US20140002674A1 - Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors - Google Patents

Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors Download PDF

Info

Publication number
US20140002674A1
US20140002674A1 US13/782,920 US201313782920A US2014002674A1 US 20140002674 A1 US20140002674 A1 US 20140002674A1 US 201313782920 A US201313782920 A US 201313782920A US 2014002674 A1 US2014002674 A1 US 2014002674A1
Authority
US
United States
Prior art keywords
lens stack
scores
sensor
array
spatial relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/782,920
Inventor
Jacques Duparre
Andrew McMahon
Dan Lelescu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pelican Imaging Corp
Fotonation Cayman Ltd
Drawbridge Special Opportunities Fund LP
Original Assignee
Pelican Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pelican Imaging Corp filed Critical Pelican Imaging Corp
Priority to US13/782,920 priority Critical patent/US20140002674A1/en
Assigned to PELICAN IMAGING CORPORATION reassignment PELICAN IMAGING CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCMAHON, ANDREW, DUPARRE, JACQUES, LELESCU, DAN
Priority to EP13810429.4A priority patent/EP2867718A4/en
Priority to KR1020157002415A priority patent/KR20150031452A/en
Priority to PCT/US2013/046002 priority patent/WO2014004134A1/en
Priority to CN201380041095.5A priority patent/CN104520754A/en
Priority to JP2015520272A priority patent/JP2015522178A/en
Publication of US20140002674A1 publication Critical patent/US20140002674A1/en
Priority to US15/004,759 priority patent/US9766380B2/en
Assigned to KIP PELI P1 LP reassignment KIP PELI P1 LP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PELICAN IMAGING CORPORATION
Assigned to DBD CREDIT FUNDING LLC reassignment DBD CREDIT FUNDING LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PELICAN IMAGING CORPORATION
Assigned to KIP PELI P1 LP reassignment KIP PELI P1 LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PELICAN IMAGING CORPORATION
Assigned to DBD CREDIT FUNDING LLC reassignment DBD CREDIT FUNDING LLC CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR AND ASSIGNEE PREVIOUSLY RECORDED AT REEL: 037565 FRAME: 0439. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST. Assignors: KIP PELI P1 LP
Assigned to DRAWBRIDGE OPPORTUNITIES FUND LP reassignment DRAWBRIDGE OPPORTUNITIES FUND LP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DBD CREDIT FUNDING LLC
Assigned to DRAWBRIDGE OPPORTUNITIES FUND LP reassignment DRAWBRIDGE OPPORTUNITIES FUND LP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DBD CREDIT FUNDING LLC
Assigned to DRAWBRIDGE SPECIAL OPPORTUNITIES FUND LP reassignment DRAWBRIDGE SPECIAL OPPORTUNITIES FUND LP CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DBD CREDIT FUNDING LLC
Assigned to DRAWBRIDGE SPECIAL OPPORTUNITIES FUND LP reassignment DRAWBRIDGE SPECIAL OPPORTUNITIES FUND LP CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DBD CREDIT FUNDING LLC
Assigned to FOTONATION CAYMAN LIMITED reassignment FOTONATION CAYMAN LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PELICAN IMAGING CORPORATION
Assigned to PELICAN IMAGING CORPORATION reassignment PELICAN IMAGING CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIP PELI P1 LP
Priority to US15/707,747 priority patent/US10261219B2/en
Priority to US16/382,099 priority patent/US11022725B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • H04N5/2254
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0075Arrays characterized by non-optical structures, e.g. having integrated holding or alignment means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • G02B7/005Motorised alignment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/41Extracting pixel data from a plurality of image sensors simultaneously picking up an image, e.g. for increasing the field of view by combining the outputs of a plurality of sensors

Definitions

  • the present invention generally relates to actively aligning lens stack arrays with arrays of focal planes.
  • array cameras are characterized in that they include an imager array that has multiple arrays of pixels, where each pixel array is intended to define a focal plane, and each focal plane has a separate lens stack.
  • each focal plane includes a plurality of rows of pixels that also forms a plurality of columns of pixels, and each focal plane is contained within a region of the imager that does not contain pixels from another focal plane.
  • An image is typically formed on each focal plane by its respective lens stack.
  • the array camera is constructed using an imager array that incorporates multiple focal planes and an optic array of lens stacks.
  • a method for actively aligning a lens stack array with a sensor that includes a plurality of focal planes, where each focal plane includes a plurality of rows of pixels that also form a plurality of columns of pixels and each focal plane is contained within a region of the imager array that does not contain pixels from another focal plane includes: aligning the lens stack array relative to the sensor in an initial position, where the lens stack array includes a plurality of lens stacks and the plurality of lens stacks forms separate optical channels for each focal plane in the sensor; varying the spatial relationship between the lens stack array and the sensor; capturing images of a known target using a plurality of active focal planes at different spatial relationships between the lens stack array and the sensor, where the known target includes at least one region of interest; scoring the images captured by the plurality of active focal planes, where the resulting scores provide a direct comparison of the extent to which at least one region of
  • scoring the images captured by the plurality of active focal planes includes computing modulation transfer function (MTF) scores for the images.
  • MTF modulation transfer function
  • comparison of the scores of images captured by a plurality of the active focal planes is based upon: a comparison of the scores of the images captured by a plurality of the active focal planes at the selected spatial relationship to the scores of images captured by the same active focal planes at different spatial relationships; and the variation between the scores of the images captured by the active focal planes at the selected spatial relationship.
  • the comparison of scores includes omitting from consideration an image captured by an active focal plane, when the score of the image captured by the active focal plane fails to satisfy at least one predetermined criterion.
  • the at least one predetermined criterion includes the score of the image captured by the active focal plane being within a predetermined range.
  • the method includes deactivating an active focal plane, when the image captured by the active focal plane is omitted from consideration.
  • the comparison of scores includes determining a mathematical relationship for each of a plurality of active focal planes that characterizes the relationship between the scores for the images captured by the respective active focal planes and the spatial relationship between the lens stack array and the sensor.
  • the comparison of scores further includes computing a best-fit plane using the determined mathematical relationships, where the best-fit plane, defines a desirable spatial relationship in accordance with predetermined criterion.
  • the predetermined criterion includes maximizing scores while minimizing the variance of the scores.
  • the known target includes a central region of interest and at least one peripheral region of interest; the images are scored such that a score is provided for each region of interest visible in each image, the score being indicative of the extent to which the respective region of interest is focused in the image; the comparison of scores includes determining mathematical relationships for each of a plurality of active focal planes that characterize the relationships between the scores of the extent to which the central region of interest is focused in the images captured by the respective active focal plane and the spatial relationship between the lens stack array and the sensor; and the scores of the extent to which the at least one peripheral region of interest is focused in the images captured by the respective active focal plane and the spatial relationship between the lens stack array and the sensor.
  • the comparison of scores further includes computing, using the determined mathematical relationships: a first best-fit plane that defines a spatial relationship between the lens stack array and the sensor based on each active focal plane's ability to focus on a central region of interest according to predetermined criterion; a second best-fit plane that defines a spatial relationship between the lens stack array and the sensor based on each active focal plane's ability to focus on the at least one peripheral region of interest according to predetermined criterion; and a plurality of planes incrementally spaced that lie between the first and second best-fit planes.
  • selecting a spatial relationship between the lens stack array and the sensor includes using at least one predetermined criterion to select one of: a spatial relationship defined by the first best-fit plane, a spatial relationship defined by the second best-fit plane, and a spatial relationship defined by one of the plurality of planes.
  • the at least one predetermined criterion is based upon: at each spatial relationship defined by the computed planes, averaging the scores indicative of the extent to which the central region of interest is focused, the scores being averaged across all active focal planes at the respective spatial relationship; at each spatial relationship defined by the computed planes, averaging the scores indicative of the extent to which the at least one peripheral region of interest is focused, the scores being averaged across all active focal planes at the respective spatial relationship; and assessing the variation in the determined average scores between the spatial relationships.
  • aligning the lens stack array relative to the sensor in an initial position further includes: performing an initial sweep of the lens stack array relative to the sensor; capturing an initial set of images of a known target including a central region of interest, at varied spatial relationships along the initial sweep, using a plurality of active focal planes; determining focus scores for the central region of interest in a plurality of the captured images; determining an initial set of mathematical relationships for each of the plurality of active focal planes used to capture the initial set of images, where the mathematical relationships characterize the relationship between the focus scores and the spatial relationship between the lens stack array and the sensor; computing an initial best-fit plane using the initial set of mathematical relationships; and aligning the lens stack array with the computed initial best-fit plane.
  • varying the spatial relationship between the lens stack array and the sensor involves sweeping the lens stack array relative to the sensor.
  • the lens stack array is swept in a direction substantially normal to the surface of the sensor.
  • scoring the images captured by the plurality of active focal planes includes: determining preliminary scores for the captured images in accordance with a first criterion; determining scores for a related set of captured images in accordance with a second criterion; and extrapolating the preliminary scores as a function of the spatial relationship between the lens stack array and the sensor based on the scores determined for the related set of captured images.
  • FIG. 1 conceptually illustrates an array camera.
  • FIG. 2 illustrates an array camera module
  • FIG. 3 illustrates an array camera module that employs a ⁇ filter.
  • FIG. 4 conceptually illustrates variations in focal length that can occur during the manufacture of a camera module using a lens stack array and a sensor in accordance with embodiments of the invention.
  • FIG. 5 is a flowchart that illustrates a process for actively aligning a lens stack array and a sensor including an array of corresponding focal planes in accordance with an embodiment of the invention.
  • FIG. 6 schematically illustrates an initial configuration that may be used to actively align a lens stack array with a sensor in accordance with an embodiment of the invention.
  • FIG. 7 illustrates sweeping a lens stack array with respect to a sensor in accordance with an embodiment of the invention.
  • FIG. 8 illustrates a target that may be used during active alignment in accordance with many embodiments of the invention.
  • FIG. 9 is a flowchart that illustrates an active alignment process that uses an iterative computation process to yield an array camera module that is capable of capturing and recording images that have sufficient on-axis and off-axis performance in accordance with an embodiment of the invention.
  • 12/935,504 can be constructed from a lens stack array and a sensor including a plurality of focal planes corresponding to the optical channels in the lens stack array.
  • the combination of a lens stack and its corresponding focal plane can be understood to be a ‘camera module.’
  • the lens stack array of an array camera is constructed so that each optical channel has the same focal length.
  • the large number of tolerances involved in the manufacture of a lens stack array can result in the different optical channels having varying focal lengths.
  • the combination of all the manufacturing process variations typically results in a deviation of the actual (“first order”) lens parameters—such as focal length—from the nominal prescription.
  • each optical channel can have a different axial optimum image location.
  • a lens stack array is actively aligned with an array of focal planes to form an array camera module that is designed to address the detrimental impact that the variance in focal length within a lens stack array may have.
  • active alignment typically refers to a process for aligning an optical system (e.g. a lens stack array) with an imaging system (e.g. comprising a monolithic sensor) to achieve a final desirable spatial arrangement by evaluating the efficacy of the configuration as a function of the spatial relationship between the optical system and the imaging system.
  • this process is implemented by using the configuration to capture and record image data (typically of a known target) in real time as the optical system is moving relative to the imaging system.
  • image data typically of a known target
  • This recorded image data may then be used to align the optical system relative to the imaging system in a desired manner.
  • active alignment can generally be used to determine a spatial relationship that results in a camera module that is capable of recording images that exceed a threshold image quality.
  • a lens stack array may be actively aligned with an array of focal planes in accordance with embodiments of the invention.
  • active alignment in this context can be far more intricate and nuanced than it is in the context of conventional, single-lens, cameras.
  • the spatial orientation of an individual lens stack cannot be separately varied from that of the other lens stacks—instead, varying the spatial orientation of one lens stack invariably changes the spatial orientation of the others. Consequently, it may not be possible for multiple cameras to be spatially located at their own respective most desirable positions.
  • active alignment in the context of array cameras may involve computing a final arrangement that, although does not necessarily place each camera at its own optimal position, sufficiently orients the lens stacks of multiple cameras so that the array camera module as a whole achieves a desirable level of performance.
  • the active alignment of a lens stack array with an array of focal planes typically involves the evaluation of the efficacy of multiple cameras—as opposed to a single camera—at respective varied spatial relationships.
  • the efficacy of a camera is determined by evaluating the camera's captured and recorded images of a known target at varied spatial relationships.
  • the Modulation Transfer Function (MTF) score a numerical score that is indicative of a recorded image's sharpness and thus also focus—may be determined for a given recorded image and used to evaluate a respective camera at a respective spatial orientation.
  • the recorded images may be evaluated at different Regions of Interest (ROIs), and in particular at different field heights.
  • ROIs Regions of Interest
  • an MTF score may be assigned to each ROI within a recorded image.
  • the corresponding cameras may be evaluated as to each ROI, and this evaluation data may be used to conclude a desirable array camera module configuration.
  • only a subset of all of the cameras in an array camera module is used during the evaluation process.
  • the cameras that define this subset may be predetermined, or they may be computationally determined by considering an initial set of image data captured by some or all of the focal planes.
  • the active alignment of an array camera module can involve strategically disabling cameras. For example, if the picture quality of a camera when the array camera module is in an estimated final arrangement is below a specified threshold quality, the camera may be disabled.
  • the active alignment process is initially used to estimate a final arrangement for an array camera module, identify cameras that should be disabled on the basis that they do not achieve a threshold quality and disabling them can improve the overall performance of the other cameras in the camera module, and then compute a final arrangement wherein the disabled cameras are excluded from the computation process. Note that this is possible because an array camera includes a plurality of cameras and is still operable if several of the cameras are deactivated.
  • the array camera may be configured to rely on the remaining active cameras to function, and synthesize an image based on those remaining active cameras.
  • the array camera software By allowing the array camera software to deactivate certain cameras, higher manufacturing yields can be achieved that can reduce the cost of the completed camera module.
  • FIG. 1 illustrates an array camera architecture disclosed in U.S. application Ser. No. 12/935,504.
  • the array camera 100 includes an array camera module 110 , which is connected to an image processing pipeline module 120 and to a controller 130 .
  • the image processing pipeline module 120 is hardware, firmware, software, or a combination for processing the images received from the array camera module 110 .
  • the image processing pipeline module 120 is capable of processing multiple images captured by multiple focal planes in the camera module and can produce a synthesized higher resolution image.
  • the image processing pipeline module 120 provides the synthesized image data via an output 122 .
  • the controller 130 is hardware, software, firmware, or a combination thereof for controlling various operational parameters of the array camera module 110 .
  • the controller 130 receives inputs 132 from a user or other external components and sends operation signals to control the array camera module 110 .
  • the controller can also send information to the image processing pipeline module 120 to assist processing of the images captured by the focal planes in the array camera module 110 .
  • FIG. 1 Although a specific array camera architecture is illustrated in FIG. 1 , camera modules constructed using active alignment processes in accordance with embodiments of the invention can be utilized in any of a variety of array camera architectures. Camera modules that can be utilized in array cameras and processes for manufacturing camera modules utilizing active alignment processes in accordance with embodiments of the invention are discussed further below.
  • FIG. 2 illustrates an exploded view of an array camera module formed by combining a lens stack array with a monolithic sensor that includes a corresponding array of focal planes as disclosed in U.S. application Ser. No. 12/935,504.
  • the array camera module 200 includes a lens stack array 210 and a sensor 230 that includes an array of focal planes 240 .
  • the lens stack array 210 includes an array of lens stacks 220 . Each lens stack creates an optical channel that resolves an image on the focal planes 240 on the sensor. Each of the lens stacks may be of a different type.
  • the optical channels may be used to capture images at different portions of the spectrum and the lens stack in each optical channel may be specifically optimized for the portion of the spectrum imaged by the focal plane associated with the optical channel.
  • an array camera module may be patterned with “ ⁇ filter groups.”
  • ⁇ filter groups refers to a pattern of color filters applied to the lens stack array of a camera module and processes for patterning array cameras with ⁇ filter groups are described in U.S. Patent Application Ser. No. 61/641,164, entitled “Camera Modules Patterned with ⁇ Filter Groups”, Venkataraman et al. The disclosure of U.S. Patent Application Ser. No. 61/641,164 is incorporated by reference herein in its entirety.
  • lens 3 illustrates a single ⁇ filter group, wherein 5 lenses are configured to receive green light, 2 lenses are configured to receive red light, and 2 lenses are configured to receive blue light.
  • the lens stacks may further have one or multiple separate optical elements axially arranged with respect to each other.
  • a lens stack array may employ wafer level optics (WLO) technology.
  • WLO is a technology that encompasses a number of processes, including, for example, molding of lens arrays on glass wafers, stacking of those wafers (including wafers having lenses replicated on either side of the substrate) with appropriate spacers, followed by packaging of the optics directly with the imager into a monolithic integrated module.
  • the WLO procedure may involve, among other procedures, using a diamond-turned mold to create each plastic lens element on a glass substrate. More specifically, the process chain in WLO generally includes producing a diamond turned lens master (both on an individual and array level), then producing a negative mould for replication of that master (also called a stamp or tool), and then finally forming a polymer replica on a glass substrate, which has been structured with appropriate supporting optical elements, such as, for example, apertures (transparent openings in light blocking material layers), and filters.
  • appropriate supporting optical elements such as, for example, apertures (transparent openings in light blocking material layers), and filters.
  • lens stack arrays using specific WLO processes
  • any of a variety of techniques can be used to construct lens stack arrays, for instance those involving precision glass molding, polymer injection molding or wafer level polymer monolithic lens processes. Issues related to variation in back focal length of the lens stacks within lens stack arrays are discussed below.
  • An array camera module is typically intended to be constructed in such a way that each focal plane (i.e. an array of pixels configured to capture an image formed on the focal plane by a corresponding lens stack) is positioned at the focal distance of each lens stack that forms an optical channel.
  • each focal plane i.e. an array of pixels configured to capture an image formed on the focal plane by a corresponding lens stack
  • manufacturing variations can result in the lens stack in each optical channel varying from its prescription, and in many instances, these variations can result in each lens stack within a lens stack array having a different focal length.
  • parameters that may vary amongst individual lens stacks in a lens stack array because of manufacturing variations include, but are not limited to: the radius of curvature in individual lenses, the conic, higher order aspheric coefficient, refractive index, thickness of the base layer, and/or overall lens height.
  • any number of lens prescriptions may be used to characterize the lens fabrication process, and the respective tolerances may involve departures from these prescriptions in any number of ways, each of which may impact the back focal length. Due to the monolithic nature of the sensor, the spatial relationship of the focal planes (with respect to the lens stacks) cannot be individually customized to accommodate this variability.
  • the back focal lengths may further vary between lens stacks from different lens stack arrays fabricated from the same process.
  • variability within tolerance
  • variability in the thickness of the lens substrates and spacers employed in the lens stack, especially those toward the sensor cover glass may further contribute to the variability in the back focal length.
  • variability in the (1) thickness of the sensor cover glass, (2) the bond line thickness between the lens spacer and the sensor cover glass, and (3) any air gaps between the sensor and the cover glass may further exacerbate the variability in the back focal lengths.
  • sample to sample variation may result in defocused camera modules.
  • the array camera module 400 includes a lens stack array 402 in which lens stacks 404 focus light on the focal planes 406 of sensor 408 .
  • variance between the actually fabricated lens stack and its original prescription can result in the lens stack having a focal length that varies slightly from its prescription and consequently an image distance that does not correspond with the distance between the lens stack array and the sensor. Accordingly, the images formed on the focal planes of the sensor can be out of focus.
  • other manufacturing tolerances associated with the assembly of the array camera module including (but not limited to) variations in spacer thickness and alignment of the lens stack array relative to the sensor can impact all of the optical channels.
  • processes for actively aligning a lens stack array with a sensor to construct an array camera module involve reading image data captured by multiple focal planes on the sensor as the lens stack array is moved relative to the sensor.
  • the image data can be utilized to evaluate the resulting image quality at different spatial relationships between the sensor and the lens stack array and the spatial relationship that provides a predetermined threshold level of image quality can be utilized to construct the camera module.
  • a process that actively aligns a lens stack array with a sensor by generally aligning the two, varying their spatial relationship, evaluating the resulting configuration during the variation, and configuring the array camera module using the evaluation data in accordance with an embodiment of the invention is illustrated in FIG. 5 .
  • a lens stack array is generally aligned ( 510 ) with a corresponding sensor that has multiple focal planes.
  • the combination is aligned so that each camera within the configuration is capable of capturing and recording images.
  • the spatial relationship of the lens stack array with respect to the sensor is varied ( 520 ). In several embodiments, the variation is achieved by sweeping the lens stack array with respect to the sensor. Sweeping can be understood to mean moving one component (i.e. either the lens stack array or the sensor) in relation to the other over time. Sweeping may be in one degree of freedom or it can be across many degrees of freedom.
  • the array nature of the camera module means that variations in the x, y, and z-directions, and tip/tilt and rotation of the lens stack array with respect to the sensor can all have significant impact on the imaged data captured by the focal planes on the sensor.
  • focus and consequently sharpness of the cameras is primarily affected by the z-direction and the tip/tilt of the lens stack array with respect to the sensor, with the tip/tilt principally affecting the performance of the corner cameras.
  • the image quality of the camera is primarily driven by the optical system's ‘z-position’ with respect to the sensor.
  • the path of the sweep is predetermined.
  • the quality of the captured image data is evaluated ( 530 ) at the varied spatial relationships.
  • the configuration is intermittently evaluated during a sweep of the lens stack array with respect to the sensor.
  • the configuration is evaluated by evaluating multiple cameras' captured and recorded images of a known target at the varied spatial relationships.
  • only a subset of the configuration's cameras is used for evaluation purposes.
  • An MTF score may be determined for each recorded image and used to evaluate a respective camera at a respective spatial orientation.
  • the recorded images may also be evaluated at its different ROIs. For example, an MTF score may be assigned to each ROI within a recorded image.
  • the array camera module is configured ( 540 ) using the information obtained during evaluation.
  • the configuration involves concluding a spatial relationship between the lens stack array and the sensor that results in the corresponding array camera module being able to capture and record images that exceed a threshold quality.
  • the configuration may also involve disabling cameras that do not surpass a threshold quality.
  • array camera modules include a plurality of cameras, they can still function even when several of the cameras are disabled.
  • the advantage of being able to disable a camera is that the average performance of the array including the camera may be much lower than the average performance of the remaining cameras when the disabled camera is excluded from consideration in determining the appropriate alignment of the lens stack array and sensor.
  • Active alignment processes may begin from any number of initial configurations in accordance with embodiments of the invention.
  • An initial configuration for an active alignment process where a device that is capable of orienting a lens stack array is connected to a lens stack array of a corresponding array camera module, a processor is connected to the corresponding sensor, and a target is positioned and illuminated so that the array camera module can capture and record it in accordance with an embodiment of the invention is illustrated in FIG. 6 .
  • the array camera module 610 includes a lens stack array 620 and a sensor 630 that has corresponding focal planes. The lens stack array and the sensor are generally aligned so that they are capable of capturing and recording images of the target 640 .
  • a device that is capable of spatially orienting the lens stack array 640 is connected to the lens stack array 620 , and a processor 660 is connected to the sensor.
  • the processor 660 is capable of capturing and recording images from the sensor 630 , while the orientation of the lens stack array 620 is being varied, and the active alignment process can thereby be implemented.
  • the combination of the device for spatially orienting the lens stack array 650 and the processor 660 can be understood to be an active alignment machine 670 .
  • the initial configuration involves generally aligning the lens stack array 620 and the sensor 630 so as to ensure that the lens stack array 620 and the sensor 630 are in sufficient translational and rotational alignment such that each lens stack is generally aligned with its corresponding focal plane.
  • Translational motion here refers to motion of a system (i.e. the lens stack array 620 or the sensor 630 ) in a direction parallel to its respective surface.
  • Rotation here refers to rotation of a system about the Z-axis (i.e. the axis defining the distance between the sensor and the lens stack array) relative to the other.
  • General alignment may be achieved by, for example, monitoring a central feature on a test chart, and moving either the lens stack array or the sensor in translation (with respect to the other system) such that the central feature is centrally located within the central camera modules; this would indicate that the systems are in sufficient translational alignment.
  • Either system may then be rotated with respect to the other so that the midpoints of each lens stack array and its corresponding focal plane define a line that runs generally parallel to the Z-axis. During this rotational adjustment, the systems may also be readjusted to preserve (or enhance) adequate translational alignment. In this way, each lens stack array may be generally aligned with its corresponding focal plane.
  • any initial configuration may be implemented that allows the spatial relationship between the lens stack array and the sensor to be varied, and further allows the corresponding array camera module to be evaluated, manipulated, and configured based on an evaluation of it.
  • the varying of spatial relationships between the lens stack array and the sensor in accordance with embodiments of the invention is discussed below.
  • the spatial relationship between a lens stack array and a corresponding sensor may be varied in any number of ways.
  • an active alignment process where a lens stack array is swept in a direction substantially normal to the sensor's planar surface in accordance with embodiments of the invention is illustrated in FIG. 7 .
  • An array camera module 700 includes a lens stack array 710 and a corresponding sensor 720 with an array of focal planes, and the active alignment process sweeps the lens stack array 710 in a predetermined direction 730 substantially normal to the sensor's surface (the z-direction). Note that sweeping the lens stack array in this fashion systematically varies the focus of each camera—typically cameras will be swept in focus and then out of focus.
  • the array camera module may be evaluated on the varied spatial relationships along this sweep.
  • Active alignment processes in accordance with embodiments of the invention can also include tipping, tilting, and/or rotating the lens stack array with respect to the sensor.
  • only the distance between the lens stack array and the sensor is varied in a sweep referred to as a “through focus sweep” and all relevant calculations to determine the optimum alignment (including centering as well as focus and tip/tilt) are made from images captured during the through focus sweep using the respective curve fittings and center of gravity calculations, respectively.
  • a through focus sweep of a skewed lens stack array already provides information about the optimum tip/tilt of the lens stack array relative to the sensor by the appropriate plane fitting calculations of the peak focus positions or equalized MTF, respectively. These calculations are discussed further below.
  • the manner in which the spatial relationship varies is computationally determined.
  • the manner in which the spatial relationship varies may be determined computationally based upon an initial evaluation of the array camera module.
  • the manner in which the spatial relationship varies may change during an active alignment process. For instance, after the lens stack array has been swept in a direction substantially normal to the sensor's planar surface, a processor may compute a different sweeping path that may facilitate a better configuration of the array camera module.
  • the spatial relationship between the lens stack array and the sensor may be varied, the spatial relationship may also be varied in any number of other ways in accordance with embodiments of the invention.
  • the evaluation of the array camera module at the varied spatial relationships is discussed below.
  • evaluating the array camera module during the active alignment process involves having multiple cameras capture and record images of a known target, and evaluating these images.
  • the images may be evaluated by assessing their focus, for example.
  • the assessment of the focus may be performed in any number of ways in accordance with embodiments of the invention.
  • an MTF score may be determined for a given recorded image.
  • an MTF score is an advantageous metric insofar as MTF scores amongst different cameras can be directly compared with one another.
  • a recorded image may be given a ‘focus score’ which can similarly be used to evaluate the recorded image.
  • a focus score may be determined by convolving a kernel over contrasting features in an image, where the resulting value is related to the camera's ability to focus.
  • a focus score may not necessarily be directly comparable to such scores from different cameras; instead a focus score may be more useful in evaluating a single camera.
  • the selection of which scoring metric to use may be determined, in part, by the speed in which the scores can be calculated. For instance, if it takes longer to compute an MTF score than to compute a focus score, the focus score may be used in the evaluation.
  • the selection of which scoring metric to use may also be determined, in part, by the accuracy and precision of the score. For instance, if the MTF score is a more precise means for evaluating image quality, then it may be used to evaluate the camera images.
  • the active alignment process may utilize several methods of evaluating a recorded image, and these methods may not necessarily be concurrent. For example, an evaluation based on focus scoring may be initially used, whereas an evaluation based on an MTF score may later be used. Additionally, the active alignment process may involve relating the different scoring metrics.
  • focus scoring may be used to evaluate the set of images recorded by an array camera, and MTF scoring may be used to evaluate a representative subset of those images.
  • the MTF scores for the subset may then be normalized to the respective focus scores. And this determined relationship may be used to determine MTF scores for the remaining images.
  • FIG. 8 illustrates a known target used in accordance with many embodiments of the invention.
  • the known target 800 includes a central feature 810 that highlights a central ROI, also known as an “on-axis” ROI.
  • the known target further includes features 820 that highlight “off-axis” ROIs.
  • the target illustrated in FIG. 8 may also be used in determining a focus score.
  • the determination of a focus score in conjunction with this target may involve convolving a kernel over areas of the image with contrasting features for each region of interest (e.g. the checkerboard patterns 840 or the dark slanted square against the light background 850 ), wherein the resulting value is proportional to the contrast between the features.
  • the following convolution kernel may be employed:
  • This convolution kernel will yield values that are proportional to a camera's ability to resolve contrast. Note that the value will either be positive or negative depending on whether the region being evaluated is transitioning from light to dark or dark to light. However, whether a region of interest is transitioning from light to dark or vice versa is irrelevant to a camera's ability to focus; therefore the absolute value of these values should be obtained. Then, a focus score for each ROI may be obtained by averaging these absolute values for each ROI.
  • FIG. 8 illustrates a particular known target that may be used in accordance with embodiments of the invention
  • many other embodiments utilize other known targets appropriate to the requirements of specific applications.
  • the off-axis ROIs may be placed in the corners of the target—this allows the performance of the camera to be tested at larger field heights.
  • the ROIs have the advantage that the edges of the features are oriented in such a way that the tangential and sagittal components of the MTF and thus also the astigmatism can be directly derived and compared to prior lens test data.
  • any of a variety of techniques can be used to generate a focus score.
  • the evaluation techniques herein described are merely illustrative. Any techniques for evaluating the efficacy of an array camera module may be incorporated in accordance with embodiments of the invention. Using the evaluation data to configure the array camera module is discussed below.
  • Evaluation data may be used to configure the array camera module in a number of respects.
  • the array camera module is configured to minimize the detrimental impact caused by variance of focal length within a lens stack array.
  • variance within a lens stack array may be caused by manufacturing process variations including (but not limited to) those that affect the following parameters: the radius of curvature in individual lenses, the conic, higher order aspheric coefficient, refractive index, thickness of the base layer, and/or overall lens height.
  • the following manufacturing variations related to the fabrication of multiple lens stack arrays and camera modules may further exacerbate the variability in back focal lengths: the thickness of the lens substrates and spacers employed in the stack, especially those toward the sensor cover glass, the thickness of the sensor cover glass used, bond line thickness between the lens spacer and the sensor cover glass, and any air gap between the sensor and the sensor cover glass.
  • many embodiments evaluate the quality of each camera as a function of its spatial relationship to the sensor; thereafter, the information is used to orient the lens stack array with respect to the sensor so that any deterioration in the quality of the array camera due to the variance in focal length within the lens stack array is lessened.
  • Several embodiments generate mathematical equations that approximately characterize data related to camera quality as a function of spatial relationship, and use the derived equations to compute a desired spatial relationship that lessens the detrimental impact of variance in focal length. For example, some embodiments generate polynomial equations that approximately model the focal scoring data. Note that because of the nature of optics, each lens will typically have a peak focal value, and therefore polynomial equations are well suited to characterize the data. In many embodiments, the polynomial equations are generated by determining coefficients for predetermined generic polynomial equations (i.e. those with undetermined coefficients), such that the resulting equation approximately characterizes the data relating the camera quality to the spatial relationship. Many embodiments then use these derived equations to compute a best fit plane that characterizes a spatial relationship that reduces the detrimental impact of variance in focal length.
  • the best-fit planes may be computed in any number of ways.
  • the best-fit plane may be computed to be a plane that includes an approximation of the peak values of the polynomial equations that characterize focal scoring data as a function of the spatial relationship.
  • focal scoring data may not necessarily be directly comparable across different cameras. Therefore, best-fit planes may also be computed by generating equivalent MTF scores, and determining a plane that maximizes the mean MTF score while minimizing its variance.
  • the best-fit planes may be computed to determine a plane wherein the MTF scores amongst the different lens stacks are equalized within some specified tolerance.
  • any number of balancing algorithms may be employed to effectuate this computation as appropriate to the requirements of a specific application. The determination of these planes may then be used to facilitate the configuration of the array camera module.
  • the configuration process involves orienting the lens stack array with respect to the sensor to form an array camera module that is capable of achieving pictures that have desired characteristics.
  • the lens stack array is oriented with respect to the sensor so as to achieve an array camera module that is capable of recording images, wherein the quality of the on-axis aspects of the recorded image exceeds a specified threshold criterion.
  • the lens stack array is actively aligned with respect to the sensor to achieve an array camera module that is capable of recording images, wherein the quality of the off-axis aspects of the recorded image exceeds a specified threshold criterion.
  • the configuration process may involve disabling cameras that are above a certain threshold quality so as to avoid biasing the best fit plane determination.
  • the lens stack array is actively aligned with respect to the sensor to achieve an array camera module that is capable of recording images, wherein the quality of both on-axis and off-axis regions of interest exceed respective specified threshold qualities.
  • the configuration process involves disabling cameras that perform above or below a certain defined threshold quality.
  • cameras are disabled when their quality, as determined by their ability to focus sharply when in a given spatial orientation, is above or below a threshold value. For example, some embodiments determine whether a camera should be disabled by evaluating an MTF score of its respective recorded images. In many embodiments, if the number of disabled cameras exceeds a specified value, then the array camera module is designated unacceptable.
  • different threshold values can be specified for different types of cameras within the array camera module. For example, in a number of embodiments that employ ⁇ filter groups, different threshold values can be specified for the green cameras, the red cameras, and the blue cameras.
  • information obtained during the evaluation aspect of the active alignment process is used to configure the functionality of the each camera. For example, if it is determined that a particular camera has a focal length that makes it better suited to record images of objects that are at a further distance, the array camera module can be configured to rely more heavily on that camera when synthesizing recorded images of objects at further distances.
  • array camera modules can be configured in any number of ways based on evaluations of the configuration in accordance with embodiments of the invention. Active alignment processes that configure array camera modules so that they are capable of capturing and recording images that have desirable image properties are discussed below.
  • Active alignment processes in accordance with embodiments of the invention can use a variety of metrics to evaluate the image data that is captured during the active alignment process.
  • the active alignment process can optimize image quality in specific regions of the captured images, can optimize image quality in multiple regions of interest and/or can utilize a variety of metrics including (but not limited to) focus scoring and MTF scoring.
  • An active alignment process that uses an iterative computation process to yield an array camera module that is capable of capturing and recording images that have sufficient on-axis and off-axis performance in accordance with an embodiment of the invention is illustrated in FIG. 9 .
  • the process is initially configured ( 902 ) so that a lens stack array and a corresponding sensor are mounted to an active alignment machine in a manner similar to that seen in FIG. 6 , so that they are generally operable as an array camera.
  • This may include generally aligning the lens stack array with its corresponding sensor, which itself may include verifying that the lens stack array and the sensor are in sufficient rotational alignment such that each lens stack is generally aligned with its corresponding focal plane, as described above.
  • a known target with an on-axis ROI and off-axis ROIs (similar to that depicted in FIG. 8 ) is positioned and illuminated so that the array camera module may capture and record its image.
  • the initial configuration may also include deactivating specific cameras in a predetermined fashion so that they do not record images during the alignment process.
  • the lens stack array is swept ( 904 ) in a direction normal to the sensor's planar surface, in a manner similar to that seen in FIG. 7 , and may be swept for a predetermined distance.
  • the active cameras intermittently capture and record ( 906 ) images of the known target.
  • the processor evaluates ( 908 ) the recorded images and assigns a ‘focus score’ for each region of interest in each recorded image for each camera.
  • Polynomial equations are derived ( 910 ) for each region of interest captured by each camera that best characterizes the focus score as a function of the camera's distance from the sensor.
  • the polynomial equations are derived by calculating coefficients for a given a predetermined generic polynomial equation (i.e. a polynomial equation with undetermined coefficients).
  • the polynomial equations will typically have a peak value.
  • An “on-axis best fit plane” is derived ( 912 ) using the peak values of the polynomial equations.
  • the on-axis best fit plane is characterized in that it maximizes the peak values corresponding to the active cameras and/or minimizes the variance in the peak values.
  • the lens stack array is then aligned ( 914 ) with the computed best fit on-axis plane.
  • Each active camera captures and records ( 916 ) an image of the known target.
  • Each recorded image is then evaluated ( 918 ) by determining an MTF score for each ROI.
  • Cameras that do not meet a threshold MTF score are disabled ( 920 ). For example, any cameras that do not have an MTF score within 20% of the median on-axis MTF score may be disabled, and subsequently excluded from further alignment position calculations.
  • This threshold may of course be configurable. In other embodiments, other criteria are utilized to determine which cameras should be disabled. Moreover, if a specified number of cameras are disabled, the array camera is deemed unacceptable.
  • the previously acquired focus scoring data is scaled ( 922 ) using the peak focus score and MTF scores.
  • the MTF Score may be scaled in accordance with the following formula:
  • Scaled Focus Score (Focus Score z /Peak Focus Score)*MTF Score
  • the focus scoring data (absolute values) are exposure/signal-level dependent. Thus different cameras (e.g. blue, green, red cameras) will have different absolute focus score peak values due to their different signal levels.
  • MTF is a metric that is invariant to signal level. Thus, MTF enables the curves for focus score to be normalized such that the curve derived from focus score can also be used to compare each camera's peak performance and not only the position at which peak performance occurs. In other embodiments, any of a variety of metrics appropriate to a specific application can be utilized in determining camera peak performance.
  • polynomial curves may then be derived ( 924 ) that characterize the scaled focus scores.
  • each active camera will be characterized by polynomial equations that characterize the camera's ability to resolve each respective region of interest.
  • a best-fit on axis plane and a best-fit off axis plane are derived ( 926 ); in this instance, the best-fit planes are characterized in that they approximately maximize the mean MTF scores while minimizing their variance.
  • a configurable number of planes that are evenly spaced between the two best-fit planes (on-axis and off-axis) are computed ( 928 ).
  • Scaled focus scores for each camera at their respective corresponding positions along each of those planes are calculated ( 930 ).
  • the lens stack array is then re-aligned ( 934 ) with this computed plane.
  • the efficacy of the process is verified ( 936 ). This may be accomplished by, for example, having each active camera record an image of the known target, determining an MTF score for each ROI within that image, and ensuring that each MTF score surpasses some threshold calculation.
  • any number of processes may be used to achieve an array camera module that is capable of capturing and recording images that have adequate on-axis and off-axis performance in accordance with embodiments of the invention.
  • active alignment processes can be tailored to achieve any number of desirable picture characteristics in accordance with embodiments of the invention.

Abstract

Systems and methods in accordance with embodiments of the invention actively align a lens stack array with an array of focal planes to construct an array camera module. In one embodiment, a method for actively aligning a lens stack array with a sensor that has a focal plane array includes: aligning the lens stack array relative to the sensor in an initial position; varying the spatial relationship between the lens stack array and the sensor; capturing images of a known target that has a region of interest using a plurality of active focal planes at different spatial relationships; scoring the images based on the extent to which the region of interest is focused in the images; selecting a spatial relationship between the lens stack array and the sensor based on a comparison of the scores; and forming an array camera subassembly based on the selected spatial relationship.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The current application claims priority to U.S. Provisional Application No. 61/666,852, filed Jun. 30, 2012, the disclosure of which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention generally relates to actively aligning lens stack arrays with arrays of focal planes.
  • BACKGROUND
  • In response to the constraints placed upon a traditional digital camera based upon the camera obscura, a new class of cameras that can be referred to as array cameras has been proposed. Array cameras are characterized in that they include an imager array that has multiple arrays of pixels, where each pixel array is intended to define a focal plane, and each focal plane has a separate lens stack. Typically, each focal plane includes a plurality of rows of pixels that also forms a plurality of columns of pixels, and each focal plane is contained within a region of the imager that does not contain pixels from another focal plane. An image is typically formed on each focal plane by its respective lens stack. In many instances, the array camera is constructed using an imager array that incorporates multiple focal planes and an optic array of lens stacks.
  • SUMMARY OF THE INVENTION
  • Systems and methods in accordance with embodiments of the invention actively align a lens stack array with an array of focal planes to construct an array camera module. In one embodiment, a method for actively aligning a lens stack array with a sensor that includes a plurality of focal planes, where each focal plane includes a plurality of rows of pixels that also form a plurality of columns of pixels and each focal plane is contained within a region of the imager array that does not contain pixels from another focal plane, includes: aligning the lens stack array relative to the sensor in an initial position, where the lens stack array includes a plurality of lens stacks and the plurality of lens stacks forms separate optical channels for each focal plane in the sensor; varying the spatial relationship between the lens stack array and the sensor; capturing images of a known target using a plurality of active focal planes at different spatial relationships between the lens stack array and the sensor, where the known target includes at least one region of interest; scoring the images captured by the plurality of active focal planes, where the resulting scores provide a direct comparison of the extent to which at least one region of interest is focused in the images; selecting a spatial relationship between the lens stack array and the sensor based upon a comparison of the scores of images captured by a plurality of the active focal planes; and forming an array camera subassembly in which the lens stack array and the sensor are fixed in the selected spatial relationship.
  • In another embodiment, scoring the images captured by the plurality of active focal planes includes computing modulation transfer function (MTF) scores for the images.
  • In yet another embodiment, comparison of the scores of images captured by a plurality of the active focal planes is based upon: a comparison of the scores of the images captured by a plurality of the active focal planes at the selected spatial relationship to the scores of images captured by the same active focal planes at different spatial relationships; and the variation between the scores of the images captured by the active focal planes at the selected spatial relationship.
  • In still another embodiment, the comparison of scores includes omitting from consideration an image captured by an active focal plane, when the score of the image captured by the active focal plane fails to satisfy at least one predetermined criterion.
  • In a further embodiment, the at least one predetermined criterion includes the score of the image captured by the active focal plane being within a predetermined range.
  • In a still further embodiment, the method includes deactivating an active focal plane, when the image captured by the active focal plane is omitted from consideration.
  • In yet another embodiment, the comparison of scores includes determining a mathematical relationship for each of a plurality of active focal planes that characterizes the relationship between the scores for the images captured by the respective active focal planes and the spatial relationship between the lens stack array and the sensor.
  • In another embodiment, the comparison of scores further includes computing a best-fit plane using the determined mathematical relationships, where the best-fit plane, defines a desirable spatial relationship in accordance with predetermined criterion.
  • In yet another embodiment, the predetermined criterion includes maximizing scores while minimizing the variance of the scores.
  • In still another embodiment: the known target includes a central region of interest and at least one peripheral region of interest; the images are scored such that a score is provided for each region of interest visible in each image, the score being indicative of the extent to which the respective region of interest is focused in the image; the comparison of scores includes determining mathematical relationships for each of a plurality of active focal planes that characterize the relationships between the scores of the extent to which the central region of interest is focused in the images captured by the respective active focal plane and the spatial relationship between the lens stack array and the sensor; and the scores of the extent to which the at least one peripheral region of interest is focused in the images captured by the respective active focal plane and the spatial relationship between the lens stack array and the sensor.
  • In a further embodiment, the comparison of scores further includes computing, using the determined mathematical relationships: a first best-fit plane that defines a spatial relationship between the lens stack array and the sensor based on each active focal plane's ability to focus on a central region of interest according to predetermined criterion; a second best-fit plane that defines a spatial relationship between the lens stack array and the sensor based on each active focal plane's ability to focus on the at least one peripheral region of interest according to predetermined criterion; and a plurality of planes incrementally spaced that lie between the first and second best-fit planes.
  • In a still further embodiment, selecting a spatial relationship between the lens stack array and the sensor includes using at least one predetermined criterion to select one of: a spatial relationship defined by the first best-fit plane, a spatial relationship defined by the second best-fit plane, and a spatial relationship defined by one of the plurality of planes.
  • In a yet still further embodiment, the at least one predetermined criterion is based upon: at each spatial relationship defined by the computed planes, averaging the scores indicative of the extent to which the central region of interest is focused, the scores being averaged across all active focal planes at the respective spatial relationship; at each spatial relationship defined by the computed planes, averaging the scores indicative of the extent to which the at least one peripheral region of interest is focused, the scores being averaged across all active focal planes at the respective spatial relationship; and assessing the variation in the determined average scores between the spatial relationships.
  • In a further embodiment, aligning the lens stack array relative to the sensor in an initial position further includes: performing an initial sweep of the lens stack array relative to the sensor; capturing an initial set of images of a known target including a central region of interest, at varied spatial relationships along the initial sweep, using a plurality of active focal planes; determining focus scores for the central region of interest in a plurality of the captured images; determining an initial set of mathematical relationships for each of the plurality of active focal planes used to capture the initial set of images, where the mathematical relationships characterize the relationship between the focus scores and the spatial relationship between the lens stack array and the sensor; computing an initial best-fit plane using the initial set of mathematical relationships; and aligning the lens stack array with the computed initial best-fit plane.
  • In another embodiment, varying the spatial relationship between the lens stack array and the sensor involves sweeping the lens stack array relative to the sensor.
  • In still another embodiment, the lens stack array is swept in a direction substantially normal to the surface of the sensor.
  • In a further embodiment, scoring the images captured by the plurality of active focal planes includes: determining preliminary scores for the captured images in accordance with a first criterion; determining scores for a related set of captured images in accordance with a second criterion; and extrapolating the preliminary scores as a function of the spatial relationship between the lens stack array and the sensor based on the scores determined for the related set of captured images.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 conceptually illustrates an array camera.
  • FIG. 2 illustrates an array camera module.
  • FIG. 3 illustrates an array camera module that employs a π filter.
  • FIG. 4 conceptually illustrates variations in focal length that can occur during the manufacture of a camera module using a lens stack array and a sensor in accordance with embodiments of the invention.
  • FIG. 5 is a flowchart that illustrates a process for actively aligning a lens stack array and a sensor including an array of corresponding focal planes in accordance with an embodiment of the invention.
  • FIG. 6 schematically illustrates an initial configuration that may be used to actively align a lens stack array with a sensor in accordance with an embodiment of the invention.
  • FIG. 7 illustrates sweeping a lens stack array with respect to a sensor in accordance with an embodiment of the invention.
  • FIG. 8 illustrates a target that may be used during active alignment in accordance with many embodiments of the invention.
  • FIG. 9 is a flowchart that illustrates an active alignment process that uses an iterative computation process to yield an array camera module that is capable of capturing and recording images that have sufficient on-axis and off-axis performance in accordance with an embodiment of the invention.
  • DETAILED DESCRIPTION
  • Turning now to the drawings, systems and methods for actively aligning a lens stack array with an array of focal planes on a monolithic sensor in accordance with embodiments of the invention are illustrated. Processes for constructing array cameras using lens stack arrays are described in U.S. patent application Ser. No. 12/935,504, entitled “Capturing and Processing of Images Using Monolithic Camera Array with Heterogeneous Imagers”, Venkataraman et al. The disclosure of U.S. patent application Ser. No. 12/935,504 is incorporated by reference herein in its entirety. The monolithic camera modules illustrated in U.S. patent application Ser. No. 12/935,504 can be constructed from a lens stack array and a sensor including a plurality of focal planes corresponding to the optical channels in the lens stack array. The combination of a lens stack and its corresponding focal plane can be understood to be a ‘camera module.’ Ideally, the lens stack array of an array camera is constructed so that each optical channel has the same focal length. However, the large number of tolerances involved in the manufacture of a lens stack array can result in the different optical channels having varying focal lengths. The combination of all the manufacturing process variations typically results in a deviation of the actual (“first order”) lens parameters—such as focal length—from the nominal prescription. As a result, each optical channel can have a different axial optimum image location. And consequently, since the sensor is monolithic, it typically cannot be placed a distance that corresponds with the focal length of each camera within an array camera module. Notably, these manufacturing tolerances may result in different focal lengths even as between lens stack arrays fabricated from the same manufacturing process. Thus, in many embodiments of the invention, a lens stack array is actively aligned with an array of focal planes to form an array camera module that is designed to address the detrimental impact that the variance in focal length within a lens stack array may have.
  • In the context of the manufacture of camera systems, the term active alignment typically refers to a process for aligning an optical system (e.g. a lens stack array) with an imaging system (e.g. comprising a monolithic sensor) to achieve a final desirable spatial arrangement by evaluating the efficacy of the configuration as a function of the spatial relationship between the optical system and the imaging system. Typically, this process is implemented by using the configuration to capture and record image data (typically of a known target) in real time as the optical system is moving relative to the imaging system. As the optical system is moved relative to the imaging system, the spatial relationship between the two changes, and the characteristics of the recorded image data also change correspondingly. This recorded image data may then be used to align the optical system relative to the imaging system in a desired manner. For example, active alignment can generally be used to determine a spatial relationship that results in a camera module that is capable of recording images that exceed a threshold image quality.
  • A lens stack array may be actively aligned with an array of focal planes in accordance with embodiments of the invention. Importantly, active alignment in this context can be far more intricate and nuanced than it is in the context of conventional, single-lens, cameras. Foremost, because a lens stack array is typically embodied in a single integral housing, the spatial orientation of an individual lens stack (with respect to its corresponding focal plane) cannot be separately varied from that of the other lens stacks—instead, varying the spatial orientation of one lens stack invariably changes the spatial orientation of the others. Consequently, it may not be possible for multiple cameras to be spatially located at their own respective most desirable positions. As a result, active alignment in the context of array cameras may involve computing a final arrangement that, although does not necessarily place each camera at its own optimal position, sufficiently orients the lens stacks of multiple cameras so that the array camera module as a whole achieves a desirable level of performance.
  • Additionally, the active alignment of a lens stack array with an array of focal planes typically involves the evaluation of the efficacy of multiple cameras—as opposed to a single camera—at respective varied spatial relationships. In many embodiments, the efficacy of a camera is determined by evaluating the camera's captured and recorded images of a known target at varied spatial relationships. For instance, the Modulation Transfer Function (MTF) score—a numerical score that is indicative of a recorded image's sharpness and thus also focus—may be determined for a given recorded image and used to evaluate a respective camera at a respective spatial orientation. Moreover, the recorded images may be evaluated at different Regions of Interest (ROIs), and in particular at different field heights. For example, an MTF score may be assigned to each ROI within a recorded image. Thus, the corresponding cameras may be evaluated as to each ROI, and this evaluation data may be used to conclude a desirable array camera module configuration.
  • In several embodiments, only a subset of all of the cameras in an array camera module is used during the evaluation process. The cameras that define this subset may be predetermined, or they may be computationally determined by considering an initial set of image data captured by some or all of the focal planes.
  • Furthermore, unlike in conventional, single-lens, cameras, the active alignment of an array camera module can involve strategically disabling cameras. For example, if the picture quality of a camera when the array camera module is in an estimated final arrangement is below a specified threshold quality, the camera may be disabled. Thus, in many embodiments of the invention, the active alignment process is initially used to estimate a final arrangement for an array camera module, identify cameras that should be disabled on the basis that they do not achieve a threshold quality and disabling them can improve the overall performance of the other cameras in the camera module, and then compute a final arrangement wherein the disabled cameras are excluded from the computation process. Note that this is possible because an array camera includes a plurality of cameras and is still operable if several of the cameras are deactivated. Namely, the array camera may be configured to rely on the remaining active cameras to function, and synthesize an image based on those remaining active cameras. By allowing the array camera software to deactivate certain cameras, higher manufacturing yields can be achieved that can reduce the cost of the completed camera module.
  • Array cameras and systems and methods for actively aligning lens stack arrays and sensors to form camera modules for use in array cameras in accordance with embodiments of the invention are discussed further below.
  • Array Camera Architectures
  • FIG. 1 illustrates an array camera architecture disclosed in U.S. application Ser. No. 12/935,504. The array camera 100 includes an array camera module 110, which is connected to an image processing pipeline module 120 and to a controller 130. The image processing pipeline module 120 is hardware, firmware, software, or a combination for processing the images received from the array camera module 110. The image processing pipeline module 120 is capable of processing multiple images captured by multiple focal planes in the camera module and can produce a synthesized higher resolution image. In a number of embodiments, the image processing pipeline module 120 provides the synthesized image data via an output 122.
  • The controller 130 is hardware, software, firmware, or a combination thereof for controlling various operational parameters of the array camera module 110. The controller 130 receives inputs 132 from a user or other external components and sends operation signals to control the array camera module 110. The controller can also send information to the image processing pipeline module 120 to assist processing of the images captured by the focal planes in the array camera module 110.
  • Although a specific array camera architecture is illustrated in FIG. 1, camera modules constructed using active alignment processes in accordance with embodiments of the invention can be utilized in any of a variety of array camera architectures. Camera modules that can be utilized in array cameras and processes for manufacturing camera modules utilizing active alignment processes in accordance with embodiments of the invention are discussed further below.
  • Array Camera Modules
  • FIG. 2 illustrates an exploded view of an array camera module formed by combining a lens stack array with a monolithic sensor that includes a corresponding array of focal planes as disclosed in U.S. application Ser. No. 12/935,504. The array camera module 200 includes a lens stack array 210 and a sensor 230 that includes an array of focal planes 240. The lens stack array 210 includes an array of lens stacks 220. Each lens stack creates an optical channel that resolves an image on the focal planes 240 on the sensor. Each of the lens stacks may be of a different type. For example, the optical channels may be used to capture images at different portions of the spectrum and the lens stack in each optical channel may be specifically optimized for the portion of the spectrum imaged by the focal plane associated with the optical channel. More specifically, an array camera module may be patterned with “π filter groups.” The term π filter groups refers to a pattern of color filters applied to the lens stack array of a camera module and processes for patterning array cameras with π filter groups are described in U.S. Patent Application Ser. No. 61/641,164, entitled “Camera Modules Patterned with π Filter Groups”, Venkataraman et al. The disclosure of U.S. Patent Application Ser. No. 61/641,164 is incorporated by reference herein in its entirety. FIG. 3 illustrates a single π filter group, wherein 5 lenses are configured to receive green light, 2 lenses are configured to receive red light, and 2 lenses are configured to receive blue light. The lens stacks may further have one or multiple separate optical elements axially arranged with respect to each other.
  • A lens stack array may employ wafer level optics (WLO) technology. WLO is a technology that encompasses a number of processes, including, for example, molding of lens arrays on glass wafers, stacking of those wafers (including wafers having lenses replicated on either side of the substrate) with appropriate spacers, followed by packaging of the optics directly with the imager into a monolithic integrated module.
  • The WLO procedure may involve, among other procedures, using a diamond-turned mold to create each plastic lens element on a glass substrate. More specifically, the process chain in WLO generally includes producing a diamond turned lens master (both on an individual and array level), then producing a negative mould for replication of that master (also called a stamp or tool), and then finally forming a polymer replica on a glass substrate, which has been structured with appropriate supporting optical elements, such as, for example, apertures (transparent openings in light blocking material layers), and filters.
  • Although the construction of lens stack arrays using specific WLO processes is discussed above, any of a variety of techniques can be used to construct lens stack arrays, for instance those involving precision glass molding, polymer injection molding or wafer level polymer monolithic lens processes. Issues related to variation in back focal length of the lens stacks within lens stack arrays are discussed below.
  • Back Focal Plane Alignment
  • An array camera module is typically intended to be constructed in such a way that each focal plane (i.e. an array of pixels configured to capture an image formed on the focal plane by a corresponding lens stack) is positioned at the focal distance of each lens stack that forms an optical channel. However, manufacturing variations can result in the lens stack in each optical channel varying from its prescription, and in many instances, these variations can result in each lens stack within a lens stack array having a different focal length. For example, parameters that may vary amongst individual lens stacks in a lens stack array because of manufacturing variations include, but are not limited to: the radius of curvature in individual lenses, the conic, higher order aspheric coefficient, refractive index, thickness of the base layer, and/or overall lens height. As one of ordinary skill in the art would appreciate, any number of lens prescriptions may be used to characterize the lens fabrication process, and the respective tolerances may involve departures from these prescriptions in any number of ways, each of which may impact the back focal length. Due to the monolithic nature of the sensor, the spatial relationship of the focal planes (with respect to the lens stacks) cannot be individually customized to accommodate this variability.
  • Moreover, in many instances, it is the case that a single manufacturing process is used to fabricate a plurality of lens stack arrays. Consequently, in addition to the aforementioned reasons, the back focal lengths may further vary between lens stacks from different lens stack arrays fabricated from the same process. For instance, variability (within tolerance) in the thickness of the lens substrates and spacers employed in the lens stack, especially those toward the sensor cover glass, may further contribute to the variability in the back focal length. Additionally, variability in the (1) thickness of the sensor cover glass, (2) the bond line thickness between the lens spacer and the sensor cover glass, and (3) any air gaps between the sensor and the cover glass, may further exacerbate the variability in the back focal lengths. Thus, even with constant (nominal) process parameters during the lens stack array fabrication and the lens to sensor attachment process, sample to sample variation may result in defocused camera modules.
  • The variations in focal length that can occur in a conventional lens stack array are conceptually illustrated in FIG. 4. The array camera module 400 includes a lens stack array 402 in which lens stacks 404 focus light on the focal planes 406 of sensor 408. As is illustrated, variance between the actually fabricated lens stack and its original prescription can result in the lens stack having a focal length that varies slightly from its prescription and consequently an image distance that does not correspond with the distance between the lens stack array and the sensor. Accordingly, the images formed on the focal planes of the sensor can be out of focus. In addition, other manufacturing tolerances associated with the assembly of the array camera module including (but not limited to) variations in spacer thickness and alignment of the lens stack array relative to the sensor can impact all of the optical channels.
  • Active Alignment Processes
  • In many embodiments, processes for actively aligning a lens stack array with a sensor to construct an array camera module involve reading image data captured by multiple focal planes on the sensor as the lens stack array is moved relative to the sensor. The image data can be utilized to evaluate the resulting image quality at different spatial relationships between the sensor and the lens stack array and the spatial relationship that provides a predetermined threshold level of image quality can be utilized to construct the camera module. A process that actively aligns a lens stack array with a sensor by generally aligning the two, varying their spatial relationship, evaluating the resulting configuration during the variation, and configuring the array camera module using the evaluation data in accordance with an embodiment of the invention is illustrated in FIG. 5.
  • A lens stack array is generally aligned (510) with a corresponding sensor that has multiple focal planes. The combination is aligned so that each camera within the configuration is capable of capturing and recording images. The spatial relationship of the lens stack array with respect to the sensor is varied (520). In several embodiments, the variation is achieved by sweeping the lens stack array with respect to the sensor. Sweeping can be understood to mean moving one component (i.e. either the lens stack array or the sensor) in relation to the other over time. Sweeping may be in one degree of freedom or it can be across many degrees of freedom. As can readily be appreciated, the array nature of the camera module means that variations in the x, y, and z-directions, and tip/tilt and rotation of the lens stack array with respect to the sensor can all have significant impact on the imaged data captured by the focal planes on the sensor. Note that in many array cameras, focus and consequently sharpness of the cameras is primarily affected by the z-direction and the tip/tilt of the lens stack array with respect to the sensor, with the tip/tilt principally affecting the performance of the corner cameras. Conversely, in a conventional camera that comprises only a single lens stack, the image quality of the camera is primarily driven by the optical system's ‘z-position’ with respect to the sensor. In many embodiments, the path of the sweep is predetermined.
  • The quality of the captured image data is evaluated (530) at the varied spatial relationships. For example, in several embodiments of the invention, the configuration is intermittently evaluated during a sweep of the lens stack array with respect to the sensor. In many embodiments, the configuration is evaluated by evaluating multiple cameras' captured and recorded images of a known target at the varied spatial relationships. In several embodiments, only a subset of the configuration's cameras is used for evaluation purposes. An MTF score may be determined for each recorded image and used to evaluate a respective camera at a respective spatial orientation. The recorded images may also be evaluated at its different ROIs. For example, an MTF score may be assigned to each ROI within a recorded image.
  • The array camera module is configured (540) using the information obtained during evaluation. In some embodiments, the configuration involves concluding a spatial relationship between the lens stack array and the sensor that results in the corresponding array camera module being able to capture and record images that exceed a threshold quality. The configuration may also involve disabling cameras that do not surpass a threshold quality. Again, because array camera modules include a plurality of cameras, they can still function even when several of the cameras are disabled. The advantage of being able to disable a camera is that the average performance of the array including the camera may be much lower than the average performance of the remaining cameras when the disabled camera is excluded from consideration in determining the appropriate alignment of the lens stack array and sensor.
  • Although a process, and its variants, have been described that actively align a lens stack array with a corresponding array of focal planes, any of a number of different processes may be used to actively align a lens stack array with an array of focal planes in accordance with embodiments of the invention. An initial configuration for an active alignment process in accordance with embodiments of the invention is discussed below.
  • Initial Configuration for Aligning a Lens Stack Array with an Array of Focal Planes
  • Active alignment processes may begin from any number of initial configurations in accordance with embodiments of the invention. An initial configuration for an active alignment process where a device that is capable of orienting a lens stack array is connected to a lens stack array of a corresponding array camera module, a processor is connected to the corresponding sensor, and a target is positioned and illuminated so that the array camera module can capture and record it in accordance with an embodiment of the invention is illustrated in FIG. 6. The array camera module 610 includes a lens stack array 620 and a sensor 630 that has corresponding focal planes. The lens stack array and the sensor are generally aligned so that they are capable of capturing and recording images of the target 640. A device that is capable of spatially orienting the lens stack array 640 is connected to the lens stack array 620, and a processor 660 is connected to the sensor. Thus, the processor 660 is capable of capturing and recording images from the sensor 630, while the orientation of the lens stack array 620 is being varied, and the active alignment process can thereby be implemented. The combination of the device for spatially orienting the lens stack array 650 and the processor 660 can be understood to be an active alignment machine 670.
  • In many embodiments, the initial configuration involves generally aligning the lens stack array 620 and the sensor 630 so as to ensure that the lens stack array 620 and the sensor 630 are in sufficient translational and rotational alignment such that each lens stack is generally aligned with its corresponding focal plane. Translational motion here refers to motion of a system (i.e. the lens stack array 620 or the sensor 630) in a direction parallel to its respective surface. Rotation here refers to rotation of a system about the Z-axis (i.e. the axis defining the distance between the sensor and the lens stack array) relative to the other. General alignment may be achieved by, for example, monitoring a central feature on a test chart, and moving either the lens stack array or the sensor in translation (with respect to the other system) such that the central feature is centrally located within the central camera modules; this would indicate that the systems are in sufficient translational alignment. Either system may then be rotated with respect to the other so that the midpoints of each lens stack array and its corresponding focal plane define a line that runs generally parallel to the Z-axis. During this rotational adjustment, the systems may also be readjusted to preserve (or enhance) adequate translational alignment. In this way, each lens stack array may be generally aligned with its corresponding focal plane.
  • Although many embodiments of the invention employ the initial configuration illustrated in FIG. 6, many other embodiments employ other initial configurations appropriate to the requirements of specific applications. In accordance with embodiments of the invention, any initial configuration may be implemented that allows the spatial relationship between the lens stack array and the sensor to be varied, and further allows the corresponding array camera module to be evaluated, manipulated, and configured based on an evaluation of it. The varying of spatial relationships between the lens stack array and the sensor in accordance with embodiments of the invention is discussed below.
  • Varying the Spatial Relationship of the Lens Stack Array with Respect to the Sensor
  • The spatial relationship between a lens stack array and a corresponding sensor may be varied in any number of ways. For example, an active alignment process where a lens stack array is swept in a direction substantially normal to the sensor's planar surface in accordance with embodiments of the invention is illustrated in FIG. 7. An array camera module 700 includes a lens stack array 710 and a corresponding sensor 720 with an array of focal planes, and the active alignment process sweeps the lens stack array 710 in a predetermined direction 730 substantially normal to the sensor's surface (the z-direction). Note that sweeping the lens stack array in this fashion systematically varies the focus of each camera—typically cameras will be swept in focus and then out of focus. The array camera module may be evaluated on the varied spatial relationships along this sweep. Active alignment processes in accordance with embodiments of the invention can also include tipping, tilting, and/or rotating the lens stack array with respect to the sensor. In many embodiments, only the distance between the lens stack array and the sensor is varied in a sweep referred to as a “through focus sweep” and all relevant calculations to determine the optimum alignment (including centering as well as focus and tip/tilt) are made from images captured during the through focus sweep using the respective curve fittings and center of gravity calculations, respectively. As can be appreciated, a through focus sweep of a skewed lens stack array already provides information about the optimum tip/tilt of the lens stack array relative to the sensor by the appropriate plane fitting calculations of the peak focus positions or equalized MTF, respectively. These calculations are discussed further below.
  • In several embodiments, the manner in which the spatial relationship varies is computationally determined. For example, the manner in which the spatial relationship varies may be determined computationally based upon an initial evaluation of the array camera module. Additionally, the manner in which the spatial relationship varies may change during an active alignment process. For instance, after the lens stack array has been swept in a direction substantially normal to the sensor's planar surface, a processor may compute a different sweeping path that may facilitate a better configuration of the array camera module.
  • Although several examples have been described related to how the spatial relationship between the lens stack array and the sensor may be varied, the spatial relationship may also be varied in any number of other ways in accordance with embodiments of the invention. The evaluation of the array camera module at the varied spatial relationships is discussed below.
  • Evaluating the Array Camera Module
  • In numerous embodiments, evaluating the array camera module during the active alignment process involves having multiple cameras capture and record images of a known target, and evaluating these images. The images may be evaluated by assessing their focus, for example. The assessment of the focus may be performed in any number of ways in accordance with embodiments of the invention. For example, in many embodiments, an MTF score may be determined for a given recorded image. Generally speaking, an MTF score is an advantageous metric insofar as MTF scores amongst different cameras can be directly compared with one another. In some embodiments, a recorded image may be given a ‘focus score’ which can similarly be used to evaluate the recorded image. For example, a focus score may be determined by convolving a kernel over contrasting features in an image, where the resulting value is related to the camera's ability to focus. Unlike the MTF score, a focus score may not necessarily be directly comparable to such scores from different cameras; instead a focus score may be more useful in evaluating a single camera.
  • The selection of which scoring metric to use may be determined, in part, by the speed in which the scores can be calculated. For instance, if it takes longer to compute an MTF score than to compute a focus score, the focus score may be used in the evaluation. The selection of which scoring metric to use may also be determined, in part, by the accuracy and precision of the score. For instance, if the MTF score is a more precise means for evaluating image quality, then it may be used to evaluate the camera images. Moreover, the active alignment process may utilize several methods of evaluating a recorded image, and these methods may not necessarily be concurrent. For example, an evaluation based on focus scoring may be initially used, whereas an evaluation based on an MTF score may later be used. Additionally, the active alignment process may involve relating the different scoring metrics. For example, focus scoring may be used to evaluate the set of images recorded by an array camera, and MTF scoring may be used to evaluate a representative subset of those images. The MTF scores for the subset may then be normalized to the respective focus scores. And this determined relationship may be used to determine MTF scores for the remaining images.
  • Additionally, different regions of recorded images may be evaluated, thereby providing information on a camera's quality as to specific regions. For example, in certain embodiments, images are recorded of a known target that has multiple “Regions of Interest” (ROIs), and the cameras' recorded images of the known target are evaluated with respect to each region of interest. FIG. 8 illustrates a known target used in accordance with many embodiments of the invention. The known target 800 includes a central feature 810 that highlights a central ROI, also known as an “on-axis” ROI. The known target further includes features 820 that highlight “off-axis” ROIs. The target in FIG. 8 is advantageous in so far as the edges of the features are oriented in such a way that the tangential and sagittal components of the MTF score, and thus also the astigmatism, can be directly derived and compared to prior lens test data. Thus, many embodiments utilize the known target illustrated in FIG. 8 by evaluating the quality of each camera with respect to each of the five ROIs.
  • The target illustrated in FIG. 8 may also be used in determining a focus score. Specifically, the determination of a focus score in conjunction with this target may involve convolving a kernel over areas of the image with contrasting features for each region of interest (e.g. the checkerboard patterns 840 or the dark slanted square against the light background 850), wherein the resulting value is proportional to the contrast between the features. For example, the following convolution kernel may be employed:
  • - 1 , - 1 , - 1 , - 1 , - 1 - 1 , - 1 , - 1 , - 1 , - 1 - 1 , - 1 , 24 , - 1 , - 1 - 1 , - 1 , - 1 , - 1 , - 1 - 1 , - 1 , - 1 , - 1 , - 1
  • This convolution kernel will yield values that are proportional to a camera's ability to resolve contrast. Note that the value will either be positive or negative depending on whether the region being evaluated is transitioning from light to dark or dark to light. However, whether a region of interest is transitioning from light to dark or vice versa is irrelevant to a camera's ability to focus; therefore the absolute value of these values should be obtained. Then, a focus score for each ROI may be obtained by averaging these absolute values for each ROI.
  • Although, FIG. 8 illustrates a particular known target that may be used in accordance with embodiments of the invention, many other embodiments utilize other known targets appropriate to the requirements of specific applications. For instance, the off-axis ROIs may be placed in the corners of the target—this allows the performance of the camera to be tested at larger field heights. In the illustrated embodiment, the ROIs have the advantage that the edges of the features are oriented in such a way that the tangential and sagittal components of the MTF and thus also the astigmatism can be directly derived and compared to prior lens test data. Moreover, although specific examples of how a focus score may be generated are provided, any of a variety of techniques can be used to generate a focus score. More generally, the evaluation techniques herein described are merely illustrative. Any techniques for evaluating the efficacy of an array camera module may be incorporated in accordance with embodiments of the invention. Using the evaluation data to configure the array camera module is discussed below.
  • Configuring the Array Camera Module
  • Evaluation data may be used to configure the array camera module in a number of respects. In many embodiments the array camera module is configured to minimize the detrimental impact caused by variance of focal length within a lens stack array. As described above, variance within a lens stack array may be caused by manufacturing process variations including (but not limited to) those that affect the following parameters: the radius of curvature in individual lenses, the conic, higher order aspheric coefficient, refractive index, thickness of the base layer, and/or overall lens height. Additionally, as described above, the following manufacturing variations related to the fabrication of multiple lens stack arrays and camera modules may further exacerbate the variability in back focal lengths: the thickness of the lens substrates and spacers employed in the stack, especially those toward the sensor cover glass, the thickness of the sensor cover glass used, bond line thickness between the lens spacer and the sensor cover glass, and any air gap between the sensor and the sensor cover glass. Thus, many embodiments evaluate the quality of each camera as a function of its spatial relationship to the sensor; thereafter, the information is used to orient the lens stack array with respect to the sensor so that any deterioration in the quality of the array camera due to the variance in focal length within the lens stack array is lessened.
  • Several embodiments generate mathematical equations that approximately characterize data related to camera quality as a function of spatial relationship, and use the derived equations to compute a desired spatial relationship that lessens the detrimental impact of variance in focal length. For example, some embodiments generate polynomial equations that approximately model the focal scoring data. Note that because of the nature of optics, each lens will typically have a peak focal value, and therefore polynomial equations are well suited to characterize the data. In many embodiments, the polynomial equations are generated by determining coefficients for predetermined generic polynomial equations (i.e. those with undetermined coefficients), such that the resulting equation approximately characterizes the data relating the camera quality to the spatial relationship. Many embodiments then use these derived equations to compute a best fit plane that characterizes a spatial relationship that reduces the detrimental impact of variance in focal length.
  • Notably, the best-fit planes may be computed in any number of ways. For instance, the best-fit plane may be computed to be a plane that includes an approximation of the peak values of the polynomial equations that characterize focal scoring data as a function of the spatial relationship. But, as described above, focal scoring data may not necessarily be directly comparable across different cameras. Therefore, best-fit planes may also be computed by generating equivalent MTF scores, and determining a plane that maximizes the mean MTF score while minimizing its variance. Specifically, the best-fit planes may be computed to determine a plane wherein the MTF scores amongst the different lens stacks are equalized within some specified tolerance. Moreover, any number of balancing algorithms may be employed to effectuate this computation as appropriate to the requirements of a specific application. The determination of these planes may then be used to facilitate the configuration of the array camera module.
  • In several embodiments, the configuration process involves orienting the lens stack array with respect to the sensor to form an array camera module that is capable of achieving pictures that have desired characteristics. In some embodiments, the lens stack array is oriented with respect to the sensor so as to achieve an array camera module that is capable of recording images, wherein the quality of the on-axis aspects of the recorded image exceeds a specified threshold criterion. In several embodiments, the lens stack array is actively aligned with respect to the sensor to achieve an array camera module that is capable of recording images, wherein the quality of the off-axis aspects of the recorded image exceeds a specified threshold criterion. Note also that in various embodiments, the configuration process may involve disabling cameras that are above a certain threshold quality so as to avoid biasing the best fit plane determination. In numerous embodiments, the lens stack array is actively aligned with respect to the sensor to achieve an array camera module that is capable of recording images, wherein the quality of both on-axis and off-axis regions of interest exceed respective specified threshold qualities.
  • In many embodiments, the configuration process involves disabling cameras that perform above or below a certain defined threshold quality. Again, because an array camera module has many cameras, it is possible for it to maintain functionality even when some of its cameras are non-functional. In several embodiments, cameras are disabled when their quality, as determined by their ability to focus sharply when in a given spatial orientation, is above or below a threshold value. For example, some embodiments determine whether a camera should be disabled by evaluating an MTF score of its respective recorded images. In many embodiments, if the number of disabled cameras exceeds a specified value, then the array camera module is designated unacceptable. In several embodiments, different threshold values can be specified for different types of cameras within the array camera module. For example, in a number of embodiments that employ π filter groups, different threshold values can be specified for the green cameras, the red cameras, and the blue cameras.
  • In various embodiments, information obtained during the evaluation aspect of the active alignment process is used to configure the functionality of the each camera. For example, if it is determined that a particular camera has a focal length that makes it better suited to record images of objects that are at a further distance, the array camera module can be configured to rely more heavily on that camera when synthesizing recorded images of objects at further distances.
  • The above descriptions regarding configuring an array camera module in accordance with embodiments of the invention is not meant to be exhaustive. Indeed, array camera modules can be configured in any number of ways based on evaluations of the configuration in accordance with embodiments of the invention. Active alignment processes that configure array camera modules so that they are capable of capturing and recording images that have desirable image properties are discussed below.
  • Active Alignment Processes that Yield Array Camera Modules Capable of Recording Images that have Desirable Characteristics
  • Active alignment processes in accordance with embodiments of the invention can use a variety of metrics to evaluate the image data that is captured during the active alignment process. In several embodiments, the active alignment process can optimize image quality in specific regions of the captured images, can optimize image quality in multiple regions of interest and/or can utilize a variety of metrics including (but not limited to) focus scoring and MTF scoring. An active alignment process that uses an iterative computation process to yield an array camera module that is capable of capturing and recording images that have sufficient on-axis and off-axis performance in accordance with an embodiment of the invention is illustrated in FIG. 9.
  • The process is initially configured (902) so that a lens stack array and a corresponding sensor are mounted to an active alignment machine in a manner similar to that seen in FIG. 6, so that they are generally operable as an array camera. This may include generally aligning the lens stack array with its corresponding sensor, which itself may include verifying that the lens stack array and the sensor are in sufficient rotational alignment such that each lens stack is generally aligned with its corresponding focal plane, as described above. A known target with an on-axis ROI and off-axis ROIs (similar to that depicted in FIG. 8) is positioned and illuminated so that the array camera module may capture and record its image. The initial configuration may also include deactivating specific cameras in a predetermined fashion so that they do not record images during the alignment process.
  • The lens stack array is swept (904) in a direction normal to the sensor's planar surface, in a manner similar to that seen in FIG. 7, and may be swept for a predetermined distance. During the sweep, the active cameras intermittently capture and record (906) images of the known target. The processor evaluates (908) the recorded images and assigns a ‘focus score’ for each region of interest in each recorded image for each camera. Polynomial equations are derived (910) for each region of interest captured by each camera that best characterizes the focus score as a function of the camera's distance from the sensor. In some embodiments, the polynomial equations are derived by calculating coefficients for a given a predetermined generic polynomial equation (i.e. a polynomial equation with undetermined coefficients). The polynomial equations will typically have a peak value.
  • An “on-axis best fit plane” is derived (912) using the peak values of the polynomial equations. The on-axis best fit plane, is characterized in that it maximizes the peak values corresponding to the active cameras and/or minimizes the variance in the peak values.
  • The lens stack array is then aligned (914) with the computed best fit on-axis plane. Each active camera captures and records (916) an image of the known target. Each recorded image is then evaluated (918) by determining an MTF score for each ROI. Cameras that do not meet a threshold MTF score are disabled (920). For example, any cameras that do not have an MTF score within 20% of the median on-axis MTF score may be disabled, and subsequently excluded from further alignment position calculations. This threshold may of course be configurable. In other embodiments, other criteria are utilized to determine which cameras should be disabled. Moreover, if a specified number of cameras are disabled, the array camera is deemed unacceptable.
  • Assuming the camera is not deemed unacceptable, the previously acquired focus scoring data is scaled (922) using the peak focus score and MTF scores. For example, the MTF Score may be scaled in accordance with the following formula:

  • Scaled Focus Score=(Focus Scorez/Peak Focus Score)*MTF Score
  • where the z subscript reflects the score at a particular z-position.
  • The focus scoring data (absolute values) are exposure/signal-level dependent. Thus different cameras (e.g. blue, green, red cameras) will have different absolute focus score peak values due to their different signal levels. However, MTF is a metric that is invariant to signal level. Thus, MTF enables the curves for focus score to be normalized such that the curve derived from focus score can also be used to compare each camera's peak performance and not only the position at which peak performance occurs. In other embodiments, any of a variety of metrics appropriate to a specific application can be utilized in determining camera peak performance.
  • As before, polynomial curves may then be derived (924) that characterize the scaled focus scores. Thus, each active camera will be characterized by polynomial equations that characterize the camera's ability to resolve each respective region of interest. Given these new polynomial equations, a best-fit on axis plane and a best-fit off axis plane are derived (926); in this instance, the best-fit planes are characterized in that they approximately maximize the mean MTF scores while minimizing their variance. A configurable number of planes that are evenly spaced between the two best-fit planes (on-axis and off-axis) are computed (928). Scaled focus scores for each camera at their respective corresponding positions along each of those planes are calculated (930). A best-fit plane determined (932) wherein any deviation toward the best-fit off axis plane causes a gain in the off-axis scaled focus score and a loss in the on-axis scaled score, wherein the ratio of the off-axis score gain to the on-axis score loss falls below a configurable threshold. The lens stack array is then re-aligned (934) with this computed plane.
  • The efficacy of the process is verified (936). This may be accomplished by, for example, having each active camera record an image of the known target, determining an MTF score for each ROI within that image, and ensuring that each MTF score surpasses some threshold calculation.
  • The processes described may be iterated (938) until a desired configuration is achieved.
  • Although a particular process, and its variants, is discussed above, any number of processes may be used to achieve an array camera module that is capable of capturing and recording images that have adequate on-axis and off-axis performance in accordance with embodiments of the invention. Moreover, although the discussed process regards adequately balancing on-axis and off-axis performance of an array camera module, active alignment processes can be tailored to achieve any number of desirable picture characteristics in accordance with embodiments of the invention.
  • Although the present invention has been described in certain specific aspects, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that the present invention may be practiced otherwise than specifically described. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive.

Claims (17)

What is claimed is:
1. A method for actively aligning a lens stack array with a sensor that includes a plurality of focal planes, where each focal plane comprises a plurality of rows of pixels that also form a plurality of columns of pixels and each focal plane is contained within a region of the imager array that does not contain pixels from another focal plane, the method comprising:
aligning the lens stack array relative to the sensor in an initial position, where the lens stack array comprises a plurality of lens stacks and the plurality of lens stacks forms separate optical channels for each focal plane in the sensor;
varying the spatial relationship between the lens stack array and the sensor;
capturing images of a known target using a plurality of active focal planes at different spatial relationships between the lens stack array and the sensor, where the known target includes at least one region of interest;
scoring the images captured by the plurality of active focal planes, where the resulting scores provide a direct comparison of the extent to which at least one region of interest is focused in the images;
selecting a spatial relationship between the lens stack array and the sensor based upon a comparison of the scores of images captured by a plurality of the active focal planes; and
forming an array camera subassembly in which the lens stack array and the sensor are fixed in the selected spatial relationship.
2. The method of claim 1, wherein scoring the images captured by the plurality of active focal planes, comprises computing modulation transfer function (MTF) scores for the images.
3. The method of claim 1 wherein the comparison of the scores of images captured by a plurality of the active focal planes is based upon:
a comparison of the scores of the images captured by a plurality of the active focal planes at the selected spatial relationship to the scores of images captured by the same active focal planes at different spatial relationships; and
the variation between the scores of the images captured by the active focal planes at the selected spatial relationship.
4. The method of claim 1, wherein the comparison of scores comprises omitting from consideration an image captured by an active focal plane, when the score of the image captured by the active focal plane fails to satisfy at least one predetermined criterion.
5. The method of claim 4, wherein the at least one predetermined criterion includes the score of the image captured by the active focal plane being within a predetermined range.
6. The method of claim 4, further comprising deactivating an active focal plane, when the image captured by the active focal plane is omitted from consideration.
7. The method of claim 1, wherein the comparison of scores comprises determining a mathematical relationship for each of a plurality of active focal planes that characterizes the relationship between the scores for the images captured by the respective active focal planes and the spatial relationship between the lens stack array and the sensor.
8. The method of claim 7, wherein the comparison of scores further comprises computing a best-fit plane using the determined mathematical relationships, where the best-fit plane, defines a desirable spatial relationship in accordance with predetermined criterion.
9. The method of claim 8, wherein the predetermined criterion includes maximizing scores while minimizing the variance of the scores.
10. The method of claim 1, wherein:
the known target includes a central region of interest and at least one peripheral region of interest;
the images are scored such that a score is provided for each region of interest visible in each image, the score being indicative of the extent to which the respective region of interest is focused in the image;
the comparison of scores comprises determining mathematical relationships for each of a plurality of active focal planes that characterize the relationships between:
the scores of the extent to which the central region of interest is focused in the images captured by the respective active focal plane and the spatial relationship between the lens stack array and the sensor; and
the scores of the extent to which the at least one peripheral region of interest is focused in the images captured by the respective active focal plane and the spatial relationship between the lens stack array and the sensor.
11. The method of claim 10, wherein the comparison of scores further comprises computing, using the determined mathematical relationships:
a first best-fit plane that defines a spatial relationship between the lens stack array and the sensor based on each active focal plane's ability to focus on a central region of interest according to predetermined criterion;
a second best-fit plane that defines a spatial relationship between the lens stack array and the sensor based on each active focal plane's ability to focus on the at least one peripheral region of interest according to predetermined criterion; and
a plurality of planes incrementally spaced that lie between the first and second best-fit planes.
12. The method of claim 11, wherein selecting a spatial relationship between the lens stack array and the sensor comprises using at least one predetermined criterion to select one of: a spatial relationship defined by the first best-fit plane, a spatial relationship defined by the second best-fit plane, and a spatial relationship defined by one of the plurality of planes.
13. The method of claim 12, wherein the at least one predetermined criterion is based upon:
at each spatial relationship defined by the computed planes, averaging the scores indicative of the extent to which the central region of interest is focused, the scores being averaged across all active focal planes at the respective spatial relationship;
at each spatial relationship defined by the computed planes, averaging the scores indicative of the extent to which the at least one peripheral region of interest is focused, the scores being averaged across all active focal planes at the respective spatial relationship; and
assessing the variation in the determined average scores between the spatial relationships.
14. The method of claim 1, wherein aligning the lens stack array relative to the sensor in an initial position further comprises:
performing an initial sweep of the lens stack array relative to the sensor;
capturing an initial set of images of a known target including a central region of interest, at varied spatial relationships along the initial sweep, using a plurality of active focal planes;
determining focus scores for the central region of interest in a plurality of the captured images;
determining an initial set of mathematical relationships for each of the plurality of active focal planes used to capture the initial set of images, where the mathematical relationships characterize the relationship between the focus scores and the spatial relationship between the lens stack array and the sensor;
computing an initial best-fit plane using the initial set of mathematical relationships; and
aligning the lens stack array with the computed initial best-fit plane.
15. The method of claim 1, wherein varying the spatial relationship between the lens stack array and the sensor involves sweeping the lens stack array relative to the sensor.
16. The method of claim 15, wherein the lens stack array is swept in a direction substantially normal to the surface of the sensor.
17. The method of claim 1, wherein scoring the images captured by the plurality of active focal planes comprises:
determining preliminary scores for the captured images in accordance with a first criterion;
determining scores for a related set of captured images in accordance with a second criterion; and
extrapolating the preliminary scores as a function of the spatial relationship between the lens stack array and the sensor based on the scores determined for the related set of captured images.
US13/782,920 2012-06-30 2013-03-01 Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors Abandoned US20140002674A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US13/782,920 US20140002674A1 (en) 2012-06-30 2013-03-01 Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors
EP13810429.4A EP2867718A4 (en) 2012-06-30 2013-06-14 Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
KR1020157002415A KR20150031452A (en) 2012-06-30 2013-06-14 Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
PCT/US2013/046002 WO2014004134A1 (en) 2012-06-30 2013-06-14 Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
CN201380041095.5A CN104520754A (en) 2012-06-30 2013-06-14 Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
JP2015520272A JP2015522178A (en) 2012-06-30 2013-06-14 System and method for manufacturing camera modules using active alignment of lens stack arrays and sensors
US15/004,759 US9766380B2 (en) 2012-06-30 2016-01-22 Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US15/707,747 US10261219B2 (en) 2012-06-30 2017-09-18 Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US16/382,099 US11022725B2 (en) 2012-06-30 2019-04-11 Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261666852P 2012-06-30 2012-06-30
US13/782,920 US20140002674A1 (en) 2012-06-30 2013-03-01 Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/004,759 Continuation US9766380B2 (en) 2012-06-30 2016-01-22 Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors

Publications (1)

Publication Number Publication Date
US20140002674A1 true US20140002674A1 (en) 2014-01-02

Family

ID=49777764

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/782,920 Abandoned US20140002674A1 (en) 2012-06-30 2013-03-01 Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors
US15/004,759 Active US9766380B2 (en) 2012-06-30 2016-01-22 Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US15/707,747 Active US10261219B2 (en) 2012-06-30 2017-09-18 Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US16/382,099 Active US11022725B2 (en) 2012-06-30 2019-04-11 Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/004,759 Active US9766380B2 (en) 2012-06-30 2016-01-22 Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US15/707,747 Active US10261219B2 (en) 2012-06-30 2017-09-18 Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US16/382,099 Active US11022725B2 (en) 2012-06-30 2019-04-11 Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors

Country Status (6)

Country Link
US (4) US20140002674A1 (en)
EP (1) EP2867718A4 (en)
JP (1) JP2015522178A (en)
KR (1) KR20150031452A (en)
CN (1) CN104520754A (en)
WO (1) WO2014004134A1 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130047396A1 (en) * 2011-08-29 2013-02-28 Asm Technology Singapore Pte. Ltd. Apparatus for assembling a lens module and an image sensor to form a camera module, and a method of assembling the same
US20140340561A1 (en) * 2013-05-14 2014-11-20 Samsung Electronics Co., Ltd. Imaging system and method of autofocusing the same
US20150062422A1 (en) * 2013-08-27 2015-03-05 Semiconductor Components Industries, Llc Lens alignment in camera modules using phase detection pixels
US20150144700A1 (en) * 2013-11-26 2015-05-28 Symbol Technologies, Inc. Method of optimizing focus plane position of imaging scanner
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
WO2017218206A1 (en) * 2016-06-13 2017-12-21 CapsoVision, Inc. Method and apparatus of lens alignment for capsule camera
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10097777B2 (en) * 2016-06-03 2018-10-09 Recognition Robotics, Inc. Depth map from multi-focal plane images
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US20190004293A1 (en) * 2015-07-31 2019-01-03 Sony Semiconductor Solutions Corporation Stacked lens structure, method of manufacturing the same, electronic apparatus, mold, method of manufacturing the same, and substrate
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US10412314B2 (en) 2013-03-14 2019-09-10 Fotonation Limited Systems and methods for photometric normalization in array cameras
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US10567749B1 (en) * 2019-05-03 2020-02-18 Zf Active Safety And Electronics Us Llc Modulation transfer function evaluation for red/clear filtered optical devices
CN110995966A (en) * 2019-11-22 2020-04-10 信利光电股份有限公司 Semi-finished product of camera and camera manufacturing method
US10942087B2 (en) * 2017-06-02 2021-03-09 Trioptics Gmbh Apparatus for detecting a modulation transfer function and centering of an optical system
US10996460B2 (en) * 2017-04-13 2021-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multi-aperture imaging device, imaging system and method of providing a multi-aperture imaging device
US11012636B2 (en) * 2016-06-22 2021-05-18 Intel Corporation Image/video capturing method and apparatus
US11070731B2 (en) * 2017-03-10 2021-07-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multi-aperture imaging device, imaging system and method for making available a multi-aperture imaging device
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11340136B2 (en) 2017-06-02 2022-05-24 Trioptics Gmbh Apparatus for detecting a modulation transfer function and centering of an optical system
CN114697509A (en) * 2022-05-31 2022-07-01 江西联益光学有限公司 Split type lens assembling method, device and system
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
JP6582557B2 (en) * 2015-05-28 2019-10-02 株式会社ソシオネクスト Drawing apparatus, drawing method, and drawing program
CN105842905B (en) * 2016-05-25 2018-08-03 京东方科技集团股份有限公司 A kind of virtual curved face display panel and display device
CN106296711B (en) * 2016-08-22 2019-04-09 华南理工大学 A kind of multiaxis active alignment method of mobile phone camera module group
US10499042B2 (en) * 2017-04-01 2019-12-03 Intel Corporation Barreling and compositing of images
US10937193B2 (en) 2018-12-05 2021-03-02 Goodrich Corporation Multi-sensor alignment and real time distortion correction and image registration
CN111381334B (en) * 2018-12-28 2021-06-15 中国科学院长春光学精密机械与物理研究所 Alignment method for optical path component in optical system
CN110519586B (en) * 2019-08-27 2021-03-16 深圳市亿图视觉自动化技术有限公司 Optical equipment calibration device and method
KR102216336B1 (en) 2019-09-25 2021-02-18 (주)씨온테크 Active alignment apparatus and method of camera module
CN113472995B (en) * 2020-03-31 2022-12-06 深圳市安思疆科技有限公司 Dynamic automatic focusing system and method based on SPAD sensor receiving module
CN116325178A (en) 2020-12-15 2023-06-23 弗托斯传感与算法公司 Optical system comprising microlens array

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040165090A1 (en) * 2003-02-13 2004-08-26 Alex Ning Auto-focus (AF) lens and process
US20040179834A1 (en) * 2003-03-14 2004-09-16 Eastman Kodak Company Camera using beam splitter with micro-lens image amplification
US20080095523A1 (en) * 2006-10-18 2008-04-24 Lynn Schilling-Benz Lens array assisted focus detection
US20080151097A1 (en) * 2006-12-22 2008-06-26 Industrial Technology Research Institute Autofocus searching method
US20100002126A1 (en) * 2004-11-16 2010-01-07 Aptina Imaging Corporation System and method for focusing a digital camera
US20110080487A1 (en) * 2008-05-20 2011-04-07 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8400555B1 (en) * 2009-12-01 2013-03-19 Adobe Systems Incorporated Focused plenoptic camera employing microlenses with different focal lengths

Family Cites Families (906)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124798A (en) 1965-12-09 1978-11-07 Thompson Kenneth B Optical viewing apparatus
JPS5848754B2 (en) 1977-04-27 1983-10-31 松下電器産業株式会社 compressor
US4198646A (en) 1978-10-13 1980-04-15 Hughes Aircraft Company Monolithic imager for near-IR
US4323925A (en) 1980-07-07 1982-04-06 Avco Everett Research Laboratory, Inc. Method and apparatus for arraying image sensor modules
JPS5769476A (en) 1980-10-16 1982-04-28 Fuji Xerox Co Ltd Reader control system
JPS5925483A (en) 1982-08-04 1984-02-09 Hitachi Denshi Ltd Solid state image pickup device
US4652909A (en) 1982-09-14 1987-03-24 New York Institute Of Technology Television camera and recording system for high definition television having imagers of different frame rate
US4460449A (en) 1983-01-03 1984-07-17 Amerace Corporation Apparatus for making a tool
JPS60228564A (en) 1984-04-27 1985-11-13 Tokuyama Soda Co Ltd Liquid crystal composition
EP0289885A1 (en) 1987-05-08 1988-11-09 Siemens Aktiengesellschaft Aperture system for production of several partical probes with changeable cross-section
JPS6437177A (en) 1987-08-03 1989-02-07 Canon Kk Image pickup device
EP0342419B1 (en) 1988-05-19 1992-10-28 Siemens Aktiengesellschaft Method for the observation of a scene and apparatus therefor
JPH02285772A (en) 1989-04-26 1990-11-26 Toshiba Corp Picture reader
US5070414A (en) 1988-09-20 1991-12-03 Kabushiki Kaisha Toshiba Method and apparatus for reading image information formed on material
US4962425A (en) 1988-10-27 1990-10-09 National Research Council Of Canada/Conseil National Deresherches Canada Photometric device
US5157499A (en) 1990-06-29 1992-10-20 Kabushiki Kaisha N A C High-speed video camera using solid-state image sensor
US5144448A (en) 1990-07-31 1992-09-01 Vidar Systems Corporation Scanning apparatus using multiple CCD arrays and related method
US5463464A (en) 1991-10-04 1995-10-31 Kms Fusion, Inc. Electro-optical system for gauging surface profile deviations using infrared radiation
US5325449A (en) 1992-05-15 1994-06-28 David Sarnoff Research Center, Inc. Method for fusing images and apparatus therefor
JP3032382B2 (en) 1992-07-13 2000-04-17 シャープ株式会社 Digital signal sampling frequency converter
JPH06129851A (en) 1992-10-13 1994-05-13 Sumitomo Electric Ind Ltd Calibration method for stereoscopic camera
EP0687366B1 (en) 1993-03-03 2000-01-26 STREET, Graham Stewart Brandon Method and apparatus for image alignment
US5659424A (en) 1993-05-25 1997-08-19 Hitachi, Ltd. Projecting lens and image display device
JPH0715457A (en) 1993-06-18 1995-01-17 Hitachi Ltd Digital communication switchover system
US6095989A (en) 1993-07-20 2000-08-01 Hay; Sam H. Optical recognition methods for locating eyes
US6419638B1 (en) 1993-07-20 2002-07-16 Sam H. Hay Optical recognition methods for locating eyes
JP2761837B2 (en) 1993-08-19 1998-06-04 株式会社日鉄エレックス 3D image display device
EP0677821A3 (en) 1994-04-14 1996-03-06 Hewlett Packard Co Magnify a digital image using feedback.
AU1742895A (en) 1994-06-09 1996-01-04 Kollmorgen Instrument Corporation Stereoscopic electro-optical system for automated inspection and/or alignment of imaging devices on a production assembly line
US20020195548A1 (en) 2001-06-06 2002-12-26 Dowski Edward Raymond Wavefront coding interference contrast imaging systems
US5629524A (en) 1995-02-21 1997-05-13 Advanced Scientific Concepts, Inc. High speed crystallography detector
EP0739039A3 (en) 1995-04-18 1998-03-04 Interuniversitair Micro-Elektronica Centrum Vzw Pixel structure, image sensor using such pixel, structure and corresponding peripheric circuitry
US5963664A (en) 1995-06-22 1999-10-05 Sarnoff Corporation Method and system for image combination using a parallax-based technique
US6005607A (en) 1995-06-29 1999-12-21 Matsushita Electric Industrial Co., Ltd. Stereoscopic computer graphics image generating apparatus and stereoscopic TV apparatus
GB2302978A (en) 1995-07-04 1997-02-05 Sharp Kk LIquid crystal device
WO1997018633A1 (en) 1995-11-07 1997-05-22 California Institute Of Technology Capacitively coupled successive approximation ultra low power analog-to-digital converter
US5757425A (en) 1995-12-19 1998-05-26 Eastman Kodak Company Method and apparatus for independently calibrating light source and photosensor arrays
JP3502713B2 (en) 1995-12-21 2004-03-02 本田技研工業株式会社 Vehicle distance measuring device
JPH09181913A (en) 1995-12-26 1997-07-11 Olympus Optical Co Ltd Camera system
US5793900A (en) 1995-12-29 1998-08-11 Stanford University Generating categorical depth maps using passive defocus sensing
US5973844A (en) 1996-01-26 1999-10-26 Proxemics Lenslet array systems and methods
US6124974A (en) 1996-01-26 2000-09-26 Proxemics Lenslet array systems and methods
US6493465B2 (en) 1996-02-21 2002-12-10 Canon Kabushiki Kaisha Matching point extracting method and apparatus therefor
US5832312A (en) 1996-02-22 1998-11-03 Eastman Kodak Company Watertight body for accommodating a photographic camera
MY118360A (en) 1996-04-30 2004-10-30 Nippon Telegraph & Telephone Scheme for detecting shot boundaries in compressed video data using inter-frame/inter field prediction coding and intra-frame/intra-field coding
US6002743A (en) 1996-07-17 1999-12-14 Telymonde; Timothy D. Method and apparatus for image acquisition from a plurality of cameras
GB9616262D0 (en) 1996-08-02 1996-09-11 Philips Electronics Nv Post-processing generation of focus/defocus effects for computer graphics images
US6141048A (en) 1996-08-19 2000-10-31 Eastman Kodak Company Compact image capture device
US6137535A (en) 1996-11-04 2000-10-24 Eastman Kodak Company Compact digital camera with segmented fields of view
US5808350A (en) 1997-01-03 1998-09-15 Raytheon Company Integrated IR, visible and NIR sensor and methods of fabricating same
JPH10232626A (en) 1997-02-20 1998-09-02 Canon Inc Stereoscopic image display device
JPH10253351A (en) 1997-03-14 1998-09-25 Kyocera Corp Range finder
US5801919A (en) 1997-04-04 1998-09-01 Gateway 2000, Inc. Adjustably mounted camera assembly for portable computers
US6097394A (en) 1997-04-28 2000-08-01 Board Of Trustees, Leland Stanford, Jr. University Method and system for light field rendering
US6515701B2 (en) 1997-07-24 2003-02-04 Polaroid Corporation Focal plane exposure control system for CMOS area image sensors
US6563537B1 (en) 1997-07-31 2003-05-13 Fuji Photo Film Co., Ltd. Image signal interpolation
JP3430935B2 (en) 1997-10-20 2003-07-28 富士ゼロックス株式会社 Image reading device and lens
JP4243779B2 (en) 1997-11-14 2009-03-25 株式会社ニコン Diffusion plate manufacturing method, diffusion plate, microlens array manufacturing method, and microlens array
NO305728B1 (en) 1997-11-14 1999-07-12 Reidar E Tangen Optoelectronic camera and method of image formatting in the same
US6069365A (en) 1997-11-25 2000-05-30 Alan Y. Chow Optical processor based imaging system
JPH11242189A (en) 1997-12-25 1999-09-07 Olympus Optical Co Ltd Method and device for forming image
US6721008B2 (en) 1998-01-22 2004-04-13 Eastman Kodak Company Integrated CMOS active pixel digital camera
US6833863B1 (en) 1998-02-06 2004-12-21 Intel Corporation Method and apparatus for still image capture during video streaming operations of a tethered digital camera
JPH11223708A (en) 1998-02-09 1999-08-17 Nikon Corp Indentator and production of micro-optical element array
US6054703A (en) 1998-03-20 2000-04-25 Syscan, Inc. Sensing module for accelerating signal readout from image sensors
US6160909A (en) 1998-04-01 2000-12-12 Canon Kabushiki Kaisha Depth control for stereoscopic images
KR100307883B1 (en) 1998-04-13 2001-10-19 박호군 Method for measuring similarity by using a matching pixel count and apparatus for implementing the same
JP3745117B2 (en) 1998-05-08 2006-02-15 キヤノン株式会社 Image processing apparatus and image processing method
JP3931936B2 (en) 1998-05-11 2007-06-20 セイコーエプソン株式会社 Microlens array substrate, method for manufacturing the same, and display device
JP3284190B2 (en) 1998-05-14 2002-05-20 富士重工業株式会社 Image correction device for stereo camera
US6205241B1 (en) 1998-06-01 2001-03-20 Canon Kabushiki Kaisha Compression of stereoscopic images
US6137100A (en) 1998-06-08 2000-10-24 Photobit Corporation CMOS image sensor with different pixel sizes for different colors
US6069351A (en) 1998-07-16 2000-05-30 Intel Corporation Focal plane processor for scaling information from image sensors
US6903770B1 (en) 1998-07-27 2005-06-07 Sanyo Electric Co., Ltd. Digital camera which produces a single image based on two exposures
US6340994B1 (en) 1998-08-12 2002-01-22 Pixonics, Llc System and method for using temporal gamma and reverse super-resolution to process images for use in digital display systems
US6269175B1 (en) 1998-08-28 2001-07-31 Sarnoff Corporation Method and apparatus for enhancing regions of aligned images using flow estimation
US6879735B1 (en) 1998-09-14 2005-04-12 University Of Utah Reasearch Foundation Method of digital image enhancement and sharpening
US6310650B1 (en) 1998-09-23 2001-10-30 Honeywell International Inc. Method and apparatus for calibrating a tiled display
GB2343320B (en) 1998-10-31 2003-03-26 Ibm Camera system for three dimentional images and video
JP3596314B2 (en) 1998-11-02 2004-12-02 日産自動車株式会社 Object edge position measuring device and moving object traffic judging device
US6611289B1 (en) 1999-01-15 2003-08-26 Yanbin Yu Digital cameras using multiple sensors with multiple lenses
JP3875423B2 (en) 1999-01-19 2007-01-31 日本放送協会 Solid-state imaging device and video signal output device therefor
US6603513B1 (en) 1999-02-16 2003-08-05 Micron Technology, Inc. Using a single control line to provide select and reset signals to image sensors in two rows of a digital imaging device
JP3634677B2 (en) 1999-02-19 2005-03-30 キヤノン株式会社 Image interpolation method, image processing method, image display method, image processing apparatus, image display apparatus, and computer program storage medium
US6563540B2 (en) 1999-02-26 2003-05-13 Intel Corporation Light sensor with increased dynamic range
US20020063807A1 (en) 1999-04-19 2002-05-30 Neal Margulis Method for Performing Image Transforms in a Digital Display System
US6819358B1 (en) 1999-04-26 2004-11-16 Microsoft Corporation Error calibration for digital image sensors and apparatus using the same
US6292713B1 (en) 1999-05-20 2001-09-18 Compaq Computer Corporation Robotic telepresence system
US6864916B1 (en) 1999-06-04 2005-03-08 The Trustees Of Columbia University In The City Of New York Apparatus and method for high dynamic range imaging using spatially varying exposures
JP2001008235A (en) 1999-06-25 2001-01-12 Minolta Co Ltd Image input method for reconfiguring three-dimensional data and multiple-lens data input device
JP2001042042A (en) 1999-07-27 2001-02-16 Canon Inc Image pickup device
US6801653B1 (en) 1999-08-05 2004-10-05 Sony Corporation Information processing apparatus and method as well as medium
US7015954B1 (en) 1999-08-09 2006-03-21 Fuji Xerox Co., Ltd. Automatic video system using multiple cameras
US6647142B1 (en) 1999-08-19 2003-11-11 Mitsubishi Electric Research Laboratories, Inc. Badge identification system
US6771833B1 (en) 1999-08-20 2004-08-03 Eastman Kodak Company Method and system for enhancing digital images
US6628330B1 (en) 1999-09-01 2003-09-30 Neomagic Corp. Color interpolator and horizontal/vertical edge enhancer using two line buffer and alternating even/odd filters for digital camera
US6358862B1 (en) 1999-09-02 2002-03-19 Micron Technology, Inc Passivation integrity improvements
JP3280001B2 (en) 1999-09-16 2002-04-30 富士重工業株式会社 Stereo image misalignment adjustment device
US6639596B1 (en) 1999-09-20 2003-10-28 Microsoft Corporation Stereo reconstruction from multiperspective panoramas
US6628845B1 (en) 1999-10-20 2003-09-30 Nec Laboratories America, Inc. Method for subpixel registration of images
US6774941B1 (en) 1999-10-26 2004-08-10 National Semiconductor Corporation CCD output processing stage that amplifies signals from colored pixels based on the conversion efficiency of the colored pixels
US6671399B1 (en) 1999-10-27 2003-12-30 Canon Kabushiki Kaisha Fast epipolar line adjustment of stereo pairs
US6674892B1 (en) 1999-11-01 2004-01-06 Canon Kabushiki Kaisha Correcting an epipolar axis for skew and offset
JP2001195050A (en) 1999-11-05 2001-07-19 Mitsubishi Electric Corp Graphic accelerator
WO2001039512A1 (en) 1999-11-26 2001-05-31 Sanyo Electric Co., Ltd. Device and method for converting two-dimensional video to three-dimensional video
JP3950926B2 (en) 1999-11-30 2007-08-01 エーユー オプトロニクス コーポレイション Image display method, host device, image display device, and display interface
JP3728160B2 (en) 1999-12-06 2005-12-21 キヤノン株式会社 Depth image measuring apparatus and method, and mixed reality presentation system
US7068851B1 (en) 1999-12-10 2006-06-27 Ricoh Co., Ltd. Multiscale sharpening and smoothing with wavelets
FI107680B (en) 1999-12-22 2001-09-14 Nokia Oyj Procedure for transmitting video images, data transmission systems, transmitting video terminal and receiving video terminal
US6502097B1 (en) 1999-12-23 2002-12-31 Microsoft Corporation Data structure for efficient access to variable-size data objects
US6476805B1 (en) 1999-12-23 2002-11-05 Microsoft Corporation Techniques for spatial displacement estimation and multi-resolution operations on light fields
JP2001194114A (en) 2000-01-14 2001-07-19 Sony Corp Image processing apparatus and method and program providing medium
WO2001060236A2 (en) 2000-02-18 2001-08-23 William Beaumont Hospital Cone-beam computerized tomography with a flat-panel imager
US6523046B2 (en) 2000-02-25 2003-02-18 Microsoft Corporation Infrastructure and method for supporting generic multimedia metadata
JP2001264033A (en) 2000-03-17 2001-09-26 Sony Corp Three-dimensional shape-measuring apparatus and its method, three-dimensional modeling device and its method, and program providing medium
US6571466B1 (en) 2000-03-27 2003-06-03 Amkor Technology, Inc. Flip chip image sensor package fabrication method
JP2001277260A (en) 2000-03-30 2001-10-09 Seiko Epson Corp Micro-lens array, its production method, and original board and display for producing it
KR20020084288A (en) 2000-04-04 2002-11-04 주식회사 아도반테스토 Multibeam exposure apparatus comprising multiaxis electron lens and method for manufacturing semiconductor device
WO2001082593A1 (en) 2000-04-24 2001-11-01 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Apparatus and method for color image fusion
JP2001337263A (en) 2000-05-25 2001-12-07 Olympus Optical Co Ltd Range-finding device
JP4501239B2 (en) 2000-07-13 2010-07-14 ソニー株式会社 Camera calibration apparatus and method, and storage medium
US7245761B2 (en) 2000-07-21 2007-07-17 Rahul Swaminathan Method and apparatus for reducing distortion in images
WO2002009424A2 (en) 2000-07-21 2002-01-31 The Trustees Of Columbia University In The City Of New York Method and apparatus for image mosaicing
US7154546B1 (en) 2000-08-07 2006-12-26 Micron Technology, Inc. Pixel optimization for color
DE60115789T2 (en) 2000-08-25 2006-08-31 Fuji Photo Film Co., Ltd., Minami-Ashigara Apparatus for parallax image acquisition and parallax image processing
US7085409B2 (en) 2000-10-18 2006-08-01 Sarnoff Corporation Method and apparatus for synthesizing new video and/or still imagery from a collection of real video and/or still imagery
US6734905B2 (en) 2000-10-20 2004-05-11 Micron Technology, Inc. Dynamic range extension for CMOS image sensors
US6774889B1 (en) 2000-10-24 2004-08-10 Microsoft Corporation System and method for transforming an ordinary computer monitor screen into a touch screen
US7262799B2 (en) 2000-10-25 2007-08-28 Canon Kabushiki Kaisha Image sensing apparatus and its control method, control program, and storage medium
US6476971B1 (en) 2000-10-31 2002-11-05 Eastman Kodak Company Method of manufacturing a microlens array mold and a microlens array
JP3918499B2 (en) 2000-11-01 2007-05-23 セイコーエプソン株式会社 Gap measuring method, gap measuring device, shape measuring method, shape measuring device, and liquid crystal device manufacturing method
US6573912B1 (en) 2000-11-07 2003-06-03 Zaxel Systems, Inc. Internet system for virtual telepresence
US6788338B1 (en) 2000-11-20 2004-09-07 Petko Dimitrov Dinev High resolution video camera apparatus having two image sensors and signal processing
US7490774B2 (en) 2003-11-13 2009-02-17 Metrologic Instruments, Inc. Hand-supportable imaging based bar code symbol reader employing automatic light exposure measurement and illumination control subsystem integrated therein
JP2002171537A (en) 2000-11-30 2002-06-14 Canon Inc Compound image pickup system, image pickup device and electronic device
US7260274B2 (en) 2000-12-01 2007-08-21 Imax Corporation Techniques and systems for developing high-resolution imagery
US7596281B2 (en) 2000-12-05 2009-09-29 Yeda Research And Development Co. Ltd. Apparatus and method for alignment of spatial or temporal non-overlapping images sequences
JP2002252338A (en) 2000-12-18 2002-09-06 Canon Inc Imaging device and imaging system
JP2002195910A (en) 2000-12-26 2002-07-10 Omron Corp System for testing optical part
JP2002209226A (en) 2000-12-28 2002-07-26 Canon Inc Image pickup device
US7805680B2 (en) 2001-01-03 2010-09-28 Nokia Corporation Statistical metering and filtering of content via pixel-based metadata
JP3957460B2 (en) 2001-01-15 2007-08-15 沖電気工業株式会社 Transmission header compression apparatus, moving picture encoding apparatus, and moving picture transmission system
JP2002250607A (en) 2001-02-27 2002-09-06 Optex Co Ltd Object detection sensor
US6635941B2 (en) 2001-03-21 2003-10-21 Canon Kabushiki Kaisha Structure of semiconductor device with improved reliability
JP2002324743A (en) 2001-04-24 2002-11-08 Canon Inc Exposing method and equipment thereof
US6443579B1 (en) 2001-05-02 2002-09-03 Kenneth Myers Field-of-view controlling arrangements
US20020167537A1 (en) 2001-05-11 2002-11-14 Miroslav Trajkovic Motion-based tracking with pan-tilt-zoom camera
US7235785B2 (en) 2001-05-11 2007-06-26 Irvine Sensors Corp. Imaging device with multiple fields of view incorporating memory-based temperature compensation of an uncooled focal plane array
WO2002096096A1 (en) 2001-05-16 2002-11-28 Zaxel Systems, Inc. 3d instant replay system and method
US7738013B2 (en) 2001-05-29 2010-06-15 Samsung Electronics Co., Ltd. Systems and methods for power conservation in a CMOS imager
AU2002305780A1 (en) 2001-05-29 2002-12-09 Transchip, Inc. Patent application cmos imager for cellular applications and methods of using such
US6482669B1 (en) 2001-05-30 2002-11-19 Taiwan Semiconductor Manufacturing Company Colors only process to reduce package yield loss
US6525302B2 (en) 2001-06-06 2003-02-25 The Regents Of The University Of Colorado Wavefront coding phase contrast imaging systems
US20030025227A1 (en) 2001-08-02 2003-02-06 Zograph, Llc Reproduction of relief patterns
US8675119B2 (en) 2001-08-09 2014-03-18 Trustees Of Columbia University In The City Of New York Adaptive imaging using digital light processing
EP1289309B1 (en) 2001-08-31 2010-04-21 STMicroelectronics Srl Noise filter for Bayer pattern image data
JP3978706B2 (en) 2001-09-20 2007-09-19 セイコーエプソン株式会社 Manufacturing method of fine structure
JP2003139910A (en) 2001-10-30 2003-05-14 Sony Corp Optical element, method and device for manufacturing the same, and liquid crystal display device and image projection type display device using the same
DE10153237A1 (en) 2001-10-31 2003-05-15 Lfk Gmbh Method and device for the automated determination of the modulation transfer function (MTF) of focal plane array (FPA) cameras
JP3705766B2 (en) 2001-11-28 2005-10-12 独立行政法人科学技術振興機構 Image input device
JP4249627B2 (en) 2001-12-18 2009-04-02 ザ ユニバーシティ オブ ロチェスター Imaging to obtain an extended focal length using a multifocal aspheric lens
US7212228B2 (en) 2002-01-16 2007-05-01 Advanced Telecommunications Research Institute International Automatic camera calibration method
US7302118B2 (en) 2002-02-07 2007-11-27 Microsoft Corporation Transformation of images
US20030179418A1 (en) 2002-03-19 2003-09-25 Eastman Kodak Company Producing a defective pixel map from defective cluster pixels in an area array image sensor
US8369607B2 (en) 2002-03-27 2013-02-05 Sanyo Electric Co., Ltd. Method and apparatus for processing three-dimensional images
JP2003298920A (en) 2002-03-29 2003-10-17 Fuji Photo Film Co Ltd Digital camera
US20030188659A1 (en) 2002-04-05 2003-10-09 Canadian Bank Note Company Limited Method and apparatus for reproducing a color image based on monochrome images derived therefrom
US7215364B2 (en) 2002-04-10 2007-05-08 Panx Imaging, Inc. Digital imaging system using overlapping images to formulate a seamless composite image and implemented using either a digital imaging sensor array
US6856314B2 (en) 2002-04-18 2005-02-15 Stmicroelectronics, Inc. Method and system for 3D reconstruction of multiple views with altering search path and occlusion modeling
US6917702B2 (en) 2002-04-24 2005-07-12 Mitsubishi Electric Research Labs, Inc. Calibration of multiple cameras for a turntable-based 3D scanner
JP3567327B2 (en) 2002-05-08 2004-09-22 富士写真光機株式会社 Imaging lens
US6783900B2 (en) 2002-05-13 2004-08-31 Micron Technology, Inc. Color filter imaging array and method of formation
JP2004048644A (en) 2002-05-21 2004-02-12 Sony Corp Information processor, information processing system and interlocutor display method
JP2003347192A (en) 2002-05-24 2003-12-05 Toshiba Corp Energy beam exposure method and exposure device
US7129981B2 (en) 2002-06-27 2006-10-31 International Business Machines Corporation Rendering system and method for images having differing foveal area and peripheral view area resolutions
JP2004088713A (en) 2002-06-27 2004-03-18 Olympus Corp Image pickup lens unit and image pickup device
JP4147059B2 (en) 2002-07-03 2008-09-10 株式会社トプコン Calibration data measuring device, measuring method and measuring program, computer-readable recording medium, and image data processing device
JP2004037924A (en) 2002-07-04 2004-02-05 Minolta Co Ltd Imaging apparatus
WO2004008403A2 (en) 2002-07-15 2004-01-22 Magna B.S.P. Ltd. Method and apparatus for implementing multipurpose monitoring system
US20040012689A1 (en) 2002-07-16 2004-01-22 Fairchild Imaging Charge coupled devices in tiled arrays
JP2004078296A (en) 2002-08-09 2004-03-11 Victor Co Of Japan Ltd Picture generation device
US20070166447A1 (en) 2002-08-27 2007-07-19 Select Milk Producers, Inc. Dairy compositions and method of making
WO2004021151A2 (en) 2002-08-30 2004-03-11 Orasee Corp. Multi-dimensional image system for digital image input and output
US7447380B2 (en) 2002-09-12 2008-11-04 Inoe Technologies, Llc Efficient method for creating a viewpoint from plurality of images
US20040050104A1 (en) 2002-09-18 2004-03-18 Eastman Kodak Company Forming information transfer lens array
US20040207836A1 (en) 2002-09-27 2004-10-21 Rajeshwar Chhibber High dynamic range optical inspection system and method
US7084904B2 (en) 2002-09-30 2006-08-01 Microsoft Corporation Foveated wide-angle imaging system and method for capturing and viewing wide-angle images in real time
US7477781B1 (en) 2002-10-10 2009-01-13 Dalsa Corporation Method and apparatus for adaptive pixel correction of multi-color matrix
US20040075654A1 (en) 2002-10-16 2004-04-22 Silicon Integrated Systems Corp. 3-D digital image processor and method for visibility processing for use in the same
JP4171786B2 (en) 2002-10-25 2008-10-29 コニカミノルタホールディングス株式会社 Image input device
US7742088B2 (en) 2002-11-19 2010-06-22 Fujifilm Corporation Image sensor and digital camera
EP1570683A1 (en) 2002-11-21 2005-09-07 Vision III Imaging, Inc. Critical alignment of parallax images for autostereoscopic display
US20040105021A1 (en) 2002-12-02 2004-06-03 Bolymedia Holdings Co., Ltd. Color filter patterns for image sensors
US20040114807A1 (en) 2002-12-13 2004-06-17 Dan Lelescu Statistical representation and coding of light field data
US6878918B2 (en) 2003-01-09 2005-04-12 Dialdg Semiconductor Gmbh APS pixel with reset noise suppression and programmable binning capability
US7340099B2 (en) 2003-01-17 2008-03-04 University Of New Brunswick System and method for image fusion
DE10301941B4 (en) 2003-01-20 2005-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Camera and method for optical recording of a screen
US7379592B2 (en) 2003-01-21 2008-05-27 United States Of America As Represented By The Secretary Of The Navy System and method for significant dust detection and enhancement of dust images over land and ocean
JP4214409B2 (en) 2003-01-31 2009-01-28 国立大学法人東京工業大学 High resolution color image generation method, high resolution color image generation apparatus, and high resolution color image generation program
US7005637B2 (en) 2003-01-31 2006-02-28 Intevac, Inc. Backside thinning of image array devices
US7308157B2 (en) 2003-02-03 2007-12-11 Photon Dynamics, Inc. Method and apparatus for optical inspection of a display
US7595817B1 (en) 2003-02-12 2009-09-29 The Research Foundation Of State University Of New York Linear system based, qualitative independent motion detection from compressed MPEG surveillance video
JP2004266369A (en) 2003-02-21 2004-09-24 Sony Corp Solid-state image pickup unit and its driving method
US7106914B2 (en) 2003-02-27 2006-09-12 Microsoft Corporation Bayesian image super resolution
US7148861B2 (en) 2003-03-01 2006-12-12 The Boeing Company Systems and methods for providing enhanced vision imaging with decreased latency
US8218052B2 (en) 2003-03-07 2012-07-10 Iconix Video, Inc. High frame rate high definition imaging system and method
US7218320B2 (en) 2003-03-13 2007-05-15 Sony Corporation System and method for capturing facial and body motion
US7206449B2 (en) 2003-03-19 2007-04-17 Mitsubishi Electric Research Laboratories, Inc. Detecting silhouette edges in images
US7425984B2 (en) 2003-04-04 2008-09-16 Stmicroelectronics, Inc. Compound camera and methods for implementing auto-focus, depth-of-field and high-resolution functions
US7373005B2 (en) 2003-04-10 2008-05-13 Micron Technology, Inc. Compression system for integrated sensor devices
US7097311B2 (en) 2003-04-19 2006-08-29 University Of Kentucky Research Foundation Super-resolution overlay in multi-projector displays
US6958862B1 (en) 2003-04-21 2005-10-25 Foveon, Inc. Use of a lenslet array with a vertically stacked pixel array
US7428330B2 (en) 2003-05-02 2008-09-23 Microsoft Corporation Cyclopean virtual imaging via generalized probabilistic smoothing
SE525665C2 (en) 2003-05-08 2005-03-29 Forskarpatent I Syd Ab Matrix of pixels and electronic imaging device comprising said matrix of pixels
US7800683B2 (en) 2003-05-13 2010-09-21 Xceed Imaging Ltd. Optical method and system for enhancing image resolution
JP2004348674A (en) 2003-05-26 2004-12-09 Noritsu Koki Co Ltd Region detection method and its device
US20040239782A1 (en) 2003-05-30 2004-12-02 William Equitz System and method for efficient improvement of image quality in cameras
US20040240052A1 (en) 2003-06-02 2004-12-02 Pentax Corporation Multiple-focal imaging device, and a mobile device having the multiple-focal-length imaging device
JP2004363478A (en) 2003-06-06 2004-12-24 Sanyo Electric Co Ltd Manufacturing method of semiconductor device
KR100539234B1 (en) 2003-06-11 2005-12-27 삼성전자주식회사 A CMOS type image sensor module having transparent polymeric encapsulation material
US7362918B2 (en) 2003-06-24 2008-04-22 Microsoft Corporation System and method for de-noising multiple copies of a signal
US6818934B1 (en) 2003-06-24 2004-11-16 Omnivision International Holding Ltd Image sensor having micro-lens array separated with trench structures and method of making
US7388609B2 (en) 2003-07-07 2008-06-17 Zoran Corporation Dynamic identification and correction of defective pixels
US7090135B2 (en) 2003-07-07 2006-08-15 Symbol Technologies, Inc. Imaging arrangement and barcode imager for imaging an optical code or target at a plurality of focal planes
US20050007461A1 (en) 2003-07-11 2005-01-13 Novatek Microelectronic Co. Correction system and method of analog front end
JP3731589B2 (en) 2003-07-18 2006-01-05 ソニー株式会社 Imaging device and synchronization signal generator
US7233737B2 (en) * 2003-08-12 2007-06-19 Micron Technology, Inc. Fixed-focus camera module and associated method of assembly
US7643703B2 (en) 2003-09-03 2010-01-05 Battelle Energy Alliance, Llc Image change detection systems, methods, and articles of manufacture
US20050084179A1 (en) 2003-09-04 2005-04-21 Keith Hanna Method and apparatus for performing iris recognition from an image
JP4015090B2 (en) 2003-09-08 2007-11-28 株式会社東芝 Stereoscopic display device and image display method
US7161606B2 (en) 2003-09-08 2007-01-09 Honda Motor Co., Ltd. Systems and methods for directly generating a view using a layered approach
JP4020850B2 (en) 2003-10-06 2007-12-12 株式会社東芝 Magnetic recording medium manufacturing method, manufacturing apparatus, imprint stamper and manufacturing method thereof
US7079251B2 (en) 2003-10-16 2006-07-18 4D Technology Corporation Calibration and error correction in multi-channel imaging
EP2466871A3 (en) 2003-10-22 2017-05-03 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus and method for producing the same, portable equipment, and imaging sensor and method for producing the same.
US7840067B2 (en) 2003-10-24 2010-11-23 Arcsoft, Inc. Color matching and color correction for images forming a panoramic image
EP1686810A4 (en) 2003-11-11 2009-06-03 Olympus Corp Multi-spectrum image pick up device
JP4235539B2 (en) 2003-12-01 2009-03-11 独立行政法人科学技術振興機構 Image composition apparatus and image composition method
US7328288B2 (en) 2003-12-11 2008-02-05 Canon Kabushiki Kaisha Relay apparatus for relaying communication from CPU to peripheral device
US20050128509A1 (en) 2003-12-11 2005-06-16 Timo Tokkonen Image creating method and imaging device
US7453510B2 (en) 2003-12-11 2008-11-18 Nokia Corporation Imaging device
JP3859158B2 (en) 2003-12-16 2006-12-20 セイコーエプソン株式会社 Microlens concave substrate, microlens substrate, transmissive screen, and rear projector
US7511749B2 (en) 2003-12-18 2009-03-31 Aptina Imaging Corporation Color image sensor having imaging element array forming images on respective regions of sensor elements
US7123298B2 (en) 2003-12-18 2006-10-17 Avago Technologies Sensor Ip Pte. Ltd. Color image sensor with imaging elements imaging on respective regions of sensor elements
US7376250B2 (en) 2004-01-05 2008-05-20 Honda Motor Co., Ltd. Apparatus, method and program for moving object detection
US7496293B2 (en) 2004-01-14 2009-02-24 Elbit Systems Ltd. Versatile camera for various visibility conditions
US7773143B2 (en) 2004-04-08 2010-08-10 Tessera North America, Inc. Thin color camera having sub-pixel resolution
US8134637B2 (en) 2004-01-28 2012-03-13 Microsoft Corporation Method and system to increase X-Y resolution in a depth (Z) camera using red, blue, green (RGB) sensing
US7453688B2 (en) 2004-01-29 2008-11-18 Inventec Corporation Multimedia device for portable computers
US20050185711A1 (en) 2004-02-20 2005-08-25 Hanspeter Pfister 3D television system and method
SE527889C2 (en) 2004-03-17 2006-07-04 Thomas Jeff Adamo Apparatus for imaging an object
JP2006047944A (en) 2004-03-24 2006-02-16 Fuji Photo Film Co Ltd Photographing lens
WO2005096218A1 (en) 2004-03-31 2005-10-13 Canon Kabushiki Kaisha Imaging system performance measurement
US7633511B2 (en) 2004-04-01 2009-12-15 Microsoft Corporation Pop-up light field
JP4665422B2 (en) 2004-04-02 2011-04-06 ソニー株式会社 Imaging device
US8634014B2 (en) 2004-04-05 2014-01-21 Hewlett-Packard Development Company, L.P. Imaging device analysis systems and imaging device analysis methods
US7091531B2 (en) 2004-04-07 2006-08-15 Micron Technology, Inc. High dynamic range pixel amplifier
US8049806B2 (en) 2004-09-27 2011-11-01 Digitaloptics Corporation East Thin camera and associated methods
US7620265B1 (en) 2004-04-12 2009-11-17 Equinox Corporation Color invariant image fusion of visible and thermal infrared video
JP2005303694A (en) 2004-04-13 2005-10-27 Konica Minolta Holdings Inc Compound eye imaging device
US7292735B2 (en) 2004-04-16 2007-11-06 Microsoft Corporation Virtual image artifact detection
US7773404B2 (en) 2005-01-07 2010-08-10 Invisage Technologies, Inc. Quantum dot optical devices with enhanced gain and sensitivity and methods of making same
US8218625B2 (en) 2004-04-23 2012-07-10 Dolby Laboratories Licensing Corporation Encoding, decoding and representing high dynamic range images
US20060034531A1 (en) 2004-05-10 2006-02-16 Seiko Epson Corporation Block noise level evaluation method for compressed images and control method of imaging device utilizing the evaluation method
EP1750584B1 (en) 2004-05-14 2020-10-14 Philips Intellectual Property & Standards GmbH System and method for diagnosing breast cancer
JP4610411B2 (en) 2004-05-17 2011-01-12 ミツビシ・エレクトリック・リサーチ・ラボラトリーズ・インコーポレイテッド Method for generating a stylized image of a scene containing objects
US7355793B2 (en) 2004-05-19 2008-04-08 The Regents Of The University Of California Optical system applicable to improving the dynamic range of Shack-Hartmann sensors
US20050265633A1 (en) 2004-05-25 2005-12-01 Sarnoff Corporation Low latency pyramid processor for image processing systems
JP2005354124A (en) 2004-06-08 2005-12-22 Seiko Epson Corp Production of high pixel density image from a plurality of low pixel density images
US20060013318A1 (en) 2004-06-22 2006-01-19 Jennifer Webb Video error detection, recovery, and concealment
US7330593B2 (en) 2004-06-25 2008-02-12 Stmicroelectronics, Inc. Segment based image matching method and system
JP4408755B2 (en) 2004-06-28 2010-02-03 Necエレクトロニクス株式会社 Deinterleaving device, mobile communication terminal, and deinterleaving method
JP4479373B2 (en) 2004-06-28 2010-06-09 ソニー株式会社 Image sensor
US7447382B2 (en) 2004-06-30 2008-11-04 Intel Corporation Computing a higher resolution image from multiple lower resolution images using model-based, robust Bayesian estimation
JP2006033228A (en) 2004-07-14 2006-02-02 Victor Co Of Japan Ltd Picture imaging apparatus
JP2006033493A (en) 2004-07-16 2006-02-02 Matsushita Electric Ind Co Ltd Imaging apparatus
US7189954B2 (en) 2004-07-19 2007-03-13 Micron Technology, Inc. Microelectronic imagers with optical devices and methods of manufacturing such microelectronic imagers
JP2006033570A (en) 2004-07-20 2006-02-02 Olympus Corp Image generating device
US8027531B2 (en) 2004-07-21 2011-09-27 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and method for capturing a scene using staggered triggering of dense camera arrays
GB0416496D0 (en) 2004-07-23 2004-08-25 Council Of The Central Lab Of Imaging device
US20060023197A1 (en) 2004-07-27 2006-02-02 Joel Andrew H Method and system for automated production of autostereoscopic and animated prints and transparencies from digital and non-digital media
US7068432B2 (en) 2004-07-27 2006-06-27 Micron Technology, Inc. Controlling lens shape in a microlens array
DE102004036469A1 (en) 2004-07-28 2006-02-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Camera module, array based thereon and method for its production
US20060028476A1 (en) 2004-08-03 2006-02-09 Irwin Sobel Method and system for providing extensive coverage of an object using virtual cameras
US7333652B2 (en) 2004-08-03 2008-02-19 Sony Corporation System and method for efficiently performing a depth map recovery procedure
JP2006050263A (en) 2004-08-04 2006-02-16 Olympus Corp Image generation method and device
WO2006017771A1 (en) 2004-08-06 2006-02-16 University Of Washington Variable fixation viewing distance scanned light displays
US7430339B2 (en) 2004-08-09 2008-09-30 Microsoft Corporation Border matting by dynamic programming
US7609302B2 (en) 2004-08-11 2009-10-27 Micron Technology, Inc. Correction of non-uniform sensitivity in an image array
US7061693B2 (en) 2004-08-16 2006-06-13 Xceed Imaging Ltd. Optical method and system for extended depth of focus
US7645635B2 (en) 2004-08-16 2010-01-12 Micron Technology, Inc. Frame structure and semiconductor attach process for use therewith for fabrication of image sensor packages and the like, and resulting packages
WO2006036398A2 (en) 2004-08-23 2006-04-06 Sarnoff Corporation Method and apparatus for producing a fused image
US8124929B2 (en) 2004-08-25 2012-02-28 Protarius Filo Ag, L.L.C. Imager module optical focus and assembly method
US7795577B2 (en) 2004-08-25 2010-09-14 Richard Ian Olsen Lens frame and optical focus assembly for imager module
US7564019B2 (en) 2005-08-25 2009-07-21 Richard Ian Olsen Large dynamic range cameras
US7916180B2 (en) 2004-08-25 2011-03-29 Protarius Filo Ag, L.L.C. Simultaneous multiple field of view digital cameras
CN101427372B (en) 2004-08-25 2012-12-12 普罗塔里斯菲洛有限责任公司 Apparatus for multiple camera devices and method of operating same
JP4057597B2 (en) 2004-08-26 2008-03-05 独立行政法人科学技術振興機構 Optical element
CN100489599C (en) 2004-08-26 2009-05-20 财团法人秋田企业活性化中心 Liquid crystal lens
US20060046204A1 (en) 2004-08-31 2006-03-02 Sharp Laboratories Of America, Inc. Directly patternable microlens
JP2006080852A (en) 2004-09-09 2006-03-23 Olympus Corp Apparatus and method of processing image, electronic camera, scanner and image processing program
US20060055811A1 (en) 2004-09-14 2006-03-16 Frtiz Bernard S Imaging system having modules with adaptive optical elements
US7145124B2 (en) 2004-09-15 2006-12-05 Raytheon Company Multispectral imaging chip using photonic crystals
JP4202991B2 (en) 2004-09-29 2008-12-24 株式会社東芝 Stereo image data recording method and display reproduction method
JP3977368B2 (en) 2004-09-30 2007-09-19 クラリオン株式会社 Parking assistance system
DE102004049676A1 (en) 2004-10-12 2006-04-20 Infineon Technologies Ag Method for computer-aided motion estimation in a plurality of temporally successive digital images, arrangement for computer-aided motion estimation, computer program element and computer-readable storage medium
JP2006119368A (en) 2004-10-21 2006-05-11 Konica Minolta Opto Inc Wide-angle optical system, imaging lens device, monitor camera and digital equipment
JP4534715B2 (en) 2004-10-22 2010-09-01 株式会社ニコン Imaging apparatus and image processing program
DE102004052994C5 (en) 2004-11-03 2010-08-26 Vistec Electron Beam Gmbh Multi-beam modulator for a particle beam and use of the multi-beam modulator for maskless substrate structuring
KR100603601B1 (en) 2004-11-08 2006-07-24 한국전자통신연구원 Apparatus and Method for Production Multi-view Contents
CN101111748B (en) 2004-12-03 2014-12-17 弗卢克公司 Visible light and ir combined image camera with a laser pointer
US7483065B2 (en) 2004-12-15 2009-01-27 Aptina Imaging Corporation Multi-lens imaging systems and methods using optical filters having mosaic patterns
US7728878B2 (en) 2004-12-17 2010-06-01 Mitsubishi Electric Research Labortories, Inc. Method and system for processing multiview videos for view synthesis using side information
US8854486B2 (en) 2004-12-17 2014-10-07 Mitsubishi Electric Research Laboratories, Inc. Method and system for processing multiview videos for view synthesis using skip and direct modes
US7430312B2 (en) 2005-01-07 2008-09-30 Gesturetek, Inc. Creating 3D images of objects by illuminating with infrared patterns
US7073908B1 (en) 2005-01-11 2006-07-11 Anthony Italo Provitola Enhancement of depth perception
US7671321B2 (en) 2005-01-18 2010-03-02 Rearden, Llc Apparatus and method for capturing still images and video using coded lens imaging techniques
US7767949B2 (en) 2005-01-18 2010-08-03 Rearden, Llc Apparatus and method for capturing still images and video using coded aperture techniques
US7602997B2 (en) 2005-01-19 2009-10-13 The United States Of America As Represented By The Secretary Of The Army Method of super-resolving images
US7408627B2 (en) 2005-02-08 2008-08-05 Canesta, Inc. Methods and system to quantify depth data accuracy in three-dimensional sensors using single frame capture
US7965314B1 (en) 2005-02-09 2011-06-21 Flir Systems, Inc. Foveal camera systems and methods
US20060187322A1 (en) 2005-02-18 2006-08-24 Janson Wilbert F Jr Digital camera using multiple fixed focal length lenses and multiple image sensors to provide an extended zoom range
US7561191B2 (en) 2005-02-18 2009-07-14 Eastman Kodak Company Camera phone using multiple lenses and image sensors to provide an extended zoom range
EP2230482B1 (en) 2005-03-11 2013-10-30 Creaform Inc. Auto-referenced system and apparatus for three-dimensional scanning
JP2006258930A (en) 2005-03-15 2006-09-28 Nikon Corp Method for manufacturing microlens and method for manufacturing die for microlens
WO2006102181A1 (en) 2005-03-21 2006-09-28 Massachusetts Institute Of Technology (Mit) Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array
WO2006100903A1 (en) 2005-03-23 2006-09-28 Matsushita Electric Industrial Co., Ltd. On-vehicle imaging device
US7880794B2 (en) * 2005-03-24 2011-02-01 Panasonic Corporation Imaging device including a plurality of lens elements and a imaging sensor
US7297917B2 (en) 2005-03-24 2007-11-20 Micron Technology, Inc. Readout technique for increasing or maintaining dynamic range in image sensors
US7683950B2 (en) 2005-04-26 2010-03-23 Eastman Kodak Company Method and apparatus for correcting a channel dependent color aberration in a digital image
US7956871B2 (en) 2005-04-28 2011-06-07 Samsung Electronics Co., Ltd. Color disparity correction in image sensors methods and circuits
US7656428B2 (en) 2005-05-05 2010-02-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Imaging device employing optical motion sensor as gyroscope
EP1882449A4 (en) 2005-05-18 2010-05-05 Hitachi Medical Corp Radiograph and image processing program
US8411182B2 (en) 2005-06-02 2013-04-02 Xerox Corporation System for controlling integration times of photosensors in an imaging device
US7968888B2 (en) 2005-06-08 2011-06-28 Panasonic Corporation Solid-state image sensor and manufacturing method thereof
JP2006345233A (en) 2005-06-09 2006-12-21 Fujifilm Holdings Corp Imaging device and digital camera
KR100813961B1 (en) 2005-06-14 2008-03-14 삼성전자주식회사 Method and apparatus for transmitting and receiving of video, and transport stream structure thereof
US7364306B2 (en) 2005-06-20 2008-04-29 Digital Display Innovations, Llc Field sequential light source modulation for a digital display system
JP4826152B2 (en) 2005-06-23 2011-11-30 株式会社ニコン Image composition method and imaging apparatus
JP5082209B2 (en) 2005-06-27 2012-11-28 株式会社日立製作所 Transmission device, reception device, and video signal transmission / reception system
US20070102622A1 (en) * 2005-07-01 2007-05-10 Olsen Richard I Apparatus for multiple camera devices and method of operating same
JP4577126B2 (en) 2005-07-08 2010-11-10 オムロン株式会社 Projection pattern generation apparatus and generation method for stereo correspondence
US20090268983A1 (en) 2005-07-25 2009-10-29 The Regents Of The University Of California Digital imaging system and method using multiple digital image sensors to produce large high-resolution gapless mosaic images
JP4903705B2 (en) 2005-07-26 2012-03-28 パナソニック株式会社 Compound-eye imaging device and manufacturing method thereof
US8384763B2 (en) 2005-07-26 2013-02-26 Her Majesty the Queen in right of Canada as represented by the Minster of Industry, Through the Communications Research Centre Canada Generating a depth map from a two-dimensional source image for stereoscopic and multiview imaging
US7969488B2 (en) 2005-08-03 2011-06-28 Micron Technologies, Inc. Correction of cluster defects in imagers
US7929801B2 (en) 2005-08-15 2011-04-19 Sony Corporation Depth information for auto focus using two pictures and two-dimensional Gaussian scale space theory
US20070041391A1 (en) 2005-08-18 2007-02-22 Micron Technology, Inc. Method and apparatus for controlling imager output data rate
US20070040922A1 (en) 2005-08-22 2007-02-22 Micron Technology, Inc. HDR/AB on multi-way shared pixels
US7964835B2 (en) 2005-08-25 2011-06-21 Protarius Filo Ag, L.L.C. Digital cameras with direct luminance and chrominance detection
US20070258006A1 (en) 2005-08-25 2007-11-08 Olsen Richard I Solid state camera optics frame and assembly
US20070083114A1 (en) 2005-08-26 2007-04-12 The University Of Connecticut Systems and methods for image resolution enhancement
JP4804856B2 (en) 2005-09-29 2011-11-02 富士フイルム株式会社 Single focus lens
WO2007036055A1 (en) 2005-09-30 2007-04-05 Simon Fraser University Methods and apparatus for detecting defects in imaging arrays by image analysis
WO2007044725A2 (en) 2005-10-07 2007-04-19 The Board Of Trustees Of The Leland Stanford Junior University Microscopy arrangements and approaches
JP4773179B2 (en) 2005-10-14 2011-09-14 富士フイルム株式会社 Imaging device
US8300085B2 (en) 2005-10-14 2012-10-30 Microsoft Corporation Occlusion handling in stereo imaging
US7806604B2 (en) 2005-10-20 2010-10-05 Honeywell International Inc. Face detection and tracking in a wide field of view
KR100730406B1 (en) 2005-11-16 2007-06-19 광운대학교 산학협력단 Three-dimensional display apparatus using intermediate elemental images
JP4389865B2 (en) 2005-11-17 2009-12-24 ソニー株式会社 SIGNAL PROCESSING DEVICE FOR SOLID-STATE IMAGING ELEMENT, SIGNAL PROCESSING METHOD, AND IMAGING DEVICE
JP4887374B2 (en) 2005-11-30 2012-02-29 テレコム・イタリア・エッセ・ピー・アー A method for obtaining scattered parallax field in stereo vision
US7599547B2 (en) 2005-11-30 2009-10-06 Microsoft Corporation Symmetric stereo model for handling occlusion
JP4516516B2 (en) 2005-12-07 2010-08-04 本田技研工業株式会社 Person detection device, person detection method, and person detection program
TWI296480B (en) 2005-12-19 2008-05-01 Quanta Comp Inc Image camera of an electronic device
JP4501855B2 (en) 2005-12-22 2010-07-14 ソニー株式会社 Image signal processing apparatus, imaging apparatus, image signal processing method, and computer program
JP2007180730A (en) 2005-12-27 2007-07-12 Eastman Kodak Co Digital camera and data management method
US8089515B2 (en) 2005-12-30 2012-01-03 Nokia Corporation Method and device for controlling auto focusing of a video camera by tracking a region-of-interest
US7855786B2 (en) 2006-01-09 2010-12-21 Bae Systems Spectral Solutions Llc Single camera multi-spectral imager
US7675080B2 (en) 2006-01-10 2010-03-09 Aptina Imaging Corp. Uniform color filter arrays in a moat
WO2007083579A1 (en) 2006-01-20 2007-07-26 Matsushita Electric Industrial Co., Ltd. Compound eye camera module and method of producing the same
DE102006004802B4 (en) 2006-01-23 2008-09-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Image acquisition system and method for producing at least one image capture system
JP4834412B2 (en) 2006-02-03 2011-12-14 富士フイルム株式会社 Solid-state imaging device and electronic endoscope using the same
US20070201859A1 (en) 2006-02-24 2007-08-30 Logitech Europe S.A. Method and system for use of 3D sensors in an image capture device
US7391572B2 (en) 2006-03-01 2008-06-24 International Business Machines Corporation Hybrid optical/electronic structures fabricated by a common molding process
US7924483B2 (en) 2006-03-06 2011-04-12 Smith Scott T Fused multi-array color image sensor
DE102006011707B4 (en) 2006-03-14 2010-11-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for producing a structure-free fiberscopic recording
US7616254B2 (en) 2006-03-16 2009-11-10 Sony Corporation Simple method for calculating camera defocus from an image scene
US8360574B2 (en) 2006-03-20 2013-01-29 High Performance Optics, Inc. High performance selective light wavelength filtering providing improved contrast sensitivity
JP4615468B2 (en) 2006-03-23 2011-01-19 富士フイルム株式会社 Imaging device
US7606484B1 (en) 2006-03-23 2009-10-20 Flir Systems, Inc. Infrared and near-infrared camera hyperframing
US7342212B2 (en) 2006-03-31 2008-03-11 Micron Technology, Inc. Analog vertical sub-sampling in an active pixel sensor (APS) image sensor
US8044994B2 (en) 2006-04-04 2011-10-25 Mitsubishi Electric Research Laboratories, Inc. Method and system for decoding and displaying 3D light fields
US7916934B2 (en) 2006-04-04 2011-03-29 Mitsubishi Electric Research Laboratories, Inc. Method and system for acquiring, encoding, decoding and displaying 3D light fields
TW200740212A (en) 2006-04-10 2007-10-16 Sony Taiwan Ltd A stitching accuracy improvement method with lens distortion correction
US20070242141A1 (en) 2006-04-14 2007-10-18 Sony Corporation And Sony Electronics Inc. Adjustable neutral density filter system for dynamic range compression from scene to imaging sensor
CN101064780B (en) 2006-04-30 2012-07-04 台湾新力国际股份有限公司 Method and apparatus for improving image joint accuracy using lens distortion correction
US20070263114A1 (en) 2006-05-01 2007-11-15 Microalign Technologies, Inc. Ultra-thin digital imaging device of high resolution for mobile electronic devices and method of imaging
US7580620B2 (en) 2006-05-08 2009-08-25 Mitsubishi Electric Research Laboratories, Inc. Method for deblurring images using optimized temporal coding patterns
US9736346B2 (en) 2006-05-09 2017-08-15 Stereo Display, Inc Imaging system improving image resolution of the system with low resolution image sensor
US7889264B2 (en) 2006-05-12 2011-02-15 Ricoh Co., Ltd. End-to-end design of superresolution electro-optic imaging systems
US7916362B2 (en) 2006-05-22 2011-03-29 Eastman Kodak Company Image sensor with improved light sensitivity
US8139142B2 (en) 2006-06-01 2012-03-20 Microsoft Corporation Video manipulation of red, green, blue, distance (RGB-Z) data including segmentation, up-sampling, and background substitution techniques
IES20070229A2 (en) 2006-06-05 2007-10-03 Fotonation Vision Ltd Image acquisition method and apparatus
US20070177004A1 (en) 2006-06-08 2007-08-02 Timo Kolehmainen Image creating method and imaging device
JP4631811B2 (en) 2006-06-12 2011-02-16 株式会社日立製作所 Imaging device
JP5106870B2 (en) 2006-06-14 2012-12-26 株式会社東芝 Solid-state image sensor
FR2902530A1 (en) 2006-06-19 2007-12-21 St Microelectronics Rousset Polymer lens fabricating method for e.g. complementary MOS imager, involves realizing opaque zones on convex lens by degrading molecular structure of polymer material, where zones form diaphragm and diffraction network that forms filter
TWI362550B (en) 2007-06-21 2012-04-21 Ether Precision Inc The method for manufacturing the image captures unit
US7925117B2 (en) 2006-06-27 2011-04-12 Honeywell International Inc. Fusion of sensor data and synthetic data to form an integrated image
KR100793369B1 (en) * 2006-07-06 2008-01-11 삼성전자주식회사 Image sensor for improving the resolution and method of sensing the image for improving it
US20080024683A1 (en) 2006-07-31 2008-01-31 Niranjan Damera-Venkata Overlapped multi-projector system with dithering
JP2008039852A (en) 2006-08-01 2008-02-21 Agc Techno Glass Co Ltd Glass optical element and its manufacturing method
US20080030592A1 (en) 2006-08-01 2008-02-07 Eastman Kodak Company Producing digital image with different resolution portions
US8406562B2 (en) 2006-08-11 2013-03-26 Geo Semiconductor Inc. System and method for automated calibration and correction of display geometry and color
EP1892688B1 (en) 2006-08-24 2010-09-01 Valeo Vision Method for determining the passing of a vehicle in a bottleneck
US8687087B2 (en) 2006-08-29 2014-04-01 Csr Technology Inc. Digital camera with selectively increased dynamic range by control of parameters during image acquisition
US8306063B2 (en) 2006-08-29 2012-11-06 EXFO Services Assurance, Inc. Real-time transport protocol stream detection system and method
KR100746360B1 (en) 2006-08-31 2007-08-06 삼성전기주식회사 Manufacturing method of stamper
NO326372B1 (en) 2006-09-21 2008-11-17 Polight As Polymer Lens
WO2008039802A2 (en) 2006-09-25 2008-04-03 Ophthonix, Incorporated Method for correction of chromatic aberration and achromatic lens
US20080078692A1 (en) 2006-09-28 2008-04-03 Wegerer David A Absorption recovery processing of FCC-produced light olefins
JP4403162B2 (en) 2006-09-29 2010-01-20 株式会社東芝 Stereoscopic image display device and method for producing stereoscopic image
US20080080028A1 (en) 2006-10-02 2008-04-03 Micron Technology, Inc. Imaging method, apparatus and system having extended depth of field
US8031258B2 (en) 2006-10-04 2011-10-04 Omnivision Technologies, Inc. Providing multiple video signals from single sensor
CN101600976B (en) 2006-10-11 2011-11-09 珀莱特公司 Design of compact adjustable lens
EP2074445B1 (en) 2006-10-11 2017-04-12 poLight AS Method for manufacturing adjustable lens
US8073196B2 (en) 2006-10-16 2011-12-06 University Of Southern California Detection and tracking of moving objects from a moving platform in presence of strong parallax
JP4349456B2 (en) 2006-10-23 2009-10-21 ソニー株式会社 Solid-state image sensor
US20100103175A1 (en) 2006-10-25 2010-04-29 Tokyo Institute Of Technology Method for generating a high-resolution virtual-focal-plane image
US7888159B2 (en) 2006-10-26 2011-02-15 Omnivision Technologies, Inc. Image sensor having curved micro-mirrors over the sensing photodiode and method for fabricating
JP4452951B2 (en) 2006-11-02 2010-04-21 富士フイルム株式会社 Distance image generation method and apparatus
KR20080043106A (en) 2006-11-13 2008-05-16 삼성전자주식회사 Optical lens and manufacturing method thereof
US8059162B2 (en) 2006-11-15 2011-11-15 Sony Corporation Imaging apparatus and method, and method for designing imaging apparatus
US20080118241A1 (en) 2006-11-16 2008-05-22 Tekolste Robert Control of stray light in camera systems employing an optics stack and associated methods
CN201043890Y (en) 2006-11-17 2008-04-02 中国科学院上海光学精密机械研究所 Single-bore diameter and multi-imaging optical imaging range unit
US8538166B2 (en) 2006-11-21 2013-09-17 Mantisvision Ltd. 3D geometric modeling and 3D video content creation
KR20080047002A (en) 2006-11-24 2008-05-28 엘지이노텍 주식회사 Lens assembly and method manufacturing the same for camera module
US8559705B2 (en) 2006-12-01 2013-10-15 Lytro, Inc. Interactive refocusing of electronic images
US20100265385A1 (en) 2009-04-18 2010-10-21 Knight Timothy J Light Field Camera Image, File and Configuration Data, and Methods of Using, Storing and Communicating Same
JP4406937B2 (en) 2006-12-01 2010-02-03 富士フイルム株式会社 Imaging device
JP5040493B2 (en) 2006-12-04 2012-10-03 ソニー株式会社 Imaging apparatus and imaging method
US8242426B2 (en) 2006-12-12 2012-08-14 Dolby Laboratories Licensing Corporation Electronic camera having multiple sensors for capturing high dynamic range images and related methods
US7646549B2 (en) 2006-12-18 2010-01-12 Xceed Imaging Ltd Imaging system and method for providing extended depth of focus, range extraction and super resolved imaging
US8213500B2 (en) 2006-12-21 2012-07-03 Sharp Laboratories Of America, Inc. Methods and systems for processing film grain noise
US8103111B2 (en) 2006-12-26 2012-01-24 Olympus Imaging Corp. Coding method, electronic camera, recording medium storing coded program, and decoding method
US20080158259A1 (en) 2006-12-28 2008-07-03 Texas Instruments Incorporated Image warping and lateral color correction
US20080158698A1 (en) 2006-12-29 2008-07-03 Chao-Chi Chang Lens barrel array and lens array and the method of making the same
US7973823B2 (en) 2006-12-29 2011-07-05 Nokia Corporation Method and system for image pre-processing
US20080165257A1 (en) 2007-01-05 2008-07-10 Micron Technology, Inc. Configurable pixel array system and method
JP4993578B2 (en) 2007-01-15 2012-08-08 オリンパスイメージング株式会社 Image file playback device, image file processing and editing device
US8655052B2 (en) 2007-01-26 2014-02-18 Intellectual Discovery Co., Ltd. Methodology for 3D scene reconstruction from 2D image sequences
JP5024992B2 (en) 2007-02-02 2012-09-12 株式会社ジャパンディスプレイセントラル Display device
US7667824B1 (en) 2007-02-06 2010-02-23 Alpha Technology, LLC Range gated shearography systems and related methods
US7792423B2 (en) 2007-02-06 2010-09-07 Mitsubishi Electric Research Laboratories, Inc. 4D light field cameras
CN100585453C (en) 2007-02-09 2010-01-27 奥林巴斯映像株式会社 Decoding method and decoding apparatus
JP4386083B2 (en) 2007-02-27 2009-12-16 トヨタ自動車株式会社 Parking assistance device
JP2008209761A (en) * 2007-02-27 2008-09-11 Nikon Corp Focus detecting device and imaging apparatus
JP4153013B1 (en) 2007-03-06 2008-09-17 シャープ株式会社 Imaging lens, imaging unit, and portable information terminal including the same
US7755679B2 (en) 2007-03-07 2010-07-13 Altasens, Inc. Apparatus and method for reducing edge effect in an image sensor
US7859588B2 (en) 2007-03-09 2010-12-28 Eastman Kodak Company Method and apparatus for operating a dual lens camera to augment an image
US7683962B2 (en) 2007-03-09 2010-03-23 Eastman Kodak Company Camera using multiple lenses and image sensors in a rangefinder configuration to provide a range map
US7729602B2 (en) 2007-03-09 2010-06-01 Eastman Kodak Company Camera using multiple lenses and image sensors operable in a default imaging mode
US7676146B2 (en) 2007-03-09 2010-03-09 Eastman Kodak Company Camera using multiple lenses and image sensors to provide improved focusing capability
JP4915859B2 (en) 2007-03-26 2012-04-11 船井電機株式会社 Object distance deriving device
JP2008242658A (en) 2007-03-26 2008-10-09 Funai Electric Co Ltd Three-dimensional object imaging apparatus
US7738017B2 (en) 2007-03-27 2010-06-15 Aptina Imaging Corporation Method and apparatus for automatic linear shift parallax correction for multi-array image systems
US8055466B2 (en) 2007-03-30 2011-11-08 Mitutoyo Corporation Global calibration for stereo vision probe
US8165418B2 (en) 2007-03-30 2012-04-24 Brother Kogyo Kabushiki Kaisha Image processor
US8493496B2 (en) 2007-04-02 2013-07-23 Primesense Ltd. Depth mapping using projected patterns
US8213711B2 (en) 2007-04-03 2012-07-03 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry, Through The Communications Research Centre Canada Method and graphical user interface for modifying depth maps
US8098941B2 (en) 2007-04-03 2012-01-17 Aptina Imaging Corporation Method and apparatus for parallelization of image compression encoders
JP2008258885A (en) 2007-04-04 2008-10-23 Texas Instr Japan Ltd Imaging apparatus and driving method of imaging apparatus
CN101281282A (en) 2007-04-04 2008-10-08 鸿富锦精密工业(深圳)有限公司 Lens module
EP2432015A1 (en) 2007-04-18 2012-03-21 Invisage Technologies, Inc. Materials, systems and methods for optoelectronic devices
WO2009023044A2 (en) 2007-04-24 2009-02-19 21 Ct, Inc. Method and system for fast dense stereoscopic ranging
KR100869219B1 (en) 2007-05-03 2008-11-18 동부일렉트로닉스 주식회사 Image Sensor and Method for Manufacturing thereof
US8462220B2 (en) 2007-05-09 2013-06-11 Aptina Imaging Corporation Method and apparatus for improving low-light performance for small pixel image sensors
US7812869B2 (en) 2007-05-11 2010-10-12 Aptina Imaging Corporation Configurable pixel array system and method
JP4341695B2 (en) 2007-05-17 2009-10-07 ソニー株式会社 Image input processing device, imaging signal processing circuit, and imaging signal noise reduction method
JP4337911B2 (en) 2007-05-24 2009-09-30 ソニー株式会社 Imaging device, imaging circuit, and imaging method
US20080298674A1 (en) 2007-05-29 2008-12-04 Image Masters Inc. Stereoscopic Panoramic imaging system
US7733575B2 (en) 2007-05-31 2010-06-08 Artificial Muscle, Inc. Optical systems employing compliant electroactive materials
US8290358B1 (en) 2007-06-25 2012-10-16 Adobe Systems Incorporated Methods and apparatus for light-field imaging
KR101545008B1 (en) 2007-06-26 2015-08-18 코닌클리케 필립스 엔.브이. Method and system for encoding a 3d video signal, enclosed 3d video signal, method and system for decoder for a 3d video signal
WO2009008864A1 (en) 2007-07-12 2009-01-15 Thomson Licensing System and method for three-dimensional object reconstruction from two-dimensional images
US8125619B2 (en) 2007-07-25 2012-02-28 Eminent Electronic Technology Corp. Integrated ambient light sensor and distance sensor
JP5006727B2 (en) 2007-07-26 2012-08-22 株式会社リコー Image processing apparatus and digital camera
US8559756B2 (en) 2007-08-06 2013-10-15 Adobe Systems Incorporated Radiance processing by demultiplexing in the frequency domain
EP2034338A1 (en) 2007-08-11 2009-03-11 ETH Zurich Liquid Lens System
EP2026563A1 (en) 2007-08-14 2009-02-18 Deutsche Thomson OHG System and method for detecting defective pixels
US7782364B2 (en) 2007-08-21 2010-08-24 Aptina Imaging Corporation Multi-array sensor with integrated sub-array for parallax detection and photometer functionality
US20090066693A1 (en) 2007-09-06 2009-03-12 Roc Carson Encoding A Depth Map Into An Image Using Analysis Of Two Consecutive Captured Frames
US7973834B2 (en) 2007-09-24 2011-07-05 Jianwen Yang Electro-optical foveated imaging and tracking system
US20090079862A1 (en) * 2007-09-25 2009-03-26 Micron Technology, Inc. Method and apparatus providing imaging auto-focus utilizing absolute blur value
US20090086074A1 (en) 2007-09-27 2009-04-02 Omnivision Technologies, Inc. Dual mode camera solution apparatus, system, and method
US7940311B2 (en) 2007-10-03 2011-05-10 Nokia Corporation Multi-exposure pattern for enhancing dynamic range of images
JP5172267B2 (en) 2007-10-09 2013-03-27 富士フイルム株式会社 Imaging device
US8049289B2 (en) 2007-10-11 2011-11-01 Dongbu Hitek Co., Ltd. Image sensor and method for manufacturing the same
US8938009B2 (en) 2007-10-12 2015-01-20 Qualcomm Incorporated Layered encoded bitstream structure
US7956924B2 (en) 2007-10-18 2011-06-07 Adobe Systems Incorporated Fast computational camera based on two arrays of lenses
US7787112B2 (en) * 2007-10-22 2010-08-31 Visiongate, Inc. Depth of field extension for optical tomography
US7920193B2 (en) 2007-10-23 2011-04-05 Aptina Imaging Corporation Methods, systems and apparatuses using barrier self-calibration for high dynamic range imagers
US7777804B2 (en) 2007-10-26 2010-08-17 Omnivision Technologies, Inc. High dynamic range sensor with reduced line memory for color interpolation
WO2009061814A2 (en) 2007-11-05 2009-05-14 University Of Florida Research Foundation, Inc. Lossless data compression and real-time decompression
US7852461B2 (en) 2007-11-15 2010-12-14 Microsoft International Holdings B.V. Dual mode depth imaging
US20090128644A1 (en) 2007-11-15 2009-05-21 Camp Jr William O System and method for generating a photograph
US8351685B2 (en) 2007-11-16 2013-01-08 Gwangju Institute Of Science And Technology Device and method for estimating depth map, and method for generating intermediate image and method for encoding multi-view video using the same
US8126279B2 (en) 2007-11-19 2012-02-28 The University Of Arizona Lifting-based view compensated compression and remote visualization of volume rendered images
KR20090055803A (en) 2007-11-29 2009-06-03 광주과학기술원 Method and apparatus for generating multi-viewpoint depth map, method for generating disparity of multi-viewpoint image
JP5010445B2 (en) 2007-11-29 2012-08-29 パナソニック株式会社 Manufacturing method of mold for microlens array
GB2455316B (en) 2007-12-04 2012-08-15 Sony Corp Image processing apparatus and method
US8384803B2 (en) 2007-12-13 2013-02-26 Keigo Iizuka Camera system and method for amalgamating images to create an omni-focused image
TWI353778B (en) 2007-12-21 2011-12-01 Ind Tech Res Inst Moving object detection apparatus and method
US7880807B2 (en) 2007-12-26 2011-02-01 Sony Ericsson Mobile Communications Ab Camera system with mirror arrangement for generating self-portrait panoramic pictures
US8233077B2 (en) 2007-12-27 2012-07-31 Qualcomm Incorporated Method and apparatus with depth map generation
US20110031381A1 (en) 2007-12-28 2011-02-10 Hiok-Nam Tay Light guide array for an image sensor
TWI362628B (en) 2007-12-28 2012-04-21 Ind Tech Res Inst Methof for producing an image with depth by using 2d image
JP4413261B2 (en) 2008-01-10 2010-02-10 シャープ株式会社 Imaging apparatus and optical axis control method
JP5198295B2 (en) * 2008-01-15 2013-05-15 富士フイルム株式会社 Image sensor position adjustment method, camera module manufacturing method and apparatus, and camera module
US7962033B2 (en) 2008-01-23 2011-06-14 Adobe Systems Incorporated Methods and apparatus for full-resolution light-field capture and rendering
US8189065B2 (en) 2008-01-23 2012-05-29 Adobe Systems Incorporated Methods and apparatus for full-resolution light-field capture and rendering
JP4956452B2 (en) 2008-01-25 2012-06-20 富士重工業株式会社 Vehicle environment recognition device
US8824833B2 (en) 2008-02-01 2014-09-02 Omnivision Technologies, Inc. Image data fusion systems and methods
GB0802290D0 (en) 2008-02-08 2008-03-12 Univ Kent Canterbury Camera adapter based optical imaging apparatus
US8319301B2 (en) 2008-02-11 2012-11-27 Omnivision Technologies, Inc. Self-aligned filter for an image sensor
JP2009206922A (en) 2008-02-28 2009-09-10 Funai Electric Co Ltd Compound-eye imaging apparatus
US9094675B2 (en) 2008-02-29 2015-07-28 Disney Enterprises Inc. Processing image data from multiple cameras for motion pictures
CN101520532A (en) 2008-02-29 2009-09-02 鸿富锦精密工业(深圳)有限公司 Composite lens
DE112009000480T5 (en) 2008-03-03 2011-04-07 VideoIQ, Inc., Bedford Dynamic object classification
WO2009119229A1 (en) 2008-03-26 2009-10-01 コニカミノルタホールディングス株式会社 Three-dimensional imaging device and method for calibrating three-dimensional imaging device
US8497905B2 (en) 2008-04-11 2013-07-30 nearmap australia pty ltd. Systems and methods of capturing large area images in detail including cascaded cameras and/or calibration features
US8259208B2 (en) 2008-04-15 2012-09-04 Sony Corporation Method and apparatus for performing touch-based adjustments within imaging devices
US7843554B2 (en) 2008-04-25 2010-11-30 Rockwell Collins, Inc. High dynamic range sensor system and method
US8155456B2 (en) 2008-04-29 2012-04-10 Adobe Systems Incorporated Method and apparatus for block-based compression of light-field images
US8280194B2 (en) 2008-04-29 2012-10-02 Sony Corporation Reduced hardware implementation for a two-picture depth map algorithm
US8724921B2 (en) 2008-05-05 2014-05-13 Aptina Imaging Corporation Method of capturing high dynamic range images with objects in the scene
EP2283644A4 (en) 2008-05-09 2011-10-26 Ecole Polytech Image sensor having nonlinear response
JP2009273035A (en) 2008-05-09 2009-11-19 Toshiba Corp Image compression apparatus, image decompression apparatus, and image processor
JP4440341B2 (en) 2008-05-19 2010-03-24 パナソニック株式会社 Calibration method, calibration apparatus, and calibration system including the apparatus
US8208543B2 (en) 2008-05-19 2012-06-26 Microsoft Corporation Quantization and differential coding of alpha image data
JP2011523538A (en) 2008-05-20 2011-08-11 ペリカン イメージング コーポレイション Image capture and processing using monolithic camera arrays with different types of imagers
US8442355B2 (en) 2008-05-23 2013-05-14 Samsung Electronics Co., Ltd. System and method for generating a multi-dimensional image
US8125559B2 (en) 2008-05-25 2012-02-28 Avistar Communications Corporation Image formation for large photosensor array surfaces
US8131097B2 (en) 2008-05-28 2012-03-06 Aptina Imaging Corporation Method and apparatus for extended depth-of-field image restoration
US8244058B1 (en) 2008-05-30 2012-08-14 Adobe Systems Incorporated Method and apparatus for managing artifacts in frequency domain processing of light-field images
CN101593350B (en) 2008-05-30 2013-01-09 日电(中国)有限公司 Depth adaptive video-splicing method, device and system thereof
JP2009300268A (en) 2008-06-13 2009-12-24 Nippon Hoso Kyokai <Nhk> Three-dimensional information detection device
KR20100002032A (en) 2008-06-24 2010-01-06 삼성전자주식회사 Image generating method, image processing method, and apparatus thereof
JPWO2009157273A1 (en) 2008-06-25 2011-12-08 コニカミノルタオプト株式会社 Imaging optical system and manufacturing method of imaging lens
US7710667B2 (en) 2008-06-25 2010-05-04 Aptina Imaging Corp. Imaging module with symmetrical lens system and method of manufacture
KR101000531B1 (en) 2008-06-26 2010-12-14 에스디씨마이크로 주식회사 CCTV Management System Supporting Extended Data Transmission Coverage with Wireless LAN
US7916396B2 (en) 2008-06-27 2011-03-29 Micron Technology, Inc. Lens master devices, lens structures, imaging devices, and methods and apparatuses of making the same
US8326069B2 (en) 2008-06-30 2012-12-04 Intel Corporation Computing higher resolution images from multiple lower resolution images
US7773317B2 (en) 2008-07-01 2010-08-10 Aptina Imaging Corp. Lens system with symmetrical optics
US7920339B2 (en) 2008-07-02 2011-04-05 Aptina Imaging Corporation Method and apparatus providing singlet wafer lens system with field flattener
US8456517B2 (en) 2008-07-09 2013-06-04 Primesense Ltd. Integrated processor for 3D mapping
KR101445185B1 (en) 2008-07-10 2014-09-30 삼성전자주식회사 Flexible Image Photographing Apparatus with a plurality of image forming units and Method for manufacturing the same
CN102112845B (en) 2008-08-06 2013-09-11 形创有限公司 System for adaptive three-dimensional scanning of surface characteristics
CN101656259A (en) 2008-08-20 2010-02-24 鸿富锦精密工业(深圳)有限公司 Image sensor packaging structure, packaging method and camera module
EP2329653B1 (en) 2008-08-20 2014-10-29 Thomson Licensing Refined depth map
US7924312B2 (en) 2008-08-22 2011-04-12 Fluke Corporation Infrared and visible-light image registration
US8736751B2 (en) 2008-08-26 2014-05-27 Empire Technology Development Llc Digital presenter for displaying image captured by camera with illumination system
JP5105482B2 (en) 2008-09-01 2012-12-26 船井電機株式会社 Optical condition design method and compound eye imaging apparatus
EP2329315A4 (en) 2008-09-01 2012-01-18 Lensvector Inc Wafer-level fabrication of liquid crystal optoelectronic devices
US8098297B2 (en) 2008-09-03 2012-01-17 Sony Corporation Pre- and post-shutter signal image capture and sort for digital camera
KR20100028344A (en) 2008-09-04 2010-03-12 삼성전자주식회사 Method and apparatus for editing image of portable terminal
US9025136B2 (en) * 2008-09-23 2015-05-05 Applied Materials, Inc. System and method for manufacturing three dimensional integrated circuits
JP5238429B2 (en) 2008-09-25 2013-07-17 株式会社東芝 Stereoscopic image capturing apparatus and stereoscopic image capturing system
US8553093B2 (en) 2008-09-30 2013-10-08 Sony Corporation Method and apparatus for super-resolution imaging using digital imaging devices
WO2010037512A1 (en) 2008-10-02 2010-04-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Intermediate view synthesis and multi-view data signal extraction
US9619917B2 (en) 2008-10-03 2017-04-11 Apple Inc. Depth of field for a camera in a media-editing application
US9064476B2 (en) 2008-10-04 2015-06-23 Microsoft Technology Licensing, Llc Image super-resolution using gradient profile prior
US8310525B2 (en) 2008-10-07 2012-11-13 Seiko Epson Corporation One-touch projector alignment for 3D stereo display
US8355534B2 (en) 2008-10-15 2013-01-15 Spinella Ip Holdings, Inc. Digital processing method and system for determination of optical flow
US8416282B2 (en) 2008-10-16 2013-04-09 Spatial Cam Llc Camera for creating a panoramic image
JP2010096723A (en) 2008-10-20 2010-04-30 Funai Electric Co Ltd Device for deriving distance of object
US8436909B2 (en) 2008-10-21 2013-05-07 Stmicroelectronics S.R.L. Compound camera sensor and related method of processing digital images
US8913657B2 (en) 2008-10-27 2014-12-16 Lg Electronics Inc. Virtual view image synthesis method and apparatus
US8063975B2 (en) 2008-10-29 2011-11-22 Jabil Circuit, Inc. Positioning wafer lenses on electronic imagers
KR101502597B1 (en) 2008-11-13 2015-03-13 삼성전자주식회사 Wide depth of field 3d display apparatus and method
WO2010057081A1 (en) 2008-11-14 2010-05-20 The Scripps Research Institute Image analysis platform for identifying artifacts in samples and laboratory consumables
AU2008246243B2 (en) 2008-11-19 2011-12-22 Canon Kabushiki Kaisha DVC as generic file format for plenoptic camera
US8279325B2 (en) 2008-11-25 2012-10-02 Lytro, Inc. System and method for acquiring, editing, generating and outputting video data
JP4852591B2 (en) 2008-11-27 2012-01-11 富士フイルム株式会社 Stereoscopic image processing apparatus, method, recording medium, and stereoscopic imaging apparatus
US8289440B2 (en) 2008-12-08 2012-10-16 Lytro, Inc. Light field data acquisition devices, and methods of using and manufacturing same
US8013904B2 (en) 2008-12-09 2011-09-06 Seiko Epson Corporation View projection matrix based high performance low latency display pipeline
JP5311016B2 (en) 2008-12-10 2013-10-09 コニカミノルタ株式会社 Stereo camera unit and stereo matching method
KR101200490B1 (en) 2008-12-10 2012-11-12 한국전자통신연구원 Apparatus and Method for Matching Image
US8149323B2 (en) 2008-12-18 2012-04-03 Qualcomm Incorporated System and method to autofocus assisted by autoexposure control
JP4631966B2 (en) 2008-12-22 2011-02-16 ソニー株式会社 Image processing apparatus, image processing method, and program
CN101770060B (en) 2008-12-27 2014-03-26 鸿富锦精密工业(深圳)有限公司 Camera module and assembly method thereof
US8405742B2 (en) 2008-12-30 2013-03-26 Massachusetts Institute Of Technology Processing images having different focus
US8259212B2 (en) 2009-01-05 2012-09-04 Applied Quantum Technologies, Inc. Multiscale optical system
US20100177411A1 (en) 2009-01-09 2010-07-15 Shashikant Hegde Wafer level lens replication on micro-electrical-mechanical systems
WO2010081010A2 (en) 2009-01-09 2010-07-15 New York University Methods, computer-accessible medium and systems for facilitating dark flash photography
EP2381418A4 (en) 2009-01-09 2014-11-12 Konica Minolta Holdings Inc Motion vector generation apparatus and motion vector generation method
US8189089B1 (en) 2009-01-20 2012-05-29 Adobe Systems Incorporated Methods and apparatus for reducing plenoptic camera artifacts
US8315476B1 (en) 2009-01-20 2012-11-20 Adobe Systems Incorporated Super-resolution with the focused plenoptic camera
US8300108B2 (en) 2009-02-02 2012-10-30 L-3 Communications Cincinnati Electronics Corporation Multi-channel imaging devices comprising unit cells
US20100194860A1 (en) 2009-02-03 2010-08-05 Bit Cauldron Corporation Method of stereoscopic 3d image capture using a mobile device, cradle or dongle
US8761491B2 (en) 2009-02-06 2014-06-24 Himax Technologies Limited Stereo-matching processor using belief propagation
US8290301B2 (en) 2009-02-06 2012-10-16 Raytheon Company Optimized imaging system for collection of high resolution imagery
KR101776955B1 (en) 2009-02-10 2017-09-08 소니 주식회사 Solid-state imaging device, method of manufacturing the same, and electronic apparatus
WO2010095440A1 (en) 2009-02-20 2010-08-26 パナソニック株式会社 Recording medium, reproduction device, and integrated circuit
US8520970B2 (en) 2010-04-23 2013-08-27 Flir Systems Ab Infrared resolution and contrast enhancement with fusion
KR20100099896A (en) 2009-03-04 2010-09-15 삼성전자주식회사 Metadata generating method and apparatus, and image processing method and apparatus using the metadata
US8207759B2 (en) 2009-03-12 2012-06-26 Fairchild Semiconductor Corporation MIPI analog switch for automatic selection of multiple inputs based on clock voltages
WO2010108119A2 (en) 2009-03-19 2010-09-23 Flextronics Ap, Llc Dual sensor camera
US8106949B2 (en) 2009-03-26 2012-01-31 Seiko Epson Corporation Small memory footprint light transport matrix capture
US8450821B2 (en) 2009-03-26 2013-05-28 Micron Technology, Inc. Method and apparatus providing combined spacer and optical lens element
US7901095B2 (en) 2009-03-27 2011-03-08 Seiko Epson Corporation Resolution scalable view projection
JP4529010B1 (en) 2009-03-30 2010-08-25 シャープ株式会社 Imaging device
JP5222205B2 (en) 2009-04-03 2013-06-26 Kddi株式会社 Image processing apparatus, method, and program
WO2010116367A1 (en) 2009-04-07 2010-10-14 Nextvision Stabilized Systems Ltd Continuous electronic zoom for an imaging system with multiple imaging devices having different fixed fov
US20100259610A1 (en) 2009-04-08 2010-10-14 Celsia, Llc Two-Dimensional Display Synced with Real World Object Movement
US8294099B2 (en) 2009-04-10 2012-10-23 Bae Systems Information And Electronic Systems Integration Inc. On-wafer butted microbolometer imaging array
US8717417B2 (en) 2009-04-16 2014-05-06 Primesense Ltd. Three-dimensional mapping and imaging
JP5463718B2 (en) 2009-04-16 2014-04-09 ソニー株式会社 Imaging device
US20120249550A1 (en) 2009-04-18 2012-10-04 Lytro, Inc. Selective Transmission of Image Data Based on Device Attributes
US8908058B2 (en) 2009-04-18 2014-12-09 Lytro, Inc. Storage and transmission of pictures including multiple frames
EP2244484B1 (en) 2009-04-22 2012-03-28 Raytrix GmbH Digital imaging method for synthesizing an image using data recorded with a plenoptic camera
CN101527046B (en) 2009-04-28 2012-09-05 青岛海信数字多媒体技术国家重点实验室有限公司 Motion detection method, device and system
KR101671021B1 (en) 2009-04-30 2016-11-10 삼성전자주식회사 Apparatus and method for transmitting stereoscopic image effectively
US8271544B2 (en) 2009-05-01 2012-09-18 Creative Technology Ltd Data file having more than one mode of operation
DE102009003110A1 (en) 2009-05-14 2010-11-18 Robert Bosch Gmbh Image processing method for determining depth information from at least two input images recorded by means of a stereo camera system
US8203633B2 (en) 2009-05-27 2012-06-19 Omnivision Technologies, Inc. Four-channel color filter array pattern
KR20100130423A (en) 2009-06-03 2010-12-13 삼성전자주식회사 Wafer-level lens module and image module including the same
US10091439B2 (en) 2009-06-03 2018-10-02 Flir Systems, Inc. Imager with array of multiple infrared imaging modules
US8766808B2 (en) 2010-03-09 2014-07-01 Flir Systems, Inc. Imager with multiple sensor arrays
US8745677B2 (en) 2009-06-12 2014-06-03 Cygnus Broadband, Inc. Systems and methods for prioritization of data for intelligent discard in a communication network
CN101931742B (en) 2009-06-18 2013-04-24 鸿富锦精密工业(深圳)有限公司 Image sensing module and image capture module
US20100321640A1 (en) 2009-06-22 2010-12-23 Industrial Technology Research Institute Projection display chip
JP5254893B2 (en) 2009-06-26 2013-08-07 キヤノン株式会社 Image conversion method and apparatus, and pattern identification method and apparatus
WO2011008443A2 (en) 2009-06-29 2011-01-20 Lensvector Inc. Wafer level camera module with active optical element
JP2011030184A (en) 2009-07-01 2011-02-10 Sony Corp Image processing apparatus, and image processing method
US8212197B2 (en) 2009-07-02 2012-07-03 Xerox Corporation Image sensor with integration time compensation
JP2011017764A (en) 2009-07-07 2011-01-27 Konica Minolta Opto Inc Imaging lens, imaging apparatus and portable terminal
US8345144B1 (en) 2009-07-15 2013-01-01 Adobe Systems Incorporated Methods and apparatus for rich image capture with focused plenoptic cameras
US20110019243A1 (en) 2009-07-21 2011-01-27 Constant Jr Henry J Stereoscopic form reader
CN101964866B (en) 2009-07-24 2013-03-20 鸿富锦精密工业(深圳)有限公司 Computation and image pickup type digital camera
GB0912970D0 (en) 2009-07-27 2009-09-02 St Microelectronics Res & Dev Improvements in or relating to a sensor and sensor system for a camera
US8436893B2 (en) 2009-07-31 2013-05-07 3Dmedia Corporation Methods, systems, and computer-readable storage media for selecting image capture positions to generate three-dimensional (3D) images
EP2293586A1 (en) 2009-08-04 2011-03-09 Samsung Electronics Co., Ltd. Method and system to transform stereo content
US8577183B2 (en) 2009-08-05 2013-11-05 Raytheon Company Resolution on demand
WO2011018678A1 (en) 2009-08-11 2011-02-17 Ether Precision, Inc. Method and device for aligning a lens with an optical system
WO2011017806A1 (en) 2009-08-14 2011-02-17 Genesis Group Inc. Real-time image and video matting
JP2011044801A (en) 2009-08-19 2011-03-03 Toshiba Corp Image processor
US8154632B2 (en) 2009-08-24 2012-04-10 Lifesize Communications, Inc. Detection of defective pixels in an image sensor
JP2011052064A (en) 2009-08-31 2011-03-17 Toyobo Co Ltd Polyimide and method for preparing the same
KR101680300B1 (en) 2009-08-31 2016-11-28 삼성전자주식회사 Liquid lens and method for manufacturing the same
US9274699B2 (en) 2009-09-03 2016-03-01 Obscura Digital User interface for a large scale multi-user, multi-touch system
US8411146B2 (en) 2009-09-04 2013-04-02 Lockheed Martin Corporation Single camera color and infrared polarimetric imaging
KR20120068024A (en) 2009-09-07 2012-06-26 노키아 코포레이션 An apparatus
FR2950153B1 (en) 2009-09-15 2011-12-23 Commissariat Energie Atomique OPTICAL DEVICE WITH DEFORMABLE MEMBRANE WITH PIEZOELECTRIC ACTUATION
US20140076336A1 (en) 2009-09-17 2014-03-20 Ascentia Health, Inc. Ear insert for relief of tmj discomfort and headaches
US8754941B1 (en) 2009-09-22 2014-06-17 Altia Systems, Inc. Multi-imager video camera with frame-by-frame view switching
BR112012007115A2 (en) 2009-10-02 2020-02-27 Koninklijke Philips Electronics N.V. METHOD OF ENCODING A 3D VIDEO DATA SIGNAL, METHOD OF DECODING A 3D VIDEO SIGNAL, ENCODER FOR ENCODING A 3D VIDEO DATA SIGNAL, DECODER FOR DECODING A 3D VIDEO DATA SIGNAL, COMPUTER PROGRAM PRODUCT FOR PRODUCT ENCODE A VIDEO DATA SIGNAL, COMPUTER PROGRAM PRODUCT TO DECODE A VIDEO SIGNAL, 3D VIDEO DATA SIGNAL, AND DIGITAL DATA HOLDER
US8199165B2 (en) 2009-10-14 2012-06-12 Hewlett-Packard Development Company, L.P. Methods and systems for object segmentation in digital images
BR112012008988B1 (en) 2009-10-14 2022-07-12 Dolby International Ab METHOD, NON-TRANSITORY LEGIBLE MEDIUM AND DEPTH MAP PROCESSING APPARATUS
DE102009049387B4 (en) 2009-10-14 2016-05-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus, image processing apparatus and method for optical imaging
US8502909B2 (en) 2009-10-19 2013-08-06 Pixar Super light-field lens
WO2011056574A1 (en) 2009-10-26 2011-05-12 Olaf Andrew Hall-Holt Dental imaging system and method
CN102576154A (en) 2009-10-30 2012-07-11 惠普发展公司,有限责任合伙企业 Stereo display systems
US8546737B2 (en) 2009-10-30 2013-10-01 Invisage Technologies, Inc. Systems and methods for color binning
WO2011055655A1 (en) 2009-11-05 2011-05-12 コニカミノルタオプト株式会社 Image pickup device, optical unit, wafer lens laminated body, and method for manufacturing wafer lens laminated body
CN102597693B (en) 2009-11-13 2015-04-01 富士胶片株式会社 Distance measuring device, distance measuring method, distance measuring program, distance measuring system, and image capturing device
TR200908688A2 (en) 2009-11-17 2011-06-21 Vestel Elektron�K San. Ve T�C. A.�. Noise reduction with depth compensation in multi-image video.
JP5399215B2 (en) 2009-11-18 2014-01-29 シャープ株式会社 Multi-lens camera device and electronic information device
US8643701B2 (en) 2009-11-18 2014-02-04 University Of Illinois At Urbana-Champaign System for executing 3D propagation for depth image-based rendering
WO2011063347A2 (en) 2009-11-20 2011-05-26 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8497934B2 (en) 2009-11-25 2013-07-30 Massachusetts Institute Of Technology Actively addressable aperture light field camera
KR101608970B1 (en) 2009-11-27 2016-04-05 삼성전자주식회사 Apparatus and method for processing image using light field data
US8730338B2 (en) 2009-12-01 2014-05-20 Nokia Corporation Set of camera modules hinged on a body and functionally connected to a single actuator
JP5446797B2 (en) 2009-12-04 2014-03-19 株式会社リコー Imaging device
US8446492B2 (en) 2009-12-10 2013-05-21 Honda Motor Co., Ltd. Image capturing device, method of searching for occlusion region, and program
JP5387377B2 (en) 2009-12-14 2014-01-15 ソニー株式会社 Image processing apparatus, image processing method, and program
US9030530B2 (en) 2009-12-15 2015-05-12 Thomson Licensing Stereo-image quality and disparity/depth indications
KR101281961B1 (en) 2009-12-21 2013-07-03 한국전자통신연구원 Method and apparatus for editing depth video
US20110153248A1 (en) 2009-12-23 2011-06-23 Yeming Gu Ophthalmic quality metric system
US8885067B2 (en) 2009-12-24 2014-11-11 Sharp Kabushiki Kaisha Multocular image pickup apparatus and multocular image pickup method
JP4983905B2 (en) 2009-12-25 2012-07-25 カシオ計算機株式会社 Imaging apparatus, 3D modeling data generation method, and program
KR101643607B1 (en) 2009-12-30 2016-08-10 삼성전자주식회사 Method and apparatus for generating of image data
CN102118551A (en) 2009-12-31 2011-07-06 鸿富锦精密工业(深圳)有限公司 Imaging device
CN102117576A (en) 2009-12-31 2011-07-06 鸿富锦精密工业(深圳)有限公司 Digital photo frame
CN102131044B (en) 2010-01-20 2014-03-26 鸿富锦精密工业(深圳)有限公司 Camera module
US8649008B2 (en) 2010-02-04 2014-02-11 University Of Southern California Combined spectral and polarimetry imaging and diagnostics
US8593512B2 (en) 2010-02-05 2013-11-26 Creative Technology Ltd Device and method for scanning an object on a working surface
US8326142B2 (en) 2010-02-12 2012-12-04 Sri International Optical image systems
JP5387856B2 (en) * 2010-02-16 2014-01-15 ソニー株式会社 Image processing apparatus, image processing method, image processing program, and imaging apparatus
US8648918B2 (en) 2010-02-18 2014-02-11 Sony Corporation Method and system for obtaining a point spread function using motion information
CN103210641B (en) 2010-02-19 2017-03-15 双光圈国际株式会社 Process multi-perture image data
WO2011105814A2 (en) 2010-02-23 2011-09-01 삼성전자 주식회사 Method and apparatus for providing a multi-view still image service, and method and apparatus for receiving a multi-view still image service
KR101802238B1 (en) 2010-02-23 2017-11-29 삼성전자주식회사 Apparatus and method for generating a three-dimension image data in portable terminal
JP2013521576A (en) 2010-02-28 2013-06-10 オスターハウト グループ インコーポレイテッド Local advertising content on interactive head-mounted eyepieces
JP5776173B2 (en) 2010-03-01 2015-09-09 株式会社リコー Imaging device and distance measuring device
US8817015B2 (en) 2010-03-03 2014-08-26 Adobe Systems Incorporated Methods, apparatus, and computer-readable storage media for depth-based rendering of focused plenoptic camera data
US20110222757A1 (en) 2010-03-10 2011-09-15 Gbo 3D Technology Pte. Ltd. Systems and methods for 2D image and spatial data capture for 3D stereo imaging
US20110221950A1 (en) 2010-03-12 2011-09-15 Doeke Jolt Oostra Camera device, wafer scale package
EP2548071A1 (en) 2010-03-17 2013-01-23 Pelican Imaging Corporation Fabrication process for mastering imaging lens arrays
CN102282857B (en) 2010-03-19 2014-03-12 富士胶片株式会社 Imaging device and method
WO2011116345A1 (en) 2010-03-19 2011-09-22 Invisage Technologies, Inc. Dark current reduction in image sensors via dynamic electrical biasing
JP5679978B2 (en) 2010-03-19 2015-03-04 パナソニックIpマネジメント株式会社 Stereoscopic image alignment apparatus, stereoscopic image alignment method, and program thereof
US8558903B2 (en) 2010-03-25 2013-10-15 Apple Inc. Accelerometer / gyro-facilitated video stabilization
US8285033B2 (en) 2010-04-01 2012-10-09 Seiko Epson Corporation Bi-affinity filter: a bilateral type filter for color images
US20110242342A1 (en) 2010-04-05 2011-10-06 Qualcomm Incorporated Combining data from multiple image sensors
US8896668B2 (en) 2010-04-05 2014-11-25 Qualcomm Incorporated Combining data from multiple image sensors
US8600186B2 (en) 2010-04-26 2013-12-03 City University Of Hong Kong Well focused catadioptric image acquisition
US9053573B2 (en) 2010-04-29 2015-06-09 Personify, Inc. Systems and methods for generating a virtual camera viewpoint for an image
US20110267264A1 (en) 2010-04-29 2011-11-03 Mccarthy John Display system with multiple optical sensors
US20130250150A1 (en) 2010-05-03 2013-09-26 Michael R. Malone Devices and methods for high-resolution image and video capture
US9256974B1 (en) 2010-05-04 2016-02-09 Stephen P Hines 3-D motion-parallax portable display software application
US8885890B2 (en) 2010-05-07 2014-11-11 Microsoft Corporation Depth map confidence filtering
KR101756910B1 (en) 2010-05-11 2017-07-26 삼성전자주식회사 Apparatus and method for processing light field data using mask with attenuation pattern
KR20110124473A (en) 2010-05-11 2011-11-17 삼성전자주식회사 3-dimensional image generation apparatus and method for multi-view image
KR101824672B1 (en) 2010-05-12 2018-02-05 포토네이션 케이맨 리미티드 Architectures for imager arrays and array cameras
US20130147979A1 (en) 2010-05-12 2013-06-13 Pelican Imaging Corporation Systems and methods for extending dynamic range of imager arrays by controlling pixel analog gain
JP5545016B2 (en) 2010-05-12 2014-07-09 ソニー株式会社 Imaging device
WO2011142774A1 (en) 2010-05-14 2011-11-17 Omnivision Technologies, Inc. Alternative color image array and associated methods
US8576293B2 (en) 2010-05-18 2013-11-05 Aptina Imaging Corporation Multi-channel imager
SG176327A1 (en) 2010-05-20 2011-12-29 Sony Corp A system and method of image processing
US8602887B2 (en) 2010-06-03 2013-12-10 Microsoft Corporation Synthesis of information from multiple audiovisual sources
US20120062697A1 (en) 2010-06-09 2012-03-15 Chemimage Corporation Hyperspectral imaging sensor for tracking moving targets
DE102010024666A1 (en) 2010-06-18 2011-12-22 Hella Kgaa Hueck & Co. Method for optical self-diagnosis of a camera system and apparatus for carrying out such a method
US20110310980A1 (en) 2010-06-22 2011-12-22 Qualcomm Mems Technologies, Inc. Apparatus and methods for processing frames of video data across a display interface using a block-based encoding scheme and a tag id
KR20120000485A (en) 2010-06-25 2012-01-02 삼성전자주식회사 Apparatus and method for depth coding using prediction mode
CN101883291B (en) 2010-06-29 2012-12-19 上海大学 Method for drawing viewpoints by reinforcing interested region
US8493432B2 (en) 2010-06-29 2013-07-23 Mitsubishi Electric Research Laboratories, Inc. Digital refocusing for wide-angle images using axial-cone cameras
EP2403234A1 (en) 2010-06-29 2012-01-04 Koninklijke Philips Electronics N.V. Method and system for constructing a compound image from data obtained by an array of image capturing devices
WO2012001975A1 (en) 2010-06-30 2012-01-05 富士フイルム株式会社 Device, method, and program for determining obstacle within imaging range when capturing images displayed in three-dimensional view
JP5392199B2 (en) 2010-07-09 2014-01-22 ソニー株式会社 Image processing apparatus and method
GB2482022A (en) 2010-07-16 2012-01-18 St Microelectronics Res & Dev Method for measuring resolution and aberration of lens and sensor
US9406132B2 (en) 2010-07-16 2016-08-02 Qualcomm Incorporated Vision-based quality metric for three dimensional video
US8386964B2 (en) 2010-07-21 2013-02-26 Microsoft Corporation Interactive image matting
US20120019700A1 (en) 2010-07-26 2012-01-26 American Technologies Network Corporation Optical system with automatic mixing of daylight and thermal vision digital video signals
US20120026342A1 (en) 2010-07-27 2012-02-02 Xiaoguang Yu Electronic system communicating with image sensor
US20120026451A1 (en) 2010-07-29 2012-02-02 Lensvector Inc. Tunable liquid crystal lens with single sided contacts
US8605136B2 (en) 2010-08-10 2013-12-10 Sony Corporation 2D to 3D user interface content data conversion
CN102375199B (en) * 2010-08-11 2015-06-03 鸿富锦精密工业(深圳)有限公司 Camera module
US8428342B2 (en) 2010-08-12 2013-04-23 At&T Intellectual Property I, L.P. Apparatus and method for providing three dimensional media content
US8836793B1 (en) 2010-08-13 2014-09-16 Opto-Knowledge Systems, Inc. True color night vision (TCNV) fusion
US8493482B2 (en) 2010-08-18 2013-07-23 Apple Inc. Dual image sensor image processing system and method
US8665341B2 (en) 2010-08-27 2014-03-04 Adobe Systems Incorporated Methods and apparatus for rendering output images with simulated artistic effects from focused plenoptic camera data
US8724000B2 (en) 2010-08-27 2014-05-13 Adobe Systems Incorporated Methods and apparatus for super-resolution in integral photography
US8749694B2 (en) 2010-08-27 2014-06-10 Adobe Systems Incorporated Methods and apparatus for rendering focused plenoptic camera data using super-resolved demosaicing
JP5140210B2 (en) 2010-08-31 2013-02-06 パナソニック株式会社 Imaging apparatus and image processing method
GB2483434A (en) 2010-08-31 2012-03-14 Sony Corp Detecting stereoscopic disparity by comparison with subset of pixel change points
US20120056982A1 (en) 2010-09-08 2012-03-08 Microsoft Corporation Depth camera based on structured light and stereo vision
US9013550B2 (en) 2010-09-09 2015-04-21 Qualcomm Incorporated Online reference generation and tracking for multi-user augmented reality
US9565415B2 (en) * 2010-09-14 2017-02-07 Thomson Licensing Method of presenting three-dimensional content with disparity adjustments
CN103299619A (en) 2010-09-14 2013-09-11 汤姆逊许可公司 Compression methods and apparatus for occlusion data
US9013634B2 (en) 2010-09-14 2015-04-21 Adobe Systems Incorporated Methods and apparatus for video completion
US8780251B2 (en) 2010-09-20 2014-07-15 Canon Kabushiki Kaisha Image capture with focus adjustment
WO2012039043A1 (en) 2010-09-22 2012-03-29 富士通株式会社 Stereo image generating unit, method of generating stereo image, and stereo image generating computer program
US20120086803A1 (en) 2010-10-11 2012-04-12 Malzbender Thomas G Method and system for distance estimation using projected symbol sequences
US20140192238A1 (en) 2010-10-24 2014-07-10 Linx Computational Imaging Ltd. System and Method for Imaging and Image Processing
JP5657343B2 (en) 2010-10-28 2015-01-21 株式会社ザクティ Electronics
US9876953B2 (en) 2010-10-29 2018-01-23 Ecole Polytechnique Federale De Lausanne (Epfl) Omnidirectional sensor array system
US9137503B2 (en) 2010-11-03 2015-09-15 Sony Corporation Lens and color filter arrangement, super-resolution camera system and method
US9065991B2 (en) 2010-11-04 2015-06-23 Lensvector Inc. Methods of adjustment free manufacture of focus free camera modules
US20120113232A1 (en) 2010-11-10 2012-05-10 Sony Pictures Technologies Inc. Multiple camera system and method for selectable interaxial separation
MY150361A (en) 2010-12-03 2013-12-31 Mimos Berhad Method of image segmentation using intensity and depth information
WO2012078126A1 (en) 2010-12-08 2012-06-14 Thomson Licensing System and method for trinocular depth acquisition with triangular sensor
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
JP5963422B2 (en) 2010-12-17 2016-08-03 キヤノン株式会社 Imaging apparatus, display apparatus, computer program, and stereoscopic image display system
US9177381B2 (en) 2010-12-22 2015-11-03 Nani Holdings IP, LLC Depth estimate determination, systems and methods
US8682107B2 (en) 2010-12-22 2014-03-25 Electronics And Telecommunications Research Institute Apparatus and method for creating 3D content for oriental painting
US8565709B2 (en) 2010-12-30 2013-10-22 Apple Inc. Digital signal filter
TWI535292B (en) 2010-12-31 2016-05-21 派力肯影像公司 Capturing and processing of images using monolithic camera array with heterogeneous imagers
JP5699609B2 (en) 2011-01-06 2015-04-15 ソニー株式会社 Image processing apparatus and image processing method
EP2666048A4 (en) 2011-01-20 2014-06-04 Fivefocal Llc Passively athermalized infrared imaging system and methods of manufacturing same
US8581995B2 (en) 2011-01-25 2013-11-12 Aptina Imaging Corporation Method and apparatus for parallax correction in fused array imaging systems
US8717467B2 (en) 2011-01-25 2014-05-06 Aptina Imaging Corporation Imaging systems with array cameras for depth sensing
JP5594477B2 (en) 2011-01-26 2014-09-24 Nltテクノロジー株式会社 Image display device, image display method, and program
EP2668617A1 (en) 2011-01-27 2013-12-04 Metaio GmbH Method for determining correspondences between a first and a second image, and method for determining the pose of a camera
US20120200726A1 (en) 2011-02-09 2012-08-09 Research In Motion Limited Method of Controlling the Depth of Field for a Small Sensor Camera Using an Extension for EDOF
CA2767023C (en) 2011-02-09 2014-09-09 Research In Motion Limited Increased low light sensitivity for image sensors by combining quantum dot sensitivity to visible and infrared light
US8698885B2 (en) 2011-02-14 2014-04-15 Intuitive Surgical Operations, Inc. Methods and apparatus for demosaicing images with highly correlated color channels
US20140176592A1 (en) 2011-02-15 2014-06-26 Lytro, Inc. Configuring two-dimensional image processing based on light-field parameters
WO2012117583A1 (en) 2011-02-28 2012-09-07 富士フイルム株式会社 Color imaging device
US8406548B2 (en) 2011-02-28 2013-03-26 Sony Corporation Method and apparatus for performing a blur rendering process on an image
US8537245B2 (en) 2011-03-04 2013-09-17 Hand Held Products, Inc. Imaging and decoding device with quantum dot imager
CA2769358C (en) 2011-03-08 2016-06-07 Research In Motion Limited Quantum dot image sensor with dummy pixels used for intensity calculations
US9565449B2 (en) 2011-03-10 2017-02-07 Qualcomm Incorporated Coding multiview video plus depth content
KR101792501B1 (en) 2011-03-16 2017-11-21 한국전자통신연구원 Method and apparatus for feature-based stereo matching
US8824821B2 (en) 2011-03-28 2014-09-02 Sony Corporation Method and apparatus for performing user inspired visual effects rendering on an image
US20120249853A1 (en) 2011-03-28 2012-10-04 Marc Krolczyk Digital camera for reviewing related images
US9030528B2 (en) 2011-04-04 2015-05-12 Apple Inc. Multi-zone imaging sensor and lens array
FR2974449A1 (en) 2011-04-22 2012-10-26 Commissariat Energie Atomique IMAGEUR INTEGRATED CIRCUIT AND STEREOSCOPIC IMAGE CAPTURE DEVICE
US20120274626A1 (en) 2011-04-29 2012-11-01 Himax Media Solutions, Inc. Stereoscopic Image Generating Apparatus and Method
WO2012149971A1 (en) 2011-05-04 2012-11-08 Sony Ericsson Mobile Communications Ab Method, graphical user interface, and computer program product for processing of a light field image
JP2014519741A (en) 2011-05-11 2014-08-14 ペリカン イメージング コーポレイション System and method for transmitting and receiving array camera image data
US8843346B2 (en) 2011-05-13 2014-09-23 Amazon Technologies, Inc. Using spatial information with device interaction
US8629901B2 (en) 2011-05-19 2014-01-14 National Taiwan University System and method of revising depth of a 3D image pair
US20120293489A1 (en) 2011-05-20 2012-11-22 Himax Technologies Limited Nonlinear depth remapping system and method thereof
JP5797016B2 (en) 2011-05-30 2015-10-21 キヤノン株式会社 Image processing apparatus, image processing method, and program
JP5762142B2 (en) 2011-05-31 2015-08-12 キヤノン株式会社 Imaging apparatus, image processing apparatus and method thereof
KR101824290B1 (en) 2011-06-15 2018-01-31 마이크로소프트 테크놀로지 라이센싱, 엘엘씨 High resolution multispectral image capture
JP2013005259A (en) 2011-06-17 2013-01-07 Sony Corp Image processing apparatus, image processing method, and program
US20130265459A1 (en) 2011-06-28 2013-10-10 Pelican Imaging Corporation Optical arrangements for use with an array camera
WO2013003276A1 (en) 2011-06-28 2013-01-03 Pelican Imaging Corporation Optical arrangements for use with an array camera
US8773513B2 (en) 2011-07-01 2014-07-08 Seiko Epson Corporation Context and epsilon stereo constrained correspondence matching
US9300946B2 (en) 2011-07-08 2016-03-29 Personify, Inc. System and method for generating a depth map and fusing images from a camera array
JP5780865B2 (en) 2011-07-14 2015-09-16 キヤノン株式会社 Image processing apparatus, imaging system, and image processing system
JP2013024886A (en) 2011-07-14 2013-02-04 Sanyo Electric Co Ltd Imaging apparatus
US9363535B2 (en) 2011-07-22 2016-06-07 Qualcomm Incorporated Coding motion depth maps with depth range variation
US9264689B2 (en) 2011-08-04 2016-02-16 Semiconductor Components Industries, Llc Systems and methods for color compensation in multi-view video
TWI561066B (en) 2011-08-09 2016-12-01 Samsung Electronics Co Ltd Method and apparatus for encoding and decoding depth map of multi-view video data
US8432435B2 (en) 2011-08-10 2013-04-30 Seiko Epson Corporation Ray image modeling for fast catadioptric light field rendering
US8866951B2 (en) 2011-08-24 2014-10-21 Aptina Imaging Corporation Super-resolution imaging systems
US8704895B2 (en) 2011-08-29 2014-04-22 Qualcomm Incorporated Fast calibration of displays using spectral-based colorimetrically calibrated multicolor camera
US9009952B2 (en) 2011-08-29 2015-04-21 Asm Technology Singapore Pte. Ltd. Apparatus for assembling a lens module and an image sensor to form a camera module, and a method of assembling the same
US20130070060A1 (en) 2011-09-19 2013-03-21 Pelican Imaging Corporation Systems and methods for determining depth from multiple views of a scene that include aliasing using hypothesized fusion
JP5879549B2 (en) 2011-09-20 2016-03-08 パナソニックIpマネジメント株式会社 Light field imaging apparatus and image processing apparatus
JP5544047B2 (en) 2011-09-21 2014-07-09 富士フイルム株式会社 Image processing apparatus, method and program, stereoscopic imaging apparatus, portable electronic device, printer, and stereoscopic image reproducing apparatus
US8724893B2 (en) 2011-09-27 2014-05-13 Thomson Licensing Method and system for color look up table generation
WO2013049699A1 (en) 2011-09-28 2013-04-04 Pelican Imaging Corporation Systems and methods for encoding and decoding light field image files
US8908083B2 (en) 2011-09-28 2014-12-09 Apple Inc. Dynamic autofocus operations
JP5831105B2 (en) 2011-09-30 2015-12-09 ソニー株式会社 Imaging apparatus and imaging method
CN104185808A (en) 2011-10-11 2014-12-03 派力肯影像公司 Lens stack arrays including adaptive optical elements
EP2582128A3 (en) 2011-10-12 2013-06-19 Canon Kabushiki Kaisha Image-capturing device
US20130107061A1 (en) 2011-10-31 2013-05-02 Ankit Kumar Multi-resolution ip camera
JP5149435B1 (en) 2011-11-04 2013-02-20 株式会社東芝 Video processing apparatus and video processing method
US9692991B2 (en) 2011-11-04 2017-06-27 Qualcomm Incorporated Multispectral imaging system
EP2590138B1 (en) 2011-11-07 2019-09-11 Flir Systems AB Gas visualization arrangements, devices, and methods
GB201119405D0 (en) 2011-11-10 2011-12-21 Univ East Anglia Spectral estimation method,system and reference target design system
WO2013072875A2 (en) 2011-11-15 2013-05-23 Technion Research & Development Foundation Ltd. Method and system for transmitting light
US20130121559A1 (en) 2011-11-16 2013-05-16 Sharp Laboratories Of America, Inc. Mobile device with three dimensional augmented reality
US20130127988A1 (en) 2011-11-17 2013-05-23 Sen Wang Modifying the viewpoint of a digital image
JP6019568B2 (en) 2011-11-28 2016-11-02 ソニー株式会社 Image processing apparatus and method, recording medium, and program
US9661310B2 (en) 2011-11-28 2017-05-23 ArcSoft Hanzhou Co., Ltd. Image depth recovering method and stereo image fetching device thereof
EP2600316A1 (en) 2011-11-29 2013-06-05 Inria Institut National de Recherche en Informatique et en Automatique Method, system and software program for shooting and editing a film comprising at least one image of a 3D computer-generated animation
KR101862404B1 (en) 2011-12-09 2018-05-29 엘지이노텍 주식회사 Apparatus and method for eliminating noise of stereo image
US9117295B2 (en) * 2011-12-20 2015-08-25 Adobe Systems Incorporated Refinement of depth maps by fusion of multiple estimates
JP5414947B2 (en) 2011-12-27 2014-02-12 パナソニック株式会社 Stereo camera
US8941722B2 (en) * 2012-01-03 2015-01-27 Sony Corporation Automatic intelligent focus control of video
WO2013119706A1 (en) 2012-02-06 2013-08-15 Pelican Imaging Corporation Systems and methods for extending dynamic range of imager arrays by controlling pixel analog gain
US9172889B2 (en) 2012-02-09 2015-10-27 Semiconductor Components Industries, Llc Imaging systems and methods for generating auto-exposed high-dynamic-range images
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
JP5860304B2 (en) 2012-02-23 2016-02-16 キヤノン株式会社 Imaging apparatus, control method therefor, program, and storage medium
US8831377B2 (en) 2012-02-28 2014-09-09 Lytro, Inc. Compensating for variation in microlens position during light-field image processing
JP6112824B2 (en) 2012-02-28 2017-04-12 キヤノン株式会社 Image processing method and apparatus, and program.
JP5924978B2 (en) 2012-02-28 2016-05-25 キヤノン株式会社 Image processing apparatus and image processing method
EP2637139A1 (en) 2012-03-05 2013-09-11 Thomson Licensing Method and apparatus for bi-layer segmentation
WO2013151883A1 (en) 2012-04-02 2013-10-10 Intel Corporation Systems, methods, and computer program products for runtime adjustment of image warping parameters in a multi-camera system
WO2013155403A1 (en) 2012-04-13 2013-10-17 Automation Engineering, Inc. Active alignment using continuous motion sweeps and temporal interpolation
CN104582622B (en) 2012-04-16 2017-10-13 儿童国家医疗中心 For the tracking in surgery and intervention medical procedure and the bimodulus stereo imaging system of control
US8994845B2 (en) 2012-04-27 2015-03-31 Blackberry Limited System and method of adjusting a camera based on image data
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
WO2013166215A1 (en) 2012-05-01 2013-11-07 Pelican Imaging Corporation CAMERA MODULES PATTERNED WITH pi FILTER GROUPS
WO2013164778A1 (en) 2012-05-02 2013-11-07 Koninklijke Philips N.V. Quality metric for processing 3d video
WO2013169671A1 (en) 2012-05-09 2013-11-14 Lytro, Inc. Optimization of optical systems for improved light field capture and manipulation
US9179126B2 (en) 2012-06-01 2015-11-03 Ostendo Technologies, Inc. Spatio-temporal light field cameras
US20150124059A1 (en) 2012-06-08 2015-05-07 Nokia Corporation Multi-frame image calibrator
EP2677734A3 (en) 2012-06-18 2016-01-13 Sony Mobile Communications AB Array camera imaging system and method
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
JP5929553B2 (en) 2012-06-28 2016-06-08 ソニー株式会社 Image processing apparatus, imaging apparatus, image processing method, and program
US20140002674A1 (en) 2012-06-30 2014-01-02 Pelican Imaging Corporation Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors
US8896594B2 (en) 2012-06-30 2014-11-25 Microsoft Corporation Depth sensing with depth-adaptive illumination
US9147251B2 (en) 2012-08-03 2015-09-29 Flyby Media, Inc. Systems and methods for efficient 3D tracking of weakly textured planar surfaces for augmented reality applications
US8988566B2 (en) 2012-08-09 2015-03-24 Omnivision Technologies, Inc. Lens array for partitioned image sensor having color filters
CN104662589B (en) 2012-08-21 2017-08-04 派力肯影像公司 For the parallax detection in the image using array camera seizure and the system and method for correction
US20140055632A1 (en) 2012-08-23 2014-02-27 Pelican Imaging Corporation Feature based high resolution motion estimation from low resolution images captured using an array source
WO2014034444A1 (en) 2012-08-31 2014-03-06 ソニー株式会社 Image processing device, image processing method, and information processing device
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9373088B2 (en) 2012-09-17 2016-06-21 The Board Of Trustees Of The Leland Stanford Junior University Brain machine interface utilizing a discrete action state decoder in parallel with a continuous decoder for a neural prosthetic device
US9143673B2 (en) 2012-09-19 2015-09-22 Google Inc. Imaging device with a plurality of pixel arrays
CN104685860A (en) 2012-09-28 2015-06-03 派力肯影像公司 Generating images from light fields utilizing virtual viewpoints
TW201415879A (en) 2012-10-12 2014-04-16 Wintek Corp Image capture device
WO2014070927A2 (en) 2012-10-31 2014-05-08 Invisage Technologies, Inc. Expanded-field-of-view image and video capture
US9143711B2 (en) 2012-11-13 2015-09-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
KR101954192B1 (en) 2012-11-15 2019-03-05 엘지전자 주식회사 Array camera, Moblie terminal, and method for operating the same
US9924142B2 (en) 2012-11-21 2018-03-20 Omnivision Technologies, Inc. Camera array systems including at least one bayer type camera and associated methods
CN113472989A (en) 2012-11-28 2021-10-01 核心光电有限公司 Multi-aperture imaging system and method for acquiring images by multi-aperture imaging system
US9001226B1 (en) 2012-12-04 2015-04-07 Lytro, Inc. Capturing and relighting images using multiple devices
US9088369B2 (en) 2012-12-28 2015-07-21 Synergy Microwave Corporation Self injection locked phase locked looped optoelectronic oscillator
US20140183334A1 (en) 2013-01-03 2014-07-03 Visera Technologies Company Limited Image sensor for light field device and manufacturing method thereof
US9547160B2 (en) 2013-01-05 2017-01-17 Light Labs Inc. Methods and apparatus for capturing and/or processing images
KR20140094395A (en) 2013-01-22 2014-07-30 삼성전자주식회사 photographing device for taking a picture by a plurality of microlenses and method thereof
US9497380B1 (en) 2013-02-15 2016-11-15 Red.Com, Inc. Dense field imaging
WO2014130849A1 (en) 2013-02-21 2014-08-28 Pelican Imaging Corporation Generating compressed light field representation data
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US20150002734A1 (en) 2013-07-01 2015-01-01 Motorola Mobility Llc Electronic Device with Modulated Light Flash Operation for Rolling Shutter Image Sensor
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
WO2014160142A1 (en) 2013-03-13 2014-10-02 Pelican Imaging Corporation Systems and methods for using alignment to increase sampling diversity of cameras in an array camera module
WO2014164550A2 (en) 2013-03-13 2014-10-09 Pelican Imaging Corporation System and methods for calibration of an array camera
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
WO2014164909A1 (en) 2013-03-13 2014-10-09 Pelican Imaging Corporation Array camera architecture implementing quantum film sensors
US9519972B2 (en) 2013-03-13 2016-12-13 Kip Peli P1 Lp Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US20140270334A1 (en) 2013-03-13 2014-09-18 LaserLock Technologies Inc. Covert marking system based on multiple latent characteristics
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
WO2014149902A1 (en) 2013-03-15 2014-09-25 Pelican Imaging Corporation Systems and methods for providing an array projector
WO2014150856A1 (en) 2013-03-15 2014-09-25 Pelican Imaging Corporation Array camera implementing quantum dot color filters
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
WO2014144157A1 (en) 2013-03-15 2014-09-18 Pelican Imaging Corporation Optical arrangements for use with an array camera
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
WO2014145856A1 (en) 2013-03-15 2014-09-18 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
WO2015048694A2 (en) 2013-09-27 2015-04-02 Pelican Imaging Corporation Systems and methods for depth-assisted perspective distortion correction
US20150098079A1 (en) 2013-10-09 2015-04-09 Hilti Aktiengesellschaft System and method for camera based position and orientation measurement
US20150104101A1 (en) 2013-10-14 2015-04-16 Apple Inc. Method and ui for z depth image segmentation
EP3066690A4 (en) 2013-11-07 2017-04-05 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
CN104682589A (en) 2013-11-29 2015-06-03 常州五王电机有限公司 Low-noise brushless motor stator
US9979878B2 (en) 2014-02-21 2018-05-22 Light Labs Inc. Intuitive camera user interface methods and apparatus
JP6211435B2 (en) 2014-02-26 2017-10-11 株式会社アドバンテスト Manufacturing method of semiconductor device
WO2015134996A1 (en) 2014-03-07 2015-09-11 Pelican Imaging Corporation System and methods for depth regularization and semiautomatic interactive matting using rgb-d images
KR102397254B1 (en) 2014-03-28 2022-05-12 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Quantitative three-dimensional imaging of surgical scenes
WO2015183824A1 (en) 2014-05-26 2015-12-03 Pelican Imaging Corporation Autofocus system for a conventional camera that uses depth information from an array camera
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US9992483B2 (en) 2014-09-03 2018-06-05 Intel Corporation Imaging architecture for depth camera mode with mode switching
CN113256730B (en) 2014-09-29 2023-09-05 快图有限公司 System and method for dynamic calibration of an array camera

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040165090A1 (en) * 2003-02-13 2004-08-26 Alex Ning Auto-focus (AF) lens and process
US20040179834A1 (en) * 2003-03-14 2004-09-16 Eastman Kodak Company Camera using beam splitter with micro-lens image amplification
US20100002126A1 (en) * 2004-11-16 2010-01-07 Aptina Imaging Corporation System and method for focusing a digital camera
US20080095523A1 (en) * 2006-10-18 2008-04-24 Lynn Schilling-Benz Lens array assisted focus detection
US20080151097A1 (en) * 2006-12-22 2008-06-26 Industrial Technology Research Institute Autofocus searching method
US20110080487A1 (en) * 2008-05-20 2011-04-07 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8400555B1 (en) * 2009-12-01 2013-03-19 Adobe Systems Incorporated Focused plenoptic camera employing microlenses with different focal lengths

Cited By (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9712759B2 (en) 2008-05-20 2017-07-18 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9576369B2 (en) 2008-05-20 2017-02-21 Fotonation Cayman Limited Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view
US10142560B2 (en) 2008-05-20 2018-11-27 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US11412158B2 (en) 2008-05-20 2022-08-09 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
US10455168B2 (en) 2010-05-12 2019-10-22 Fotonation Limited Imager array interfaces
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US11423513B2 (en) 2010-12-14 2022-08-23 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US11875475B2 (en) 2010-12-14 2024-01-16 Adeia Imaging Llc Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US10742861B2 (en) 2011-05-11 2020-08-11 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US20130047396A1 (en) * 2011-08-29 2013-02-28 Asm Technology Singapore Pte. Ltd. Apparatus for assembling a lens module and an image sensor to form a camera module, and a method of assembling the same
US9009952B2 (en) * 2011-08-29 2015-04-21 Asm Technology Singapore Pte. Ltd. Apparatus for assembling a lens module and an image sensor to form a camera module, and a method of assembling the same
US10375302B2 (en) 2011-09-19 2019-08-06 Fotonation Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US10984276B2 (en) 2011-09-28 2021-04-20 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US20180197035A1 (en) 2011-09-28 2018-07-12 Fotonation Cayman Limited Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US11729365B2 (en) 2011-09-28 2023-08-15 Adela Imaging LLC Systems and methods for encoding image files containing depth maps stored as metadata
US10019816B2 (en) 2011-09-28 2018-07-10 Fotonation Cayman Limited Systems and methods for decoding image files containing depth maps stored as metadata
US10430682B2 (en) 2011-09-28 2019-10-01 Fotonation Limited Systems and methods for decoding image files containing depth maps stored as metadata
US10275676B2 (en) 2011-09-28 2019-04-30 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US10311649B2 (en) 2012-02-21 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US10334241B2 (en) 2012-06-28 2019-06-25 Fotonation Limited Systems and methods for detecting defective camera arrays and optic arrays
US11022725B2 (en) 2012-06-30 2021-06-01 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US10380752B2 (en) 2012-08-21 2019-08-13 Fotonation Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US10462362B2 (en) 2012-08-23 2019-10-29 Fotonation Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US10225543B2 (en) 2013-03-10 2019-03-05 Fotonation Limited System and methods for calibration of an array camera
US11570423B2 (en) 2013-03-10 2023-01-31 Adeia Imaging Llc System and methods for calibration of an array camera
US10958892B2 (en) 2013-03-10 2021-03-23 Fotonation Limited System and methods for calibration of an array camera
US11272161B2 (en) 2013-03-10 2022-03-08 Fotonation Limited System and methods for calibration of an array camera
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US10547772B2 (en) 2013-03-14 2020-01-28 Fotonation Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10412314B2 (en) 2013-03-14 2019-09-10 Fotonation Limited Systems and methods for photometric normalization in array cameras
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US10455218B2 (en) 2013-03-15 2019-10-22 Fotonation Limited Systems and methods for estimating depth using stereo array cameras
US10674138B2 (en) 2013-03-15 2020-06-02 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10542208B2 (en) 2013-03-15 2020-01-21 Fotonation Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10638099B2 (en) 2013-03-15 2020-04-28 Fotonation Limited Extended color processing on pelican array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9160920B2 (en) * 2013-05-14 2015-10-13 Samsung Electronics Co., Ltd. Imaging system and method of autofocusing the same
KR102052553B1 (en) 2013-05-14 2019-12-05 삼성전자주식회사 Imaging system and autofocus methed thereof
KR20140134498A (en) * 2013-05-14 2014-11-24 삼성전자주식회사 Imaging system and autofocus methed thereof
US20140340561A1 (en) * 2013-05-14 2014-11-20 Samsung Electronics Co., Ltd. Imaging system and method of autofocusing the same
US20150062422A1 (en) * 2013-08-27 2015-03-05 Semiconductor Components Industries, Llc Lens alignment in camera modules using phase detection pixels
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US10540806B2 (en) 2013-09-27 2020-01-21 Fotonation Limited Systems and methods for depth-assisted perspective distortion correction
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10767981B2 (en) 2013-11-18 2020-09-08 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US11486698B2 (en) 2013-11-18 2022-11-01 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10708492B2 (en) 2013-11-26 2020-07-07 Fotonation Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9213880B2 (en) * 2013-11-26 2015-12-15 Symbol Technologies, Llc Method of optimizing focus plane position of imaging scanner
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US20150144700A1 (en) * 2013-11-26 2015-05-28 Symbol Technologies, Inc. Method of optimizing focus plane position of imaging scanner
US10574905B2 (en) 2014-03-07 2020-02-25 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US11546576B2 (en) 2014-09-29 2023-01-03 Adeia Imaging Llc Systems and methods for dynamic calibration of array cameras
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US20190004293A1 (en) * 2015-07-31 2019-01-03 Sony Semiconductor Solutions Corporation Stacked lens structure, method of manufacturing the same, electronic apparatus, mold, method of manufacturing the same, and substrate
US10712543B2 (en) * 2015-07-31 2020-07-14 Sony Semiconductor Solutions Corporation Stacked lens structure, method of manufacturing the same, electronic apparatus, mold, method of manufacturing the same, and substrate
US10097777B2 (en) * 2016-06-03 2018-10-09 Recognition Robotics, Inc. Depth map from multi-focal plane images
WO2017218206A1 (en) * 2016-06-13 2017-12-21 CapsoVision, Inc. Method and apparatus of lens alignment for capsule camera
US20190150717A1 (en) * 2016-06-13 2019-05-23 CapsoVision, Inc. Method and Apparatus of Lens Alignment for Capsule
CN109328319A (en) * 2016-06-13 2019-02-12 卡普索影像公司 The lens alignment method and equipment of capsule cameras
US10638920B2 (en) * 2016-06-13 2020-05-05 Capsovision Inc Method and apparatus of lens alignment for capsule
US11012636B2 (en) * 2016-06-22 2021-05-18 Intel Corporation Image/video capturing method and apparatus
US11070731B2 (en) * 2017-03-10 2021-07-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multi-aperture imaging device, imaging system and method for making available a multi-aperture imaging device
US10996460B2 (en) * 2017-04-13 2021-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multi-aperture imaging device, imaging system and method of providing a multi-aperture imaging device
CN114518220A (en) * 2017-06-02 2022-05-20 全欧光学检测仪器有限公司 Device for detecting a modulation transfer function and centering an optical system
US11340136B2 (en) 2017-06-02 2022-05-24 Trioptics Gmbh Apparatus for detecting a modulation transfer function and centering of an optical system
US10942087B2 (en) * 2017-06-02 2021-03-09 Trioptics Gmbh Apparatus for detecting a modulation transfer function and centering of an optical system
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US10818026B2 (en) 2017-08-21 2020-10-27 Fotonation Limited Systems and methods for hybrid depth regularization
US11562498B2 (en) 2017-08-21 2023-01-24 Adela Imaging LLC Systems and methods for hybrid depth regularization
US10567749B1 (en) * 2019-05-03 2020-02-18 Zf Active Safety And Electronics Us Llc Modulation transfer function evaluation for red/clear filtered optical devices
US11699273B2 (en) 2019-09-17 2023-07-11 Intrinsic Innovation Llc Systems and methods for surface modeling using polarization cues
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
CN110995966A (en) * 2019-11-22 2020-04-10 信利光电股份有限公司 Semi-finished product of camera and camera manufacturing method
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11842495B2 (en) 2019-11-30 2023-12-12 Intrinsic Innovation Llc Systems and methods for transparent object segmentation using polarization cues
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11683594B2 (en) 2021-04-15 2023-06-20 Intrinsic Innovation Llc Systems and methods for camera exposure control
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
CN114697509A (en) * 2022-05-31 2022-07-01 江西联益光学有限公司 Split type lens assembling method, device and system

Also Published As

Publication number Publication date
KR20150031452A (en) 2015-03-24
US20180081090A1 (en) 2018-03-22
WO2014004134A1 (en) 2014-01-03
US20160266284A1 (en) 2016-09-15
CN104520754A (en) 2015-04-15
US11022725B2 (en) 2021-06-01
US9766380B2 (en) 2017-09-19
JP2015522178A (en) 2015-08-03
US20190235138A1 (en) 2019-08-01
EP2867718A4 (en) 2016-02-17
US10261219B2 (en) 2019-04-16
EP2867718A1 (en) 2015-05-06

Similar Documents

Publication Publication Date Title
US11022725B2 (en) Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9638883B1 (en) Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
WO2014160142A1 (en) Systems and methods for using alignment to increase sampling diversity of cameras in an array camera module
US9247117B2 (en) Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
CN105828000B (en) Solid state image sensor and camera
US8817166B2 (en) Imaging device and imaging apparatus
JP5379241B2 (en) Optical image apparatus, optical image processing apparatus, and optical image forming method
TWI535292B (en) Capturing and processing of images using monolithic camera array with heterogeneous imagers
CN103913807A (en) Lightfield imaging system and method for adjusting plenoptic imaging system
US7471889B2 (en) Focus detection system for focus adjustment having differently-sized apertures and using a pair of signals formed by a pencil of rays passing through different regions of exit pupil of imaging lens
US20090225405A1 (en) Wide-Angle Lens, Optical Device Using the Wide-Angle Lens, and Method for Fabricating the Wide-Angle Lens
US7676147B2 (en) Focus detection apparatus and optical apparatus
JP2018517936A (en) Method and device for thin camera focus alignment
CN102472882B (en) Image pickup apparatus that performs automatic focus control and control method for the image pickup apparatus
JP4112165B2 (en) Optical system adjustment method and adjustment apparatus
WO2012147245A1 (en) Image pick-up device, image pick-up system equipped with image pick-up device, and image pick-up method
JP2013192177A (en) Solid-state image pickup device and mobile information terminal
TW201448597A (en) Method, lens assembly, camera, system and use for reducing stray light
JPWO2014203676A1 (en) Positioning device, positioning method, and compound eye camera module
US9366839B2 (en) Position adjustment device and position adjustment method
CN111787301A (en) Lens, three-dimensional imaging method, device, equipment and storage medium
TWI468771B (en) Focus adjusting device, device for manufacturing camera module, focus adjusting method, method for manufacturing camera module, focus adjusting program and recording medium
JP2015031754A (en) Imaging device and control method for the same, information processing device and control method for the same, and system
CN212137840U (en) Lens, three-dimensional imaging module and three-dimensional imaging equipment
Meyer et al. Ultra-compact imaging system based on multi-aperture architecture

Legal Events

Date Code Title Description
AS Assignment

Owner name: PELICAN IMAGING CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUPARRE, JACQUES;MCMAHON, ANDREW;LELESCU, DAN;SIGNING DATES FROM 20130304 TO 20130311;REEL/FRAME:030190/0317

AS Assignment

Owner name: KIP PELI P1 LP, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PELICAN IMAGING CORPORATION;REEL/FRAME:037565/0385

Effective date: 20151221

Owner name: KIP PELI P1 LP, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:PELICAN IMAGING CORPORATION;REEL/FRAME:037565/0439

Effective date: 20151221

Owner name: DBD CREDIT FUNDING LLC, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:PELICAN IMAGING CORPORATION;REEL/FRAME:037565/0417

Effective date: 20151221

AS Assignment

Owner name: DBD CREDIT FUNDING LLC, NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR AND ASSIGNEE PREVIOUSLY RECORDED AT REEL: 037565 FRAME: 0439. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:KIP PELI P1 LP;REEL/FRAME:037591/0377

Effective date: 20151221

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: DRAWBRIDGE OPPORTUNITIES FUND LP, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:DBD CREDIT FUNDING LLC;REEL/FRAME:038982/0151

Effective date: 20160608

Owner name: DRAWBRIDGE OPPORTUNITIES FUND LP, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:DBD CREDIT FUNDING LLC;REEL/FRAME:039117/0345

Effective date: 20160608

AS Assignment

Owner name: DRAWBRIDGE SPECIAL OPPORTUNITIES FUND LP, NEW YORK

Free format text: CHANGE OF NAME;ASSIGNOR:DBD CREDIT FUNDING LLC;REEL/FRAME:040494/0930

Effective date: 20161019

Owner name: DRAWBRIDGE SPECIAL OPPORTUNITIES FUND LP, NEW YORK

Free format text: CHANGE OF NAME;ASSIGNOR:DBD CREDIT FUNDING LLC;REEL/FRAME:040423/0725

Effective date: 20161019

AS Assignment

Owner name: PELICAN IMAGING CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIP PELI P1 LP;REEL/FRAME:040674/0677

Effective date: 20161031

Owner name: FOTONATION CAYMAN LIMITED, UNITED STATES

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PELICAN IMAGING CORPORATION;REEL/FRAME:040675/0025

Effective date: 20161031