US3688800A - Fluid flow restrictor - Google Patents

Fluid flow restrictor Download PDF

Info

Publication number
US3688800A
US3688800A US93192A US3688800DA US3688800A US 3688800 A US3688800 A US 3688800A US 93192 A US93192 A US 93192A US 3688800D A US3688800D A US 3688800DA US 3688800 A US3688800 A US 3688800A
Authority
US
United States
Prior art keywords
baffles
restrictor
flow
plates
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US93192A
Inventor
Paul F Hayner
Richard J Brockway
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lockheed Corp
Original Assignee
Sanders Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanders Associates Inc filed Critical Sanders Associates Inc
Application granted granted Critical
Publication of US3688800A publication Critical patent/US3688800A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/02Energy absorbers; Noise absorbers
    • F16L55/027Throttle passages
    • F16L55/02781The regulating element being provided with radial outputs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86718Dividing into parallel flow paths with recombining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86718Dividing into parallel flow paths with recombining
    • Y10T137/86734With metering feature

Definitions

  • FLUID FLOW RESTRICTOR [72] Inventors: Paul F. Hayner, Lexington, Mass.; Richard J. Broekway, Amherst, NH.
  • the restrictor comprises a series of rows of baffles placed in the path of fluid flow, with the baffles in succeeding rows staggered with respect to those in adjacent rows sothat as the fluid flows, it is constrained to change its direction repeatedly.
  • the restrictor is preferably constructed with an increasing cross sectional area along the direction of flow.
  • One suitable physical construction comprises a plurality of thin circular plates with a central bore, arranged in a stack. Each plate has a baffle pattern formed on one or both sides, for example, by etching. Fluid flow is from the central bore, between adjacent plates, to the circumference of the stack.
  • Another kind of restrictor comprises many long, narrow passageways such as a number of small tubes bound together or a number of long holes drilled in a block of metal. Such restrictors have been used successfully but, among other disadvantages, they are expensive to manufacture.
  • Another kind of restrictor is the simple tortuous path restrictor in which the fluid is forced to flow through one or more sinuous paths thereby generating friction which reduces the pressure.
  • One disadvantage of such a restrictor is that the reduction in pressure varies greatly with the viscosity of the fluid.
  • Another object of the invention is to provide a fluid flow restrictor which is very quiet in operation.
  • Another object of the invention is to provide a fluid flow restrictor which is easy to manufacture.
  • Another object of the invention is to provide a fluid flow restrictor in which the reduction in pressure does not vary greatly with the viscosity of the working fluid.
  • a restrictor in accordance with the invention many rows of baffles are arranged in the path of fluid flow.
  • the baffles in succeeding rows are staggered with respect to each other.
  • the stream then encounters approximately the middle of a baffle in the second row and again is deflected to either side.
  • Each stream so divided encounters a stream flowing in the opposite direction and the, two combine and flow between adjacent baffles of the second row to the third. This process continues, and the pressure is reduced by friction with the walls and by the frequent changes in direction.
  • the restrictor is preferably designed with an increasing flow area along the direction of flow, especially for use with com pressible fluids such as gases, and such a construction is desirableeven for use incompressible fluids such as oil and water.
  • FIG. 1 is a pictorial schematic view illustrating the principles of the invention
  • FIG. 2 is a pictorial schematic view showing arestrictor with a flow area which increases in the direction of flow;
  • FIG. 3 is a pictorial schematic diagram illustrating a radial flow restrictor
  • FIG. 4 is a pictorial view of a restrictor comprising a stack of plates each having a baffie pattern
  • FIG. 5 is a fragmentary schematic view of one of the plates of the restrictor of FIG. 4;
  • FIG. 6 is a cross sectional view taken along the lines 6-6 of FIG. 5; 7
  • FIG. 7 is a fragmentary view of one of the plates drawn with a larger scale.
  • FIG. 8 is a cross sectional view of an alternative form of a plate.
  • FIG. 1 there is shown schematically a flow path for fluid defined by a lower plate 21, an upper plate 22, and two side plates one of which, the plate 23, is shown in FIG. 1. Fluid flows in an upward direction and to the right as viewed in FIG. 1.
  • a plurality of baffles are arranged in rows which are transverse to the direction of the flow path.
  • Baffles 25, 26, 27, and 28 are arranged in the first row while baffles 31, 32, 33, and 34 are arranged in the second row.
  • Each of the baffles is essentially a rectangular parallelepiped and has a height which extends the entire distance between the upper surface of the plate 21 and the lower surface of the plate 22.
  • the baffles in each row are spaced apart so as to allow a passageway between adjacent baffles for the flow of fluid.
  • the rows of baffles are also spaced apart so as to allow room for the flow of fluid between the rows.
  • the baffles in succeeding rows are staggered in position relative to those in the next preceding row.
  • baffles in each row are positioned so that fluid flowing between adjacent baffles in the preceding row will strike approximately the center of the baffle and be divided into two streams each of which will flow in a direction approximately ninety degrees to its former direction and the two streams so divided will flow in opposite directions.
  • fluid entering the restrictor will flow between baffles 26 and 27 in the first row and will encounter approximately the middle of baffle 32 in the second row. There the stream will divide, part of it flowing to the left as shown in FIG..1 and the other part flowing to the right as shown in FIG. 1 both approximately parallel to the direction of the rows.
  • fluid flowing between bafiles 27 and 28 will be diverted or deflected by the baffle 33 and divided into two streams flowing in opposite directions.
  • the inlet to the restrictor presents a plurality of flow paths to the entering fluid.
  • These are parallel paths, not so much in the geometric sense as in the sense that a portion of the total flow passes through each simultaneously. More specifically, these paths are the passageways between adjacent baffles such as between baffles 25 and 26, between baffles 26 and 27 and between baffles 27 and 28.
  • FIG. 2 there is shown an expanding restrictor, that is, one in which the cross sectional flow area in the direction of flow gradually increases.
  • the total of the cross section areas of all of the streams at any given distance from the inlet to the device will be dependent upon and, in fact, will increase with, the distance from the inlet as measured along the direction of the flow of fluid.
  • the flow path is defined by a lower plate 41, an upper plate 42, and two side plates 43 and 44.
  • a plurality of baffles 45 are arranged in the fluid flow path in much the same way as they are in the embodiment of FIG. 1.
  • the sides 43 and 44 diverge in the direction of flow so that there is a greater cross sectional area between the plates as the distance from the inlet increases.
  • baffles are all the same size and shape and are spaced by the same amount, both laterally and in the direction of fluid flow, then the total crosssectional area available for the flow of fluid will increase as the distance from the inlet increases.
  • an increasing flow area is very important if the restrictor is to be used for a compressible fluid such as steam because, as the pressure decreases, the volume of such a fluid increases and there must be more volume available to accommodate it.
  • this type of construction is also advantageous for use with incompressible fluids such as water and oil because, among other things, it allows a low exit velocity which is conducive to low noise operation.
  • FIG. 3 there is shown a radial restrictor pattern.
  • This restrictor is made up of a lower plate 51 and an upper plate 52 each formed with a central aperture and spaced apart by a plurality of baffles 53. Fluid flows between the plates from the central aperture radially outward.
  • Each one of the baffles may be a simple rectangular parallelepiped as in the FIG. 1 and FIG. 2 but preferably is slightly curved as shown.
  • the various baffles are arranged in rows, as before, except that each row is circular rather than straight.
  • the innermost row of baffles should, of course, have the greatest curvature and the curvature should decrease as the distance from the bore increases.
  • the restrictor comprises a plurality of thin circular paths, each formed with a central circular aperture.
  • Each plate is formed with (or has affixed thereto) a plurality of protuberances 62 constituting baffles similar to those shown in FIGS. 1, 2, and 3 and similarly positioned.
  • the rows of battles are circular in shape and are arranged in concentric rings.
  • the plates are stacked, as shown in FIG. 4, and the fluid flows between the plates from the central aperture outward to the edge. It has been foundconvenient and economical to form the baffles by well known etching techniques.
  • each plate be formed with baffles on but one side, as shown in FIG. 6. Then a plurality of identical plates can be stacked one on another with the flat side of one plate against the baffles on the other. The stack is finished with a plain flat plate covering the last baffled plate.
  • FIG. 7 shows in more detail a sector of a plate which has been found very satisfactory.
  • baffles are on only one side, it is, of course, possible to form the plates with baffles on both sides as shown in FIG. 8, wherein is shown a plate 61a formed with baffles 62a on one side and baffles 62b on the other side. Then it is either necessary to be very careful of the registration of one plate upon another or alternatively it is necessary to alternate baffled plates with thin flat plates having no baffles.
  • the baffles may be identical or they may be of different sizes and shapes.
  • the spaces between rows of baffles may be the same or may be different from row to row and likewise the spaces left between adjacent baffles may be the same throughout the restrictor or may be different in different places.
  • the important consideration is that the size, shape and number of baffles be selected along with the spaces between adjacent baffles and the spaces between adjacent rows so that the cross sectional flow area does not decrease substantially in the direction of flow. Indeed, it is preferred at present that this cross sectional area increase as the distance from the inlet increases.
  • Restrictors in accordance with the present invention are useful in both piston and rolling ball type servo valves where it is desired to incorporate a restrictor into one or more of the ports. Such restrictors are also useful in ordinary pressure reducing valves. In both cases the construction shown in FIGS. 4-7 is preferred at present. In the case of the valve, a plug of one kind or another can be moved axially along the bore so as to vary the number of passageways open to the flow of fluid and thereby vary the pressure reduction.
  • the restrictor is not limited to such uses and may be used wherever it is desirable to decrease the pressure of a flowing fluid.
  • a restrictor for insertion in a fluid flow path for controlling the flow of fluid therethrough comprising,
  • the baffles in succeeding rows being positioned so as to divide the flow arriving from the spaces between adjacent baffles of the preceding row.
  • a restrictor in accordance with claim 1 in which the sizes, shapes and numbers of said baffles are selected and said baffles are positioned so that the cross sectional flow area does not decrease in the direction of flow.
  • a restrictor in accordance with claim 1 in which the sizes, shapes and numbers of said baffles are selected and said baffles are positioned so that the cross sectional flow area remains substantially constant along the direction of flow.
  • a restrictor in accordance with claim 1 in which the sizes, shapes and numbers of said baffles are selected and said baffles are positioned so that the cross sectional flow area increases in the direction of flow.
  • a restrictor in accordance with claim 1 in which said baffles are positioned so that a stream of fluid passing between adjacent baffles of one row encounters a baffle in a succeeding row and is thereby constrained to change its direction of flow.
  • a restrictor in accordance with claim 1 in which said baffles are positioned so that a stream of fluid encountering a baffle is divided into two streams which then flow in opposite directions, each at approximately ninety degrees to its former direction.
  • a restrictor in accordance with claim 1 in which said baffles are positioned so as to divide a fluid stream striking it into two streams flowing in opposite directions approximately parallel to said rows.
  • a restrictor in accordance with claim 8 in which said baffles are positioned so that said streams flowing parallel to said rows encounter and join oppositely flowing streams in turning and flowing between baffles of the next succeeding row.
  • a restrictor for insertion in a fluid flow path for bontrolling the flow of fluid therethrough comprising,
  • each of said plates being formed with a central aperture
  • each of saidplates also being formed with a plurality of unconnectedbaffles onat least one side thereof,
  • baffles being arranged in concentric rows about said central apertufewyith uniform annular spaces between rows and radial, spaces between adjacent baffles in each row such ⁇ a s to define circular passageways between rows nd substantially straight radial passageways betweenadjacent baffles in each row interconnecting adjacent circular passageways,
  • baffles divide the flow and defineaplurality of paths along the surfaces of said plates between bafiles interconnecting said central aperture with the outside edge.
  • a restrictor in accordance with claim 10 in which said plates are formed with baffles on but one side thereof and in which said stack includes one plate without baffles.
  • a restrictor in accordance with claim 10 in which said plates are formed with baffles on both sides and said stack includes a plurality of plates without baffles alternating with said plates with baffles.
  • a restrictor in accordance with claim 10 in which said plates and said aperture are circular and in which said baffles are positioned so that fluid flowing between adjacent baffles in a row strikes and is deflected by a baffle in the next succeeding row.
  • a restrictor in accordance with claim 14 in which the sizes, shapes and numbers of said baffles are selected and said baffles are positioned so that the cross sectional flow area increases with radial distance from the center of said plates.
  • a restrictor for insertion in a fluid flow path for reducing the pressure of a fluid flowing therethrough comprising,
  • each of said plates being smooth on one side and formed with a plurality of unconnected baffles on the other side so arranged in concentric circular rings with a continuous annular space between adjacent rings and radial spaces and between adjacent baffles in each ring for the flow of fluid as to define concentric circular passageways between rows and substantially straight radial passageways between adjacent baffles in each row connecting adjacent circular passageways,
  • baffles in each ring being positioned so that fluid flowing radially outwardly between adjacent baffles strikes a baffle in the next succeeding ring and is divided thereby.
  • a restrictor in accordance with claim 16 in which the sizes, shapes and numbers of said baffles are selected and said baffles are positioned so that the cross sectional flow area increases with the radial distance from the center of said stack.

Abstract

A fluid Flow Restrictor especially suitable for reducing the pressure of gases or liquids is described. The restrictor comprises a series of rows of baffles placed in the path of fluid flow, with the baffles in succeeding rows staggered with respect to those in adjacent rows so that as the fluid flows, it is constrained to change its direction repeatedly. The restrictor is preferably constructed with an increasing cross sectional area along the direction of flow. One suitable physical construction comprises a plurality of thin circular plates with a central bore, arranged in a stack. Each plate has a baffle pattern formed on one or both sides, for example, by etching. Fluid flow is from the central bore, between adjacent plates, to the circumference of the stack.

Description

United States Patent Hayner et al.
[451 Sept. 5, 1972 [54] FLUID FLOW RESTRICTOR [72] Inventors: Paul F. Hayner, Lexington, Mass.; Richard J. Broekway, Amherst, NH.
[73] Assignee: Sanders Associates, Inc., Nashua,
[22] Filed: Nov. 27, 1970 [21] Appl. No.: 93,192
[52] Cl. ..138/42, 138/37, 138/40 [51] Int. Cl ..FlSd H02 [58] Field of Search ..138/37, 38, 42, 40, 43
[56] References Cited UNITED STATES PATENTS 2,567,998 9/1951 Griffith ..138/42 3,513,864 5/1970 Self ..138/42 X 3,514,074 5/1970 Self ..138/42 X 2,126,991 8/1938 Griswold ..138/42 X 1,612,930 1/1927 Lochen ..138/38 2,132,011 10/1938 Bennett ..138/40 FOREIGN PATENTS OR APPLICATIONS 731,246 2/ 1943 Germany ..138/42 Primary Examiner-Herbert F. Ross Attorney-Louis Etlinger ABSTRACT A fluid Flow Restrictor especially suitable for reducing the pressure of gases or liquids is described. The restrictor comprises a series of rows of baffles placed in the path of fluid flow, with the baffles in succeeding rows staggered with respect to those in adjacent rows sothat as the fluid flows, it is constrained to change its direction repeatedly. The restrictor is preferably constructed with an increasing cross sectional area along the direction of flow. One suitable physical construction comprises a plurality of thin circular plates with a central bore, arranged in a stack. Each plate has a baffle pattern formed on one or both sides, for example, by etching. Fluid flow is from the central bore, between adjacent plates, to the circumference of the stack.
l7Claims,8DrawingFigures PATENTEDSEP 51912 3.888.800
saw 1 or 2 IN VE N TORS PAUL F HAYNER RICHARD J. BROCKWAY' nL'yQ-M- ATTORNEY PATENTED SEP 5 I973 FIGS SHEET 2 0f 2 mvs/vrons PAUL F. HAYNER RICHARD J. BROCKWAY ark 1W ATTOR/VFY FLUID FLOW RESTRICTOR FIELD OF THE INVENTION This invention relates to fluid flow restrictors for reducing the pressure of either a liquid or a gaseous fluid.
BACKGROUND OF THE INVENTION In the art of hydraulics, it is often necessary to reduce the pressure of a fluid, such as steam or oil, from a high value, which may exist in a source of supply, to a lower value, for use in a load device. One common type of restrictor for this purpose is simply a single sharp edged orifice. Such a restrictor reduces the pressure, but does so by generating very high fluid velocities. These high velocities in turn cause rapid erosion of the orifice edges and, what is even more important in some cases, causes intolerable high noise levels.
Another kind of restrictor comprises many long, narrow passageways such as a number of small tubes bound together or a number of long holes drilled in a block of metal. Such restrictors have been used successfully but, among other disadvantages, they are expensive to manufacture.
Another kind of restrictor is the simple tortuous path restrictor in which the fluid is forced to flow through one or more sinuous paths thereby generating friction which reduces the pressure. One disadvantage of such a restrictor is that the reduction in pressure varies greatly with the viscosity of the fluid.
Another kind of restrictor which has been known in the past is the matrix restrictor in which the fluid is passed through a porous matrix, thereby reducing pressure by friction. One difficulty with such a restrictor is that the extremely small passages required tend to become plugged due to the contamination inherent in any working fluid. If larger passages are used, the restrictor becomes very bulky.
OBJECTS OF THE INVENTION It is a general object of the present invention to provide an improved fluid flow restrictor.
Another object of the invention is to provide a fluid flow restrictor which is very quiet in operation.
Another object of the invention is to provide a fluid flow restrictor which is easy to manufacture.
Another object of the invention is to provide a fluid flow restrictor in which the reduction in pressure does not vary greatly with the viscosity of the working fluid.
SUMMARY OF THE INVENTION Briefly stated, in a restrictor in accordance with the invention, many rows of baffles are arranged in the path of fluid flow. The baffles in succeeding rows are staggered with respect to each other. As the fluid encounters a baffle in the first row, it is deflected to each side and flows between adjacent baffles toward the next row. The stream then encounters approximately the middle of a baffle in the second row and again is deflected to either side. Each stream so divided encounters a stream flowing in the opposite direction and the, two combine and flow between adjacent baffles of the second row to the third. This process continues, and the pressure is reduced by friction with the walls and by the frequent changes in direction. The restrictor is preferably designed with an increasing flow area along the direction of flow, especially for use with com pressible fluids such as gases, and such a construction is desirableeven for use incompressible fluids such as oil and water.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENT For a clearer understanding of the invention reference may be made to the following detailed description and the accompanyirigqlrawing in which: FIG. 1 is a pictorial schematic view illustrating the principles of the invention; 7
FIG. 2 is a pictorial schematic view showing arestrictor with a flow area which increases in the direction of flow;
FIG. 3 is a pictorial schematic diagram illustrating a radial flow restrictor;
FIG. 4 is a pictorial view of a restrictor comprising a stack of plates each having a baffie pattern;
FIG. 5 is a fragmentary schematic view of one of the plates of the restrictor of FIG. 4;
FIG. 6 is a cross sectional view taken along the lines 6-6 of FIG. 5; 7
FIG. 7 is a fragmentary view of one of the plates drawn with a larger scale; and
FIG. 8 is a cross sectional view of an alternative form of a plate.
Referring first to FIG. 1, there is shown schematically a flow path for fluid defined by a lower plate 21, an upper plate 22, and two side plates one of which, the plate 23, is shown in FIG. 1. Fluid flows in an upward direction and to the right as viewed in FIG. 1.
A plurality of baffles are arranged in rows which are transverse to the direction of the flow path. Baffles 25, 26, 27, and 28 are arranged in the first row while baffles 31, 32, 33, and 34 are arranged in the second row. Each of the baffles is essentially a rectangular parallelepiped and has a height which extends the entire distance between the upper surface of the plate 21 and the lower surface of the plate 22. The baffles in each row are spaced apart so as to allow a passageway between adjacent baffles for the flow of fluid. Similarly, the rows of baffles are also spaced apart so as to allow room for the flow of fluid between the rows. The baffles in succeeding rows are staggered in position relative to those in the next preceding row. That is, the baffles in each row are positioned so that fluid flowing between adjacent baffles in the preceding row will strike approximately the center of the baffle and be divided into two streams each of which will flow in a direction approximately ninety degrees to its former direction and the two streams so divided will flow in opposite directions. For example, fluid entering the restrictor will flow between baffles 26 and 27 in the first row and will encounter approximately the middle of baffle 32 in the second row. There the stream will divide, part of it flowing to the left as shown in FIG..1 and the other part flowing to the right as shown in FIG. 1 both approximately parallel to the direction of the rows. Similarly, fluid flowing between bafiles 27 and 28 will be diverted or deflected by the baffle 33 and divided into two streams flowing in opposite directions. The portion of the stream flowing to the right adjacent to the baffle 32 will meet the portion of the stream flowing to the left adjacent to the baffle 33. These two streams will join and flow through the space between the baffles 32 and 33. Similar dividing and joining of streams will occur between the other baffles of the first and second rows and also will occur between the remaining rows of baffles throughout the restrictor. Asthe fluid flows through its restrictor, its pressure is reduced both by friction and by the frequent changes of direction.
It is to be noted that the inlet to the restrictor, that is, the lower portion as viewed in FIG. 1, presents a plurality of flow paths to the entering fluid. These are parallel paths, not so much in the geometric sense as in the sense that a portion of the total flow passes through each simultaneously. More specifically, these paths are the passageways between adjacent baffles such as between baffles 25 and 26, between baffles 26 and 27 and between baffles 27 and 28. As the fluid flows toward the outlet (at the top as viewed in FIG. 1), it encounters additional parallel paths which are in series with the previously traversed paths. These paths include the passageways between rows as well as the passageways between adjacent baffles. This arrangement of paths, along with the division of the streams, the change of direction and the joining of streams, as described above, has been found to be very effective in reducing pressure without generating excessive noise. There is not sufficient pressure drop across any one passageway to produce noise, cavitation or erosion. The minute turbulence involved is quickly dissipated in shear losses in the fluid, that is, in heating the fluid.
Referring now to FIG. 2 there is shown an expanding restrictor, that is, one in which the cross sectional flow area in the direction of flow gradually increases. In other words, the total of the cross section areas of all of the streams at any given distance from the inlet to the device will be dependent upon and, in fact, will increase with, the distance from the inlet as measured along the direction of the flow of fluid. In FIG. 2, the flow path is defined by a lower plate 41, an upper plate 42, and two side plates 43 and 44. A plurality of baffles 45 are arranged in the fluid flow path in much the same way as they are in the embodiment of FIG. 1. The sides 43 and 44 diverge in the direction of flow so that there is a greater cross sectional area between the plates as the distance from the inlet increases. If the baffles are all the same size and shape and are spaced by the same amount, both laterally and in the direction of fluid flow, then the total crosssectional area available for the flow of fluid will increase as the distance from the inlet increases. This feature, an increasing flow area, is very important if the restrictor is to be used for a compressible fluid such as steam because, as the pressure decreases, the volume of such a fluid increases and there must be more volume available to accommodate it. However, this type of construction is also advantageous for use with incompressible fluids such as water and oil because, among other things, it allows a low exit velocity which is conducive to low noise operation.
Referring now to FIG. 3, there is shown a radial restrictor pattern. This restrictor is made up of a lower plate 51 and an upper plate 52 each formed with a central aperture and spaced apart by a plurality of baffles 53. Fluid flows between the plates from the central aperture radially outward. Each one of the baffles may be a simple rectangular parallelepiped as in the FIG. 1 and FIG. 2 but preferably is slightly curved as shown. The various baffles are arranged in rows, as before, except that each row is circular rather than straight. The innermost row of baffles should, of course, have the greatest curvature and the curvature should decrease as the distance from the bore increases.
Referring now to FIG. 4, 5, 6, and 7, there is shown a preferred form of construction for a restrictor in accordance with the present invention. As best shown in FIG. 4, the restrictor comprises a plurality of thin circular paths, each formed with a central circular aperture. Each plate is formed with (or has affixed thereto) a plurality of protuberances 62 constituting baffles similar to those shown in FIGS. 1, 2, and 3 and similarly positioned. The rows of battles are circular in shape and are arranged in concentric rings. The plates are stacked, as shown in FIG. 4, and the fluid flows between the plates from the central aperture outward to the edge. It has been foundconvenient and economical to form the baffles by well known etching techniques. It is preferred that each plate be formed with baffles on but one side, as shown in FIG. 6. Then a plurality of identical plates can be stacked one on another with the flat side of one plate against the baffles on the other. The stack is finished with a plain flat plate covering the last baffled plate. FIG. 7 shows in more detail a sector of a plate which has been found very satisfactory.
Although it is preferred at present to have baffles on only one side, it is, of course, possible to form the plates with baffles on both sides as shown in FIG. 8, wherein is shown a plate 61a formed with baffles 62a on one side and baffles 62b on the other side. Then it is either necessary to be very careful of the registration of one plate upon another or alternatively it is necessary to alternate baffled plates with thin flat plates having no baffles.
In each of the illustrated embodiments of the invention, the baffles may be identical or they may be of different sizes and shapes. Similarly, the spaces between rows of baffles may be the same or may be different from row to row and likewise the spaces left between adjacent baffles may be the same throughout the restrictor or may be different in different places. The important consideration is that the size, shape and number of baffles be selected along with the spaces between adjacent baffles and the spaces between adjacent rows so that the cross sectional flow area does not decrease substantially in the direction of flow. Indeed, it is preferred at present that this cross sectional area increase as the distance from the inlet increases. When the restrictor is used with a gaseous fluid, such construction allows the fluid to expand as its pressure is reduced. When used with an incompressible fluid such as water or oil, the increasing area allows the velocity of the fluid to decrease thereby reducing the noise emitted.
Restrictors in accordance with the present invention are useful in both piston and rolling ball type servo valves where it is desired to incorporate a restrictor into one or more of the ports. Such restrictors are also useful in ordinary pressure reducing valves. In both cases the construction shown in FIGS. 4-7 is preferred at present. In the case of the valve, a plug of one kind or another can be moved axially along the bore so as to vary the number of passageways open to the flow of fluid and thereby vary the pressure reduction. However, the restrictor is not limited to such uses and may be used wherever it is desirable to decrease the pressure of a flowing fluid.
Although some preferred embodiments of the invention have been described in considerable detail for illustrative purposes, many modifications will occur to those skilled in the art. It is therefore desired that the protection afforded by Letters Patent be limited only by the true scope of the appended claims.
I claim:
1. A restrictor for insertion in a fluid flow path for controlling the flow of fluid therethrough, comprising,
a plurality of spaced apart parallel impervious plates,
means for constraining fluid to flow between adjacent plates,
a plurality of unconnected baffles between said plates, in engagement with facing surfaces of adjacent plates and arranged in rows transverse to the general direction of fluid flow, undeviating spaces between adjacent rows and spaces between adjacent baffles in each row such as to define transverse passageways between rows and substantially straight longitudinal passageways between adjacent baffles in each row interconnecting adjacent transverse passageways,
the baffles in succeeding rows being positioned so as to divide the flow arriving from the spaces between adjacent baffles of the preceding row.
2. A restrictor in accordance with claim 1 in which the sizes, shapes and numbers of said baffles are selected and said baffles are positioned so that the cross sectional flow area does not decrease in the direction of flow.
3. A restrictor in accordance with claim 1 in which the sizes, shapes and numbers of said baffles are selected and said baffles are positioned so that the cross sectional flow area remains substantially constant along the direction of flow.
4. A restrictor in accordance with claim 1 in which the sizes, shapes and numbers of said baffles are selected and said baffles are positioned so that the cross sectional flow area increases in the direction of flow.
5. A restrictor in accordance with claim 1 in which said baffles are positioned so that a stream of fluid passing between adjacent baffles of one row encounters a baffle in a succeeding row and is thereby constrained to change its direction of flow.
6. A restrictor in accordance with claim 1 in which said baffles are positioned to define a plurality of series and parallel flow paths.
7. A restrictor in accordance with claim 1 in which said baffles are positioned so that a stream of fluid encountering a baffle is divided into two streams which then flow in opposite directions, each at approximately ninety degrees to its former direction.
8. A restrictor in accordance with claim 1 in which said baffles are positioned so as to divide a fluid stream striking it into two streams flowing in opposite directions approximately parallel to said rows.
9. A restrictor in accordance with claim 8 in which said baffles are positioned so that said streams flowing parallel to said rows encounter and join oppositely flowing streams in turning and flowing between baffles of the next succeeding row.
10. A restrictor for insertion in a fluid flow path for bontrolling the flow of fluid therethrough, comprising,
aplurality of thin plates assembled into a stack,
each of said plates being formed with a central aperture,
each of saidplates also being formed with a plurality of unconnectedbaffles onat least one side thereof,
said baffles being arranged in concentric rows about said central apertufewyith uniform annular spaces between rows and radial, spaces between adjacent baffles in each row such\a s to define circular passageways between rows nd substantially straight radial passageways betweenadjacent baffles in each row interconnecting adjacent circular passageways,
whereby said baffles divide the flow and defineaplurality of paths along the surfaces of said plates between bafiles interconnecting said central aperture with the outside edge.
1 l. A restrictor in accordance with claim 10 in which said plates are formed with baffles on but one side thereof and in which said stack includes one plate without baffles.
12. A restrictor in accordance with claim 10 in which said plates are formed with baffles on both sides and said stack includes a plurality of plates without baffles alternating with said plates with baffles.
13. A restrictor in accordance with claim 10 in which said baffles are positioned to define a plurality of series and parallel paths between said central aperture and said outside edge.
14. A restrictor in accordance with claim 10 in which said plates and said aperture are circular and in which said baffles are positioned so that fluid flowing between adjacent baffles in a row strikes and is deflected by a baffle in the next succeeding row.
15. A restrictor in accordance with claim 14 in which the sizes, shapes and numbers of said baffles are selected and said baffles are positioned so that the cross sectional flow area increases with radial distance from the center of said plates.
16. A restrictor for insertion in a fluid flow path for reducing the pressure of a fluid flowing therethrough, comprising,
a plurality of thin, circular plates, each formed with a circular, central aperture,
each of said plates being smooth on one side and formed with a plurality of unconnected baffles on the other side so arranged in concentric circular rings with a continuous annular space between adjacent rings and radial spaces and between adjacent baffles in each ring for the flow of fluid as to define concentric circular passageways between rows and substantially straight radial passageways between adjacent baffles in each row connecting adjacent circular passageways,
the baffles in each ring being positioned so that fluid flowing radially outwardly between adjacent baffles strikes a baffle in the next succeeding ring and is divided thereby.
17. A restrictor in accordance with claim 16 in which the sizes, shapes and numbers of said baffles are selected and said baffles are positioned so that the cross sectional flow area increases with the radial distance from the center of said stack.
l l i I t

Claims (17)

1. A restrictor for insertion in a fluid flow path for controlling the flow of fluid therethrough, comprising, a plurality of spaced apart parallel impervious plates, means for constraining fluid to flow between adjacent plates, a plurality of unconnected baffles between said plates, in engagement with facing surfaces of adjacent plates and arranged in rows transverse to the general direction of fluid flow, undeviating spaces between adjacent rows and spaces between adjacent baffles in each row such as to define transverse passageways between rows and substantially straight longitudinal passageways between adjacent baffles in each row interconnecting adjacent transverse passageways, the baffles in succeedinG rows being positioned so as to divide the flow arriving from the spaces between adjacent baffles of the preceding row.
2. A restrictor in accordance with claim 1 in which the sizes, shapes and numbers of said baffles are selected and said baffles are positioned so that the cross sectional flow area does not decrease in the direction of flow.
3. A restrictor in accordance with claim 1 in which the sizes, shapes and numbers of said baffles are selected and said baffles are positioned so that the cross sectional flow area remains substantially constant along the direction of flow.
4. A restrictor in accordance with claim 1 in which the sizes, shapes and numbers of said baffles are selected and said baffles are positioned so that the cross sectional flow area increases in the direction of flow.
5. A restrictor in accordance with claim 1 in which said baffles are positioned so that a stream of fluid passing between adjacent baffles of one row encounters a baffle in a succeeding row and is thereby constrained to change its direction of flow.
6. A restrictor in accordance with claim 1 in which said baffles are positioned to define a plurality of series and parallel flow paths.
7. A restrictor in accordance with claim 1 in which said baffles are positioned so that a stream of fluid encountering a baffle is divided into two streams which then flow in opposite directions, each at approximately ninety degrees to its former direction.
8. A restrictor in accordance with claim 1 in which said baffles are positioned so as to divide a fluid stream striking it into two streams flowing in opposite directions approximately parallel to said rows.
9. A restrictor in accordance with claim 8 in which said baffles are positioned so that said streams flowing parallel to said rows encounter and join oppositely flowing streams in turning and flowing between baffles of the next succeeding row.
10. A restrictor for insertion in a fluid flow path for controlling the flow of fluid therethrough, comprising, a plurality of thin plates assembled into a stack, each of said plates being formed with a central aperture, each of said plates also being formed with a plurality of unconnected baffles on at least one side thereof, said baffles being arranged in concentric rows about said central aperture with uniform annular spaces between rows and radial spaces between adjacent baffles in each row such as to define circular passageways between rows and substantially straight radial passageways between adjacent baffles in each row interconnecting adjacent circular passageways, whereby said baffles divide the flow and define a plurality of paths along the surfaces of said plates between baffles interconnecting said central aperture with the outside edge.
11. A restrictor in accordance with claim 10 in which said plates are formed with baffles on but one side thereof and in which said stack includes one plate without baffles.
12. A restrictor in accordance with claim 10 in which said plates are formed with baffles on both sides and said stack includes a plurality of plates without baffles alternating with said plates with baffles.
13. A restrictor in accordance with claim 10 in which said baffles are positioned to define a plurality of series and parallel paths between said central aperture and said outside edge.
14. A restrictor in accordance with claim 10 in which said plates and said aperture are circular and in which said baffles are positioned so that fluid flowing between adjacent baffles in a row strikes and is deflected by a baffle in the next succeeding row.
15. A restrictor in accordance with claim 14 in which the sizes, shapes and numbers of said baffles are selected and said baffles are positioned so that the cross sectional flow area increases with radial distance from the center of said plates.
16. A restrictor for insertion in a fluid flow path for reducing the pressure of a fluid flowing therethrough, comprising, a plurality of thin, circular plates, each formed with a circular, central aperture, each of said plates being smooth on one side and formed with a plurality of unconnected baffles on the other side so arranged in concentric circular rings with a continuous annular space between adjacent rings and radial spaces and between adjacent baffles in each ring for the flow of fluid as to define concentric circular passageways between rows and substantially straight radial passageways between adjacent baffles in each row connecting adjacent circular passageways, the baffles in each ring being positioned so that fluid flowing radially outwardly between adjacent baffles strikes a baffle in the next succeeding ring and is divided thereby.
17. A restrictor in accordance with claim 16 in which the sizes, shapes and numbers of said baffles are selected and said baffles are positioned so that the cross sectional flow area increases with the radial distance from the center of said stack.
US93192A 1970-11-27 1970-11-27 Fluid flow restrictor Expired - Lifetime US3688800A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US9319270A 1970-11-27 1970-11-27

Publications (1)

Publication Number Publication Date
US3688800A true US3688800A (en) 1972-09-05

Family

ID=22237663

Family Applications (2)

Application Number Title Priority Date Filing Date
US93192A Expired - Lifetime US3688800A (en) 1970-11-27 1970-11-27 Fluid flow restrictor
US05/665,989 Expired - Lifetime USRE29714E (en) 1970-11-27 1976-03-11 Fluid flow restrictor

Family Applications After (1)

Application Number Title Priority Date Filing Date
US05/665,989 Expired - Lifetime USRE29714E (en) 1970-11-27 1976-03-11 Fluid flow restrictor

Country Status (6)

Country Link
US (2) US3688800A (en)
JP (1) JPS5544277B1 (en)
CA (1) CA932617A (en)
DE (1) DE2155466A1 (en)
GB (1) GB1371389A (en)
IL (1) IL37688A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802537A (en) * 1972-02-16 1974-04-09 Bolt Beranek & Newman Apparatus for fluid flow precision pressure-reduction, and attenuation and diffusion of jet-produced sound without substantial sound-regeneration in jet-port arrays, including valves and the like
US3856049A (en) * 1971-09-23 1974-12-24 Leslie Co Multiple stage restrictor
US3896999A (en) * 1973-09-28 1975-07-29 Jaime Sahagun Barragan Anti-clogging drip irrigation valve
US3954124A (en) * 1973-12-05 1976-05-04 Self Richard E High energy loss nested sleeve fluid control device
US4127146A (en) * 1975-09-09 1978-11-28 Control Components, Inc. High energy loss device
US4221037A (en) * 1977-09-29 1980-09-09 Copes-Vulcan, Inc. Method for manufacturing a fluid control device with disc-type flow restrictor
US4335744A (en) * 1980-04-07 1982-06-22 Control Components, Inc. Quiet safety relief valve
USRE31105E (en) * 1974-02-21 1982-12-21 Controlled pressure drop valve
US4372528A (en) * 1981-07-06 1983-02-08 Red Valve Co., Inc. Pinch valve sleeve
USRE31570E (en) * 1973-04-09 1984-05-01 Tylan Corporation Fluid flowmeter
US4593446A (en) * 1984-04-18 1986-06-10 Hayner Paul F Method of manufacturing a fluid flow restrictor
US4600152A (en) * 1983-06-06 1986-07-15 Samuel Samueli Multiple intersection dripper
US4800952A (en) * 1987-07-22 1989-01-31 General Electric Company Thaw flow control for liquid heat transport systems
US4938450A (en) * 1989-05-31 1990-07-03 Target Rock Corporation Programmable pressure reducing apparatus for throttling fluids under high pressure
US5769122A (en) * 1997-02-04 1998-06-23 Fisher Controls International, Inc. Fluid pressure reduction device
US6026859A (en) * 1998-01-28 2000-02-22 Fisher Controls International, Inc. Fluid pressure reduction device with linear flow characteristic
US6095196A (en) * 1999-05-18 2000-08-01 Fisher Controls International, Inc. Tortuous path fluid pressure reduction device
US6244297B1 (en) 1999-03-23 2001-06-12 Fisher Controls International, Inc. Fluid pressure reduction device
US20040168730A1 (en) * 2001-08-16 2004-09-02 Mccarty Michael Wildie Fluid pressure reduction device
US7178782B1 (en) 2003-05-23 2007-02-20 The United States Of America As Represented By The Secretary Of The Navy Quiet opening ball valve
US20070242560A1 (en) * 2006-01-18 2007-10-18 Yoshihiro Norikane Microscopic flow passage structure, microscopic liquid droplet generating method, microscopic liquid droplet generating system, particles, and microcapsules
US7306170B1 (en) * 2003-06-02 2007-12-11 Casino Advisory Services, Llc Lawn sprinkler flow control device and tool therefor
US7690400B2 (en) 2005-02-28 2010-04-06 Flowserve Management Company Noise reducing fluid passageways for fluid control devices
US7802592B2 (en) 2006-04-18 2010-09-28 Fisher Controls International, Llc Fluid pressure reduction devices
US20100300542A1 (en) * 2009-05-27 2010-12-02 Flowserve Management Company Fluid flow control devices and systems, and methods of flowing fluids therethrough
WO2013134140A1 (en) * 2012-03-07 2013-09-12 Illinois Tool Works Inc. System and method for reducing flow perturbations and improving the accuracy of a rate of decay measurement in a mass flow controller
WO2015049647A1 (en) * 2013-10-01 2015-04-09 University Of The Witwatersrand, Johannesburg Diffuser
US20150152976A1 (en) * 2013-12-03 2015-06-04 Fisher Controls International Llc Swept outlet noise reducing element
US20160111621A1 (en) * 2014-10-15 2016-04-21 Lg Innotek Co., Ltd. Heat Conversion Device
US20180306334A1 (en) * 2017-04-19 2018-10-25 Fisher Controls International Llc Control valve with high performance valve cage
US10941878B2 (en) 2013-03-15 2021-03-09 Flowserve Management Company Fluid flow control devices and systems, and methods of flowing fluids therethrough

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2420079A1 (en) * 1978-03-16 1979-10-12 Adar Sa Baffle ring assembly for valve - has radial ribs locating in channels in ring below causing fluid to follow undulating path
DE3215224C2 (en) * 1982-04-23 1989-12-14 C.H. Zikesch GmbH, 4100 Duisburg Device for reducing the energy contained in a liquid or gaseous medium
DE3822773A1 (en) * 1988-07-01 1990-01-04 Howaldtswerke Deutsche Werft Insert for damping turbulence in pipelines
GB2227754A (en) * 1988-10-14 1990-08-08 Pilkington Plc Gas flow restrictor for glass coating apparatus
DE4033362C3 (en) * 1990-10-17 2000-02-10 Horst Jaekel Device for reducing the pressure of a gaseous medium
US5819803A (en) * 1996-02-16 1998-10-13 Lebo; Kim W. Fluid pressure reduction device
DE19755794C2 (en) * 1997-12-16 2003-10-23 Messer Griesheim Gmbh Pressure-free gas feed
JP3817132B2 (en) 2000-11-30 2006-08-30 ニイガタ・メーソンネーラン株式会社 Steam conversion valve
JP2002168407A (en) 2000-11-30 2002-06-14 Niigata Masoneilan Co Ltd Steam desuperheating device
JP3718631B2 (en) 2000-11-30 2005-11-24 ニイガタ・メーソンネーラン株式会社 Steam conversion valve
US6615874B2 (en) 2002-01-22 2003-09-09 Flowserve Management Company Stacked disk valve trim
US6718633B1 (en) * 2003-03-14 2004-04-13 Flowserve Management Company Process for manufacturing valve trim assemblies
US20080142548A1 (en) * 2006-12-13 2008-06-19 Frozen Beverage Services Of California, Inc. Method and Apparatus for Combination and Delivery of Beverages for Consumption

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1612930A (en) * 1925-09-11 1927-01-04 Frank J Lochen Baffle plate for boiler flues
US2126991A (en) * 1936-06-27 1938-08-16 Clayton Manufacturing Co Flow control faucet for beer or the like
US2132011A (en) * 1936-07-17 1938-10-04 Budwig Mfg Company Beverage dispensing apparatus
DE731246C (en) * 1940-09-21 1943-02-04 Franz Winterfeldt Device for cooling sparks
US2567998A (en) * 1951-04-23 1951-09-18 Marvel Oil Treater Inc Device for treating oil for the separation of water
US3514074A (en) * 1968-05-06 1970-05-26 Richard E Self High energy loss fluid control
US3513864A (en) * 1968-11-22 1970-05-26 Richard E Self High pressure fluid control means

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US973328A (en) * 1910-04-02 1910-10-18 Joseph Willmann Emulsifier.
US1262317A (en) * 1917-11-12 1918-04-09 John H V Finney Carbureter attachment.
US2069714A (en) * 1935-06-22 1937-02-02 Trumbull Electric Mfg Co Pasteurizing apparatus
US2210448A (en) * 1938-08-05 1940-08-06 Dodge Emulsor Corp Homogenizing head
US3545492A (en) * 1968-05-16 1970-12-08 Armco Steel Corp Multiple plate throttling orifice
US3665965A (en) * 1970-05-26 1972-05-30 Masonellan International Inc Apparatus for reducing flowing fluid pressure with low noise generation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1612930A (en) * 1925-09-11 1927-01-04 Frank J Lochen Baffle plate for boiler flues
US2126991A (en) * 1936-06-27 1938-08-16 Clayton Manufacturing Co Flow control faucet for beer or the like
US2132011A (en) * 1936-07-17 1938-10-04 Budwig Mfg Company Beverage dispensing apparatus
DE731246C (en) * 1940-09-21 1943-02-04 Franz Winterfeldt Device for cooling sparks
US2567998A (en) * 1951-04-23 1951-09-18 Marvel Oil Treater Inc Device for treating oil for the separation of water
US3514074A (en) * 1968-05-06 1970-05-26 Richard E Self High energy loss fluid control
US3513864A (en) * 1968-11-22 1970-05-26 Richard E Self High pressure fluid control means

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856049A (en) * 1971-09-23 1974-12-24 Leslie Co Multiple stage restrictor
US3802537A (en) * 1972-02-16 1974-04-09 Bolt Beranek & Newman Apparatus for fluid flow precision pressure-reduction, and attenuation and diffusion of jet-produced sound without substantial sound-regeneration in jet-port arrays, including valves and the like
USRE31570E (en) * 1973-04-09 1984-05-01 Tylan Corporation Fluid flowmeter
US3896999A (en) * 1973-09-28 1975-07-29 Jaime Sahagun Barragan Anti-clogging drip irrigation valve
US3954124A (en) * 1973-12-05 1976-05-04 Self Richard E High energy loss nested sleeve fluid control device
USRE31105E (en) * 1974-02-21 1982-12-21 Controlled pressure drop valve
US4127146A (en) * 1975-09-09 1978-11-28 Control Components, Inc. High energy loss device
US4221037A (en) * 1977-09-29 1980-09-09 Copes-Vulcan, Inc. Method for manufacturing a fluid control device with disc-type flow restrictor
US4335744A (en) * 1980-04-07 1982-06-22 Control Components, Inc. Quiet safety relief valve
US4372528A (en) * 1981-07-06 1983-02-08 Red Valve Co., Inc. Pinch valve sleeve
US4600152A (en) * 1983-06-06 1986-07-15 Samuel Samueli Multiple intersection dripper
US4593446A (en) * 1984-04-18 1986-06-10 Hayner Paul F Method of manufacturing a fluid flow restrictor
US4800952A (en) * 1987-07-22 1989-01-31 General Electric Company Thaw flow control for liquid heat transport systems
US4938450A (en) * 1989-05-31 1990-07-03 Target Rock Corporation Programmable pressure reducing apparatus for throttling fluids under high pressure
EP0401904A1 (en) * 1989-05-31 1990-12-12 Target Rock Corporation Programmable pressure reducing apparatus for throttling fluids under high pressure
US5769122A (en) * 1997-02-04 1998-06-23 Fisher Controls International, Inc. Fluid pressure reduction device
US5941281A (en) * 1997-02-04 1999-08-24 Fisher Controls International, Inc. Fluid pressure reduction device
US6026859A (en) * 1998-01-28 2000-02-22 Fisher Controls International, Inc. Fluid pressure reduction device with linear flow characteristic
US6244297B1 (en) 1999-03-23 2001-06-12 Fisher Controls International, Inc. Fluid pressure reduction device
US6095196A (en) * 1999-05-18 2000-08-01 Fisher Controls International, Inc. Tortuous path fluid pressure reduction device
US20040168730A1 (en) * 2001-08-16 2004-09-02 Mccarty Michael Wildie Fluid pressure reduction device
US6935370B2 (en) * 2001-08-16 2005-08-30 Fisher Controls International Llc Fluid pressure reduction device
US20050252559A1 (en) * 2001-08-16 2005-11-17 Fisher Controls International Llc Fluid pressure reduction device
US7013918B2 (en) * 2001-08-16 2006-03-21 Fisher Controls International Llc. Fluid pressure reduction device
US7178782B1 (en) 2003-05-23 2007-02-20 The United States Of America As Represented By The Secretary Of The Navy Quiet opening ball valve
US7306170B1 (en) * 2003-06-02 2007-12-11 Casino Advisory Services, Llc Lawn sprinkler flow control device and tool therefor
US20100175768A1 (en) * 2005-02-28 2010-07-15 Flowserve Management Company Noise reducing fluid passageways for fluid flow control devices
US7886772B2 (en) 2005-02-28 2011-02-15 Flowserve Management Company Noise reducing fluid passageways for fluid flow control devices
US7690400B2 (en) 2005-02-28 2010-04-06 Flowserve Management Company Noise reducing fluid passageways for fluid control devices
US8434525B2 (en) 2005-02-28 2013-05-07 Flowserve Management Company Noise reducing fluid passageways for fluid flow control devices
US20110100490A1 (en) * 2005-02-28 2011-05-05 Flowserve Management Company Noise reducing fluid passageways for fluid flow control devices
US8821006B2 (en) * 2006-01-18 2014-09-02 Ricoh Company, Ltd. Microscopic flow passage structure, microscopic liquid droplet generating method, microscopic liquid droplet generating system, particles, and microcapsules
US20070242560A1 (en) * 2006-01-18 2007-10-18 Yoshihiro Norikane Microscopic flow passage structure, microscopic liquid droplet generating method, microscopic liquid droplet generating system, particles, and microcapsules
US7802592B2 (en) 2006-04-18 2010-09-28 Fisher Controls International, Llc Fluid pressure reduction devices
US8033300B2 (en) 2006-04-18 2011-10-11 Fisher Controls International, Llc Fluid pressure reduction devices
US20100319799A1 (en) * 2006-04-18 2010-12-23 Mccarty Michael Wildie Fluid pressure reduction devices
US10989329B2 (en) 2009-05-27 2021-04-27 Flowserve Management Company Fluid flow control devices and systems, and methods of flowing fluids therethrough
US10550960B2 (en) 2009-05-27 2020-02-04 Flowserve Management Company Fluid flow control devices and systems, and methods of flowing fluids therethrough
US8881768B2 (en) * 2009-05-27 2014-11-11 Flowserve Management Company Fluid flow control devices and systems, and methods of flowing fluids therethrough
US20100300542A1 (en) * 2009-05-27 2010-12-02 Flowserve Management Company Fluid flow control devices and systems, and methods of flowing fluids therethrough
US9732880B2 (en) 2009-05-27 2017-08-15 Flowserve Management Company Fluid flow control devices and systems, and methods of flowing fluids therethrough
WO2013134140A1 (en) * 2012-03-07 2013-09-12 Illinois Tool Works Inc. System and method for reducing flow perturbations and improving the accuracy of a rate of decay measurement in a mass flow controller
US9507351B2 (en) 2012-03-07 2016-11-29 Illinois Tool Works Inc. System and method for reducing flow perturbations and improving the accuracy of a rate of decay measurement in a mass flow controller
US11761558B2 (en) 2013-03-15 2023-09-19 Flowserve Pte. Ltd. Fluid flow control devices and systems, and methods of flowing fluids therethrough
US11287059B2 (en) 2013-03-15 2022-03-29 Flowserve Management Company Fluid flow control devices and systems, and methods of flowing fluids therethrough
US10941878B2 (en) 2013-03-15 2021-03-09 Flowserve Management Company Fluid flow control devices and systems, and methods of flowing fluids therethrough
WO2015049647A1 (en) * 2013-10-01 2015-04-09 University Of The Witwatersrand, Johannesburg Diffuser
CN104847961A (en) * 2013-12-03 2015-08-19 费希尔控制国际公司 Swept outlet noise reducing element
CN104847961B (en) * 2013-12-03 2019-09-10 费希尔控制国际公司 Scan out formula noise reduction elements
US9291282B2 (en) * 2013-12-03 2016-03-22 Fisher Controls International Llc Swept outlet noise reducing element
US20150152976A1 (en) * 2013-12-03 2015-06-04 Fisher Controls International Llc Swept outlet noise reducing element
US10153417B2 (en) * 2014-10-15 2018-12-11 Lg Innotek Co., Ltd. Heat conversion device
CN105609626B (en) * 2014-10-15 2019-10-18 Lg伊诺特有限公司 Hot-cast socket equipment
CN105609626A (en) * 2014-10-15 2016-05-25 Lg伊诺特有限公司 Heat conversion device
US20160111621A1 (en) * 2014-10-15 2016-04-21 Lg Innotek Co., Ltd. Heat Conversion Device
US10458555B2 (en) * 2017-04-19 2019-10-29 Fisher Controls International Llc Control valve with high performance valve cage
US20180306334A1 (en) * 2017-04-19 2018-10-25 Fisher Controls International Llc Control valve with high performance valve cage

Also Published As

Publication number Publication date
JPS5544277B1 (en) 1980-11-11
USRE29714E (en) 1978-08-01
CA932617A (en) 1973-08-28
IL37688A (en) 1974-05-16
GB1371389A (en) 1974-10-23
DE2155466A1 (en) 1972-06-08
IL37688A0 (en) 1971-11-29

Similar Documents

Publication Publication Date Title
US3688800A (en) Fluid flow restrictor
US3941350A (en) Quieting means for a fluid flow control device using vortical flow patterns
US7789108B1 (en) Micro-flow fluid restrictor, pressure spike attenuator, and fluid mixer
EP0174340B1 (en) Anti-cavitation low-noise control valve cage trim for high pressure reducing service in liquid or gaseous flow
EP1266166B1 (en) Fluid energy reduction device
US6935370B2 (en) Fluid pressure reduction device
KR101233653B1 (en) A device for reducing pressure and velocity of flowing fluid
JP5509108B2 (en) Fractal laminates for fluid scaling and distribution
US5769122A (en) Fluid pressure reduction device
US3513864A (en) High pressure fluid control means
CA1249762A (en) Flow stabilizing valve, method and pressure reducer
USRE32197E (en) High energy loss fluid control
JP4458854B2 (en) Noise reduction device for fluid flow system
US4168348A (en) Perforated laminated material
US20120273065A1 (en) Fluid flow control device
JPH0337650B2 (en)
CN105164457A (en) Fluid flow control devices and systems, and methods of flowing fluids therethrough
EP1971796B1 (en) Improvements in fluid control
US3674044A (en) Opposing control vortex valve
US5165452A (en) Large angle diffuser diverter design for maximum pressure recovery
KR20020042662A (en) Resistance Device for Controlling Flow Rate and Reducing Pressure of Fluid
US4008737A (en) Multi-path valve structure with means providing smooth flow patterns
US4735224A (en) Method for stabilizing the flow of fluids at the time of expansion accompanied by kinetic energy degradation, a valve and a pressure reducer for carrying out said method
CN111022813A (en) Porous current-limiting noise-reducing pore plate and current-limiting noise reducer formed by same
US4000878A (en) Quieting means for a fluid flow device