US3567847A - Electro-optical display system - Google Patents

Electro-optical display system Download PDF

Info

Publication number
US3567847A
US3567847A US789317A US3567847DA US3567847A US 3567847 A US3567847 A US 3567847A US 789317 A US789317 A US 789317A US 3567847D A US3567847D A US 3567847DA US 3567847 A US3567847 A US 3567847A
Authority
US
United States
Prior art keywords
light
assembly
display system
multiplicity
separate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US789317A
Inventor
Edgar E Price
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3567847A publication Critical patent/US3567847A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colourĀ 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colourĀ  by interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators

Definitions

  • An object of the present invention is to provide an improved system for display of color television images in the home.
  • An additional object of this invention is to provide in a display system means for simultaneous and independent modulation or on-off switching of a multiplicity of points or small areas of light.
  • This invention describes means to modulate a multiplicity of transmitted or reflected light beams by varying the positions of polished and coated optical surfaces in interferometric systems. Control over the position of each optical surface is maintained by locating the surface directly on electrostrictive material or by locating the surface on an optically workable material which is firmly attached to the electrostrictive material.
  • Interferometric modulation of light is well known in the present art and is described in terms of single beam modulation in U.S. Pat. No. 3,202,052 and in terms of multiple beam simultaneous modulation to provide an image formed interferometrically over an extended area in U.S. Pat. No. 3,100,817 and U.S. Pat. No. 3,233,040. There are certain practicaldifficulties in applying the teachings of the latter two U.S. patents which do not exist in devices utilizing the teachings of the invention described herein.
  • U.S. Pat. No. 3,100,817 and U.S. Pat. No. 3,233,040 each describe the use of thin sheets of electrostrictive material with the direction of electrical polarization perpendicular to the faces.
  • Members of the barium titanate or lead zirconate family of piezoelectric ceramics are well suited for use in an interferometrically modulated system.
  • the materials are hard enough to be optically worked to a flat surface and stable enough to hold their shapes after working.
  • the electrical characteristics are also suitable for this application. For example in the case of one material a potential difference of about 625 volts provides a surface displacement of one-quarter wavelength, the maximum required for full modulation.
  • sheets of piezoelectric'ceramic are used to create a full frame interferometrically modulated image, it is desirable that they be as thin as feasible to provide maximum resolution. However, it is desirable that thickness be sufficient to prevent depolarization of the material with signal voltage.
  • the polarizing voltage is 60 volts per mil of thickness. It is desirable that the signal voltage be below this value. Thus it is desirable that material thickness be greater than 11 mils and preferably greater than 30 mils.
  • U.S. Pat. No. 3,233,040 describes a thin sheet of electrostrictive material affixed to a glass-wire substrate having wires passing through the glass to permit electrical charges to be transmitted through the glass wall of a cathode ray tube.
  • glass-wire substrate has wires of 0.001 inch diameter spaced 0.004 inch center to center.
  • wire spacing it would be desirable to place a layer of electrostrictive material of about 0.002 inch thickness cemented to the glasswire substrate. As noted before this is too thin a layer properly to accept an electrical signal of 625 volts. If a thicker layer of electrostrictive material is attached to the glass-wire matrix the resolution possible is determined by-material thickness rather than by wire spacing.
  • FIG. 1 shows a thick slab of piezoelectric material polarized through its thickness'and a means for reducing the size of an area of surface which is displaced in response to an electrical potential applied to a point on the opposite surface.
  • FIG. 2 shows a disc of piezoelectric material configured to provide a multiplicity of independently controlled moveable elements.
  • FIG. 3 shows an assembly of the piezoelectric-disc of FIG. 2 assembled to provide a'multiplicity of independently controlled Fabry-Perot etalons.
  • FIG. 4 illustrates a Fabry-Perot etalon used to modulate a beam of collimated light.
  • FIG. 5 illustrates a Fabry-Perot etalon. used to modulate a conical beam of light at its focus.
  • FIG. 6 shows the device of FIGS. 2 and 3 as utilized in a complete optical system to provide for display of a color television picture.
  • FIG. 1 represents a rectangle of piezoelectric material 1 of sufficient thickness to maintain dimensional stability.
  • Upper surface 2 is a metallized surface of uniform potential.
  • Lower surface 3 is an uncoated insulating surface. The material is polarized through its thickness.
  • An electrical potential applied at a point such as 4 by wire 5 will create lines of electrical force in an approximately conically-shaped pattern radiating from point 4 to an area 6 on surface 2 larger than the point 4 but small compared to the whole surface area 2. This region of electrical potential difference will cause the usual piezoelectric effect to occur.
  • small area 6 on surface 2 will be deformed slightly.
  • the surface deformity can be made visible in an interferometric system.
  • a small volume of piezoelectric material 7 is attached to the main body of material 1 but is partially isolated from the main body 1 by air slots 8 and 9.
  • the air slots serve two purposes. If an electrical potential is applied to point 10 by wire 11 the electrical lines of force will be contained within small volume 7 and will not penetrate through the airspaces 8 and 9 to the adjoining regions of piezoelectric material at 12 or 13. Thus only that part of piezoelectric material 7 between air slots 8 and 9 will be changed in dimension by application of electrical potential to point 10.
  • air slots 8 and 9 provide mechanical separation of small region 7 of piezoelectric material 1 from the immediately adjacent regions 12 and 13 so that the rigidity of the piezoelectric material does not come into effect and cause small region 7 to drag mechanically regions 12 and 13 when small region 7 is electrically activated.
  • By suitable selection of distance between air slots 8 and 9 it is possible to create more regions such as 7 per unit length of piezoelectric material 1 than regions such as 6.
  • FIG. 2 illustrates a piezoelectric ceramic disc having a multiplicity of partially isolated separately controllable small volumes of piezoelectric material.
  • 14 is a disc of piezoelectric material preferably a piezoelectric ceramic.
  • Surface 15 is optically flat, polished, and coated with a conducting layer so that it is of uniform electrical potential.
  • 10 sets of air slots such as 16 and 17 are shown milled radially in from the outer cylindrical surface 18 of piezoelectric disc 14 to form 10 separate small volumes of piezoelectric material such as 19 which are connected to the main body of material 14 but are isolated electrically and mechanically from the adjoining regions of material such as 20 and 21.
  • FIG. 3 is a section through AA of FIG. 2 with a transparent cover plate added to create an assembly of a multiplicity of separate electrically modulated Fabry-Perot interferometers.
  • 14 represents the disc of piezoelectric ceramic previously shown in FIG. 2.
  • 24 is a transparent optical flat having a partially transparent coating on surface 25. A preselected spacing of three wavelengths or less between surfaces 15 and 25 is provided by spacer ring 26 which is vacuum coated to optical flat 24.
  • the complete assembly of FIG. 3 is identified by numeral 27.
  • FIG. 4 and FIG. 5 illustrate two methods of using a Fabry- Perot etalon to modulate a light beam.
  • the light is collimated when passing through the Fabry-Perot etalon.
  • the light beam is focused on the etalon.
  • light from point source 28 is collimated by lens 29 and passes through plane partially transmitting and partially reflecting surfaces 30 and 31 in collimated mode.
  • the collimated beam is focused by lens 32 to point 33.
  • FIG. 5 light from point source 34 is focused to a point 36 by lens at Fabry-Perot etalon with plane partially transmitting partially reflecting surfaces 37 and 38.
  • the point of light at 36 is refocused by lens 39 to point 40. It can be seen that a much smaller area of the Fabry-Perot etalon is used to modulate the light in FIG. 5 than is necessary in FIG. 4.
  • a more closely spaced array of modulators can be utilized than is possible if the optical system of FIG. 4 is used.
  • FIG. 6 illustrates a complete optical system including the array of Fabry-Perot interferometric light modulators 27 of FIG; 3.
  • 41 is a concentrated light source.
  • Condensing mirror 42 and condensing lens 43 together comprise a condensing system which forms an image of light source 41 on the entrance end 45 of fiber bundle to circle converter 44-.
  • a multiplicity of optical fibers is closely spaced. Each fiber receives a part of the highly concentrated light flux in the image of light source 41 formed by lens 43.
  • Each optical fiber transmits the light received along its length to the other end 46 of fiber bundle to circle converter 44.
  • lens 46 is a circular array of optical fiber ends, each of which is a point source of light such as 47 from which a beam of light 48 emanates until it is intercepted by lens element 49 of lens system 52, comprising lens elements 49, 50, and 511 and mirror 53.
  • Lens system 52 as shown has been selected to illustrate clearly the optical function which it performs. In an actual device a more efficient lens system would be used to perform the same optical function.
  • Lens element 49 essentially collimates the light in cone 48. That portion of collimated light beam 48 which is reflected by mirror 53 is reflected towards lens element 50 which refocuses the collimated light beam to a point 54 located on one of the individual Fabry-Perot interferometric modulators of the assembly 27 of FIG. 3 where modulation occurs.
  • the modulated beam of light is reflected as light beam 55 which is reimaged to a point of light 56 by lens elements 50 and 51.
  • Point of light 56 coincides with the end of one fiber in circle to line converter 57in which a multiplicity of optical fibers are arranged to have one end of each fiber located in a circle 58 and the other end of each fiber located in a line at 59.
  • the same fibers are adjacent to each other in both circle and line except for the fibers at each end of the line which are separated by the length of the line although their ends in the circle are immediately adjacent.
  • Each fiber in circle 58 corresponds to a fiber in the circularend of fiber bundle to circle converter 44.
  • each point of light emanating from a fiber I in bundle to circle converter 44 is redirected into a fiber in circle 58 of optical fiber circle to line converter 57 after being modulated by one modulator of the array of Fabry-Perot interferometric modulators 27 of FIG. 3.
  • Each separately modulated light beam which enters fiber optics circle to line converter 57 through one of the optical fiber ends in circle 58 is transmitted along the length of the fiber which it has entered and emerges from the end of the fiber which is in line 59 at the end of optical fiber circle to line converter 57.
  • light from each fiber emanates as a cone of light and the end of each fiber is an intensity modulated point of light.
  • the number 600 corresponds to the number of groups of three dots, red, green and blue, across a line in a shadow mask color television tube.
  • spectral content of light in this optical system By limiting the spectral content of light in this optical system to red, green or blue by duplicating the system twice from light source 41 to fiber optics line 59 to provide three complete sets of 600 separately modulated points of light in a line each in a separate color, red, green or blue, and by bringing the lines of light into optical coincidence by an array of dichroic filters 60 it is possible to create a line of 600 points of light each comprising three spectral components separately modulated.
  • This line of color modulated points of light can be expanded into a frame of light by any of a number of slow speed electromechanically driven optical scanners.
  • One such scanning system comprises lens 61 and octagonal prism 62 driven by synchronous motor 63.
  • Such a scanner can be synchronized to the television frame rate such that the projected image 64 comprises 525 sets of 600 points of light corresponding to the 525 lines in a television frame.
  • the intensity of each point of light according to the appropriate part of the signal in the transmitted color television signal, it is possible to project a color television picture to a screen.
  • An octagonal prism such as that shown scans a line across a frame eight times per turn.
  • Current television standards provide 60 fields per second or 3600 fields per minute. Thus 450 revolutions per minute are required of the prism. This is a very moderate scan rate, easily achieved.
  • the interleaving of fields can be achieved by appropriate angular spacings on prism faces or by other means not described herein. Such interleaving is assumed to be provided by whatever electromechanically driven optical line-to-frame scanning system is utilized.
  • Electronic signals'to actuate the individual modulators of the Fabry-Perot multiple modulator assembly 27 can be provided by locating the assembly in a cathode-ray tube 65 in which the electron beam traverses a circular path and successively actuates each separate Fabry-Perot modulator such as 54.
  • separate wires 66 can connect each modulator of assembly 27 to an electronic control circuit 67 which acts as an electronic buffer to process the video signal from a television receiver circuit into a form suitable to actuate each individual Fabry-Perot modulator.
  • a display system comprising a multiple interferometric light modulator assembly having a body of electrostrictive material optically polished to predetermined curvature and electrically conducting and optically coated on one surface and electrically insulating on an opposite parallel surface, a multiplicity of separate small discrete volumes of said electrostrictive material attached to and forming part of said body and each forming a Fabry-Perot interferometric light modulator, said volumes being partially separated from each other by narrow'air slots extending from said .polished conducting'face of said electrostrictive material through the material to theopposite parallel insulatingface, and a transparent optical element with two polished surfacesone adjacent to and accurately optically mated with said conductive surface'on said electrostrictive material, coated with a semitransparent optical coating, andseparated from said conductive surface on said electrostrictive material by a vacuum deposited spacer of thickness three wavelengths or less.
  • a display system wherein the assembly is located within a cathode-ray tube with the insulating surface positioned'to receive electrical charge deposited by a moving electron beam controlled in'spatial position to charge successively each of said multiplicity of separate small discrete volumes of electrostrictive material.
  • a display system according to claim 1, wherein the assembly is connected electrically to an electronic control circuit by separate wires connected to the insulting faces of all said separate small discrete volumes of electrostrictive material.
  • a display system wherein the body is a circular disc, and the spacer is centrally located and close to but not intersecting said narrow air slots.
  • a display system wherein the assembly is located within a cathode-ray tube with the insulating surface positioned to receive electrical charge deposited by a moving electron beam controlled in spatial position to charge successively each of said multiplicity of separate small discrete volumes of electrostrictive material in circular disposition.
  • a display system according system according to claim 4, wherein the assembly is connected electrically to an electronic control circuit by separate wires connected to the insulating faces of all said separate small discrete volumes of electrostrictive material in circular disposition.
  • a display system for use with a source of color television video signals'to create an optical image by enlarged projection onto a viewing screen, including:
  • a first 1 er optics assembly having the fibers closely packed and parallel to each other at one end where light, is received from the light source; image and having the fibers separated from each other at the other end, forminga multiplicity of small points of light;
  • a first optical system receiving light from the multiplicity of small points of light formed by the first fiber optics assembly and forming a multiplicity of small light point images each on a separate Fabry-Perot interferometric light modulator within ,the multiple Fabry-Perot interferometric light modulator assembly;
  • a second optical system receiving light from the multiplicity .of small pointsof light after modulation by the array of FabryPerot interferometric light modulators and forming a multiplicity of small light point images;
  • a second fiber optics assembly having the fibers separated from each otherat one end to receive light from modulated light point images formed by said second optical system and having the fibers adjacent to each other at the other end of the assembly forming a multiplicity of modulated points of light in a straight line;
  • a dichroic setof mirrors combining optically said three identical straight lines of modulated Points of light into one straight line of points of light each including separately modulated red, green and blue components;
  • anelectromechanical scanning and optical projection system to scan and enlarge optically said straight line of combined red, green and blue points of light across a viewing screen forming a large frame of 525 lines of colored points of light corresponding to the 525 lines in a television picture;
  • a display system wherein the as sembly is located within a cathode-ray tube with the insulating surface positioned to receive electrical charge deposited by a moving electron beam controlled in spatial position to charge successively each of said multiplicity of separate small discrete volumes of electrostrictive material.
  • a display system wherein the assembly is connected electrically'to an electronic control circuit by separate wires connected tothe insulating faces of all said separate small discrete volumes of electrostrictive material.
  • a display system wherein the body is a circular disc, and the spacer is centrally located and close to but not intersecting said narrow air slots.
  • a display system wherein the assembly is located within a cathode-ray tube with the insulating surface positioned to receive electrical charge deposited by a moving electron beam controlled in spatial position to charge successively each of said multiplicity of separate small discrete volumes of electrostrictive material in circular disposition.
  • a display system according to claim 10, wherein the assembly is connected electrically to an electronic control circuit by separate wires connected to the insulating faces of all said separate small discrete volumes of electrostrictive material in circular disposition.

Abstract

An electro-optical display system particularly for projecting an enlarged color television image on a screen in which the transmitted signals are converted into points of light modulated by a Fabry-Perot multiple interferometric light modulator assembly.

Description

United States Patent Edgar E. Price 648 Applegrove Circle, Webster, N .Y. 14580 Jan. 6, 1969 Mar. 2, 1971 lnventor Appl. No. Filed Patented ELECTRO-OPTICAL DISPLAY SYSTEM 12 Claims, 6 Drawing Figs.
U.S. Cl l78/5.4, 178/73, 350/161 Int. Cl H04n 9/14, l-lO4n 5/74 Field ofSearch ..178/5.4, 5.4 (BDP), 7.3 (D), 7.5 (D), 7.85, 7.87; 350/160, 161, 163; 250/199 [56] References Cited UNITED STATES PATENTS 2,509,545 5/1950 Walton 178/73 2.981824 5/1961 Weeks et al. 250/217 3,302,027 1/1967 Fried et al 250/199 3,385,927 5/1968 Hamann 178/75 Primary Examiner-Robert L. Richardson ABSTRACT: An electro-optical display system particularly for projecting an enlarged color television image on a screen in which the transmitted signals are converted into points of light modulated by a Fabry-Perot multiple interferometric light modulator assembly.
PATENTED m 219w SHEET 1 UF 2 39 FIG. 5
z 2 PW ITJ VENTOR PATENT Enm 21911 SHEET 2 OF 2 INVENTOR.
ELECTRO-OPTICAL DISPLAY SYSTEM BACKGROUND OF THE INVENTION The systems presently available for display of large color SUMMARY OF THE INVENTION An object of the present invention is to provide an improved system for display of color television images in the home.
An additional object of this invention is to provide in a display system means for simultaneous and independent modulation or on-off switching of a multiplicity of points or small areas of light.
This invention describes means to modulate a multiplicity of transmitted or reflected light beams by varying the positions of polished and coated optical surfaces in interferometric systems. Control over the position of each optical surface is maintained by locating the surface directly on electrostrictive material or by locating the surface on an optically workable material which is firmly attached to the electrostrictive material. I
Interferometric modulation of light is well known in the present art and is described in terms of single beam modulation in U.S. Pat. No. 3,202,052 and in terms of multiple beam simultaneous modulation to provide an image formed interferometrically over an extended area in U.S. Pat. No. 3,100,817 and U.S. Pat. No. 3,233,040. There are certain practicaldifficulties in applying the teachings of the latter two U.S. patents which do not exist in devices utilizing the teachings of the invention described herein.
U.S. Pat. No. 3,100,817 and U.S. Pat. No. 3,233,040 each describe the use of thin sheets of electrostrictive material with the direction of electrical polarization perpendicular to the faces. Members of the barium titanate or lead zirconate family of piezoelectric ceramics are well suited for use in an interferometrically modulated system. The materials are hard enough to be optically worked to a flat surface and stable enough to hold their shapes after working. The electrical characteristics are also suitable for this application. For example in the case of one material a potential difference of about 625 volts provides a surface displacement of one-quarter wavelength, the maximum required for full modulation. When sheets of piezoelectric'ceramic are used to create a full frame interferometrically modulated image, it is desirable that they be as thin as feasible to provide maximum resolution. However, it is desirable that thickness be sufficient to prevent depolarization of the material with signal voltage. The polarizing voltage is 60 volts per mil of thickness. It is desirable that the signal voltage be below this value. Thus it is desirable that material thickness be greater than 11 mils and preferably greater than 30 mils.
These two requirements are in opposition to each other. U.S. Pat. No. 3,233,040 describes a thin sheet of electrostrictive material affixed to a glass-wire substrate having wires passing through the glass to permit electrical charges to be transmitted through the glass wall of a cathode ray tube. One
commercially available glass-wire substrate has wires of 0.001 inch diameter spaced 0.004 inch center to center. Thus to take advantage of the resolution possible with this wire spacing it would be desirable to place a layer of electrostrictive material of about 0.002 inch thickness cemented to the glasswire substrate. As noted before this is too thin a layer properly to accept an electrical signal of 625 volts. If a thicker layer of electrostrictive material is attached to the glass-wire matrix the resolution possible is determined by-material thickness rather than by wire spacing.
In the following detailed description of this invention it will be shown that it is possible to retain high resolution while using thick electrostrictive material by separating immediately adjacent volumes of electrostrictive material with judiciously placed thin air spaces. Description will be given of embodiments of this concept in producible practicable devices capable of providing line-to-frame scanned television images in color.
Other objects and many of the attendant advantages of this invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered with the accompanying diagrammatic representational drawings wherein:
FIGURE DESCRIPTION FIG. 1 shows a thick slab of piezoelectric material polarized through its thickness'and a means for reducing the size of an area of surface which is displaced in response to an electrical potential applied to a point on the opposite surface.
FIG. 2 shows a disc of piezoelectric material configured to provide a multiplicity of independently controlled moveable elements.
FIG. 3 shows an assembly of the piezoelectric-disc of FIG. 2 assembled to provide a'multiplicity of independently controlled Fabry-Perot etalons.
FIG. 4 illustrates a Fabry-Perot etalon used to modulate a beam of collimated light. I v
FIG. 5 illustrates a Fabry-Perot etalon. used to modulate a conical beam of light at its focus.
FIG. 6 shows the device of FIGS. 2 and 3 as utilized in a complete optical system to provide for display of a color television picture.
DETAILED DESCRIPTION FIG. 1 represents a rectangle of piezoelectric material 1 of sufficient thickness to maintain dimensional stability. Upper surface 2 is a metallized surface of uniform potential. Lower surface 3 is an uncoated insulating surface. The material is polarized through its thickness. An electrical potential applied at a point such as 4 by wire 5 will create lines of electrical force in an approximately conically-shaped pattern radiating from point 4 to an area 6 on surface 2 larger than the point 4 but small compared to the whole surface area 2. This region of electrical potential difference will cause the usual piezoelectric effect to occur. Thus small area 6 on surface 2 will be deformed slightly. The surface deformity can be made visible in an interferometric system.
A small volume of piezoelectric material 7 is attached to the main body of material 1 but is partially isolated from the main body 1 by air slots 8 and 9. The air slots serve two purposes. If an electrical potential is applied to point 10 by wire 11 the electrical lines of force will be contained within small volume 7 and will not penetrate through the airspaces 8 and 9 to the adjoining regions of piezoelectric material at 12 or 13. Thus only that part of piezoelectric material 7 between air slots 8 and 9 will be changed in dimension by application of electrical potential to point 10.
Additionally the air slots 8 and 9 provide mechanical separation of small region 7 of piezoelectric material 1 from the immediately adjacent regions 12 and 13 so that the rigidity of the piezoelectric material does not come into effect and cause small region 7 to drag mechanically regions 12 and 13 when small region 7 is electrically activated. By suitable selection of distance between air slots 8 and 9 it is possible to create more regions such as 7 per unit length of piezoelectric material 1 than regions such as 6.
FIG. 2 illustrates a piezoelectric ceramic disc having a multiplicity of partially isolated separately controllable small volumes of piezoelectric material. 14 is a disc of piezoelectric material preferably a piezoelectric ceramic. Surface 15 is optically flat, polished, and coated with a conducting layer so that it is of uniform electrical potential. As shown 10 sets of air slots such as 16 and 17 are shown milled radially in from the outer cylindrical surface 18 of piezoelectric disc 14 to form 10 separate small volumes of piezoelectric material such as 19 which are connected to the main body of material 14 but are isolated electrically and mechanically from the adjoining regions of material such as 20 and 21. As illustrated there are thus narrow and 10 wider regions of piezoelectric ceramic which can be dimensionally controlled independently of each other by application of a suitable electrical potential at points such as 22 or 23. Although only such separate volumes are shown, it is very feasible to provide 600 such separate volumes in a disc of 3 inches diameter. In this case the slots would be 0.005 inch or less in circumferential thickness and the solid regions of piezoelectric material would be 0.010 inch or more in circumferential thickness. The thickness of the disc can be as large as necessary to maintain dimensional stability and to accept the necessary electrical potential.
FIG. 3 is a section through AA of FIG. 2 with a transparent cover plate added to create an assembly of a multiplicity of separate electrically modulated Fabry-Perot interferometers. Here 14 represents the disc of piezoelectric ceramic previously shown in FIG. 2. 24 is a transparent optical flat having a partially transparent coating on surface 25. A preselected spacing of three wavelengths or less between surfaces 15 and 25 is provided by spacer ring 26 which is vacuum coated to optical flat 24. The complete assembly of FIG. 3 is identified by numeral 27.
FIG. 4 and FIG. 5 illustrate two methods of using a Fabry- Perot etalon to modulate a light beam. In FIG. 4 the light is collimated when passing through the Fabry-Perot etalon. In FIG. 5 the light beam is focused on the etalon. In FIG. 4 light from point source 28 is collimated by lens 29 and passes through plane partially transmitting and partially reflecting surfaces 30 and 31 in collimated mode. The collimated beam is focused by lens 32 to point 33.
In FIG. 5 light from point source 34 is focused to a point 36 by lens at Fabry-Perot etalon with plane partially transmitting partially reflecting surfaces 37 and 38. The point of light at 36 is refocused by lens 39 to point 40. It can be seen that a much smaller area of the Fabry-Perot etalon is used to modulate the light in FIG. 5 than is necessary in FIG. 4. By using the optical system of FIG. 5 a more closely spaced array of modulators can be utilized than is possible if the optical system of FIG. 4 is used.
In use it is necessary to provide electrical potentials to points such as 22 or 23. This may be done either by enclosing the assembly 27 of FIG. 3 within a cathode-ray tube and directing an electron beam in circular scan successively to points such as 22 and 23; or, alternatively, it is feasible to connect wires from all points such as 22 and 23 to an electronic circuit assembly containing an electrical switching system so that signals can successively be transmitted to all points such as 22 and 23. The use of both such devices is well known in the state of the art today and neither device is described in detail herein.
Assuming the feasibility of providing electrical signals to all points such as 22 and 23 in FIG. 2 so that each separate modulator element can be driven as a separate Fabry-Perot interferometric modulator, it is only necessary to provide anauxiliary optical system to direct light to each modulator and then redirect the modulated light to form a desired pattern of modulated light spots or small areas. FIG. 6 illustrates a complete optical system including the array of Fabry-Perot interferometric light modulators 27 of FIG; 3.
In FIG. 6, 41 is a concentrated light source. For some applications it may be a small tungsten filament, for other applications it may be a concentrated arc lamp. Condensing mirror 42 and condensing lens 43 together comprise a condensing system which forms an image of light source 41 on the entrance end 45 of fiber bundle to circle converter 44-. At entrance end 45 a multiplicity of optical fibers is closely spaced. Each fiber receives a part of the highly concentrated light flux in the image of light source 41 formed by lens 43. Each optical fiber transmits the light received along its length to the other end 46 of fiber bundle to circle converter 44. 46 is a circular array of optical fiber ends, each of which is a point source of light such as 47 from which a beam of light 48 emanates until it is intercepted by lens element 49 of lens system 52, comprising lens elements 49, 50, and 511 and mirror 53. Lens system 52 as shown has been selected to illustrate clearly the optical function which it performs. In an actual device a more efficient lens system would be used to perform the same optical function. Lens element 49 essentially collimates the light in cone 48. That portion of collimated light beam 48 which is reflected by mirror 53 is reflected towards lens element 50 which refocuses the collimated light beam to a point 54 located on one of the individual Fabry-Perot interferometric modulators of the assembly 27 of FIG. 3 where modulation occurs. The modulated beam of light is reflected as light beam 55 which is reimaged to a point of light 56 by lens elements 50 and 51.
Point of light 56 coincides with the end of one fiber in circle to line converter 57in which a multiplicity of optical fibers are arranged to have one end of each fiber located in a circle 58 and the other end of each fiber located in a line at 59. The same fibers are adjacent to each other in both circle and line except for the fibers at each end of the line which are separated by the length of the line although their ends in the circle are immediately adjacent. Each fiber in circle 58 corresponds to a fiber in the circularend of fiber bundle to circle converter 44. Thus each point of light emanating from a fiber I in bundle to circle converter 44 is redirected into a fiber in circle 58 of optical fiber circle to line converter 57 after being modulated by one modulator of the array of Fabry-Perot interferometric modulators 27 of FIG. 3. Each separately modulated light beam which enters fiber optics circle to line converter 57 through one of the optical fiber ends in circle 58 is transmitted along the length of the fiber which it has entered and emerges from the end of the fiber which is in line 59 at the end of optical fiber circle to line converter 57. At 59 light from each fiber emanates as a cone of light and the end of each fiber is an intensity modulated point of light. At 59 there is thus a line of separate points of light individually modulated. By providing 600 fibers in bundle to circle converter 44 and circle to line converter 57 and by providing 600 modulators in the array of Fabry-Perot interferometric modulators 27 of FIG. 3 it is possible to provide a line of 600 separately modulated points of light at 59. The number 600 corresponds to the number of groups of three dots, red, green and blue, across a line in a shadow mask color television tube. By limiting the spectral content of light in this optical system to red, green or blue by duplicating the system twice from light source 41 to fiber optics line 59 to provide three complete sets of 600 separately modulated points of light in a line each in a separate color, red, green or blue, and by bringing the lines of light into optical coincidence by an array of dichroic filters 60 it is possible to create a line of 600 points of light each comprising three spectral components separately modulated. This line of color modulated points of light can be expanded into a frame of light by any of a number of slow speed electromechanically driven optical scanners. One such scanning system comprises lens 61 and octagonal prism 62 driven by synchronous motor 63. Such a scanner can be synchronized to the television frame rate such that the projected image 64 comprises 525 sets of 600 points of light corresponding to the 525 lines in a television frame. By controlling the intensity of each point of light according to the appropriate part of the signal in the transmitted color television signal, it is possible to project a color television picture to a screen. An octagonal prism such as that shown scans a line across a frame eight times per turn. Current television standards provide 60 fields per second or 3600 fields per minute. Thus 450 revolutions per minute are required of the prism. This is a very moderate scan rate, easily achieved. The interleaving of fields can be achieved by appropriate angular spacings on prism faces or by other means not described herein. Such interleaving is assumed to be provided by whatever electromechanically driven optical line-to-frame scanning system is utilized.
Electronic signals'to actuate the individual modulators of the Fabry-Perot multiple modulator assembly 27 can be provided by locating the assembly in a cathode-ray tube 65 in which the electron beam traverses a circular path and successively actuates each separate Fabry-Perot modulator such as 54. Alternatively separate wires 66 can connect each modulator of assembly 27 to an electronic control circuit 67 which acts as an electronic buffer to process the video signal from a television receiver circuit into a form suitable to actuate each individual Fabry-Perot modulator.
It should be clear thatother applications exist for an array of separately controlled points of light such as those described herein. It should also be noted that by decreasing the number of separately controlled optical modulators in a given size array the surface area of each can be increased so that each modulator can control intensity in a larger focused area of light than that which emanates from a single optical fiber end. In such cases each optical fiber shown in FIG. 6 can be replaced by an optical fiber bundle. It should also be noted that for some applications continuous control of light intensity is not required and thatsimple on-off switching is sufficient. With such modifications a variety of applications of the teachings of this invention are possible.
- Iclaim:
1. A display system comprising a multiple interferometric light modulator assembly having a body of electrostrictive material optically polished to predetermined curvature and electrically conducting and optically coated on one surface and electrically insulating on an opposite parallel surface, a multiplicity of separate small discrete volumes of said electrostrictive material attached to and forming part of said body and each forming a Fabry-Perot interferometric light modulator, said volumes being partially separated from each other by narrow'air slots extending from said .polished conducting'face of said electrostrictive material through the material to theopposite parallel insulatingface, and a transparent optical element with two polished surfacesone adjacent to and accurately optically mated with said conductive surface'on said electrostrictive material, coated with a semitransparent optical coating, andseparated from said conductive surface on said electrostrictive material by a vacuum deposited spacer of thickness three wavelengths or less.
2. A display system according to claim 1, wherein the assembly is located within a cathode-ray tube with the insulating surface positioned'to receive electrical charge deposited by a moving electron beam controlled in'spatial position to charge successively each of said multiplicity of separate small discrete volumes of electrostrictive material.
3. A display system according to claim 1, wherein the assembly is connected electrically to an electronic control circuit by separate wires connected to the insulting faces of all said separate small discrete volumes of electrostrictive material.
4. A display system according to claim 1, wherein the body is a circular disc, and the spacer is centrally located and close to but not intersecting said narrow air slots.
5. A display system according to claim 4, wherein the assembly is located within a cathode-ray tube with the insulating surface positioned to receive electrical charge deposited by a moving electron beam controlled in spatial position to charge successively each of said multiplicity of separate small discrete volumes of electrostrictive material in circular disposition.
6 A display system according system according to claim 4, wherein the assembly is connected electrically to an electronic control circuit by separate wires connected to the insulating faces of all said separate small discrete volumes of electrostrictive material in circular disposition.
7. A display system according to claim 1 for use with a source of color television video signals'to create an optical image by enlarged projection onto a viewing screen, including:
a light source of small size and high brightness;-- a condensing system forming a small concentrated image 0 the li ht source;
a first 1 er optics assembly having the fibers closely packed and parallel to each other at one end where light, is received from the light source; image and having the fibers separated from each other at the other end, forminga multiplicity of small points of light;
a first optical system receiving light from the multiplicity of small points of light formed by the first fiber optics assembly and forming a multiplicity of small light point images each on a separate Fabry-Perot interferometric light modulator within ,the multiple Fabry-Perot interferometric light modulator assembly;
a second optical system receiving light from the multiplicity .of small pointsof light after modulation by the array of FabryPerot interferometric light modulators and forming a multiplicity of small light point images;
a second fiber optics assembly having the fibers separated from each otherat one end to receive light from modulated light point images formed by said second optical system and having the fibers adjacent to each other at the other end of the assembly forming a multiplicity of modulated points of light in a straight line; i
the above-described system duplicated, twice to provide three duplicate light modulating systems forming three multiplicities of modulated points of light in identical straight lines and with red, green and blue filters respectively in the several systems; 7 1
a dichroic setof mirrors combining optically said three identical straight lines of modulated Points of light into one straight line of points of light each including separately modulated red, green and blue components;
anelectromechanical scanning and optical projection system to scan and enlarge optically said straight line of combined red, green and blue points of light across a viewing screen forming a large frame of 525 lines of colored points of light corresponding to the 525 lines in a television picture; and
electrical and electronic means to receive and process a color television signal to provide appropriate control voltages to each separate Fabry-Perot,interferometric light modulator of the assembly and to provide appropriate synchronous control voltages to said electromechanical optical scanning and projection system.
8. A display system according to claim 7, wherein the as sembly is located within a cathode-ray tube with the insulating surface positioned to receive electrical charge deposited by a moving electron beam controlled in spatial position to charge successively each of said multiplicity of separate small discrete volumes of electrostrictive material.
9. A display system according to claim 7, wherein the assembly is connected electrically'to an electronic control circuit by separate wires connected tothe insulating faces of all said separate small discrete volumes of electrostrictive material.
10. A display system according to claim 7, wherein the body is a circular disc, and the spacer is centrally located and close to but not intersecting said narrow air slots.
11. A display system according to claim 10, wherein the assembly is located within a cathode-ray tube with the insulating surface positioned to receive electrical charge deposited by a moving electron beam controlled in spatial position to charge successively each of said multiplicity of separate small discrete volumes of electrostrictive material in circular disposition.
12. A display system according to claim 10, wherein the assembly is connected electrically to an electronic control circuit by separate wires connected to the insulating faces of all said separate small discrete volumes of electrostrictive material in circular disposition.

Claims (12)

1. A display system comprising a multiple interferometric light modulator assembly having a body of electrostrictive material optically polished to predetermined curvature and electrically conducting and optically coated on one surface and electrically insulating on an opposite parallel surface, a multiplicity of separate small discrete volumes of said electrostrictive material attached to and forming part of said body and each forming a Fabry-Perot interferometric light modulator, said volumes being partially separated from each other by narrow air slots extending from said polished conducting face of said electrostrictive material through the material to the opposite parallel insulating face, and a transparent optical element with two polished surfaces one adjacent to and accurately optically mated with said conductive surface on said electrostrictive material, coated with a semitransparent optical coating, and separatEd from said conductive surface on said electrostrictive material by a vacuum deposited spacer of thickness three wavelengths or less.
2. A display system according to claim 1, wherein the assembly is located within a cathode-ray tube with the insulating surface positioned to receive electrical charge deposited by a moving electron beam controlled in spatial position to charge successively each of said multiplicity of separate small discrete volumes of electrostrictive material.
3. A display system according to claim 1, wherein the assembly is connected electrically to an electronic control circuit by separate wires connected to the insulting faces of all said separate small discrete volumes of electrostrictive material.
4. A display system according to claim 1, wherein the body is a circular disc, and the spacer is centrally located and close to but not intersecting said narrow air slots.
5. A display system according to claim 4, wherein the assembly is located within a cathode-ray tube with the insulating surface positioned to receive electrical charge deposited by a moving electron beam controlled in spatial position to charge successively each of said multiplicity of separate small discrete volumes of electrostrictive material in circular disposition.
6. A display system according system according to claim 4, wherein the assembly is connected electrically to an electronic control circuit by separate wires connected to the insulating faces of all said separate small discrete volumes of electrostrictive material in circular disposition.
7. A display system according to claim 1 for use with a source of color television video signals to create an optical image by enlarged projection onto a viewing screen, including: a light source of small size and high brightness; a condensing system forming a small concentrated image of the light source; a first fiber optics assembly having the fibers closely packed and parallel to each other at one end where light is received from the light source image and having the fibers separated from each other at the other end, forming a multiplicity of small points of light; a first optical system receiving light from the multiplicity of small points of light formed by the first fiber optics assembly and forming a multiplicity of small light point images each on a separate Fabry-Perot interferometric light modulator within the multiple Fabry-Perot interferometric light modulator assembly; a second optical system receiving light from the multiplicity of small points of light after modulation by the array of Fabry-Perot interferometric light modulators and forming a multiplicity of small light point images; a second fiber optics assembly having the fibers separated from each other at one end to receive light from modulated light point images formed by said second optical system and having the fibers adjacent to each other at the other end of the assembly forming a multiplicity of modulated points of light in a straight line; the above-described system duplicated twice to provide three duplicate light modulating systems forming three multiplicities of modulated points of light in identical straight lines and with red, green and blue filters respectively in the several systems; a dichroic set of mirrors combining optically said three identical straight lines of modulated points of light into one straight line of points of light each including separately modulated red, green and blue components; an electromechanical scanning and optical projection system to scan and enlarge optically said straight line of combined red, green and blue points of light across a viewing screen forming a large frame of 525 lines of colored points of light corresponding to the 525 lines in a television picture; and electrical and electronic means to receive and process a color television signal to provide appropriate control voltages to each separate Fabry-Perot interferometric liGht modulator of the assembly and to provide appropriate synchronous control voltages to said electromechanical optical scanning and projection system.
8. A display system according to claim 7, wherein the assembly is located within a cathode-ray tube with the insulating surface positioned to receive electrical charge deposited by a moving electron beam controlled in spatial position to charge successively each of said multiplicity of separate small discrete volumes of electrostrictive material.
9. A display system according to claim 7, wherein the assembly is connected electrically to an electronic control circuit by separate wires connected to the insulating faces of all said separate small discrete volumes of electrostrictive material.
10. A display system according to claim 7, wherein the body is a circular disc, and the spacer is centrally located and close to but not intersecting said narrow air slots.
11. A display system according to claim 10, wherein the assembly is located within a cathode-ray tube with the insulating surface positioned to receive electrical charge deposited by a moving electron beam controlled in spatial position to charge successively each of said multiplicity of separate small discrete volumes of electrostrictive material in circular disposition.
12. A display system according to claim 10, wherein the assembly is connected electrically to an electronic control circuit by separate wires connected to the insulating faces of all said separate small discrete volumes of electrostrictive material in circular disposition.
US789317A 1969-01-06 1969-01-06 Electro-optical display system Expired - Lifetime US3567847A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US78931769A 1969-01-06 1969-01-06
US11846171A 1971-02-24 1971-02-24

Publications (1)

Publication Number Publication Date
US3567847A true US3567847A (en) 1971-03-02

Family

ID=26816389

Family Applications (1)

Application Number Title Priority Date Filing Date
US789317A Expired - Lifetime US3567847A (en) 1969-01-06 1969-01-06 Electro-optical display system

Country Status (1)

Country Link
US (1) US3567847A (en)

Cited By (40)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US3699242A (en) * 1971-02-24 1972-10-17 Edgar E Price Electro-optical display system
USRE29094E (en) * 1971-02-24 1976-12-28 Electro-optical display system
EP0035299A2 (en) * 1980-03-04 1981-09-09 Koninklijke Philips Electronics N.V. Display device
US4469941A (en) * 1982-03-15 1984-09-04 General Dynamics, Pomona Division Parallel-in, serial-out fiber optic image scanner
US4998283A (en) * 1987-12-21 1991-03-05 Matsushita Electric Industrial Co., Ltd. Screen device
US20020180869A1 (en) * 2000-09-02 2002-12-05 Magic Lantern, Llc, A Limited Liability Company Of The State Of Kansas Laser projection system
US20060077151A1 (en) * 2004-09-27 2006-04-13 Clarence Chui Method and device for a display having transparent components integrated therein
US20070054319A1 (en) * 2005-07-22 2007-03-08 Boyden Edward S Light-activated cation channel and uses thereof
US20070249079A1 (en) * 2006-04-19 2007-10-25 Teruo Sasagawa Non-planar surface structures and process for microelectromechanical systems
US20080227139A1 (en) * 2007-02-14 2008-09-18 Karl Deisseroth System, method and applications involving identification of biological circuits such as neurological characteristics
US20090088680A1 (en) * 2005-07-22 2009-04-02 Alexander Aravanis Optical tissue interface method and apparatus for stimulating cells
US20090112133A1 (en) * 2007-10-31 2009-04-30 Karl Deisseroth Device and method for non-invasive neuromodulation
US20090118800A1 (en) * 2007-10-31 2009-05-07 Karl Deisseroth Implantable optical stimulators
US20100145418A1 (en) * 2007-01-10 2010-06-10 Feng Zhang System for optical stimulation of target cells
US20100190229A1 (en) * 2005-07-22 2010-07-29 Feng Zhang System for optical stimulation of target cells
US20110105998A1 (en) * 2008-04-23 2011-05-05 The Board Of Trustees Of The Leland Stanford Junio Systems, methods and compositions for optical stimulation of target cells
US20110112179A1 (en) * 2008-05-29 2011-05-12 Airan Raag D Cell line, system and method for optical control of secondary messengers
US20110159562A1 (en) * 2008-06-17 2011-06-30 Karl Deisseroth Apparatus and methods for controlling cellular development
US20110166632A1 (en) * 2008-07-08 2011-07-07 Delp Scott L Materials and approaches for optical stimulation of the peripheral nervous system
US20110172653A1 (en) * 2008-06-17 2011-07-14 Schneider M Bret Methods, systems and devices for optical stimulation of target cells using an optical transmission element
US8696722B2 (en) 2010-11-22 2014-04-15 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US8716447B2 (en) 2008-11-14 2014-05-06 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US8926959B2 (en) 2005-07-22 2015-01-06 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US8932562B2 (en) 2010-11-05 2015-01-13 The Board Of Trustees Of The Leland Stanford Junior University Optically controlled CNS dysfunction
US9079940B2 (en) 2010-03-17 2015-07-14 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9175095B2 (en) 2010-11-05 2015-11-03 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US9274099B2 (en) 2005-07-22 2016-03-01 The Board Of Trustees Of The Leland Stanford Junior University Screening test drugs to identify their effects on cell membrane voltage-gated ion channel
US9284353B2 (en) 2007-03-01 2016-03-15 The Board Of Trustees Of The Leland Stanford Junior University Mammalian codon optimized nucleotide sequence that encodes a variant opsin polypeptide derived from Natromonas pharaonis (NpHR)
US9365628B2 (en) 2011-12-16 2016-06-14 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9522288B2 (en) 2010-11-05 2016-12-20 The Board Of Trustees Of The Leland Stanford Junior University Upconversion of light for use in optogenetic methods
US9636380B2 (en) 2013-03-15 2017-05-02 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of inputs to the ventral tegmental area
US9992981B2 (en) 2010-11-05 2018-06-12 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of reward-related behaviors
US10086012B2 (en) 2010-11-05 2018-10-02 The Board Of Trustees Of The Leland Stanford Junior University Control and characterization of memory function
US10220092B2 (en) 2013-04-29 2019-03-05 The Board Of Trustees Of The Leland Stanford Junior University Devices, systems and methods for optogenetic modulation of action potentials in target cells
US10307609B2 (en) 2013-08-14 2019-06-04 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for controlling pain
US10568516B2 (en) 2015-06-22 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for imaging and/or optogenetic control of light-responsive neurons
US10568307B2 (en) 2010-11-05 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Stabilized step function opsin proteins and methods of using the same
US10974064B2 (en) 2013-03-15 2021-04-13 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of behavioral state
US11103723B2 (en) 2012-02-21 2021-08-31 The Board Of Trustees Of The Leland Stanford Junior University Methods for treating neurogenic disorders of the pelvic floor
US11294165B2 (en) 2017-03-30 2022-04-05 The Board Of Trustees Of The Leland Stanford Junior University Modular, electro-optical device for increasing the imaging field of view using time-sequential capture

Cited By (115)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US3699242A (en) * 1971-02-24 1972-10-17 Edgar E Price Electro-optical display system
USRE29094E (en) * 1971-02-24 1976-12-28 Electro-optical display system
EP0035299A2 (en) * 1980-03-04 1981-09-09 Koninklijke Philips Electronics N.V. Display device
EP0035299A3 (en) * 1980-03-04 1981-09-23 N.V. Philips' Gloeilampenfabrieken Display device
US4469941A (en) * 1982-03-15 1984-09-04 General Dynamics, Pomona Division Parallel-in, serial-out fiber optic image scanner
US4998283A (en) * 1987-12-21 1991-03-05 Matsushita Electric Industrial Co., Ltd. Screen device
US20020180869A1 (en) * 2000-09-02 2002-12-05 Magic Lantern, Llc, A Limited Liability Company Of The State Of Kansas Laser projection system
US7102700B1 (en) 2000-09-02 2006-09-05 Magic Lantern Llc Laser projection system
US7142257B2 (en) 2000-09-02 2006-11-28 Magic Lantern Llc Laser projection system
US8654264B2 (en) * 2000-09-02 2014-02-18 Magic Lantern, Llc Laser projection system
US20070085936A1 (en) * 2000-09-02 2007-04-19 Callison John P Laser projection system
US20060077151A1 (en) * 2004-09-27 2006-04-13 Clarence Chui Method and device for a display having transparent components integrated therein
US7349136B2 (en) * 2004-09-27 2008-03-25 Idc, Llc Method and device for a display having transparent components integrated therein
US20070054319A1 (en) * 2005-07-22 2007-03-08 Boyden Edward S Light-activated cation channel and uses thereof
US9278159B2 (en) 2005-07-22 2016-03-08 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US20090088680A1 (en) * 2005-07-22 2009-04-02 Alexander Aravanis Optical tissue interface method and apparatus for stimulating cells
US10627410B2 (en) 2005-07-22 2020-04-21 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US10569099B2 (en) 2005-07-22 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US9238150B2 (en) * 2005-07-22 2016-01-19 The Board Of Trustees Of The Leland Stanford Junior University Optical tissue interface method and apparatus for stimulating cells
US9274099B2 (en) 2005-07-22 2016-03-01 The Board Of Trustees Of The Leland Stanford Junior University Screening test drugs to identify their effects on cell membrane voltage-gated ion channel
US20100190229A1 (en) * 2005-07-22 2010-07-29 Feng Zhang System for optical stimulation of target cells
US20100234273A1 (en) * 2005-07-22 2010-09-16 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US10451608B2 (en) 2005-07-22 2019-10-22 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical-based screening of ion-channel modulators
US10422803B2 (en) 2005-07-22 2019-09-24 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US8926959B2 (en) 2005-07-22 2015-01-06 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US8906360B2 (en) 2005-07-22 2014-12-09 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US10094840B2 (en) 2005-07-22 2018-10-09 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US9360472B2 (en) 2005-07-22 2016-06-07 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical-based screening of ion-channel modulators
US9829492B2 (en) 2005-07-22 2017-11-28 The Board Of Trustees Of The Leland Stanford Junior University Implantable prosthetic device comprising a cell expressing a channelrhodopsin
US10052497B2 (en) 2005-07-22 2018-08-21 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US9101690B2 (en) 2005-07-22 2015-08-11 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US10046174B2 (en) 2005-07-22 2018-08-14 The Board Of Trustees Of The Leland Stanford Junior University System for electrically stimulating target neuronal cells of a living animal in vivo
US10036758B2 (en) 2005-07-22 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Delivery of a light-activated cation channel into the brain of a subject
US20070249079A1 (en) * 2006-04-19 2007-10-25 Teruo Sasagawa Non-planar surface structures and process for microelectromechanical systems
US7623287B2 (en) 2006-04-19 2009-11-24 Qualcomm Mems Technologies, Inc. Non-planar surface structures and process for microelectromechanical systems
US8398692B2 (en) 2007-01-10 2013-03-19 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US11007374B2 (en) 2007-01-10 2021-05-18 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US8864805B2 (en) 2007-01-10 2014-10-21 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US10105551B2 (en) 2007-01-10 2018-10-23 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US10369378B2 (en) 2007-01-10 2019-08-06 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US20100145418A1 (en) * 2007-01-10 2010-06-10 Feng Zhang System for optical stimulation of target cells
US9187745B2 (en) 2007-01-10 2015-11-17 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US8401609B2 (en) 2007-02-14 2013-03-19 The Board Of Trustees Of The Leland Stanford Junior University System, method and applications involving identification of biological circuits such as neurological characteristics
US20080227139A1 (en) * 2007-02-14 2008-09-18 Karl Deisseroth System, method and applications involving identification of biological circuits such as neurological characteristics
US9693692B2 (en) 2007-02-14 2017-07-04 The Board Of Trustees Of The Leland Stanford Junior University System, method and applications involving identification of biological circuits such as neurological characteristics
US9855442B2 (en) 2007-03-01 2018-01-02 The Board Of Trustees Of The Leland Stanford Junior University Method for optically controlling a neuron with a mammalian codon optimized nucleotide sequence that encodes a variant opsin polypeptide derived from natromonas pharaonis (NpHR)
US9757587B2 (en) 2007-03-01 2017-09-12 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic method for generating an inhibitory current in a mammalian neuron
US9284353B2 (en) 2007-03-01 2016-03-15 The Board Of Trustees Of The Leland Stanford Junior University Mammalian codon optimized nucleotide sequence that encodes a variant opsin polypeptide derived from Natromonas pharaonis (NpHR)
US10589123B2 (en) 2007-03-01 2020-03-17 The Board Of Trustees Of The Leland Stanford Junior University Systems, methods and compositions for optical stimulation of target cells
US10426970B2 (en) 2007-10-31 2019-10-01 The Board Of Trustees Of The Leland Stanford Junior University Implantable optical stimulators
US10035027B2 (en) 2007-10-31 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Device and method for ultrasonic neuromodulation via stereotactic frame based technique
US20090112133A1 (en) * 2007-10-31 2009-04-30 Karl Deisseroth Device and method for non-invasive neuromodulation
US10434327B2 (en) 2007-10-31 2019-10-08 The Board Of Trustees Of The Leland Stanford Junior University Implantable optical stimulators
US20090118800A1 (en) * 2007-10-31 2009-05-07 Karl Deisseroth Implantable optical stimulators
US9249200B2 (en) 2008-04-23 2016-02-02 The Board Of Trustees Of The Leland Stanford Junior University Expression vector comprising a nucleotide sequence encoding a Volvox carteri light-activated ion channel protein (VChR1) and implantable device thereof
US10350430B2 (en) 2008-04-23 2019-07-16 The Board Of Trustees Of The Leland Stanford Junior University System comprising a nucleotide sequence encoding a volvox carteri light-activated ion channel protein (VCHR1)
US9394347B2 (en) 2008-04-23 2016-07-19 The Board Of Trustees Of The Leland Stanford Junior University Methods for treating parkinson's disease by optically stimulating target cells
US9878176B2 (en) 2008-04-23 2018-01-30 The Board Of Trustees Of The Leland Stanford Junior University System utilizing Volvox carteri light-activated ion channel protein (VChR1) for optical stimulation of target cells
US20110105998A1 (en) * 2008-04-23 2011-05-05 The Board Of Trustees Of The Leland Stanford Junio Systems, methods and compositions for optical stimulation of target cells
US8603790B2 (en) 2008-04-23 2013-12-10 The Board Of Trustees Of The Leland Stanford Junior University Systems, methods and compositions for optical stimulation of target cells
US8815582B2 (en) 2008-04-23 2014-08-26 The Board Of Trustees Of The Leland Stanford Junior University Mammalian cell expressing Volvox carteri light-activated ion channel protein (VChR1)
US9453215B2 (en) 2008-05-29 2016-09-27 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical control of secondary messengers
US8962589B2 (en) 2008-05-29 2015-02-24 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical control of secondary messengers
US8729040B2 (en) 2008-05-29 2014-05-20 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical control of secondary messengers
US20110112179A1 (en) * 2008-05-29 2011-05-12 Airan Raag D Cell line, system and method for optical control of secondary messengers
US10711242B2 (en) 2008-06-17 2020-07-14 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and methods for controlling cellular development
US20110172653A1 (en) * 2008-06-17 2011-07-14 Schneider M Bret Methods, systems and devices for optical stimulation of target cells using an optical transmission element
US9084885B2 (en) 2008-06-17 2015-07-21 The Board Of Trustees Of The Leland Stanford Junior University Methods, systems and devices for optical stimulation of target cells using an optical transmission element
US8956363B2 (en) 2008-06-17 2015-02-17 The Board Of Trustees Of The Leland Stanford Junior University Methods, systems and devices for optical stimulation of target cells using an optical transmission element
US20110159562A1 (en) * 2008-06-17 2011-06-30 Karl Deisseroth Apparatus and methods for controlling cellular development
US20110166632A1 (en) * 2008-07-08 2011-07-07 Delp Scott L Materials and approaches for optical stimulation of the peripheral nervous system
US9308392B2 (en) 2008-07-08 2016-04-12 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
US10583309B2 (en) 2008-07-08 2020-03-10 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
US9101759B2 (en) 2008-07-08 2015-08-11 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
US9309296B2 (en) 2008-11-14 2016-04-12 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US9458208B2 (en) 2008-11-14 2016-10-04 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US10071132B2 (en) 2008-11-14 2018-09-11 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US10064912B2 (en) 2008-11-14 2018-09-04 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US8716447B2 (en) 2008-11-14 2014-05-06 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US9249234B2 (en) 2010-03-17 2016-02-02 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9604073B2 (en) 2010-03-17 2017-03-28 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9079940B2 (en) 2010-03-17 2015-07-14 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9359449B2 (en) 2010-03-17 2016-06-07 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9421258B2 (en) 2010-11-05 2016-08-23 The Board Of Trustees Of The Leland Stanford Junior University Optically controlled CNS dysfunction
US10568307B2 (en) 2010-11-05 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Stabilized step function opsin proteins and methods of using the same
US9175095B2 (en) 2010-11-05 2015-11-03 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US9992981B2 (en) 2010-11-05 2018-06-12 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of reward-related behaviors
US8932562B2 (en) 2010-11-05 2015-01-13 The Board Of Trustees Of The Leland Stanford Junior University Optically controlled CNS dysfunction
US10086012B2 (en) 2010-11-05 2018-10-02 The Board Of Trustees Of The Leland Stanford Junior University Control and characterization of memory function
US9968652B2 (en) 2010-11-05 2018-05-15 The Board Of Trustees Of The Leland Stanford Junior University Optically-controlled CNS dysfunction
US9340589B2 (en) 2010-11-05 2016-05-17 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US10196431B2 (en) 2010-11-05 2019-02-05 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US9522288B2 (en) 2010-11-05 2016-12-20 The Board Of Trustees Of The Leland Stanford Junior University Upconversion of light for use in optogenetic methods
US10252076B2 (en) 2010-11-05 2019-04-09 The Board Of Trustees Of The Leland Stanford Junior University Upconversion of light for use in optogenetic methods
US9850290B2 (en) 2010-11-05 2017-12-26 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US10914803B2 (en) 2010-11-22 2021-02-09 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US9271674B2 (en) 2010-11-22 2016-03-01 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US10371776B2 (en) 2010-11-22 2019-08-06 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US8834546B2 (en) 2010-11-22 2014-09-16 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US9615789B2 (en) 2010-11-22 2017-04-11 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US10018695B2 (en) 2010-11-22 2018-07-10 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US8696722B2 (en) 2010-11-22 2014-04-15 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US10087223B2 (en) 2011-12-16 2018-10-02 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US10538560B2 (en) 2011-12-16 2020-01-21 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9969783B2 (en) 2011-12-16 2018-05-15 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9505817B2 (en) 2011-12-16 2016-11-29 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9840541B2 (en) 2011-12-16 2017-12-12 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9365628B2 (en) 2011-12-16 2016-06-14 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US11103723B2 (en) 2012-02-21 2021-08-31 The Board Of Trustees Of The Leland Stanford Junior University Methods for treating neurogenic disorders of the pelvic floor
US9636380B2 (en) 2013-03-15 2017-05-02 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of inputs to the ventral tegmental area
US10974064B2 (en) 2013-03-15 2021-04-13 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of behavioral state
US10220092B2 (en) 2013-04-29 2019-03-05 The Board Of Trustees Of The Leland Stanford Junior University Devices, systems and methods for optogenetic modulation of action potentials in target cells
US10307609B2 (en) 2013-08-14 2019-06-04 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for controlling pain
US10568516B2 (en) 2015-06-22 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for imaging and/or optogenetic control of light-responsive neurons
US11294165B2 (en) 2017-03-30 2022-04-05 The Board Of Trustees Of The Leland Stanford Junior University Modular, electro-optical device for increasing the imaging field of view using time-sequential capture

Similar Documents

Publication Publication Date Title
US3567847A (en) Electro-optical display system
US2532511A (en) Television
US5640479A (en) Fiberoptic face plate stop for digital micromirror device projection system
US2983835A (en) Television systems embodying fiber optical devices and method of making the same
US5729386A (en) Light projection method and a projection type image display apparatus for performing the same
KR100294426B1 (en) Video image display device and method, and method for manufacturing the video image display device
US3112360A (en) Scanning with light-conducting rod
USRE23672E (en) Television tube
GB757071A (en) Improvements in colour television receivers
GB1142338A (en) Improvements in or relating to devices comprising a laser light-source, and a digitally-controlled deflection device
US3987299A (en) Method and apparatus for forming color images using an image intensifier tube
US5612814A (en) Compact sized optical projection system
US3267209A (en) Colored image reproduction device
US2623190A (en) Color television system
US3113180A (en) Composite image reproducing means
US3665184A (en) Multi-colored stereoscopic x-ray imaging and display systems
US4737843A (en) Color image display system for producing and combining four color component images each inverted in at least one aspect relative to the other images
US2688048A (en) Color television image reproduction
JPH05203908A (en) Single light valve full color projection display device
US3562414A (en) Solid-state image display device with acoustic scanning of strain-responsive semiconductor
US2616962A (en) Electrical light-transmission controlling arrangement
US3860752A (en) Virtual image display system with stereo and multi-channel capability
USRE29094E (en) Electro-optical display system
US3699242A (en) Electro-optical display system
US2740830A (en) Television optical projection system