta modulator
US8564313B1 (en) 2007-07-03 2013-10-22 Cypress Semiconductor Corporation Capacitive field sensor with sigma-delta modulator
US10025441B2 (en) 2007-07-03 2018-07-17 Cypress Semiconductor Corporation Capacitive field sensor with sigma-delta modulator
US8570053B1 (en) 2007-07-03 2013-10-29 Cypress Semiconductor Corporation Capacitive field sensor with sigma-delta modulator
US8692767B2 (en) * 2007-07-13 2014-04-08 Synaptics Incorporated Input device and method for virtual trackball operation
US20090015559A1 (en) * 2007-07-13 2009-01-15 Synaptics Incorporated Input device and method for virtual trackball operation
US9654104B2 (en) 2007-07-17 2017-05-16 Apple Inc. Resistive force sensor with capacitive discrimination
US8330061B2 (en) 2007-09-04 2012-12-11 Apple Inc. Compact input device
US10866718B2 (en) 2007-09-04 2020-12-15 Apple Inc. Scrolling techniques for user interfaces
US7910843B2 (en) 2007-09-04 2011-03-22 Apple Inc. Compact input device
US8683378B2 (en) 2007-09-04 2014-03-25 Apple Inc. Scrolling techniques for user interfaces
US8866780B2 (en) 2007-12-03 2014-10-21 Apple Inc. Multi-dimensional scroll wheel
US8416198B2 (en) 2007-12-03 2013-04-09 Apple Inc. Multi-dimensional scroll wheel
US8125461B2 (en) 2008-01-11 2012-02-28 Apple Inc. Dynamic input graphic display
US9760192B2 (en) 2008-01-28 2017-09-12 Cypress Semiconductor Corporation Touch sensing
US8525798B2 (en) 2008-01-28 2013-09-03 Cypress Semiconductor Corporation Touch sensing
US8820133B2 (en) 2008-02-01 2014-09-02 Apple Inc. Co-extruded materials and methods
US9494628B1 (en) 2008-02-27 2016-11-15 Parade Technologies, Ltd. Methods and circuits for measuring mutual and self capacitance
US8692563B1 (en) 2008-02-27 2014-04-08 Cypress Semiconductor Corporation Methods and circuits for measuring mutual and self capacitance
US8358142B2 (en) 2008-02-27 2013-01-22 Cypress Semiconductor Corporation Methods and circuits for measuring mutual and self capacitance
US8570052B1 (en) 2008-02-27 2013-10-29 Cypress Semiconductor Corporation Methods and circuits for measuring mutual and self capacitance
US9423427B2 (en) 2008-02-27 2016-08-23 Parade Technologies, Ltd. Methods and circuits for measuring mutual and self capacitance
US9454256B2 (en) 2008-03-14 2016-09-27 Apple Inc. Sensor configurations of an input device that are switchable based on mode
US20090240658A1 (en) * 2008-03-20 2009-09-24 Alex You-Jen Chang Search button on input device
US20100001978A1 (en) * 2008-07-02 2010-01-07 Stephen Brian Lynch Ambient light interference reduction for optical input devices
US20100048301A1 (en) * 2008-08-19 2010-02-25 Sony Computer Entertainment America Inc. Gaming peripheral including rotational element
WO2010021710A1 (en) * 2008-08-19 2010-02-25 Sony Computer Entertainment America Inc. Gaming peripheral including rotational element
US8816967B2 (en) 2008-09-25 2014-08-26 Apple Inc. Capacitive sensor having electrodes arranged on the substrate and the flex circuit
US10386969B1 (en) 2008-09-26 2019-08-20 Cypress Semiconductor Corporation System and method to measure capacitance of capacitive sensor array
US11029795B2 (en) 2008-09-26 2021-06-08 Cypress Semiconductor Corporation System and method to measure capacitance of capacitive sensor array
US8321174B1 (en) 2008-09-26 2012-11-27 Cypress Semiconductor Corporation System and method to measure capacitance of capacitive sensor array
US8212794B2 (en) * 2008-09-30 2012-07-03 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Optical finger navigation utilizing quantized movement information
US20100079411A1 (en) * 2008-09-30 2010-04-01 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Optical finger navigation utilizing quantized movement information
US8660300B2 (en) 2008-12-12 2014-02-25 Silicon Laboratories Inc. Apparatus and method for optical gesture recognition
US8395590B2 (en) 2008-12-17 2013-03-12 Apple Inc. Integrated contact switch and touch sensor elements
US9354751B2 (en) 2009-05-15 2016-05-31 Apple Inc. Input device with optimized capacitive sensing
US8872771B2 (en) 2009-07-07 2014-10-28 Apple Inc. Touch sensing device having conductive nodes
US9417728B2 (en) 2009-07-28 2016-08-16 Parade Technologies, Ltd. Predictive touch surface scanning
US10282070B2 (en) 2009-09-22 2019-05-07 Apple Inc. Device, method, and graphical user interface for manipulating user interface objects
US10564826B2 (en) 2009-09-22 2020-02-18 Apple Inc. Device, method, and graphical user interface for manipulating user interface objects
US10788965B2 (en) 2009-09-22 2020-09-29 Apple Inc. Device, method, and graphical user interface for manipulating user interface objects
US11334229B2 (en) 2009-09-22 2022-05-17 Apple Inc. Device, method, and graphical user interface for manipulating user interface objects
US9310907B2 (en) 2009-09-25 2016-04-12 Apple Inc. Device, method, and graphical user interface for manipulating user interface objects
US10254927B2 (en) 2009-09-25 2019-04-09 Apple Inc. Device, method, and graphical user interface for manipulating workspace views
US8619100B2 (en) * 2009-09-25 2013-12-31 Apple Inc. Device, method, and graphical user interface for touch-based gestural input on an electronic canvas
US10928993B2 (en) 2009-09-25 2021-02-23 Apple Inc. Device, method, and graphical user interface for manipulating workspace views
US11366576B2 (en) 2009-09-25 2022-06-21 Apple Inc. Device, method, and graphical user interface for manipulating workspace views
US20110074828A1 (en) * 2009-09-25 2011-03-31 Jay Christopher Capela Device, Method, and Graphical User Interface for Touch-Based Gestural Input on an Electronic Canvas
US20110134079A1 (en) * 2009-12-03 2011-06-09 Stmicroelectronics (Research & Development) Limited Touch screen device
EP2339437A3 (en) * 2009-12-03 2011-10-12 STMicroelectronics (Research & Development) Limited Improved touch screen device
US20110141014A1 (en) * 2009-12-16 2011-06-16 Chung Shan Institute Of Science And Technology, Armaments Bureau, M.N.D Movable touchpad with high sensitivity
US8125449B2 (en) * 2009-12-16 2012-02-28 Chung Shan Institute Of Science And Technology, Armaments Bureau, M.N.D. Movable touchpad with high sensitivity
US9626098B2 (en) 2010-07-30 2017-04-18 Apple Inc. Device, method, and graphical user interface for copying formatting attributes
US9098182B2 (en) 2010-07-30 2015-08-04 Apple Inc. Device, method, and graphical user interface for copying user interface objects between content regions
US8760637B2 (en) 2010-08-30 2014-06-24 Alcon Research, Ltd. Optical sensing system including electronically switched optical magnification
US9710061B2 (en) 2011-06-17 2017-07-18 Apple Inc. Haptic feedback device
US9817494B2 (en) * 2011-09-12 2017-11-14 Mediatek Inc. Method for converting control input of input domain into control output of control domain using variable control resolution technique, and related control apparatus thereof
TWI465984B (en) * 2011-09-12 2014-12-21 Mediatek Inc Method and control apparatus for determining control output in control domain
US20130063374A1 (en) * 2011-09-12 2013-03-14 Ping-Han Lee Method for converting control input of input domain into control output of control domain using variable control resolution technique, and related control apparatus thereof
GB2502087A (en) * 2012-05-16 2013-11-20 St Microelectronics Res & Dev Gesture recognition
US20140132510A1 (en) * 2012-11-14 2014-05-15 Pixart Imaging Inc. Handheld Electronic Apparatus, Operating Method Thereof, and Non-Transitory Computer Readable Medium Thereof
US9804689B2 (en) 2013-02-19 2017-10-31 Pixart Imaging Inc. Handheld pointer device and pointer positioning method thereof
US10379627B2 (en) * 2013-02-19 2019-08-13 Pixart Imaging Inc. Handheld device and positioning method thereof
US10067576B2 (en) * 2013-02-19 2018-09-04 Pixart Imaging Inc. Handheld pointer device and tilt angle adjustment method thereof
US20140247214A1 (en) * 2013-02-19 2014-09-04 Pixart Imaging Inc. Handheld pointer device and tilt angle adjustment method thereof
US10261585B2 (en) 2014-03-27 2019-04-16 Apple Inc. Adjusting the level of acoustic and haptic output in haptic devices
US9594429B2 (en) 2014-03-27 2017-03-14 Apple Inc. Adjusting the level of acoustic and haptic output in haptic devices
US11099651B2 (en) 2014-05-21 2021-08-24 Apple Inc. Providing haptic output based on a determined orientation of an electronic device
US10133351B2 (en) 2014-05-21 2018-11-20 Apple Inc. Providing haptic output based on a determined orientation of an electronic device
US9886090B2 (en) * 2014-07-08 2018-02-06 Apple Inc. Haptic notifications utilizing haptic input devices
US20160011664A1 (en) * 2014-07-08 2016-01-14 Apple Inc. Haptic notifications utilizing haptic input devices
US10664058B2 (en) 2015-07-21 2020-05-26 Apple Inc. Guidance device for the sensory impaired
US10254840B2 (en) 2015-07-21 2019-04-09 Apple Inc. Guidance device for the sensory impaired
US10772394B1 (en) 2016-03-08 2020-09-15 Apple Inc. Tactile output for wearable device
US10890978B2 (en) 2016-05-10 2021-01-12 Apple Inc. Electronic device with an input device having a haptic engine
US10585480B1 (en) 2016-05-10 2020-03-10 Apple Inc. Electronic device with an input device having a haptic engine
US11762470B2 (en) 2016-05-10 2023-09-19 Apple Inc. Electronic device with an input device having a haptic engine
US9829981B1 (en) 2016-05-26 2017-11-28 Apple Inc. Haptic output device
US10649529B1 (en) 2016-06-28 2020-05-12 Apple Inc. Modification of user-perceived feedback of an input device using acoustic or haptic output
US10845878B1 (en) 2016-07-25 2020-11-24 Apple Inc. Input device with tactile feedback
US10372214B1 (en) 2016-09-07 2019-08-06 Apple Inc. Adaptable user-selectable input area in an electronic device
US10437359B1 (en) 2017-02-28 2019-10-08 Apple Inc. Stylus with external magnetic influence
US10775889B1 (en) 2017-07-21 2020-09-15 Apple Inc. Enclosure with locally-flexible regions
US11487362B1 (en) 2017-07-21 2022-11-01 Apple Inc. Enclosure with locally-flexible regions
US10768747B2 (en) 2017-08-31 2020-09-08 Apple Inc. Haptic realignment cues for touch-input displays
US11460946B2 (en) 2017-09-06 2022-10-04 Apple Inc. Electronic device having a touch sensor, force sensor, and haptic actuator in an integrated module
US11054932B2 (en) 2017-09-06 2021-07-06 Apple Inc. Electronic device having a touch sensor, force sensor, and haptic actuator in an integrated module
US10556252B2 (en) 2017-09-20 2020-02-11 Apple Inc. Electronic device having a tuned resonance haptic actuation system
US10768738B1 (en) 2017-09-27 2020-09-08 Apple Inc. Electronic device having a haptic actuator with magnetic augmentation
US10942571B2 (en) 2018-06-29 2021-03-09 Apple Inc. Laptop computing device with discrete haptic regions
US10936071B2 (en) 2018-08-30 2021-03-02 Apple Inc. Wearable electronic device with haptic rotatable input
US10613678B1 (en) 2018-09-17 2020-04-07 Apple Inc. Input device with haptic feedback
US10966007B1 (en) 2018-09-25 2021-03-30 Apple Inc. Haptic output system
US11805345B2 (en) 2018-09-25 2023-10-31 Apple Inc. Haptic output system
US11024135B1 (en) 2020-06-17 2021-06-01 Apple Inc. Portable electronic device having a haptic button assembly
US11756392B2 (en) 2020-06-17 2023-09-12 Apple Inc. Portable electronic device having a haptic button assembly

Also Published As

Publication number Publication date
TW270987B (en) 1996-02-21

Similar Documents

Publication Publication Date Title
US5424756A (en) Track pad cursor positioning device and method
US6791531B1 (en) Device and method for cursor motion control calibration and object selection
US5095303A (en) Six degree of freedom graphic object controller
US5889505A (en) Vision-based six-degree-of-freedom computer input device
US5132672A (en) Three degree of freedom graphic object controller
US4578674A (en) Method and apparatus for wireless cursor position control
US20200019256A1 (en) Control apparatus
CN106030495B (en) Multi-modal gesture-based interaction system and method utilizing a single sensing system
US6597443B2 (en) Spatial tracking system
US5095302A (en) Three dimensional mouse via finger ring or cavity
US5483261A (en) Graphical input controller and method with rear screen image detection
US6417837B1 (en) Coordinate input device
JP3693611B2 (en) Three-dimensional steering system using a head mounting unit complementary to a stationary infrared beam unit
US6847350B2 (en) Optical pointing device
US4787051A (en) Inertial mouse system
US4543571A (en) Opto-mechanical cursor positioning device
US7821494B2 (en) Inertial mouse
KR100739980B1 (en) Inertial sensing input apparatus
KR20050098234A (en) Compact optical pointing apparatus and method
EP0880752A1 (en) A method and system for determining the point of contact of an object with a screen
JPH0363089B2 (en)
US20170293369A1 (en) Hand-Controllable Signal-Generating Devices and Systems
KR950011834B1 (en) Apparatus and method for detecting motion change of a ball
GB2308641A (en) Manually-operated data input device eg for computers or video games
US20240045511A1 (en) Three-dimensional interactive display

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment

Year of fee payment: 7

REMI Maintenance fee reminder mailed
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20070613