US20150041124A1 - Automatic packer - Google Patents

Automatic packer Download PDF

Info

Publication number
US20150041124A1
US20150041124A1 US13/959,912 US201313959912A US2015041124A1 US 20150041124 A1 US20150041124 A1 US 20150041124A1 US 201313959912 A US201313959912 A US 201313959912A US 2015041124 A1 US2015041124 A1 US 2015041124A1
Authority
US
United States
Prior art keywords
well
automatic packer
extendable
tool body
perforator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/959,912
Inventor
Alejandro Rodriguez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&O Technologies LLC
Original Assignee
A&O Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&O Technologies LLC filed Critical A&O Technologies LLC
Priority to US13/959,912 priority Critical patent/US20150041124A1/en
Assigned to A&O Technologies LLC reassignment A&O Technologies LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RODRIGUEZ, ALEJANDRO
Priority to US14/135,740 priority patent/US10329863B2/en
Priority to PCT/US2014/045740 priority patent/WO2015020748A2/en
Priority to PCT/US2014/045728 priority patent/WO2015020747A1/en
Publication of US20150041124A1 publication Critical patent/US20150041124A1/en
Priority to US16/452,183 priority patent/US20200157904A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/06Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells for setting packers
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs, or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B31/00Fishing for or freeing objects in boreholes or wells
    • E21B31/002Destroying the objects to be fished, e.g. by explosive means
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs

Definitions

  • a producing well extracts oil and/or natural gas from one or more subsurface reservoirs of hydrocarbons.
  • the development of a producing well includes drilling a borehole into the subsurface ground, casing the drilled borehole, and completing the cased borehole to enable production.
  • gravity may be used to lower the perforating device into position with wireline being used to hold the device against gravity and retrieve the device after discharge.
  • gravity may only be used to lower the perforating device with wireline to a point where the friction of the device against the well bore overcomes the gravitational force. The perforating device must then be either pushed or pulled along the lateral portion of the well until the device reaches the desired location.
  • packers may be used to isolate a section of the well for selective production and/or other downhole operations.
  • a packer is a common downhole tool used in both the drilling and completion of a well.
  • a packer typically has a sealing element, a holding or setting device, and a fluid passageway.
  • Packers may be, not are not limited to, pneumatically or hydraulically expandable, swellable through use of a fluid, or expanded through fluid diffusion. Additionally, packers may seal through an elastomeric element that is solid and expands outwards under axial compression or tension.
  • Production packers are used in completions to isolate an annulus between the casing or linear and the production tubing. By creating a seal in the annulus, production control is achieved and tasks such as testing, fluid injection, perforation, treatment, and zonal isolation can be accomplished.
  • Expandable packers may be used for different sealing and partitioning purposes in boreholes.
  • an annular packer is connected to a pipe, such as a production or injection pipe, which is run into the borehole, after which, the annular packer is expanded against the formation wall or against a casing.
  • Smaller packers may also be used within smaller tubulars within a wellbore to achieve desired sealing and partitioning.
  • a downhole apparatus may include a tool body and a sealing element disposed within the tool body.
  • the downhole apparatus may further include at least one sensor disposed on the tool body, wherein the sensor is configured to take measurements from a well and wherein the sensor measures an actuation condition, the sensor signals the sealing element to actuate.
  • a method of sealing a portion of a well may include disposing an automatic packer in a well, wherein the automatic packer includes a tool body, a sealing element disposed within the tool body, and a sensor disposed on the tool body.
  • the method may further include measuring a condition within the well and determining an actuation condition with the sensor.
  • the method also includes expanding the sealing element into contact with an inner diameter of the well when the actuation condition is determined.
  • a method of perforating a well includes disposing an automatic packer in a well, wherein the automatic packer includes a tool body, a sealing element disposed within the tool body, and a sensor on the tool body.
  • the method further includes measuring a condition within the well and determining an actuation condition with the sensor.
  • the method also includes expanding the sealing element into contact with an inner diameter of the well when the actuation condition is determined, extending an extendable perforator having at least one perforation charge within the well, and discharging at least one perforation charge within the well.
  • a method of clearing an obstruction from a wellbore includes disposing an automatic packer in a well, wherein the automatic packer includes a tool body, a sealing element disposed within the tool body, a sensor disposed on the tool body, and a drill bit disposed on the tool body.
  • the method also includes determining an obstruction is in the well, actuating the drill bit, and removing the obstruction from the well with the drill bit.
  • a downhole apparatus including a tool body, a sealing element disposed within the tool body, and a motive device attached to the tool body.
  • the downhole tool further includes at least one sensor disposed on the tool body, wherein the sensor is configured to take measurements from a well.
  • a method of gathering data from a wellbore includes disposing an automatic packer in a well, wherein the automatic packer includes a tool body, a sealing element disposed within the tool body, and a sensor disposed on the tool body.
  • the method further includes actuating the sealing element and isolating a first portion of the well from a second portion of the well.
  • the method further includes gathering data within at least one of the first portion of the well and the second portion of the well with the sensor and transmitting the gathered data to a surface of the well.
  • a method of perforating a well including disposing an automatic packer in a well, wherein the automatic packer includes a tool body, a sealing element disposed within the tool body, a sensor disposed on the tool body, an extendable drilling mechanism having a drill bit, and a plurality of perforation charges.
  • the method also includes actuating the sealing element and perforating a casing with at least one perforation charge.
  • the method also includes drilling a bore with the extendable drilling mechanism and extending arms of the extendable drilling mechanism into the bore.
  • the method also includes perforating the bore with at least one perforation charge.
  • FIG. 1 is a cross-sectional view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 2 is a cross-sectional view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 3 is a cross-sectional view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 4 is a cross-sectional view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 5 is a cross-sectional view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 6 is a cross-sectional view of an extendable perforator according to embodiments of the present disclosure.
  • FIG. 7 is a cross-sectional view of an extendable perforator according to embodiments of the present disclosure.
  • FIG. 8 is a top cross-sectional view of an extendable perforator according to embodiments of the present disclosure.
  • FIG. 9 is a top cross-sectional view of an extendable perforator according to embodiments of the present disclosure.
  • FIG. 10 is a cross-sectional view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 11 is a cross-sectional view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 12 is a cross-sectional view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 13 is a side view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 14 is a cross-sectional view of a well according to embodiments of the present disclosure.
  • FIG. 15 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 16 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 17 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 18 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 19 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 20 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 21 is a cross-sectional view of multiple automatic packers in a well according to embodiments of the present disclosure.
  • FIG. 22 is cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 23 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 24 is cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 25 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 26 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 27 is a schematic representation of the functionality of an automatic packer according to embodiments of the present disclosure.
  • FIG. 1 shows a cross-sectional view of an automatic packer 100 in an unactuated condition according to embodiment of the present disclosure.
  • automatic packer includes a tool body 105 .
  • the tool body 105 may be formed from various metals, metal alloys, and/or composites, such as polymers, carbon fiber, or Kevlar®.
  • tool body 105 may be formed from stainless steels, such as low alloy steels, e.g., 4140, Martensitic and PH stainless steels, e.g., 9Cr, 13Cr, 17-4PH, alloy 450, Super 13CR, and the like, nickel alloys, e.g., 825, 925, and 718, as well as nickel alloys, e.g., 625, 725, and C-276.
  • portions or tool body 105 may be formed from cast iron, copper, bronze, and/or reinforced polymer-based composite.
  • Tool body 105 may be of a generally cylindrical geometry such that tool body 105 may be disposed within a well or a wellbore.
  • Automatic packer 100 may further include at least one sealing element 110 disposed within tool body 105 .
  • Sealing element 110 may be formed from various rubbers and/or elastomeric materials. Examples of materials that sealing element 110 may be formed from include Nitrile, bonded Nitrile, Viton, Molyglass, etc. Generally, any material that has high strength and high resiliency, while not being adversely affected by thermal and/or chemical environments may be used.
  • Sealing element 110 may be disposed circumferentially around tool body 105 , such that the sealing element 110 in a collapsed position, such as illustrated in FIG. 1 , does not extend outside of the outers diameter of tool body 105 .
  • sealing element 110 may be disposed substantially within tool body 105 when automatic packer 100 is in a collapsed or unactuated condition.
  • Automatic packer 100 may further include various other components, such as slips, slip assemblies, dogs, lockrings, seals, etc., that are not explicitly disclosed herein.
  • Automatic packer 100 may further include at least one sensor 115 disposed within tool body 105 .
  • Sensor may be disposed such that a portion of sensor 115 extends from within tool body 105 through outer diameter of tool body 105 , thereby allowing sensor 115 to measure one or more conditions within the well.
  • sensor 115 may be disposed substantially within tool body 105 and not interact directly with the environment in the well.
  • Sensor 115 may be configured to take measurements of one or more conditions within the well.
  • sensor 115 may be configured to measure a temperature, a pressure, a fluid type, a density, a specific gravity, an induction, a conduction, a refraction, infrared signal, a fiber optic signal, a load, an acceleration, a velocity, an ultrasonic signal, a tachometer measurement, a wireless transmission, a gyroscopic measurement, a casing collar locator, a modular reservoir dynamic test, and/or a position within the well. While automatic packer 100 is illustrated having two sensors 115 , those of ordinary skill in the art will appreciate that a single sensor 115 may be used, as well as more than two sensors.
  • automatic packer 100 may have a different sensor for each parameter that is being measure.
  • automatic packer 100 may include a single sensor that takes multiple measurements, or several sensors that take single or multiple parameter measurements.
  • a casing collar locator is an electric logging tool that detects a magnetic anomaly caused by the relatively high mass of the casing collar.
  • a signal may be sent from the casing collar locator to surface equipment that provides a display and printed log to a surface operator. The information provided to the surface operator allows the information to be correlated with previous logs and known casing features, such as pup joints, thereby allowing the surface operator to determine the location of the tool within the well.
  • Sensors 115 may be connected to a data controller 120 .
  • Data controller 120 may include a processor (not independently shown), memory (not independently shown), memory storage (not independently shown), and other components for processing and storing data measured by the at least one sensor 115 .
  • Examples of a data controller may include, for example, a programmable logic controller (“PLC”).
  • PLC programmable logic controller
  • sensors 115 may be connected to data controller 120 through wiring 125 .
  • sensors 115 may be connected wirelessly to data controller 120 .
  • Sensors 115 may also be connected directly to sealing element 110 , or a sealing element actuation mechanism (not independently shown) through additional wiring 125 .
  • sensors 115 may further be connected to various other components not expressly identified herein, thereby allowing automatic packer 100 to actuate based on parameters measured by sensors 115 .
  • the actuation of automatic packer 100 will be described further below.
  • Sensors 115 may be configure to take substantially continuous measurements, or alternatively, may be configured to take measurements at selected intervals, such as selected time intervals. Additionally, as sensors 115 take measurements, the measurements may be sent to data controller 120 .
  • Data controller 120 may include memory, as explained above, that is capable of storing the measurements. The stored data may be stored such that the data may be later downloaded at the surface for analysis or processing. Additionally, in certain embodiments, the measured data may be transmitted to the surface while automatic packer is downhole. In certain embodiments, the data transmission to the surface may occur through a wireline, e-line, wirelessly, through inductive pipe transmittance, plunger lift systems, etc.
  • a combination of both wired and wireless transmittance may be used to send signals to/from automatic packer 100 while downhole.
  • a wireline with a transferring/recording/receiving device may be lowered downhole.
  • the wireline may be lowered through use of gravity, or in certain embodiments, through use of tractor devices, which are known in the art.
  • the transferring/recording/receiving device may initiate wireless communication with automatic packer 100 .
  • Data may thus be transferred to/from automatic packer 100 , thereby allowing data to be sent to the surface and/or actuation signals to be sent from the surface to automatic packer 100 .
  • automatic packer 100 may be reprogrammed through use of such a system.
  • sensors 115 may also include gyroscopes and relative closeness indicators.
  • Relative closeness indicators such as transmitters/receivers to measure the closeness of automatic packer 100 to a well bore wall may be used to determine a position of automatic packer 100 within the well.
  • Automatic packer 100 may further include a power source (not independently shown) connected to one or more of sensors 115 and/or data controller 120 .
  • the type of power source used may vary according to the requirements of the operation, however, in certain embodiments one or more lithium ion batteries may be used to power sensors, data controller, or other devices disposed on automatic packer 100 .
  • the power source may include a recharging battery system that is capable of being recharged either downhole, at the surface, or from the surface using wired connections.
  • automatic packer 100 may also include a wireless transmitter (not independently shown).
  • the wireless transmitter may, in certain embodiments, be included as a component on data controller 120 , or may be a standalone device within tool body 105 .
  • the wireless transmitter may be used to send data measured by sensors 115 to the surface of the well.
  • the wireless transmitter may also be used to communicate the position or status of automatic packer 100 to the surface of the well.
  • the wireless transmitter may be used to inform an operator of a wellbore whether automatic packer 100 has been actuated, and if so, the location of automatic packer 100 within the well.
  • automatic packer 100 may include a tractor or mobile deployment system capable of moving the automatic packer 100 into a desired position within the well.
  • tractors and other mobile deployment systems are known in the art and may be used to pull or push automatic packer to a desired location within a well prior to actuation of automatic packer 100 .
  • Such systems may be of particular use in highly deviated wells, or wells in which gravity alone may not carry automatic packer 100 to the desired deployment location.
  • automatic packer 100 includes a tool body 105 , a sealing element 110 , at least one sensor 115 , a data controller 120 , and wiring 125 connecting the at least one sensor 115 to the data controller 120 and the sealing element 110 .
  • automatic packer 100 is disposed within a well and falls within the well to a certain position. While automatic packer 100 falls within the well, sensors 115 measure and/or records conditions within the well. As described above, examples of conditions that sensors may measure include a temperature, a pressure, a fluid type, specific gravity spinner, induction, conduction, refraction, infrared, a load, an acceleration, a velocity, a fiber optic signal, an ultrasonic signal, a tachometer measurement, a wireless transmission, a gyroscopic measurement, a casing collar locator, a modular reservoir dynamic test, and/or a position within the well.
  • automatic packer 100 When the automatic packer reaches a desired location within the well, automatic packer 100 may be actuated, thereby causing sealing element 110 to engage an inner diameter of the well.
  • the inner diameter of the well may be a section of casing (not shown), while in other embodiments, such as an uncased well, the sealing element 110 may engage and inner diameter of a wellbore wall.
  • packers that are known in the art may be used with embodiments of the present disclosure.
  • Examples of such packers may include composite, drillable, permanent and retrievable packers.
  • the packers may be hydraulically set, differentially set, mechanically set, tension set, compression set, etc. Additionally, both small and large bore packers may be actuated using the methods described herein.
  • automatic packer 100 includes a tool body 105 , a sealing element 110 , and sensors (not shown), and may also include various other devices, such as a data controller (not shown), a wireless transmitter (not shown), wiring (not shown), etc.
  • automatic packer 100 is shown in an unexpanded or unactuated condition, such that sealing element 110 is not radially expanded.
  • Automatic packer 100 also includes two perforator partitions 135 , a first perforator partition 135 a disposed at a top portion 140 of automatic packer 100 and a second perforator partition 135 b disposed at a bottom portion 145 of automatic packer 100 .
  • First and second perforator partitions 135 a / 135 b may be used to store one or more extendable perforators 130 .
  • automatic packer 100 includes a first extendable perforator 130 a stored in first perforator partition 135 a and a second extendable perforator 130 b stored in second perforator partition 135 b .
  • the extendable perforators 130 a / 130 b each include a plurality of perforator charges 150 .
  • the number of charges may vary based on the requirements of the operation.
  • extendable perforators 130 a / 130 b may include one charge, or may include tens of charges depending on the area being perforated.
  • Perforation charges 150 include an explosive device that uses a cavity-effect explosive reaction to generate a high-pressure, high-velocity jet that creates a perforation tunnel in formation.
  • the shape of the explosives and container determine the shape of the jet and the performance characteristics of the perforation charge 150 .
  • the perforation tunnel in the formation is caused by the high pressure and velocity of the jet, and causes materials, such as steel, cement, and rock to flow plastically around the jet path, thereby causing the tunnels to form.
  • Perforation charges 150 are disposed on wire 155 that is used to form extendable perforators 130 a / 130 b .
  • the wire 155 may be any type of wiring that may be used to hold and actuate perforation charges 150 .
  • wire 155 may include a hollow section to allow additional wiring (not shown), to be run along extendable perforators 130 a / 130 b , thereby allowing a detonation signal to be sent from automatic packer 100 .
  • wire 155 may be able to carry a detonation signal directly from automatic packer 100 to perforation charges 150 .
  • automatic packer 100 includes a tool body 105 , a sealing element 110 , and sensors (not shown), and may also include various other devices, such as a data controller (not shown), a wireless transmitter (not shown), wiring (not shown), etc.
  • Automatic packer 100 also includes two extendable perforators 130 a / 130 b disposed on first and second perforator partitions 135 a / 130 b , respectively.
  • extendable perforators 130 a / 130 b include a plurality of perforation charges 150 disposed on wire 155 .
  • automatic packer 100 when automatic packer 100 is disposed in a well, automatic packer 100 travels down the well until it reaches a desired position. When the position is determined by the sensors (not shown), automatic packer 100 actuates, thereby causing sealing elements 110 to radially expand into contact with the inner diameter of the well (not shown). By radially expanding sealing elements 110 , the well (not shown) is divided into two portions, a top portion that extends above automatic packer 100 to the surface (not shown), and a bottom portion that extends below automatic packer 100 to the bottom of the well (not shown).
  • FIG. 4 illustrates two different methods for extending extendable perforators 130 a / 130 b .
  • Top perforator partition 135 a includes two hinged doors 160 , which upon actuation, open outwardly, thereby allowing extendable perforator 130 a to extend axially upward within the well.
  • Bottom perforator partition 135 b includes a single hinged door 165 , which upon actuation, opens outwardly, thereby allowing extendable perforator 130 b to extend axially downward within the well.
  • doors 160 and 165 may be hinged, thereby allowing doors 160 and 165 to remain attached to automatic packer 100 .
  • actuation of automatic packer 100 may cause the doors 160 and 165 to blast outwardly from automatic packer 100 , thereby allowing extendable perforators 130 a / 130 b to be released from top and bottom perforator partitions 135 a / 135 b , respectively.
  • any other type of device may be used to hold extendable perforators 130 a / 130 b with automatic packer 100 .
  • collapsible or radially retractable doors may be used, as well as telescoping doors.
  • automatic packer 100 may not include doors, and rather include retention devices that hold extendable perforators 130 a / 130 b within top and bottom perforator partitions 135 a / 135 b , respectively.
  • the top and bottom perforator partitions 135 a / 135 b would not be isolated from the well environment during actuation.
  • top and bottom perforator partitions 135 a / 135 b may be isolated from one another through use of a valve (not shown) disposed between the two partitions. The valve may be controlled through use of a data controller or PLC (not shown) that may be manipulated in order to control top and bottom perforator partitions 135 a / 135 b.
  • the doors 160 / 165 may dislodge from the automatic packer 100 as part of the extendable perforators 130 a / 130 b .
  • doors 160 / 165 may form a parachute that acts as a brake or drag device to hold extendable perforators 130 a / 130 b in tension.
  • Dislodged doors 160 / 165 may also be used to slow down automatic packers 100 decent within the well in order to put automatic packer 100 into position prior to actuation.
  • extendable perforators 130 a / 10 b may be released through use of a pump out plug or rupture of a rupture disk, such as a disk made from glass or ceramic that is configured to rupture upon application of a specific pressure.
  • automatic packer 100 includes a tool body 105 , a sealing element 110 , and sensors (not shown), and may also include various other devices, such as a data controller (not shown), a wireless transmitter (not shown), wiring (not shown), etc.
  • Automatic packer 100 also includes two extendable perforators 130 a / 130 b disposed on first and second perforator partitions 135 a / 135 b , respectively. Extendable perforators 130 a / 130 b include a plurality of perforation charges 150 disposed on wire 155 .
  • extendable perforators 130 a / 130 b are shown expanding longitudinally upward and downward, respectively. As illustrated, the wire 155 expands upwardly and downwardly, thereby separating the charges longitudinally within the well (not shown).
  • a well retention device 170 a / 170 b may be disposed at a terminal end 175 of extendable perforators 130 a / 130 b , respectively.
  • Well retention device 170 a / 170 b may include a radially projection that is configured to engage the inner diameter of the well, whether the well is cased or uncased.
  • well retention device 170 a / 170 b may include a plurality of externally projecting teeth (not independently illustrated), which may be formed from, for example, steel or tungsten carbide. Additionally, well retention device 170 a / 170 b may include hardfacing, such as tungsten carbide hardfacing that allows well retention device 170 a / 170 b to grip the inner diameter of the well (not shown). Those of ordinary skill in the art will appreciate that examples of well retention devices 170 may include dog slips, such as those used with other downhole tools. Specifically aspects of well retention device 170 a / 170 b will be discussed in detail with respect to FIGS. 6-9 , below.
  • automatic packer 100 may only have a single extendable perforator 130 .
  • it may only be necessary to perforate an area above or below the automatic packer 100 .
  • only a single extendable perforator 130 may be used.
  • FIG. 6 a cross-sectional view of an extendable perforator 130 disposed within a well 180 according to embodiments of the present disclosure is shown.
  • the well 180 has an inner diameter well wall 185 , which defines the diameter of the well.
  • the well wall 185 may be cased or uncased.
  • the well wall may be formed from metal and/or metal allow tubulars cemented into place within the wellbore (not independently illustrated).
  • the well wall 185 may be formed from rock formation.
  • extendable perforator 130 is illustrated longitudinally within well 175 .
  • perforation charges 150 may be disposed at a desired position within well 180 .
  • the orientation and spacing of perforation charges 150 may vary depending on the desired perforation effect upon detonation.
  • perforation charges 150 may be spaced in increments of inches, feet, or tens of feet, and wire 155 may space charges for several feet, tens or feet, or in certain occasions hundreds of feet longitudinally within the well 180 .
  • perforation charges 150 may be oriented, or angled on wire 155 , thereby allowing the charges to create tunnels into the formation at a desired orientation.
  • a well retention device 170 may be disposed on a terminal end 175 of extendable perforator 130 .
  • the well retention device 170 may include a plurality of projections (not shown) that are configured to engage the inner diameter of well wall 185 .
  • the plurality of projections may include teeth or an applied material that allows the well retention device to engage or grip into well wall 185 .
  • well retention device 170 When extendable perforator 130 is stored in an extendable partition (not shown) of automatic packer (not shown), well retention device 170 may be in a closed position, such that arms 190 of well retention device 170 are collapsed. However, open release of extendable perforator 130 from the extendable partition (not shown) of automatic packer (not shown), the arms 190 may radially extend outwardly into engagement with well wall 185 .
  • arms 190 of well retention device 170 may be biased in an open position through use of a spring 195 . While extendable perforator 130 is stored within automatic packer (not shown), spring 195 may be compressed, and arms 190 may be unexpanded. When extendable perforator 130 is released from automatic packer (now shown), spring 195 may force arms radially outward until the arms 190 engage the well wall 185 . After arms 190 are radially expanded and into contact with well walls 185 , the wire 155 may be held taut within the well 180 , thereby holding extendable perforator 130 in a longitudinally expanded condition. In certain embodiments, one or more springs (not shown) may be used to keep the wire 155 in tension.
  • one or more springs may be used so that a portion of the wire 155 may be reeled back in, in order to keep wire 155 stretched outwardly.
  • wire 155 may be extended into the well through use of an explosive, detonation, or rapid force release, which may be either hydraulic or pneumatic.
  • a pressurized gas may be released, thereby providing outward thrust.
  • FIG. 7 a cross-sectional view of an extendable perforator 130 disposed within a well 180 according to embodiments of the present disclosure is shown.
  • the extendable perforator 130 of automatic packer (not shown) is illustrated disposed within a well 180 .
  • the well 180 has an inner diameter well wall 185 , which defines the diameter of the well. Depending on the operation, the well wall 185 may be cased or uncased.
  • extendable perforator 130 is illustrated longitudinally within well 180 .
  • perforation charges 150 may be disposed at a desired position within well 180 .
  • a well retention device 170 may be disposed on a terminal end 175 of extendable perforator 130 .
  • the well retention device 170 may include a plurality of projections (not shown) that are configured to engage the inner diameter of well wall 185 .
  • the plurality of projections may include teeth or an applied material that allows the well retention device to engage or grip into well wall 185 .
  • extendable perforator 130 When extendable perforator 130 is stored in an extendable partition (not shown) of automatic packer (not shown), well retention device 170 may be in a closed position, such that arms 190 of well retention device 170 are collapsed. However, open release of extendable perforator 130 from the extendable partition (not shown) of automatic packer (not shown), the arms 190 may radially extend outwardly into engagement with well wall 185 . In order to hold arms 190 in a biased open position, once released from automatic packer (not shown), one or more springs 195 may be disposed in contact with arms 190 .
  • arms 190 are shown expanding into contact with well wall 185 , such that retention angle ⁇ formed between well wall 185 and arm 190 is less than 90°. In such an embodiment, arms 190 move along well wall 185 until they engage well wall 185 , pulling wire 155 taut and thereby substantially longitudinally expanding extendable perforator 130 . Referring back to FIG. 7 , arms are shown expanding into contact with well wall 185 , such that retention angle ⁇ formed between well wall 185 and arm 190 is greater than 90°. In such a position, wire 155 is also allowed to longitudinally expand, thereby holding extendable perforator 130 in a substantially expanded condition.
  • FIGS. 8 and 9 top cross-sectional views of well retention devices 170 within a well 180 according to embodiments of the present disclosure are shown.
  • well retention device 170 is shown having a plurality of arms 190 .
  • the plurality of arms 190 include solid portions 200 that is illustrated radially expanded.
  • plurality of arms 190 may also have small perforations drilled or otherwise formed thereon that are configured to reduce drag forces acting thereon.
  • the plurality of arms 190 may also have small perforation drilled or otherwise formed therein to reduce drag forces acting thereon.
  • the solid portion 200 may be formed from, for example, various metals, metal alloys, polymers and/or composites.
  • solids portions 200 may expand, thereby trapping fluid within the well 180 .
  • the trapped fluid pressing against solid portions 200 may thus help pull the extendable perforator within the well 180 , facilitating the expansion of extendable perforator.
  • solid portion 200 may resemble a parachute or wings that extend in order to allow substantially full expansion.
  • the area of the well 180 that is covered by the solid portions 200 may vary.
  • the solid portion 200 may cover less than 10% of the cross-sectional well area.
  • the area covered by the solid portion 200 may range between 10% and 20%, between 20% and 30%, between 30% and 40%, between 40% and 50%, or greater than 50% of the cross-sectional well area.
  • the solid portion 200 may cover less than 10% of the cross-sectional well area.
  • solid portion 200 may include perforated holes (not shown) or with open slots (not shown) that may be sized in order to change drag resistance and setting speed of solid portion 200 .
  • the perforated holes may be adjustable, thereby allowing an operator to adjust the diameter of the slot, thereby changing the effect of drag on solid portion 200 .
  • solid portion 200 may have one or more wings (not independently illustrated).
  • solid portion 200 may include two, three, four, or more wings.
  • solid portion 200 may include a concave or convex geometry.
  • solids portion 200 may include a geometry that is specifically shaped to change the effect of drag or specific setting parameters on solid portion 200 .
  • the geometry may be modified to increase a setting speed, slow a setting speed, provide a specific level of expansion, etc.
  • the number of arms 190 may also vary.
  • well retention device 170 includes four arms, however, in other embodiments two arms, three arms, five arms, or more than five arms may be used.
  • the number of solid portions 200 may also vary according to the requirements of the operation. As illustrated, well retention device 170 includes two solid portions 200 . However, in alternative embodiments, one solid portion 200 , three solid portions 200 , four solid portions 200 , or greater than four solid portions 200 may be used.
  • the number and area of solid portions 200 may affect the deployment speed of the extendable perforator.
  • the number and area of solid portions 200 may vary according to the density of the fluid within the well 180 , the well pressure, well temperature, types of chemicals being used, and the like.
  • automatic packer 100 is shown without reference to specific packing elements, such as sealing elements, sensors, and the like. Rather, automatic packer 100 is shown with a telescoping extendable perforator 130 .
  • Automatic packer 100 includes a tool body 105 and a telescoping extendable perforator 130 .
  • the telescoping extendable perforator 130 In the closed, unactuated position, as illustrated in FIG. 11 , the telescoping extendable perforator 130 is illustrated collapsed within the tool body 105 of automatic packer 100 .
  • Telescoping extendable perforator 130 is illustrated having three telescopic portions, an outer portion 205 , a middle portion 210 , and a terminal portion 215 . While, telescoping extendable perforator 130 is illustrated having three telescopic portions, those of ordinary skill in the art will appreciate that less than three portions, or more than three portions may be used, depending on the length of area to be perforated and the number of perforation charges (not illustrated) that are required.
  • FIG. 11 a side view of an automatic packer 100 in an actuated condition according to embodiments of the present disclosure is shown.
  • automatic packer 100 is shown without reference to specific packing elements, such as sealing elements, sensors, and the like. Rather, automatic packer 100 is shown with a telescoping extendable perforator 130 .
  • telescoping extendable perforator 130 has expanded longitudinally, thereby axially projecting outer portion 205 , middle portion 210 , and terminal portion 215 upward.
  • Outer portion 205 , middle portion 210 , and terminal portion 215 may be held in place relative to one another through use of locking shoulders (not shown) that engage upon actuation.
  • locking shoulders not shown
  • Each portion of telescoping extendable perforator 130 may include a plurality of perforation charges 150 .
  • the number of perforation chargers 150 as well as the spacing of the perforation charges on the telescoping extendable perforator may vary.
  • multiple telescoping extendable perforators 130 may be used on a single automatic packer 100 .
  • more than one telescoping extendable perforator 130 may expand axially upward
  • one or more telescoping extendable perforators 130 may expand axially downward
  • one or more telescoping extendable perforators 130 may expand axially both upward and downward within a well. Because the orientation of the telescoping extendable perforators 130 maybe locked into place upon actuation, the orientation of perforation charges 150 may be controlled, thereby allowing for tunnels to be formed in the formation at desired angles and with a desired geometry.
  • automatic packer 100 is shown without reference to specific packing elements, such as sealing elements, sensors, and the like. Rather, automatic packer 100 is shown with a latitudinal telescoping extendable drilling mechanism 133 .
  • Automatic packer 100 includes a tool body 105 latitudinal telescoping extendable drilling mechanism 133 .
  • the latitudinal telescoping extendable drilling mechanism 133 is illustrated collapsed within the tool body 105 of automatic packer 100 .
  • Latitudinal telescoping extendable drilling mechanism 133 is illustrated having three telescopic portions, an outer portion 205 , a middle portion 210 , and a terminal portion 215 .
  • latitudinal telescoping extendable drilling mechanism 133 is illustrated having three telescopic portions, those of ordinary skill in the art will appreciate that less than three portions, or more than three portions may be used, depending on the length of area to be perforated and the number of perforation charges (not illustrated) that are required. Additionally, latitudinal telescoping extendable drilling mechanism 133 includes a drill bit 135 and a perforation charge 136 . In certain embodiments, extendable drilling mechanism 133 may also be formed from reeled coiled tubing or umbilical card that may be extended or reeled out during drilling. Such tubing may be formed from, for example, various metals, metal alloys, polymers and/or composites.
  • FIG. 13 a side view of an automatic packer 100 in an actuated condition according to embodiments of the present disclosure is shown.
  • automatic packer 100 is shown without reference to specific packing elements, such as sealing elements, sensors, and the like. Rather, automatic packer 100 is shown with a latitudinal telescoping extendable drilling mechanism 133 .
  • latitudinal telescoping extendable drilling mechanism 133 includes a drill bit 134 disposed at the end thereof, as well as a perforation charge 136 .
  • a PLC (not specifically shown) connected to one or more sensors (not specifically shown) may actuate latitudinal telescoping extendable drilling mechanism 133 .
  • latitudinal telescoping extendable drilling mechanism 133 may latitudinally into the well.
  • the perforation charge 136 may thus be detonated in proximity to a location of the well wall or casing that is to be perforated.
  • the drill bit 134 may then be expanded into contact with the casing and one or more holes may be drilled therethrough.
  • the drill bit 134 may be configured to continue drilling until the drill bit 134 wears out.
  • drill bit 134 may be configured to drill to a selected depth within the formation.
  • Drill bit 134 may be actuated pneumatically, electronically, or hydraulically. After the drill bit 134 has drilled into the formation, the telescoping arms may extend therein and the perforation charges 150 may be detonated.
  • each drill bit 134 may be configured to drill one or more holes into the formation.
  • each drill bit 134 may be configured to drill into and thus detonate perforation charges 150 into one drilled hole, while in other embodiments, drill bit 134 may be configured to drill and thus provide perforations to two or more sections of the well.
  • FIG. 14 a cross-sectional view of a cased wellbore according to embodiments of the present disclosure is shown.
  • a wellbore 220 that is cased with a plurality of tubulars 225 is illustrated in FIG. 14 .
  • the connection point 235 where two tubular sections 225 are jointed together, e.g., coupled, will have a slightly different inner diameter.
  • the inner diameter 240 of tubular connection point 235 is generally slightly larger than the inner diameter 230 of tubular sections 225 .
  • the difference between inner diameter 230 of tubular sections 225 and inner diameter 240 of tubular connection point 235 may range between less than about 0.5 mm and about 2.0 mm.
  • FIG. 15 a cross-sectional view of a well 245 during deployment of an automatic packer 100 according to embodiments of the present disclosure is shown.
  • an automatic packer is disposed in a well 245 .
  • the automatic packer may include a tool body (not independently referenced), at least one sensor (not shown), at least one sealing element (not shown), as well are various other components, such as those discussed above.
  • Cased well 245 includes a plurality of tubulars 225 that have been cemented into place within the wellbore 220 . As explained above, the tubulars 225 have an inner diameter 230 , while the tubular connection point 235 has a second slightly larger diameter 240 .
  • sensors such as calipers or ultrasonic sensors, measure the inner diameter within the well 245 .
  • the sensor can calculate the number of tubular sections 225 through which automatic packer 100 has passed. Because the length of tubular sections 225 is known, the depth of automatic packer 100 at any given time can be determined.
  • Other methods to measure a distance or a depth by the sensors may include a casing collar locator, tachometer, temperature, and/or pressure gradient.
  • automatic packer 100 Prior to deploying automatic packer 100 in well 245 , automatic packer 100 can be configured to deploy at a selected depth. For example, if a production zone is located at 2000 feet, automatic packer 100 may be set to actuation at a desired location below 2000 feet, thereby isolating the production zone from the rest of the well 245 . While actuation based on position is discussed in detail herein, those of ordinary skill in the art having the benefit of the present disclosure will appreciate that other preselected parameters may also be used to automatically actuation automatic packer 100 . For example, if the pressure at a given location within a well 245 is known, automatic packer 100 may be configured to actuate when a sensor reads the selected pressure.
  • automatic packer 100 may be configured to automatically actuate when the sensors measure the selected temperature.
  • automatic packer 100 may be configured to automatically actuation when, for example, a casing collar locator sensor measures a depth based on the number of tubular sections.
  • automatic packer 100 has passed through a specified depth as preselected by an operator prior to deployment. Upon passing through the preselected depth measured by the sensors (not independently shown), automatic packer 100 actuates, thereby causing sealing elements 110 to radially expand into contact with well wall 185 .
  • a PLC may determine that the falling velocity of automatic packer 100 is too high. In such a situation, automatic packer 100 may be configured to deploy a small parachute (not shown), such as those described above with respect to the aforementioned solid portion.
  • one or more dog slips may be actuated in order to contact the well wall, such that the drag/friction slows down the decent of automatic packer 100 .
  • well 245 is divided into a top well partition 250 and a bottom well partition 255 .
  • isolation of a section of well 245 may be the entire operation automatic packer 100 is configured to do.
  • top well partition 250 and or bottom well partition 255 may be chemically treated, casing may be repairs, offsets may be drilled, or other actions may be performed that requires sectional isolation.
  • automatic packer may also be capable of performing an automatic perforation, which is discussed below with respect to FIG. 18 .
  • FIG. 17 a cross-sectional view of an automatic packer 100 in a well 245 according to embodiments of the present disclosure is shown.
  • a second signal may be sent from sensor (not shown) or data controller (not shown) triggering deployment of extendable perforator 130 .
  • extendable perforator 130 may be released from automatic packer 100 and allowed to travel longitudinally upward into well 245 .
  • Extendable perforator 130 includes a wire 155 onto which a plurality of perforation charges 150 are disposed. Extendable perforator 130 , in this embodiment, also includes a well retention device 170 . As illustrated, extendable perforator 130 may expand longitudinally along the axis of the well 245 prior to detonation of perforation charges 150 .
  • FIG. 18 a cross-sectional view of an automatic packer 100 in a well 245 according to embodiments of the present disclosure is shown. Fluid flow within well 245 pushes extendable perforator 130 longitudinally upward. In certain embodiments, extendable perforator 130 may be pushed upwardly through use of a mechanical thrust activator (not shown). As illustrated, expanded arms 190 of well retention device 170 , as well as solid portions (not shown) facilitate the expansion of extendable perforator 130 . When wire 155 of extendable perforator 130 is substantially fully extended longitudinally within well 245 , the well retention device 170 engages the inner wall of well 245 , thereby holding and locking extendable perforator 130 into place. In an expanded position, perforation charges 150 may be spaced within the well 245 as desired by the operator.
  • the perforation charges 150 may be detonated in order to perforate the well 245 .
  • FIG. 19 a cross-sectional view of an automatic packer 100 in a well 245 according to embodiments of the present disclosure is shown.
  • a second signal may be sent from sensor (not shown) or data controller (not shown) triggering deployment of extendable perforator 130 .
  • extendable perforator 130 may be released from automatic packer 100 and allowed to travel longitudinally upward into well 245 .
  • Each extendable perforator 130 includes a wire 155 onto which a plurality of perforation charges 150 are disposed. Extendable perforators 130 , in this embodiment, also include a well retention device 170 . As illustrated, extendable perforators 130 may expand longitudinally along the axis of the well 245 prior to detonation of perforation charges 150 .
  • the automatic packer 100 of FIG. 19 includes two extendable perforators 130 .
  • the top extendable perforator 130 a is configured to extend longitudinally upward within the well 245
  • bottom extendable perforator 130 b is configured to extend longitudinally downward within the well 245 .
  • FIG. 20 a cross-sectional view of an automatic packer 100 in a well 245 according to embodiments of the present disclosure is shown. Fluid flow within well 245 pushes extendable perforator 130 a longitudinally upward.
  • a force may be applied to extendable perforator 130 a , thereby forcing extendable perforator 130 a upwardly. Examples of forces that may be applied may include springs in tension, release of a pressurized gas or other fluid, pneumatic movement, detonation, etc.
  • expanded arms 190 of well retention device 170 as well as solid portions (not shown) facilitate the expansion of extendable perforator 130 .
  • perforation charges 150 may be spaced within the well 245 as desired by the operator.
  • expanded arms 190 of well retention device 170 facilitate the extension of extendable perforator 130 .
  • the well retention device engages the inner wall of well 245 , thereby holding and locking extendable perforator 130 b into place.
  • perforation charges 150 may be spaced within the well 245 as desired by the operator.
  • the perforation charges 150 may be detonated in order to perforate the well 245 .
  • FIG. 21 a cross-sectional view of a well 245 having multiple isolated zones according to embodiments of the present disclosure is shown.
  • three automatic packers 100 a , 100 b , and 100 c are deployed in a well 245 .
  • Automatic packer 100 a divides a top partition 250
  • automatic packer 100 b divides a first middle partition 256 from a second middle partition 257
  • automatic packer 100 c divides second middle partition 257 from bottom partition 255 .
  • the well 245 is divided into four discrete and isolated zones, 250 , 256 , 257 , and 255 , from which separate perforation operations may be performed.
  • automatic packers 100 a , 100 b , and 100 c each have at least one extendable perforator 130 .
  • Each extendable perforator 130 has a wire 155 with a plurality of charges 155 .
  • the extendable perforators 130 have well retention devices 170 .
  • automatic packer 100 c was initially disposed in the well 245 .
  • Automatic packer 100 b was deployed second, and automatic packer 100 a was deployed last.
  • one or more of automatic packers 100 may be deployed at the same time, each with a different preselected actuation depth or other actuation criteria, such as, for example, casing collar locators/position, tachometer measurements, temperature, pressure, etc.
  • automatic packer 100 c actuates, radially expanding sealing element 110 into engagement with well wall 185 .
  • Automatic packers 100 b and 100 a also fell within the well 245 to different preselected depths before actuating.
  • automatic packer 100 a may actuate before automatic packer 100 b and/or 100 c reaches its respective preselected actuation depth.
  • the order of actuation is not significant, as the automatic actuation will allow each automatic packer 100 to fall freely to its individual preselected depth prior to actuation.
  • extendable perforators 130 may occur. Depending on the requirements of the operation, the individual extendable perforators 130 may occur directly after actuation of sealing elements 110 . In other embodiments, extendable perforators 130 may actuate a set time period after sealing elements. In still other embodiment, extendable perforators 130 may actuate on a different measured criteria. For example, in one embodiment, sealing elements 110 of automatic packers 100 may actuate based on a position indicator, which extendable perforators 130 may actuate based on a pressure differential or a measured pressure.
  • both sealing element 110 actuation and extendable perforator 130 actuation may occur at substantially the same time.
  • the actuation of sealing element 110 may cause the deployment of extendable perforator 130 .
  • extendable perforator 130 may deploy first, with the actuation of sealing elements 110 following thereafter.
  • extendable perforators 130 may actuate on an external device or through wireless transmission. For example, during a hydraulic fracture job, a ball may be dropped from the surface with a unique transmitting signal, size, shape, or magnetic actuation, which when the PLC in the automatic packer 100 senses or receives, the PLC determines it may actuate automatic packer 100 .
  • the PLC may control automatic packer 100 to deploy extendable perforator 130 , isolate a section of the well, or provide another specific action.
  • the automatic packer 100 may be actuated through a wireless transmission from the surface or from an e-line lowered into the well, thereby providing a wireless signal to one or more of the packers 100 .
  • automatic packer 100 a includes one extendable perforator 130 that extends into top partition 250 .
  • Automatic packer 100 b includes two extendable perforators 130 , one extends upwardly into first middle partition 256 , while a second extendable perforator 130 extends downwardly into second middle partition 257 .
  • Automatic packer 100 c includes one extendable perforator 130 that extends downwardly into bottom partition 255 .
  • one or more of the partitions 250 , 255 , 256 , and/or 257 of the well 245 may be perforated.
  • the individual zones maybe perforated at the same time or at different times, depending on the production schedule for the well 245 .
  • automatic packer 100 includes a tool body 105 , a sealing element 110 , and sensors (not shown).
  • Automatic packer 100 may also include other various components necessary to actuate or control automatic packer 100 such as, for example, a data controller (not shown), a wireless transmitter (not shown), wiring (not shown), dogs (not shown), slips (not shown), etc.
  • Automatic packer 100 also includes a motive device 300 , disposed on tool body 105 .
  • motive device 300 is a tractor design that includes a plurality of wheels 305 held in place by a track (not specifically illustrated).
  • motive device may include wheels, propellers, rotating teeth, or any other device that is configured to move automatic packer 100 within a wellbore 220 .
  • Automatic packer 100 have a motive device 300 may be useful in wellbores 220 that have deviated sections or lateral sections.
  • the path of the wellbore 220 is not straight. Thus, there may be a number of undulating sections that move both laterally and longitudinally. In certain sections, the path of the wellbore 220 may even require the automatic packer 100 to travel upwardly to reach a desired place within the wellbore 220 .
  • traditional packers without motive devise 300 may not be capable of reaching such sections because gravity or even fluid flow into the wellbore 220 may not be sufficient to carry automatic packer 100 to the desired location.
  • automatic packer 100 having motive device 300 may be used to ensure automatic packer 100 is capable of reaching the desired location.
  • Motive device 300 may be controlled from the surface of the wellbore 220 using a wireless transmission tied into the data controller.
  • automatic packer 100 may be configured to actuate at a predefined depth.
  • automatic packer 100 may use one or more sensors to determine the packers place within the wellbore 220 .
  • Actuation of automatic packer 100 may include setting the sealing elements 110 to isolate a portion of the wellbore 220 or may include actuating a perforation device (not shown), as discussed in detail below.
  • a motive device 300 as explained herein may be used on any of the other embodiments of automatic packer 100 discussed herein.
  • motive device 300 may be used to recharge the batteries of automatic packer 100 through the kinetic motion generated by automatic packer 100 .
  • motive device 300 may rely on the batteries of automatic packer 100 in order to operate.
  • motive device 300 may have batteries separate from the batteries of automatic packer 100 , thereby allowing the motive device 300 to operate independently from automatic packer 100 , which is discussed further below.
  • automatic packer 100 includes a tool body 105 , a sealing element 110 , and sensors (not shown).
  • Automatic packer 100 may also include other various components necessary to actuate or control automatic packer 100 such as, for example, a data controller (not shown), a wireless transmitter (not shown), wiring (not shown), dogs (not shown), slips (not shown), etc.
  • Automatic packer 100 also includes a motive device 300 , disposed on tool body 105 .
  • automatic packer 100 is shown after actuation.
  • the sealing elements 110 were radially expanded into contact with the wellbore 220 walls, thereby isolating the wellbore into a top portion 310 and a bottom portion 315 .
  • automatic packer 100 may stay within the wellbore 220 , however, motive device 300 may be disconnected from tool body 105 and returned to the surface.
  • motive device 300 was disconnected from tool body 105 after actuation of sealing elements 110 , however, in other embodiments, motive device 300 may be disconnected from tool body 105 prior to the actuation of sealing elements 110 .
  • Motive device 300 may return to the surface of wellbore 220 through natural flow of fluids within the wellbore, or may be pulled to the surface using wireline, coiled tubing, or the like. In still other embodiments, motive device may be returned to the surface using the motive abilities of motive device 300 . Because motive device 300 may be returned to the surface of the wellbore 220 , motive device 300 may be reused in other packer actuation implementations.
  • automatic packer 100 includes a tool body 105 , a sealing element 110 , and sensors (not shown).
  • Automatic packer 100 may also include other various components necessary to actuate or control automatic packer 100 such as, for example, a data controller (not shown), a wireless transmitter (not shown), wiring (not shown), dogs (not shown), slips (not shown), etc.
  • Automatic packer 100 also includes a drill bit 320 disposed at a lead end 322 of automatic packer 100 .
  • an obstruction 325 may form at some point within the wellbore 220 that may prevent a downhole tool, such as automatic packer 110 , from reaching a desired target location.
  • Obstructions 325 may be formed from rock fragments, perforation fragments, scale build up, etc., and may be located on the walls of the wellbores 220 or within the central flow bore of the wellbore 220 .
  • the obstructions 325 in additional to preventing automatic packer 100 from reaching a desired location, may restrict the flow of fluids therethrough.
  • automatic packer 100 includes a drill bit 320 that is configured to drill out such obstructions 325 as automatic packer 100 is run into the wellbore 100 .
  • FIG. 24 illustrates drill bit 320 in a contracted or non-actuated condition. In this condition, drill bit 320 includes a restricted diameter to prevent the drill bit 320 from contracting the walls of the wellbore 220 .
  • Drill bit 320 may include various types of drill bits 320 that are known in the art including, for example, fixed cutter (drag) bits and roller cone bits. While not explicitly shown, fixed cutter bits may include various inserts, such as tungsten carbide inserts that are press fit or brazed into the body of the bit.
  • Such inserts may include a diamond or polycrystalline diamond layer, applied thereto, that increasing the cutting potential of the bit.
  • Such inserts may be disposed on fixed cutter bits having particular back and side rakes in order to optimize the cutting action of the specific inserts.
  • roller cone style drill bits may be used according to embodiments of the present disclosure.
  • Roller cone style drill bits may include one, two, three, or more cones, with each cone having a plurality of inserts disposed thereon.
  • the inserts of roller cone drill bits may be press fit or brazed into the individual cones and each cone and insert may be configured to optimize the cutting action of the bit.
  • inserts of various geometries may be used with roller cone bits to further increase the cutting action of the roller cone bit.
  • a reamer style bit may be used in embodiments of automatic packer 100 .
  • Traditional reamers include radially expandable arms housing a plurality of cutting sections or cutting elements that are configured to cut through formation or other obstructions 325 .
  • the arms of reamers may be configured to expand in one or more directions, such as into contact with the sidewalls of a wellbore 220 , thereby allowing the cutting elements that are disposed thereon to contact an obstruction 325 .
  • drill bits 320 discussed herein are merely exemplary and any type of drill bit 320 may be disposed on automatic packer 100 .
  • automatic packer 100 includes a tool body 105 , a sealing element 110 , and sensors (not shown).
  • Automatic packer 100 may also include other various components necessary to actuate or control automatic packer 100 such as, for example, a data controller (not shown), a wireless transmitter (not shown), wiring (not shown), dogs (not shown), slips (not shown), etc.
  • Automatic packer 100 also includes a drill bit 320 disposed at a lead end 322 of automatic packer 100 .
  • FIG. 25 shows automatic packer 100 that has encountered an obstruction 325 and actuated drill bit 320 .
  • drill bit 320 has radially expanded, thereby allowing drill bit to substantially fill the diameter of wellbore 220 , thereby allowing obstruction 325 to be substantially removed.
  • Drill bit 320 may be expanded through various techniques. For example, in one embodiment, drill bit 320 may be held in a collapsed or closed position through the use of, for example, lock rings, collapsed teeth, springs, or the like.
  • automatic packer 100 may release drill bit 320 , thereby allowing drill bit 320 to expand into an open or uncollapsed position.
  • automatic packer 100 may cause a burst or rupture disk to break, thereby releasing drill bit 320 .
  • hydraulic pressure may be used to release and/or hold drill bit 320 in an open position.
  • an electric signal may be sent by automatic packer 100 to cause drill bit 320 to move into an open position.
  • automatic packer 100 may issue a second command to retract drill bit 320 into a closed position after the obstruction 325 is cleared.
  • automatic packer 100 includes a tool body 105 , a sealing element 110 , and sensors (not shown).
  • Automatic packer 100 may also include other various components necessary to actuate or control automatic packer 100 such as, for example, a data controller (not shown), a wireless transmitter (not shown), wiring (not shown), dogs (not shown), slips (not shown), etc.
  • Automatic packer 100 also includes a drill bit 320 disposed at a lead end 322 of automatic packer 100 .
  • FIG. 26 shows drill bit 320 clearing obstruction 325 .
  • Drill bit 320 may clear obstruction 325 by rotating in order to cut through the obstruction, or, depending on the type of obstruction 325 , contact alone without rotation may be enough to clear the obstruction 325 .
  • Rotation of drill bit 320 may include rotation of automatic packer 100 , or drill bits 320 may rotate independent from automatic packer 100 .
  • automatic packer 100 having a drill bit 320 may also benefit from being disposed in wellbore 220 through use of a motive device ( 300 in FIG. 22 ). In such an embodiment, the motive device may be used to rotate drill bit 320 and/or automatic packer 100 .
  • the data controller or PLC of the automatic packer 100 may be connected to one or more sensors in order to detect when an obstruction 325 exists.
  • the data controller/PLC along with the sensors may also be used to determine when the obstruction 325 has been cleared.
  • FIG. 27 a schematic representation of an automatic packer according to embodiments of the present disclosure is shown.
  • FIG. 27 provides a schematic overview of the different actuations that an automatic packer may be configured for.
  • the automatic packer may be used to achieve one goal, while in other embodiments, the automatic packer may have a number of different responsibilities while downhole.
  • the automatic packer disclosed herein includes a programmable logic controller (PLC) that includes, for example, a microprocessor and a memory ( 400 ).
  • the memory may be used to store data that is gather downhole or may be used to store instructions for causing the automatic packer to perform specific functions downhole.
  • the PLC may be used to automatic cause the automatic packer to actuate sealing elements at a particular location within a wellbore.
  • PLC may also be used to drive a motive device to a particular location within a wellbore, deploy a perforator at a desired location, or to control other devices.
  • the PLC is connected to a power supply ( 405 ), which may also be connected to a battery recharge system ( 410 ).
  • the power supply ( 405 ) may include a battery, such as a rechargeable lithium ion battery, that powers the PLC while the automatic packer is in the wellbore.
  • the battery recharge system ( 410 ) may provide recharge to the battery through, for example, downhole heat induction, flowing phases through a turbine, kinetic recharging, etc.
  • the battery recharge system may be configured to connect to a wellbore surface power supply through wires, thereby allowing the automatic packer to be powered from the surface or to allow the power supply to be recharged from the surface.
  • the automatic packer also includes one or more sensor assemblies ( 415 ).
  • the sensor assemblies may include sensors for measuring a temperature, a pressure, a fluid type, a density, a specific gravity, an induction, a conduction, a refraction, infrared signal, a fiber optic signal, a load, an acceleration, a velocity, an ultrasonic signal, a tachometer measurement, a wireless transmission, a gyroscopic measurement, a casing collar locator measurement, a modular reservoir dynamic test measurement, and/or a position within the well.
  • the sensor assemblies ( 415 ) may be connected directly to the PLC ( 400 ), thereby allowing the PLC to know the conditions in the wellbore that may affect the automatic packer. Based on the measurements of the sensor assemblies ( 415 ), the PLC may carry out predefined instruction, thereby allowing the automatic packer to act independently from the surface of the wellbore.
  • the automatic packer disclosed herein is capable of performing a number of different actuations while downhole. Because the automatic packer is equipped with a PLC ( 400 ) capable of automatically actuating different aspects of the automatic packer, the automatic packer is capable of performing number functions during a single trip into a wellbore.
  • PLC may be used to control a motive device ( 420 ) of the automatic packer.
  • the PLC may be programmed with instructions to drive to a particular depth within a wellbore.
  • the motive device ( 420 ) may be actuated by the PLC ( 400 ) to start going down within a wellbore.
  • the sensor assemblies ( 415 ) may substantially continuously measure the progress of the automatic packer within the wellbore.
  • the PLC ( 400 ) may send a control signal to the motive device ( 420 ) effectively telling the movement to stop.
  • PLC ( 415 ) may be used to control the depth to which the automatic packer progresses within a wellbore.
  • the automatic packer may also include one or more sealing elements ( 425 ).
  • sealing elements 425
  • the PLC ( 400 ) may actuate sealing elements ( 425 ), thereby isolating a portion of the wellbore.
  • the PLC ( 400 ) may be used to actuate one or more perforators ( 430 ).
  • the PLC ( 400 ) may include instructions to both expand the perforators ( 430 ) as well as instructions that cause the perforators ( 430 ) to detonate at a particular location.
  • the PLC ( 400 ) may also be used to control other devices ( 435 ).
  • PLC ( 400 ) may be used to control a drilling operation of the automatic packer.
  • automatic packer may be equipped with one or more different types of drill bits.
  • the PLC ( 400 ) may be used to control a laterally drilling drill bit that is capable of drilling and placing perforation charges.
  • PLC ( 400 ) may be used to actuate and drill out an obstruction in the wellbore. In either case, PLC ( 400 ) may use inputs from the sensor assemblies ( 415 ) in order to determine when and where to drill.
  • PLC ( 400 ) may also be used to control other devices ( 435 ) that may be disposed on the automatic packer.
  • PLC ( 400 ) may also be used to transfer data ( 440 ).
  • the automatic packer may be disposed downhole at a desired depth and actuated to seal the wellbore.
  • the sensor assemblies ( 415 ) may then be used to gather data about the sealed section of the wellbore.
  • PLC ( 400 ) may instruct the automatic packer to provide a data transfer ( 440 ), thereby sending the acquired data to the surface.
  • the data transfer ( 440 ) may use a wireless connection, or alternatively, may be sent through wires or drill pipe that is connected to the surface.
  • PLC ( 400 ) may thus be used to both receive and send control signs for controlling the operations of the automatic packer downhole.
  • the PLC ( 400 ) may be configured to receive control signals from the surface that change the instructions or functionality of the automatic packer. For example, based on the data gathered by the automatic packers while downhole, a control signal from the surface may be sent to PLC ( 400 ) providing instructions for performing another downhole operation. Examples of downhole operations that may be modified include sealing a different section of the wellbore, moving to a different location to perform data gathering, perforating a section of a wellbore, drilling a section of a wellbore, and the like.
  • a wellbore engineer at the surface may have greater control over aspects of the operation. For example, based on the information gathered by the automatic packer and sent to the surface, one or more wellbore parameters may be adjusted. Examples of wellbore parameters that may be adjusted in response to data gathered by the automatic packer include, a fluid flow rate, a fluid type, a type of perforation, a production interval, a production location, etc.
  • embodiments of the present disclosure may allow for the automated setting of packing elements within wells. More specifically, embodiments of the present disclosure may allow an operator to determine where within a well a packer is to be set and deploy the packer directly into the well. Because the packer is deployed directly into the well, expensive and time consuming running tools may be avoided.
  • automatic packers according to embodiments disclosed herein may be released freely into the wellbore without the aid of tubing or wireline. Upon falling to a desired location within the well, the automatic packers may actuate without further signal from the surface.
  • Embodiments disclosed herein may also provide an automatic packer that may temporarily isolate a portion of the well, gather data through sensors, and then release and return to the surface. The automatic packer may return to the surface through natural flow of the well or through the use of wireline or other motive means.
  • embodiments of the present disclosure may allow for substantially automated perforation operations to be completed within wells.
  • an extendable perforator may be released from an automatic packer.
  • the extendable perforator may then longitudinally expand within the well bore, spacing charges as the extendable perforated extends.
  • the perforator may be discharged, thereby perforating the well.
  • embodiments of the present disclosure may allow for packers to be automatically set based on a number of measured criteria.
  • sensors on the automatic packer may measure a temperature, a pressure, a fluid type, a load, an acceleration, a velocity, a tachometer measurement, a casing collar locator measurement, a modular reservoir dynamic test measurement, and/or a position.
  • a predefined criteria e.g., a density, specific gravity, induction, conduction, refraction, infrared, a specific temperature, fluid type, load, acceleration, velocity, a tachometer measurement, a casing collar measurement, a modular reservoir dynamic test measurement, and/or position is measured
  • the packer may be set to automatically actuate.
  • embodiments of the present disclosure may provide for one trip isolation and perforation of sections of a well. Because the perforator is extendable from the packer, after actuation of the packer, perforation may occur without running a separate perforator into the well.
  • embodiments of the present disclosure may provide for one trip isolation and perforation of single and multiple sections of a well that will help assist on fracture or treatment jobs of a well. Because the perforator is extendable from the packer, after actuation of the packer, perforation may occur without running a separate perforator run into the well and may be able to continue fracturing multiple stages by perforating and isolating each stage with minimal downtime. Such a one trip system may thus increase efficiency and reduce cost.
  • embodiments of the present disclosure may provide for one trip isolation and perforation systems that allow for actuation of devices in a section of a well.
  • Such devices may thus be capable of isolating deviated and lateral parts of a well by having a tractor or mobile device that may take the devices to the depth required.
  • embodiments of the present disclosure may provide for one trip isolation, perforation, data recordation, transmission of data to surface, release of packer, and removal of the packer at the surface of a well.
  • apparatuses disclosed herein may provide devices that can temporarily or permanently isolate, perforate, gather data and recover packer by automatic control and or wireless commands.

Abstract

A downhole apparatus including a tool body and a sealing element disposed within the tool body. Also, at least one sensor disposed on the tool body, wherein the sensor is configured to take measurements from a well and wherein the sensor measures an actuation condition, the sensor signals the sealing element to actuate. Also, a method of sealing a portion of a well including disposing an automatic packer in a well, wherein the automatic packer includes a tool body, a sealing element disposed within the tool body, and a sensor disposed on the tool body. The method also includes measuring a condition within the well, determining an actuation condition with the sensor, and expanding the sealing element into contact with an inner diameter of the well when the actuation condition is determined.

Description

    BACKGROUND OF THE INVENTION
  • A producing well extracts oil and/or natural gas from one or more subsurface reservoirs of hydrocarbons. The development of a producing well includes drilling a borehole into the subsurface ground, casing the drilled borehole, and completing the cased borehole to enable production.
  • After drilling a well for hydrocarbons, it may be necessary to perforate the walls of the well to facilitate flow of hydrocarbons into the well. Wells require perforation because the drilling process causes damage to the formation immediately adjacent to the well. This damage reduces or eliminates the pores through which the oil or gas would otherwise flow. Perforating the well creates a channel through the damage to undamaged portions of the formation. The hydrocarbons flow through the formation pores into the perforation channels and through the perforation channels into the well itself.
  • Traditional methods of perforating the well (both casing and the formation) involved lowering tools that contain explosive materials into the well adjacent to the hydrocarbon bearing formation. Discharge of the explosive would either propel a projectile through the casing and into the formation or, in the case of shaped charges, directly create a channel with explosive force. Such devices and methods are well known in the art.
  • In vertical wells, gravity may be used to lower the perforating device into position with wireline being used to hold the device against gravity and retrieve the device after discharge. For lateral wells, which may be horizontal or nearly horizontal, gravity may only be used to lower the perforating device with wireline to a point where the friction of the device against the well bore overcomes the gravitational force. The perforating device must then be either pushed or pulled along the lateral portion of the well until the device reaches the desired location.
  • Along with perforating the formation, packers may be used to isolate a section of the well for selective production and/or other downhole operations. A packer is a common downhole tool used in both the drilling and completion of a well. A packer typically has a sealing element, a holding or setting device, and a fluid passageway. Packers may be, not are not limited to, pneumatically or hydraulically expandable, swellable through use of a fluid, or expanded through fluid diffusion. Additionally, packers may seal through an elastomeric element that is solid and expands outwards under axial compression or tension. Production packers are used in completions to isolate an annulus between the casing or linear and the production tubing. By creating a seal in the annulus, production control is achieved and tasks such as testing, fluid injection, perforation, treatment, and zonal isolation can be accomplished.
  • Expandable packers may be used for different sealing and partitioning purposes in boreholes. Typically, an annular packer is connected to a pipe, such as a production or injection pipe, which is run into the borehole, after which, the annular packer is expanded against the formation wall or against a casing. Smaller packers may also be used within smaller tubulars within a wellbore to achieve desired sealing and partitioning.
  • BRIEF SUMMARY OF THE INVENTION
  • According to one aspect of one or more embodiments of the present invention, a downhole apparatus may include a tool body and a sealing element disposed within the tool body. The downhole apparatus may further include at least one sensor disposed on the tool body, wherein the sensor is configured to take measurements from a well and wherein the sensor measures an actuation condition, the sensor signals the sealing element to actuate.
  • According to one aspect of one or more embodiments of the present invention, a method of sealing a portion of a well. The method may include disposing an automatic packer in a well, wherein the automatic packer includes a tool body, a sealing element disposed within the tool body, and a sensor disposed on the tool body. The method may further include measuring a condition within the well and determining an actuation condition with the sensor. The method also includes expanding the sealing element into contact with an inner diameter of the well when the actuation condition is determined.
  • According to one aspect of one or more embodiments of the present invention, a method of perforating a well. The method includes disposing an automatic packer in a well, wherein the automatic packer includes a tool body, a sealing element disposed within the tool body, and a sensor on the tool body. The method further includes measuring a condition within the well and determining an actuation condition with the sensor. The method also includes expanding the sealing element into contact with an inner diameter of the well when the actuation condition is determined, extending an extendable perforator having at least one perforation charge within the well, and discharging at least one perforation charge within the well.
  • According to one aspect of one or more embodiments of the present invention, a method of clearing an obstruction from a wellbore. The method includes disposing an automatic packer in a well, wherein the automatic packer includes a tool body, a sealing element disposed within the tool body, a sensor disposed on the tool body, and a drill bit disposed on the tool body. The method also includes determining an obstruction is in the well, actuating the drill bit, and removing the obstruction from the well with the drill bit.
  • According to one aspect of one or more embodiments of the present invention, a downhole apparatus including a tool body, a sealing element disposed within the tool body, and a motive device attached to the tool body. The downhole tool further includes at least one sensor disposed on the tool body, wherein the sensor is configured to take measurements from a well.
  • According to one aspect of one or more embodiments of the present invention, a method of gathering data from a wellbore. The method includes disposing an automatic packer in a well, wherein the automatic packer includes a tool body, a sealing element disposed within the tool body, and a sensor disposed on the tool body. The method further includes actuating the sealing element and isolating a first portion of the well from a second portion of the well. The method further includes gathering data within at least one of the first portion of the well and the second portion of the well with the sensor and transmitting the gathered data to a surface of the well.
  • According to one aspect of one or more embodiments of the present invention, a method of perforating a well, the method including disposing an automatic packer in a well, wherein the automatic packer includes a tool body, a sealing element disposed within the tool body, a sensor disposed on the tool body, an extendable drilling mechanism having a drill bit, and a plurality of perforation charges. The method also includes actuating the sealing element and perforating a casing with at least one perforation charge. The method also includes drilling a bore with the extendable drilling mechanism and extending arms of the extendable drilling mechanism into the bore. The method also includes perforating the bore with at least one perforation charge.
  • Other aspects of the present invention will be apparent from the following description and claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross-sectional view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 2 is a cross-sectional view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 3 is a cross-sectional view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 4 is a cross-sectional view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 5 is a cross-sectional view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 6 is a cross-sectional view of an extendable perforator according to embodiments of the present disclosure.
  • FIG. 7 is a cross-sectional view of an extendable perforator according to embodiments of the present disclosure.
  • FIG. 8 is a top cross-sectional view of an extendable perforator according to embodiments of the present disclosure.
  • FIG. 9 is a top cross-sectional view of an extendable perforator according to embodiments of the present disclosure.
  • FIG. 10 is a cross-sectional view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 11 is a cross-sectional view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 12 is a cross-sectional view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 13 is a side view of an automatic packer according to embodiments of the present disclosure.
  • FIG. 14 is a cross-sectional view of a well according to embodiments of the present disclosure.
  • FIG. 15 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 16 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 17 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 18 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 19 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 20 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 21 is a cross-sectional view of multiple automatic packers in a well according to embodiments of the present disclosure.
  • FIG. 22 is cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 23 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 24 is cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 25 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 26 is a cross-sectional view of an automatic packer in a well according to embodiments of the present disclosure.
  • FIG. 27 is a schematic representation of the functionality of an automatic packer according to embodiments of the present disclosure.
  • DETAILED DESCRIPTION OF THE INVENTION
  • One or more embodiments of the present invention are described in detail with reference to the accompanying figures. For consistency, like elements in the various figures are denoted by like reference numerals. In the following detailed description of the present invention, specific details are set forth in order to provide a thorough understanding of the present invention. In other instances, well-known features to one of ordinary skill in the art are not described to avoid obscuring the description of the present invention.
  • FIG. 1 shows a cross-sectional view of an automatic packer 100 in an unactuated condition according to embodiment of the present disclosure. In this embodiment, automatic packer includes a tool body 105. The tool body 105 may be formed from various metals, metal alloys, and/or composites, such as polymers, carbon fiber, or Kevlar®. For example, in one embodiment, tool body 105 may be formed from stainless steels, such as low alloy steels, e.g., 4140, Martensitic and PH stainless steels, e.g., 9Cr, 13Cr, 17-4PH, alloy 450, Super 13CR, and the like, nickel alloys, e.g., 825, 925, and 718, as well as nickel alloys, e.g., 625, 725, and C-276. In certain embodiments, portions or tool body 105 may be formed from cast iron, copper, bronze, and/or reinforced polymer-based composite. Tool body 105 may be of a generally cylindrical geometry such that tool body 105 may be disposed within a well or a wellbore.
  • Automatic packer 100 may further include at least one sealing element 110 disposed within tool body 105. Sealing element 110 may be formed from various rubbers and/or elastomeric materials. Examples of materials that sealing element 110 may be formed from include Nitrile, bonded Nitrile, Viton, Molyglass, etc. Generally, any material that has high strength and high resiliency, while not being adversely affected by thermal and/or chemical environments may be used.
  • Sealing element 110 may be disposed circumferentially around tool body 105, such that the sealing element 110 in a collapsed position, such as illustrated in FIG. 1, does not extend outside of the outers diameter of tool body 105. Thus, in certain embodiments, sealing element 110 may be disposed substantially within tool body 105 when automatic packer 100 is in a collapsed or unactuated condition. Automatic packer 100 may further include various other components, such as slips, slip assemblies, dogs, lockrings, seals, etc., that are not explicitly disclosed herein.
  • Automatic packer 100 may further include at least one sensor 115 disposed within tool body 105. Sensor may be disposed such that a portion of sensor 115 extends from within tool body 105 through outer diameter of tool body 105, thereby allowing sensor 115 to measure one or more conditions within the well. In some embodiments, sensor 115 may be disposed substantially within tool body 105 and not interact directly with the environment in the well. Sensor 115 may be configured to take measurements of one or more conditions within the well. For example, sensor 115 may be configured to measure a temperature, a pressure, a fluid type, a density, a specific gravity, an induction, a conduction, a refraction, infrared signal, a fiber optic signal, a load, an acceleration, a velocity, an ultrasonic signal, a tachometer measurement, a wireless transmission, a gyroscopic measurement, a casing collar locator, a modular reservoir dynamic test, and/or a position within the well. While automatic packer 100 is illustrated having two sensors 115, those of ordinary skill in the art will appreciate that a single sensor 115 may be used, as well as more than two sensors. For example, in a certain embodiment, automatic packer 100 may have a different sensor for each parameter that is being measure. In other embodiments, automatic packer 100 may include a single sensor that takes multiple measurements, or several sensors that take single or multiple parameter measurements. A casing collar locator is an electric logging tool that detects a magnetic anomaly caused by the relatively high mass of the casing collar. A signal may be sent from the casing collar locator to surface equipment that provides a display and printed log to a surface operator. The information provided to the surface operator allows the information to be correlated with previous logs and known casing features, such as pup joints, thereby allowing the surface operator to determine the location of the tool within the well.
  • Sensors 115 may be connected to a data controller 120. Data controller 120 may include a processor (not independently shown), memory (not independently shown), memory storage (not independently shown), and other components for processing and storing data measured by the at least one sensor 115. Examples of a data controller may include, for example, a programmable logic controller (“PLC”). As illustrated, sensors 115 may be connected to data controller 120 through wiring 125. In other embodiments, sensors 115 may be connected wirelessly to data controller 120. Sensors 115 may also be connected directly to sealing element 110, or a sealing element actuation mechanism (not independently shown) through additional wiring 125. Depending on the design requirements for automatic packer 100, sensors 115 may further be connected to various other components not expressly identified herein, thereby allowing automatic packer 100 to actuate based on parameters measured by sensors 115. The actuation of automatic packer 100 will be described further below.
  • Sensors 115 may be configure to take substantially continuous measurements, or alternatively, may be configured to take measurements at selected intervals, such as selected time intervals. Additionally, as sensors 115 take measurements, the measurements may be sent to data controller 120. Data controller 120 may include memory, as explained above, that is capable of storing the measurements. The stored data may be stored such that the data may be later downloaded at the surface for analysis or processing. Additionally, in certain embodiments, the measured data may be transmitted to the surface while automatic packer is downhole. In certain embodiments, the data transmission to the surface may occur through a wireline, e-line, wirelessly, through inductive pipe transmittance, plunger lift systems, etc. In some embodiments, a combination of both wired and wireless transmittance may be used to send signals to/from automatic packer 100 while downhole. For example, a wireline with a transferring/recording/receiving device may be lowered downhole. The wireline may be lowered through use of gravity, or in certain embodiments, through use of tractor devices, which are known in the art. When downhole, the transferring/recording/receiving device may initiate wireless communication with automatic packer 100. Data may thus be transferred to/from automatic packer 100, thereby allowing data to be sent to the surface and/or actuation signals to be sent from the surface to automatic packer 100. In certain embodiments, automatic packer 100 may be reprogrammed through use of such a system.
  • In certain embodiments, sensors 115 may also include gyroscopes and relative closeness indicators. Relative closeness indicators, such as transmitters/receivers to measure the closeness of automatic packer 100 to a well bore wall may be used to determine a position of automatic packer 100 within the well.
  • Automatic packer 100 may further include a power source (not independently shown) connected to one or more of sensors 115 and/or data controller 120. The type of power source used may vary according to the requirements of the operation, however, in certain embodiments one or more lithium ion batteries may be used to power sensors, data controller, or other devices disposed on automatic packer 100. In certain embodiments, the power source may include a recharging battery system that is capable of being recharged either downhole, at the surface, or from the surface using wired connections.
  • In certain embodiments, automatic packer 100 may also include a wireless transmitter (not independently shown). The wireless transmitter may, in certain embodiments, be included as a component on data controller 120, or may be a standalone device within tool body 105. The wireless transmitter may be used to send data measured by sensors 115 to the surface of the well. The wireless transmitter may also be used to communicate the position or status of automatic packer 100 to the surface of the well. In certain embodiments, the wireless transmitter may be used to inform an operator of a wellbore whether automatic packer 100 has been actuated, and if so, the location of automatic packer 100 within the well.
  • In still other embodiments, automatic packer 100 may include a tractor or mobile deployment system capable of moving the automatic packer 100 into a desired position within the well. Those of ordinary skill in the art will appreciate that tractors and other mobile deployment systems are known in the art and may be used to pull or push automatic packer to a desired location within a well prior to actuation of automatic packer 100. Such systems may be of particular use in highly deviated wells, or wells in which gravity alone may not carry automatic packer 100 to the desired deployment location.
  • Referring to FIG. 2, a cross-sectional view of an automatic packer 100 in an actuated condition according to embodiments of the present disclosure is shown. As explained above with respect to FIG. 1, automatic packer 100 includes a tool body 105, a sealing element 110, at least one sensor 115, a data controller 120, and wiring 125 connecting the at least one sensor 115 to the data controller 120 and the sealing element 110.
  • In operation, automatic packer 100 is disposed within a well and falls within the well to a certain position. While automatic packer 100 falls within the well, sensors 115 measure and/or records conditions within the well. As described above, examples of conditions that sensors may measure include a temperature, a pressure, a fluid type, specific gravity spinner, induction, conduction, refraction, infrared, a load, an acceleration, a velocity, a fiber optic signal, an ultrasonic signal, a tachometer measurement, a wireless transmission, a gyroscopic measurement, a casing collar locator, a modular reservoir dynamic test, and/or a position within the well. When the automatic packer reaches a desired location within the well, automatic packer 100 may be actuated, thereby causing sealing element 110 to engage an inner diameter of the well. In certain embodiments, the inner diameter of the well may be a section of casing (not shown), while in other embodiments, such as an uncased well, the sealing element 110 may engage and inner diameter of a wellbore wall.
  • Various types of packers that are known in the art may be used with embodiments of the present disclosure. Examples of such packers may include composite, drillable, permanent and retrievable packers. The packers may be hydraulically set, differentially set, mechanically set, tension set, compression set, etc. Additionally, both small and large bore packers may be actuated using the methods described herein.
  • Additional methods for automatically actuating automatic packer 100 are discussed in detail below. Prior to discussing the actuation of automatic packer in detail, additional components that may be used according to embodiments of the present disclosure are discussed.
  • Referring to FIG. 3, a cross-sectional view of an automatic packer 100 having an extendable perforator 130 according to embodiments of the present disclosure is shown. In this embodiment, automatic packer 100 includes a tool body 105, a sealing element 110, and sensors (not shown), and may also include various other devices, such as a data controller (not shown), a wireless transmitter (not shown), wiring (not shown), etc.
  • In FIG. 3, automatic packer 100 is shown in an unexpanded or unactuated condition, such that sealing element 110 is not radially expanded. Automatic packer 100 also includes two perforator partitions 135, a first perforator partition 135 a disposed at a top portion 140 of automatic packer 100 and a second perforator partition 135 b disposed at a bottom portion 145 of automatic packer 100. First and second perforator partitions 135 a/135 b may be used to store one or more extendable perforators 130. As illustrated, automatic packer 100 includes a first extendable perforator 130 a stored in first perforator partition 135 a and a second extendable perforator 130 b stored in second perforator partition 135 b. The extendable perforators 130 a/130 b each include a plurality of perforator charges 150. Those of ordinary skill in the art will appreciate that the number of charges may vary based on the requirements of the operation. For example, extendable perforators 130 a/130 b may include one charge, or may include tens of charges depending on the area being perforated.
  • Perforation charges 150 include an explosive device that uses a cavity-effect explosive reaction to generate a high-pressure, high-velocity jet that creates a perforation tunnel in formation. The shape of the explosives and container determine the shape of the jet and the performance characteristics of the perforation charge 150. The perforation tunnel in the formation is caused by the high pressure and velocity of the jet, and causes materials, such as steel, cement, and rock to flow plastically around the jet path, thereby causing the tunnels to form.
  • Perforation charges 150 are disposed on wire 155 that is used to form extendable perforators 130 a/130 b. The wire 155 may be any type of wiring that may be used to hold and actuate perforation charges 150. For example, in certain embodiments, wire 155 may include a hollow section to allow additional wiring (not shown), to be run along extendable perforators 130 a/130 b, thereby allowing a detonation signal to be sent from automatic packer 100. In other embodiments, wire 155 may be able to carry a detonation signal directly from automatic packer 100 to perforation charges 150.
  • Referring to FIG. 4, a cross-sectional view of the automatic packer 100 of FIG. 3 in an actuated condition according to embodiments of the present disclosure is shown. In this embodiment, automatic packer 100 includes a tool body 105, a sealing element 110, and sensors (not shown), and may also include various other devices, such as a data controller (not shown), a wireless transmitter (not shown), wiring (not shown), etc. Automatic packer 100 also includes two extendable perforators 130 a/130 b disposed on first and second perforator partitions 135 a/130 b, respectively. extendable perforators 130 a/130 b include a plurality of perforation charges 150 disposed on wire 155.
  • As discussed briefly above, when automatic packer 100 is disposed in a well, automatic packer 100 travels down the well until it reaches a desired position. When the position is determined by the sensors (not shown), automatic packer 100 actuates, thereby causing sealing elements 110 to radially expand into contact with the inner diameter of the well (not shown). By radially expanding sealing elements 110, the well (not shown) is divided into two portions, a top portion that extends above automatic packer 100 to the surface (not shown), and a bottom portion that extends below automatic packer 100 to the bottom of the well (not shown).
  • FIG. 4 illustrates two different methods for extending extendable perforators 130 a/130 b. Top perforator partition 135 a includes two hinged doors 160, which upon actuation, open outwardly, thereby allowing extendable perforator 130 a to extend axially upward within the well. Bottom perforator partition 135 b includes a single hinged door 165, which upon actuation, opens outwardly, thereby allowing extendable perforator 130 b to extend axially downward within the well. As explained above, doors 160 and 165 may be hinged, thereby allowing doors 160 and 165 to remain attached to automatic packer 100.
  • In other embodiments, actuation of automatic packer 100 may cause the doors 160 and 165 to blast outwardly from automatic packer 100, thereby allowing extendable perforators 130 a/130 b to be released from top and bottom perforator partitions 135 a/135 b, respectively. In still other embodiments, any other type of device may be used to hold extendable perforators 130 a/130 b with automatic packer 100. For example, collapsible or radially retractable doors may be used, as well as telescoping doors. In still other embodiments, automatic packer 100 may not include doors, and rather include retention devices that hold extendable perforators 130 a/130 b within top and bottom perforator partitions 135 a/135 b, respectively. In such an embodiment, the top and bottom perforator partitions 135 a/135 b would not be isolated from the well environment during actuation. In certain embodiments, top and bottom perforator partitions 135 a/135 b may be isolated from one another through use of a valve (not shown) disposed between the two partitions. The valve may be controlled through use of a data controller or PLC (not shown) that may be manipulated in order to control top and bottom perforator partitions 135 a/135 b.
  • In still other embodiments, the doors 160/165 may dislodge from the automatic packer 100 as part of the extendable perforators 130 a/130 b. In such an embodiment, doors 160/165 may form a parachute that acts as a brake or drag device to hold extendable perforators 130 a/130 b in tension. Dislodged doors 160/165 may also be used to slow down automatic packers 100 decent within the well in order to put automatic packer 100 into position prior to actuation. In other embodiments, extendable perforators 130 a/10 b may be released through use of a pump out plug or rupture of a rupture disk, such as a disk made from glass or ceramic that is configured to rupture upon application of a specific pressure.
  • Referring to FIG. 5, a cross-sectional view of automatic packer 100 of FIGS. 3 and 4 according to embodiments of the present disclosure is shown. In this embodiment, automatic packer 100 includes a tool body 105, a sealing element 110, and sensors (not shown), and may also include various other devices, such as a data controller (not shown), a wireless transmitter (not shown), wiring (not shown), etc. Automatic packer 100 also includes two extendable perforators 130 a/130 b disposed on first and second perforator partitions 135 a/135 b, respectively. Extendable perforators 130 a/130 b include a plurality of perforation charges 150 disposed on wire 155.
  • In FIG. 5, extendable perforators 130 a/130 b are shown expanding longitudinally upward and downward, respectively. As illustrated, the wire 155 expands upwardly and downwardly, thereby separating the charges longitudinally within the well (not shown). In order to ensure extendable perforators 130 a/130 b expand longitudinally fully within the well (not shown), a well retention device 170 a/170 b may be disposed at a terminal end 175 of extendable perforators 130 a/130 b, respectively. Well retention device 170 a/170 b may include a radially projection that is configured to engage the inner diameter of the well, whether the well is cased or uncased.
  • Depending on the type of well, well retention device 170 a/170 b may include a plurality of externally projecting teeth (not independently illustrated), which may be formed from, for example, steel or tungsten carbide. Additionally, well retention device 170 a/170 b may include hardfacing, such as tungsten carbide hardfacing that allows well retention device 170 a/170 b to grip the inner diameter of the well (not shown). Those of ordinary skill in the art will appreciate that examples of well retention devices 170 may include dog slips, such as those used with other downhole tools. Specifically aspects of well retention device 170 a/170 b will be discussed in detail with respect to FIGS. 6-9, below.
  • Those of ordinary skill in the art will appreciate that while automatic packer 100 has been illustrated and discussed as having two extendable perforators 130 a/130 b, in certain embodiments, automatic packer 100 may only have a single extendable perforator 130. For example, in certain embodiments, it may only be necessary to perforate an area above or below the automatic packer 100. In such an embodiment, only a single extendable perforator 130 may be used.
  • Referring to FIG. 6, a cross-sectional view of an extendable perforator 130 disposed within a well 180 according to embodiments of the present disclosure is shown. In this embodiment, only the extendable perforator 130 of automatic packer (not shown) is illustrated disposed within a well 180. The well 180 has an inner diameter well wall 185, which defines the diameter of the well. Depending on the operation, the well wall 185 may be cased or uncased. In the operation of a cased well wall, the well wall may be formed from metal and/or metal allow tubulars cemented into place within the wellbore (not independently illustrated). In the case of an uncased wellbore, the well wall 185 may be formed from rock formation.
  • As illustrated, extendable perforator 130 is illustrated longitudinally within well 175. By longitudinally expanding extendable perforator 130, perforation charges 150 may be disposed at a desired position within well 180. Those of ordinary skill in the art will appreciate that the orientation and spacing of perforation charges 150 may vary depending on the desired perforation effect upon detonation. For example, perforation charges 150 may be spaced in increments of inches, feet, or tens of feet, and wire 155 may space charges for several feet, tens or feet, or in certain occasions hundreds of feet longitudinally within the well 180. Additionally, perforation charges 150 may be oriented, or angled on wire 155, thereby allowing the charges to create tunnels into the formation at a desired orientation.
  • In order to hold extendable perforator 130 in an expanded condition within well 175, a well retention device 170 may be disposed on a terminal end 175 of extendable perforator 130. The well retention device 170 may include a plurality of projections (not shown) that are configured to engage the inner diameter of well wall 185. As explained above, the plurality of projections may include teeth or an applied material that allows the well retention device to engage or grip into well wall 185.
  • When extendable perforator 130 is stored in an extendable partition (not shown) of automatic packer (not shown), well retention device 170 may be in a closed position, such that arms 190 of well retention device 170 are collapsed. However, open release of extendable perforator 130 from the extendable partition (not shown) of automatic packer (not shown), the arms 190 may radially extend outwardly into engagement with well wall 185.
  • In certain embodiments, arms 190 of well retention device 170 may be biased in an open position through use of a spring 195. While extendable perforator 130 is stored within automatic packer (not shown), spring 195 may be compressed, and arms 190 may be unexpanded. When extendable perforator 130 is released from automatic packer (now shown), spring 195 may force arms radially outward until the arms 190 engage the well wall 185. After arms 190 are radially expanded and into contact with well walls 185, the wire 155 may be held taut within the well 180, thereby holding extendable perforator 130 in a longitudinally expanded condition. In certain embodiments, one or more springs (not shown) may be used to keep the wire 155 in tension. In still other embodiments, one or more springs (not shown) may be used so that a portion of the wire 155 may be reeled back in, in order to keep wire 155 stretched outwardly. In certain embodiments, wire 155 may be extended into the well through use of an explosive, detonation, or rapid force release, which may be either hydraulic or pneumatic. For example, in one embodiment, a pressurized gas may be released, thereby providing outward thrust.
  • Referring also to FIG. 7, a cross-sectional view of an extendable perforator 130 disposed within a well 180 according to embodiments of the present disclosure is shown. In this embodiment, only the extendable perforator 130 of automatic packer (not shown) is illustrated disposed within a well 180. The well 180 has an inner diameter well wall 185, which defines the diameter of the well. Depending on the operation, the well wall 185 may be cased or uncased.
  • As illustrated, extendable perforator 130 is illustrated longitudinally within well 180. By longitudinally expanding extendable perforator 130, perforation charges 150 may be disposed at a desired position within well 180. In order to hold extendable perforator 130 in an expanded condition within well 180, a well retention device 170 may be disposed on a terminal end 175 of extendable perforator 130. The well retention device 170 may include a plurality of projections (not shown) that are configured to engage the inner diameter of well wall 185. As explained above, the plurality of projections may include teeth or an applied material that allows the well retention device to engage or grip into well wall 185.
  • When extendable perforator 130 is stored in an extendable partition (not shown) of automatic packer (not shown), well retention device 170 may be in a closed position, such that arms 190 of well retention device 170 are collapsed. However, open release of extendable perforator 130 from the extendable partition (not shown) of automatic packer (not shown), the arms 190 may radially extend outwardly into engagement with well wall 185. In order to hold arms 190 in a biased open position, once released from automatic packer (not shown), one or more springs 195 may be disposed in contact with arms 190.
  • In FIG. 7, as opposed to FIG. 6, arms 190 are shown expanding into contact with well wall 185, such that retention angle α formed between well wall 185 and arm 190 is less than 90°. In such an embodiment, arms 190 move along well wall 185 until they engage well wall 185, pulling wire 155 taut and thereby substantially longitudinally expanding extendable perforator 130. Referring back to FIG. 7, arms are shown expanding into contact with well wall 185, such that retention angle β formed between well wall 185 and arm 190 is greater than 90°. In such a position, wire 155 is also allowed to longitudinally expand, thereby holding extendable perforator 130 in a substantially expanded condition.
  • Referring to FIGS. 8 and 9, top cross-sectional views of well retention devices 170 within a well 180 according to embodiments of the present disclosure are shown. Referring specifically to FIG. 7, in this embodiment, well retention device 170 is shown having a plurality of arms 190. The plurality of arms 190 include solid portions 200 that is illustrated radially expanded. In certain embodiments, plurality of arms 190 may also have small perforations drilled or otherwise formed thereon that are configured to reduce drag forces acting thereon. The plurality of arms 190 may also have small perforation drilled or otherwise formed therein to reduce drag forces acting thereon. The solid portion 200 may be formed from, for example, various metals, metal alloys, polymers and/or composites. During actuation, well retention device 170 is released from automatic packer (not shown). The arms 190 extend radially outward into engagement with the well 180. In order to increase the speed of deployment, and to facilitate moving extendable perforator (not independently show) within the well 180, solids portions 200 may expand, thereby trapping fluid within the well 180. The trapped fluid pressing against solid portions 200 may thus help pull the extendable perforator within the well 180, facilitating the expansion of extendable perforator. In certain embodiments, solid portion 200 may resemble a parachute or wings that extend in order to allow substantially full expansion.
  • Depending on the requirements of the operation, the area of the well 180 that is covered by the solid portions 200 may vary. For example, in certain embodiments, the solid portion 200 may cover less than 10% of the cross-sectional well area. In other embodiments, the area covered by the solid portion 200 may range between 10% and 20%, between 20% and 30%, between 30% and 40%, between 40% and 50%, or greater than 50% of the cross-sectional well area. In still other embodiments, the solid portion 200 may cover less than 10% of the cross-sectional well area. In certain embodiments, solid portion 200 may include perforated holes (not shown) or with open slots (not shown) that may be sized in order to change drag resistance and setting speed of solid portion 200. For example, in certain embodiments, the perforated holes may be adjustable, thereby allowing an operator to adjust the diameter of the slot, thereby changing the effect of drag on solid portion 200. In certain embodiments, solid portion 200 may have one or more wings (not independently illustrated). For example, solid portion 200 may include two, three, four, or more wings. In certain embodiments, solid portion 200 may include a concave or convex geometry. Further still, solids portion 200 may include a geometry that is specifically shaped to change the effect of drag or specific setting parameters on solid portion 200. For example, the geometry may be modified to increase a setting speed, slow a setting speed, provide a specific level of expansion, etc.
  • Depending on the requirements of the operation, the number of arms 190 may also vary. For example, as shown in FIG. 9, well retention device 170 includes four arms, however, in other embodiments two arms, three arms, five arms, or more than five arms may be used. Similarly, the number of solid portions 200 may also vary according to the requirements of the operation. As illustrated, well retention device 170 includes two solid portions 200. However, in alternative embodiments, one solid portion 200, three solid portions 200, four solid portions 200, or greater than four solid portions 200 may be used. Those or ordinary skill in the art will appreciate that the number and area of solid portions 200 may affect the deployment speed of the extendable perforator. Thus, the number and area of solid portions 200 may vary according to the density of the fluid within the well 180, the well pressure, well temperature, types of chemicals being used, and the like.
  • Referring to FIG. 10, a cross-sectional view of an automatic packer 100 according to embodiments of the present disclosure is shown. In this embodiment, automatic packer 100 is shown without reference to specific packing elements, such as sealing elements, sensors, and the like. Rather, automatic packer 100 is shown with a telescoping extendable perforator 130.
  • Automatic packer 100 includes a tool body 105 and a telescoping extendable perforator 130. In the closed, unactuated position, as illustrated in FIG. 11, the telescoping extendable perforator 130 is illustrated collapsed within the tool body 105 of automatic packer 100. Telescoping extendable perforator 130 is illustrated having three telescopic portions, an outer portion 205, a middle portion 210, and a terminal portion 215. While, telescoping extendable perforator 130 is illustrated having three telescopic portions, those of ordinary skill in the art will appreciate that less than three portions, or more than three portions may be used, depending on the length of area to be perforated and the number of perforation charges (not illustrated) that are required.
  • Referring to FIG. 11, a side view of an automatic packer 100 in an actuated condition according to embodiments of the present disclosure is shown. In this embodiment, as with FIG. 10, automatic packer 100 is shown without reference to specific packing elements, such as sealing elements, sensors, and the like. Rather, automatic packer 100 is shown with a telescoping extendable perforator 130.
  • As illustrated, telescoping extendable perforator 130 has expanded longitudinally, thereby axially projecting outer portion 205, middle portion 210, and terminal portion 215 upward. Outer portion 205, middle portion 210, and terminal portion 215 may be held in place relative to one another through use of locking shoulders (not shown) that engage upon actuation. Thus, once longitudinally expanded, the outer portion 205, middle portion 210, and terminal portion 215 are locked in place in an expanded condition.
  • Each portion of telescoping extendable perforator 130 may include a plurality of perforation charges 150. Depending on the requirements of the operation, the number of perforation chargers 150 as well as the spacing of the perforation charges on the telescoping extendable perforator may vary. Those of ordinary skill in the art having benefit of the present disclosure will appreciate that in certain embodiments, multiple telescoping extendable perforators 130 may be used on a single automatic packer 100. For example, more than one telescoping extendable perforator 130 may expand axially upward, one or more telescoping extendable perforators 130 may expand axially downward, and/or one or more telescoping extendable perforators 130 may expand axially both upward and downward within a well. Because the orientation of the telescoping extendable perforators 130 maybe locked into place upon actuation, the orientation of perforation charges 150 may be controlled, thereby allowing for tunnels to be formed in the formation at desired angles and with a desired geometry.
  • Referring to FIG. 12, a cross-sectional view of an automatic packer 100 according to embodiments of the present disclosure is shown. In this embodiment, automatic packer 100 is shown without reference to specific packing elements, such as sealing elements, sensors, and the like. Rather, automatic packer 100 is shown with a latitudinal telescoping extendable drilling mechanism 133.
  • Automatic packer 100 includes a tool body 105 latitudinal telescoping extendable drilling mechanism 133. In the closed, unactuated position, as illustrated in FIG. 12, the latitudinal telescoping extendable drilling mechanism 133 is illustrated collapsed within the tool body 105 of automatic packer 100. Latitudinal telescoping extendable drilling mechanism 133 is illustrated having three telescopic portions, an outer portion 205, a middle portion 210, and a terminal portion 215. While, latitudinal telescoping extendable drilling mechanism 133 is illustrated having three telescopic portions, those of ordinary skill in the art will appreciate that less than three portions, or more than three portions may be used, depending on the length of area to be perforated and the number of perforation charges (not illustrated) that are required. Additionally, latitudinal telescoping extendable drilling mechanism 133 includes a drill bit 135 and a perforation charge 136. In certain embodiments, extendable drilling mechanism 133 may also be formed from reeled coiled tubing or umbilical card that may be extended or reeled out during drilling. Such tubing may be formed from, for example, various metals, metal alloys, polymers and/or composites.
  • Referring to FIG. 13, a side view of an automatic packer 100 in an actuated condition according to embodiments of the present disclosure is shown. In this embodiment, as with FIG. 10, automatic packer 100 is shown without reference to specific packing elements, such as sealing elements, sensors, and the like. Rather, automatic packer 100 is shown with a latitudinal telescoping extendable drilling mechanism 133. In this embodiment, latitudinal telescoping extendable drilling mechanism 133 includes a drill bit 134 disposed at the end thereof, as well as a perforation charge 136.
  • During operation, a PLC (not specifically shown) connected to one or more sensors (not specifically shown) may actuate latitudinal telescoping extendable drilling mechanism 133. Upon actuation, latitudinal telescoping extendable drilling mechanism 133 may latitudinally into the well. The perforation charge 136 may thus be detonated in proximity to a location of the well wall or casing that is to be perforated. The drill bit 134 may then be expanded into contact with the casing and one or more holes may be drilled therethrough. In certain embodiments, the drill bit 134 may be configured to continue drilling until the drill bit 134 wears out. In other embodiments, drill bit 134 may be configured to drill to a selected depth within the formation. Drill bit 134 may be actuated pneumatically, electronically, or hydraulically. After the drill bit 134 has drilled into the formation, the telescoping arms may extend therein and the perforation charges 150 may be detonated. Those of ordinary skill in the art will appreciate that each drill bit 134 may be configured to drill one or more holes into the formation. Thus, in certain embodiments, each drill bit 134 may be configured to drill into and thus detonate perforation charges 150 into one drilled hole, while in other embodiments, drill bit 134 may be configured to drill and thus provide perforations to two or more sections of the well.
  • Referring to FIG. 14, a cross-sectional view of a cased wellbore according to embodiments of the present disclosure is shown. A wellbore 220 that is cased with a plurality of tubulars 225 is illustrated in FIG. 14. During most casing operations, a plurality of tubulars 225 are placed in a wellbore 220, and the plurality of tubulars 225 are then cemented into place. While the tubulars have a known inner diameter 230, the connection point 235, where two tubular sections 225 are jointed together, e.g., coupled, will have a slightly different inner diameter. The inner diameter 240 of tubular connection point 235 is generally slightly larger than the inner diameter 230 of tubular sections 225. For example, in conventional casing the difference between inner diameter 230 of tubular sections 225 and inner diameter 240 of tubular connection point 235 may range between less than about 0.5 mm and about 2.0 mm.
  • Referring to FIG. 15, a cross-sectional view of a well 245 during deployment of an automatic packer 100 according to embodiments of the present disclosure is shown. During deployment, an automatic packer is disposed in a well 245. The automatic packer may include a tool body (not independently referenced), at least one sensor (not shown), at least one sealing element (not shown), as well are various other components, such as those discussed above. Cased well 245 includes a plurality of tubulars 225 that have been cemented into place within the wellbore 220. As explained above, the tubulars 225 have an inner diameter 230, while the tubular connection point 235 has a second slightly larger diameter 240.
  • As automatic packer 100 moves in direction A within well 245, sensors (not shown), such as calipers or ultrasonic sensors, measure the inner diameter within the well 245. By measure the difference between inner diameter 230 and inner diameter 240, the sensor can calculate the number of tubular sections 225 through which automatic packer 100 has passed. Because the length of tubular sections 225 is known, the depth of automatic packer 100 at any given time can be determined. Other methods to measure a distance or a depth by the sensors may include a casing collar locator, tachometer, temperature, and/or pressure gradient.
  • Prior to deploying automatic packer 100 in well 245, automatic packer 100 can be configured to deploy at a selected depth. For example, if a production zone is located at 2000 feet, automatic packer 100 may be set to actuation at a desired location below 2000 feet, thereby isolating the production zone from the rest of the well 245. While actuation based on position is discussed in detail herein, those of ordinary skill in the art having the benefit of the present disclosure will appreciate that other preselected parameters may also be used to automatically actuation automatic packer 100. For example, if the pressure at a given location within a well 245 is known, automatic packer 100 may be configured to actuate when a sensor reads the selected pressure. Similarly, if a temperature is known at a location within the well 245, automatic packer 100 may be configured to automatically actuate when the sensors measure the selected temperature. In certain embodiments, if the number of tubular sections within well 245 is known, automatic packer 100 may be configured to automatically actuation when, for example, a casing collar locator sensor measures a depth based on the number of tubular sections.
  • Referring to FIG. 16, a cross-sectional view of automatic packer 100 within a well 245 according to embodiments of the present disclosure is shown. As illustrated, automatic packer 100 has passed through a specified depth as preselected by an operator prior to deployment. Upon passing through the preselected depth measured by the sensors (not independently shown), automatic packer 100 actuates, thereby causing sealing elements 110 to radially expand into contact with well wall 185. In certain embodiments, a PLC may determine that the falling velocity of automatic packer 100 is too high. In such a situation, automatic packer 100 may be configured to deploy a small parachute (not shown), such as those described above with respect to the aforementioned solid portion. Alternatively, one or more dog slips (not shown) or other mechanical gripping device may be actuated in order to contact the well wall, such that the drag/friction slows down the decent of automatic packer 100. After actuation, well 245 is divided into a top well partition 250 and a bottom well partition 255.
  • In certain embodiments, isolation of a section of well 245 may be the entire operation automatic packer 100 is configured to do. In such an embodiment, top well partition 250 and or bottom well partition 255 may be chemically treated, casing may be repairs, offsets may be drilled, or other actions may be performed that requires sectional isolation. However, in certain embodiments, automatic packer may also be capable of performing an automatic perforation, which is discussed below with respect to FIG. 18.
  • Referring to FIG. 17, a cross-sectional view of an automatic packer 100 in a well 245 according to embodiments of the present disclosure is shown. After actuation of automatic packer 100, thereby radially expanding sealing elements 110, a second signal may be sent from sensor (not shown) or data controller (not shown) triggering deployment of extendable perforator 130. As explained above with respect to FIG. 5, extendable perforator 130 may be released from automatic packer 100 and allowed to travel longitudinally upward into well 245.
  • Extendable perforator 130 includes a wire 155 onto which a plurality of perforation charges 150 are disposed. Extendable perforator 130, in this embodiment, also includes a well retention device 170. As illustrated, extendable perforator 130 may expand longitudinally along the axis of the well 245 prior to detonation of perforation charges 150.
  • Referring to FIG. 18, a cross-sectional view of an automatic packer 100 in a well 245 according to embodiments of the present disclosure is shown. Fluid flow within well 245 pushes extendable perforator 130 longitudinally upward. In certain embodiments, extendable perforator 130 may be pushed upwardly through use of a mechanical thrust activator (not shown). As illustrated, expanded arms 190 of well retention device 170, as well as solid portions (not shown) facilitate the expansion of extendable perforator 130. When wire 155 of extendable perforator 130 is substantially fully extended longitudinally within well 245, the well retention device 170 engages the inner wall of well 245, thereby holding and locking extendable perforator 130 into place. In an expanded position, perforation charges 150 may be spaced within the well 245 as desired by the operator.
  • After expansion of extendable perforator 130, the perforation charges 150 may be detonated in order to perforate the well 245.
  • Referring to FIG. 19, a cross-sectional view of an automatic packer 100 in a well 245 according to embodiments of the present disclosure is shown. After actuation of automatic packer 100, thereby radially expanding sealing elements 110, a second signal may be sent from sensor (not shown) or data controller (not shown) triggering deployment of extendable perforator 130. As explained above with respect to FIG. 5, extendable perforator 130 may be released from automatic packer 100 and allowed to travel longitudinally upward into well 245.
  • Each extendable perforator 130 includes a wire 155 onto which a plurality of perforation charges 150 are disposed. Extendable perforators 130, in this embodiment, also include a well retention device 170. As illustrated, extendable perforators 130 may expand longitudinally along the axis of the well 245 prior to detonation of perforation charges 150.
  • Similar to FIG. 17, the automatic packer 100 of FIG. 19 includes two extendable perforators 130. The top extendable perforator 130 a is configured to extend longitudinally upward within the well 245, while bottom extendable perforator 130 b is configured to extend longitudinally downward within the well 245.
  • Referring to FIG. 20, a cross-sectional view of an automatic packer 100 in a well 245 according to embodiments of the present disclosure is shown. Fluid flow within well 245 pushes extendable perforator 130 a longitudinally upward. In a condition where automatic packer 100 is set before actuation of extendable perforator 130 a, a force may be applied to extendable perforator 130 a, thereby forcing extendable perforator 130 a upwardly. Examples of forces that may be applied may include springs in tension, release of a pressurized gas or other fluid, pneumatic movement, detonation, etc. As illustrated, expanded arms 190 of well retention device 170, as well as solid portions (not shown) facilitate the expansion of extendable perforator 130. When wire 155 of extendable perforator 130 is substantially fully extended longitudinally within well 245, the well retention device 170 engages the inner wall of well 245, thereby holding and locking extendable perforator 130 a into place. In an expanded position, perforation charges 150 may be spaced within the well 245 as desired by the operator.
  • Fluid flow as well as gravity forces extendable perforator 130 b longitudinally downward within well 245. As illustrated, expanded arms 190 of well retention device 170, as well as solid portions (not shown) facilitate the extension of extendable perforator 130. When wire 155 of extendable perforator 130 is substantially fully extended longitudinally within well 245, the well retention device engages the inner wall of well 245, thereby holding and locking extendable perforator 130 b into place. In an expanded position, perforation charges 150 may be spaced within the well 245 as desired by the operator.
  • After expansion of extendable perforators 1301/130 b, the perforation charges 150 may be detonated in order to perforate the well 245.
  • Referring to FIG. 21, a cross-sectional view of a well 245 having multiple isolated zones according to embodiments of the present disclosure is shown. In this embodiment, three automatic packers 100 a, 100 b, and 100 c, are deployed in a well 245. Automatic packer 100 a divides a top partition 250, automatic packer 100 b divides a first middle partition 256 from a second middle partition 257, and automatic packer 100 c divides second middle partition 257 from bottom partition 255. In such an embodiment, the well 245 is divided into four discrete and isolated zones, 250, 256, 257, and 255, from which separate perforation operations may be performed.
  • As explained above, automatic packers 100 a, 100 b, and 100 c, each have at least one extendable perforator 130. Each extendable perforator 130 has a wire 155 with a plurality of charges 155. Additionally, the extendable perforators 130 have well retention devices 170.
  • During operation, automatic packer 100 c was initially disposed in the well 245. Automatic packer 100 b was deployed second, and automatic packer 100 a was deployed last. Depending on the requirements of the operation, one or more of automatic packers 100 may be deployed at the same time, each with a different preselected actuation depth or other actuation criteria, such as, for example, casing collar locators/position, tachometer measurements, temperature, pressure, etc. Upon reaching the preselected depth, automatic packer 100 c actuates, radially expanding sealing element 110 into engagement with well wall 185. Automatic packers 100 b and 100 a also fell within the well 245 to different preselected depths before actuating. Depending on the preselected depth differences between the automatic packers 100, automatic packer 100 a may actuate before automatic packer 100 b and/or 100 c reaches its respective preselected actuation depth. The order of actuation is not significant, as the automatic actuation will allow each automatic packer 100 to fall freely to its individual preselected depth prior to actuation.
  • After actuation of automatic packers 100 a, 100 b, and 100 c, actuation of extendable perforators 130 may occur. Depending on the requirements of the operation, the individual extendable perforators 130 may occur directly after actuation of sealing elements 110. In other embodiments, extendable perforators 130 may actuate a set time period after sealing elements. In still other embodiment, extendable perforators 130 may actuate on a different measured criteria. For example, in one embodiment, sealing elements 110 of automatic packers 100 may actuate based on a position indicator, which extendable perforators 130 may actuate based on a pressure differential or a measured pressure. In still other embodiments, both sealing element 110 actuation and extendable perforator 130 actuation may occur at substantially the same time. For example, in such an embodiment, the actuation of sealing element 110 may cause the deployment of extendable perforator 130. In still another embodiment, extendable perforator 130 may deploy first, with the actuation of sealing elements 110 following thereafter.
  • In certain embodiments, extendable perforators 130 may actuate on an external device or through wireless transmission. For example, during a hydraulic fracture job, a ball may be dropped from the surface with a unique transmitting signal, size, shape, or magnetic actuation, which when the PLC in the automatic packer 100 senses or receives, the PLC determines it may actuate automatic packer 100. For example, the PLC may control automatic packer 100 to deploy extendable perforator 130, isolate a section of the well, or provide another specific action. In still another embodiment, the automatic packer 100 may be actuated through a wireless transmission from the surface or from an e-line lowered into the well, thereby providing a wireless signal to one or more of the packers 100.
  • As illustrated, automatic packer 100 a includes one extendable perforator 130 that extends into top partition 250. Automatic packer 100 b includes two extendable perforators 130, one extends upwardly into first middle partition 256, while a second extendable perforator 130 extends downwardly into second middle partition 257. Automatic packer 100 c includes one extendable perforator 130 that extends downwardly into bottom partition 255. Those of ordinary skill in the art will appreciate that the specific design variations of automatic packers 100 and extendable perforators 130 may vary according to design considerations for a specific operation.
  • After automatic packers 100 are deployed and actuated, one or more of the partitions 250, 255, 256, and/or 257 of the well 245 may be perforated. Those of ordinary skill in the art will appreciate that the individual zones maybe perforated at the same time or at different times, depending on the production schedule for the well 245.
  • Referring to FIG. 22, a cross-sectional view of an automatic packer 100 disposed in a wellbore according to embodiments of the present disclosure is shown. In this embodiment, automatic packer 100 includes a tool body 105, a sealing element 110, and sensors (not shown). Automatic packer 100 may also include other various components necessary to actuate or control automatic packer 100 such as, for example, a data controller (not shown), a wireless transmitter (not shown), wiring (not shown), dogs (not shown), slips (not shown), etc. Automatic packer 100 also includes a motive device 300, disposed on tool body 105. As illustrated, motive device 300 is a tractor design that includes a plurality of wheels 305 held in place by a track (not specifically illustrated). In other embodiments, motive device may include wheels, propellers, rotating teeth, or any other device that is configured to move automatic packer 100 within a wellbore 220.
  • Automatic packer 100 have a motive device 300 may be useful in wellbores 220 that have deviated sections or lateral sections. In certain wellbores 220, the path of the wellbore 220 is not straight. Thus, there may be a number of undulating sections that move both laterally and longitudinally. In certain sections, the path of the wellbore 220 may even require the automatic packer 100 to travel upwardly to reach a desired place within the wellbore 220. In such wellbores 220, traditional packers without motive devise 300 may not be capable of reaching such sections because gravity or even fluid flow into the wellbore 220 may not be sufficient to carry automatic packer 100 to the desired location. In such a wellbore 220, automatic packer 100 having motive device 300 may be used to ensure automatic packer 100 is capable of reaching the desired location.
  • Motive device 300 may be controlled from the surface of the wellbore 220 using a wireless transmission tied into the data controller. In other embodiments, automatic packer 100 may be configured to actuate at a predefined depth. For example, automatic packer 100 may use one or more sensors to determine the packers place within the wellbore 220. When automatic packer 100 reaches the predefined location, as measured by the sensors, automatic packer 100 may actuate. Actuation of automatic packer 100 may include setting the sealing elements 110 to isolate a portion of the wellbore 220 or may include actuating a perforation device (not shown), as discussed in detail below. Those of ordinary skill in the art will appreciate that a motive device 300 as explained herein may be used on any of the other embodiments of automatic packer 100 discussed herein.
  • In certain embodiments, motive device 300 may be used to recharge the batteries of automatic packer 100 through the kinetic motion generated by automatic packer 100. In other embodiments, motive device 300 may rely on the batteries of automatic packer 100 in order to operate. In still other embodiments, motive device 300 may have batteries separate from the batteries of automatic packer 100, thereby allowing the motive device 300 to operate independently from automatic packer 100, which is discussed further below.
  • Referring to FIG. 23, a cross-sectional view of an automatic packer 100 disposed in a wellbore according to embodiments of the present disclosure is shown. In this embodiment, automatic packer 100 includes a tool body 105, a sealing element 110, and sensors (not shown). Automatic packer 100 may also include other various components necessary to actuate or control automatic packer 100 such as, for example, a data controller (not shown), a wireless transmitter (not shown), wiring (not shown), dogs (not shown), slips (not shown), etc. Automatic packer 100 also includes a motive device 300, disposed on tool body 105.
  • As illustrated in FIG. 23, automatic packer 100 is shown after actuation. In this embodiment, after sensors (not shown) determined automatic packer 100 reached the predefined location within wellbore 220, the sealing elements 110 were radially expanded into contact with the wellbore 220 walls, thereby isolating the wellbore into a top portion 310 and a bottom portion 315. After actuation, automatic packer 100 may stay within the wellbore 220, however, motive device 300 may be disconnected from tool body 105 and returned to the surface. In this embodiment, motive device 300 was disconnected from tool body 105 after actuation of sealing elements 110, however, in other embodiments, motive device 300 may be disconnected from tool body 105 prior to the actuation of sealing elements 110. Motive device 300 may return to the surface of wellbore 220 through natural flow of fluids within the wellbore, or may be pulled to the surface using wireline, coiled tubing, or the like. In still other embodiments, motive device may be returned to the surface using the motive abilities of motive device 300. Because motive device 300 may be returned to the surface of the wellbore 220, motive device 300 may be reused in other packer actuation implementations.
  • Referring to FIG. 24, a cross-sectional view of an automatic packer 100 disposed in a wellbore according to embodiments of the present disclosure is shown. In this embodiment, automatic packer 100 includes a tool body 105, a sealing element 110, and sensors (not shown). Automatic packer 100 may also include other various components necessary to actuate or control automatic packer 100 such as, for example, a data controller (not shown), a wireless transmitter (not shown), wiring (not shown), dogs (not shown), slips (not shown), etc. Automatic packer 100 also includes a drill bit 320 disposed at a lead end 322 of automatic packer 100.
  • In certain wellbore 220, an obstruction 325 may form at some point within the wellbore 220 that may prevent a downhole tool, such as automatic packer 110, from reaching a desired target location. Obstructions 325 may be formed from rock fragments, perforation fragments, scale build up, etc., and may be located on the walls of the wellbores 220 or within the central flow bore of the wellbore 220. Depending on the size of the obstructions 325, the obstructions 325, in additional to preventing automatic packer 100 from reaching a desired location, may restrict the flow of fluids therethrough.
  • As indicated above, in this embodiment automatic packer 100 includes a drill bit 320 that is configured to drill out such obstructions 325 as automatic packer 100 is run into the wellbore 100. FIG. 24 illustrates drill bit 320 in a contracted or non-actuated condition. In this condition, drill bit 320 includes a restricted diameter to prevent the drill bit 320 from contracting the walls of the wellbore 220. Drill bit 320 may include various types of drill bits 320 that are known in the art including, for example, fixed cutter (drag) bits and roller cone bits. While not explicitly shown, fixed cutter bits may include various inserts, such as tungsten carbide inserts that are press fit or brazed into the body of the bit. Such inserts may include a diamond or polycrystalline diamond layer, applied thereto, that increasing the cutting potential of the bit. Those of ordinary skill in the art will appreciate that such inserts may be disposed on fixed cutter bits having particular back and side rakes in order to optimize the cutting action of the specific inserts.
  • Similarly, roller cone style drill bits may be used according to embodiments of the present disclosure. Roller cone style drill bits may include one, two, three, or more cones, with each cone having a plurality of inserts disposed thereon. As with fixed cutter drill bits, the inserts of roller cone drill bits may be press fit or brazed into the individual cones and each cone and insert may be configured to optimize the cutting action of the bit. For example, inserts of various geometries may be used with roller cone bits to further increase the cutting action of the roller cone bit.
  • In addition to fixed cutter and roller cone drill bits, other types of drill bits may be used according to embodiments of the present invention. For example, a reamer style bit may be used in embodiments of automatic packer 100. Traditional reamers include radially expandable arms housing a plurality of cutting sections or cutting elements that are configured to cut through formation or other obstructions 325. The arms of reamers may be configured to expand in one or more directions, such as into contact with the sidewalls of a wellbore 220, thereby allowing the cutting elements that are disposed thereon to contact an obstruction 325. Those of ordinary skill in the art will appreciate that the types of drill bits 320 discussed herein are merely exemplary and any type of drill bit 320 may be disposed on automatic packer 100.
  • Referring to FIG. 25, a cross-sectional view of an automatic packer 100 disposed in a wellbore according to embodiments of the present disclosure is shown. In this embodiment, automatic packer 100 includes a tool body 105, a sealing element 110, and sensors (not shown). Automatic packer 100 may also include other various components necessary to actuate or control automatic packer 100 such as, for example, a data controller (not shown), a wireless transmitter (not shown), wiring (not shown), dogs (not shown), slips (not shown), etc. Automatic packer 100 also includes a drill bit 320 disposed at a lead end 322 of automatic packer 100.
  • FIG. 25 shows automatic packer 100 that has encountered an obstruction 325 and actuated drill bit 320. As illustrated, drill bit 320 has radially expanded, thereby allowing drill bit to substantially fill the diameter of wellbore 220, thereby allowing obstruction 325 to be substantially removed. Drill bit 320 may be expanded through various techniques. For example, in one embodiment, drill bit 320 may be held in a collapsed or closed position through the use of, for example, lock rings, collapsed teeth, springs, or the like. When an obstruction 325 is encountered, automatic packer 100 may release drill bit 320, thereby allowing drill bit 320 to expand into an open or uncollapsed position. In order to release drill bit 320 from a closed position, automatic packer 100 may cause a burst or rupture disk to break, thereby releasing drill bit 320. In still other embodiments, hydraulic pressure may be used to release and/or hold drill bit 320 in an open position. In still other embodiments, an electric signal may be sent by automatic packer 100 to cause drill bit 320 to move into an open position. Those of ordinary skill in the art will appreciate that once open, drill bit 320 may remain in an open position. In other embodiments, automatic packer 100 may issue a second command to retract drill bit 320 into a closed position after the obstruction 325 is cleared.
  • Referring to FIG. 26, a cross-sectional view of an automatic packer 100 disposed in a wellbore according to embodiments of the present disclosure is shown. In this embodiment, automatic packer 100 includes a tool body 105, a sealing element 110, and sensors (not shown). Automatic packer 100 may also include other various components necessary to actuate or control automatic packer 100 such as, for example, a data controller (not shown), a wireless transmitter (not shown), wiring (not shown), dogs (not shown), slips (not shown), etc. Automatic packer 100 also includes a drill bit 320 disposed at a lead end 322 of automatic packer 100.
  • FIG. 26 shows drill bit 320 clearing obstruction 325. Drill bit 320 may clear obstruction 325 by rotating in order to cut through the obstruction, or, depending on the type of obstruction 325, contact alone without rotation may be enough to clear the obstruction 325. Rotation of drill bit 320 may include rotation of automatic packer 100, or drill bits 320 may rotate independent from automatic packer 100. In certain embodiments, automatic packer 100 having a drill bit 320 may also benefit from being disposed in wellbore 220 through use of a motive device (300 in FIG. 22). In such an embodiment, the motive device may be used to rotate drill bit 320 and/or automatic packer 100.
  • In certain embodiments, the data controller or PLC of the automatic packer 100 may be connected to one or more sensors in order to detect when an obstruction 325 exists. The data controller/PLC along with the sensors may also be used to determine when the obstruction 325 has been cleared.
  • Referring to FIG. 27, a schematic representation of an automatic packer according to embodiments of the present disclosure is shown. FIG. 27 provides a schematic overview of the different actuations that an automatic packer may be configured for. Those of ordinary skill in the art will appreciate that not every function much be present on every embodiment. In certain embodiments, the automatic packer may be used to achieve one goal, while in other embodiments, the automatic packer may have a number of different responsibilities while downhole.
  • Unlike existing packers that serve a single function of being run into a wellbore than then actuated to isolate a portion of the wellbore, the automatic packer disclosed herein includes a programmable logic controller (PLC) that includes, for example, a microprocessor and a memory (400). The memory may be used to store data that is gather downhole or may be used to store instructions for causing the automatic packer to perform specific functions downhole. For example, the PLC may be used to automatic cause the automatic packer to actuate sealing elements at a particular location within a wellbore. PLC may also be used to drive a motive device to a particular location within a wellbore, deploy a perforator at a desired location, or to control other devices.
  • PLC is connected to a power supply (405), which may also be connected to a battery recharge system (410). The power supply (405) may include a battery, such as a rechargeable lithium ion battery, that powers the PLC while the automatic packer is in the wellbore. The battery recharge system (410) may provide recharge to the battery through, for example, downhole heat induction, flowing phases through a turbine, kinetic recharging, etc. Those of ordinary skill in the art will appreciate that any type of recharging system may be used to recharge the power supply while the automatic packer is downhole. Additionally, in certain embodiments, the battery recharge system may be configured to connect to a wellbore surface power supply through wires, thereby allowing the automatic packer to be powered from the surface or to allow the power supply to be recharged from the surface.
  • The automatic packer also includes one or more sensor assemblies (415). The sensor assemblies may include sensors for measuring a temperature, a pressure, a fluid type, a density, a specific gravity, an induction, a conduction, a refraction, infrared signal, a fiber optic signal, a load, an acceleration, a velocity, an ultrasonic signal, a tachometer measurement, a wireless transmission, a gyroscopic measurement, a casing collar locator measurement, a modular reservoir dynamic test measurement, and/or a position within the well. The sensor assemblies (415) may be connected directly to the PLC (400), thereby allowing the PLC to know the conditions in the wellbore that may affect the automatic packer. Based on the measurements of the sensor assemblies (415), the PLC may carry out predefined instruction, thereby allowing the automatic packer to act independently from the surface of the wellbore.
  • As explained in detail above, the automatic packer disclosed herein is capable of performing a number of different actuations while downhole. Because the automatic packer is equipped with a PLC (400) capable of automatically actuating different aspects of the automatic packer, the automatic packer is capable of performing number functions during a single trip into a wellbore. PLC may be used to control a motive device (420) of the automatic packer. For example, the PLC may be programmed with instructions to drive to a particular depth within a wellbore. The motive device (420) may be actuated by the PLC (400) to start going down within a wellbore. The sensor assemblies (415) may substantially continuously measure the progress of the automatic packer within the wellbore. When the sensor assemblies (415) measure the desired depth, the PLC (400) may send a control signal to the motive device (420) effectively telling the movement to stop. Thus, PLC (415) may be used to control the depth to which the automatic packer progresses within a wellbore.
  • The automatic packer may also include one or more sealing elements (425). When sensor assemblies (415) provide information to PLC (400) indicating a predefined location for deployment has occurred, the PLC (400) may actuate sealing elements (425), thereby isolating a portion of the wellbore. Similarly, the PLC (400) may be used to actuate one or more perforators (430). As explained above, the PLC (400) may include instructions to both expand the perforators (430) as well as instructions that cause the perforators (430) to detonate at a particular location.
  • In addition to sealing and perforating a wellbore, the PLC (400) may also be used to control other devices (435). For example, PLC (400) may be used to control a drilling operation of the automatic packer. As previously explained in detail, automatic packer may be equipped with one or more different types of drill bits. In one embodiment, the PLC (400) may be used to control a laterally drilling drill bit that is capable of drilling and placing perforation charges. In other embodiments, PLC (400) may be used to actuate and drill out an obstruction in the wellbore. In either case, PLC (400) may use inputs from the sensor assemblies (415) in order to determine when and where to drill. Those of ordinary skill in the art will appreciate that PLC (400) may also be used to control other devices (435) that may be disposed on the automatic packer.
  • PLC (400) may also be used to transfer data (440). For example, in one embodiment, the automatic packer may be disposed downhole at a desired depth and actuated to seal the wellbore. The sensor assemblies (415) may then be used to gather data about the sealed section of the wellbore. When the desired data is acquired, PLC (400) may instruct the automatic packer to provide a data transfer (440), thereby sending the acquired data to the surface. The data transfer (440) may use a wireless connection, or alternatively, may be sent through wires or drill pipe that is connected to the surface.
  • PLC (400) may thus be used to both receive and send control signs for controlling the operations of the automatic packer downhole. In addition to controlling the actions of the automatic packer while downhole, the PLC (400) may be configured to receive control signals from the surface that change the instructions or functionality of the automatic packer. For example, based on the data gathered by the automatic packers while downhole, a control signal from the surface may be sent to PLC (400) providing instructions for performing another downhole operation. Examples of downhole operations that may be modified include sealing a different section of the wellbore, moving to a different location to perform data gathering, perforating a section of a wellbore, drilling a section of a wellbore, and the like. Because the automatic packer has a PLC (400) that allows data to be sent and received, a wellbore engineer at the surface may have greater control over aspects of the operation. For example, based on the information gathered by the automatic packer and sent to the surface, one or more wellbore parameters may be adjusted. Examples of wellbore parameters that may be adjusted in response to data gathered by the automatic packer include, a fluid flow rate, a fluid type, a type of perforation, a production interval, a production location, etc.
  • Advantageously, embodiments of the present disclosure may allow for the automated setting of packing elements within wells. More specifically, embodiments of the present disclosure may allow an operator to determine where within a well a packer is to be set and deploy the packer directly into the well. Because the packer is deployed directly into the well, expensive and time consuming running tools may be avoided. For example, automatic packers according to embodiments disclosed herein may be released freely into the wellbore without the aid of tubing or wireline. Upon falling to a desired location within the well, the automatic packers may actuate without further signal from the surface. Embodiments disclosed herein may also provide an automatic packer that may temporarily isolate a portion of the well, gather data through sensors, and then release and return to the surface. The automatic packer may return to the surface through natural flow of the well or through the use of wireline or other motive means.
  • Advantageously, embodiments of the present disclosure may allow for substantially automated perforation operations to be completed within wells. Upon isolation of a section of a well, an extendable perforator may be released from an automatic packer. The extendable perforator may then longitudinally expand within the well bore, spacing charges as the extendable perforated extends. Upon signal from the surface, based on timing, or based on the fulfillment of predefined criteria, the perforator may be discharged, thereby perforating the well.
  • Advantageously, embodiments of the present disclosure may allow for packers to be automatically set based on a number of measured criteria. For example, sensors on the automatic packer may measure a temperature, a pressure, a fluid type, a load, an acceleration, a velocity, a tachometer measurement, a casing collar locator measurement, a modular reservoir dynamic test measurement, and/or a position. When a predefined criteria is met, e.g., a density, specific gravity, induction, conduction, refraction, infrared, a specific temperature, fluid type, load, acceleration, velocity, a tachometer measurement, a casing collar measurement, a modular reservoir dynamic test measurement, and/or position is measured, the packer may be set to automatically actuate.
  • Advantageously, embodiments of the present disclosure may provide for one trip isolation and perforation of sections of a well. Because the perforator is extendable from the packer, after actuation of the packer, perforation may occur without running a separate perforator into the well.
  • Advantageously, embodiments of the present disclosure may provide for one trip isolation and perforation of single and multiple sections of a well that will help assist on fracture or treatment jobs of a well. Because the perforator is extendable from the packer, after actuation of the packer, perforation may occur without running a separate perforator run into the well and may be able to continue fracturing multiple stages by perforating and isolating each stage with minimal downtime. Such a one trip system may thus increase efficiency and reduce cost.
  • Also advantageously, embodiments of the present disclosure may provide for one trip isolation and perforation systems that allow for actuation of devices in a section of a well. Such devices may thus be capable of isolating deviated and lateral parts of a well by having a tractor or mobile device that may take the devices to the depth required.
  • Advantageously, embodiments of the present disclosure may provide for one trip isolation, perforation, data recordation, transmission of data to surface, release of packer, and removal of the packer at the surface of a well. Additionally, apparatuses disclosed herein may provide devices that can temporarily or permanently isolate, perforate, gather data and recover packer by automatic control and or wireless commands.
  • While the present invention has been described with respect to the above-noted embodiments, those skilled in the art, having the benefit of this disclosure, will recognize that other embodiments may be devised that are within the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the appended claims.

Claims (27)

What is claimed is:
1. A downhole apparatus comprising:
a tool body;
a sealing element disposed within the tool body; and
at least one sensor disposed on the tool body, wherein the sensor is configured to take measurements from a well, and
wherein when the sensor measures an actuation condition, the sensor signals the sealing element to actuate.
2. The downhole apparatus of claim 1, further comprising a power source connected to the at least one sensor.
3. The downhole apparatus of claim 1, wherein the sensor is configured to measure at least one of a temperature, a pressure, a fluid type, a load, a density, a specific gravity, an induction, a conduction, a refraction, an infrared signal, a fiber optic signal, an acceleration, a velocity, a wireless transmission, a gyroscopic measurement, an ultrasonic signal, a tachometer measurement, a casing collar locator, a modular reservoir dynamic test, and a position.
4. The downhole apparatus of claim 1, further comprising at least one data controller connected to the sensor.
5. The downhole apparatus of claim 1, further comprising at least one wireless transmitter connected to the at least one sensor.
6. The downhole apparatus of claim 1, further comprising an extendable perforator.
7. The downhole apparatus of claim 6, wherein at least one perforation charge is disposed on the extendable perforator.
8. The downhole apparatus of claim 6, wherein the extendable perforator comprises a line and at least one perforation charge disposed on the line.
9. The downhole apparatus of claim 8, wherein the extendable perforator further comprises at least one retention device disposed at a terminal end of the extendable perforator.
10. The downhole apparatus of claim 9, wherein the at least one retention device comprises an engagement surface configured to hold the retention device against an inner diameter of the well.
11. A method of sealing a portion of a well:
disposing an automatic packer in the well, wherein the automatic packer comprises a tool body, a sealing element disposed within the tool body, and a sensor disposed on the tool body;
measuring a condition within the well;
determining an actuation condition with the sensor, and
expanding the sealing element into contact with an inner diameter of the well when the actuation condition is determined.
12. The method of claim 11, wherein the expanding comprises radially expanding the sealing element.
13. The method of claim 11, wherein the actuation condition comprises at least one of a temperature, a pressure, a fluid type, a load, an acceleration, a velocity, and a position.
14. The method of claim 11, further comprising determining a position within the well by measuring a number of tubular sections with the sensor.
15. The method of claim 11, wherein the automatic packer moves freely within the well.
16. A method of perforating a well:
disposing an automatic packer in the well, wherein the automatic packer comprises a tool body, a sealing element disposed within the tool body, and a sensor disposed on the tool body;
measuring a condition within the well;
determining an actuation condition with the sensor;
expanding the sealing element into contact with an inner diameter of the well when the actuation condition is determined;
extending an extendable perforator having at least one perforation charge within the well; and
discharging at least one perforation charge within the well.
17. The method of claim 16, further comprising engaging at least one retention device of the extendable perforator into contact with the inner diameter of the well.
18. The method of claim 17, further comprising extending a second extendable perforator having at least one perforation charge within the well and discharging the at least one perforation charge disposed on the second extendable perforator within the well.
19. The method of claim 18, wherein the extendable perforator extends above the automatic packer and the second extendable perforator extends below the automatic packer.
20. The method of claim 16, wherein the extendable perforator is extended based on a control signal from the sensor.
21. The method of claim 16, further comprising drilling laterally a borehole into a side of the well and discharging the at least one perforation charge within the borehole.
22. A method of clearing an obstruction from a wellbore, the method comprising:
disposing an automatic packer in a well, wherein the automatic packer comprises a tool body, a sealing element disposed within the tool body, a sensor disposed on the tool body and a drill bit disposed on the tool body;
determining an obstruction is in the well;
actuating the drill bit; and
removing the obstruction from the well with the drill bit.
23. A downhole apparatus comprising:
a tool body;
a sealing element disposed within the tool body;
a motive device attached to the tool body; and
at least one sensor disposed on the tool body, wherein the sensor is configured to take measurements from a well.
24. A method of gathering data from a wellbore, the method comprising:
disposing an automatic packer in a well, wherein the automatic packer comprises a tool body,
a sealing element disposed within the tool body, and a sensor disposed on the tool body;
actuating the sealing element;
isolating a first portion of the well from a second portion of the well;
gathering data within at least one of the first portion of the well and the second portion of the well with the sensor; and
transmitting the gathered data to a surface of the well.
25. The method of claim 24, further comprising receiving data from the surface of the well to the automatic packer.
26. The method of claim 24, further comprising adjusting a wellbore parameter based on the gathered data transmitted to the surface of the well.
27. A method of perforating a well, the method comprising:
disposing an automatic packer in a well, wherein the automatic packer comprises a tool body, a sealing element disposed within the tool body, a sensor disposed on the tool body, an extendable drilling mechanism having a drill bit, and a plurality of perforation charges;
actuating the sealing element;
perforating a casing with at least one perforation charge;
drilling a bore with the extendable drilling mechanism;
extending arms of the extendable drilling mechanism into the bore; and
perforating the bore with at least one perforation charge.
US13/959,912 2013-08-06 2013-08-06 Automatic packer Abandoned US20150041124A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/959,912 US20150041124A1 (en) 2013-08-06 2013-08-06 Automatic packer
US14/135,740 US10329863B2 (en) 2013-08-06 2013-12-20 Automatic driller
PCT/US2014/045740 WO2015020748A2 (en) 2013-08-06 2014-07-08 Automatic driller
PCT/US2014/045728 WO2015020747A1 (en) 2013-08-06 2014-07-08 Automatic packer
US16/452,183 US20200157904A1 (en) 2013-08-06 2019-06-25 Automatic driller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/959,912 US20150041124A1 (en) 2013-08-06 2013-08-06 Automatic packer

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/135,740 Continuation US10329863B2 (en) 2013-08-06 2013-12-20 Automatic driller
US14/135,740 Continuation-In-Part US10329863B2 (en) 2013-08-06 2013-12-20 Automatic driller

Publications (1)

Publication Number Publication Date
US20150041124A1 true US20150041124A1 (en) 2015-02-12

Family

ID=52447600

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/959,912 Abandoned US20150041124A1 (en) 2013-08-06 2013-08-06 Automatic packer

Country Status (2)

Country Link
US (1) US20150041124A1 (en)
WO (1) WO2015020747A1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180058198A1 (en) * 2016-08-30 2018-03-01 Mehmet Deniz Ertas Zonal Isolation Devices Including Sensing and Wireless Telemetry and Methods of Utilizing the Same
CN109209340A (en) * 2018-10-11 2019-01-15 江苏华尔威科技集团有限公司 A kind of low temperature resistant high-precision crude oil single well metering system
US10344583B2 (en) 2016-08-30 2019-07-09 Exxonmobil Upstream Research Company Acoustic housing for tubulars
US10364669B2 (en) 2016-08-30 2019-07-30 Exxonmobil Upstream Research Company Methods of acoustically communicating and wells that utilize the methods
US10408047B2 (en) 2015-01-26 2019-09-10 Exxonmobil Upstream Research Company Real-time well surveillance using a wireless network and an in-wellbore tool
US10415376B2 (en) 2016-08-30 2019-09-17 Exxonmobil Upstream Research Company Dual transducer communications node for downhole acoustic wireless networks and method employing same
US10465505B2 (en) 2016-08-30 2019-11-05 Exxonmobil Upstream Research Company Reservoir formation characterization using a downhole wireless network
US10487647B2 (en) 2016-08-30 2019-11-26 Exxonmobil Upstream Research Company Hybrid downhole acoustic wireless network
US10526888B2 (en) 2016-08-30 2020-01-07 Exxonmobil Upstream Research Company Downhole multiphase flow sensing methods
US10690794B2 (en) 2017-11-17 2020-06-23 Exxonmobil Upstream Research Company Method and system for performing operations using communications for a hydrocarbon system
US10697287B2 (en) 2016-08-30 2020-06-30 Exxonmobil Upstream Research Company Plunger lift monitoring via a downhole wireless network field
US10697288B2 (en) 2017-10-13 2020-06-30 Exxonmobil Upstream Research Company Dual transducer communications node including piezo pre-tensioning for acoustic wireless networks and method employing same
US10711600B2 (en) 2018-02-08 2020-07-14 Exxonmobil Upstream Research Company Methods of network peer identification and self-organization using unique tonal signatures and wells that use the methods
US10724363B2 (en) 2017-10-13 2020-07-28 Exxonmobil Upstream Research Company Method and system for performing hydrocarbon operations with mixed communication networks
US10771326B2 (en) 2017-10-13 2020-09-08 Exxonmobil Upstream Research Company Method and system for performing operations using communications
US10794159B2 (en) 2018-05-31 2020-10-06 DynaEnergetics Europe GmbH Bottom-fire perforating drone
US10837276B2 (en) 2017-10-13 2020-11-17 Exxonmobil Upstream Research Company Method and system for performing wireless ultrasonic communications along a drilling string
US10844708B2 (en) 2017-12-20 2020-11-24 Exxonmobil Upstream Research Company Energy efficient method of retrieving wireless networked sensor data
US10883363B2 (en) 2017-10-13 2021-01-05 Exxonmobil Upstream Research Company Method and system for performing communications using aliasing
US11035226B2 (en) 2017-10-13 2021-06-15 Exxomobil Upstream Research Company Method and system for performing operations with communications
US11156081B2 (en) 2017-12-29 2021-10-26 Exxonmobil Upstream Research Company Methods and systems for operating and maintaining a downhole wireless network
US11180986B2 (en) 2014-09-12 2021-11-23 Exxonmobil Upstream Research Company Discrete wellbore devices, hydrocarbon wells including a downhole communication network and the discrete wellbore devices and systems and methods including the same
US11203927B2 (en) 2017-11-17 2021-12-21 Exxonmobil Upstream Research Company Method and system for performing wireless ultrasonic communications along tubular members
US11268378B2 (en) 2018-02-09 2022-03-08 Exxonmobil Upstream Research Company Downhole wireless communication node and sensor/tools interface
US20220081982A1 (en) * 2020-09-03 2022-03-17 Defiant Engineering, Llc Downhole intervention and completion drone and methods of use
US11293280B2 (en) 2018-12-19 2022-04-05 Exxonmobil Upstream Research Company Method and system for monitoring post-stimulation operations through acoustic wireless sensor network
US11313215B2 (en) 2017-12-29 2022-04-26 Exxonmobil Upstream Research Company Methods and systems for monitoring and optimizing reservoir stimulation operations
US11408279B2 (en) 2018-08-21 2022-08-09 DynaEnergetics Europe GmbH System and method for navigating a wellbore and determining location in a wellbore
US11408275B2 (en) * 2019-05-30 2022-08-09 Exxonmobil Upstream Research Company Downhole plugs including a sensor, hydrocarbon wells including the downhole plugs, and methods of operating hydrocarbon wells
WO2022251627A1 (en) * 2021-05-27 2022-12-01 Geodynamics, Inc. Expandable perforating gun string and method
US11834920B2 (en) 2019-07-19 2023-12-05 DynaEnergetics Europe GmbH Ballistically actuated wellbore tool
US11952886B2 (en) 2018-12-19 2024-04-09 ExxonMobil Technology and Engineering Company Method and system for monitoring sand production through acoustic wireless sensor network

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108756805B (en) * 2018-04-25 2021-01-29 淮安市井神钻采机具有限公司 Double-sealing multi-function packer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2210125A (en) * 1937-11-01 1940-08-06 Lane Wells Co Gun perforator for well casings
US3378069A (en) * 1964-08-13 1968-04-16 Schlumberger Technology Corp Well maintenance and completion tools
US7322416B2 (en) * 2004-05-03 2008-01-29 Halliburton Energy Services, Inc. Methods of servicing a well bore using self-activating downhole tool

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745971A (en) * 1983-04-29 1988-05-24 Ava International Corporation Multiple string well packer
US5469916A (en) * 1994-03-17 1995-11-28 Conoco Inc. System for depth measurement in a wellbore using composite coiled tubing
US6046685A (en) * 1996-09-23 2000-04-04 Baker Hughes Incorporated Redundant downhole production well control system and method
US6595289B2 (en) * 2001-05-04 2003-07-22 Weatherford/Lamb, Inc. Method and apparatus for plugging a wellbore
WO2003060281A2 (en) * 2001-12-21 2003-07-24 The Regents Of The University Of California Stacked borehole packer modules
US6843317B2 (en) * 2002-01-22 2005-01-18 Baker Hughes Incorporated System and method for autonomously performing a downhole well operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2210125A (en) * 1937-11-01 1940-08-06 Lane Wells Co Gun perforator for well casings
US3378069A (en) * 1964-08-13 1968-04-16 Schlumberger Technology Corp Well maintenance and completion tools
US7322416B2 (en) * 2004-05-03 2008-01-29 Halliburton Energy Services, Inc. Methods of servicing a well bore using self-activating downhole tool

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11180986B2 (en) 2014-09-12 2021-11-23 Exxonmobil Upstream Research Company Discrete wellbore devices, hydrocarbon wells including a downhole communication network and the discrete wellbore devices and systems and methods including the same
US10408047B2 (en) 2015-01-26 2019-09-10 Exxonmobil Upstream Research Company Real-time well surveillance using a wireless network and an in-wellbore tool
US20180058198A1 (en) * 2016-08-30 2018-03-01 Mehmet Deniz Ertas Zonal Isolation Devices Including Sensing and Wireless Telemetry and Methods of Utilizing the Same
US11828172B2 (en) 2016-08-30 2023-11-28 ExxonMobil Technology and Engineering Company Communication networks, relay nodes for communication networks, and methods of transmitting data among a plurality of relay nodes
US10344583B2 (en) 2016-08-30 2019-07-09 Exxonmobil Upstream Research Company Acoustic housing for tubulars
US10364669B2 (en) 2016-08-30 2019-07-30 Exxonmobil Upstream Research Company Methods of acoustically communicating and wells that utilize the methods
US10415376B2 (en) 2016-08-30 2019-09-17 Exxonmobil Upstream Research Company Dual transducer communications node for downhole acoustic wireless networks and method employing same
US10465505B2 (en) 2016-08-30 2019-11-05 Exxonmobil Upstream Research Company Reservoir formation characterization using a downhole wireless network
US10487647B2 (en) 2016-08-30 2019-11-26 Exxonmobil Upstream Research Company Hybrid downhole acoustic wireless network
US10526888B2 (en) 2016-08-30 2020-01-07 Exxonmobil Upstream Research Company Downhole multiphase flow sensing methods
US10590759B2 (en) * 2016-08-30 2020-03-17 Exxonmobil Upstream Research Company Zonal isolation devices including sensing and wireless telemetry and methods of utilizing the same
US10697287B2 (en) 2016-08-30 2020-06-30 Exxonmobil Upstream Research Company Plunger lift monitoring via a downhole wireless network field
US10697288B2 (en) 2017-10-13 2020-06-30 Exxonmobil Upstream Research Company Dual transducer communications node including piezo pre-tensioning for acoustic wireless networks and method employing same
US10724363B2 (en) 2017-10-13 2020-07-28 Exxonmobil Upstream Research Company Method and system for performing hydrocarbon operations with mixed communication networks
US10771326B2 (en) 2017-10-13 2020-09-08 Exxonmobil Upstream Research Company Method and system for performing operations using communications
US10837276B2 (en) 2017-10-13 2020-11-17 Exxonmobil Upstream Research Company Method and system for performing wireless ultrasonic communications along a drilling string
US10883363B2 (en) 2017-10-13 2021-01-05 Exxonmobil Upstream Research Company Method and system for performing communications using aliasing
US11035226B2 (en) 2017-10-13 2021-06-15 Exxomobil Upstream Research Company Method and system for performing operations with communications
US10690794B2 (en) 2017-11-17 2020-06-23 Exxonmobil Upstream Research Company Method and system for performing operations using communications for a hydrocarbon system
US11203927B2 (en) 2017-11-17 2021-12-21 Exxonmobil Upstream Research Company Method and system for performing wireless ultrasonic communications along tubular members
US10844708B2 (en) 2017-12-20 2020-11-24 Exxonmobil Upstream Research Company Energy efficient method of retrieving wireless networked sensor data
US11313215B2 (en) 2017-12-29 2022-04-26 Exxonmobil Upstream Research Company Methods and systems for monitoring and optimizing reservoir stimulation operations
US11156081B2 (en) 2017-12-29 2021-10-26 Exxonmobil Upstream Research Company Methods and systems for operating and maintaining a downhole wireless network
US10711600B2 (en) 2018-02-08 2020-07-14 Exxonmobil Upstream Research Company Methods of network peer identification and self-organization using unique tonal signatures and wells that use the methods
US11268378B2 (en) 2018-02-09 2022-03-08 Exxonmobil Upstream Research Company Downhole wireless communication node and sensor/tools interface
US10794159B2 (en) 2018-05-31 2020-10-06 DynaEnergetics Europe GmbH Bottom-fire perforating drone
US11408279B2 (en) 2018-08-21 2022-08-09 DynaEnergetics Europe GmbH System and method for navigating a wellbore and determining location in a wellbore
CN109209340A (en) * 2018-10-11 2019-01-15 江苏华尔威科技集团有限公司 A kind of low temperature resistant high-precision crude oil single well metering system
US11293280B2 (en) 2018-12-19 2022-04-05 Exxonmobil Upstream Research Company Method and system for monitoring post-stimulation operations through acoustic wireless sensor network
US11952886B2 (en) 2018-12-19 2024-04-09 ExxonMobil Technology and Engineering Company Method and system for monitoring sand production through acoustic wireless sensor network
US11408275B2 (en) * 2019-05-30 2022-08-09 Exxonmobil Upstream Research Company Downhole plugs including a sensor, hydrocarbon wells including the downhole plugs, and methods of operating hydrocarbon wells
US11834920B2 (en) 2019-07-19 2023-12-05 DynaEnergetics Europe GmbH Ballistically actuated wellbore tool
US20220081982A1 (en) * 2020-09-03 2022-03-17 Defiant Engineering, Llc Downhole intervention and completion drone and methods of use
WO2022251627A1 (en) * 2021-05-27 2022-12-01 Geodynamics, Inc. Expandable perforating gun string and method

Also Published As

Publication number Publication date
WO2015020747A1 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
US20200157904A1 (en) Automatic driller
US20150041124A1 (en) Automatic packer
US11377909B2 (en) Extendable cutting tools for use in a wellbore
US10081998B2 (en) Method and apparatus for string access or passage through the deformed and dissimilar contiguous walls of a wellbore
US8127846B2 (en) Wiper plug perforating system
CA2912437C (en) Method and apparatus for operating a downhole tool
EP1182327B1 (en) Apparatus and method for propelling a data sensing apparatus into a subsurface formation
CN111133169B (en) Internal and external downhole architecture with downlink activation
US20120106297A1 (en) Downhole apparatus, device, assembly and method
EP2801693A1 (en) Extendable cutting tools for use in a wellbore
GB2492663A (en) Deformed of blocked passage access
WO2013039670A1 (en) Completing a multi-stage well
CA2831496A1 (en) Method of operating a downhole tool
US9033032B2 (en) Wireless downhole tool positioning control
EP3519664B1 (en) Liner running tool and anchor systems and methods
GB2494780A (en) Apparatus and method of measuring cement bonding before and after the cementation process
WO2023069353A1 (en) Electrically actuated tubular cleaning system
US11268356B2 (en) Casing conveyed, externally mounted perforation concept
CA2844909A1 (en) Extendable cutting tools for use in a wellbore
US20200003024A1 (en) Casing conveyed, externally mounted perforation concept
WO2023069356A1 (en) Electrically activated downhole anchor system

Legal Events

Date Code Title Description
AS Assignment

Owner name: A&O TECHNOLOGIES LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RODRIGUEZ, ALEJANDRO;REEL/FRAME:030986/0462

Effective date: 20130403

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION