US4631958A - Force-balance drag anemometer - Google Patents

Force-balance drag anemometer Download PDF

Info

Publication number
US4631958A
US4631958A US06/591,180 US59118084A US4631958A US 4631958 A US4631958 A US 4631958A US 59118084 A US59118084 A US 59118084A US 4631958 A US4631958 A US 4631958A
Authority
US
United States
Prior art keywords
shaft
anemometer
oil
force
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/591,180
Inventor
Roger Van Cauwenberghe
Jiri Motycka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canadian Patents and Development Ltd
Original Assignee
Canadian Patents and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canadian Patents and Development Ltd filed Critical Canadian Patents and Development Ltd
Assigned to CANADIAN PATENTS AND DEVELOPMENT LIMITED-SOCIETE CANADIENNE DES BREVETS ET D' EXPLOITATION LIMITEE, OTTAWA, ONTARIO, A COMPANY OF CANADA reassignment CANADIAN PATENTS AND DEVELOPMENT LIMITED-SOCIETE CANADIENNE DES BREVETS ET D' EXPLOITATION LIMITEE, OTTAWA, ONTARIO, A COMPANY OF CANADA ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CAUWENBERGHE, ROGER VAN, MOTYCKA, JIRI
Application granted granted Critical
Publication of US4631958A publication Critical patent/US4631958A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/02Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer

Definitions

  • This invention relates to an apparatus for measurement of velocity of fluids, in particular to the measurement of wind speed.
  • the invention has particular usefulness in the determination of two orthogonal components of the mean velocity of wind in limits between 5 cm/sec and 50 m/sec.
  • a further object of this invention is to provide a sensor with a small surface exposed to ice deposition capable of being de-iced with a low power expense.
  • a liquid such as silicone oil.
  • the liquid in the neck forms an interface seal due to surface tension preventing water or other undesirable matter from entering the instrument body.
  • Small amounts of the filing fluid that are lost on the interface are, according to the present invention, replenished at the rate of several droplets a day by an oil supply system.
  • the compensator is a block of a plastic material which expands with the temperature increase and forms more space inside the instrument for the liquid to expand.
  • the level of liquid in the neck of the instrument body is, therefore, constant and does not fluctuate with ambient temperature changes.
  • the instrument can also be used without the oil supply system and the compensator of its thermal expansion.
  • FIG. 1 is a diagrammatic side elevational view of one embodiment of the invention
  • FIG. 2 is a diagrammatic view of an oil supply system
  • FIG. 3 is a perspective view of the oil volume compensator
  • FIG. 4 is a diagrammatic side elevational view of another embodiment of of the invention.
  • FIG. 5 is an exploded view of the means for suspending the shaft of the anemometer.
  • FIG. 6 is a sectional side elevational view of a portion of the shaft and suspension means.
  • the anemometer forming the preferred embodiment of the invention has a drag sphere 1 attached to a shaft 2 mounted into the center of an elastic element 3.
  • the elastic element 3 has a shape of a cruciform or a diaphragm supported by the outer edges on the body of the instrument 3a.
  • a rectangular ferrite block 4 is attached to the lower end of the shaft 2.
  • a four coil system 5 is arranged around the ferrite block 4 to form the electromagnetic actuator, which generates a force proportional to the square of the current flowing through the coil. Only one of each two opposing coils 5 is energized at a time.
  • the coils can be wound on E-cores as shown or on other shapes, such as C-cores.
  • a rectangular shield 6 is a basic part of the optical sensing means for detecting angular deflection of the shaft 2.
  • the edges of the shield are illuminated by light transmitted through four fiber optic bundles 8 from a single light emitting diode 9.
  • Four photoelectric detectors 7 are located on the opposite side of the shield 6. Each two opposing detectors 7 are connected in an antiparallel manner to provide a signal proportional to the deflection of the shaft from its neutral position. The signal is amplified and brought into the proportional and integral control of the actuator 5 in a sense acting to decrease the shaft deflection back to zero.
  • the actuator keeps the shaft in its central position, generates a force balancing the wind force in two orthogonal directions, and provides two outputs--proportional to the actuator currents--that are a measure of two orthogonal wind speeds.
  • the unit is mechanically balanced.
  • the optical position detector In the free-hand shaft position, the optical position detector must be well centered to provide a zero signal (without electrical offset). This eliminates the error signal due to temperature changes.
  • the oil level will move up and down as a result of the thermal expansion of the oil. This could change the shaft balance if the instrument were tilted. To minimize this effect, the volume of oil is kept small by potting the coils in an epoxy filler. Also, the annulus between the shafts 2 and oil supply is large to prevent surface tension of the oil from causing moments at the oil/air interface.
  • anemometer includes a body filled with a liquid such as silicone oil, forming a level in a neck around the shaft at 11, electronics 10, oil supply unit 12 and oil volume compensator 17.
  • a liquid such as silicone oil
  • the oil supply system includes a body 12, a piston 13, a spring 14, the oil reserve 15 and one or more small passages 16 leading from the oil supply 15 into the internal cavity of the instrument.
  • an oil volume compensator 17 includes a body 17a having several cavities 18 enclosed by lids 19. Inside each cavity 18 there is a metal block filling most of the space. The cavities 18 are mutually interconnected by passages 20 and the entire compensator can be connected to the instrument internal cavity by connector 21.
  • the function of the compensator is as follows:
  • the volume of oil in the instrument changes with temperature and, therefore, the oil level in the neck around the shaft would fluctuate.
  • the oil level is low, there would be a possibility of water getting into the instrument and when the level is high there would be losses of oil flowing out of the neck.
  • the oil volume changes are exactly matched by volume changes of cavities 18 in plastic body 17.
  • the volume of each of the cavities 18 in the plastic body 17 is chosen in such a way that thermal volume changes are equal to those of the oil in the instrument.
  • the compensator cavities 18 are filled with metal cylinders.
  • the anemometer has a de-icing heater not shown located on a body neck protruding inside the drag element 1.
  • the heater is energized by icing sensors 22.
  • the cruciform 3, shown in FIGS. 5 and 6, is chemically milled from 0.12 mm thick spring steel. This method provides both excellent strength in the vertical and horizontal directions, as well as good sensitivity to the angular shaft motion caused by elastic strain in arms 40.
  • An outer ring 42 prevents an arm from shifting in its mount and thus avoids any buckling of the cruciform 3.
  • Four short arms 46 at 45° allow its attachment as by screws 47 to shaft flanges 48 to prevent any rotation about the vertical axis.
  • the shaft flanges clamp the cruciform 3 just at the center, leaving the entire length of the four arms 40 free for angular motion.
  • the vertical motion of the shaft is limited by a set of stops.
  • Identical rings 50 having recesses 52, are provided above and below the cruciform 3 so as to clamp the outer edge of the cruciform 3.
  • the shaft flanges 48 are received in the recesses 52.
  • the bottom ring 50 is fastened to the instrument body 3a. It will be noted that clearance is provided at 56 to function as a motion stop to prevent overload of the cruciform 3 in a vertical direction.

Abstract

The anemometer is for use in measuring two orthogonal velocity components of a fluid, such as air or water. When used to measure wind speed, the wind force acting on a sphere attached to a shaft tends to deflect the shaft from the neutral position. This deflection is measured by optical or electromagnetic sensors which control an electromagnetic actuator which generates a force opposing the wind force thereby returning the shaft to the neutral position. The actuator generates a force proportional to the square of the current applied to the actuator coils. Since the drag force is proportional to the fluid velocity squared (for one dimensional measurement), the wind speed measurement derived from the current applied to the electromagnet will be partly linearized. A microprocessoris used to compute the wind speed components or the wind speed and its direction from the electromagnet signals.

Description

BACKGROUND OF THE INVENTION
This invention relates to an apparatus for measurement of velocity of fluids, in particular to the measurement of wind speed. The invention has particular usefulness in the determination of two orthogonal components of the mean velocity of wind in limits between 5 cm/sec and 50 m/sec.
Techniques involving the use of a drag sphere have previously been employed for measurement both in air and water. However, these systems proved to be insufficiently sensitive in the low range of wind velocities where the dynamic force is relatively low due to the square root relation between the wind force and the wind velocity.
Furthermore, the instruments were not usable in the wide range of environmental conditions encountered in meteorological stations. Furthermore, these instruments were not easily de-iceable.
SUMMARY OF THE INVENTION
It is an object of this invention to provide an improved, more sensitive sensor for the measurement of two orthogonal wind speeds or of wind speed and its direction.
A further object of this invention is to provide a sensor with a small surface exposed to ice deposition capable of being de-iced with a low power expense.
It is a still further object of this invention to provide a drag sphere sensor with an output proportional more closely to wind speed rather than to the wind force.
It is a still further object of this invention to provide a force-balance anemometer utilizing a null principle in which the wind force is opposed by a internally generated force of electromagnetic actuator, so that the measuring shaft will be motionless, no elastic element will be employed as in many other force-measuring devices and hysteresis or temperature offset would tend not to originate from such an elastic element.
It is a still further object of this invention to provide an anemometer with its output available in an electronic form to be transmitted through standard communication channels, or if desired, recorded, displayed or interfaced with a computer.
It is a still further object of this invention to provide an anemometer substantially free of hysteresis and internal friction with a suitable damping usable also in liquids, such as water, by filling the internal volume of the instrument and the neck around the shaft protruding out of the instrument body with a liquid such as silicone oil. The liquid in the neck forms an interface seal due to surface tension preventing water or other undesirable matter from entering the instrument body. Small amounts of the filing fluid that are lost on the interface are, according to the present invention, replenished at the rate of several droplets a day by an oil supply system.
It is a still further object of this invention to provide a compensator of thermal expansion of the liquid located inside the instrument. The compensator is a block of a plastic material which expands with the temperature increase and forms more space inside the instrument for the liquid to expand. The level of liquid in the neck of the instrument body is, therefore, constant and does not fluctuate with ambient temperature changes. The instrument can also be used without the oil supply system and the compensator of its thermal expansion.
Other objects, features and advantages of the invention will become apparent from the following description of the preferred embodiment of the invention which is illustrated in the accompany drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagrammatic side elevational view of one embodiment of the invention;
FIG. 2 is a diagrammatic view of an oil supply system;
FIG. 3 is a perspective view of the oil volume compensator;
FIG. 4 is a diagrammatic side elevational view of another embodiment of of the invention;
FIG. 5 is an exploded view of the means for suspending the shaft of the anemometer; and
FIG. 6 is a sectional side elevational view of a portion of the shaft and suspension means.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to FIG. 1, the anemometer forming the preferred embodiment of the invention has a drag sphere 1 attached to a shaft 2 mounted into the center of an elastic element 3. The elastic element 3 has a shape of a cruciform or a diaphragm supported by the outer edges on the body of the instrument 3a.
A rectangular ferrite block 4 is attached to the lower end of the shaft 2. A four coil system 5 is arranged around the ferrite block 4 to form the electromagnetic actuator, which generates a force proportional to the square of the current flowing through the coil. Only one of each two opposing coils 5 is energized at a time. The coils can be wound on E-cores as shown or on other shapes, such as C-cores.
A rectangular shield 6 is a basic part of the optical sensing means for detecting angular deflection of the shaft 2. The edges of the shield are illuminated by light transmitted through four fiber optic bundles 8 from a single light emitting diode 9. Four photoelectric detectors 7 are located on the opposite side of the shield 6. Each two opposing detectors 7 are connected in an antiparallel manner to provide a signal proportional to the deflection of the shaft from its neutral position. The signal is amplified and brought into the proportional and integral control of the actuator 5 in a sense acting to decrease the shaft deflection back to zero. As a result, the actuator keeps the shaft in its central position, generates a force balancing the wind force in two orthogonal directions, and provides two outputs--proportional to the actuator currents--that are a measure of two orthogonal wind speeds. To eliminate the influence of instrument tilt and linear acceleration, the unit is mechanically balanced. In the free-hand shaft position, the optical position detector must be well centered to provide a zero signal (without electrical offset). This eliminates the error signal due to temperature changes.
The oil level will move up and down as a result of the thermal expansion of the oil. This could change the shaft balance if the instrument were tilted. To minimize this effect, the volume of oil is kept small by potting the coils in an epoxy filler. Also, the annulus between the shafts 2 and oil supply is large to prevent surface tension of the oil from causing moments at the oil/air interface.
Mechanical temperature effects have been minimized by the use of the same material for the cruciform 3 and its support. Optical thermal effects are also minimized by the use of photodiode detectors 7 produced from the same wafer and by their illumination by a single LED 9.
Additional features of the anemometer include a body filled with a liquid such as silicone oil, forming a level in a neck around the shaft at 11, electronics 10, oil supply unit 12 and oil volume compensator 17.
As shown in FIG. 2, the oil supply system includes a body 12, a piston 13, a spring 14, the oil reserve 15 and one or more small passages 16 leading from the oil supply 15 into the internal cavity of the instrument.
As shown in FIG. 3, an oil volume compensator 17 includes a body 17a having several cavities 18 enclosed by lids 19. Inside each cavity 18 there is a metal block filling most of the space. The cavities 18 are mutually interconnected by passages 20 and the entire compensator can be connected to the instrument internal cavity by connector 21. The function of the compensator is as follows:
The volume of oil in the instrument changes with temperature and, therefore, the oil level in the neck around the shaft would fluctuate. When the oil level is low, there would be a possibility of water getting into the instrument and when the level is high there would be losses of oil flowing out of the neck. In order to keep the level constant, the oil volume changes are exactly matched by volume changes of cavities 18 in plastic body 17. The volume of each of the cavities 18 in the plastic body 17 is chosen in such a way that thermal volume changes are equal to those of the oil in the instrument. To make the compensator more efficient and keep the total volume of oil in the instrument and in the compensator as low as possible, the compensator cavities 18 are filled with metal cylinders.
Referring to FIG. 4, showing another embodiment of the invention without the oil supply and temperature compensation system, the anemometer has a de-icing heater not shown located on a body neck protruding inside the drag element 1. The heater is energized by icing sensors 22.
The cruciform 3, shown in FIGS. 5 and 6, is chemically milled from 0.12 mm thick spring steel. This method provides both excellent strength in the vertical and horizontal directions, as well as good sensitivity to the angular shaft motion caused by elastic strain in arms 40. An outer ring 42 prevents an arm from shifting in its mount and thus avoids any buckling of the cruciform 3. Four short arms 46 at 45° allow its attachment as by screws 47 to shaft flanges 48 to prevent any rotation about the vertical axis. The shaft flanges clamp the cruciform 3 just at the center, leaving the entire length of the four arms 40 free for angular motion. The vertical motion of the shaft is limited by a set of stops. Identical rings 50, having recesses 52, are provided above and below the cruciform 3 so as to clamp the outer edge of the cruciform 3. The shaft flanges 48 are received in the recesses 52. The bottom ring 50 is fastened to the instrument body 3a. It will be noted that clearance is provided at 56 to function as a motion stop to prevent overload of the cruciform 3 in a vertical direction.

Claims (6)

We claim:
1. An anemometer for measuring the velocity of a fluid, said anemometer comprising a body, a shaft in said body, suspension means for said shaft in the form of a cruciform shaped diaphragm, a sphere on an outer end of said shaft, means for sensing deflection of said shaft, and an electromagnetic actuator for returning said shaft to a neutral position in response to signals from said means for sensing deflection of said shaft, whereby current applied to said electromagnetic actuator is proportional to the velocity of the fluid and can be measured to indicate the velocity of the fluid.
2. An anemometer according to claim 1 wherein a said means for sensing deflection of said shaft is a rectangular shield attached to an end of said shaft, four fiber optic bundles for conducting the light from a single light source to four edges of said shield and four photoelectric detectors for monitoring changes of light flux to detect displacement of said shaft.
3. An anemometer according to claim 1 wherein the entire shaft is exactly balanced around its suspension means to make the instrument insensitive to linear translational acceleration.
4. An anemometer according to claim 1 wherein a body is provided around said anemometer and is filled with a liquid such as silicone oil to prevent air or water from entering the anemometer body.
5. An anemometer according to claim 4 wherein an oil volume compensator is provided to replenish lost oil, said oil is forced through at least one fine orifice.
6. An anemometer as claimed in claim 1 wherein said suspension means comprises a cruciform of spring steel including an integral outer ring, four arms integrally joined to the ring and to each other and four shorter arms between the first mentioned arms connecting said cruciform with a flange on one portion of said shaft and with a similar flange on a second portion of said shaft.
US06/591,180 1983-04-15 1984-03-19 Force-balance drag anemometer Expired - Fee Related US4631958A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA000425988A CA1200114A (en) 1983-04-15 1983-04-15 Force-balance drag anemometer
CA425,988 1983-04-15

Publications (1)

Publication Number Publication Date
US4631958A true US4631958A (en) 1986-12-30

Family

ID=4125029

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/591,180 Expired - Fee Related US4631958A (en) 1983-04-15 1984-03-19 Force-balance drag anemometer

Country Status (2)

Country Link
US (1) US4631958A (en)
CA (1) CA1200114A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117687A (en) * 1990-01-11 1992-06-02 Gerardi Joseph J Omnidirectional aerodynamic sensor
US5195046A (en) * 1989-01-10 1993-03-16 Gerardi Joseph J Method and apparatus for structural integrity monitoring
US5231876A (en) * 1991-05-17 1993-08-03 Peet Bros. Company, Inc. Method and apparatus for wind speed and direction measurement
US6279393B1 (en) 1999-08-24 2001-08-28 Mountain High E&S System for isotropically measuring fluid movement in three-dimensions
US6402816B1 (en) 1997-10-08 2002-06-11 Gordon S. Trivett Gas scrubber
WO2003031989A1 (en) * 2001-10-10 2003-04-17 Francesco Ramaioli Single sensor to measure the wind speed and the wind direction without parts in movement
WO2003067265A1 (en) * 2001-12-11 2003-08-14 Trondheim Maritime Instrumentering As Flow measuring device and method
US20050022592A1 (en) * 2003-06-30 2005-02-03 Shoemaker Kevin Owen Fluid flow direction and velocity sensor
US20080088819A1 (en) * 2006-10-02 2008-04-17 Meredith Metzger Miniature opto-mechanical anemometer
WO2012048660A1 (en) * 2010-10-15 2012-04-19 Chiaphua Components (Shenzhen) Limited Anemometer
CN108802419A (en) * 2018-06-28 2018-11-13 北方工业大学 Closed-loop linear velocity sensor
GB2621874A (en) * 2022-08-25 2024-02-28 Flare Bright Ltd Fluid flow estimation and navigation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788869A (en) * 1986-06-27 1988-12-06 Florida State University Apparatus for measuring fluid flow

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3077783A (en) * 1959-03-24 1963-02-19 Gen Precision Inc Two-axis accelerometer
GB1408139A (en) * 1971-11-18 1975-10-01 Sperry Rand Ltd Wind sensors
GB2052047A (en) * 1979-03-20 1981-01-21 Secr Defence Accelerometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3077783A (en) * 1959-03-24 1963-02-19 Gen Precision Inc Two-axis accelerometer
GB1408139A (en) * 1971-11-18 1975-10-01 Sperry Rand Ltd Wind sensors
GB2052047A (en) * 1979-03-20 1981-01-21 Secr Defence Accelerometer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Dessuveault et al., "The Design of a Thrust Anemometer for Drifting Buoy", Ocean 81 Conference Record (IEEE), Sep. 1981, pp. 411-414.
Dessuveault et al., The Design of a Thrust Anemometer for Drifting Buoy , Ocean 81 Conference Record (IEEE), Sep. 1981, pp. 411 414. *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195046A (en) * 1989-01-10 1993-03-16 Gerardi Joseph J Method and apparatus for structural integrity monitoring
US5117687A (en) * 1990-01-11 1992-06-02 Gerardi Joseph J Omnidirectional aerodynamic sensor
US5231876A (en) * 1991-05-17 1993-08-03 Peet Bros. Company, Inc. Method and apparatus for wind speed and direction measurement
US5361633A (en) * 1991-05-17 1994-11-08 Peet Bros. Company, Inc. Method and apparatus for wind speed and direction measurement
US6402816B1 (en) 1997-10-08 2002-06-11 Gordon S. Trivett Gas scrubber
US6279393B1 (en) 1999-08-24 2001-08-28 Mountain High E&S System for isotropically measuring fluid movement in three-dimensions
WO2003031989A1 (en) * 2001-10-10 2003-04-17 Francesco Ramaioli Single sensor to measure the wind speed and the wind direction without parts in movement
WO2003067265A1 (en) * 2001-12-11 2003-08-14 Trondheim Maritime Instrumentering As Flow measuring device and method
US20050022592A1 (en) * 2003-06-30 2005-02-03 Shoemaker Kevin Owen Fluid flow direction and velocity sensor
US7117735B2 (en) 2003-06-30 2006-10-10 Kevin Owen Shoemaker Fluid flow direction and velocity sensor
US20080088819A1 (en) * 2006-10-02 2008-04-17 Meredith Metzger Miniature opto-mechanical anemometer
US7742153B2 (en) 2006-10-02 2010-06-22 University Of Utah Research Foundation Miniature opto-mechanical anemometer
WO2012048660A1 (en) * 2010-10-15 2012-04-19 Chiaphua Components (Shenzhen) Limited Anemometer
CN102455367A (en) * 2010-10-15 2012-05-16 捷和电机(深圳)有限公司 Anemometer
CN102455367B (en) * 2010-10-15 2014-12-24 捷和电机(深圳)有限公司 Anemometer
CN108802419A (en) * 2018-06-28 2018-11-13 北方工业大学 Closed-loop linear velocity sensor
GB2621874A (en) * 2022-08-25 2024-02-28 Flare Bright Ltd Fluid flow estimation and navigation

Also Published As

Publication number Publication date
CA1200114A (en) 1986-02-04

Similar Documents

Publication Publication Date Title
US4631958A (en) Force-balance drag anemometer
US5136884A (en) Magnetic sight gage sensor
US3217536A (en) Force vector transducer
US6418788B2 (en) Digital electronic liquid density/liquid level meter
US3363470A (en) Accelerometer
US3520191A (en) Strain gage pressure transducer
US6453741B1 (en) Fuel transmitter for non-electrically invasive liquid level measurement
US3269184A (en) Apparatus for measuring fluid characteristics
Giallorenzi et al. Optical-fiber sensors challenge the competition: Resistance to corrosion and immunity to interference head the list of benefits in detecting stimuli ranging from pressure to magnetism
US4706498A (en) Apparatus and method for measuring movement
US4631959A (en) Drag anemometer
US6204499B1 (en) Method and apparatus for a rotation angle sensor
GB2174500A (en) Accelerometer
US5343743A (en) Asymmetrical displacement flowmeter
US5606125A (en) Material level-interface control system
WO2019173160A1 (en) Compact and highly sensitive gravity gradiometer
US3520196A (en) Fluid rotor angular accelerometer
US3978715A (en) Low frequency, high sensitivity electromechanical transducer
US4561307A (en) Liquid differential pressure measurement using a vertical manifold
US3077782A (en) Inertial velocity meter
US3335612A (en) Acceleration-sensitive devices and systems
CN219798280U (en) Displacement monitoring device
GB2129937A (en) Improvements in vortex flowmeters
CN2050155U (en) Height indicator
GB2215472A (en) Asymmetrical displacement flowmeter

Legal Events

Date Code Title Description
AS Assignment

Owner name: CANADIAN PATENTS AND DEVELOPMENT LIMITED-SOCIETE C

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:CAUWENBERGHE, ROGER VAN;MOTYCKA, JIRI;REEL/FRAME:004505/0740;SIGNING DATES FROM

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 19901230

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY