US3179371A - Flame spray construction - Google Patents

Flame spray construction Download PDF

Info

Publication number
US3179371A
US3179371A US166614A US16661462A US3179371A US 3179371 A US3179371 A US 3179371A US 166614 A US166614 A US 166614A US 16661462 A US16661462 A US 16661462A US 3179371 A US3179371 A US 3179371A
Authority
US
United States
Prior art keywords
wire
valve
passage
piston
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US166614A
Inventor
Charlop Herbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metco Inc
Original Assignee
Metco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metco Inc filed Critical Metco Inc
Priority to US166614A priority Critical patent/US3179371A/en
Priority to FR912344A priority patent/FR1342371A/en
Priority to US238823A priority patent/US3185366A/en
Priority to US23882262 priority patent/US3190559A/en
Priority to DEM55427A priority patent/DE1298916B/en
Application granted granted Critical
Publication of US3179371A publication Critical patent/US3179371A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • B05B7/201Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
    • B05B7/203Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed having originally the shape of a wire, rod or the like

Definitions

  • This invention relates to an improved flame spray gun construction.
  • the invention more particularly relates to an improved construction of a fiame spray gun of the wire type.
  • Flame spray guns are well known and widely used in industry.
  • the same basically consist of an arrangement for forming a heating zone, as for example, bymeans of a combustion flame or a plasma arc flame and a mechanism for feeding a heat-fusible material, such as a metal or ceramic, into this heating zone, to be melted or at least heat-softened and propelled away from the gun, for example onto a surface to be coated.
  • a heat-fusible material such as a metal or ceramic
  • the heat-fusible material is generally fed to the gun in the form of a powder or in the form of a wire or rod (the term wire being used generically herein and in the claims to designate rods or wires).
  • Flame spray guns which utilize a heat-fusible material in the form of a powder are generally referred to as powder-type guns, and those which utilize a heat-fusible material in the form of a wire are referred to as wire-type guns.
  • the improved construction in accordance with the invention is primarily intended in connection with a wiretype gun utilizing a combustion flame burner as the heat source, but various novel features of the invention are applicable to other type guns and to guns utilizing different types of heat sources.
  • FIG. 1 is a front elevation of an embodiment of a wiretype flame spray gun in accordance with the invention
  • FIG. 2 is a vertical section of the gun shown in FIG. 1;
  • FIG. 3 is a partial, cross-sectional view of the embodiment shown in FIG. 1;
  • FIG. 4 is a further partial vertical section of the gun shown in FIG. 1;
  • FIG. 5 is a partial section showing the wire feed control valve of the gun of FIG. 1;
  • FIG. 6 is a vertical section of a portion of the gas head of the gun shown in FIGS. 1 and 2;
  • FIG. 7 is a vertical section of an embodiment of a gas control valve of the gun of FIG. 1;
  • FIG. 8 is a diagrammatic perspective view of the feed mechanism for the wire of the gun of FIG. 1.
  • the embodiment of the wire-type flame spray gun as shown in the accompanying drawings may he basically characterized as having a burner mechanism for supplying the necessary heat for operation and propelling the melted heat fusible material, a valving arrangement for controlling the combustible and combustion-supporting gases and blast gas, a feed mechanism for the wire, a drive for this feed mechanism, and a housing for the various components mounted on a handle with an operable trigger for controlling the guns operation.
  • the burner mechanism is positioned on the portion of the gun generally referred to as the gas head and designated as 1.
  • the burner mechanism includes the siphon plug 2, the burner nozzle 3 and the air cap 31.
  • the gas head 1 is preferably constructed of metal, such as aluminum, and is provided with various passages and bores, as may best be seen from FIGS. 2 and 6.
  • the central main bore 5 is provided for the siphon plug and vertically extending passages 6 and 7, for fuel and combustion-supporting gases respectively, communicate Iii 79,3?l Patented Apr. 29, 1965 with this passage.
  • the passage "7 communicates with a groove 8 in the main bore, and the passage 6 communicates with the groove 9 in the main bore by means of the small lateral drill passage 16, shown bydotted lines in FIG. 6.
  • the lower end of the passage 7 is in communication with the bore hole 11, and the lower end of the passage 6 is in communication with the corresponding bore hole 12.
  • a further vertical passage 13 is provided in the gas head for a blast gas, and this communicates at its lower end with the bore hole 14. The forward end of the main.
  • bore 5 is provided with the flange 15 having an external male thread 16, and a polygonal shaped interior, such as a hexagonal shaped socket 17.
  • the siphon plug 2 is, for example, constructed of metal, such as brass, and provided with a multiple number of grooves in which are inserted the O-rings 18.
  • the forward end of the siphon plug 2 is provided with a hex nut 19 which is dimensioned so that the same will slide into 17, but cannot rotate therein.
  • the siphon plug is merely slid into the main bore 5 and seals in place by means of the O-rings. Due to the hex nut 19 and its fit within the socket 17 of the flange 15, the nozzle 3 may be screwed and unscrewed on the threads by means of the threaded flange nut 29 without causing a corresponding rotation of the siphon plug 2.
  • the siphon plug 2 has a deep groove 21 which mates with the groove 8 in the main bore, and a deep groove 22 which mates with the groove 9 in the main bore.
  • Corresponding axial flow passages 24- which may be somewhat larger in diameter, communicate the groove 22 with an annular groove 25 formed at the mating point between the front end of the siphon plug and rear end of the nozzle.
  • the nozzle 3 has a multiple number of jet passages 2-6 in communication with the groove 25. Thus,for example, six equally spaced jet passages may be provided.
  • An axial wire guide bore 27 extends through the siphon plug and the nozzle, and a wire guide tube 28 with a corresponding mating wire guide passage is secured by screwing to the rear end of the siphon plug.
  • the vertical blast gas passage 13 is in communication with the interior of the air cap retaining flange 4 by means of the drilled hole 29.
  • the interior of the air cap retaining flange is in communication with the small annular space between the nozzle 3 and air cap 31 by means of the radial holes 35 provided through the flange nut-20.
  • the air cap 31 of the gun is held in place by the air cap retaining flange 4 being screw-threaded at 16.
  • the valving arrangement for controlling the combustible combustion-supporting and blast gases fed through the passages 6, 7 and 13 respectively, consists of three substantially identical parallelly positioned tubular valve members 32. As shown in FIG. 7, the forward ends of these valve members are in the form of a plug insert 33 provided with O-rings 34. Thus, the plug insert 33 of one of the valves is positioned in the bore 12, the other in the bore 11, and the third in the bore 14. The valves are screw-held in position by means of screws, such as the screw 35'.
  • the plug insert 33 is provided with a lateral opening as which, in the case of the combustionsupporting gas valve as shown in FIG. 2 is in communication with the passage 7.
  • the opening 36 of the valve inserted in the bore 12 is in communication with the passage 6, and the opening 36 of the valve inserted in the bore 14 is in communication with the passage 13.
  • the opening as is in flow communication with the hollow interior of the tubular valve housing 37.
  • the piston 38 is slidably positioned within the bore of the housing 37 and sealed in a gas-tight manner by means of the O-rings 39 and as.
  • the rear end of the housing 37 is sealed by shaft 72.
  • a pin 47 is connected to the piston and extends through a slot 4 8 in the Valve housing so as to allow external actuation of the piston.
  • the G-ring seals 39 and and the seal 4% prevent leakage through the slot
  • the forward end of the piston 35 is provide with the holes extending through the piston wall com- -munica-ting the interior and exterior of the piston and with the tapered valve .member 52 provided with the O-ring seal 53. With the valve in its normal position the spring as urges the piston 53$ forward, so that the valve member 52 seals against the valve seat 54 at the forward end of the valve body, sealing the valve shut. When the piston is moved partially toward its rear position the valve member 52 is removed from the valve seat, opening gages in a groove 86 in the shaft 72.
  • the Shaft 32 is mounted at its opposite ends in the bearing pillows 37 and $3 which are integrally cast with the plate 74-.
  • the worm 77 is also rotationally mounted in bearings provided in these members.
  • a pivot plate 89 is pivotably connected at 9% and engages the lever arm 31. When the pivot plate 89 is pivoted upwardly, it pivots the lever arm 31, forcing the shaft 75 to move axially upwardly I and causing the shaft '72 to move axially downwardly an the valve wide. As the piston is further retracted, the
  • the trigger 55 is pivoted at the joints as, and when pressed back, the roll 5'7 connected thereto forces the pivot bar 58 on the gun handle 59 to pivot rearwardly about the pivot joint as.
  • the pivot bar 5S1 is provided with cross-bar 61 having three spacedapart screw adjusting studs 62, each of the studs 62 being positioned to engage a pin 47 of the valve.
  • the trigger 55 is spring-loaded to its forwarded position by means of a spring 55A.
  • thepivot bar 58 is pivoted causing the studs as to engage the pins d7, forcing the pistons 33 of each of the valves toward their rearward position.
  • the cross-bar s1 is caught by the sear 63 of the pivoted lever 64- and retained in this intermediate position until the sear 63 is released by the finger lever 65.
  • the pivot lever 64 is biased by a spring (not shown) forcing the sear 63 downwardly toward the crossbar 61.
  • the wire feed mechanism consists of the rear wire guide tube 66 which is removably held in place by means of the thumb screw 67, and which has a central wire guide bore 68 in axial alignment with the forward wire, guide tube 28, and a pair of wire feed rolls, and the drive mechanism for these rolls.
  • the wire feed rolls are in the form of opposed,bevelled rolls 69 and 7d, as may best be seen from FIG. 8.
  • the bevelled roll as is mounted by means of the nut 71 on the shaft 72; for rotation with this shaft.
  • a worm gear 73 is keyed to the shaft so as to rotate with the shaft, but allow the shaft to axially slide therethrough.
  • the worm gear 73 is mounted on a bearing connected to the plate 74 (FIG. 2).
  • The'feed roll 7% is bevelled in the same manner as the feed roll 69, but mounted in the opposite direction on the shaft 75, which has a worm gear 76 corresponding to the worm gear '73 and keyed to the shaft 75, to cause rotation of the worm gear with the shaft but allow the shaft to slide through the worm gear.
  • the Worm gear 76 is also rotatably mounted on the plate '74, so that in effect the mounting of the gear 76 constitutes a'rota'tional bearing for the shaft 75, and the mounting of the gear 73 constitutes a rotational bearing for the A worm 77 is mounted between the worm gears 73 and 76 in engagement therewith and is connected to shaft 78, on which is mounted the worm gear 79, which is in engagement with the wormed of the drive turbine.
  • a lever arm ill (see FIG. 3 also) is pivotably mounted on the shaft 82 and is provided with the pin $3 at one end, which engages in a groove 84 of the shaft 75, and is provided with a pin 85 at the opposite end, which enward each other.
  • a spring 91 normally biases the lever arm 31 to force the shaft 72 upwardly and the shaft 75 downwardly, thus forcing the rolls s9 and 7t apart.
  • 'A chamber 92 (FIG. 2) is sealed at its upper end by means of the rubber diaphragm 5, on which is positioned the plunger 94; in the form of a metal disc.
  • a gas passage 95 leads into the chamber 92, so that when gas under pressure is forced into the chamber 5 2, the plunger 94 connected to the diaphragm is forced upwardly by the pressure acting on the pivot plate 89, causing the rolls 69 and 7% to axially move to-
  • other pneumatic actuating means such as a piston and cylinder may, of course, be used.
  • the gas passage 95 is connected to the passage 13 by means of the passage 95 as shown in FIG. 5.
  • the communication between the diaphragm chamber 92 and the passage 13 may be shut off by means of the valve 97, the construction of which may be seen from FIG. 5.
  • the valve 97 when the valve 97 is actuated by pulling or pushing the knurled knob 98', the passage 95 is in flow communication with the passage 96 or sealed from i this passage when the O-ring 99 on the valve extends plate 167 between the passages and 96.
  • the drivefor the feed rolls 69 and 70 acting through the worm 80 consists of a conventional gas turbine 1%, as may best be seen from FIG. 3.
  • the turbine consists of the rotor 161 provided with the turbine blades M2.
  • a gas flowpassage 163 feeds actuating blast gas from the passage 13 to the turbine blades, causing rotation of the turbine and the shaft 104, causing rotation of the worm 8i) and drive of the feed rolls through the mechanism previously described.
  • a pair of fiyweights 165 are mounted on the spring arms lliid, which are connected to the rotor 161 by a similar pair of cross-arrns (not shown).
  • the flyweights 165 press against the spring-loaded brake by means of the spring plate 149%.
  • the brake plate 167 is axially movable onthe shaft 134 and rotatable therewith.
  • the brake plate 107 presses against the brake shoes 1, 39 mounted on the screw plate llld, the position of which may be screw-adjusted by turning the knurled ring 111.
  • the device In operation'the device is first set up for the spraying of a speclfic size wire by insertion of appropriate size Wire gu des as and 28.
  • Oxygen for example from any source, is connected togthe connection 42 by means of a hose, as for example from a conventional pressure tank.
  • a fuel such as acetylene or propane
  • compressed air from a tank or compressor is connected to the connection 42 of the valve positioned in the bore hole 14.
  • the trigger 55 is depressed and released so that the pivot bar 58 will be retained by the sear 63, forcing the valves by the action of the stud 62 on the pins 47 to their open position.
  • flow of the gases may then be adjusted to the appropriate values with the use of the conventional flow and pressure meters and valves in the lines.
  • the gun may then be stopped by depressing the lever 65.
  • the lighting of a flame spray gun involves a specific sequence of operational steps entailing first opening the gas flow supplies to the maximum value to purge the line, then reducing the flow to a restricted value to allow lighting, and then reopening the valves to the operational flow value.
  • valve construction in accordance with the inven tion allows this lighting sequence to be effected in a single operational step by simply completely depressing the trigger, lighting the gun, and releasing the trigger.
  • each of the pistons 38 of the valves is moved rearwardly by action of the stud 62 on the pins 47, and the pistons first pass through theintermediate position, which corresponds to a completely open position of the valves, causing purging of the lines.
  • the tapered portions 44 of the plugs 41 engage in the tapered rear of the bore of the piston, restricting the gas flow and permitting the lighting operation.
  • the exact degree of the restriction for optimum lighting conditions may be initially set by means of adjusting the threaded studs 62.
  • the sear 63 catches the cross-bar 61, so that the studs 62, acting on the pins 47, hold the pistons 38 in the intermediate or fully-open position for the operational spraying.
  • a conventional metal spray wire often referred to as a metallizing wire, is initially fed through the bore 68 of the rear wire guide 66.
  • the rear wire guide 66 is provided with the spring-loaded roll 112, which is mounted on the shaft 113 which moves in the inclined slots 114 but which may be retained in the catch 115.
  • the wire With the shaft freely movable in the slot 114, the wire may be fed in a forward position, but when it is attempted to pull the wire back the roll jams the same as the shaft tends to move up the inclined slot.
  • the shaft 113 For pulling the wire out again, the shaft 113 may be locked in the catch 115.
  • the wire extends through the gap between the rolls 69 and 70, through the forward wire guide 28 and out through the central bore of the nozzle 3. As long as the valve positioned in the bore 14 is shut or in its restricted flow position, or if the valve 97 is shut, the chamber 92 will not be pressurized, and the spring 91 will maintain the rolls 69 and 70 apart.
  • valve 97 For the spraying operation the valve 97 is opened, and with the gun in its normal operating position, with the cross-member 61 retained by the sear 63, pressure from the blast gas passing through the passage 13 will, acting on the diaphragm 93, force the plunger 94 upwardly, pivoting the pivot plate 89 and forcing the rolls 69 and 70 toward each other, so that the same firmly grip the wire. A portion of the blast gas also passes through the passage 103, actuating the turbine and causing rotation of the rolls 69 and 70, feeding the wire forward through the gun, at a rate controlled by the governor on the turbine.
  • the wire irrespective of its size, will always be exactly centered therein and there will be no tendency of the wire to vary its position on the rolls due to the differential peripheral speeds along each of the roll surfaces.
  • the wire showed a tendency to wander during operation.
  • the fuel gas passes upward through the passages 6 and 10 into the groove 22 and the combustion supporting gas, such as oxygen, passes upwardly through the passage 7 into the groove 8 and through the passages 23, where the same mixes with the fuel gas in the passage 22.
  • the combustible mixture then passes forward through the passages 24 and into the groove 25 Due to the and thence through the burner 'jets 26, where the same are ignited in the form of a hot combustion flame, melting off or at least heat-softening the tip of the wire as it is fed forward through the nozzle 3.
  • the blast gas passes up through the passage 13 and passage 29 and through the openings 30, passing along the outer surface of the nozzle 3 and impinging on the melted or heat-softened tip of the wire, atomizing the metal from the wire and propelling the same away from the gun at spray velocity.
  • the gun may be hand-held by the handle 59 or mounted by means of the mounting bracket 116.
  • the wire feed mechanism as described is applicable and offers advantages not only in connection with the particular gun as shown, but in connection with any conventional wire type flame spray gun.
  • the use of the pair of bevelled feed rolls positioned to grip a wire between their bevelled surfaces and provide for axial moving of at least one of the rolls toward and away from the other, in and out of gripping-engagement with the wire, ofiFers substantial advantages over the conventional feed rolls.
  • the bevelled rolls are prefenably of frusto-conical shape and are preferably so bevelled that the same make an angle of 30 to 60, and preferably 45 with their axes of rotation.
  • the nozzle and siphon plug construction also offer substantial advantages and are applicable with any known or conventional flame spray guns, including those of the powder type.
  • the siphon plug By providing the siphon plug with the polygonal nut at its forward end, which slides in a corresponding socket the plug may be very simply inserted and removed from the gun by simply sliding the same axially in and out, as for example, for exchange of wire guide tubes or cleaning and yet the nozzle may be firmly screwed on and removed without difliculty.
  • the valving arrangement furthermore offers substantial advantages and .may be used with other types of guns and equipment.
  • a valve comprising a hollow cylindrical valve housing having an inlet at one end and an outlet at its opposite end, a hollow piston defining a gas flow passage therethrough slidably mounted in said valve housing, one end of said piston being dimensioned for gas-tight sealing engagement with the outlet end portion of the interior of said housing, the other end of said piston being dimensioned to define a restricted gas flow passage with the other end portion of the interior of said housing, spring means biasing said piston toward said outlet end and means for axially sliding said piston in said housing.
  • said outlet end of said housing has a tapered gas flow passage forming a valve seat, and in which the adjacent end of said piston is formed as a tapered valve member, the inlet end of said housing including a tapered plug extending thereinto, and in which the end of said piston adjacent the inlet end of said housing has a tapered bore leading into its hollow interior.
  • said means for axially sliding said piston includes a pin connected to said piston and extending through an axiallyextending slot in said housing.
  • valve means for said conduit comprising a hollow cylindrical valve housing having an inlet at one end and an outlet at its opposite end, a hollow piston defining a gas flow passage there through slidably mounted in said valve housing between a shutoff position with one end oftsaid piston in gas-tight sealing engagement with one end portion of the interior of said housing thereby defining a shutoff position, and a restricted gas flow position with the other end of said piston defining a restricted gas flow passage with the other end portion of the interior of said housing, and trigger means for axially sliding said piston in said housing between said shutoff position, an intermediate full flow position, and said restricted flow position.

Description

April 20, 1965 H. CHARLOP 3,179,371
FLAME SPRAY CONSTRUCTION Filed Jan. 16, 1962 4 Sheets-Sheet 1 INVENTOR HERBERT CHA RLOP April 20, 1965 H. CHARLOP FLAME SPRAY CONSTRUCTION 4 Sheets-Sheet 2 Filed Jan. 16, 1962 All.-
INVENIOR HERBERT CHARLOP 4 Sheets-Sheet 3 INVENTOR H. CHARLOP FLAME SPRAY CONSTRUCTION April 20, 1965 Filed Jan. 16, 1962 BY 3 s April 20, 1965 H. CHARLOP 3,179,371
FLAME SPRAY CONSTRUCTION Filed Jan. 16, 1962 4 Sheets-Sheet 4 INVENTOR HERBERT CHARLOP 3,179,371 FLAME SPRAY CONSTRUCTION Herbert Charlop, Brooklyn, N.Y., assignor to Metco, Ind,
Westbury, Long Island, N.Y., a corporation of New Jersey Filed Jan. 16, 1962, Ser. No. 166,614 Claims. (Cl. 251--321) This invention relates to an improved flame spray gun construction. The invention more particularly relates to an improved construction of a fiame spray gun of the wire type.
Flame spray guns are well known and widely used in industry. The same basically consist of an arrangement for forming a heating zone, as for example, bymeans of a combustion flame or a plasma arc flame and a mechanism for feeding a heat-fusible material, such as a metal or ceramic, into this heating zone, to be melted or at least heat-softened and propelled away from the gun, for example onto a surface to be coated.
The heat-fusible material is generally fed to the gun in the form of a powder or in the form of a wire or rod (the term wire being used generically herein and in the claims to designate rods or wires). Flame spray guns which utilize a heat-fusible material in the form of a powder are generally referred to as powder-type guns, and those which utilize a heat-fusible material in the form of a wire are referred to as wire-type guns.
The improved construction in accordance with the invention is primarily intended in connection with a wiretype gun utilizing a combustion flame burner as the heat source, but various novel features of the invention are applicable to other type guns and to guns utilizing different types of heat sources.
The invention and its objects will be more fully understood by reference to the following description read in conjunction with the accompanying drawings, in which:
FIG. 1 is a front elevation of an embodiment of a wiretype flame spray gun in accordance with the invention;
FIG. 2 is a vertical section of the gun shown in FIG. 1;
FIG. 3 is a partial, cross-sectional view of the embodiment shown in FIG. 1;
FIG. 4 is a further partial vertical section of the gun shown in FIG. 1;
FIG. 5 is a partial section showing the wire feed control valve of the gun of FIG. 1;
FIG. 6 is a vertical section of a portion of the gas head of the gun shown in FIGS. 1 and 2;
FIG. 7 is a vertical section of an embodiment of a gas control valve of the gun of FIG. 1; and
FIG. 8 is a diagrammatic perspective view of the feed mechanism for the wire of the gun of FIG. 1.
The embodiment of the wire-type flame spray gun as shown in the accompanying drawings may he basically characterized as having a burner mechanism for supplying the necessary heat for operation and propelling the melted heat fusible material, a valving arrangement for controlling the combustible and combustion-supporting gases and blast gas, a feed mechanism for the wire, a drive for this feed mechanism, and a housing for the various components mounted on a handle with an operable trigger for controlling the guns operation.
The burner mechanism is positioned on the portion of the gun generally referred to as the gas head and designated as 1. The burner mechanism includes the siphon plug 2, the burner nozzle 3 and the air cap 31. The gas head 1 is preferably constructed of metal, such as aluminum, and is provided with various passages and bores, as may best be seen from FIGS. 2 and 6. Thus the central main bore 5 is provided for the siphon plug and vertically extending passages 6 and 7, for fuel and combustion-supporting gases respectively, communicate Iii 79,3?l Patented Apr. 29, 1965 with this passage. The passage "7 communicates with a groove 8 in the main bore, and the passage 6 communicates with the groove 9 in the main bore by means of the small lateral drill passage 16, shown bydotted lines in FIG. 6. The lower end of the passage 7 is in communication with the bore hole 11, and the lower end of the passage 6 is in communication with the corresponding bore hole 12.
A further vertical passage 13 is provided in the gas head for a blast gas, and this communicates at its lower end with the bore hole 14. The forward end of the main.
bore 5 is provided with the flange 15 having an external male thread 16, and a polygonal shaped interior, such as a hexagonal shaped socket 17.
The siphon plug 2 is, for example, constructed of metal, such as brass, and provided with a multiple number of grooves in which are inserted the O-rings 18. The forward end of the siphon plug 2 is provided with a hex nut 19 which is dimensioned so that the same will slide into 17, but cannot rotate therein. The siphon plug is merely slid into the main bore 5 and seals in place by means of the O-rings. Due to the hex nut 19 and its fit within the socket 17 of the flange 15, the nozzle 3 may be screwed and unscrewed on the threads by means of the threaded flange nut 29 without causing a corresponding rotation of the siphon plug 2. The siphon plug 2 has a deep groove 21 which mates with the groove 8 in the main bore, and a deep groove 22 which mates with the groove 9 in the main bore. A multiple number of axial fiow passages, as for example four evenly spaced passages 23, communicate the groove 21 with the groove 22.
Corresponding axial flow passages 24-, which may be somewhat larger in diameter, communicate the groove 22 with an annular groove 25 formed at the mating point between the front end of the siphon plug and rear end of the nozzle. The nozzle 3 has a multiple number of jet passages 2-6 in communication with the groove 25. Thus,for example, six equally spaced jet passages may be provided. An axial wire guide bore 27 extends through the siphon plug and the nozzle, and a wire guide tube 28 with a corresponding mating wire guide passage is secured by screwing to the rear end of the siphon plug.
The vertical blast gas passage 13 is in communication with the interior of the air cap retaining flange 4 by means of the drilled hole 29. The interior of the air cap retaining flange is in communication with the small annular space between the nozzle 3 and air cap 31 by means of the radial holes 35 provided through the flange nut-20. The air cap 31 of the gun is held in place by the air cap retaining flange 4 being screw-threaded at 16.
The valving arrangement for controlling the combustible combustion-supporting and blast gases fed through the passages 6, 7 and 13 respectively, consists of three substantially identical parallelly positioned tubular valve members 32. As shown in FIG. 7, the forward ends of these valve members are in the form of a plug insert 33 provided with O-rings 34. Thus, the plug insert 33 of one of the valves is positioned in the bore 12, the other in the bore 11, and the third in the bore 14. The valves are screw-held in position by means of screws, such as the screw 35'. The plug insert 33 is provided with a lateral opening as which, in the case of the combustionsupporting gas valve as shown in FIG. 2 is in communication with the passage 7. The opening 36 of the valve inserted in the bore 12 is in communication with the passage 6, and the opening 36 of the valve inserted in the bore 14 is in communication with the passage 13. The opening as is in flow communication with the hollow interior of the tubular valve housing 37. The piston 38 is slidably positioned within the bore of the housing 37 and sealed in a gas-tight manner by means of the O-rings 39 and as. The rear end of the housing 37 is sealed by shaft 72.
of the spring A pin 47 is connected to the piston and extends through a slot 4 8 in the Valve housing so as to allow external actuation of the piston. The G-ring seals 39 and and the seal 4% prevent leakage through the slot The forward end of the piston 35 is provide with the holes extending through the piston wall com- -munica-ting the interior and exterior of the piston and with the tapered valve .member 52 provided with the O-ring seal 53. With the valve in its normal position the spring as urges the piston 53$ forward, so that the valve member 52 seals against the valve seat 54 at the forward end of the valve body, sealing the valve shut. When the piston is moved partially toward its rear position the valve member 52 is removed from the valve seat, opening gages in a groove 86 in the shaft 72. The Shaft 32 is mounted at its opposite ends in the bearing pillows 37 and $3 which are integrally cast with the plate 74-. The worm 77 is also rotationally mounted in bearings provided in these members. A pivot plate 89 is pivotably connected at 9% and engages the lever arm 31. When the pivot plate 89 is pivoted upwardly, it pivots the lever arm 31, forcing the shaft 75 to move axially upwardly I and causing the shaft '72 to move axially downwardly an the valve wide. As the piston is further retracted, the
tapered portion at the rear of the piston bore engages the tapcred'end of the plug ill, restricting the gas flow, the degree of restriction being controlled by the amount the piston is retracted; The piston and the 3 valves positionedside-by-side in the gun are simultaneously actuatcd by the trigger The trigger 55 is pivoted at the joints as, and when pressed back, the roll 5'7 connected thereto forces the pivot bar 58 on the gun handle 59 to pivot rearwardly about the pivot joint as. The pivot bar 5S1is provided with cross-bar 61 having three spacedapart screw adjusting studs 62, each of the studs 62 being positioned to engage a pin 47 of the valve. The trigger 55 is spring-loaded to its forwarded position by means of a spring 55A. Thus when the trigger 55 is depressed, thepivot bar 58 is pivoted causing the studs as to engage the pins d7, forcing the pistons 33 of each of the valves toward their rearward position. As the trigger is released to. its forward position, the cross-bar s1 is caught by the sear 63 of the pivoted lever 64- and retained in this intermediate position until the sear 63 is released by the finger lever 65. The pivot lever 64 is biased by a spring (not shown) forcing the sear 63 downwardly toward the crossbar 61.
The wire feed mechanism consists of the rear wire guide tube 66 which is removably held in place by means of the thumb screw 67, and which has a central wire guide bore 68 in axial alignment with the forward wire, guide tube 28, and a pair of wire feed rolls, and the drive mechanism for these rolls. The wire feed rolls are in the form of opposed,bevelled rolls 69 and 7d, as may best be seen from FIG. 8. The bevelled roll as is mounted by means of the nut 71 on the shaft 72; for rotation with this shaft. A worm gear 73 is keyed to the shaft so as to rotate with the shaft, but allow the shaft to axially slide therethrough. The worm gear 73 is mounted on a bearing connected to the plate 74 (FIG. 2). The'feed roll 7% is bevelled in the same manner as the feed roll 69, but mounted in the opposite direction on the shaft 75, which has a worm gear 76 corresponding to the worm gear '73 and keyed to the shaft 75, to cause rotation of the worm gear with the shaft but allow the shaft to slide through the worm gear.
The Worm gear 76 is also rotatably mounted on the plate '74, so that in effect the mounting of the gear 76 constitutes a'rota'tional bearing for the shaft 75, and the mounting of the gear 73 constitutes a rotational bearing for the A worm 77 is mounted between the worm gears 73 and 76 in engagement therewith and is connected to shaft 78, on which is mounted the worm gear 79, which is in engagement with the wormed of the drive turbine.
A lever arm ill (see FIG. 3 also) is pivotably mounted on the shaft 82 and is provided with the pin $3 at one end, which engages in a groove 84 of the shaft 75, and is provided with a pin 85 at the opposite end, which enward each other.
equi-distant amount and thus causing the opposed bevelled surfaces of the rolls 69 and 79 to firmly grasp a wire which may be positioned in their gap. A spring 91 normally biases the lever arm 31 to force the shaft 72 upwardly and the shaft 75 downwardly, thus forcing the rolls s9 and 7t apart. 'A chamber 92 (FIG. 2) is sealed at its upper end by means of the rubber diaphragm 5, on which is positioned the plunger 94; in the form of a metal disc. A gas passage 95 leads into the chamber 92, so that when gas under pressure is forced into the chamber 5 2, the plunger 94 connected to the diaphragm is forced upwardly by the pressure acting on the pivot plate 89, causing the rolls 69 and 7% to axially move to- In place of the diaphragm other pneumatic actuating means (not shown) such as a piston and cylinder may, of course, be used. The gas passage 95 is connected to the passage 13 by means of the passage 95 as shown in FIG. 5. Thus, as the'valve in the bore 14- is opened and blast gas passes through the passage 13, a portion of this gas will pass through the passage 95 into the diaphragm chamber 92, forcing .the plunger 94 upwardly. The communication between the diaphragm chamber 92 and the passage 13 may be shut off by means of the valve 97, the construction of which may be seen from FIG. 5. Thus, whenthe valve 97 is actuated by pulling or pushing the knurled knob 98', the passage 95 is in flow communication with the passage 96 or sealed from i this passage when the O-ring 99 on the valve extends plate 167 between the passages and 96.
The drivefor the feed rolls 69 and 70 acting through the worm 80 consists of a conventional gas turbine 1%, as may best be seen from FIG. 3. The turbine consists of the rotor 161 provided with the turbine blades M2. A gas flowpassage 163 feeds actuating blast gas from the passage 13 to the turbine blades, causing rotation of the turbine and the shaft 104, causing rotation of the worm 8i) and drive of the feed rolls through the mechanism previously described. A pair of fiyweights 165 are mounted on the spring arms lliid, which are connected to the rotor 161 by a similar pair of cross-arrns (not shown). The flyweights 165 press against the spring-loaded brake by means of the spring plate 149%.: The brake plate 167 is axially movable onthe shaft 134 and rotatable therewith. The brake plate 107 presses against the brake shoes 1, 39 mounted on the screw plate llld, the position of which may be screw-adjusted by turning the knurled ring 111. The faster the shaft 104 rotates, the greater is the centrifugal force with which the flyweights 1695 are thrown outward, and thus the greater the braking force between the brake plate 107 and shoes 1%, so that the device acts as a centrifugal governor, with the drive speed being accurately controlled by the position of the screw plate 11%.
In operation'the device is first set up for the spraying of a speclfic size wire by insertion of appropriate size Wire gu des as and 28. Oxygen, for example from any source, is connected togthe connection 42 by means of a hose, as for example from a conventional pressure tank. In the same manner a fuel, such as acetylene or propane, is connected to the connection 42 of the valve positioned in the bore hole .11, and compressed air from a tank or compressor is connected to the connection 42 of the valve positioned in the bore hole 14. The trigger 55 is depressed and released so that the pivot bar 58 will be retained by the sear 63, forcing the valves by the action of the stud 62 on the pins 47 to their open position. The
flow of the gases may then be adjusted to the appropriate values with the use of the conventional flow and pressure meters and valves in the lines. The gun may then be stopped by depressing the lever 65.
The lighting of a flame spray gun involves a specific sequence of operational steps entailing first opening the gas flow supplies to the maximum value to purge the line, then reducing the flow to a restricted value to allow lighting, and then reopening the valves to the operational flow value. This normally entailed separate manual operational steps, utilizing for example plug or cock'valves.
The valve construction in accordance with the inven tion, however, allows this lighting sequence to be effected in a single operational step by simply completely depressing the trigger, lighting the gun, and releasing the trigger. As the trigger is pulled back, each of the pistons 38 of the valves is moved rearwardly by action of the stud 62 on the pins 47, and the pistons first pass through theintermediate position, which corresponds to a completely open position of the valves, causing purging of the lines. As the trigger is further depressed to its most rearward position, the tapered portions 44 of the plugs 41 engage in the tapered rear of the bore of the piston, restricting the gas flow and permitting the lighting operation. The exact degree of the restriction for optimum lighting conditions may be initially set by means of adjusting the threaded studs 62. As the trigger is released, the sear 63 catches the cross-bar 61, so that the studs 62, acting on the pins 47, hold the pistons 38 in the intermediate or fully-open position for the operational spraying. A conventional metal spray wire, often referred to as a metallizing wire, is initially fed through the bore 68 of the rear wire guide 66. The rear wire guide 66 is provided with the spring-loaded roll 112, which is mounted on the shaft 113 which moves in the inclined slots 114 but which may be retained in the catch 115. With the shaft freely movable in the slot 114, the wire may be fed in a forward position, but when it is attempted to pull the wire back the roll jams the same as the shaft tends to move up the inclined slot. For pulling the wire out again, the shaft 113 may be locked in the catch 115. The wire extends through the gap between the rolls 69 and 70, through the forward wire guide 28 and out through the central bore of the nozzle 3. As long as the valve positioned in the bore 14 is shut or in its restricted flow position, or if the valve 97 is shut, the chamber 92 will not be pressurized, and the spring 91 will maintain the rolls 69 and 70 apart. For the spraying operation the valve 97 is opened, and with the gun in its normal operating position, with the cross-member 61 retained by the sear 63, pressure from the blast gas passing through the passage 13 will, acting on the diaphragm 93, force the plunger 94 upwardly, pivoting the pivot plate 89 and forcing the rolls 69 and 70 toward each other, so that the same firmly grip the wire. A portion of the blast gas also passes through the passage 103, actuating the turbine and causing rotation of the rolls 69 and 70, feeding the wire forward through the gun, at a rate controlled by the governor on the turbine. bevelled shape of the rolls 69 and 70 and their particular positioning, the wire, irrespective of its size, will always be exactly centered therein and there will be no tendency of the wire to vary its position on the rolls due to the differential peripheral speeds along each of the roll surfaces. However, when using the conventional cylindrical and similar rolls, the wire showed a tendency to wander during operation.
At the same time the wire is firmly gripped between the rolls by the action of the resilient pneumatic pressure.
Simultaneously the fuel gas passes upward through the passages 6 and 10 into the groove 22 and the combustion supporting gas, such as oxygen, passes upwardly through the passage 7 into the groove 8 and through the passages 23, where the same mixes with the fuel gas in the passage 22. The combustible mixture then passes forward through the passages 24 and into the groove 25 Due to the and thence through the burner 'jets 26, where the same are ignited in the form of a hot combustion flame, melting off or at least heat-softening the tip of the wire as it is fed forward through the nozzle 3. The blast gas passes up through the passage 13 and passage 29 and through the openings 30, passing along the outer surface of the nozzle 3 and impinging on the melted or heat-softened tip of the wire, atomizing the metal from the wire and propelling the same away from the gun at spray velocity. When it is desired to temporarily interrupt the spraying operation, it is merely necessary to press back on the trigger, which restricts the gas flow, reducing the same to a pilot value while at the same time interrupting the how at their normal full value, this may be done by shutting the valve 97. In operation the gun may be hand-held by the handle 59 or mounted by means of the mounting bracket 116.
It is believed apparent that the wire feed mechanism as described, is applicable and offers advantages not only in connection with the particular gun as shown, but in connection with any conventional wire type flame spray gun. The use of the pair of bevelled feed rolls positioned to grip a wire between their bevelled surfaces and provide for axial moving of at least one of the rolls toward and away from the other, in and out of gripping-engagement with the wire, ofiFers substantial advantages over the conventional feed rolls. The bevelled rolls are prefenably of frusto-conical shape and are preferably so bevelled that the same make an angle of 30 to 60, and preferably 45 with their axes of rotation.
The nozzle and siphon plug construction also offer substantial advantages and are applicable with any known or conventional flame spray guns, including those of the powder type. By providing the siphon plug with the polygonal nut at its forward end, which slides in a corresponding socket the plug may be very simply inserted and removed from the gun by simply sliding the same axially in and out, as for example, for exchange of wire guide tubes or cleaning and yet the nozzle may be firmly screwed on and removed without difliculty.
The valving arrangement furthermore offers substantial advantages and .may be used with other types of guns and equipment.
While the invention has been described in detail with reference to the specific embodiments shown, various changes and modifications will become apparent to the skilled artisan which fall within the spirit of the invention andscope of the appended claims. The invention is therefore only intended to be limited by the appended claims or their equivalents wherein I have endeavored to claim all inherent novelty.
I claim:
1. A valve comprising a hollow cylindrical valve housing having an inlet at one end and an outlet at its opposite end, a hollow piston defining a gas flow passage therethrough slidably mounted in said valve housing, one end of said piston being dimensioned for gas-tight sealing engagement with the outlet end portion of the interior of said housing, the other end of said piston being dimensioned to define a restricted gas flow passage with the other end portion of the interior of said housing, spring means biasing said piston toward said outlet end and means for axially sliding said piston in said housing.
2. Improvement according to claim 1 in which said outlet end of said housing has a tapered gas flow passage forming a valve seat, and in which the adjacent end of said piston is formed as a tapered valve member, the inlet end of said housing including a tapered plug extending thereinto, and in which the end of said piston adjacent the inlet end of said housing has a tapered bore leading into its hollow interior.
3. Improvement according to claim 2in which said means for axially sliding said piston includes a pin connected to said piston and extending through an axiallyextending slot in said housing.
4. In a flame spray gun having a burnerhead and a conduit for applying a combustion gas to said burnerhead, the improvement which comprises valve means for said conduit comprising a hollow cylindrical valve housing having an inlet at one end and an outlet at its opposite end, a hollow piston defining a gas flow passage there through slidably mounted in said valve housing between a shutoff position with one end oftsaid piston in gas-tight sealing engagement with one end portion of the interior of said housing thereby defining a shutoff position, and a restricted gas flow position with the other end of said piston defining a restricted gas flow passage with the other end portion of the interior of said housing, and trigger means for axially sliding said piston in said housing between said shutoff position, an intermediate full flow position, and said restricted flow position.
5. Improvement according to claim 4 in which said piston is movable in sealing engagement with the outlet end of said housing, and including spring means biasing said piston toward said outlet end.
'Reterenees (lited by the Examiner UNITED STATES PATENTS 1,650,686 11/27 Binks 251-325 XR 1,728,855 2/29 Cook 137614.14 2,046,228 6/36 Vliedmann et a1 137517 2,130,698 9/38 Preston 226-174 2,136,898 11/38 Thomas 137517 2,268,202 12/41 Britton 239-84 2,539,487 1/51 Shepard 239-84 2,915,086 12/59 Godshallc 137614.14 2,925,170 2/60 Rath et a1 226174 2,939,675 *6/60 Karden 251-325 XR LAVERNE D. GEIGER, Primary Examiner.
20 EVERETT w. KIRBY, Examiner.

Claims (1)

1. A VALVE COMPRISING A HOLLOW CYLINDRICAL VALVE HOUSING HAVING AN INLET AT ONE AND AN OUTLET AT ITS OPPOSITE END, A HOLLOW PISTON DEFINING A GAS FLOW PASSAGE THERETHROUGH SLIDABLY MOUNTED IN SAID VALVE HOUSING, ONE END OF SAID PISTON BEING DIMENSIONED FOR GAS-TIGHT SEALING ENGAGEMENT WITH THE OUTLET END PORTION OF THE INTERIOR OF
US166614A 1962-01-16 1962-01-16 Flame spray construction Expired - Lifetime US3179371A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US166614A US3179371A (en) 1962-01-16 1962-01-16 Flame spray construction
FR912344A FR1342371A (en) 1962-01-16 1962-10-16 Advanced flame spray gun
US238823A US3185366A (en) 1962-01-16 1962-10-30 Flame spray construction
US23882262 US3190559A (en) 1962-01-16 1962-10-30 Flame spray construction
DEM55427A DE1298916B (en) 1962-01-16 1963-01-15 Flame spray gun for wire-shaped, heat-meltable material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US166614A US3179371A (en) 1962-01-16 1962-01-16 Flame spray construction

Publications (1)

Publication Number Publication Date
US3179371A true US3179371A (en) 1965-04-20

Family

ID=22604017

Family Applications (1)

Application Number Title Priority Date Filing Date
US166614A Expired - Lifetime US3179371A (en) 1962-01-16 1962-01-16 Flame spray construction

Country Status (2)

Country Link
US (1) US3179371A (en)
DE (1) DE1298916B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367626A (en) * 1965-05-11 1968-02-06 George T. Stern Valve
US4325512A (en) * 1980-02-04 1982-04-20 Norton Company Flame spray gun
US20060254449A1 (en) * 2005-05-16 2006-11-16 Snow Control Holdings, Llc Apparatus and Method for Avalanche Control

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1650686A (en) * 1925-11-07 1927-11-29 Binks Spray Equipment Co Spray gun
US1728855A (en) * 1927-06-13 1929-09-17 John H Cook Valve
US2046228A (en) * 1930-08-04 1936-06-30 Oilgear Co Air drain valve
US2130698A (en) * 1937-05-17 1938-09-20 George W Preston Feed mechanism for metal spray
US2136898A (en) * 1937-08-16 1938-11-15 Henry H Thomas Drain valve
US2268202A (en) * 1935-11-22 1941-12-30 William M Britton Metal spray gun
US2539487A (en) * 1948-04-13 1951-01-30 Metallizing Engineering Co Inc Gun construction for blast gas spraying heat fusible materials
US2915086A (en) * 1956-06-06 1959-12-01 Fox Prod Co Valves
US2925170A (en) * 1956-05-09 1960-02-16 Union Carbide Corp Wire feeder
US2939675A (en) * 1954-01-12 1960-06-07 Atlas Copco Ab Throttle valves for pneumatic tools or the like

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE352174C (en) * 1920-04-06 1922-04-21 Franz Herkenrath Metal wire atomizer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1650686A (en) * 1925-11-07 1927-11-29 Binks Spray Equipment Co Spray gun
US1728855A (en) * 1927-06-13 1929-09-17 John H Cook Valve
US2046228A (en) * 1930-08-04 1936-06-30 Oilgear Co Air drain valve
US2268202A (en) * 1935-11-22 1941-12-30 William M Britton Metal spray gun
US2130698A (en) * 1937-05-17 1938-09-20 George W Preston Feed mechanism for metal spray
US2136898A (en) * 1937-08-16 1938-11-15 Henry H Thomas Drain valve
US2539487A (en) * 1948-04-13 1951-01-30 Metallizing Engineering Co Inc Gun construction for blast gas spraying heat fusible materials
US2939675A (en) * 1954-01-12 1960-06-07 Atlas Copco Ab Throttle valves for pneumatic tools or the like
US2925170A (en) * 1956-05-09 1960-02-16 Union Carbide Corp Wire feeder
US2915086A (en) * 1956-06-06 1959-12-01 Fox Prod Co Valves

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367626A (en) * 1965-05-11 1968-02-06 George T. Stern Valve
US4325512A (en) * 1980-02-04 1982-04-20 Norton Company Flame spray gun
US20060254449A1 (en) * 2005-05-16 2006-11-16 Snow Control Holdings, Llc Apparatus and Method for Avalanche Control
US7707938B2 (en) * 2005-05-16 2010-05-04 Hisel Stanley D Apparatus and method for avalanche control

Also Published As

Publication number Publication date
DE1298916B (en) 1969-07-03

Similar Documents

Publication Publication Date Title
US5275336A (en) Wire thermal spray gun and method
US3455510A (en) Nozzle and gas mixing arrangement for powder type flame spray gun
US2416719A (en) Spray gun
US2362946A (en) Spray gun
US3179371A (en) Flame spray construction
FR2460312A1 (en) DEVICE FOR PRODUCING CARBON BLACK
US4325512A (en) Flame spray gun
US3190559A (en) Flame spray construction
US2621076A (en) Spray gun for fire apparatus and the like
US3185366A (en) Flame spray construction
US2726118A (en) Apparatus for the spraying of pulverulent materials
US1808968A (en) Cutting torch
US1751608A (en) Paint and lacquer spray gun
US2268202A (en) Metal spray gun
US3443754A (en) Construction for a powder-type flame spray gun
US2594222A (en) Manifold for molten material spray guns
US1409220A (en) Blowpipe
US1808967A (en) Cutting torch
US2091021A (en) Metallizing device
US1280068A (en) Cutting-torch.
US1968815A (en) Apparatus for fusing and spraying substances
US1639450A (en) Torch
US2534363A (en) Blowpipe apparatus
US1991638A (en) Torch
US1328329A (en) Acetylene-torch