US5387122A - Pulse oximeter probe connector - Google Patents

Pulse oximeter probe connector Download PDF

Info

Publication number
US5387122A
US5387122A US08/063,398 US6339893A US5387122A US 5387122 A US5387122 A US 5387122A US 6339893 A US6339893 A US 6339893A US 5387122 A US5387122 A US 5387122A
Authority
US
United States
Prior art keywords
connector
pins
segment
probe
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/063,398
Inventor
Daniel S. Goldberger
Timothy A. Turley
Kirk L. Weimer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Datex Ohmeda Inc
Original Assignee
Ohmeda Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohmeda Inc filed Critical Ohmeda Inc
Priority to US08/063,398 priority Critical patent/US5387122A/en
Assigned to BOC HEALTH CARE, INC. reassignment BOC HEALTH CARE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOLDBERGER, DANIEL S., TURLEY, TIMOTHY A., WEIMER, KIRK L.
Assigned to OHMEDA INC. reassignment OHMEDA INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: BOC HEALTH CARE, INC.
Assigned to OHMEDA INC. reassignment OHMEDA INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: BOC HEALTH CARE, INC.
Application granted granted Critical
Publication of US5387122A publication Critical patent/US5387122A/en
Assigned to DATEX-OHMEDA, INC. reassignment DATEX-OHMEDA, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: OHMEDA, INC.
Assigned to OHMEDA INC. reassignment OHMEDA INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: BOC HEALTH CARE, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6831Straps, bands or harnesses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • A61B5/02433Details of sensor for infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6838Clamps or clips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/22Arrangements of medical sensors with cables or leads; Connectors or couplings specifically adapted for medical sensors
    • A61B2562/225Connectors or couplings
    • A61B2562/227Sensors with electrical connectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S439/00Electrical connectors
    • Y10S439/909Medical use or attached to human body

Definitions

  • This invention relates to medical monitoring equipment and, in particular, to an inexpensive universal probe, containing disposable sensor elements, that interfaces to a plurality of different pulse oximeter instruments.
  • the pulse oximeter instrument is connected to a subject via a disposable probe, which is connectorized to be detachable from the pulse oximeter instrument.
  • the probe includes a sensor circuit that consists of a pair of light emitting diodes and a photodetector that are incorporated into a housing that can be applied to the subject in order to measure the oxygenation of the subject's blood.
  • Present pulse oximeter probes use a connectorized long cable, hard-wired at one end to the light emitting diodes and light detector.
  • the housing can be of many configurations due to the fact that the pulse oximeter instrument is used with adult subjects, children and infants. Each of these classes of subjects may require a different means of attaching the active sensor elements to a blood carrying member of the subject. For example, the sensors can be attached to the subject's finger, ear, foot or septum, each of which application requires a different housing for the sensors. Another complicating factor is that each pulse oximeter instrument utilizes a different connector configuration and possibly a different sensor element wiring configuration in the probe.
  • pulse oximeter probes each of which is a disposable element.
  • the proliferation of probe types produces an inventory problem as well as increased cost to the patient, since a significant segment of the manufacturing costs of the probe is the connector and associated wiring that interconnects the sensor elements to the pulse oximeter instrument.
  • the manufacturers of pulse oximeter probes also do not have the economies of scale of making a single probe, but instead must manufacture numerous different incompatible probes.
  • the above described problems are solved and a technical advance achieved in the field by the pulse oximeter probe connector of the present invention which utilizes an inexpensive probe connector configuration to enable the connector/cable section of the probe to be used numerous times.
  • the probe connector is both mechanically simple and electrically reliable and functions to interconnect the housing containing the sensor elements with the cable that connects the pulse oximeter instrument to the sensor elements.
  • This probe connector enables the user to obtain significant benefits due to the fact that the expensive cable segment of the probe is a separable element from the housing segment of the probe that contains the sensor elements.
  • the cable segment of the probe consists of a monitor connector that is compatible with the pulse oximeter instrument and which is terminated at the other end in the probe connector of the present invention.
  • the probe housing contains the mating other half of this probe connector, the sensor elements and a means of mechanically affixing the sensor elements to the subject.
  • the cable segment of the probe is reusable numerous times and the disposable part of the probe consists only of the housing with the sensor elements. This significantly reduces the cost of pulse oximeter probes, since the most significant cost element in the probe, the cable and monitor connector, can be amortized over numerous uses.
  • the housing containing the sensor elements is electrically configured to be generic to all pulse oximeter instruments.
  • the active elements and passive elements contained therein are directly connected to the probe connector without interconnection amongst themselves.
  • Jumper leads are provided within the cable segment of the probe to electrically interconnect these elements in a manner that is appropriate for the associated pulse oximeter instrument. Therefore, only a limited number of types of cable segments need be used to interconnect the various models of pulse oximeter instruments to the sensors contained within the housing.
  • the housing variability is solely a function of the need to interface with a particular subject and unrelated to connector and sensor element wiring variations in pulse oximeter instruments.
  • the pulse oximeter instrument variability is accounted for in the cable segment of the probe, since it provides the monitor connector that is specific to the pulse oximeter instrument and the associated sensor element interconnection wiring that is also specific to the pulse oximeter instrument. Therefore, the cost of manufacturing the housing elements is significantly reduced since they are more of a commodity item, useable for all pulse oximeter instruments. The economic viability of this configuration is largely due to the inexpensive probe connector that is used thereon.
  • the probe connector must satisfy a number of fairly stringent requirements in order to be useable in this application.
  • the probe connector must be mechanically rugged in order to withstand numerous uses in a relatively unprotected environment.
  • the probe connector must be mechanically simple and yet contain a latching mechanism to prevent accidental disconnection of the two sensor connector halves.
  • the electrical contacts contained in the probe connector must also be simple in construction in order to minimize the cost and yet provide a low resistance, electrically continuous interconnection of the sensor elements to the pulse oximeter instrument. Any noise that is introduced into the signals produced by the probe's sensor elements significantly impairs the functioning of the pulse oximeter system.
  • the conductors in both halves of the probe connector must therefore be precisely aligned with each other in order to provide good electrical contact therebetween when the probe connector halves are latched together.
  • geometrically matching elements are used in the two connector halves to mechanically align the connector halves and their respective conductors.
  • a pin and socket electrical interconnection provides a low resistance path through the sensor connector.
  • a spring clip is used to latch the two halves of the probe connector together.
  • this inexpensive yet efficient probe connector arrangement enables the creation of universal housing configurations which are physically and electrically customized to the pulse oximeter instrument of choice by means of a cable segment of the probe which provides a monitor connector specific to the desired pulse oximeter instrument as well as the electrical interconnection of the sensor elements necessary for the universal housing to be compatible with the particular pulse oximeter instrument.
  • FIG. 1 illustrates, in block diagram form, the overall architecture of the pulse oximeter probe of the present invention
  • FIG. 2 illustrates an exploded view of the cable half of the probe connector
  • FIGS. 3 and 4 illustrate isometric views of the top and bottom of the cap of the cable half of the probe connector, respectively;
  • FIGS. 5 and 6 illustrate isometric views of the top and bottom of the base of the cable half of the probe connector, respectively;
  • FIGS. 7 and 8 illustrate isometric views of the top and bottom of the spring clip of the cable half of the probe connector, respectively;
  • FIGS. 9 and 10 illustrate isometric views of the top and bottom of the of the housing half of the probe connector, respectively.
  • FIG. 11 illustrates details of the lead frame and housing construction.
  • FIG. 1 illustrates in block diagram form the overall system architecture of the universal pulse oximeter probe 1 of the present invention.
  • a pulse oximeter instrument 2 is a well known device used extensively in critical care areas or hospitals to monitor a subject's arterial percentage oxygen saturation (SpO 2 ) and pulse rate (PR).
  • the pulse oximeter instrument 2 performs these measurements by recording the absorption of light in perfused tissue at two or more wavelengths of light.
  • the pulse oximeter instrument 2 compares the time variant and time invariant portions of the light absorption signal at the two wavelengths of light and uses this data in a well known empirical relationship to compute both the pulse rate and arterial percentage oxygen saturation.
  • the pulse oximeter system includes a probe 1 which is releasably attached to the subject 8.
  • the probe 1 is releasably affixed to a subject's finger 8 or other arterial rich member of the body.
  • the methods of releasably attaching the probe to the subject are well known in this technology and consist of mechanical clips, adhesively backed webs, and velcro webs of numerous configurations and dimensions.
  • the probe 1 therefore includes at the distal end thereof a housing 7 that carries the sensor elements 9, 10 and the means of releasably attaching the probe to the subject.
  • a typical configuration of sensor elements 9, 10 includes first and second light sources 9, each of which generates a beam of light centered about a predefined wavelength. The wavelengths of these two light sources differ and are selected to detect the desired characteristics of the arterial blood as is well known in the art.
  • the two light sources 9 are placed in the housing 7 in a manner to project the beams of light generated into the arterial tissue 8 in order to illuminate this tissue.
  • the housing furthermore includes a light detector 10 which is positioned to measure the amount of light transmitted through the arterial tissue 8 of the subject.
  • the two light sources 9 are activated in sequence in order that a single wavelength of light illuminates the arterial bed at a time in order to enable the single light detector 10 to measure the absorption of that wavelength of light by the arterial tissue 8.
  • the light sources 9 are driven by pulse signals produced by the pulse oximeter instrument 2 and applied thereto via a probe connector 3 which serves to mechanically and electrically interconnect the probe 1 with connector 2a on the pulse oximeter instrument 2.
  • a cable 4 containing a plurality of conductors is used to hard wire the light sources 9 and light detector 10 to the monitor connector 3 which plugs into connector 2a of the pulse oximeter instrument 2.
  • the various pulse oximeter instruments 2 electrically interconnect the light sources 9, and light detector 10 in a variety of ways in order to perform the required measurements.
  • each probe 1 is manufactured to be specific to a single model of pulse oximeter instrument 2 and also must be manufactured to be application specific as a function of the body part 8 to which it is attached and the nature of the subject: adult, child, infant. Therefore, the variability of subject is complicated further by the additional variable of pulse oximeter specific wiring required. These factors all contribute to the cost of the pulse oximeter probes since the probes are disposable and the greater the number of models required, the greater the cost to manufacture since there is a reduction in commonality of usage. Furthermore, the cable 4 and monitor connector 3 end of the probe represents a significant manufacturing cost that is absorbed by the subject in the single use of the probe 1.
  • the universal probe 1 of the present invention makes use of an inexpensive probe connector 5, 6 to separate the truly disposable housing 7 and sensor element segment A of the probe 1 from the expensive and reusable cable/connecter segment B of the probe 1.
  • the cost of the cable/connector segment B of the probe 1 can be amortized over numerous uses, thereby reducing the cost to the subject.
  • the pulse oximeter instrument specific wiring can be implemented in the reusable portion B of the probe 1, to enable the housing segment A of the probe 1 to be of a universal configuration applicable to all pulse oximeter instruments 2 and having only a single degree of freedom: the application to a specific body part or class of patients.
  • the universal pulse oximeter probe 1 is illustrated in block diagram form in FIG. 1 and FIG. 2 illustrates an exploded view of the probe connector 5, 6 that is used to segment the universal pulse oximeter probe 1 into two segments A, B.
  • the pulse oximeter instrument 2 is connected via a connector 2a to monitor connector 3 of cable 4 in conventional fashion in order to electrically and mechanically interconnect the probe 1 to the circuitry of the pulse oximeter instrument 2.
  • One end of the cable 4 is connected to a probe connector 5, 6 which consists of a plurality of elements illustrated in exploded view in FIG. 2.
  • the cable half 5 of the probe connector 5, 6, as also illustrated in greater detail in FIGS. 3-8, consists of a base 203, a cap 201, and a spring clip 202 interposed therebetween.
  • the base 203 includes a shoulder 231 into which corresponding edge 211 on the cap 201 seats to interlock and position the various pieces of the connector 5.
  • the spring clip 202 is horseshoe shaped and includes at least one notch 222 therein which notch 222 mates with the projection 212 of the cap 201 and projection 232 on base 203 in order to position the spring clip 202 in the proper orientation in the cable half 5 of the probe connector 5, 6.
  • the spring clip 202 is positioned on the base 203 and the cap 201 placed on top of the spring clip 202 such that the projection 212 of the cap 201 and projection 232 of base 203 both fit through the notch 222 in the spring clip 202.
  • the shoulder 231 of base 203 and mating edge 211 of cap 201 are then staked or ultrasonically welded in place in order to form a unitary locked structure.
  • Projections 216 on cap 201 align with the edges of keystone shaped aperture 236 to precisely position cap 201 with respect to base 203.
  • the spring clip 202 is deformable such that, in the extended position, the edges 221 of the spring clip 202 extend beyond the periphery of the cap 201 and the base 203.
  • the edges 221 are recessed such that they are flush with the periphery of the cap 201 and the base 203.
  • Both the cap 201 and the base 203 include a channel 213, 233 that receives the cable 4 as well as shoulder 214, 234, respectively, that engage cable strain relief 41 to prevent the withdrawal of cable 4 from cable half 5 of probe connector 5, 6 when it is assembled.
  • the conductors 42 of cable 4 are terminated in a preformed PC board 43 on which is mounted, in a predetermined pattern, a plurality of sockets 44.
  • the shape of PC board 43 mates with corresponding recesses in cap 201 and base 203 of cable half 5 of probe connector 5, 6 to retain PC board 43 in a predetermined position within cable half 5 of probe connector 5,6.
  • the conductors 42 are each interconnected with a corresponding one or more of sockets 44.
  • Base 203 includes a plurality of holes 235 that correspond in pattern and location to the pattern of sockets 44 on PC board 43, such that the open end of each of sockets 44 are juxtaposed to a corresponding hole 235 in base 203.
  • the housing segment 6 of the probe connector 5, 6 consists of a U-shaped molded plastic piece with the two vertical arms 241 thereof having a lip 242 thereon for engagement of the cable half 5 of probe connector 5, 6.
  • the plastic is elastically deformable such that the two arms 241 of the housing connector 6 flex inwardly until they pass through the base 203 of the cable half 5 of probe connector 5, 6 whereupon they expand outward with the lip 242 of the arms 241 resting on the top side of the base 203 of the cable half 5 of probe connector 5, 6 to form a mechanically secure joining of the two sensor connector halves 5, 6.
  • the spring clip 202 in the cable half 5 of probe connector 5, 6 is deformable inwardly by the user applying pressure to the two edges 222 thereof that extend beyond the periphery of the cap 201 and the base 203 of the cable half 5 of probe connector 5, 6.
  • the deformation of the spring clip 202 causes the inside edges 223 of the spring clip to engage the arms 241 of the housing half 6 of probe connector 5, 6, causing deformation thereof such that the lip 242 of the arms 241 of the housing half 6 of probe connector 5, 6 are pressed inward to clear the inner edge of the opening 233 in the base 203 of the cable half 5 of probe connector 5, 6, enabling the user to separate the two halves of probe connector 5, 6.
  • This probe connector 5, 6 is a simple configuration that requires little manufacturing and yet provides a fairly secure mechanical interconnection of the cable B and housing A segments of the probe 1.
  • the conductors in the housing end 6 of probe connector 5, 6 are similarly terminated in a like number of pins 244, also in a substantially triangular pattern, to enable the mechanical alignment of the pins 244 to provide electrical continuity between the two halves of probe connector 5, 6 when interconnected.
  • the housing segment 6 of probe connector 5, 6 consists of a U-shaped molded plastic piece with the two vertical arms 241 thereof each having a lip 242 thereon for engagement of the cable half 5 of the probe connector 5, 6.
  • a third projection 243 is provided to function as an alignment projection 243 to guide the two halves 5,6 of probe connector 5,6 together.
  • the two vertical arms 241 and the alignment projection 243 form a three-point guidance system that contacts corresponding openings (for vertical arms 241) and an outer edge (for alignment projection) of the cable half 5 of probe connector 5, 6 to automatically align the pins 244 of the housing half 6 with the corresponding sockets 245 of the cable half 5 of probe connector 5, 6.
  • This three-point guidance system precisely aligns the two halves of probe connector 5, 6 together in a simple manner.
  • the two vertical arms 241 and the alignment projection 243 are arranged to substantially encircle pins 244 to thereby protect them from damage.
  • a significant concern in the sensor connector system described above is the mechanical stability and electrically conductivity of probe connector 5, 6.
  • the pin and socket form of connector design is used in order to precisely align the two halves of probe connector 5, 6.
  • the pin 6 and socket 5 mechanical configuration are a matter of design choice and the opening 233 in the base 203 of the cable half 5 of probe connector is a keystone shape to receive a corresponding shaped pin from the housing half 6 of probe connector 5, 6. It is obvious that other geometric orientations of the elements are possible and the shapes in the preferred embodiment are simply illustrative of the concept of the invention.
  • FIG. 11 illustrates the electrical and mechanical interconnection of sensor elements 16, 18, 20, 34 in the housing 7.
  • An integrated lead frame 12 is used to provide electrical interconnection, mechanical orientation of components, and a means for attachment of sensors 16, 18, 20 to perfused tissue.
  • the lead frame 12 is made from 0.1 mm to 0.3 mm thick steel or copper sheet and eight leads 13-1 to 13-8 are formed in the lead frame 12 by stamping or chemical machining.
  • a plastic probe connector half 6 is placed near one end of the lead frame 12 and is formed by insert molding, or attached to lead frame 12 by heat staking, ultrasonic welding or adhesive bonding.
  • Red and infrared light emitting diodes 16, 18 (“LEDs”), a photodiode 20 and any other elements 34 (if any) are attached directly to the leads of lead frame 12.
  • the attachment is made with silver filled epoxy and electrical connectors are made with gold ball or wedge bonding.
  • Light emitting diodes 16, 18 and photodiode 20 are subsequently encapsulated in plastic lenses 22 by transfer molding or casting.
  • the assembly is subsequently sealed in an envelope of thin, transparent plastic film (not shown) to provide electrical insulation.
  • the insulating film may or may not be coated with pressure sensitive adhesive and it may or may not be have opaque sections between transparent windows.
  • the electrical connector formed by the lead frame 12 and connector half 6 mates with a connector half 5 on the cable segment B of the probe 1.
  • the device to which the pulse oximetry sensor 1 of the present invention is connected is a pulse oximeter instrument 2, such as those manufactured by Ohmeda (a division of the BOC Healthcare Group, Inc.) of Louisville, Colo. under the designation 3740.
  • the lead frame 12 deforms plastically as it is bent to conform to the subject's tissue, such as a finger tip 8, so that it accurately retains its shape after it is applied to the finger tip 8.
  • the material and thickness of the lead frame 12 can be chosen to optimize this behavior.
  • the probe 1 can be further retained in place on the finger tip 8 by pressure sensitive adhesives or bandages so that it does not tend to spring open.
  • the low mass and thin construction of the integrated lead frame 12 act to diminish the sensor's (16, 18, 20) susceptibility to motion induced artifact, thereby enabling the lead frame 12 to be used with a wide variety of probe designs.
  • the probe illustrated in FIG. 1 can include any number of conductors. In the embodiment shown in FIG. 1, eight leads are shown, while other embodiments can include only six or seven leads.
  • the electrical configuration the sensor 16, 18, 20 and other elements 34 within the housing 7 is a function of the pulse oximeter instrument 2 to which the probe 1 is connected.
  • the leads 100 of the various devices 16, 18, 20, 34 contained therein are directly connected to corresponding conductors in the housing half 6 of the sensor connector without interconnection therebetween.
  • two leads of lead frame 12 interconnect the light detector 20 while four leads interconnect the pair of light sources 16, 18 and the final two leads of lead frame 12 interconnect the optional other elements 34.
  • the eight leads therefore provide electrical access to each terminal of every device contained within the housing 7.
  • the resultant housing 7 is therefore generic to all pulse oximeter instruments 2 since there is no electrical interconnection of the elements 16, 18, 20, 34 contained therein and the cable segment B of the probe is used to provide the electrical interconnection to satisfy the requirements of the corresponding pulse oximeter instrument 2.
  • the cable segment B of the probe 1 therefore physically and electrically interconnects the conductors of the cable 4 to the pulse oximeter instrument 2 as well as electrically interconnects the various conductors from the housing 7 to wire the sensor 16, 18, 20 and other 34 elements contained therein to electrically mate with the corresponding connector 2a of pulse oximeter instrument 2.
  • the use of the inexpensive probe connector 5, 6 provides a means for converting the expensive probes of the prior art into an inexpensive probe system I that comprises a reusable cable segment B and an inexpensive disposable universal housing segment A that can be used with all pulse oximeter instruments 2 due to the electrical programming capability of the cable segment B of the probe 1.

Abstract

The pulse oximeter probe uses an inexpensive connector to electrically interconnect the sensor elements with the pulse oximeter. One segment of the probe connector contains a set of connector pins that are wired to the sensor elements. Another segment of the probe connector is equipped with a mating configuration of sockets which align with these pins. Three projections function to automatically align the connector pins with the connector sockets. Two of the projections engage a mating aperture in the other connector segment to fasten the two connector segments together, while a third projection aligns with an edge of the other connector segment to position the two connector segments.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation-in-part of U.S. patent application Ser. No. 07/781,891, titled Universal Pulse Oximeter Probe, filed on Oct. 24, 1991 now U.S. Pat. No. 5,249,576, Oct. 5, 1993.
FIELD OF THE INVENTION
This invention relates to medical monitoring equipment and, in particular, to an inexpensive universal probe, containing disposable sensor elements, that interfaces to a plurality of different pulse oximeter instruments.
PROBLEM
It is a problem in the field of monitoring equipment in biomedical technology to produce a probe, including sensor elements, that is inexpensive, simple to use, accurate in their measurements and yet disposable. In the field of pulse oximetry, the pulse oximeter instrument is connected to a subject via a disposable probe, which is connectorized to be detachable from the pulse oximeter instrument. The probe includes a sensor circuit that consists of a pair of light emitting diodes and a photodetector that are incorporated into a housing that can be applied to the subject in order to measure the oxygenation of the subject's blood. Present pulse oximeter probes use a connectorized long cable, hard-wired at one end to the light emitting diodes and light detector. The housing can be of many configurations due to the fact that the pulse oximeter instrument is used with adult subjects, children and infants. Each of these classes of subjects may require a different means of attaching the active sensor elements to a blood carrying member of the subject. For example, the sensors can be attached to the subject's finger, ear, foot or septum, each of which application requires a different housing for the sensors. Another complicating factor is that each pulse oximeter instrument utilizes a different connector configuration and possibly a different sensor element wiring configuration in the probe.
It is obvious that a hospital must stock a large diversity of pulse oximeter probes, each of which is a disposable element. The proliferation of probe types produces an inventory problem as well as increased cost to the patient, since a significant segment of the manufacturing costs of the probe is the connector and associated wiring that interconnects the sensor elements to the pulse oximeter instrument. The manufacturers of pulse oximeter probes also do not have the economies of scale of making a single probe, but instead must manufacture numerous different incompatible probes.
SOLUTION
The above described problems are solved and a technical advance achieved in the field by the pulse oximeter probe connector of the present invention which utilizes an inexpensive probe connector configuration to enable the connector/cable section of the probe to be used numerous times. The probe connector is both mechanically simple and electrically reliable and functions to interconnect the housing containing the sensor elements with the cable that connects the pulse oximeter instrument to the sensor elements. This probe connector enables the user to obtain significant benefits due to the fact that the expensive cable segment of the probe is a separable element from the housing segment of the probe that contains the sensor elements.
In particular, the cable segment of the probe consists of a monitor connector that is compatible with the pulse oximeter instrument and which is terminated at the other end in the probe connector of the present invention. The probe housing contains the mating other half of this probe connector, the sensor elements and a means of mechanically affixing the sensor elements to the subject. Thus, the cable segment of the probe is reusable numerous times and the disposable part of the probe consists only of the housing with the sensor elements. This significantly reduces the cost of pulse oximeter probes, since the most significant cost element in the probe, the cable and monitor connector, can be amortized over numerous uses. Furthermore, the housing containing the sensor elements is electrically configured to be generic to all pulse oximeter instruments. In this regard, the active elements and passive elements contained therein are directly connected to the probe connector without interconnection amongst themselves. Jumper leads are provided within the cable segment of the probe to electrically interconnect these elements in a manner that is appropriate for the associated pulse oximeter instrument. Therefore, only a limited number of types of cable segments need be used to interconnect the various models of pulse oximeter instruments to the sensors contained within the housing. The housing variability is solely a function of the need to interface with a particular subject and unrelated to connector and sensor element wiring variations in pulse oximeter instruments. The pulse oximeter instrument variability is accounted for in the cable segment of the probe, since it provides the monitor connector that is specific to the pulse oximeter instrument and the associated sensor element interconnection wiring that is also specific to the pulse oximeter instrument. Therefore, the cost of manufacturing the housing elements is significantly reduced since they are more of a commodity item, useable for all pulse oximeter instruments. The economic viability of this configuration is largely due to the inexpensive probe connector that is used thereon.
The probe connector must satisfy a number of fairly stringent requirements in order to be useable in this application. In particular, the probe connector must be mechanically rugged in order to withstand numerous uses in a relatively unprotected environment. Furthermore, the probe connector must be mechanically simple and yet contain a latching mechanism to prevent accidental disconnection of the two sensor connector halves. The electrical contacts contained in the probe connector must also be simple in construction in order to minimize the cost and yet provide a low resistance, electrically continuous interconnection of the sensor elements to the pulse oximeter instrument. Any noise that is introduced into the signals produced by the probe's sensor elements significantly impairs the functioning of the pulse oximeter system. The conductors in both halves of the probe connector must therefore be precisely aligned with each other in order to provide good electrical contact therebetween when the probe connector halves are latched together.
In order to satisfy these diverse requirements, geometrically matching elements are used in the two connector halves to mechanically align the connector halves and their respective conductors. A pin and socket electrical interconnection provides a low resistance path through the sensor connector. A spring clip is used to latch the two halves of the probe connector together.
Therefore, the use of this inexpensive yet efficient probe connector arrangement enables the creation of universal housing configurations which are physically and electrically customized to the pulse oximeter instrument of choice by means of a cable segment of the probe which provides a monitor connector specific to the desired pulse oximeter instrument as well as the electrical interconnection of the sensor elements necessary for the universal housing to be compatible with the particular pulse oximeter instrument.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 illustrates, in block diagram form, the overall architecture of the pulse oximeter probe of the present invention;
FIG. 2 illustrates an exploded view of the cable half of the probe connector;
FIGS. 3 and 4 illustrate isometric views of the top and bottom of the cap of the cable half of the probe connector, respectively;
FIGS. 5 and 6 illustrate isometric views of the top and bottom of the base of the cable half of the probe connector, respectively;
FIGS. 7 and 8 illustrate isometric views of the top and bottom of the spring clip of the cable half of the probe connector, respectively;
FIGS. 9 and 10 illustrate isometric views of the top and bottom of the of the housing half of the probe connector, respectively; and
FIG. 11 illustrates details of the lead frame and housing construction.
DETAILED DESCRIPTION
FIG. 1 illustrates in block diagram form the overall system architecture of the universal pulse oximeter probe 1 of the present invention. A pulse oximeter instrument 2 is a well known device used extensively in critical care areas or hospitals to monitor a subject's arterial percentage oxygen saturation (SpO2) and pulse rate (PR). The pulse oximeter instrument 2 performs these measurements by recording the absorption of light in perfused tissue at two or more wavelengths of light. The pulse oximeter instrument 2 compares the time variant and time invariant portions of the light absorption signal at the two wavelengths of light and uses this data in a well known empirical relationship to compute both the pulse rate and arterial percentage oxygen saturation.
In order to perform the measurements on the subject, the pulse oximeter system includes a probe 1 which is releasably attached to the subject 8. In a typical application, the probe 1 is releasably affixed to a subject's finger 8 or other arterial rich member of the body. The methods of releasably attaching the probe to the subject are well known in this technology and consist of mechanical clips, adhesively backed webs, and velcro webs of numerous configurations and dimensions. The probe 1 therefore includes at the distal end thereof a housing 7 that carries the sensor elements 9, 10 and the means of releasably attaching the probe to the subject.
A typical configuration of sensor elements 9, 10 includes first and second light sources 9, each of which generates a beam of light centered about a predefined wavelength. The wavelengths of these two light sources differ and are selected to detect the desired characteristics of the arterial blood as is well known in the art. The two light sources 9 are placed in the housing 7 in a manner to project the beams of light generated into the arterial tissue 8 in order to illuminate this tissue. The housing furthermore includes a light detector 10 which is positioned to measure the amount of light transmitted through the arterial tissue 8 of the subject. Typically, the two light sources 9 are activated in sequence in order that a single wavelength of light illuminates the arterial bed at a time in order to enable the single light detector 10 to measure the absorption of that wavelength of light by the arterial tissue 8. The light sources 9 are driven by pulse signals produced by the pulse oximeter instrument 2 and applied thereto via a probe connector 3 which serves to mechanically and electrically interconnect the probe 1 with connector 2a on the pulse oximeter instrument 2. A cable 4 containing a plurality of conductors is used to hard wire the light sources 9 and light detector 10 to the monitor connector 3 which plugs into connector 2a of the pulse oximeter instrument 2. The various pulse oximeter instruments 2 electrically interconnect the light sources 9, and light detector 10 in a variety of ways in order to perform the required measurements. In the prior art, each probe 1 is manufactured to be specific to a single model of pulse oximeter instrument 2 and also must be manufactured to be application specific as a function of the body part 8 to which it is attached and the nature of the subject: adult, child, infant. Therefore, the variability of subject is complicated further by the additional variable of pulse oximeter specific wiring required. These factors all contribute to the cost of the pulse oximeter probes since the probes are disposable and the greater the number of models required, the greater the cost to manufacture since there is a reduction in commonality of usage. Furthermore, the cable 4 and monitor connector 3 end of the probe represents a significant manufacturing cost that is absorbed by the subject in the single use of the probe 1.
Universal Pulse Oximeter Probe Architecture
In order to reduce the cost of probes in pulse oximeter systems, the universal probe 1 of the present invention makes use of an inexpensive probe connector 5, 6 to separate the truly disposable housing 7 and sensor element segment A of the probe 1 from the expensive and reusable cable/connecter segment B of the probe 1. By dividing the probe 1 into two sections A, B, the cost of the cable/connector segment B of the probe 1 can be amortized over numerous uses, thereby reducing the cost to the subject. Furthermore, the pulse oximeter instrument specific wiring can be implemented in the reusable portion B of the probe 1, to enable the housing segment A of the probe 1 to be of a universal configuration applicable to all pulse oximeter instruments 2 and having only a single degree of freedom: the application to a specific body part or class of patients.
The universal pulse oximeter probe 1 is illustrated in block diagram form in FIG. 1 and FIG. 2 illustrates an exploded view of the probe connector 5, 6 that is used to segment the universal pulse oximeter probe 1 into two segments A, B. In the illustration of FIG. 1, the pulse oximeter instrument 2 is connected via a connector 2a to monitor connector 3 of cable 4 in conventional fashion in order to electrically and mechanically interconnect the probe 1 to the circuitry of the pulse oximeter instrument 2. One end of the cable 4 is connected to a probe connector 5, 6 which consists of a plurality of elements illustrated in exploded view in FIG. 2.
Cable Half of Probe Connector
The cable half 5 of the probe connector 5, 6, as also illustrated in greater detail in FIGS. 3-8, consists of a base 203, a cap 201, and a spring clip 202 interposed therebetween. The base 203 includes a shoulder 231 into which corresponding edge 211 on the cap 201 seats to interlock and position the various pieces of the connector 5. The spring clip 202 is horseshoe shaped and includes at least one notch 222 therein which notch 222 mates with the projection 212 of the cap 201 and projection 232 on base 203 in order to position the spring clip 202 in the proper orientation in the cable half 5 of the probe connector 5, 6. To mechanically assemble the cable half 5 of the probe connector 5, 6 the spring clip 202 is positioned on the base 203 and the cap 201 placed on top of the spring clip 202 such that the projection 212 of the cap 201 and projection 232 of base 203 both fit through the notch 222 in the spring clip 202. The shoulder 231 of base 203 and mating edge 211 of cap 201 are then staked or ultrasonically welded in place in order to form a unitary locked structure. Projections 216 on cap 201 align with the edges of keystone shaped aperture 236 to precisely position cap 201 with respect to base 203. The spring clip 202 is deformable such that, in the extended position, the edges 221 of the spring clip 202 extend beyond the periphery of the cap 201 and the base 203. When the spring clip 202 is compressed by a user applying force to the clip edges 221, the edges 221 are recessed such that they are flush with the periphery of the cap 201 and the base 203.
Both the cap 201 and the base 203 include a channel 213, 233 that receives the cable 4 as well as shoulder 214, 234, respectively, that engage cable strain relief 41 to prevent the withdrawal of cable 4 from cable half 5 of probe connector 5, 6 when it is assembled. The conductors 42 of cable 4 are terminated in a preformed PC board 43 on which is mounted, in a predetermined pattern, a plurality of sockets 44. The shape of PC board 43 mates with corresponding recesses in cap 201 and base 203 of cable half 5 of probe connector 5, 6 to retain PC board 43 in a predetermined position within cable half 5 of probe connector 5,6. The conductors 42 are each interconnected with a corresponding one or more of sockets 44. Base 203 includes a plurality of holes 235 that correspond in pattern and location to the pattern of sockets 44 on PC board 43, such that the open end of each of sockets 44 are juxtaposed to a corresponding hole 235 in base 203.
Housing Half of Probe Connector
The housing segment 6 of the probe connector 5, 6 consists of a U-shaped molded plastic piece with the two vertical arms 241 thereof having a lip 242 thereon for engagement of the cable half 5 of probe connector 5, 6. Thus, when the two halves of probe connector 5, 6 are placed together, the U-shaped arms 241 of the housing half 6 of probe connector 5, 6 pass through two corresponding openings 237 in the base 203 of the cable half 5 of the probe connector 5, 6 and are deformed inwardly toward each other by the force applied by the user to join the two probe connector halves 5, 6. The plastic is elastically deformable such that the two arms 241 of the housing connector 6 flex inwardly until they pass through the base 203 of the cable half 5 of probe connector 5, 6 whereupon they expand outward with the lip 242 of the arms 241 resting on the top side of the base 203 of the cable half 5 of probe connector 5, 6 to form a mechanically secure joining of the two sensor connector halves 5, 6. The spring clip 202 in the cable half 5 of probe connector 5, 6 is deformable inwardly by the user applying pressure to the two edges 222 thereof that extend beyond the periphery of the cap 201 and the base 203 of the cable half 5 of probe connector 5, 6. The deformation of the spring clip 202 causes the inside edges 223 of the spring clip to engage the arms 241 of the housing half 6 of probe connector 5, 6, causing deformation thereof such that the lip 242 of the arms 241 of the housing half 6 of probe connector 5, 6 are pressed inward to clear the inner edge of the opening 233 in the base 203 of the cable half 5 of probe connector 5, 6, enabling the user to separate the two halves of probe connector 5, 6. This probe connector 5, 6 is a simple configuration that requires little manufacturing and yet provides a fairly secure mechanical interconnection of the cable B and housing A segments of the probe 1.
The conductors in the housing end 6 of probe connector 5, 6 are similarly terminated in a like number of pins 244, also in a substantially triangular pattern, to enable the mechanical alignment of the pins 244 to provide electrical continuity between the two halves of probe connector 5, 6 when interconnected. The housing segment 6 of probe connector 5, 6 consists of a U-shaped molded plastic piece with the two vertical arms 241 thereof each having a lip 242 thereon for engagement of the cable half 5 of the probe connector 5, 6. In addition, a third projection 243 is provided to function as an alignment projection 243 to guide the two halves 5,6 of probe connector 5,6 together. The two vertical arms 241 and the alignment projection 243 form a three-point guidance system that contacts corresponding openings (for vertical arms 241) and an outer edge (for alignment projection) of the cable half 5 of probe connector 5, 6 to automatically align the pins 244 of the housing half 6 with the corresponding sockets 245 of the cable half 5 of probe connector 5, 6. This three-point guidance system precisely aligns the two halves of probe connector 5, 6 together in a simple manner. The two vertical arms 241 and the alignment projection 243 are arranged to substantially encircle pins 244 to thereby protect them from damage.
A significant concern in the sensor connector system described above is the mechanical stability and electrically conductivity of probe connector 5, 6. In order to provide mechanical stability, the pin and socket form of connector design is used in order to precisely align the two halves of probe connector 5, 6. The pin 6 and socket 5 mechanical configuration are a matter of design choice and the opening 233 in the base 203 of the cable half 5 of probe connector is a keystone shape to receive a corresponding shaped pin from the housing half 6 of probe connector 5, 6. It is obvious that other geometric orientations of the elements are possible and the shapes in the preferred embodiment are simply illustrative of the concept of the invention.
Housing Sensor Wiring
FIG. 11 illustrates the electrical and mechanical interconnection of sensor elements 16, 18, 20, 34 in the housing 7. An integrated lead frame 12 is used to provide electrical interconnection, mechanical orientation of components, and a means for attachment of sensors 16, 18, 20 to perfused tissue. In a preferred embodiment, the lead frame 12 is made from 0.1 mm to 0.3 mm thick steel or copper sheet and eight leads 13-1 to 13-8 are formed in the lead frame 12 by stamping or chemical machining. A plastic probe connector half 6 is placed near one end of the lead frame 12 and is formed by insert molding, or attached to lead frame 12 by heat staking, ultrasonic welding or adhesive bonding. Red and infrared light emitting diodes 16, 18 ("LEDs"), a photodiode 20 and any other elements 34 (if any) are attached directly to the leads of lead frame 12. In a preferred embodiment, the attachment is made with silver filled epoxy and electrical connectors are made with gold ball or wedge bonding. Light emitting diodes 16, 18 and photodiode 20 are subsequently encapsulated in plastic lenses 22 by transfer molding or casting. The assembly is subsequently sealed in an envelope of thin, transparent plastic film (not shown) to provide electrical insulation. The insulating film may or may not be coated with pressure sensitive adhesive and it may or may not be have opaque sections between transparent windows. The electrical connector formed by the lead frame 12 and connector half 6 mates with a connector half 5 on the cable segment B of the probe 1. The device to which the pulse oximetry sensor 1 of the present invention is connected is a pulse oximeter instrument 2, such as those manufactured by Ohmeda (a division of the BOC Healthcare Group, Inc.) of Louisville, Colo. under the designation 3740.
The lead frame 12 deforms plastically as it is bent to conform to the subject's tissue, such as a finger tip 8, so that it accurately retains its shape after it is applied to the finger tip 8. The material and thickness of the lead frame 12 can be chosen to optimize this behavior. The probe 1 can be further retained in place on the finger tip 8 by pressure sensitive adhesives or bandages so that it does not tend to spring open. The low mass and thin construction of the integrated lead frame 12 act to diminish the sensor's (16, 18, 20) susceptibility to motion induced artifact, thereby enabling the lead frame 12 to be used with a wide variety of probe designs.
Sensor Interconnection
The probe illustrated in FIG. 1 can include any number of conductors. In the embodiment shown in FIG. 1, eight leads are shown, while other embodiments can include only six or seven leads. As was noted above, the electrical configuration the sensor 16, 18, 20 and other elements 34 within the housing 7 is a function of the pulse oximeter instrument 2 to which the probe 1 is connected. In order to provide a generic housing segment 7 of the probe 1, the leads 100 of the various devices 16, 18, 20, 34 contained therein are directly connected to corresponding conductors in the housing half 6 of the sensor connector without interconnection therebetween. Thus, two leads of lead frame 12 interconnect the light detector 20 while four leads interconnect the pair of light sources 16, 18 and the final two leads of lead frame 12 interconnect the optional other elements 34. The eight leads therefore provide electrical access to each terminal of every device contained within the housing 7. The resultant housing 7 is therefore generic to all pulse oximeter instruments 2 since there is no electrical interconnection of the elements 16, 18, 20, 34 contained therein and the cable segment B of the probe is used to provide the electrical interconnection to satisfy the requirements of the corresponding pulse oximeter instrument 2. The cable segment B of the probe 1 therefore physically and electrically interconnects the conductors of the cable 4 to the pulse oximeter instrument 2 as well as electrically interconnects the various conductors from the housing 7 to wire the sensor 16, 18, 20 and other 34 elements contained therein to electrically mate with the corresponding connector 2a of pulse oximeter instrument 2.
Therefore, the use of the inexpensive probe connector 5, 6 provides a means for converting the expensive probes of the prior art into an inexpensive probe system I that comprises a reusable cable segment B and an inexpensive disposable universal housing segment A that can be used with all pulse oximeter instruments 2 due to the electrical programming capability of the cable segment B of the probe 1.
While a specific embodiment of this invention has been disclosed, it is expected that those skilled in the art can and will design alternate embodiments of this invention that fall within the scope of the appended claims.

Claims (12)

We claim:
1. A connector for electrically connecting first and second sets of conductors to exchange signals therebetween, comprising:
first connector segment, having a top side, a bottom side and at least one edge, comprising:
a plurality of sockets located on said bottom side of said first connector segment and configured in a predetermined pattern, each of said plurality of sockets being connected to a one of said first set of conductors,
first and second apertures in said bottom side of said first connector segment, second connector segment, having a top side and a bottom side, comprising:
a like plurality of pins located on said top side of said second connector segment and configured in said predetermined pattern, each of said plurality of pins being connected to a one of said second set of conductors,
first projection located along a first side of said predetermined pattern of pins, and mating with said first aperture in said bottom side of aid first connector segment,
second projection located along a second side of said predetermined pattern of pins, and mating with said second aperture in said bottom side of said first connector segment, and
alignment projection located on said top side of said second connector segment engagable with said edge on said first connector segment and cooperatively operative with said first and second projections for positioning said first and second connector segments to align said plurality of pins with said plurality of sockets, said first and second projections in combination with said alignment projection forming a substantially U-shaped configuration of elements to partially encircle said plurality of pins that project from said top side of said second connector segment.
2. The apparatus of claim 1 wherein said at least one projection comprises:
tab means engagable with said aperture to lock said first connector segment to said second connector segment when said first and second connector segments are interconnected.
3. The apparatus of claim 2 further comprising:
spring clip means engagable with said tab means for disengaging said tab means from said aperture when said spring clip means is operated by a user.
4. The apparatus of claim 1 wherein said bottom side of said first connector section and said top of said second connector section are each shaped to be geometrically mating elements.
5. The apparatus of claim 1
wherein said first and second projections in combination with said predetermined pattern of pins form a U-shaped connector.
6. The apparatus of claim 5 wherein said aperture comprises:
first opening formed in said bottom of said first housing segment and located along a first side of said predetermined pattern of sockets;
second opening formed in said bottom of said first housing segment and located along a second side of said predetermined pattern of sockets; and
wherein said first opening and said second opening are oriented to receive said first projection and said second projection.
7. The apparatus of claim 6 wherein said second housing segment further comprises:
first tab means formed on an end of said first projection located distal from said predetermined pattern of pins;
second tab means formed on an end of said second projection located distal from said predetermined pattern of pins; and
wherein said first tab means and said second tab means are engagable with said first opening and said second opening, respectively, to lock said first connector segment to said second connector segment.
8. The apparatus of claim 7 further comprising:
user activated spring means activatable to release said tab element from said opening when said first housing segment is interconnected with said second housing segment.
9. The apparatus of claim 1 wherein said predetermined pattern of pins is substantially trapezoid in shape, said first and second projections being aligned substantially juxtaposed to and along equal opposite sides of said trapezoid shape pattern of pins, said alignment projection being aligned substantially juxtaposed to and along a remaining side of said trapezoid shape pattern of pins.
10. The apparatus of claim 1 wherein said first and second projections extend at least of height above said top side of said second connector segment greater than said pins.
11. The apparatus of claim 1 wherein said alignment projection extends at least of height above said top side of said second connector segment greater than said pins.
12. The apparatus of claim 3 wherein said spring clip means substantially encircles said first and second projections and said alignment projection and is movable to engage only said first and second projections to release said tab means.
US08/063,398 1991-10-24 1993-05-18 Pulse oximeter probe connector Expired - Lifetime US5387122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/063,398 US5387122A (en) 1991-10-24 1993-05-18 Pulse oximeter probe connector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/781,891 US5249576A (en) 1991-10-24 1991-10-24 Universal pulse oximeter probe
US08/063,398 US5387122A (en) 1991-10-24 1993-05-18 Pulse oximeter probe connector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/781,891 Continuation-In-Part US5249576A (en) 1991-10-24 1991-10-24 Universal pulse oximeter probe

Publications (1)

Publication Number Publication Date
US5387122A true US5387122A (en) 1995-02-07

Family

ID=25124287

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/781,891 Expired - Lifetime US5249576A (en) 1991-10-24 1991-10-24 Universal pulse oximeter probe
US08/063,398 Expired - Lifetime US5387122A (en) 1991-10-24 1993-05-18 Pulse oximeter probe connector

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US07/781,891 Expired - Lifetime US5249576A (en) 1991-10-24 1991-10-24 Universal pulse oximeter probe

Country Status (4)

Country Link
US (2) US5249576A (en)
EP (1) EP0538631B1 (en)
JP (1) JPH05200018A (en)
DE (1) DE69228515T2 (en)

Cited By (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545051A (en) * 1995-06-28 1996-08-13 The Whitaker Corporation Board to board matable assembly
US5733151A (en) * 1996-08-23 1998-03-31 Edsall; David Electrical clamping connection device
US5752931A (en) * 1996-09-30 1998-05-19 Minnesota Mining And Manufacturing Company Perfusion system with perfusion circuit display
US5813972A (en) * 1996-09-30 1998-09-29 Minnesota Mining And Manufacturing Company Medical perfusion system with data communications network
US5813404A (en) * 1995-10-20 1998-09-29 Aspect Medical Systems, Inc. Electrode connector system
US5818985A (en) * 1995-12-20 1998-10-06 Nellcor Puritan Bennett Incorporated Optical oximeter probe adapter
US5891021A (en) * 1998-06-03 1999-04-06 Perdue Holdings, Inc. Partially rigid-partially flexible electro-optical sensor for fingertip transillumination
US5995855A (en) * 1998-02-11 1999-11-30 Masimo Corporation Pulse oximetry sensor adapter
US5997343A (en) * 1998-03-19 1999-12-07 Masimo Corporation Patient cable sensor switch
US6061584A (en) * 1998-10-28 2000-05-09 Lovejoy; David A. Pulse oximetry sensor
US6164920A (en) * 1996-09-30 2000-12-26 Minnesota Mining And Manufacturing Company Perfusion system with control network
US6165005A (en) * 1998-03-19 2000-12-26 Masimo Corporation Patient cable sensor switch
US6525386B1 (en) * 1998-03-10 2003-02-25 Masimo Corporation Non-protruding optoelectronic lens
US6541756B2 (en) 1991-03-21 2003-04-01 Masimo Corporation Shielded optical probe having an electrical connector
EP1222894A3 (en) * 2001-01-11 2003-10-15 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage method
US6697656B1 (en) 2000-06-27 2004-02-24 Masimo Corporation Pulse oximetry sensor compatible with multiple pulse oximetry systems
US6721585B1 (en) 1998-10-15 2004-04-13 Sensidyne, Inc. Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US6920345B2 (en) 2003-01-24 2005-07-19 Masimo Corporation Optical sensor including disposable and reusable elements
US20060030764A1 (en) * 1999-04-14 2006-02-09 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
US20060073719A1 (en) * 2004-09-29 2006-04-06 Kiani Massi E Multiple key position plug
US20060211924A1 (en) * 2005-03-01 2006-09-21 David Dalke Multiple wavelength sensor emitters
US20060276700A1 (en) * 2001-10-12 2006-12-07 O'neil Michael P Stacked adhesive optical sensor
US20070032716A1 (en) * 2005-08-08 2007-02-08 William Raridan Medical sensor having a deformable region and technique for using the same
US20070032707A1 (en) * 2005-08-08 2007-02-08 Joseph Coakley Medical sensor and technique for using the same
US20070032708A1 (en) * 2005-08-08 2007-02-08 Darius Eghbal Compliant diaphragm medical sensor and technique for using the same
US20070073123A1 (en) * 2005-09-29 2007-03-29 Raridan William B Jr Medical sensor and technique for using the same
US20070068527A1 (en) * 2005-09-29 2007-03-29 Baker Clark R Jr Method and system for determining when to reposition a physiological sensor
US20070073122A1 (en) * 2005-09-29 2007-03-29 Carine Hoarau Medical sensor and technique for using the same
US20070078309A1 (en) * 2005-09-30 2007-04-05 Matlock George L Optically aligned pulse oximetry sensor and technique for using the same
US20070078315A1 (en) * 2005-09-30 2007-04-05 Carl Kling Clip-style medical sensor and technique for using the same
US20070078307A1 (en) * 2005-09-30 2007-04-05 Debreczeny Martin P Sensor for tissue gas detection and technique for using the same
US20070078318A1 (en) * 2005-09-30 2007-04-05 Carl Kling Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US20070078317A1 (en) * 2005-09-30 2007-04-05 Matlock George L Folding medical sensor and technique for using the same
US7245953B1 (en) 1999-04-12 2007-07-17 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatii
US20070208240A1 (en) * 2004-02-25 2007-09-06 Nellcor Puritan Bennett Inc. Techniques for detecting heart pulses and reducing power consumption in sensors
US20070260130A1 (en) * 2006-05-02 2007-11-08 Chin Rodney P Medical sensor and technique for using the same
US20070282181A1 (en) * 2006-06-01 2007-12-06 Carol Findlay Visual medical sensor indicator
US20080058622A1 (en) * 2006-08-22 2008-03-06 Baker Clark R Medical sensor for reducing signal artifacts and technique for using the same
US20080064940A1 (en) * 2006-09-12 2008-03-13 Raridan William B Sensor cable design for use with spectrophotometric sensors and method of using the same
US20080071154A1 (en) * 2006-09-20 2008-03-20 Nellcor Puritan Bennett Inc. System and method for practicing spectrophotometry using light emitting nanostructure devices
US20080076981A1 (en) * 2006-09-22 2008-03-27 Nellcor Puritan Bennett Incorporated Medical sensor for reducing signal artifacts and technique for using the same
US20080076982A1 (en) * 2006-09-26 2008-03-27 Ollerdessen Albert L Opaque, electrically nonconductive region on a medical sensor
US20080076987A1 (en) * 2006-09-27 2008-03-27 Nellcor Puritan Bennett Inc. Flexible medical sensor enclosure
US20080076994A1 (en) * 2006-09-22 2008-03-27 Nellcor Puritan Bennett Incorporated Medical sensor for reducing signal artifacts and technique for using the same
US20080081973A1 (en) * 2006-09-28 2008-04-03 Nellcor Puritan Bennett Incorporated System and method for mitigating interference in pulse oximetry
US20080081967A1 (en) * 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated Method and apparatus for detecting misapplied sensors
US20080117616A1 (en) * 2006-09-28 2008-05-22 Nellcor Puritan Bennett Inc. Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US20080221427A1 (en) * 2007-03-09 2008-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US20080242958A1 (en) * 2007-03-27 2008-10-02 Ammar Al-Ali Multiple wavelength optical sensor
US20090171224A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Sensor with integrated living hinge and spring
US20090167205A1 (en) * 2007-12-26 2009-07-02 Nellcor Puritan Bennett Llc LED Drive Circuit And Method For Using Same
US20090168385A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Flex circuit snap track for a biometric sensor
US20090171166A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Oximeter with location awareness
US20090171176A1 (en) * 2007-12-28 2009-07-02 Nellcor Puritan Bennett Llc Snapshot Sensor
US20090168050A1 (en) * 2007-12-27 2009-07-02 Nellcor Puritan Bennett Llc Optical Sensor System And Method
US20090173518A1 (en) * 2007-12-31 2009-07-09 Nellcor Puritan Bennett Llc Method And Apparatus For Aligning And Securing A Cable Strain Relief
US20090187085A1 (en) * 2007-12-28 2009-07-23 Nellcor Puritan Bennett Llc System And Method For Estimating Physiological Parameters By Deconvolving Artifacts
US20090247083A1 (en) * 2008-03-31 2009-10-01 Nellcor Puritan Bennett Llc Wavelength Selection And Outlier Detection In Reduced Rank Linear Models
US20090247854A1 (en) * 2008-03-27 2009-10-01 Nellcor Puritan Bennett Llc Retractable Sensor Cable For A Pulse Oximeter
US20090318817A1 (en) * 2008-06-20 2009-12-24 Fujitsu Component Limited Pulse detection apparatus and method for manufacturing the same
US20090323267A1 (en) * 2008-06-30 2009-12-31 Besko David P Optical Detector With An Overmolded Faraday Shield
US20090323067A1 (en) * 2008-06-30 2009-12-31 Medina Casey V System And Method For Coating And Shielding Electronic Sensor Components
US20090326347A1 (en) * 2008-06-30 2009-12-31 Bennett Scharf Synchronous Light Detection Utilizing CMOS/CCD Sensors For Oximetry Sensing
US7650177B2 (en) 2005-09-29 2010-01-19 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US7658652B2 (en) 2006-09-29 2010-02-09 Nellcor Puritan Bennett Llc Device and method for reducing crosstalk
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US20100076319A1 (en) * 2008-09-25 2010-03-25 Nellcor Puritan Bennett Llc Pathlength-Corrected Medical Spectroscopy
US20100076276A1 (en) * 2008-09-25 2010-03-25 Nellcor Puritan Bennett Llc Medical Sensor, Display, and Technique For Using The Same
US7689259B2 (en) 2000-04-17 2010-03-30 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
US20100081900A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Medical Sensor
US20100081902A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Medical Sensor and Technique for Using the Same
US20100081912A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Ultrasound-Optical Doppler Hemometer and Technique for Using the Same
US20100081901A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Medical Sensor And Technique For Using The Same
US20100234706A1 (en) * 2009-03-16 2010-09-16 Nellcor Puritan Bennett Llc Medical Monitoring Device With Flexible Circuitry
US20100249550A1 (en) * 2009-03-25 2010-09-30 Neilcor Puritan Bennett LLC Method And Apparatus For Optical Filtering Of A Broadband Emitter In A Medical Sensor
USRE41912E1 (en) 1998-10-15 2010-11-02 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatus
US20100280344A1 (en) * 2005-09-12 2010-11-04 Nellcor Puritan Benneth LLC Medical sensor for reducing motion artifacts and technique for using the same
US20100292548A1 (en) * 2009-05-15 2010-11-18 Nellcor Puritan Bennett Llc Method And Apparatus For Detecting And Analyzing Variations In A Physiologic Parameter
US20100298678A1 (en) * 2009-05-20 2010-11-25 Nellcor Puritan Bennett Llc Method And System For Self Regulation Of Sensor Component Contact Pressure
US20100317936A1 (en) * 2009-05-19 2010-12-16 Masimo Corporation Disposable components for reusable physiological sensor
US20100331638A1 (en) * 2009-06-30 2010-12-30 Nellcor Puritan Bennett Llc Reflectance and/or transmissive pulse oximeter
US20100327063A1 (en) * 2009-06-30 2010-12-30 Nellcor Puritan Bennett Llc System and method for providing sensor quality assurance
US20100331640A1 (en) * 2009-06-26 2010-12-30 Nellcor Puritan Bennett Llc Use of photodetector array to improve efficiency and accuracy of an optical medical sensor
US20100331631A1 (en) * 2009-06-30 2010-12-30 Nellcor Puritan Bennett Llc Oxygen saturation ear sensor design that optimizes both attachment method and signal quality
US20100327057A1 (en) * 2009-06-30 2010-12-30 Nellcor Puritan Bennett Llc System and method for linking patient data to a patient and providing sensor quality assurance
US20110015507A1 (en) * 2009-07-17 2011-01-20 Nellcor Puritan Bennett Llc System and method for memory switching for multiple configuration medical sensor
US20110034789A1 (en) * 2009-08-10 2011-02-10 Nellcor Puritan Bennett Llc Digital switching in multi-site sensor
US7887345B2 (en) 2008-06-30 2011-02-15 Nellcor Puritan Bennett Llc Single use connector for pulse oximetry sensors
US7894869B2 (en) 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
US20110046461A1 (en) * 2009-08-19 2011-02-24 Nellcor Puritan Bennett Llc Nanofiber adhesives used in medical devices
US20110196211A1 (en) * 2009-12-04 2011-08-11 Masimo Corporation Calibration for multi-stage physiological monitors
EP2367240A2 (en) 2010-03-16 2011-09-21 Nihon Kohden Corporation Connector, card edge connector, and sensor using the same
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8092993B2 (en) 2007-12-31 2012-01-10 Nellcor Puritan Bennett Llc Hydrogel thin film for use as a biosensor
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8224412B2 (en) 2000-04-17 2012-07-17 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
US8221319B2 (en) 2009-03-25 2012-07-17 Nellcor Puritan Bennett Llc Medical device for assessing intravascular blood volume and technique for using the same
US8233955B2 (en) 2005-11-29 2012-07-31 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8352009B2 (en) 2005-09-30 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8452364B2 (en) 2007-12-28 2013-05-28 Covidien LLP System and method for attaching a sensor to a patient's skin
US8483790B2 (en) 2002-10-18 2013-07-09 Covidien Lp Non-adhesive oximeter sensor for sensitive skin
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US8600467B2 (en) 2006-11-29 2013-12-03 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
US8649839B2 (en) 1996-10-10 2014-02-11 Covidien Lp Motion compatible sensor for non-invasive optical blood analysis
US8965471B2 (en) 2007-04-21 2015-02-24 Cercacor Laboratories, Inc. Tissue profile wellness monitor
USD756817S1 (en) 2015-01-06 2016-05-24 Covidien Lp Module connectable to a sensor
US9560998B2 (en) 2006-10-12 2017-02-07 Masimo Corporation System and method for monitoring the life of a physiological sensor
USD779433S1 (en) 2015-09-17 2017-02-21 Covidien Lp Sensor connector cable
USD779432S1 (en) 2015-09-17 2017-02-21 Covidien Lp Sensor and connector
US9614337B2 (en) 2014-06-19 2017-04-04 Covidien Lp Multiple orientation connectors for medical monitoring systems
USD784931S1 (en) 2015-09-17 2017-04-25 Covidien Lp Sensor connector cable
USD790069S1 (en) 2015-11-02 2017-06-20 Covidien Lp Medical sensor
US9795739B2 (en) 2009-05-20 2017-10-24 Masimo Corporation Hemoglobin display and patient treatment
CN107438402A (en) * 2015-04-17 2017-12-05 诺基亚技术有限公司 Electrode for user's wearable device
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
USD862709S1 (en) 2017-09-20 2019-10-08 Covidien Lp Medical sensor
US11191485B2 (en) 2006-06-05 2021-12-07 Masimo Corporation Parameter upgrade system

Families Citing this family (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645440A (en) 1995-10-16 1997-07-08 Masimo Corporation Patient cable connector
EP0572684B1 (en) * 1992-05-15 1996-07-03 Hewlett-Packard GmbH Medical sensor
US5396909A (en) * 1993-12-16 1995-03-14 R. J. Reynolds Tobacco Company Smoking article filter
US5490523A (en) * 1994-06-29 1996-02-13 Nonin Medical Inc. Finger clip pulse oximeter
US5758644A (en) * 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
DE69635228T2 (en) * 1995-07-21 2006-05-18 Respironics, Inc. DEVICE FOR PULSE OXIMETRY THROUGH LASER DIODE BY MULTIFASER OPTICAL CABLES AND DISPOSABLE FIBER OPTIC PROBE
US5558096A (en) * 1995-07-21 1996-09-24 Biochem International, Inc. Blood pulse detection method using autocorrelation
US5913819A (en) * 1996-04-26 1999-06-22 Datex-Ohmeda, Inc. Injection molded, heat-sealed housing and half-etched lead frame for oximeter sensor
US5919133A (en) * 1996-04-26 1999-07-06 Ohmeda Inc. Conformal wrap for pulse oximeter sensor
SE9700384D0 (en) * 1997-02-04 1997-02-04 Biacore Ab Analytical method and apparatus
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US7899511B2 (en) 2004-07-13 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US6862465B2 (en) 1997-03-04 2005-03-01 Dexcom, Inc. Device and method for determining analyte levels
US20050033132A1 (en) 1997-03-04 2005-02-10 Shults Mark C. Analyte measuring device
US7192450B2 (en) 2003-05-21 2007-03-20 Dexcom, Inc. Porous membranes for use with implantable devices
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US9155496B2 (en) 1997-03-04 2015-10-13 Dexcom, Inc. Low oxygen in vivo analyte sensor
US7657297B2 (en) 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
US5827182A (en) * 1997-03-31 1998-10-27 Ohmeda Inc. Multiple LED sets in oximetry sensors
US5954643A (en) * 1997-06-09 1999-09-21 Minimid Inc. Insertion set for a transcutaneous sensor
US6014576A (en) * 1998-02-27 2000-01-11 Datex-Ohmeda, Inc. Segmented photoplethysmographic sensor with universal probe-end
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
WO2000059374A1 (en) * 1999-04-08 2000-10-12 Somanetics Corporation Patient sensor for clinical spectrophotometric apparatus
CA2392219A1 (en) * 1999-11-22 2001-05-31 Mallinckrodt Inc. Pulse oximeter sensor with widened metal strip
US6950687B2 (en) 1999-12-09 2005-09-27 Masimo Corporation Isolation and communication element for a resposable pulse oximetry sensor
US6571113B1 (en) 2000-09-21 2003-05-27 Mallinckrodt, Inc. Oximeter sensor adapter with coding element
US6490466B1 (en) 2000-09-21 2002-12-03 Mallinckrodt Inc. Interconnect circuit between non-compatible oximeter and sensor
AU2002226956A1 (en) 2000-11-22 2002-06-03 Leap Wireless International, Inc. Method and system for providing interactive services over a wireless communications network
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
AU2002309528A1 (en) 2001-04-02 2002-10-15 Therasense, Inc. Blood glucose tracking apparatus and methods
WO2002089664A2 (en) * 2001-05-03 2002-11-14 Masimo Corporation Flex circuit shielded optical sensor and method of fabricating the same
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US7379765B2 (en) 2003-07-25 2008-05-27 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US8010174B2 (en) 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9247901B2 (en) 2003-08-22 2016-02-02 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8260393B2 (en) 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US7828728B2 (en) 2003-07-25 2010-11-09 Dexcom, Inc. Analyte sensor
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US7613491B2 (en) 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
JP4167860B2 (en) * 2002-07-08 2008-10-22 株式会社日立製作所 Biological light measurement device
NL1021054C1 (en) * 2002-07-12 2004-01-13 Best Medical Internat Beheer B Universal measuring device for medical application.
US6745061B1 (en) 2002-08-21 2004-06-01 Datex-Ohmeda, Inc. Disposable oximetry sensor
US7134999B2 (en) 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
US7875293B2 (en) * 2003-05-21 2011-01-25 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
US7500950B2 (en) 2003-07-25 2009-03-10 Masimo Corporation Multipurpose sensor port
US7074307B2 (en) 2003-07-25 2006-07-11 Dexcom, Inc. Electrode systems for electrochemical sensors
WO2007120442A2 (en) 2003-07-25 2007-10-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US20100168543A1 (en) 2003-08-01 2010-07-01 Dexcom, Inc. System and methods for processing analyte sensor data
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US9135402B2 (en) * 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US7519408B2 (en) 2003-11-19 2009-04-14 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US7778680B2 (en) 2003-08-01 2010-08-17 Dexcom, Inc. System and methods for processing analyte sensor data
US20140121989A1 (en) 2003-08-22 2014-05-01 Dexcom, Inc. Systems and methods for processing analyte sensor data
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
EP1673008B1 (en) * 2003-09-12 2012-03-14 Laborie Medical Technologies Inc. Apparatus for medical measurement
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US8615282B2 (en) 2004-07-13 2013-12-24 Dexcom, Inc. Analyte sensor
EP2239566B1 (en) 2003-12-05 2014-04-23 DexCom, Inc. Calibration techniques for a continuous analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8774886B2 (en) 2006-10-04 2014-07-08 Dexcom, Inc. Analyte sensor
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US7637868B2 (en) * 2004-01-12 2009-12-29 Dexcom, Inc. Composite material for implantable device
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US20060015020A1 (en) * 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20060270922A1 (en) 2004-07-13 2006-11-30 Brauker James H Analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US7905833B2 (en) 2004-07-13 2011-03-15 Dexcom, Inc. Transcutaneous analyte sensor
US7713574B2 (en) 2004-07-13 2010-05-11 Dexcom, Inc. Transcutaneous analyte sensor
US20090076360A1 (en) 2007-09-13 2009-03-19 Dexcom, Inc. Transcutaneous analyte sensor
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US8060174B2 (en) 2005-04-15 2011-11-15 Dexcom, Inc. Analyte sensing biointerface
US20060282001A1 (en) * 2005-06-09 2006-12-14 Michel Noel Physiologic sensor apparatus
US7355688B2 (en) * 2005-09-08 2008-04-08 Vioptix, Inc. Optical probe for optical imaging system
JP2007134658A (en) * 2005-11-14 2007-05-31 Nitto Denko Corp Wiring circuit substrate and method for manufacturing the same and mounting electronic component
EP1956973B1 (en) * 2005-11-30 2017-09-13 Koninklijke Philips N.V. Electro-mechanical connector for thin medical monitoring patch
US7990382B2 (en) 2006-01-03 2011-08-02 Masimo Corporation Virtual display
US9757061B2 (en) 2006-01-17 2017-09-12 Dexcom, Inc. Low oxygen in vivo analyte sensor
US20080071157A1 (en) 2006-06-07 2008-03-20 Abbott Diabetes Care, Inc. Analyte monitoring system and method
CN100500092C (en) * 2006-06-16 2009-06-17 周常安 Blood physiological signal detecting device with changeable structure
US7831287B2 (en) 2006-10-04 2010-11-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8255026B1 (en) 2006-10-12 2012-08-28 Masimo Corporation, Inc. Patient monitor capable of monitoring the quality of attached probes and accessories
US20200037874A1 (en) 2007-05-18 2020-02-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8562558B2 (en) 2007-06-08 2013-10-22 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
EP4098177A1 (en) 2007-10-09 2022-12-07 DexCom, Inc. Integrated insulin delivery system with continuous glucose sensor
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US8290559B2 (en) 2007-12-17 2012-10-16 Dexcom, Inc. Systems and methods for processing sensor data
US8591455B2 (en) * 2008-02-21 2013-11-26 Dexcom, Inc. Systems and methods for customizing delivery of sensor data
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8364224B2 (en) 2008-03-31 2013-01-29 Covidien Lp System and method for facilitating sensor and monitor communication
JP5756752B2 (en) 2008-07-03 2015-07-29 セルカコール・ラボラトリーズ・インコーポレイテッドCercacor Laboratories, Inc. Sensor
USD621516S1 (en) * 2008-08-25 2010-08-10 Masimo Laboratories, Inc. Patient monitoring sensor
US8515509B2 (en) 2008-08-04 2013-08-20 Cercacor Laboratories, Inc. Multi-stream emitter for noninvasive measurement of blood constituents
WO2010033724A2 (en) 2008-09-19 2010-03-25 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
JP5192971B2 (en) * 2008-10-01 2013-05-08 浜松ホトニクス株式会社 Probe for optical biometric device and optical biometric device
US9149220B2 (en) 2011-04-15 2015-10-06 Dexcom, Inc. Advanced analyte sensor calibration and error detection
WO2010143083A1 (en) 2009-06-09 2010-12-16 Koninklijke Philips Electronics N.V. Disposable spo2 grips
US8688183B2 (en) 2009-09-03 2014-04-01 Ceracor Laboratories, Inc. Emitter driver for noninvasive patient monitor
JP5880536B2 (en) * 2013-12-26 2016-03-09 セイコーエプソン株式会社 Biological information detector and biological information measuring device
US20160022183A1 (en) * 2014-07-24 2016-01-28 Wristdocs Llc Pulse oximeter sensor with reversible connector assembly
US10646144B2 (en) 2015-12-07 2020-05-12 Marcelo Malini Lamego Wireless, disposable, extended use pulse oximeter apparatus and methods
US11412989B2 (en) 2017-01-04 2022-08-16 Koninklijke Philips N.V. Sensor device and method for sensing physiological information of a subject
AU2018354120A1 (en) 2017-10-24 2020-04-23 Dexcom, Inc. Pre-connected analyte sensors
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
US10659963B1 (en) 2018-02-12 2020-05-19 True Wearables, Inc. Single use medical device apparatus and methods
US11445948B2 (en) * 2018-10-11 2022-09-20 Masimo Corporation Patient connector assembly with vertical detents
CN110236565A (en) * 2019-06-25 2019-09-17 深圳市普凌姆科技有限公司 A kind of novel blood oxygen fingerstall

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4842543A (en) * 1988-06-03 1989-06-27 Amp Incorporated Contact protection system for electrical connectors
US5069634A (en) * 1991-01-24 1991-12-03 Chiarolanzio Martin J Snap lock extension cord and power tool connector
US5080603A (en) * 1989-08-30 1992-01-14 E. I. Du Pont De Nemours And Company Mountable connector for cable assembly
US5092788A (en) * 1990-12-03 1992-03-03 Motorola, Inc. Self-contained universal accessory connector and seal
US5127844A (en) * 1990-04-12 1992-07-07 Nokia Mobile Phones Ltd. Connection block for plug-in adapter
US5252089A (en) * 1989-12-20 1993-10-12 Yazaki Corporation Connector apparatus

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700708A (en) * 1982-09-02 1987-10-20 Nellcor Incorporated Calibrated optical oximeter probe
EP0104772B1 (en) * 1982-09-02 1990-03-21 Nellcor Incorporated Calibrated optical oximeter probe
US4653498A (en) * 1982-09-13 1987-03-31 Nellcor Incorporated Pulse oximeter monitor
US4685464A (en) * 1985-07-05 1987-08-11 Nellcor Incorporated Durable sensor for detecting optical pulses
US4824242A (en) * 1986-09-26 1989-04-25 Sensormedics Corporation Non-invasive oximeter and method
US4834532A (en) * 1986-12-05 1989-05-30 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon Health Sciences University Devices and procedures for in vitro calibration of pulse oximetry monitors
DE3768088D1 (en) * 1987-06-03 1991-03-28 Hewlett Packard Gmbh METHOD FOR DETERMINING PERFUSION.
US4825879A (en) * 1987-10-08 1989-05-02 Critkon, Inc. Pulse oximeter sensor
DE3810411A1 (en) * 1988-03-26 1989-10-12 Nicolay Gmbh DEVICE FOR FIXING A SENSOR, IN PARTICULAR A SENSOR FOR OXIMETRIC MEASUREMENTS
US4964408A (en) * 1988-04-29 1990-10-23 Thor Technology Corporation Oximeter sensor assembly with integral cable
US4825872A (en) * 1988-08-05 1989-05-02 Critikon, Inc. Finger sensor for pulse oximetry system
DE3912993C2 (en) * 1989-04-20 1998-01-29 Nicolay Gmbh Optoelectronic sensor for generating electrical signals based on physiological values
US5090410A (en) * 1989-06-28 1992-02-25 Datascope Investment Corp. Fastener for attaching sensor to the body
US5080098A (en) * 1989-12-18 1992-01-14 Sentinel Monitoring, Inc. Non-invasive sensor
US5209230A (en) * 1990-10-19 1993-05-11 Nellcor Incorporated Adhesive pulse oximeter sensor with reusable portion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4842543A (en) * 1988-06-03 1989-06-27 Amp Incorporated Contact protection system for electrical connectors
US5080603A (en) * 1989-08-30 1992-01-14 E. I. Du Pont De Nemours And Company Mountable connector for cable assembly
US5252089A (en) * 1989-12-20 1993-10-12 Yazaki Corporation Connector apparatus
US5127844A (en) * 1990-04-12 1992-07-07 Nokia Mobile Phones Ltd. Connection block for plug-in adapter
US5092788A (en) * 1990-12-03 1992-03-03 Motorola, Inc. Self-contained universal accessory connector and seal
US5069634A (en) * 1991-01-24 1991-12-03 Chiarolanzio Martin J Snap lock extension cord and power tool connector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IBM Technical Disclosure Bulletin, vol. 34, No. 2, Jul. 1991. *

Cited By (306)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132641B2 (en) 1991-03-21 2006-11-07 Masimo Corporation Shielded optical probe having an electrical connector
US6541756B2 (en) 1991-03-21 2003-04-01 Masimo Corporation Shielded optical probe having an electrical connector
US20030162414A1 (en) * 1991-03-21 2003-08-28 Schulz Christian E. Shielded optical probe having an electrical connector
US5545051A (en) * 1995-06-28 1996-08-13 The Whitaker Corporation Board to board matable assembly
US6236874B1 (en) 1995-10-20 2001-05-22 Aspect Medical Systems, Inc. Electrode connector system
US5813404A (en) * 1995-10-20 1998-09-29 Aspect Medical Systems, Inc. Electrode connector system
US6023541A (en) * 1995-12-20 2000-02-08 Nellcor Puritan Bennett Incorporated Active optical oximeter probe adapter
US5818985A (en) * 1995-12-20 1998-10-06 Nellcor Puritan Bennett Incorporated Optical oximeter probe adapter
US5733151A (en) * 1996-08-23 1998-03-31 Edsall; David Electrical clamping connection device
US5813972A (en) * 1996-09-30 1998-09-29 Minnesota Mining And Manufacturing Company Medical perfusion system with data communications network
US6164920A (en) * 1996-09-30 2000-12-26 Minnesota Mining And Manufacturing Company Perfusion system with control network
US7006005B2 (en) 1996-09-30 2006-02-28 Terumo Cardiovascular Systems Adapter pod for use in medical perfusion system
US5752931A (en) * 1996-09-30 1998-05-19 Minnesota Mining And Manufacturing Company Perfusion system with perfusion circuit display
US20010013822A1 (en) * 1996-09-30 2001-08-16 Richard A. Nazarian Medical perfusion system
US8649839B2 (en) 1996-10-10 2014-02-11 Covidien Lp Motion compatible sensor for non-invasive optical blood analysis
US6993371B2 (en) 1998-02-11 2006-01-31 Masimo Corporation Pulse oximetry sensor adaptor
US6349228B1 (en) 1998-02-11 2002-02-19 Masimo Corporation Pulse oximetry sensor adapter
US20110152645A1 (en) * 1998-02-11 2011-06-23 Kiani Massi E Pulse oximetry sensor adapter
US20040147823A1 (en) * 1998-02-11 2004-07-29 Kiani Massi E Pulse oximetry sensor adaptor
US6597933B2 (en) 1998-02-11 2003-07-22 Masimo Corporation Pulse oximetry sensor adapter
US7844313B2 (en) 1998-02-11 2010-11-30 Masimo Corporation Pulse oximetry sensor adapter
US20060189859A1 (en) * 1998-02-11 2006-08-24 Kiani Massi E Pulse oximetry sensor adapter
US5995855A (en) * 1998-02-11 1999-11-30 Masimo Corporation Pulse oximetry sensor adapter
US6525386B1 (en) * 1998-03-10 2003-02-25 Masimo Corporation Non-protruding optoelectronic lens
US20030143297A1 (en) * 1998-03-10 2003-07-31 Mills Michael A. Mold tool for an optoelectronic element
US20070007612A1 (en) * 1998-03-10 2007-01-11 Mills Michael A Method of providing an optoelectronic element with a non-protruding lens
US20030132495A1 (en) * 1998-03-10 2003-07-17 Mills Michael A. Method of providing an optoelectronic element with a non-protruding lens
US6830711B2 (en) 1998-03-10 2004-12-14 Masimo Corporation Mold tool for an optoelectronic element
US7067893B2 (en) 1998-03-10 2006-06-27 Masimo Corporation Optoelectronic element with a non-protruding lens
US7332784B2 (en) 1998-03-10 2008-02-19 Masimo Corporation Method of providing an optoelectronic element with a non-protruding lens
US6165005A (en) * 1998-03-19 2000-12-26 Masimo Corporation Patient cable sensor switch
US5997343A (en) * 1998-03-19 1999-12-07 Masimo Corporation Patient cable sensor switch
US5891021A (en) * 1998-06-03 1999-04-06 Perdue Holdings, Inc. Partially rigid-partially flexible electro-optical sensor for fingertip transillumination
USRE43860E1 (en) 1998-10-15 2012-12-11 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatus
US6721585B1 (en) 1998-10-15 2004-04-13 Sensidyne, Inc. Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
USRE41317E1 (en) 1998-10-15 2010-05-04 Masimo Corporation Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
USRE41912E1 (en) 1998-10-15 2010-11-02 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatus
USRE43169E1 (en) 1998-10-15 2012-02-07 Masimo Corporation Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US6684091B2 (en) 1998-10-15 2004-01-27 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage method
USRE44823E1 (en) 1998-10-15 2014-04-01 Masimo Corporation Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US8706179B2 (en) 1998-10-15 2014-04-22 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatii
US6061584A (en) * 1998-10-28 2000-05-09 Lovejoy; David A. Pulse oximetry sensor
US8175672B2 (en) 1999-04-12 2012-05-08 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatii
US7245953B1 (en) 1999-04-12 2007-07-17 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatii
US8133176B2 (en) 1999-04-14 2012-03-13 Tyco Healthcare Group Lp Method and circuit for indicating quality and accuracy of physiological measurements
US20060030764A1 (en) * 1999-04-14 2006-02-09 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
US7689259B2 (en) 2000-04-17 2010-03-30 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
US8224412B2 (en) 2000-04-17 2012-07-17 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
US8078246B2 (en) 2000-04-17 2011-12-13 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
US6697656B1 (en) 2000-06-27 2004-02-24 Masimo Corporation Pulse oximetry sensor compatible with multiple pulse oximetry systems
EP1222894A3 (en) * 2001-01-11 2003-10-15 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage method
US8433383B2 (en) 2001-10-12 2013-04-30 Covidien Lp Stacked adhesive optical sensor
US20060276700A1 (en) * 2001-10-12 2006-12-07 O'neil Michael P Stacked adhesive optical sensor
US8483790B2 (en) 2002-10-18 2013-07-09 Covidien Lp Non-adhesive oximeter sensor for sensitive skin
US6920345B2 (en) 2003-01-24 2005-07-19 Masimo Corporation Optical sensor including disposable and reusable elements
US8781549B2 (en) 2003-01-24 2014-07-15 Cercacor Laboratories, Inc. Noninvasive oximetry optical sensor including disposable and reusable elements
US8244325B2 (en) 2003-01-24 2012-08-14 Cercacor Laboratories, Inc. Noninvasive oximetry optical sensor including disposable and reusable elements
US20070244378A1 (en) * 2003-01-24 2007-10-18 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
US7225007B2 (en) 2003-01-24 2007-05-29 Masimo Corporation Optical sensor including disposable and reusable elements
US20050245797A1 (en) * 2003-01-24 2005-11-03 Ammar Al-Ali Optical sensor including disposable and reusable elements
US20070208240A1 (en) * 2004-02-25 2007-09-06 Nellcor Puritan Bennett Inc. Techniques for detecting heart pulses and reducing power consumption in sensors
US20060073719A1 (en) * 2004-09-29 2006-04-06 Kiani Massi E Multiple key position plug
US9549696B2 (en) 2005-03-01 2017-01-24 Cercacor Laboratories, Inc. Physiological parameter confidence measure
US20100049020A1 (en) * 2005-03-01 2010-02-25 Masimo Laboratories, Inc. Multiple wavelength sensor emitters
US20060211924A1 (en) * 2005-03-01 2006-09-21 David Dalke Multiple wavelength sensor emitters
US20060211922A1 (en) * 2005-03-01 2006-09-21 Ammar Al-Ali Multiple wavelength sensor substrate
US8130105B2 (en) 2005-03-01 2012-03-06 Masimo Laboratories, Inc. Noninvasive multi-parameter patient monitor
US20060211923A1 (en) * 2005-03-01 2006-09-21 Ammar Al-Ali Multiple wavelength sensor equalization
US20060211932A1 (en) * 2005-03-01 2006-09-21 Ammar Al-Ali Configurable physiological measurement system
US20060220881A1 (en) * 2005-03-01 2006-10-05 Ammar Al-Ali Noninvasive multi-parameter patient monitor
US8050728B2 (en) 2005-03-01 2011-11-01 Masimo Laboratories, Inc. Multiple wavelength sensor drivers
US20110237914A1 (en) * 2005-03-01 2011-09-29 Masimo Laboratories, Inc. Physiological parameter confidence measure
US8224411B2 (en) 2005-03-01 2012-07-17 Masimo Laboratories, Inc. Noninvasive multi-parameter patient monitor
US20060241363A1 (en) * 2005-03-01 2006-10-26 Ammar Al-Ali Multiple wavelength sensor drivers
US7957780B2 (en) 2005-03-01 2011-06-07 Masimo Laboratories, Inc. Physiological parameter confidence measure
US20060238358A1 (en) * 2005-03-01 2006-10-26 Ammar Al-Ali Noninvasive multi-parameter patient monitor
US8255027B2 (en) 2005-03-01 2012-08-28 Cercacor Laboratories, Inc. Multiple wavelength sensor substrate
US11545263B2 (en) 2005-03-01 2023-01-03 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US11430572B2 (en) 2005-03-01 2022-08-30 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US7377794B2 (en) 2005-03-01 2008-05-27 Masimo Corporation Multiple wavelength sensor interconnect
US20080220633A1 (en) * 2005-03-01 2008-09-11 Ammar Al-Ali Multiple wavelength sensor interconnect
US8301217B2 (en) 2005-03-01 2012-10-30 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US10984911B2 (en) 2005-03-01 2021-04-20 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US8385996B2 (en) 2005-03-01 2013-02-26 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US10856788B2 (en) 2005-03-01 2020-12-08 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US8483787B2 (en) 2005-03-01 2013-07-09 Cercacor Laboratories, Inc. Multiple wavelength sensor drivers
US10327683B2 (en) 2005-03-01 2019-06-25 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US10251585B2 (en) 2005-03-01 2019-04-09 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US10123726B2 (en) 2005-03-01 2018-11-13 Cercacor Laboratories, Inc. Configurable physiological measurement system
US9750443B2 (en) 2005-03-01 2017-09-05 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US8190223B2 (en) 2005-03-01 2012-05-29 Masimo Laboratories, Inc. Noninvasive multi-parameter patient monitor
US7563110B2 (en) 2005-03-01 2009-07-21 Masimo Laboratories, Inc. Multiple wavelength sensor interconnect
US9351675B2 (en) 2005-03-01 2016-05-31 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US8581732B2 (en) 2005-03-01 2013-11-12 Carcacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US7596398B2 (en) 2005-03-01 2009-09-29 Masimo Laboratories, Inc. Multiple wavelength sensor attachment
US9241662B2 (en) 2005-03-01 2016-01-26 Cercacor Laboratories, Inc. Configurable physiological measurement system
US9167995B2 (en) 2005-03-01 2015-10-27 Cercacor Laboratories, Inc. Physiological parameter confidence measure
US20100228108A1 (en) * 2005-03-01 2010-09-09 Masimo Laboratories, Inc. Configurable physiological measurement system
US9131882B2 (en) 2005-03-01 2015-09-15 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US7764982B2 (en) 2005-03-01 2010-07-27 Masimo Laboratories, Inc. Multiple wavelength sensor emitters
US8929964B2 (en) 2005-03-01 2015-01-06 Cercacor Laboratories, Inc. Multiple wavelength sensor drivers
US8912909B2 (en) 2005-03-01 2014-12-16 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US7647083B2 (en) 2005-03-01 2010-01-12 Masimo Laboratories, Inc. Multiple wavelength sensor equalization
US7761127B2 (en) 2005-03-01 2010-07-20 Masimo Laboratories, Inc. Multiple wavelength sensor substrate
US7729733B2 (en) 2005-03-01 2010-06-01 Masimo Laboratories, Inc. Configurable physiological measurement system
US8634889B2 (en) 2005-03-01 2014-01-21 Cercacor Laboratories, Inc. Configurable physiological measurement system
US8718735B2 (en) 2005-03-01 2014-05-06 Cercacor Laboratories, Inc. Physiological parameter confidence measure
US8849365B2 (en) 2005-03-01 2014-09-30 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US20070032710A1 (en) * 2005-08-08 2007-02-08 William Raridan Bi-stable medical sensor and technique for using the same
US20070032708A1 (en) * 2005-08-08 2007-02-08 Darius Eghbal Compliant diaphragm medical sensor and technique for using the same
US7657294B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US7684843B2 (en) 2005-08-08 2010-03-23 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US20070032716A1 (en) * 2005-08-08 2007-02-08 William Raridan Medical sensor having a deformable region and technique for using the same
US7657296B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Unitary medical sensor assembly and technique for using the same
US20070032707A1 (en) * 2005-08-08 2007-02-08 Joseph Coakley Medical sensor and technique for using the same
US7738937B2 (en) 2005-08-08 2010-06-15 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US7693559B2 (en) 2005-08-08 2010-04-06 Nellcor Puritan Bennett Llc Medical sensor having a deformable region and technique for using the same
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7647084B2 (en) 2005-08-08 2010-01-12 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8260391B2 (en) 2005-09-12 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US20100280344A1 (en) * 2005-09-12 2010-11-04 Nellcor Puritan Benneth LLC Medical sensor for reducing motion artifacts and technique for using the same
US7729736B2 (en) 2005-09-29 2010-06-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7899510B2 (en) 2005-09-29 2011-03-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US20070068527A1 (en) * 2005-09-29 2007-03-29 Baker Clark R Jr Method and system for determining when to reposition a physiological sensor
US8600469B2 (en) 2005-09-29 2013-12-03 Covidien Lp Medical sensor and technique for using the same
US8965473B2 (en) 2005-09-29 2015-02-24 Covidien Lp Medical sensor for reducing motion artifacts and technique for using the same
US20110130638A1 (en) * 2005-09-29 2011-06-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7904130B2 (en) 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7650177B2 (en) 2005-09-29 2010-01-19 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US20070073117A1 (en) * 2005-09-29 2007-03-29 Raridan William B Jr Medical sensor and technique for using the same
US20070073122A1 (en) * 2005-09-29 2007-03-29 Carine Hoarau Medical sensor and technique for using the same
US20070073123A1 (en) * 2005-09-29 2007-03-29 Raridan William B Jr Medical sensor and technique for using the same
US20070073126A1 (en) * 2005-09-29 2007-03-29 Raridan William B Jr Medical sensor and technique for using the same
US8060171B2 (en) 2005-09-29 2011-11-15 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US8092379B2 (en) 2005-09-29 2012-01-10 Nellcor Puritan Bennett Llc Method and system for determining when to reposition a physiological sensor
US7676253B2 (en) 2005-09-29 2010-03-09 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7869850B2 (en) 2005-09-29 2011-01-11 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US8352010B2 (en) 2005-09-30 2013-01-08 Covidien Lp Folding medical sensor and technique for using the same
US8233954B2 (en) 2005-09-30 2012-07-31 Nellcor Puritan Bennett Llc Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US20090118603A1 (en) * 2005-09-30 2009-05-07 Nellcor Puritan Bennett Llc Optically aligned pulse oximetry sensor and technique for using the same
US8352009B2 (en) 2005-09-30 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US20070078318A1 (en) * 2005-09-30 2007-04-05 Carl Kling Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US20070078315A1 (en) * 2005-09-30 2007-04-05 Carl Kling Clip-style medical sensor and technique for using the same
US8062221B2 (en) 2005-09-30 2011-11-22 Nellcor Puritan Bennett Llc Sensor for tissue gas detection and technique for using the same
US20070078309A1 (en) * 2005-09-30 2007-04-05 Matlock George L Optically aligned pulse oximetry sensor and technique for using the same
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US20090234210A1 (en) * 2005-09-30 2009-09-17 Nellcor Puritan Bennett Llc Folding medical sensor and technique for using the same
US20070078317A1 (en) * 2005-09-30 2007-04-05 Matlock George L Folding medical sensor and technique for using the same
US20070078307A1 (en) * 2005-09-30 2007-04-05 Debreczeny Martin P Sensor for tissue gas detection and technique for using the same
US8548550B2 (en) 2005-11-29 2013-10-01 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
US8868150B2 (en) 2005-11-29 2014-10-21 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
US10420493B2 (en) 2005-11-29 2019-09-24 Masimo Corporation Optical sensor including disposable and reusable elements
US8233955B2 (en) 2005-11-29 2012-07-31 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
US20070260130A1 (en) * 2006-05-02 2007-11-08 Chin Rodney P Medical sensor and technique for using the same
US8437826B2 (en) 2006-05-02 2013-05-07 Covidien Lp Clip-style medical sensor and technique for using the same
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US20070282181A1 (en) * 2006-06-01 2007-12-06 Carol Findlay Visual medical sensor indicator
US11191485B2 (en) 2006-06-05 2021-12-07 Masimo Corporation Parameter upgrade system
US20080058622A1 (en) * 2006-08-22 2008-03-06 Baker Clark R Medical sensor for reducing signal artifacts and technique for using the same
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8577436B2 (en) 2006-08-22 2013-11-05 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US20080064940A1 (en) * 2006-09-12 2008-03-13 Raridan William B Sensor cable design for use with spectrophotometric sensors and method of using the same
US20080071154A1 (en) * 2006-09-20 2008-03-20 Nellcor Puritan Bennett Inc. System and method for practicing spectrophotometry using light emitting nanostructure devices
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8190225B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US20080076996A1 (en) * 2006-09-22 2008-03-27 Nellcor Puritan Bennett Incorporated Medical sensor for reducing signal artifacts and technique for using the same
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8195264B2 (en) 2006-09-22 2012-06-05 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US20080076980A1 (en) * 2006-09-22 2008-03-27 Nellcor Puritan Bennett Incorporated Medical sensor for reducing signal artifacts and technique for using the same
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US20080076994A1 (en) * 2006-09-22 2008-03-27 Nellcor Puritan Bennett Incorporated Medical sensor for reducing signal artifacts and technique for using the same
US20080076981A1 (en) * 2006-09-22 2008-03-27 Nellcor Puritan Bennett Incorporated Medical sensor for reducing signal artifacts and technique for using the same
US8190224B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US7869849B2 (en) 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US20080076982A1 (en) * 2006-09-26 2008-03-27 Ollerdessen Albert L Opaque, electrically nonconductive region on a medical sensor
US20090270691A1 (en) * 2006-09-27 2009-10-29 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US20080076987A1 (en) * 2006-09-27 2008-03-27 Nellcor Puritan Bennett Inc. Flexible medical sensor enclosure
US8315685B2 (en) 2006-09-27 2012-11-20 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US20080081973A1 (en) * 2006-09-28 2008-04-03 Nellcor Puritan Bennett Incorporated System and method for mitigating interference in pulse oximetry
US20080117616A1 (en) * 2006-09-28 2008-05-22 Nellcor Puritan Bennett Inc. Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US7796403B2 (en) 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US8660626B2 (en) 2006-09-28 2014-02-25 Covidien Lp System and method for mitigating interference in pulse oximetry
US7890153B2 (en) 2006-09-28 2011-02-15 Nellcor Puritan Bennett Llc System and method for mitigating interference in pulse oximetry
US20110124991A1 (en) * 2006-09-28 2011-05-26 Nellcor Puritan Bennett Llc System and method for mitigating interference in pulse oximetry
US7794266B2 (en) 2006-09-29 2010-09-14 Nellcor Puritan Bennett Llc Device and method for reducing crosstalk
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US7658652B2 (en) 2006-09-29 2010-02-09 Nellcor Puritan Bennett Llc Device and method for reducing crosstalk
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US7680522B2 (en) 2006-09-29 2010-03-16 Nellcor Puritan Bennett Llc Method and apparatus for detecting misapplied sensors
US20080081967A1 (en) * 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated Method and apparatus for detecting misapplied sensors
US10863938B2 (en) 2006-10-12 2020-12-15 Masimo Corporation System and method for monitoring the life of a physiological sensor
US11317837B2 (en) 2006-10-12 2022-05-03 Masimo Corporation System and method for monitoring the life of a physiological sensor
US9560998B2 (en) 2006-10-12 2017-02-07 Masimo Corporation System and method for monitoring the life of a physiological sensor
US10342470B2 (en) 2006-10-12 2019-07-09 Masimo Corporation System and method for monitoring the life of a physiological sensor
US10039482B2 (en) 2006-10-12 2018-08-07 Masimo Corporation System and method for monitoring the life of a physiological sensor
US11857319B2 (en) 2006-10-12 2024-01-02 Masimo Corporation System and method for monitoring the life of a physiological sensor
US9861304B2 (en) 2006-11-29 2018-01-09 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
US10463284B2 (en) 2006-11-29 2019-11-05 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
US9138182B2 (en) 2006-11-29 2015-09-22 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
US8600467B2 (en) 2006-11-29 2013-12-03 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US20080221427A1 (en) * 2007-03-09 2008-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US7894869B2 (en) 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
US20080242958A1 (en) * 2007-03-27 2008-10-02 Ammar Al-Ali Multiple wavelength optical sensor
US8781544B2 (en) 2007-03-27 2014-07-15 Cercacor Laboratories, Inc. Multiple wavelength optical sensor
US9848807B2 (en) 2007-04-21 2017-12-26 Masimo Corporation Tissue profile wellness monitor
US8965471B2 (en) 2007-04-21 2015-02-24 Cercacor Laboratories, Inc. Tissue profile wellness monitor
US11647923B2 (en) 2007-04-21 2023-05-16 Masimo Corporation Tissue profile wellness monitor
US10980457B2 (en) 2007-04-21 2021-04-20 Masimo Corporation Tissue profile wellness monitor
US10251586B2 (en) 2007-04-21 2019-04-09 Masimo Corporation Tissue profile wellness monitor
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8366613B2 (en) 2007-12-26 2013-02-05 Covidien Lp LED drive circuit for pulse oximetry and method for using same
US20090167205A1 (en) * 2007-12-26 2009-07-02 Nellcor Puritan Bennett Llc LED Drive Circuit And Method For Using Same
US20090168050A1 (en) * 2007-12-27 2009-07-02 Nellcor Puritan Bennett Llc Optical Sensor System And Method
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US8452364B2 (en) 2007-12-28 2013-05-28 Covidien LLP System and method for attaching a sensor to a patient's skin
US20090187085A1 (en) * 2007-12-28 2009-07-23 Nellcor Puritan Bennett Llc System And Method For Estimating Physiological Parameters By Deconvolving Artifacts
US20090171176A1 (en) * 2007-12-28 2009-07-02 Nellcor Puritan Bennett Llc Snapshot Sensor
US8442608B2 (en) 2007-12-28 2013-05-14 Covidien Lp System and method for estimating physiological parameters by deconvolving artifacts
US8092993B2 (en) 2007-12-31 2012-01-10 Nellcor Puritan Bennett Llc Hydrogel thin film for use as a biosensor
US20090173518A1 (en) * 2007-12-31 2009-07-09 Nellcor Puritan Bennett Llc Method And Apparatus For Aligning And Securing A Cable Strain Relief
US20090171166A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Oximeter with location awareness
US20090168385A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Flex circuit snap track for a biometric sensor
US20090171224A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Sensor with integrated living hinge and spring
US8070508B2 (en) 2007-12-31 2011-12-06 Nellcor Puritan Bennett Llc Method and apparatus for aligning and securing a cable strain relief
US8199007B2 (en) 2007-12-31 2012-06-12 Nellcor Puritan Bennett Llc Flex circuit snap track for a biometric sensor
US8897850B2 (en) 2007-12-31 2014-11-25 Covidien Lp Sensor with integrated living hinge and spring
US20090247854A1 (en) * 2008-03-27 2009-10-01 Nellcor Puritan Bennett Llc Retractable Sensor Cable For A Pulse Oximeter
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US20090247083A1 (en) * 2008-03-31 2009-10-01 Nellcor Puritan Bennett Llc Wavelength Selection And Outlier Detection In Reduced Rank Linear Models
US8112375B2 (en) 2008-03-31 2012-02-07 Nellcor Puritan Bennett Llc Wavelength selection and outlier detection in reduced rank linear models
US20090318817A1 (en) * 2008-06-20 2009-12-24 Fujitsu Component Limited Pulse detection apparatus and method for manufacturing the same
US20090326347A1 (en) * 2008-06-30 2009-12-31 Bennett Scharf Synchronous Light Detection Utilizing CMOS/CCD Sensors For Oximetry Sensing
US20090323067A1 (en) * 2008-06-30 2009-12-31 Medina Casey V System And Method For Coating And Shielding Electronic Sensor Components
US7880884B2 (en) 2008-06-30 2011-02-01 Nellcor Puritan Bennett Llc System and method for coating and shielding electronic sensor components
US7887345B2 (en) 2008-06-30 2011-02-15 Nellcor Puritan Bennett Llc Single use connector for pulse oximetry sensors
US20090323267A1 (en) * 2008-06-30 2009-12-31 Besko David P Optical Detector With An Overmolded Faraday Shield
US8071935B2 (en) 2008-06-30 2011-12-06 Nellcor Puritan Bennett Llc Optical detector with an overmolded faraday shield
US20100076276A1 (en) * 2008-09-25 2010-03-25 Nellcor Puritan Bennett Llc Medical Sensor, Display, and Technique For Using The Same
US20100076319A1 (en) * 2008-09-25 2010-03-25 Nellcor Puritan Bennett Llc Pathlength-Corrected Medical Spectroscopy
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8423112B2 (en) 2008-09-30 2013-04-16 Covidien Lp Medical sensor and technique for using the same
US8914088B2 (en) 2008-09-30 2014-12-16 Covidien Lp Medical sensor and technique for using the same
US20100081902A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Medical Sensor and Technique for Using the Same
US20100081912A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Ultrasound-Optical Doppler Hemometer and Technique for Using the Same
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US20100081900A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Medical Sensor
US20100081901A1 (en) * 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Medical Sensor And Technique For Using The Same
US8452366B2 (en) 2009-03-16 2013-05-28 Covidien Lp Medical monitoring device with flexible circuitry
US20100234706A1 (en) * 2009-03-16 2010-09-16 Nellcor Puritan Bennett Llc Medical Monitoring Device With Flexible Circuitry
US8221319B2 (en) 2009-03-25 2012-07-17 Nellcor Puritan Bennett Llc Medical device for assessing intravascular blood volume and technique for using the same
US20100249550A1 (en) * 2009-03-25 2010-09-30 Neilcor Puritan Bennett LLC Method And Apparatus For Optical Filtering Of A Broadband Emitter In A Medical Sensor
US8509869B2 (en) 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
US20100292548A1 (en) * 2009-05-15 2010-11-18 Nellcor Puritan Bennett Llc Method And Apparatus For Detecting And Analyzing Variations In A Physiologic Parameter
US9895107B2 (en) 2009-05-19 2018-02-20 Masimo Corporation Disposable components for reusable physiological sensor
US10342487B2 (en) 2009-05-19 2019-07-09 Masimo Corporation Disposable components for reusable physiological sensor
US11331042B2 (en) 2009-05-19 2022-05-17 Masimo Corporation Disposable components for reusable physiological sensor
US20100317936A1 (en) * 2009-05-19 2010-12-16 Masimo Corporation Disposable components for reusable physiological sensor
US8989831B2 (en) 2009-05-19 2015-03-24 Masimo Corporation Disposable components for reusable physiological sensor
US8634891B2 (en) 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
US11752262B2 (en) 2009-05-20 2023-09-12 Masimo Corporation Hemoglobin display and patient treatment
US10413666B2 (en) 2009-05-20 2019-09-17 Masimo Corporation Hemoglobin display and patient treatment
US9795739B2 (en) 2009-05-20 2017-10-24 Masimo Corporation Hemoglobin display and patient treatment
US20100298678A1 (en) * 2009-05-20 2010-11-25 Nellcor Puritan Bennett Llc Method And System For Self Regulation Of Sensor Component Contact Pressure
US10953156B2 (en) 2009-05-20 2021-03-23 Masimo Corporation Hemoglobin display and patient treatment
US20100331640A1 (en) * 2009-06-26 2010-12-30 Nellcor Puritan Bennett Llc Use of photodetector array to improve efficiency and accuracy of an optical medical sensor
US8311601B2 (en) 2009-06-30 2012-11-13 Nellcor Puritan Bennett Llc Reflectance and/or transmissive pulse oximeter
US20100331638A1 (en) * 2009-06-30 2010-12-30 Nellcor Puritan Bennett Llc Reflectance and/or transmissive pulse oximeter
US20100327057A1 (en) * 2009-06-30 2010-12-30 Nellcor Puritan Bennett Llc System and method for linking patient data to a patient and providing sensor quality assurance
US9010634B2 (en) 2009-06-30 2015-04-21 Covidien Lp System and method for linking patient data to a patient and providing sensor quality assurance
US8505821B2 (en) 2009-06-30 2013-08-13 Covidien Lp System and method for providing sensor quality assurance
US20100331631A1 (en) * 2009-06-30 2010-12-30 Nellcor Puritan Bennett Llc Oxygen saturation ear sensor design that optimizes both attachment method and signal quality
US20100327063A1 (en) * 2009-06-30 2010-12-30 Nellcor Puritan Bennett Llc System and method for providing sensor quality assurance
US20110015507A1 (en) * 2009-07-17 2011-01-20 Nellcor Puritan Bennett Llc System and method for memory switching for multiple configuration medical sensor
US8391941B2 (en) 2009-07-17 2013-03-05 Covidien Lp System and method for memory switching for multiple configuration medical sensor
US8417310B2 (en) 2009-08-10 2013-04-09 Covidien Lp Digital switching in multi-site sensor
US20110034789A1 (en) * 2009-08-10 2011-02-10 Nellcor Puritan Bennett Llc Digital switching in multi-site sensor
US8428675B2 (en) 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US20110046461A1 (en) * 2009-08-19 2011-02-24 Nellcor Puritan Bennett Llc Nanofiber adhesives used in medical devices
US11534087B2 (en) 2009-11-24 2022-12-27 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US10750983B2 (en) 2009-11-24 2020-08-25 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US8801613B2 (en) 2009-12-04 2014-08-12 Masimo Corporation Calibration for multi-stage physiological monitors
US10729402B2 (en) 2009-12-04 2020-08-04 Masimo Corporation Calibration for multi-stage physiological monitors
US11571152B2 (en) 2009-12-04 2023-02-07 Masimo Corporation Calibration for multi-stage physiological monitors
US20110196211A1 (en) * 2009-12-04 2011-08-11 Masimo Corporation Calibration for multi-stage physiological monitors
US20110230066A1 (en) * 2010-03-16 2011-09-22 Nihon Kohden Corporation Connector, card edge connector, and sensor using the same
US8585427B2 (en) 2010-03-16 2013-11-19 Nihon Kohden Corporation Connector, card edge connector, and sensor using the same
EP2367240A2 (en) 2010-03-16 2011-09-21 Nihon Kohden Corporation Connector, card edge connector, and sensor using the same
US9614337B2 (en) 2014-06-19 2017-04-04 Covidien Lp Multiple orientation connectors for medical monitoring systems
USD756817S1 (en) 2015-01-06 2016-05-24 Covidien Lp Module connectable to a sensor
US11272882B2 (en) * 2015-04-17 2022-03-15 Nokia Technologies Oy Electrode for a user wearable apparatus
CN107438402A (en) * 2015-04-17 2017-12-05 诺基亚技术有限公司 Electrode for user's wearable device
US20180020975A1 (en) * 2015-04-17 2018-01-25 Nokia Technologies Oy Electrode for a user wearable apparatus
USD784931S1 (en) 2015-09-17 2017-04-25 Covidien Lp Sensor connector cable
USD779432S1 (en) 2015-09-17 2017-02-21 Covidien Lp Sensor and connector
USD779433S1 (en) 2015-09-17 2017-02-21 Covidien Lp Sensor connector cable
USD790069S1 (en) 2015-11-02 2017-06-20 Covidien Lp Medical sensor
USD936843S1 (en) 2017-09-20 2021-11-23 Covidien Lp Medical sensor
USD862709S1 (en) 2017-09-20 2019-10-08 Covidien Lp Medical sensor

Also Published As

Publication number Publication date
EP0538631A1 (en) 1993-04-28
DE69228515T2 (en) 1999-10-21
DE69228515D1 (en) 1999-04-08
US5249576A (en) 1993-10-05
EP0538631B1 (en) 1999-03-03
JPH05200018A (en) 1993-08-10

Similar Documents

Publication Publication Date Title
US5387122A (en) Pulse oximeter probe connector
US11717194B2 (en) Regional oximetry pod
JP7128960B2 (en) Patient connector assembly with vertical detent
US5851178A (en) Instrumented laser diode probe connector
US5807248A (en) Medical monitoring probe with modular device housing
EP1691190B1 (en) Near infrared spectroscopy device with reusable portion
JPH07163550A (en) Medical sensor
US5237994A (en) Integrated lead frame pulse oximetry sensor
US6920345B2 (en) Optical sensor including disposable and reusable elements
US7371981B2 (en) Connector switch
US8311602B2 (en) Compliant diaphragm medical sensor and technique for using the same
EP2139383B1 (en) Multiple wavelength optical sensor
US6253097B1 (en) Noninvasive medical monitoring instrument using surface emitting laser devices
US8070508B2 (en) Method and apparatus for aligning and securing a cable strain relief

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING

AS Assignment

Owner name: BOC HEALTH CARE, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOLDBERGER, DANIEL S.;TURLEY, TIMOTHY A.;WEIMER, KIRK L.;REEL/FRAME:006617/0099

Effective date: 19930426

AS Assignment

Owner name: OHMEDA INC., NEW JERSEY

Free format text: CHANGE OF NAME;ASSIGNOR:BOC HEALTH CARE, INC.;REEL/FRAME:007017/0424

Effective date: 19930929

Owner name: OHMEDA INC., NEW JERSEY

Free format text: CHANGE OF NAME;ASSIGNOR:BOC HEALTH CARE, INC.;REEL/FRAME:007029/0582

Effective date: 19931001

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: DATEX-OHMEDA, INC., MASSACHUSETTS

Free format text: MERGER;ASSIGNOR:OHMEDA, INC.;REEL/FRAME:009866/0245

Effective date: 19981218

AS Assignment

Owner name: OHMEDA INC., MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:BOC HEALTH CARE, INC.;REEL/FRAME:010514/0475

Effective date: 19930929

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12