US3866466A - Method and apparatus for increasing the reynolds number capability in a transonic wind tunnel - Google Patents

Method and apparatus for increasing the reynolds number capability in a transonic wind tunnel Download PDF

Info

Publication number
US3866466A
US3866466A US393091A US39309173A US3866466A US 3866466 A US3866466 A US 3866466A US 393091 A US393091 A US 393091A US 39309173 A US39309173 A US 39309173A US 3866466 A US3866466 A US 3866466A
Authority
US
United States
Prior art keywords
air
boundary layer
wind tunnel
test section
high energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US393091A
Inventor
Ray W Cotter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calspan Corp
Original Assignee
Calspan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calspan Corp filed Critical Calspan Corp
Priority to US393091A priority Critical patent/US3866466A/en
Application granted granted Critical
Publication of US3866466A publication Critical patent/US3866466A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • G01M9/04Details

Definitions

  • test section is provided with porous or slotted walls through which boundary layer removal takes place.
  • auxiliary suction is introduced in the plenum chamber surrounding the porous test section walls, so as to remove boundary layer build up and thus to relieve blockage.
  • the operating range of transonic tunnels has been extended by this procedure but the tunnel operating limits in Reynolds numbers are imposed generally by main drive power and boundary layer removal at higher Mach numbers. These limits are the result of the inefficiency of boundary layer removal since low energy air is being operated on and reintroduced into the tunnel to maintain the air mass of the system. Thus, a large amount of power is required to operate the removal process.
  • a high pressure ejector system is located in a closed circuit wind tunnel downstream of the test section and in the forward end of the diffuser where it acts as an injector as well as an ejector.
  • High energy air is injected into the diffuser boundary layer thereby tending to reduce the boundary layer thickness and, simultaneously the ejector accelerates the main flow and creates a corresponding pressure rise at the downstream end of the diffuser, so that the pressure rise requirements of the conventional fan system are reduced.
  • boundary layer removal flow can exhaust directly to the atmosphere, and this removal flow is replenished by the flow introduced through the ejector.
  • the simultaneous occurence of these processes produce transonic flow at Reynolds numbers appreciably greater than are presently obtained with conventional power systems.
  • FIG. 1 is a schematic plan view of a closed circuit transonic wind tunnel with ejector augmentation
  • FIG. 2 is a sectional view taken along line 2-2 of 0 FIG. 1.
  • FIG. 1 the numeral generally designates a closed circuit transonic wind tunnel including a variable pitch constant speed main drive fan 12 driven by motor 14, turning vanes V, a sphere plenum 26 surrounding ,test section 18, a diffuser plenum 28, and diffuser 30.
  • Exhaust line 60 which contains throttle valve 62 and exhaust valve 64 is in fluid communication with sphere plenum 26 and leads to atmospheric exhaust stack 66.
  • Test section 18 has a model support strut 20 which supports model 22. Porous walls 24 separate test section 18 from sphere plenum 26 with holes 25 permitting fluid communication therebetween. Sphere plenum 26 is in fluid communication with diffuser plenum 28 through bypass valve 27 which is used for Mach number control. Fluid communication between diffuser plenum 28 and diffuser is controlled by doors 29 which permit further boundary layer removal.
  • Ejector nozzles 32 are mounted on the downstream side of the model support strut 20 to minimize blockage. Additional peripheral ejector nozzles 34 are mounted in the diffuser 30 so that a portion of the high energy primary air supplied thereto will be injected into the local boundary layer. Ejector nozzles 32 and 34 having exit Mach numbers in the range of 1.6 to 3.0 have proven to be satisfactory.
  • Supply tanks 36, 37 and 38 which contain air at high pressures such as 3,000 PSI are connected to manifold 45 by lines 39, 40 and 41 containing valves 42, 43 and 44, respectively.
  • Manifold 45 supplies nozzles 34 via lines 46 and 47 which contain valves 48 and 49 respectively.
  • Manifold 45 additionally supplies nozzles 32 via line 50 which contains pressure regulator 51 and valve 52 and which connects with manifold 53 which supplies nozzles 32 via lines 54, 55 and 56.
  • variable pitch constant speed main drive fan 12 driven by electric motor 14 supplies high pressure air to the test section 18 where model 22 is located.
  • the air passes from the test section 18 to diffuser 30 from which it is returned to the main drive fan 12.
  • the vanes V minimize friction losses in the wind tunnel 10 as the circulating high pressure air undergoes directional changes.
  • the static pressure in the test section 18 is above atmospheric and, therefore, boundary layer removal takes place through porous walls 24 without the requirement for auxiliary power.
  • doors 29 are located in the upstream portion of diffuser 30 and rather than permitting the conventional return of the boundary layer air removed from the test section as in the case of conventional re-entry doors, doors 29 permit further boundary layer removal.
  • the boundary layer air removed from the upstream portion of diffuser 30 passes through doors 29 into diffuser plenum 28 and past bypass valve 27 into sphere plenum 26 where it joins with the boundary layer air removed from test section 18 and passes to exhaust.
  • bypass valve 27 serves as a vernier control for controlling boundary layer removal and thereby the Mach number in the test section 18. Vernier control is possible because bypass valve 27 is much smaller than valve 62, e.g., 30 inches and 8 feet, respectively, and a 30 opening of bypass valve 27 would correspond to approximately a l opening of valve 62.
  • ejector nozzles 32 and 34 are connected to a source of high pressure air defined by supply tanks 36, 37 and 38.
  • Ejector nozzles 32 are mounted in the wake of model support strut to minimize blockage and so are located in the, mainstream where the high energy flow mixes with the mainstream.
  • Ejector nozzles 34 are located in the start of the diffuser, their location being so chosen that a portion of the high energy primary air would be injected into the local boundary layer. The energizing of this boundary layer averts separation and thus improves diffuser efficiency.
  • the ejector tunnel is not a continuous flow system, but rather resembles a blow-down tunnel. Since the blow-down time is very short compared to the pumpback time, high-speed sequencing is required to coordinate all phases of the operation of the ejector system.
  • the main fan system is rapidly unloaded during the start of the ejection system.
  • the amperes to the electric motor 14 are maintained during this period by changing the fan blade pitch of fan 12, which is reduced again prior to turning the system off.
  • the nozzle valves and regulator system is sequenced by a timing control panel and the data-gathering process is controlled by a minicomputer or the like. Mach control is done with the computer operated servo-controlled bypass valve 27 which regulates the boundary layer removal by sensing Mach number.
  • the above description is directed to a transonic wind tunnel employing a main drive fan 12 with only supplemental or replacement flow provided by the ejector system
  • the ejector system can also be employed to provide the main flow.
  • Such a system would eliminate main drive fan 12 and its motor and would require an ejector system of increased capacity but otherwise would be similar to the system illustrated and described above.
  • Other modifications such as changing the location from which the control boundary layer removal take place are also possible.
  • teachings of this invention may be applied to existing tunnels to extend their range of operation.
  • the structure of conventional wind tunnels may be modified or adapted for using ejector augmentation.
  • doors 29 may be the conventional rc-entry doors and exhaust line may be incorporated into an auxiliary compressor circuit used to pressurize and return the boundary layer air removed from the test section to the system.
  • the number of bypass valves 27 the size of the various valves, the capacity of the storage tanks 36, 37 and 38 and the number and location of nozzles 32 and 34 will be dictated by design considerations such as the mass flowrate of the air, the rate of air mass removal at the boundary layer, the duration of operation required or desired and the intended range of operation.
  • a method for increasing the Reynolds number capability in a closed loop wind tunnel including the steps of:
  • a closed loop wind tunnel which includes a test section, a diffuser and means for circulating air through the wind tunnel, the improvement which comprises:
  • said means for injecting high energy air into the wind tunnel includes a source of high energy air and a plurality of ejectors located in the diffuser downstream of the test section with at least a portion of said ejectors discharging into the local boundary layer.
  • the means for withdrawing air from the diffuser includes at least one door located downstream of the ejectors which discharge into the local boundary layer.
  • said means for injecting high energy air into the wind tunnel includes a source of high energy air and a plurality of ejectors located in the diffuser downstream of the test section with at least a portion of said ejectors discharging into the local boundary layer.
  • said means for injecting high energy air into the wind tunnel includes a source of high energy air and a plurality of ejectors located downstream of the test section with at least a portion of said ejectors discharging into the local boundary layer.

Abstract

The Mach number and Reynolds numbers achieved in a transonic tunnel are increased by combining ejector augmentation with test section boundary layer removal to atmosphere. Testing in the Reynolds number range of 6 X 106 per foot through 12 X 106 per foot in the transonic speed range is possible pursuant to the teachings of this invention.

Description

United States Patent Cotter Feb. 18, 1975 [54] METHOD AND APPARATUS FOR 2,729,974 1/1956 Lee ct al 73/l47 INCREASING THE REYNOLDS NUMBER 3,602,920 9/l97l Davis et al 73/147 CAPABILITY I A T AN WIND FOREIGN PATENTS OR APPLICATIONS TUNNEL 836,385 6/1960 Great Britain 73/147 [75] Inventor: Ray W. Cotter, Amherst, NY.
I Primary Examiner]erry W. Myracle [73] Ass1gnee. Calspan Corporation, Buffalo, NY. Assistant Examiner Frederick Shoon [22] Filed: Aug. 30, 1973 Attorney, Agent, or Firm-Allen J. Jaffe [21] Appl. No.: 393,091
[57] ABSTRACT [52] Us. CL D 73/147 The Mach number and Reynolds numbers achieved in [51] [BL CL 9/00 a transonic tunnel are increased by combining ejector [58] Field 73/147 augmentation with test section boundary layer removal to atmosphere. Testing in the Reynolds number [56] References Cited range of 6 X 10 per foot through 12 X 10 per foot in the transonic speed range is possible pursuant to the UNITED STATES PATENTS teachings of this invention. 2,582,814 1 1952 Beman ct al 73 147 2,709,917 6/1955 Bruynes 73/147 16 Claims, 2 Drawmg Flgures l2 /4 V rfi 62 60 4 24 k 2 5 g 2; Q
L 32 34 i9 I T V 22 20 t 34 V PATENTEU FEB 1 8 SHEET 10F 2 PATENTEB FEB] 81975 SHEET 2 OF 2 N QE 0% \v 9v 9 V 4 0m mm ,0 mm 0v Mm v VN 0 A METHOD AND APPARATUS FOR INCREASING THE REYNOLDS NUMBER CAPABILITY IN A TRANSONIC WIND TUNNEL As the Mach numbers achieved in the test section of a transonic tunnel rise, there is a corresponding boundary layer build up. The boundary layer build up results in blockage and an increased energy consumption that imposes a practical limit of about Mach number 0.9. To reduce the blockage, the test section is provided with porous or slotted walls through which boundary layer removal takes place. Conventionally, as test section Mach numbers approach the transonic range, auxiliary suction is introduced in the plenum chamber surrounding the porous test section walls, so as to remove boundary layer build up and thus to relieve blockage. The operating range of transonic tunnels has been extended by this procedure but the tunnel operating limits in Reynolds numbers are imposed generally by main drive power and boundary layer removal at higher Mach numbers. These limits are the result of the inefficiency of boundary layer removal since low energy air is being operated on and reintroduced into the tunnel to maintain the air mass of the system. Thus, a large amount of power is required to operate the removal process. These large power requirements occur in the main drive fan system when the removal is induced with flaps or other means at the trailing edge of the test section and in the compressor when an auxiliary removal circuit is used. Accordingly, much of the time the compressor must operate at off design inefficient conditions. The operating pressure limits of testing in the tunnel are therefore restricted by these limitations.
Reynolds number effects on skin friction, on boundary layer transition, and on shock and boundary layer interaction have been identified as a primary cause of difficulty in scaling wind tunnel data to full-scale drag and other aerodynamic characteristics.
It is an object of this invention to extend the Reynolds number and Mach number capability of a transonic tunnel.
It is a further object of this invention to reduce the main drive fan power load by boundary layer removal and ejector augmentation. These objects, and others as will become apparent hereinafter, are accomplished by the present invention.
According to the teachings of the present invention, a high pressure ejector system is located in a closed circuit wind tunnel downstream of the test section and in the forward end of the diffuser where it acts as an injector as well as an ejector. High energy air is injected into the diffuser boundary layer thereby tending to reduce the boundary layer thickness and, simultaneously the ejector accelerates the main flow and creates a corresponding pressure rise at the downstream end of the diffuser, so that the pressure rise requirements of the conventional fan system are reduced. Because test section static pressures at the desired Reynolds numbers are above atmospheric, boundary layer removal flow can exhaust directly to the atmosphere, and this removal flow is replenished by the flow introduced through the ejector. Thus, the large amount of power required to operate the boundary layer removal system is eliminated, and the operating limits of the tunnel are extended. The simultaneous occurence of these processes produce transonic flow at Reynolds numbers appreciably greater than are presently obtained with conventional power systems.
BRIEF DESCRIPTION OF THE DRAWINGS For a fuller understanding of the present invention, reference should now be had to the following detailed 5 description thereof taken in conjunction with the accompanying drawings wherein:
FIG. 1 is a schematic plan view of a closed circuit transonic wind tunnel with ejector augmentation; and FIG. 2 is a sectional view taken along line 2-2 of 0 FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT In FIG. 1 the numeral generally designates a closed circuit transonic wind tunnel including a variable pitch constant speed main drive fan 12 driven by motor 14, turning vanes V, a sphere plenum 26 surrounding ,test section 18, a diffuser plenum 28, and diffuser 30. Exhaust line 60 which contains throttle valve 62 and exhaust valve 64 is in fluid communication with sphere plenum 26 and leads to atmospheric exhaust stack 66.
Test section 18 has a model support strut 20 which supports model 22. Porous walls 24 separate test section 18 from sphere plenum 26 with holes 25 permitting fluid communication therebetween. Sphere plenum 26 is in fluid communication with diffuser plenum 28 through bypass valve 27 which is used for Mach number control. Fluid communication between diffuser plenum 28 and diffuser is controlled by doors 29 which permit further boundary layer removal. Ejector nozzles 32 are mounted on the downstream side of the model support strut 20 to minimize blockage. Additional peripheral ejector nozzles 34 are mounted in the diffuser 30 so that a portion of the high energy primary air supplied thereto will be injected into the local boundary layer. Ejector nozzles 32 and 34 having exit Mach numbers in the range of 1.6 to 3.0 have proven to be satisfactory.
Supply tanks 36, 37 and 38 which contain air at high pressures such as 3,000 PSI are connected to manifold 45 by lines 39, 40 and 41 containing valves 42, 43 and 44, respectively. Manifold 45 supplies nozzles 34 via lines 46 and 47 which contain valves 48 and 49 respectively. Manifold 45 additionally supplies nozzles 32 via line 50 which contains pressure regulator 51 and valve 52 and which connects with manifold 53 which supplies nozzles 32 via lines 54, 55 and 56.
OPERATION As best shown in FIG. 1, variable pitch constant speed main drive fan 12 driven by electric motor 14 supplies high pressure air to the test section 18 where model 22 is located. The air passes from the test section 18 to diffuser 30 from which it is returned to the main drive fan 12. The vanes V minimize friction losses in the wind tunnel 10 as the circulating high pressure air undergoes directional changes. Under the test conditions under consideration, such as a Reynolds number of 11 X 10 per foot at Mach number 1.00, the static pressure in the test section 18 is above atmospheric and, therefore, boundary layer removal takes place through porous walls 24 without the requirement for auxiliary power. With throttle valve 62 and exhaust valve 64 open, as illustrated, the boundary layer air removed exhausts to atmosphere from test section 18 via holes 25, exhaust line 60, throttle valve 62, exhaust valve 64 and exhaust stack 66. Doors 29 are located in the upstream portion of diffuser 30 and rather than permitting the conventional return of the boundary layer air removed from the test section as in the case of conventional re-entry doors, doors 29 permit further boundary layer removal. The boundary layer air removed from the upstream portion of diffuser 30 passes through doors 29 into diffuser plenum 28 and past bypass valve 27 into sphere plenum 26 where it joins with the boundary layer air removed from test section 18 and passes to exhaust. The total amount of boundary layer removal is not increased by opening bypass valve 27 to permit boundary layer removal but rather bypass valve 27 serve as a vernier control for controlling boundary layer removal and thereby the Mach number in the test section 18. Vernier control is possible because bypass valve 27 is much smaller than valve 62, e.g., 30 inches and 8 feet, respectively, and a 30 opening of bypass valve 27 would correspond to approximately a l opening of valve 62.
Since the air mass of the system must be maintained to achieve the desired Reynolds numbers, the exhausted air must be replaced. To replace the relatively low energy boundary layer air exhausted to the atmosphere, ejector nozzles 32 and 34 are connected to a source of high pressure air defined by supply tanks 36, 37 and 38. Ejector nozzles 32 are mounted in the wake of model support strut to minimize blockage and so are located in the, mainstream where the high energy flow mixes with the mainstream. Ejector nozzles 34 are located in the start of the diffuser, their location being so chosen that a portion of the high energy primary air would be injected into the local boundary layer. The energizing of this boundary layer averts separation and thus improves diffuser efficiency. An appreciable increase in the energy level of the flow is thus obtained by mixing a relatively small mass of high-energy air supplied via ejector nozzles. 32 and 34 with the main stream. After the diffusion process this additional energy is manifested as a pressure increase at the diffuser exit. The fan pressure rise is applied as a further increment above this value, so that tunnel operation is possible at greater stagnation pressures and hence higher Reynolds numbers without increasing the main drive power input.
The ejector tunnel is not a continuous flow system, but rather resembles a blow-down tunnel. Since the blow-down time is very short compared to the pumpback time, high-speed sequencing is required to coordinate all phases of the operation of the ejector system. The main fan system is rapidly unloaded during the start of the ejection system. The amperes to the electric motor 14 are maintained during this period by changing the fan blade pitch of fan 12, which is reduced again prior to turning the system off. The nozzle valves and regulator system is sequenced by a timing control panel and the data-gathering process is controlled by a minicomputer or the like. Mach control is done with the computer operated servo-controlled bypass valve 27 which regulates the boundary layer removal by sensing Mach number.
Although the above description is directed to a transonic wind tunnel employing a main drive fan 12 with only supplemental or replacement flow provided by the ejector system, if desired, the ejector system can also be employed to provide the main flow. Such a system would eliminate main drive fan 12 and its motor and would require an ejector system of increased capacity but otherwise would be similar to the system illustrated and described above. Other modifications such as changing the location from which the control boundary layer removal take place are also possible. Additionally, the teachings of this invention may be applied to existing tunnels to extend their range of operation. The structure of conventional wind tunnels may be modified or adapted for using ejector augmentation. For example, doors 29 may be the conventional rc-entry doors and exhaust line may be incorporated into an auxiliary compressor circuit used to pressurize and return the boundary layer air removed from the test section to the system. The number of bypass valves 27 the size of the various valves, the capacity of the storage tanks 36, 37 and 38 and the number and location of nozzles 32 and 34 will be dictated by design considerations such as the mass flowrate of the air, the rate of air mass removal at the boundary layer, the duration of operation required or desired and the intended range of operation.
Although a preferred embodiment of the present invention has been illustrated and described, other changes will occur to those skilled in the art. It is therefore intended that the scope of the present invention is to be limited only by the scope of the appended claims.
I claim: I. A method for increasing the Reynolds number capability in a closed loop wind tunnel including the steps of:
circulating air through the wind tunnel; withdrawing air from the boundary layer of a first portion of the wind tunnel which defines a test section so as to control boundary layer build up;
exhausting the air withdrawn from the boundary layer of the test section; and injecting high energy air into the wind tunnel at a point downstream of the test section whereby blockage due to boundary layer build up is re duced, the air mass flow is maintained and the operating range of the wind tunnel is extended. 2. The method of claim 1 further including the steps of:
withdrawing air from the boundary layer of a second portion of the wind tunnel located downstream of the first portion as a control flow and correspondingly reducing the amount of air removed from the boundary layer of the test section so as to maintain a desired total flow from the wind tunnel; and
controlling the rate of withdrawing air from the boundary layer of the second portion whereby the Mach number achieved in the test section is controlled.
3. The method of claim 2 wherein the high energy air is supplied from an external source of high pressure air and at least a portion of the injected air is directed toward the local boundary layer in the second portion and thereby averts separation.
4. The method of claim 1 wherein at least a portion of the injected air is directed toward the local boundary layer.
5. The method of claim 1 wherein the wind tunnel is operated at a stagnation pressure above atmospheric pressure and the circulation of air through the wind tunnel is caused solely by the high energy air.
6. In a closed loop wind tunnel which includes a test section, a diffuser and means for circulating air through the wind tunnel, the improvement which comprises:
means for withdrawing air from the test section to control boundary layer build up;
means for exhausting to the atmosphere the air withdrawn from the boundary layer of the test section; and
means for injecting high energy air into the wind tunnel at a point downstream of the test section whereby blockage due to boundary layer build up is reduced, the air mass flow is maintained and the operating range of the wind tunnel is extended.
7. The improvement according to claim 6 further comprising:
means for withdrawing air from the diffuser to control boundary layer build up; and
means for controlling the rate of removal of the air from the boundary layer of the diffuser whereby the total rate of boundary layer removal in the wind tunnel remains constant while the Mach number achieved in the test section is controlled.
8. The improvement according to claim 7 wherein said means for injecting high energy air into the wind tunnel includes a source of high energy air and a plurality of ejectors located in the diffuser downstream of the test section with at least a portion of said ejectors discharging into the local boundary layer.
9. The improvement according to claim 8 wherein the means for withdrawing air from the test section includes porous walls defining the test section walls.
10. The improvement according to claim 8 wherein the means for withdrawing air from the diffuser includes at least one door located downstream of the ejectors which discharge into the local boundary layer.
11. The improvement according to claim 6 wherein said means for injecting high energy air into the wind tunnel includes a source of high energy air and a plurality of ejectors located in the diffuser downstream of the test section with at least a portion of said ejectors discharging into the local boundary layer.
12. In a closed loop wind tunnel including a test section the improvement which comprises:
means for withdrawing air from the test section to control boundary layer build up;
means for exhausting the air withdrawn from the boundary layer of the test section; and
means for injecting high energy air into the wind tunnel at a point downstream of the test section whereby blockage due to boundary layer build up is reduced, the air mass flow is maintained and the operating range of the wind tunnel is extended.
13. The improvement according to claim 12 further comprising:
means for withdrawing air from the boundary layer at a point downstream of the test section to control boundary layer build up; and
means for controlling the rate of removal of the air from the boundary layer at the point downstream of the test section whereby the total rate of boundary layer removal in the wind tunnel remains constant while the Mach number achieved in the test section is controlled.
14. The improvement according to claim 13 wherein the means for injecting high energy air into the wind tunnel is the sole source of energy for causing air circulation in the wind tunnel.
15. The improvement according to claim 14 wherein said means for injecting high energy air into the wind tunnel includes a source of high energy air and a plurality of ejectors located downstream of the test section with at least a portion of said ejectors discharging into the local boundary layer.
16. The improvement according to claim 12 wherein the means for injecting high energy air into the wind tunnel is the sole source of energy for causing air circulation in the wind tunnel.
l i l

Claims (16)

1. A method for increasing the Reynolds number capability in a closed loop wind tunnel including the steps of: circulating air through the wind tunnel; withdrawing air from the boundary layer of a first portion of the wind tunnel which defines a test section so as to control boundary layer build up; exhausting the air withdrawn from the boundary layer of the test section; and injecting high energy air into the wind tunnel at a point downstream of the test section whereby blockage due to boundary layer build up is reduced, the air mass flow is maintained and the operating range of the wind tunnel is extended.
2. The method of claim 1 further including the steps of: withdrawing air from the boundary layer of a second portion of the wind tunnel located downstream of the first portion as a control flow and correspondingly reducing the amount of air removed from the boundary layer of the test section so as to maintain a desired total flow from the wind tunnel; and controlling the rate of withdrawing air from the boundary layer of the second portion whereby the Mach number achieved in the test section is controlled.
3. The method of claim 2 wherein the high energy air is supplied from an external source of high pressure air and at least a portion of the injected air is directed toward the local boundary layer in the second portion and thereby averts separation.
4. The method of claim 1 wherein at least a portion of the injected air is directed toward the local boundary layer.
5. The method of claim 1 wherein the wind tunnel is operated at a stagnation pressure above atmospheric pressure and the circulation of air through the wind tunnel is caused solely by the high energy air.
6. In a closed loop wind tunnel which includes a test section, a diffuser and means for circulating air through the wind tunnel, the improvement which comprises: means for withdrawing air from the test section to control boundary layer build up; means for exhausting to the atmosphere the air withdrawn from the boundary layer of the test section; and means for injecting high energy air into the wind tunnel at a point downstream of the test section whereby blockage due to boundary layer build up is reduced, the air mass flow is maintained and the operating range of the wind tunnel is extended.
7. The improvement according to claim 6 further comprising: means for withdrawing air from the diffuser to control boundary layer build up; and means for controlling the rate of removal of the air from the boundary layer of the diffuser whereby the total rate of boundary layer removal in the wind tunnel remains constant while the Mach number achieved in the test section is controlled.
8. The improvement according to claim 7 wherein said means for injecting high energy air into the wind tunnel includes a source of high energy air and a plurality of ejectors located in the diffuser downstream of the test section with at least a portion of said ejectors discharging into the local boundary layer.
9. The improvement according to claim 8 wherein the means for withdrawing air from the test section includes porous walls defining the test section walls.
10. The improvement according to claim 8 wherein the means for withdrawing air from the diffuser includes at least one door located downstream of the ejectors which discharge into the local boundary layer.
11. The improvement according to claim 6 wherein said means for injecting high energy air into the wind tunnel includes a source of high energy air and a plurality of ejectors located in the diffuser downstream of the test section with at least a portion of said ejectors discharging into the local boundary layer.
12. In a closed loop wind tunnel including a test section the improvement which comprises: means for withdrawing air from the test section to control boundary layer build up; means for exhausting the air withdrawn from the boundary layer of the test section; and means for injecting high energy air into the wind tunnel at a point downstream of the test section whereby blockage due to boundary layer build up is reduced, the air mass flow is maintained and the operating range of the wind tunnel is extended.
13. The improvement according to claim 12 further comprising: means for withdrawing air from the boundary layer at a point downstream of the test section to control boundary layer build up; and means for controlling the rate of removal of the air from the boundary layer at the point downstream of the test section whereby the total rate of boundary layer removal in the wind tunnel remains constant while the Mach number achieved in the test section is controlled.
14. The improvement according to claim 13 wherein the means for injecting high energy air into the wind tunnel is the sole source of energy for causing air circulation in the wind tunnel.
15. The improvement according to claim 14 wherein said means for injecting high energy air into the wind tunnel includes a source of high energy air and a plurality of ejectors located downstream of the test section with at least a portion of said ejectors discharging into the local boundary layer.
16. The improvement according to claim 12 wherein the means for injecting high energy air into the wind tunnel is the sole source of energy for causing air circulation in the wind tunnel.
US393091A 1973-08-30 1973-08-30 Method and apparatus for increasing the reynolds number capability in a transonic wind tunnel Expired - Lifetime US3866466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US393091A US3866466A (en) 1973-08-30 1973-08-30 Method and apparatus for increasing the reynolds number capability in a transonic wind tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US393091A US3866466A (en) 1973-08-30 1973-08-30 Method and apparatus for increasing the reynolds number capability in a transonic wind tunnel

Publications (1)

Publication Number Publication Date
US3866466A true US3866466A (en) 1975-02-18

Family

ID=23553234

Family Applications (1)

Application Number Title Priority Date Filing Date
US393091A Expired - Lifetime US3866466A (en) 1973-08-30 1973-08-30 Method and apparatus for increasing the reynolds number capability in a transonic wind tunnel

Country Status (1)

Country Link
US (1) US3866466A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0136987A2 (en) * 1983-09-06 1985-04-10 Ab Rollab Method and device for attaining a gas flow in a wind tunnel
US20030209084A1 (en) * 2002-03-26 2003-11-13 Fleming Ronald J. Flow vector analyzer for flow bench
US20060021427A1 (en) * 2002-03-25 2006-02-02 Fleming Ronald J Flow stabilizer for flow bench
US20090277263A1 (en) * 2005-05-30 2009-11-12 Victor Petruk Wind tunnel
US20100139384A1 (en) * 2006-02-09 2010-06-10 Donald Wayne Allen Current tank systems and methods
CN104048807A (en) * 2014-03-21 2014-09-17 西北工业大学 Method for controlling variable Reynolds number of continuous transonic speed wind tunnel experimental section flow field
US20150068284A1 (en) * 2013-09-06 2015-03-12 Tai-Her Yang Semi-Opened Hydrodynamic Testing Device Having Reverse Pumping Return Unit
JP2015137477A (en) * 2014-01-22 2015-07-30 公益財団法人鉄道総合技術研究所 Compression wave generation method, compression wave generator, and calibration method for hot-wire anemometer using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2582814A (en) * 1947-07-31 1952-01-15 Lockheed Aircraft Corp Transonic wind tunnel
US2709917A (en) * 1952-02-15 1955-06-07 United Aircraft Corp Transonic flow control
US2729974A (en) * 1952-02-15 1956-01-10 United Aircraft Corp Transonic flow control with reduced power
US3602920A (en) * 1969-12-31 1971-09-07 Nasa Wind tunnel test section

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2582814A (en) * 1947-07-31 1952-01-15 Lockheed Aircraft Corp Transonic wind tunnel
US2709917A (en) * 1952-02-15 1955-06-07 United Aircraft Corp Transonic flow control
US2729974A (en) * 1952-02-15 1956-01-10 United Aircraft Corp Transonic flow control with reduced power
US3602920A (en) * 1969-12-31 1971-09-07 Nasa Wind tunnel test section

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0136987A3 (en) * 1983-09-06 1986-04-09 Ab Rollab Method and device for attaining a gas flow in a wind tunnel
EP0136987A2 (en) * 1983-09-06 1985-04-10 Ab Rollab Method and device for attaining a gas flow in a wind tunnel
US20060021427A1 (en) * 2002-03-25 2006-02-02 Fleming Ronald J Flow stabilizer for flow bench
US7024929B2 (en) * 2002-03-25 2006-04-11 Fleming Ronald J Flow stabilizer for flow bench
US20040187563A1 (en) * 2002-03-26 2004-09-30 Fleming Ronald J. Flow vector analyzer for flow bench
US6923051B2 (en) 2002-03-26 2005-08-02 Ronald J. Fleming Flow vector analyzer for flow bench
US20030209084A1 (en) * 2002-03-26 2003-11-13 Fleming Ronald J. Flow vector analyzer for flow bench
US20090277263A1 (en) * 2005-05-30 2009-11-12 Victor Petruk Wind tunnel
US7640796B2 (en) * 2005-05-30 2010-01-05 Victor Petruk Wind tunnel
US20100139384A1 (en) * 2006-02-09 2010-06-10 Donald Wayne Allen Current tank systems and methods
US20150068284A1 (en) * 2013-09-06 2015-03-12 Tai-Her Yang Semi-Opened Hydrodynamic Testing Device Having Reverse Pumping Return Unit
US9453779B2 (en) * 2013-09-06 2016-09-27 Tai-Her Yang Semi-opened hydrodynamic testing device having reverse pumping return unit
JP2015137477A (en) * 2014-01-22 2015-07-30 公益財団法人鉄道総合技術研究所 Compression wave generation method, compression wave generator, and calibration method for hot-wire anemometer using the same
CN104048807A (en) * 2014-03-21 2014-09-17 西北工业大学 Method for controlling variable Reynolds number of continuous transonic speed wind tunnel experimental section flow field

Similar Documents

Publication Publication Date Title
US5435127A (en) Method and apparatus for boosting ram airflow to an ejection nozzle
US10934011B2 (en) Fluidic propulsive system and thrust and lift generator for aerial vehicles
US4099691A (en) Boundary layer control system for aircraft
US3866466A (en) Method and apparatus for increasing the reynolds number capability in a transonic wind tunnel
US5593112A (en) Nacelle air pump for vector nozzles for aircraft
US20080315042A1 (en) Thrust generator for a propulsion system
US3887147A (en) Apparatus and method for augmenting the lift of an aircraft having short take-off and landing capabilities
US3128063A (en) Airfoil with boundary layer control
US5099685A (en) Boundary layer control diffuser for a wind tunnel or the like
US2885162A (en) Integrated jet-wing
US20090068033A1 (en) Fan driven by tip turbine
GB1345786A (en) Gas ejection device with a silencer feature
US3035792A (en) Thrust augmenting powerplant for aircraft
GB924078A (en) Aircraft
US4519563A (en) Pollution reducing aircraft propulsion
US2659552A (en) Aircraft surface with boundary layer control
US2553443A (en) Wing-mounted jet propulsion system for aircraft
US3900177A (en) Jet propulsion powerplant
US3834834A (en) Compact high thrust augmentation ejector system
USRE24917E (en) Aircraft high lift supercirculation system
US3941335A (en) Automatic boundary layer control in an ejector wing aircraft
US3063658A (en) Supersonic airfoil with boundary layer control
US3981144A (en) Dual stage supersonic diffuser
GB875496A (en) Improvements in or relating to ducted-fan gas turbine jet propulsion engines
GB1101262A (en) Improvements in or relating to aircraft