US20130175343A1 - Omnidirectional laser scanning bar code symbol reader generating a laser scanning pattern with a highly non-uniform scan density with respect to line orientation - Google Patents

Omnidirectional laser scanning bar code symbol reader generating a laser scanning pattern with a highly non-uniform scan density with respect to line orientation Download PDF

Info

Publication number
US20130175343A1
US20130175343A1 US13/347,219 US201213347219A US2013175343A1 US 20130175343 A1 US20130175343 A1 US 20130175343A1 US 201213347219 A US201213347219 A US 201213347219A US 2013175343 A1 US2013175343 A1 US 2013175343A1
Authority
US
United States
Prior art keywords
scanning
degrees
laser
polygon
laser scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/347,219
Other versions
US8523076B2 (en
Inventor
Timothy Good
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metrologic Instruments Inc
Original Assignee
Metrologic Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metrologic Instruments Inc filed Critical Metrologic Instruments Inc
Priority to US13/347,219 priority Critical patent/US8523076B2/en
Assigned to METROLOGIC INSTRUMENTS, INC. reassignment METROLOGIC INSTRUMENTS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOOD, TIMOTHY
Publication of US20130175343A1 publication Critical patent/US20130175343A1/en
Application granted granted Critical
Publication of US8523076B2 publication Critical patent/US8523076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10554Moving beam scanning
    • G06K7/10564Light sources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10554Moving beam scanning
    • G06K7/10594Beam path
    • G06K7/10603Basic scanning using moving elements
    • G06K7/10613Basic scanning using moving elements by rotation, e.g. polygon
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10554Moving beam scanning
    • G06K7/10594Beam path
    • G06K7/10683Arrangement of fixed elements
    • G06K7/10693Arrangement of fixed elements for omnidirectional scanning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
    • G06K7/10831Arrangement of optical elements, e.g. lenses, mirrors, prisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
    • G06K7/1096Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices the scanner having more than one scanning window, e.g. two substantially orthogonally placed scanning windows for integration into a check-out counter of a super-market

Definitions

  • the present disclosure relates generally to improvements in laser scanning bar code symbol reading systems, at point-of-sale (POS) environments and elsewhere, with increased scanning flexibility and high throughput.
  • POS point-of-sale
  • omni-directional laser scanning bar code symbol readers employ a regular polygon shape which produces a consistent, uniform raster laser scanning pattern through a certain sweep angle.
  • a common scanning polygon has an approximate square profile producing a 4-line raster through nearly 180 degrees of sweep.
  • the deficiency in this uniform raster is that when the laser scanning lines are folded into an intersecting 3D scanning volume for omni-directional performance, all field angles experience the same number of laser scanning lines. This is not optimal for uniform omni-directional performance.
  • bar codes in a “picket fence” orientation i.e. bars and spaces oriented parallel to the direction of code motion
  • a “ladder” orientation i.e. bars and spaces oriented perpendicular to the direction of code motion
  • more scanning lines are required to maintain the same level of performance.
  • NCR's 7878 bioptic laser scanning bar code symbol reader a single, centered laser and a 6-sided irregular polygon is employed to produce an approximate 180 degree sweep (i.e. scanning region), wherein the center third of the scanning region consists of 6 scanning lines, and the left and right third scanning regions each consist of only 3 scanning lines. While the NCR prior art system employs non-uniform scan density with respect to line orientation, in an attempt to provide a more robust scanning pattern, its scan density is not sufficiently non-uniform with respect to line orientation, in many applications, and consequently, scanning performance is compromised.
  • a primary object of the present disclosure is to provide new and improved laser scanning bar code symbol reading system for use in POS environments, which is free of the shortcomings and drawbacks of prior art systems and methodologies.
  • Another object of the present disclosure is to provide an improved laser scanning system employing multiple off-center lasers and an irregular multi-sided scanning polygon (i.e. where the interior angles between the sides are not all equal), producing a non-uniform laser scanning raster pattern over a total sweep of approximately 180 degrees of polygon rotation, and covering a scanning region includes (i) a center scanning region with a first plurality of scanning lines, two mid scanning regions with a second plurality of scanning lines, and far left and right scanning regions each having a third plurality of scanning lines, to support high (full) density, mid (2 ⁇ 3) density, and low (1 ⁇ 3) density scanning over the 180 degrees scanning region, for robust omni-directional scanning performance.
  • Another object is to provide a new and improved laser scanning system employing a pair of off-center lasers and an irregular 8-sided scanning polygon, producing a non-uniform laser scanning raster pattern over a total sweep of approximately 180 degrees of polygon rotation (i.e. sweep), and covering a scanning region which includes (i) a center scanning region from about 60 to about 120 degrees with twelve (12) scanning lines, (ii) two mid scanning regions from about 30 to about 60 degrees and from about 120 to about 150 degrees each having eight (8) scanning lines, and (iii) far left and right scanning regions from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having four (4) scanning lines.
  • Another object is to provide a new and improved laser scanning system is provided employing a pair of off-center lasers and an irregular 6-sided scanning polygon, producing a non-uniform laser scanning raster over a total sweep of approximately 180 degrees of polygon rotation (i.e. sweep), and covering a scanning region which includes (i) a center scanning region from about 60 to about 120 degrees with 9 scanning lines, (ii) two mid scanning regions from about 30 to about 60 degrees and from about 120 to about 150 degrees each having 6 scanning lines, and (iii) far left and right scanning regions from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having 3 scanning lines.
  • Another object is to provide a bi-optical laser scanning system employing a first and second laser scanning subsystems, wherein the first laser scanning system is installed in vertical housing section of the system, and the second laser scanning station in the horizontal housing section of the system, and wherein each laser scanning subsystem employs multiple laser beams, and a single, common irregular multi-sided scanning polygon to generate different non-uniform laser scanning raster patterns, in the vertical and horizontal housing sections, which are folded in the vertical and horizontal housing sections by first and second laser scanning pattern folding mirror arrays, respectively, and projected laser scanning planes through the vertical and horizontal scanning windows which intersection in a 3D scanning volume disposed therebetween to generate an omni-directional laser scanning pattern for supporting robust omni-directional scanning performance.
  • Another object is to provide such a bi-optical laser scanning system, wherein at least two laser beams are positioned on one side of the scanning polygon in the first laser scanning subsystem, and at least two laser beams are positioned on the opposing side of the scanning polygon in the horizontal housing section, so that with each revolution of the multi-sided irregular scanning polygon, two completely separate non-uniform laser scanning raster patterns with 180 degrees of scan coverage are generated in the vertical and horizontal housing sections, respectively, and projected off separate laser scanning pattern folding mirror arrays and out of the vertical and horizontal scanning windows, respectively, and into the 3D scanning volume.
  • Another object is to provide a new and improved laser scanning system employing multiple off-center lasers and an irregular 8-sided scanning polygon, producing a non-uniform laser scanning raster pattern over approximately 180 degrees of polygon rotation, and covering a scanning region which includes (i) a center scanning region from about 60 to about 120 degrees with twelve (12) scanning lines, (ii) two mid scanning regions from about 30 to about 60 degrees and from about 120 to about 150 degrees each having eight (8) scanning lines, and (iii) far left and right scanning regions from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having four (4) scanning lines.
  • Another object is to provide a new and improved laser scanning system employing multiple off-center lasers and an irregular 6-sided scanning polygon, producing a non-uniform laser scanning raster pattern over a total sweep of approximately 180 degrees of polygon rotation (i.e. sweep), a covering a scanning region which includes (i) a center scanning region from about 60 to about 120 degrees with 9 scanning lines, (ii) two mid scanning regions from about 30 to about 60 degrees and from about 120 to about 150 degrees each having 6 scanning lines, and (iii) far left and right scanning regions from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having 3 scanning lines.
  • FOV field of view
  • FOI field of illumination
  • Another object is to provide such a hybrid-type bi-optical bar code symbol reading system, wherein the scanning region includes (i) a center scanning field with a first plurality of scanning lines, (ii) two mid scanning fields with a second plurality of scanning lines, and (iii) far left and right scanning fields, each having a third plurality of scanning lines, to support high (full) density, mid (2 ⁇ 3) density, and low (1 ⁇ 3) density scanning over the 180 degrees scanning region, within a 3D scanning volume between the vertical and horizontal scanning windows;
  • Another object is to provide a hybrid-type bi-optical bar code symbol reading system that helps provide improvements in worker productivity and checkout speed and throughput.
  • FIG. 1A is a first perspective view of hybrid-type bi-optical bar code symbol reading system according to first illustrative embodiment of the present disclosure, adapted for use at a point of sale (POS) checkout station in a retail environment, and capable of supporting several different modes of operation including a hybrid laser scanning and digital imaging mode of operation, a laser scanning only mode of operation, and a digital imaging only mode of operation;
  • POS point of sale
  • FIG. 1B a second perspective view of the hybrid-type bi-optical bar code symbol reading system of FIG. 1A , showing the field of view (FOV) and field of illumination (FOI) of the digital imaging subsystem directly projecting through the vertical scanning window in the vertical section of the system housing, and into the 3D laser scanning volume supported by the system;
  • FOV field of view
  • FOI field of illumination
  • FIG. 1C is a first cross-sectional side view of the hybrid-type bi-optical bar code symbol reading system of FIGS. 1A and 1B , showing the FOV of digital imaging module being projected through the vertical scanning window, into the 3D scanning volume of the system, as an operator naturally presents a difficult to read code symbol closely towards the vertical scanning window;
  • FIG. 1D is a second cross-sectional side view of the hybrid-type bi-optical bar code symbol reading system of FIGS. 1A and 1B , showing optical and electro-optical components of the digital imaging subsystem and the laser scanning subsystem containing within the system housing, and the FOV of the digital imaging system projecting through and spatially-overlapping with the field of view (FOV) of the laser scanning subsystem embedded within the vertical section of the system housing;
  • FOV field of view
  • FIG. 2A is a perspective view of the digital imaging module (i.e. digital imaging subsystem) employed in the hybrid-type bi-optical bar code symbol reading system of FIGS. 1A through 1D , showing its area-type image detection array mounted on a PC board supporting drivers and control circuits, and surrounded by a pair of linear arrays of LEDs for directly projecting a field of visible illumination (FOI) spatially co-extensive with and spatially-overlapping the FOV of the digital imaging subsystem;
  • FOI field of visible illumination
  • FIG. 2B is a side view of the digital imaging module shown in FIG. 2A , showing the field of visible illumination produced by its array of LEDs being spatially co-extensive with and spatially-overlapping the FOV of the digital imaging subsystem;
  • FIG. 2C is an exploded view of the digital imaging module shown in FIG. 2A ;
  • FIG. 3 is a rear perspective view of the hybrid-type bi-optical bar code symbol reading system of FIGS. 1A and 1B , showing a portal with a cavity formed in the rear section of the system housing, for receipt of a digital imaging module for projecting the FOV and illumination field produced from the digital imaging module when it is installed within the portal;
  • FIG. 4 is a cross-sectional view of the hybrid-type bi-optical bar code symbol reading system of FIGS. 1A through 1E and 3 , showing the digital imaging module installed through the portal and into the cavity formed in the rear portion of the system housing, with all of the electrical interfaces between the digital imaging module and system being established on completion of the module installation;
  • FIG. 5 is a block schematic representation of the hybrid scanning/imaging code symbol reading system of FIGS. 1A through 1D , wherein (i) a pair of laser scanning subsystems (i.e. stations) support omnidirectional laser scanning of bar code symbols on objects passing through the 3D scanning volume of the system, and (ii) a digital imaging module, supported within the system housing, supports digital imaging-based reading of bar code symbols presented within the FOV of the system;
  • a pair of laser scanning subsystems i.e. stations
  • a digital imaging module supported within the system housing, supports digital imaging-based reading of bar code symbols presented within the FOV of the system
  • FIG. 6 is a block schematic representation of the digital imaging module supported within the hybrid scanning/imaging code symbol reading system of FIGS. 1A through 1D ;
  • FIG. 7 is a schematic representation of the 8-sided irregular scanning polygon deployed in the hybrid-type scanning/imaging system shown in FIGS. 1 through 6 ;
  • FIG. 8 is a schematic representation of an alternative embodiment of multi-sided irregular scanning polygon having six (6) sides (i.e. reflective surfaces) that can be deployed in the hybrid-type scanning/imaging system shown in FIGS. 1 through 6 ; and
  • FIG. 9 is a schematic representation of the laser scanning subsystems deployed in the hybrid-type system shown in FIGS. 1 through 5 , illustrating the use of two (2) off-center lasers and a single, common irregular multi-sided (e.g. 8-sided) scanning polygon in each laser scanning subsystem so as to produce a laser scanning raster over a total sweep of approximately 180 degrees of polygon rotation (i.e.
  • a scanning region which includes (i) a center scanning region with a first plurality of scanning lines, (ii) two mid scanning regions with a second plurality of scanning lines, and (iii) far left and right scanning regions each having a third plurality of scanning lines, thereby supporting high (full) density, mid (2 ⁇ 3) density, and low (1 ⁇ 3) density scanning over the 180 degrees scanning region, for robust omni-directional scanning performance, in accordance with the principles of the present disclosure.
  • the present disclosure teaches a novel laser scanning assembly comprising an irregular polygon scanning element, and multiple off-axis lasers arranged to generate a laser scanning raster pattern having a highly non-uniform scanning density over its scanning region, illustrated in FIG. 9 . While it is understood that this novel laser scanning assembly can be used in diverse types of laser scanning systems, including slot-type laser scanners, laser projection scanner, as well as bi-optical laser scanning systems, for purposes of illustration, the laser scanning assembly will be described as embodied within a hybrid laser-scanning/digital-imaging (i.e. scanning/imaging) based bar code symbol reading system 100 shown in FIGS. 1A through 1D .
  • a hybrid laser-scanning/digital-imaging i.e. scanning/imaging
  • the hybrid laser-scanning/digital-imaging (i.e. scanning/imaging) bar code symbol reading system 100 supports three different modes of operation, namely: a laser scanning (only) mode of operation; a digital imaging mode of operation; and a hybrid scanning/imaging mode of operation.
  • the hybrid scanning/imaging system 100 and its various modes of operation, will now be described below in great technical detail.
  • the hybrid scanning/imaging code symbol reading system includes a system housing 2 having a vertical housing section 2 A having a vertical optically transparent (glass) scanning window 3 A, and a horizontal housing section 2 B having a horizontal optically transparent (glass) scanning window 3 B.
  • the horizontal and vertical sections 2 A and 2 B are arranged in an orthogonal relationship with respect to each other such that the horizontal and vertical scanning windows are substantially perpendicular.
  • First and second laser scanning stations 150 A and 150 B are mounted within the system housing, and provide a resultant laser scanning subsystem 150 for generating and projecting a complex group of laser scanning planes through laser scanning windows 3 A and 3 B where the laser scanning planes intersect and produce an omni-directional laser scanning pattern within a 3D scanning volume 80 defined between scanning windows 3 A and 3 B, as shown in FIGS. 1 and 1C , and other figures.
  • an IR-based proximity detector 67 is mounted in the front portion of the housing for automatically detecting the presence of a human operator in front of the 3D scanning volume 80 region during system operation.
  • the function of the IR-based proximity detector 67 is to wake up the system (i.e. WAKE UP MODE), and set a SLEEP Timer (T1) which counts how long the system has to read a bar code symbol (e.g. 15 minutes) before the system is automatically induced into its SLEEP MODE, where the polygon scanning element 394 and laser diodes 395 A, 395 B, 395 C and 395 D are deactivated to conserve electrical power within the system.
  • the IR-based proximity i.e.
  • wake-up detector 67 is realized using (i) an IR photo-transmitter for generating a high-frequency amplitude modulated IR beam, and (ii) a IR photo-receiver for receiving reflections of the amplitude modulated IR beam, using a synchronous detection circuitry, well known in the art.
  • a digital camera mounting/installation portal 288 is formed in the upper housing section of the system housing, and has a geometry closely matching the geometry of the digital imaging module 210 so that the module slides and fits into the installation portal 288 .
  • the digital imaging module 210 has data and power/control interfaces 295 and 296 which are adapted to engage and establish electrical connections with matching data and power/control interfaces 287 and 286 , respectively, mounted within the interior portion of the portal 288 .
  • installation portal 288 is formed within the vertical section of the housing, and includes a peep-type aperture 289 allowing the FOV and field of illumination (FOI) to project therethrough, and then directly through the vertical scanning window 3 A, and into 3D scanning volume 80 .
  • FOV field of view
  • the field of view (FOV) will extend at least several inches (e.g. 6 inches or more) into the 3D scanning volume 80 , with a depth of focus before the vertical scanning window 3 A.
  • a target illumination subsystem 231 within the digital imaging module 210 can be configured to generate a visible targeting beam 270 that is projected along the FOV within the 3D scanning volume.
  • the automatic object detection subsystem 220 within the digital imaging module 210 can be configured to project an IR-based detection beam 232 through the vertical scanning window 3 A, to detect an object being presented to the vertical scanning window 3 A, and thereupon, activating the digital imaging module 210 to capture and process digital images of the presented product, and any bar code symbols supported on the surface thereof.
  • the object detection subsystem 220 can be disabled and the digital imaging module operated in its enhanced continuous imaging presentation mode, where digital images of the FOV are continuously captured, buffered and processed at a rate 60 frames per second.
  • the FOV of the digital imaging module spatially overlaps a portion of the 3D scanning volume 80 of the system.
  • the digital imaging FOV can completely spatially overlap the entire 3D scanning volume 80 , or simply fill in a region of space between the vertical scanning window and the edge portion of the 3D scanning volume 80 . This way, when the operator presents a bar coded product through the 3D scanning volume, towards the vertical scanning window, “sure-shot” bar code reading operation will be ensured even when reading the most-difficult-to-read bar code symbols.
  • the digital imaging module 210 comprises: a PC board 208 , on which area-type image detection array (i.e. sensor) 235 (e.g. 5.0 megapixel 2D image sensor), LED arrays 223 A and 223 B, and image formation optics 234 , are mounted, along with the circuitry specified in FIG.
  • area-type image detection array i.e. sensor
  • LED arrays 223 A and 223 B e.g. 5.0 megapixel 2D image sensor
  • image formation optics 234 e.g. 5.0 megapixel 2D image sensor
  • module housing 243 for containing the PC board 208 and mounting framework 242 , and having a light transmission aperture 244 allowing the FOV of the image sensor 235 and the field of illumination (FOI) from LED arrays 223 A, 223 B project out of the module housing 243 , and ultimately through the peep-hole aperture 289 formed in the installation portal 288 , when the module 210 is installed therein, as shown in FIG. 4 ; and data and power/control interfaces 287 and 286 , respectively, mounted on PC board and extending through the module housing 243 so that matching interface connections can be established in the installation portal 288 , when the module is installed therein.
  • FOI field of illumination
  • hybrid scanning/imaging system 100 generally comprises: laser scanning stations 150 A and 150 B for generating and projecting groups of laser scanning planes through the vertical and horizontal scanning windows 3 A and 3 B, respectively, and generating scan data streams from scanning objects in the 3D scanning volume 80 ; a scan data processing subsystem 20 for supporting automatic scan data processing based bar code symbol reading using the scan data streams generated from laser scanning stations 150 A and 150 B; an input/output subsystem 25 for interfacing with the image processing subsystem 20 , the electronic weight scale 22 , RFID reader 26 , credit-card reader 27 , Electronic Article Surveillance (EAS) Subsystem 28 (including a Sensormatic® EAS tag deactivation block 29 integrated in system, and an audible/visual information display subsystem (i.e.
  • EAS Electronic Article Surveillance
  • IR-based wake-up detector 67 operably connected to the control subsystem 37 , for generating and supplying a first trigger signal to the system controller in response to automatic detection of an operator in proximity (e.g. 1-2 feet) of the system housing.
  • each laser scanning station 150 A, 150 B is constructed from a single, common “irregular” rotating polygon 394 , having either 8-sides shown in FIG. 7 or 6-sides shown in FIG. 8 , that is mounted at the junction between the vertical and horizontal housing sections 2 A, 2 B, and driven by a high-speed brushless DC motor, and associated drive and sensing circuitry, as shown in FIG. 1D .
  • What makes the rotating polygon 394 irregular is the fact that interior angles between adjacent sides of the polygon element are not equal in size, and in fact, are substantially different so as to generate a raster scanning pattern having a highly non-uniform scan density, as illustrated in FIG. 9 .
  • laser scanning subsystem 150 A comprises: a pair of visible laser diode sources (e.g. VLDs) 395 A and 395 B mounted off center to the central axis 399 of the system, for generating a first laser scanning raster pattern 410 ; light collection optics 396 B and a pair of photodiodes 397 A and 397 B mounted so collect and detect incoming light rays produced by VLDs 395 A and 395 B, and generate corresponding analog electrical scan data signals for scan data and decode processing by scan data processing subsystem 20 shown in FIG. 5 ; and array of laser scanning pattern folding mirrors 398 A installed in the horizontal housing sections, as shown in FIG. 1D , for folding the raster scanning pattern 410 , and projecting a folded scanning pattern out the horizontal scanning window 3 A and into the 3D scanning volume.
  • VLDs visible laser diode sources
  • laser scanning subsystem 150 B comprises: a pair of visible laser diode sources (e.g. VLDs) 395 C and 395 D mounted off center to the central axis 399 of the system, for generating a second laser scanning raster pattern 420 ; light collection optics 396 B and a pair of photodiodes 397 C and 397 D mounted so collect and detect incoming light rays produced by VLDs 395 C and 395 D, and generate corresponding analog electrical scan data signals for scan data and decode processing by scan data processing subsystem 20 shown in FIG. 5 ; and array of laser scanning pattern folding mirrors 398 B installed in the horizontal housing sections, as shown in FIG. 1D , for folding the second raster scanning pattern 420 and projecting the folded scanning pattern through the vertical scanning window 3 B, and out into the 3D scanning volume.
  • VLDs visible laser diode sources
  • laser beams from VLDs 395 A and 395 B are positioned on a first side of the scanning polygon 394 in the first laser scanning subsystem 150 A, and laser beams 395 C and 395 D are positioned on the opposing side of the scanning polygon 394 , mounted at the junction of the vertical and horizontal housing sections 2 A, 2 B.
  • laser scanning subsystem 150 A produces a laser scanning raster pattern 410 over a total sweep of approximately 180 degrees of polygon rotation (i.e. sweep) and covering a scanning region 430 which includes: (i) a center scanning region (i.e. field) 430 A from about 60 to about 120 degrees with twelve (12) scanning lines; (ii) two mid scanning regions (i.e. field) 430 B 1 and 430 B 2 from about 30 to about 60 degrees and from about 120 to about 150 degrees, each having eight (8) scanning lines; and (iii) far left and right scanning regions (i.e. fields) 430 C 1 and 430 C 2 from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having four (4) scanning lines.
  • the resulting laser scanning raster patterns generated the four off-center laser beams reflecting off the multi-side irregular polygon 394 while it is rotating, supports high (full) density, mid (2 ⁇ 3) density, and low (1 ⁇ 3) density scanning over the 180 degrees scanning region, for robust omni-directional scanning performance.
  • laser scanning subsystem 150 B produces a laser scanning raster pattern 420 over a total sweep of approximately 180 degrees of polygon rotation (i.e. sweep) and covering a scanning region 430 which includes: (i) a center scanning region 430 A′ from about 60 to about 120 degrees with twelve (12) scanning lines; (ii) two mid scanning regions 430 B 1 and 430 B 2 ′ from about 30 to about 60 degrees and from about 120 to about 150 degrees, each having eight (8) scanning lines; and (iii) far left and right scanning regions 430 C 1 ′ and 430 C 2 ′ from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having four (4) scanning lines.
  • the resulting laser scanning raster patterns are folded by the scanning pattern folding mirror arrays 398 A and 398 B to project laser scanning planes through the vertical and horizontal scanning windows 3 A and 3 B, for intersection in the 3D scanning volume 80 to support high (full) density, mid (2 ⁇ 3) density, and low (1 ⁇ 3) density scanning over the 180 degrees scanning region, for robust omni-directional scanning performance.
  • each laser scanning subsystem, 150 A′, 150 B′ will generate a laser scanning raster over a total sweep of approximately 180 degrees of polygon rotation (i.e. sweep), wherein the scanning region includes: (i) a center scanning region (i.e. field) from about 60 to about 120 degrees with 9 scanning lines; (ii) two mid scanning regions (i.e. fields) from about 30 to about 60 degrees and from about 120 to about 150 degrees each having 6 scanning lines; and (iii) far left and right scanning regions (i.e. fields) from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having 3 scanning lines.
  • the bar code symbol reading module employed along each channel of the scan data processing subsystem 20 can be realized using conventional bar code reading techniques, including bar code symbol stitching-based decoding techniques, well known in the art.
  • the digital imaging module or subsystem 210 employed in the illustrative embodiment of the hybrid scanning/imaging system 100 is realized as a complete stand-alone digital imager, comprising a number of components, namely: an image formation and detection (i.e.
  • a camera subsystem 221 having image formation (camera) optics 234 for producing a field of view (FOV) upon an object to be imaged and a CMOS or like area-type image detection array 235 for detecting imaged light reflected off the object during illumination operations in an image capture mode in which at least a plurality of rows of pixels on the image detection array are enabled; a LED-based illumination subsystem 222 employing an LED illumination array 232 for producing a field of narrow-band wide-area illumination 226 within the entire FOV 233 of the image formation and detection subsystem 221 , which is reflected from the illuminated object and transmitted through a narrow-band transmission-type optical filter and detected by the image detection array 235 , while all other components of ambient light are substantially rejected; an automatic light exposure measurement and illumination control subsystem 224 for controlling the operation of the LED-based illumination subsystem 222 ; an image capturing and buffering subsystem 225 for capturing and buffering 2-D images detected by the image formation and detection subsystem 221 ; a digital image processing sub
  • the hybrid system 100 also includes: an object targeting illumination subsystem 231 for generating a narrow-area targeting illumination beam 270 into the FOV, to help allow the user align bar code symbols within the active portion of the FOV where imaging occurs; and also an object detection subsystem 43 for automatically producing an object detection field within the FOV 233 of the image formation and detection subsystem 221 , to detect the presence of an object within predetermined edge regions of the object detection field, and generate control signals that are supplied to the system control subsystem 230 to indicate when an object is detected within the object detection field of the system.
  • an object targeting illumination subsystem 231 for generating a narrow-area targeting illumination beam 270 into the FOV, to help allow the user align bar code symbols within the active portion of the FOV where imaging occurs
  • an object detection subsystem 43 for automatically producing an object detection field within the FOV 233 of the image formation and detection subsystem 221 , to detect the presence of an object within predetermined edge regions of the object detection field, and generate control signals that are supplied to the system control subsystem 230 to indicate when an
  • a pair of visible LEDs can be arranged on opposite sides of the FOV optics 234 , in the digital imaging module 210 , so as to generate a linear visible targeting beam that is projected off a FOV folding and out the imaging window 203 , as shown and described in detail in U.S. Publication No. U.S.20080314985 A1, incorporated herein by reference in its entirety.
  • the object motion detection subsystem 231 can be implemented using one or more pairs of IR LED and IR photodiodes, mounted within the system housing 2 A, or within the digital imaging module 210 , as disclosed in copending U.S. patent application Ser. No. 13/160,873 filed Jun. 15, 2011, incorporated herein by references, to automatically detect the presence of objects in the FOV of the system, and entering and leaving the 3D scanning volume 80 .
  • the primary function of the image formation and detection subsystem 221 which includes image formation (camera) optics 234 , is to provide a field of view (FOV) 233 upon an object to be imaged and a CMOS area-type image detection array 235 for detecting imaged light reflected off the object during illumination and image acquisition/capture operations.
  • FOV field of view
  • the primary function of the LED-based illumination subsystem 222 is to produce a wide-area illumination field 36 from the LED array 223 when an object is automatically detected within the FOV.
  • the field of illumination has a narrow optical-bandwidth and is spatially confined within the FOV of the image formation and detection subsystem 521 during modes of illumination and imaging.
  • This arrangement is designed to ensure that only narrow-band illumination transmitted from the illumination subsystem 222 , and reflected from the illuminated object, is ultimately transmitted through a narrow-band transmission-type optical filter subsystem 240 within the system and reaches the CMOS area-type image detection array 235 for detection and processing, whereas all other components of ambient light collected by the light collection optics are substantially rejected at the image detection array 535 , thereby providing improved SNR, thus improving the performance of the system.
  • the narrow-band transmission-type optical filter subsystem 240 is realized by (i) a high-pass (i.e. red-wavelength reflecting) filter element embodied within at the imaging window 203 , and (2) a low-pass filter element mounted either before the CMOS area-type image detection array 235 or anywhere after beyond the high-pass filter element, including being realized as a dichroic mirror film supported on at least one of the FOV folding mirrors employed in the module.
  • a high-pass filter element i.e. red-wavelength reflecting
  • the automatic light exposure measurement and illumination control subsystem 224 performs two primary functions: (i) to measure, in real-time, the power density [joules/cm] of photonic energy (i.e. light) collected by the optics of the system at about its image detection array 235 , and to generate auto-exposure control signals indicating the amount of exposure required for good image formation and detection; and (2) in combination with the illumination array selection control signal provided by the system control subsystem 230 , to automatically drive and control the output power of the LED array 223 in the illumination subsystem 222 , so that objects within the FOV of the system are optimally exposed to LED-based illumination and optimal images are formed and detected at the image detection array 235 .
  • the primary function of the image capturing and buffering subsystem 225 is (i) to detect the entire 2-D image focused onto the 2D image detection array 235 by the image formation optics 234 of the system, (2) to generate a frame of digital pixel data for either a selected region of interest of the captured image frame, or for the entire detected image, and then (3) buffer each frame of image data as it is captured.
  • the system has both single-shot and video modes of imaging. In the single shot mode, a single 2D image frame ( 31 ) is captured during each image capture and processing cycle, or during a particular stage of a processing cycle. In the video mode of imaging, the system continuously captures frames of digital images of objects in the FOV. These modes are specified in further detail in U.S. Patent Publication No. 2008/0314985 A1, incorporated herein by reference in its entirety.
  • the primary function of the digital image processing subsystem 226 is to process digital images that have been captured and buffered by the image capturing and buffering subsystem 225 , during modes of illumination and operation.
  • image processing operations include image-based bar code decoding methods as described in U.S. Pat. No. 7,128,266, incorporated herein by reference.
  • the primary function of the input/output subsystem 227 is to support universal, standard and/or proprietary data communication interfaces with host system 9 and other external devices, and output processed image data and the like to host system 9 and/or devices, by way of such communication interfaces. Examples of such interfaces, and technology for implementing the same, are given in U.S. Pat. No. 6,619,549, incorporated herein by reference.
  • system control subsystem 230 The primary function of the system control subsystem 230 is to provide some predetermined degree of control, coordination and/or management signaling services to each subsystem component integrated within the system, when operated in its digital imaging mode of operation shown in FIG. 1D . Also, in the illustrative embodiment, when digital imaging module 210 is installed in portal 288 , and interfaced with data/power/control interface 285 , system control subsystem 230 functions as a slave controller under the control of master control subsystem 37 . While this subsystem can be implemented by a programmed microprocessor, in the preferred embodiments of the present disclosure, this subsystem is implemented by the three-tier software architecture supported on micro-computing platform, described in U.S. Pat. No. 7,128,266, incorporated herein by reference.
  • SCP table 229 A in system memory is to store (in non-volatile/persistent memory) a set of system configuration and control parameters (i.e. SCPs) for each of the available features and functionalities, and programmable modes of supported system operation, and which can be automatically read and used by the system control subsystem 230 as required during its complex operations.
  • SCPs system configuration parameter
  • SCPs can be dynamically managed as taught in great detail in co-pending U.S. Publication No. 2008/0314985 A1, incorporated herein by reference.
  • the bi-optical hybrid scanning/imaging code symbol reading system 100 has the capacity to support various types of control processes during its hybrid scanning/imaging mode of operation
  • the preferred mode of operation is where the digital imaging subsystem supports a continuous streaming-type presentation mode of operation upon the detection of the operator by IR-based detection subsystem 67 .
  • the system controller 37 In response to subsystem 67 detecting the presence of an operator at the POS station, the system controller 37 over-rides other controls and instructs (i.e. determines) that laser scanning subsystems 150 A, 150 B generate an omni-directional laser scanning field within the 3D scanning volume 80 , while the digital imaging module 210 generates a field of illumination (FOI) consisting of 60 flashes per second with a 100 us long flash duration that is coextensive with the projected FOV so that the digital imaging subsystem continuously and transparently supports the digital image capture, buffering and processing at a least 60 frames per second (FPS), with less than 127 microsecond image sensor exposure time, and a re-read delay set to 100 milliseconds.
  • FOI field of illumination
  • the digital imaging subsystem supports a 2′′ depth of field (DOF) resolution of 4.0 mil symbologies at the vertical scanning window 3 A.
  • DOE depth of field
  • the digital imaging module 210 can be configured in alternative ways, such as, for example, to continuously support the digital image capture, buffering and processing at a least 60 frames per second (FPS), with 50 microsecond to 100 microsecond image sensor exposure times, or using alternative system configuration parameters (SCPs).
  • FPS frames per second
  • SCPs system configuration parameters
  • the digital imaging subsystem supports a 1.5′′ to 2′′ DOF resolution of 4.0 mil symbologies at the vertical scanning window 3 A, with a slightly increased WOF at the vertical scanning window 3 A.

Abstract

An improved laser scanning system is provided employing multiple off-center lasers and an irregular multi-sided scanning polygon, producing a laser scanning raster over a total sweep of approximately 180 degrees of polygon rotation (i.e. sweep), wherein the scanning region includes (i) a center scanning region with a first plurality of scanning lines, (ii) two mid scanning regions with a second plurality of scanning lines, and (iii) far left and right scanning regions each having a third plurality of scanning lines, to supports high (full) density, mid (2/3) density, and low (1/3) density scanning over the 180 degrees scanning region, for robust omni-directional scanning performance.

Description

    BACKGROUND OF DISCLOSURE
  • 1. Field of Disclosure
  • The present disclosure relates generally to improvements in laser scanning bar code symbol reading systems, at point-of-sale (POS) environments and elsewhere, with increased scanning flexibility and high throughput.
  • 2. Brief Description of the State of Knowledge in the Art
  • Typically, omni-directional laser scanning bar code symbol readers employ a regular polygon shape which produces a consistent, uniform raster laser scanning pattern through a certain sweep angle. For example, a common scanning polygon has an approximate square profile producing a 4-line raster through nearly 180 degrees of sweep. The deficiency in this uniform raster is that when the laser scanning lines are folded into an intersecting 3D scanning volume for omni-directional performance, all field angles experience the same number of laser scanning lines. This is not optimal for uniform omni-directional performance.
  • Typically, bar codes in a “picket fence” orientation (i.e. bars and spaces oriented parallel to the direction of code motion) are more easily scanned, thereby requiring fewer scan lines to do a good scanning job. As the code orientation changes, and tends toward a “ladder” orientation (i.e. bars and spaces oriented perpendicular to the direction of code motion), more scanning lines are required to maintain the same level of performance.
  • In NCR's 7878 bioptic laser scanning bar code symbol reader, a single, centered laser and a 6-sided irregular polygon is employed to produce an approximate 180 degree sweep (i.e. scanning region), wherein the center third of the scanning region consists of 6 scanning lines, and the left and right third scanning regions each consist of only 3 scanning lines. While the NCR prior art system employs non-uniform scan density with respect to line orientation, in an attempt to provide a more robust scanning pattern, its scan density is not sufficiently non-uniform with respect to line orientation, in many applications, and consequently, scanning performance is compromised.
  • Thus, there is still a great need in the art for improved bi-optical laser scanning bar code symbol reading system which is capable of high-performance, and robust operations in demanding POS scanning environments, while avoiding the shortcomings and drawbacks of prior art systems and methodologies.
  • OBJECTS AND SUMMARY
  • Accordingly, a primary object of the present disclosure is to provide new and improved laser scanning bar code symbol reading system for use in POS environments, which is free of the shortcomings and drawbacks of prior art systems and methodologies.
  • Another object of the present disclosure is to provide an improved laser scanning system employing multiple off-center lasers and an irregular multi-sided scanning polygon (i.e. where the interior angles between the sides are not all equal), producing a non-uniform laser scanning raster pattern over a total sweep of approximately 180 degrees of polygon rotation, and covering a scanning region includes (i) a center scanning region with a first plurality of scanning lines, two mid scanning regions with a second plurality of scanning lines, and far left and right scanning regions each having a third plurality of scanning lines, to support high (full) density, mid (⅔) density, and low (⅓) density scanning over the 180 degrees scanning region, for robust omni-directional scanning performance.
  • Another object is to provide a new and improved laser scanning system employing a pair of off-center lasers and an irregular 8-sided scanning polygon, producing a non-uniform laser scanning raster pattern over a total sweep of approximately 180 degrees of polygon rotation (i.e. sweep), and covering a scanning region which includes (i) a center scanning region from about 60 to about 120 degrees with twelve (12) scanning lines, (ii) two mid scanning regions from about 30 to about 60 degrees and from about 120 to about 150 degrees each having eight (8) scanning lines, and (iii) far left and right scanning regions from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having four (4) scanning lines.
  • Another object is to provide a new and improved laser scanning system is provided employing a pair of off-center lasers and an irregular 6-sided scanning polygon, producing a non-uniform laser scanning raster over a total sweep of approximately 180 degrees of polygon rotation (i.e. sweep), and covering a scanning region which includes (i) a center scanning region from about 60 to about 120 degrees with 9 scanning lines, (ii) two mid scanning regions from about 30 to about 60 degrees and from about 120 to about 150 degrees each having 6 scanning lines, and (iii) far left and right scanning regions from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having 3 scanning lines.
  • Another object is to provide a bi-optical laser scanning system employing a first and second laser scanning subsystems, wherein the first laser scanning system is installed in vertical housing section of the system, and the second laser scanning station in the horizontal housing section of the system, and wherein each laser scanning subsystem employs multiple laser beams, and a single, common irregular multi-sided scanning polygon to generate different non-uniform laser scanning raster patterns, in the vertical and horizontal housing sections, which are folded in the vertical and horizontal housing sections by first and second laser scanning pattern folding mirror arrays, respectively, and projected laser scanning planes through the vertical and horizontal scanning windows which intersection in a 3D scanning volume disposed therebetween to generate an omni-directional laser scanning pattern for supporting robust omni-directional scanning performance.
  • Another object is to provide such a bi-optical laser scanning system, wherein at least two laser beams are positioned on one side of the scanning polygon in the first laser scanning subsystem, and at least two laser beams are positioned on the opposing side of the scanning polygon in the horizontal housing section, so that with each revolution of the multi-sided irregular scanning polygon, two completely separate non-uniform laser scanning raster patterns with 180 degrees of scan coverage are generated in the vertical and horizontal housing sections, respectively, and projected off separate laser scanning pattern folding mirror arrays and out of the vertical and horizontal scanning windows, respectively, and into the 3D scanning volume.
  • Another object is to provide a new and improved laser scanning system employing multiple off-center lasers and an irregular 8-sided scanning polygon, producing a non-uniform laser scanning raster pattern over approximately 180 degrees of polygon rotation, and covering a scanning region which includes (i) a center scanning region from about 60 to about 120 degrees with twelve (12) scanning lines, (ii) two mid scanning regions from about 30 to about 60 degrees and from about 120 to about 150 degrees each having eight (8) scanning lines, and (iii) far left and right scanning regions from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having four (4) scanning lines.
  • Another object is to provide a new and improved laser scanning system employing multiple off-center lasers and an irregular 6-sided scanning polygon, producing a non-uniform laser scanning raster pattern over a total sweep of approximately 180 degrees of polygon rotation (i.e. sweep), a covering a scanning region which includes (i) a center scanning region from about 60 to about 120 degrees with 9 scanning lines, (ii) two mid scanning regions from about 30 to about 60 degrees and from about 120 to about 150 degrees each having 6 scanning lines, and (iii) far left and right scanning regions from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having 3 scanning lines.
  • Another object is to provide a hybrid-type bi-optical bar code symbol reading system comprising: first and second laser scanning subsystems, wherein each laser scanning subsystem includes multiple off-center lasers, and an irregular multi-sided scanning polygon, in common with both laser scanning subsystems, and producing a non-uniform laser scanning raster pattern over a total sweep of approximately 180 degrees of polygon rotation (i.e. scanning region) and projecting through the vertical and horizontal scanning windows and into a 3D scanning volume; and a digital imaging module projecting a field of view (FOV) and field of illumination (FOI) out into the 3D scanning volume, to enable laser scanning and digital imaging of bar code symbols at a POS station, in a user-transparent manner.
  • Another object is to provide such a hybrid-type bi-optical bar code symbol reading system, wherein the scanning region includes (i) a center scanning field with a first plurality of scanning lines, (ii) two mid scanning fields with a second plurality of scanning lines, and (iii) far left and right scanning fields, each having a third plurality of scanning lines, to support high (full) density, mid (⅔) density, and low (⅓) density scanning over the 180 degrees scanning region, within a 3D scanning volume between the vertical and horizontal scanning windows;
  • Another object is to provide a hybrid-type bi-optical bar code symbol reading system that helps provide improvements in worker productivity and checkout speed and throughput.
  • These and other objects will become apparent hereinafter and in the Claims appended hereto.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order to more fully understand the Objects, the following Detailed Description of the Illustrative Embodiments should be read in conjunction with the accompanying figure Drawings in which:
  • FIG. 1A is a first perspective view of hybrid-type bi-optical bar code symbol reading system according to first illustrative embodiment of the present disclosure, adapted for use at a point of sale (POS) checkout station in a retail environment, and capable of supporting several different modes of operation including a hybrid laser scanning and digital imaging mode of operation, a laser scanning only mode of operation, and a digital imaging only mode of operation;
  • FIG. 1B a second perspective view of the hybrid-type bi-optical bar code symbol reading system of FIG. 1A, showing the field of view (FOV) and field of illumination (FOI) of the digital imaging subsystem directly projecting through the vertical scanning window in the vertical section of the system housing, and into the 3D laser scanning volume supported by the system;
  • FIG. 1C is a first cross-sectional side view of the hybrid-type bi-optical bar code symbol reading system of FIGS. 1A and 1B, showing the FOV of digital imaging module being projected through the vertical scanning window, into the 3D scanning volume of the system, as an operator naturally presents a difficult to read code symbol closely towards the vertical scanning window;
  • FIG. 1D is a second cross-sectional side view of the hybrid-type bi-optical bar code symbol reading system of FIGS. 1A and 1B, showing optical and electro-optical components of the digital imaging subsystem and the laser scanning subsystem containing within the system housing, and the FOV of the digital imaging system projecting through and spatially-overlapping with the field of view (FOV) of the laser scanning subsystem embedded within the vertical section of the system housing;
  • FIG. 2A is a perspective view of the digital imaging module (i.e. digital imaging subsystem) employed in the hybrid-type bi-optical bar code symbol reading system of FIGS. 1A through 1D, showing its area-type image detection array mounted on a PC board supporting drivers and control circuits, and surrounded by a pair of linear arrays of LEDs for directly projecting a field of visible illumination (FOI) spatially co-extensive with and spatially-overlapping the FOV of the digital imaging subsystem;
  • FIG. 2B is a side view of the digital imaging module shown in FIG. 2A, showing the field of visible illumination produced by its array of LEDs being spatially co-extensive with and spatially-overlapping the FOV of the digital imaging subsystem;
  • FIG. 2C is an exploded view of the digital imaging module shown in FIG. 2A;
  • FIG. 3 is a rear perspective view of the hybrid-type bi-optical bar code symbol reading system of FIGS. 1A and 1B, showing a portal with a cavity formed in the rear section of the system housing, for receipt of a digital imaging module for projecting the FOV and illumination field produced from the digital imaging module when it is installed within the portal;
  • FIG. 4 is a cross-sectional view of the hybrid-type bi-optical bar code symbol reading system of FIGS. 1A through 1E and 3, showing the digital imaging module installed through the portal and into the cavity formed in the rear portion of the system housing, with all of the electrical interfaces between the digital imaging module and system being established on completion of the module installation;
  • FIG. 5 is a block schematic representation of the hybrid scanning/imaging code symbol reading system of FIGS. 1A through 1D, wherein (i) a pair of laser scanning subsystems (i.e. stations) support omnidirectional laser scanning of bar code symbols on objects passing through the 3D scanning volume of the system, and (ii) a digital imaging module, supported within the system housing, supports digital imaging-based reading of bar code symbols presented within the FOV of the system;
  • FIG. 6 is a block schematic representation of the digital imaging module supported within the hybrid scanning/imaging code symbol reading system of FIGS. 1A through 1D;
  • FIG. 7 is a schematic representation of the 8-sided irregular scanning polygon deployed in the hybrid-type scanning/imaging system shown in FIGS. 1 through 6;
  • FIG. 8 is a schematic representation of an alternative embodiment of multi-sided irregular scanning polygon having six (6) sides (i.e. reflective surfaces) that can be deployed in the hybrid-type scanning/imaging system shown in FIGS. 1 through 6; and
  • FIG. 9 is a schematic representation of the laser scanning subsystems deployed in the hybrid-type system shown in FIGS. 1 through 5, illustrating the use of two (2) off-center lasers and a single, common irregular multi-sided (e.g. 8-sided) scanning polygon in each laser scanning subsystem so as to produce a laser scanning raster over a total sweep of approximately 180 degrees of polygon rotation (i.e. sweep) and covering a scanning region which includes (i) a center scanning region with a first plurality of scanning lines, (ii) two mid scanning regions with a second plurality of scanning lines, and (iii) far left and right scanning regions each having a third plurality of scanning lines, thereby supporting high (full) density, mid (⅔) density, and low (⅓) density scanning over the 180 degrees scanning region, for robust omni-directional scanning performance, in accordance with the principles of the present disclosure.
  • DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENT
  • Referring to the figures in the accompanying Drawings, the various illustrative embodiments of the apparatus and methodologies will be described in great detail, wherein like elements will be indicated using like reference numerals.
  • Overview of the Laser Scanning Assembly of the Present Disclosure
  • The present disclosure teaches a novel laser scanning assembly comprising an irregular polygon scanning element, and multiple off-axis lasers arranged to generate a laser scanning raster pattern having a highly non-uniform scanning density over its scanning region, illustrated in FIG. 9. While it is understood that this novel laser scanning assembly can be used in diverse types of laser scanning systems, including slot-type laser scanners, laser projection scanner, as well as bi-optical laser scanning systems, for purposes of illustration, the laser scanning assembly will be described as embodied within a hybrid laser-scanning/digital-imaging (i.e. scanning/imaging) based bar code symbol reading system 100 shown in FIGS. 1A through 1D.
  • Illustrative Embodiment of the Hybrid-Type Scanning/Imaging System
  • In FIGS. 1A and 1B, the hybrid laser-scanning/digital-imaging (i.e. scanning/imaging) bar code symbol reading system 100 supports three different modes of operation, namely: a laser scanning (only) mode of operation; a digital imaging mode of operation; and a hybrid scanning/imaging mode of operation. The hybrid scanning/imaging system 100, and its various modes of operation, will now be described below in great technical detail.
  • As shown in FIGS. 1A, 1B and 1C, the hybrid scanning/imaging code symbol reading system includes a system housing 2 having a vertical housing section 2A having a vertical optically transparent (glass) scanning window 3A, and a horizontal housing section 2B having a horizontal optically transparent (glass) scanning window 3B. As shown, the horizontal and vertical sections 2A and 2B are arranged in an orthogonal relationship with respect to each other such that the horizontal and vertical scanning windows are substantially perpendicular. First and second laser scanning stations 150A and 150B are mounted within the system housing, and provide a resultant laser scanning subsystem 150 for generating and projecting a complex group of laser scanning planes through laser scanning windows 3A and 3B where the laser scanning planes intersect and produce an omni-directional laser scanning pattern within a 3D scanning volume 80 defined between scanning windows 3A and 3B, as shown in FIGS. 1 and 1C, and other figures.
  • As shown in FIGS. 1A and 1B, an IR-based proximity detector 67 is mounted in the front portion of the housing for automatically detecting the presence of a human operator in front of the 3D scanning volume 80 region during system operation. The function of the IR-based proximity detector 67 is to wake up the system (i.e. WAKE UP MODE), and set a SLEEP Timer (T1) which counts how long the system has to read a bar code symbol (e.g. 15 minutes) before the system is automatically induced into its SLEEP MODE, where the polygon scanning element 394 and laser diodes 395A, 395B, 395C and 395D are deactivated to conserve electrical power within the system. Preferably, the IR-based proximity (i.e. wake-up) detector 67 is realized using (i) an IR photo-transmitter for generating a high-frequency amplitude modulated IR beam, and (ii) a IR photo-receiver for receiving reflections of the amplitude modulated IR beam, using a synchronous detection circuitry, well known in the art.
  • As shown in FIG. 1B, a digital camera mounting/installation portal 288 is formed in the upper housing section of the system housing, and has a geometry closely matching the geometry of the digital imaging module 210 so that the module slides and fits into the installation portal 288. As shown in FIGS. 5 and 6, the digital imaging module 210 has data and power/ control interfaces 295 and 296 which are adapted to engage and establish electrical connections with matching data and power/ control interfaces 287 and 286, respectively, mounted within the interior portion of the portal 288.
  • As shown in FIG. 1C, installation portal 288 is formed within the vertical section of the housing, and includes a peep-type aperture 289 allowing the FOV and field of illumination (FOI) to project therethrough, and then directly through the vertical scanning window 3A, and into 3D scanning volume 80. Preferably, the field of view (FOV) will extend at least several inches (e.g. 6 inches or more) into the 3D scanning volume 80, with a depth of focus before the vertical scanning window 3A.
  • As shown in FIG. 1C, a target illumination subsystem 231 within the digital imaging module 210 can be configured to generate a visible targeting beam 270 that is projected along the FOV within the 3D scanning volume. Also, the automatic object detection subsystem 220 within the digital imaging module 210 can be configured to project an IR-based detection beam 232 through the vertical scanning window 3A, to detect an object being presented to the vertical scanning window 3A, and thereupon, activating the digital imaging module 210 to capture and process digital images of the presented product, and any bar code symbols supported on the surface thereof.
  • Alternatively, the object detection subsystem 220 can be disabled and the digital imaging module operated in its enhanced continuous imaging presentation mode, where digital images of the FOV are continuously captured, buffered and processed at a rate 60 frames per second.
  • As shown in FIG. 1C, during the hybrid scanning/imaging mode of operation, the FOV of the digital imaging module spatially overlaps a portion of the 3D scanning volume 80 of the system. However, in alternative embodiments, the digital imaging FOV can completely spatially overlap the entire 3D scanning volume 80, or simply fill in a region of space between the vertical scanning window and the edge portion of the 3D scanning volume 80. This way, when the operator presents a bar coded product through the 3D scanning volume, towards the vertical scanning window, “sure-shot” bar code reading operation will be ensured even when reading the most-difficult-to-read bar code symbols.
  • In FIGS. 2A through 2C, the physical construction of an illustrative embodiment of the digital imaging module 210 is shown in great technical detail. As shown, the digital imaging module 210 comprises: a PC board 208, on which area-type image detection array (i.e. sensor) 235 (e.g. 5.0 megapixel 2D image sensor), LED arrays 223A and 223B, and image formation optics 234, are mounted, along with the circuitry specified in FIG. 6; a mounting framework 242 attached to the PC board 208 as shown; module housing 243 for containing the PC board 208 and mounting framework 242, and having a light transmission aperture 244 allowing the FOV of the image sensor 235 and the field of illumination (FOI) from LED arrays 223A, 223B project out of the module housing 243, and ultimately through the peep-hole aperture 289 formed in the installation portal 288, when the module 210 is installed therein, as shown in FIG. 4; and data and power/ control interfaces 287 and 286, respectively, mounted on PC board and extending through the module housing 243 so that matching interface connections can be established in the installation portal 288, when the module is installed therein.
  • As shown in the system diagram of FIG. 5, hybrid scanning/imaging system 100 generally comprises: laser scanning stations 150A and 150B for generating and projecting groups of laser scanning planes through the vertical and horizontal scanning windows 3A and 3B, respectively, and generating scan data streams from scanning objects in the 3D scanning volume 80; a scan data processing subsystem 20 for supporting automatic scan data processing based bar code symbol reading using the scan data streams generated from laser scanning stations 150A and 150B; an input/output subsystem 25 for interfacing with the image processing subsystem 20, the electronic weight scale 22, RFID reader 26, credit-card reader 27, Electronic Article Surveillance (EAS) Subsystem 28 (including a Sensormatic® EAS tag deactivation block 29 integrated in system, and an audible/visual information display subsystem (i.e. module) 310; a BlueTooth® RF 2-way communication interface 135 including RF transceivers and antennas 103A for connecting to Blue-tooth® enabled hand-held scanners, imagers, PDAs, portable computers 136 and the like, for control, management, application and diagnostic purposes; digital imaging module 210 specified in FIG. 6, and having data/power/control interface 294 provided on the exterior of the module housing, and interfacing and establishing electrical interconnections with data/power/control interface 285 when the digital imaging module 210 is installed in its installation portal 288 as shown in FIG. 1C; a control subsystem 37 for controlling (i.e. orchestrating and managing) the operation of the laser scanning stations (i.e. subsystems 150A, 150B), the functions of the digital imaging module 210, and other subsystems supported in the system; and IR-based wake-up detector 67, operably connected to the control subsystem 37, for generating and supplying a first trigger signal to the system controller in response to automatic detection of an operator in proximity (e.g. 1-2 feet) of the system housing.
  • In the illustrative embodiment disclosed herein, each laser scanning station 150A, 150B is constructed from a single, common “irregular” rotating polygon 394, having either 8-sides shown in FIG. 7 or 6-sides shown in FIG. 8, that is mounted at the junction between the vertical and horizontal housing sections 2A, 2B, and driven by a high-speed brushless DC motor, and associated drive and sensing circuitry, as shown in FIG. 1D. What makes the rotating polygon 394 irregular is the fact that interior angles between adjacent sides of the polygon element are not equal in size, and in fact, are substantially different so as to generate a raster scanning pattern having a highly non-uniform scan density, as illustrated in FIG. 9.
  • In the illustrative embodiment, laser scanning subsystem 150A comprises: a pair of visible laser diode sources (e.g. VLDs) 395A and 395B mounted off center to the central axis 399 of the system, for generating a first laser scanning raster pattern 410; light collection optics 396B and a pair of photodiodes 397A and 397B mounted so collect and detect incoming light rays produced by VLDs 395A and 395B, and generate corresponding analog electrical scan data signals for scan data and decode processing by scan data processing subsystem 20 shown in FIG. 5; and array of laser scanning pattern folding mirrors 398A installed in the horizontal housing sections, as shown in FIG. 1D, for folding the raster scanning pattern 410, and projecting a folded scanning pattern out the horizontal scanning window 3A and into the 3D scanning volume.
  • Also, laser scanning subsystem 150B comprises: a pair of visible laser diode sources (e.g. VLDs) 395C and 395D mounted off center to the central axis 399 of the system, for generating a second laser scanning raster pattern 420; light collection optics 396B and a pair of photodiodes 397C and 397D mounted so collect and detect incoming light rays produced by VLDs 395C and 395D, and generate corresponding analog electrical scan data signals for scan data and decode processing by scan data processing subsystem 20 shown in FIG. 5; and array of laser scanning pattern folding mirrors 398B installed in the horizontal housing sections, as shown in FIG. 1D, for folding the second raster scanning pattern 420 and projecting the folded scanning pattern through the vertical scanning window 3B, and out into the 3D scanning volume.
  • As illustrated in FIGS. 1D and 9, laser beams from VLDs 395A and 395B are positioned on a first side of the scanning polygon 394 in the first laser scanning subsystem 150A, and laser beams 395C and 395D are positioned on the opposing side of the scanning polygon 394, mounted at the junction of the vertical and horizontal housing sections 2A, 2B. With this bi-optical laser scanning arrangement, during each complete revolution of the scanning polygon 394, two completely separate laser scanning raster patterns (410, 420) with 180 degrees of scan coverage are simultaneously generated in the vertical and horizontal housing sections, respectively, and projected/folded off laser scanning pattern folding mirror arrays 398A and 398B, respectively, and out the vertical and horizontal scanning windows 3A and 3B, respectively, and into the 3D scanning volume 80.
  • As shown in FIG. 9, laser scanning subsystem 150A produces a laser scanning raster pattern 410 over a total sweep of approximately 180 degrees of polygon rotation (i.e. sweep) and covering a scanning region 430 which includes: (i) a center scanning region (i.e. field) 430A from about 60 to about 120 degrees with twelve (12) scanning lines; (ii) two mid scanning regions (i.e. field) 430B1 and 430B2 from about 30 to about 60 degrees and from about 120 to about 150 degrees, each having eight (8) scanning lines; and (iii) far left and right scanning regions (i.e. fields) 430C1 and 430C2 from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having four (4) scanning lines. The resulting laser scanning raster patterns generated the four off-center laser beams reflecting off the multi-side irregular polygon 394 while it is rotating, supports high (full) density, mid (⅔) density, and low (⅓) density scanning over the 180 degrees scanning region, for robust omni-directional scanning performance.
  • Similarly, as shown in FIG. 9, laser scanning subsystem 150B produces a laser scanning raster pattern 420 over a total sweep of approximately 180 degrees of polygon rotation (i.e. sweep) and covering a scanning region 430 which includes: (i) a center scanning region 430A′ from about 60 to about 120 degrees with twelve (12) scanning lines; (ii) two mid scanning regions 430B1 and 430B2′ from about 30 to about 60 degrees and from about 120 to about 150 degrees, each having eight (8) scanning lines; and (iii) far left and right scanning regions 430C1′ and 430C2′ from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having four (4) scanning lines. The resulting laser scanning raster patterns are folded by the scanning pattern folding mirror arrays 398A and 398B to project laser scanning planes through the vertical and horizontal scanning windows 3A and 3B, for intersection in the 3D scanning volume 80 to support high (full) density, mid (⅔) density, and low (⅓) density scanning over the 180 degrees scanning region, for robust omni-directional scanning performance.
  • Alternatively, the irregular 6-sided scanning polygon 394′ shown in FIG. 8 can be used instead of the 8-sided irregular scanning polygon shown in FIG. 7. In such an alternative embodiment, each laser scanning subsystem, 150A′, 150B′ will generate a laser scanning raster over a total sweep of approximately 180 degrees of polygon rotation (i.e. sweep), wherein the scanning region includes: (i) a center scanning region (i.e. field) from about 60 to about 120 degrees with 9 scanning lines; (ii) two mid scanning regions (i.e. fields) from about 30 to about 60 degrees and from about 120 to about 150 degrees each having 6 scanning lines; and (iii) far left and right scanning regions (i.e. fields) from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having 3 scanning lines.
  • In FIG. 5, the bar code symbol reading module employed along each channel of the scan data processing subsystem 20 can be realized using conventional bar code reading techniques, including bar code symbol stitching-based decoding techniques, well known in the art.
  • As shown in FIG. 6, the digital imaging module or subsystem 210 employed in the illustrative embodiment of the hybrid scanning/imaging system 100 is realized as a complete stand-alone digital imager, comprising a number of components, namely: an image formation and detection (i.e. camera) subsystem 221 having image formation (camera) optics 234 for producing a field of view (FOV) upon an object to be imaged and a CMOS or like area-type image detection array 235 for detecting imaged light reflected off the object during illumination operations in an image capture mode in which at least a plurality of rows of pixels on the image detection array are enabled; a LED-based illumination subsystem 222 employing an LED illumination array 232 for producing a field of narrow-band wide-area illumination 226 within the entire FOV 233 of the image formation and detection subsystem 221, which is reflected from the illuminated object and transmitted through a narrow-band transmission-type optical filter and detected by the image detection array 235, while all other components of ambient light are substantially rejected; an automatic light exposure measurement and illumination control subsystem 224 for controlling the operation of the LED-based illumination subsystem 222; an image capturing and buffering subsystem 225 for capturing and buffering 2-D images detected by the image formation and detection subsystem 221; a digital image processing subsystem 226 for processing 2D digital images captured and buffered by the image capturing and buffering subsystem 225 and reading 1D and/or 2D bar code symbols represented therein; an input/output subsystem 527 for outputting processed image data and the like to an external host system or other information receiving or responding device; a system memory 229 for storing data implementing a configuration table 229A of system configuration parameters (SCPs); data/power/control interface 294 including a data communication interface 295, a control interface 296, and an electrical power interface 297 operably connected to an on-board battery power supply and power distribution circuitry 293; a Bluetooth communication interface, interfaced with I/O subsystem 227; and a system control subsystem 230 integrated with the subsystems above, for controlling and/or coordinating these subsystems during system operation.
  • In addition, the hybrid system 100 also includes: an object targeting illumination subsystem 231 for generating a narrow-area targeting illumination beam 270 into the FOV, to help allow the user align bar code symbols within the active portion of the FOV where imaging occurs; and also an object detection subsystem 43 for automatically producing an object detection field within the FOV 233 of the image formation and detection subsystem 221, to detect the presence of an object within predetermined edge regions of the object detection field, and generate control signals that are supplied to the system control subsystem 230 to indicate when an object is detected within the object detection field of the system.
  • In order to implement the object targeting subsystem 231, a pair of visible LEDs can be arranged on opposite sides of the FOV optics 234, in the digital imaging module 210, so as to generate a linear visible targeting beam that is projected off a FOV folding and out the imaging window 203, as shown and described in detail in U.S. Publication No. U.S.20080314985 A1, incorporated herein by reference in its entirety. Also, the object motion detection subsystem 231 can be implemented using one or more pairs of IR LED and IR photodiodes, mounted within the system housing 2A, or within the digital imaging module 210, as disclosed in copending U.S. patent application Ser. No. 13/160,873 filed Jun. 15, 2011, incorporated herein by references, to automatically detect the presence of objects in the FOV of the system, and entering and leaving the 3D scanning volume 80.
  • The primary function of the image formation and detection subsystem 221 which includes image formation (camera) optics 234, is to provide a field of view (FOV) 233 upon an object to be imaged and a CMOS area-type image detection array 235 for detecting imaged light reflected off the object during illumination and image acquisition/capture operations.
  • The primary function of the LED-based illumination subsystem 222 is to produce a wide-area illumination field 36 from the LED array 223 when an object is automatically detected within the FOV. Notably, the field of illumination has a narrow optical-bandwidth and is spatially confined within the FOV of the image formation and detection subsystem 521 during modes of illumination and imaging. This arrangement is designed to ensure that only narrow-band illumination transmitted from the illumination subsystem 222, and reflected from the illuminated object, is ultimately transmitted through a narrow-band transmission-type optical filter subsystem 240 within the system and reaches the CMOS area-type image detection array 235 for detection and processing, whereas all other components of ambient light collected by the light collection optics are substantially rejected at the image detection array 535, thereby providing improved SNR, thus improving the performance of the system.
  • The narrow-band transmission-type optical filter subsystem 240 is realized by (i) a high-pass (i.e. red-wavelength reflecting) filter element embodied within at the imaging window 203, and (2) a low-pass filter element mounted either before the CMOS area-type image detection array 235 or anywhere after beyond the high-pass filter element, including being realized as a dichroic mirror film supported on at least one of the FOV folding mirrors employed in the module.
  • The automatic light exposure measurement and illumination control subsystem 224 performs two primary functions: (i) to measure, in real-time, the power density [joules/cm] of photonic energy (i.e. light) collected by the optics of the system at about its image detection array 235, and to generate auto-exposure control signals indicating the amount of exposure required for good image formation and detection; and (2) in combination with the illumination array selection control signal provided by the system control subsystem 230, to automatically drive and control the output power of the LED array 223 in the illumination subsystem 222, so that objects within the FOV of the system are optimally exposed to LED-based illumination and optimal images are formed and detected at the image detection array 235.
  • The primary function of the image capturing and buffering subsystem 225 is (i) to detect the entire 2-D image focused onto the 2D image detection array 235 by the image formation optics 234 of the system, (2) to generate a frame of digital pixel data for either a selected region of interest of the captured image frame, or for the entire detected image, and then (3) buffer each frame of image data as it is captured. Notably, in the illustrative embodiment, the system has both single-shot and video modes of imaging. In the single shot mode, a single 2D image frame (31) is captured during each image capture and processing cycle, or during a particular stage of a processing cycle. In the video mode of imaging, the system continuously captures frames of digital images of objects in the FOV. These modes are specified in further detail in U.S. Patent Publication No. 2008/0314985 A1, incorporated herein by reference in its entirety.
  • The primary function of the digital image processing subsystem 226 is to process digital images that have been captured and buffered by the image capturing and buffering subsystem 225, during modes of illumination and operation. Such image processing operations include image-based bar code decoding methods as described in U.S. Pat. No. 7,128,266, incorporated herein by reference.
  • The primary function of the input/output subsystem 227 is to support universal, standard and/or proprietary data communication interfaces with host system 9 and other external devices, and output processed image data and the like to host system 9 and/or devices, by way of such communication interfaces. Examples of such interfaces, and technology for implementing the same, are given in U.S. Pat. No. 6,619,549, incorporated herein by reference.
  • The primary function of the system control subsystem 230 is to provide some predetermined degree of control, coordination and/or management signaling services to each subsystem component integrated within the system, when operated in its digital imaging mode of operation shown in FIG. 1D. Also, in the illustrative embodiment, when digital imaging module 210 is installed in portal 288, and interfaced with data/power/control interface 285, system control subsystem 230 functions as a slave controller under the control of master control subsystem 37. While this subsystem can be implemented by a programmed microprocessor, in the preferred embodiments of the present disclosure, this subsystem is implemented by the three-tier software architecture supported on micro-computing platform, described in U.S. Pat. No. 7,128,266, incorporated herein by reference.
  • The primary function of the system configuration parameter (SCP) table 229A in system memory is to store (in non-volatile/persistent memory) a set of system configuration and control parameters (i.e. SCPs) for each of the available features and functionalities, and programmable modes of supported system operation, and which can be automatically read and used by the system control subsystem 230 as required during its complex operations. Notably, such SCPs can be dynamically managed as taught in great detail in co-pending U.S. Publication No. 2008/0314985 A1, incorporated herein by reference.
  • Illustrative Embodiment of the Control Process Supported within the Bi-Optical Hybrid Scanning/Imaging Code Symbol Reading System
  • While the bi-optical hybrid scanning/imaging code symbol reading system 100 has the capacity to support various types of control processes during its hybrid scanning/imaging mode of operation, the preferred mode of operation is where the digital imaging subsystem supports a continuous streaming-type presentation mode of operation upon the detection of the operator by IR-based detection subsystem 67.
  • In response to subsystem 67 detecting the presence of an operator at the POS station, the system controller 37 over-rides other controls and instructs (i.e. determines) that laser scanning subsystems 150A, 150B generate an omni-directional laser scanning field within the 3D scanning volume 80, while the digital imaging module 210 generates a field of illumination (FOI) consisting of 60 flashes per second with a 100 us long flash duration that is coextensive with the projected FOV so that the digital imaging subsystem continuously and transparently supports the digital image capture, buffering and processing at a least 60 frames per second (FPS), with less than 127 microsecond image sensor exposure time, and a re-read delay set to 100 milliseconds. By using 100 us long flash duration, the perceived illumination intensity is extremely low to the human vision system. Also, with a 100 mm internal optical throw, the digital imaging subsystem supports a 2″ depth of field (DOF) resolution of 4.0 mil symbologies at the vertical scanning window 3A.
  • In alternative embodiments, the digital imaging module 210 can be configured in alternative ways, such as, for example, to continuously support the digital image capture, buffering and processing at a least 60 frames per second (FPS), with 50 microsecond to 100 microsecond image sensor exposure times, or using alternative system configuration parameters (SCPs). With a 120 mm internal optical throw, the digital imaging subsystem supports a 1.5″ to 2″ DOF resolution of 4.0 mil symbologies at the vertical scanning window 3A, with a slightly increased WOF at the vertical scanning window 3A.
  • Modifications that Come to Mind
  • The above-described system and method embodiments have been provided as illustrative examples of how the laser scanning subsystems can be adapted to generate omni-directional laser scanning patterns having a substantially non-inform scanning densities over the scanning field of the system. This has been achieved using multi-sided irregular scanning polygons and multiple off-axis laser beams. It is understood, however, that variations and modifications to such laser scanning apparatus will readily occur to those skilled in the art having the benefit of the present disclosure. All such modifications and variations are deemed to be within the scope of the accompanying Claims.

Claims (20)

1. A laser scanning bar code symbol reading system comprising:
a system housing having a vertical housing section having a vertical scanning window and a horizontal housing section having a horizontal scanning window;
a laser scanning subsystem disposed in said system housing;
wherein said laser scanning subsystem employs multiple off-center lasers directed onto an irregular multi-sided scanning polygon rotating about an axis of rotation, and producing a non-uniform laser scanning raster pattern over a total sweep of approximately 180 degrees of polygon rotation, and covering a scanning region including a center scanning region with a first plurality of scanning lines, two mid scanning regions with a second plurality of scanning lines, and far left and right scanning regions each having a third plurality of scanning lines, to support high density, mid density, and low density scanning over said 180 degrees scanning region;
wherein said multi-sided scanning polygon has multiple scanning surfaces and multiple interior angles, wherein said interior angles between said multiple scanning surfaces are not all equal; and
a plurality of scanning pattern folding mirrors, for folding said non-uniform laser scanning raster pattern and generating and projecting a plurality of laser scanning planes through said vertical and horizontal scanning windows, which intersect within a 3D scanning volume defined between said vertical and horizontal scanning windows and provide an omni-directional laser scanning pattern within said 3D scanning volume, for scanning one or more objects within said 3D scanning volume and producing scan data for decode processing.
2. The laser scanning bar code symbol reading system of claim 1, which further comprises a scan data processor for processing said scan data produced by said laser scanning subsystem in effort to read a bar code symbol on each object passed through said 3D scanning volume, and generating symbol character data for each read bar code symbol.
3. The laser scanning bar code symbol reading system of claim 1, wherein said irregular multi-sided scanning polygon comprises an 8-sided irregular scanning polygon, producing a non-uniform laser scanning raster pattern over a total sweep of approximately 180 degrees of polygon rotation, and covering a scanning region which includes (i) a center scanning region from about 60 to about 120 degrees with twelve (12) scanning lines, (ii) two mid scanning regions from about 30 to about 60 degrees and from about 120 to about 150 degrees each having eight (8) scanning lines, and (iii) far left and right scanning regions from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having four (4) scanning lines.
4. The laser scanning bar code symbol reading system of claim 1, wherein said irregular multi-sided scanning polygon comprises an 6-sided irregular scanning polygon, producing a non-uniform laser scanning raster pattern over a total sweep of approximately 180 degrees of polygon rotation, and covering a scanning region which includes (i) a center scanning region from about 60 to about 120 degrees with 9 scanning lines, (ii) two mid scanning regions from about 30 to about 60 degrees and from about 120 to about 150 degrees each having 6 scanning lines, and (iii) far left and right scanning regions from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having 3 scanning lines.
5. The laser scanning bar code symbol reading system of claim 1, wherein each said scanning surface on said multi-sided irregular scanning polygon is a planar reflective surface.
6. A bi-optical laser scanning system comprising:
a system housing including a vertical housing section having a vertical scanning window, and a horizontal housing section having a horizontal scanning window, wherein said vertical housing section and said horizontal housing section are disposed in a substantially orthogonal relationship;
a first laser scanning subsystem installed in said vertical housing section, and a second laser scanning subsystem installed in said horizontal housing section;
a first laser scanning pattern folding mirror array mounted in said vertical housing section, and a second laser scanning pattern folding mirror array mounted in said horizontal housing section;
a multi-sided irregular scanning polygon mounted between said first and second housing sections, and rotating about an axis of rotation;
wherein said multi-sided irregular scanning polygon has multiple scanning surfaces and multiple interior angles, wherein said interior angles between said multiple scanning surfaces are not all equal; and
wherein said first laser scanning subsystem includes at least one source for producing a first set of multiple laser beams that are directed off axis to strike said single multi-sided irregular scanning polygon rotating about said axis of rotation, and generate a first non-uniform laser scanning raster pattern in said vertical housing section;
wherein said second laser scanning subsystem includes at least one source for producing a second set of multiple laser beams that are directed off axis to strike said single irregular multi-sided scanning polygon rotating about said axis of rotation, and generate a second non-uniform laser scanning raster pattern in said horizontal housing section;
wherein said first non-uniform laser scanning raster pattern are folded in said vertical housing sections by said first laser scanning pattern folding mirror array, and projected as a first group of laser scanning planes through said vertical scanning window;
wherein said second non-uniform laser scanning raster pattern are folded in said horizontal housing sections by said second laser scanning pattern folding mirror array, and projected as a second laser scanning planes through said horizontal scanning window; and
wherein said first and second groups of laser scanning planes intersect within a 3D scanning volume disposed within said vertical and horizontal scanning windows, to generate an omni-directional laser scanning pattern for supporting robust omni-directional scanning performance.
7. The bi-optical laser scanning system of claim 6, wherein said first set of multiple laser beams are positioned on a first side of said multi-sided irregular scanning polygon, and said second laser beams are positioned on the opposing side of said multi-sided irregular scanning polygon, so that with each revolution of said multi-sided irregular scanning polygon, (i) said first non-uniform laser scanning raster pattern with 180 degrees of scan coverage is generated in said vertical housing section, and projected off said first laser scanning pattern folding mirror array and out of said vertical scanning window, and into said 3D scanning volume; and (ii) said second non-uniform laser scanning raster pattern with 180 degrees of scan coverage is generated in said horizontal housing section, and projected off said second laser scanning pattern folding mirror array and out of said horizontal scanning window, and into said 3D scanning volume.
8. The bi-optical laser scanning system of claim 6, wherein said first set of multiple laser beams comprises first and second laser beams and said multi-sided irregular scanning polygon is an 8-sided irregular scanning polygon, producing said first non-uniform laser scanning raster pattern over approximately 180 degrees of polygon rotation, and covering a first scanning region which includes (i) a center scanning region from about 60 to about 120 degrees with twelve (12) scanning lines, (ii) two mid scanning regions from about 30 to about 60 degrees and from about 120 to about 150 degrees each having eight (8) scanning lines, and (iii) far left and right scanning regions from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having four (4) scanning lines; and said wherein said second set of multiple laser beams comprises third and fourth laser beams, producing said second non-uniform laser scanning raster pattern over approximately 180 degrees of polygon rotation, and covering a second scanning region which includes (i) a center scanning region from about 60 to about 120 degrees with twelve (12) scanning lines, (ii) two mid scanning regions from about 30 to about 60 degrees and from about 120 to about 150 degrees each having eight (8) scanning lines, and (iii) far left and right scanning regions from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having four (4) scanning lines.
9. The bi-optical laser scanning system of claim 6, wherein said first set of multiple laser beams comprises first and second laser beams and said multi-sided irregular scanning polygon is an 6-sided irregular scanning polygon, producing said first non-uniform laser scanning raster pattern over a total sweep of approximately 180 degrees of polygon rotation, a covering a first scanning region which includes (i) a center scanning region from about 60 to about 120 degrees with 9 scanning lines, (ii) two mid scanning regions from about 30 to about 60 degrees and from about 120 to about 150 degrees each having 6 scanning lines, and (iii) far left and right scanning regions from about 0 to about 30 degrees and from about 150 to about 180 degrees, each having 3 scanning lines; and said wherein said second set of multiple laser beams comprises third and fourth laser beams, producing said first non-uniform laser scanning raster pattern over a total sweep of approximately 180 degrees of polygon rotation, a covering a second scanning region which includes (i) a center scanning region from about 60 to about 120 degrees with 9 scanning lines, (ii) two mid scanning regions from about 30 to about 60 degrees and from about 120 to about 150 degrees each having 6 scanning lines.
10. The bi-optical laser scanning system of claim 6, wherein each said scanning surface on said multi-sided irregular scanning polygon is a planar reflective surface.
11. The bi-optical bar code symbol reading system of claim 6, which further comprises: a digital imaging module projecting a field of view (FOV) and field of illumination (FOI) out into said 3D scanning volume, to enable laser scanning and digital imaging of bar code symbols at a POS station, in a user-transparent manner.
12. A symbol reading system, comprising:
a system housing comprising a vertical housing section having a vertical scanning window and a horizontal housing section having a horizontal scanning window;
a laser scanning subsystem within the system housing, comprising:
an irregular, scanning polygon having an axis of rotation, multiple scanning surfaces, and multiple interior angles, wherein the interior angles between the multiple scanning surfaces are not all equal;
a laser source producing a first set of multiple laser beams directed onto the irregular, scanning polygon; and
wherein the laser scanning subsystem produces a first non-uniform raster pattern over a sweep encompassing an angular range of approximately 180 degrees about the polygon, the first non-uniform raster pattern covering a scanning region such that the scanning region's center has a first plurality of scanning lines, each of the scanning region's two mid sections has a second plurality of scanning lines, and each of the scanning region's left and right sections has a third plurality of scanning lines.
13. The symbol reading system of claim 12, wherein:
the first plurality is greater in number than the second plurality; and
the second plurality is greater in number than the third plurality.
14. The symbol reading system of claim 12, comprising a digital imaging module.
15. The symbol reading system of claim 12, wherein each of the irregular, scanning polygon's scanning surfaces is a planar reflective surface.
16. The symbol reading system of claim 12, wherein the irregular, scanning polygon is an eight-sided polygon.
17. The symbol reading system of claim 12, wherein:
the first plurality is three times greater in number than the third plurality; and
the second plurality is two times greater in number than the third plurality.
18. The symbol reading system of claim 12, wherein:
the first plurality of scanning lines is twelve scanning lines;
the second plurality of scanning lines is eight scanning lines; and
the third plurality of scanning lines is four scanning lines.
19. The symbol reading system of claim 12, wherein the laser scanning subsystem produces a second set of multiple laser beams directed onto the irregular, scanning polygon.
20. The symbol reading system of claim 12, wherein the laser scanning subsystem produces:
a second set of multiple laser beams directed onto the irregular, scanning polygon; and
a second non-uniform raster pattern.
US13/347,219 2012-01-10 2012-01-10 Omnidirectional laser scanning bar code symbol reader generating a laser scanning pattern with a highly non-uniform scan density with respect to line orientation Active US8523076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/347,219 US8523076B2 (en) 2012-01-10 2012-01-10 Omnidirectional laser scanning bar code symbol reader generating a laser scanning pattern with a highly non-uniform scan density with respect to line orientation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/347,219 US8523076B2 (en) 2012-01-10 2012-01-10 Omnidirectional laser scanning bar code symbol reader generating a laser scanning pattern with a highly non-uniform scan density with respect to line orientation

Publications (2)

Publication Number Publication Date
US20130175343A1 true US20130175343A1 (en) 2013-07-11
US8523076B2 US8523076B2 (en) 2013-09-03

Family

ID=48743227

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/347,219 Active US8523076B2 (en) 2012-01-10 2012-01-10 Omnidirectional laser scanning bar code symbol reader generating a laser scanning pattern with a highly non-uniform scan density with respect to line orientation

Country Status (1)

Country Link
US (1) US8523076B2 (en)

Cited By (359)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130068840A1 (en) * 2011-09-20 2013-03-21 Metrologic Instruments, Inc. Method of and apparatus for multiplying raster scanning lines by modulating a multi-cavity laser diode
US8985461B2 (en) 2013-06-28 2015-03-24 Hand Held Products, Inc. Mobile device having an improved user interface for reading code symbols
US9007368B2 (en) 2012-05-07 2015-04-14 Intermec Ip Corp. Dimensioning system calibration systems and methods
EP2871781A2 (en) 2013-11-08 2015-05-13 Hand Held Products, Inc. System for configuring indicia readers using NFC technology
EP2871618A1 (en) 2013-11-08 2015-05-13 Hand Held Products, Inc. Self-checkout shopping system
US9037344B2 (en) 2013-05-24 2015-05-19 Hand Held Products, Inc. System and method for display of information using a vehicle-mount computer
EP2876774A1 (en) 2013-11-25 2015-05-27 Hand Held Products, Inc. Indicia-reading system
US9053378B1 (en) 2013-12-12 2015-06-09 Hand Held Products, Inc. Laser barcode scanner
EP2884421A1 (en) 2013-12-10 2015-06-17 Hand Held Products, Inc. High dynamic-range indicia reading system
US9070032B2 (en) 2013-04-10 2015-06-30 Hand Held Products, Inc. Method of programming a symbol reading system
US9080856B2 (en) 2013-03-13 2015-07-14 Intermec Ip Corp. Systems and methods for enhancing dimensioning, for example volume dimensioning
US9082023B2 (en) 2013-09-05 2015-07-14 Hand Held Products, Inc. Method for operating a laser scanner
US9104929B2 (en) 2013-06-26 2015-08-11 Hand Held Products, Inc. Code symbol reading system having adaptive autofocus
EP2916259A1 (en) 2014-03-07 2015-09-09 Hand Held Products, Inc. Indicia reader for size-limited applications
US9141839B2 (en) 2013-06-07 2015-09-22 Hand Held Products, Inc. System and method for reading code symbols at long range using source power control
EP2927840A1 (en) 2014-04-04 2015-10-07 Hand Held Products, Inc. Multifunction point of sale system
EP2927839A1 (en) 2014-04-01 2015-10-07 Hand Held Products, Inc. Hand-mounted indicia-reading device with finger motion triggering
US9165174B2 (en) 2013-10-14 2015-10-20 Hand Held Products, Inc. Indicia reader
EP2940505A1 (en) 2014-04-29 2015-11-04 Hand Held Products, Inc. Autofocus lens system for indicia readers
US9183426B2 (en) 2013-09-11 2015-11-10 Hand Held Products, Inc. Handheld indicia reader having locking endcap
EP2945095A1 (en) 2014-05-13 2015-11-18 Hand Held Products, Inc. Indicia-reader housing with an integrated optical structure
US20150373322A1 (en) * 2014-06-20 2015-12-24 Qualcomm Incorporated Automatic multiple depth cameras synchronization using time sharing
US9239950B2 (en) 2013-07-01 2016-01-19 Hand Held Products, Inc. Dimensioning system
US9250652B2 (en) 2013-07-02 2016-02-02 Hand Held Products, Inc. Electronic device case
US9251411B2 (en) 2013-09-24 2016-02-02 Hand Held Products, Inc. Augmented-reality signature capture
US9258033B2 (en) 2014-04-21 2016-02-09 Hand Held Products, Inc. Docking system and method using near field communication
EP2988209A1 (en) 2014-08-19 2016-02-24 Hand Held Products, Inc. Mobile computing device with data cognition software
US9277668B2 (en) 2014-05-13 2016-03-01 Hand Held Products, Inc. Indicia-reading module with an integrated flexible circuit
EP2990911A1 (en) 2014-08-29 2016-03-02 Hand Held Products, Inc. Gesture-controlled computer system
US9301427B2 (en) 2014-05-13 2016-03-29 Hand Held Products, Inc. Heat-dissipation structure for an indicia reading module
US9297900B2 (en) 2013-07-25 2016-03-29 Hand Held Products, Inc. Code symbol reading system having adjustable object detection
EP3001368A1 (en) 2014-09-26 2016-03-30 Honeywell International Inc. System and method for workflow management
US9310609B2 (en) 2014-07-25 2016-04-12 Hand Held Products, Inc. Axially reinforced flexible scan element
EP3007096A1 (en) 2014-10-10 2016-04-13 Hand Held Products, Inc. Depth sensor based auto-focus system for an indicia scanner
EP3006893A1 (en) 2014-10-10 2016-04-13 Hand Held Products, Inc. Methods for improving the accuracy of dimensioning-system measurements
EP3009968A1 (en) 2014-10-15 2016-04-20 Vocollect, Inc. Systems and methods for worker resource management
EP3012579A1 (en) 2014-10-21 2016-04-27 Hand Held Products, Inc. System and method for dimensioning
EP3012601A1 (en) 2014-10-21 2016-04-27 Hand Held Products, Inc. Handheld dimensioning system with measurement-conformance feedback
EP3016023A1 (en) 2014-10-31 2016-05-04 Honeywell International Inc. Scanner with illumination system
EP3016046A1 (en) 2014-11-03 2016-05-04 Hand Held Products, Inc. Directing an inspector through an inspection
EP3018557A1 (en) 2014-11-05 2016-05-11 Hand Held Products, Inc. Barcode scanning system using wearable device with embedded camera
USD757009S1 (en) * 2014-06-24 2016-05-24 Hand Held Products, Inc. In-counter barcode scanner
EP3023979A1 (en) 2014-10-29 2016-05-25 Hand Held Products, Inc. Method and system for recognizing speech using wildcards in an expected response
EP3023980A1 (en) 2014-11-07 2016-05-25 Hand Held Products, Inc. Concatenated expected responses for speech recognition
US9373018B2 (en) 2014-01-08 2016-06-21 Hand Held Products, Inc. Indicia-reader having unitary-construction
EP3035151A1 (en) 2014-12-18 2016-06-22 Hand Held Products, Inc. Wearable sled system for a mobile computer device
EP3035074A1 (en) 2014-12-18 2016-06-22 Hand Held Products, Inc. Collision-avoidance system and method
EP3037924A1 (en) 2014-12-22 2016-06-29 Hand Held Products, Inc. Augmented display and glove with markers as us user input device
EP3038068A2 (en) 2014-12-22 2016-06-29 Hand Held Products, Inc. Barcode-based safety system and method
EP3038029A1 (en) 2014-12-26 2016-06-29 Hand Held Products, Inc. Product and location management via voice recognition
EP3038030A1 (en) 2014-12-28 2016-06-29 Hand Held Products, Inc. Dynamic check digit utilization via electronic tag
EP3037951A1 (en) 2014-12-22 2016-06-29 Hand Held Products, Inc. Delayed trim of managed nand flash memory in computing devices
EP3038009A1 (en) 2014-12-23 2016-06-29 Hand Held Products, Inc. Method of barcode templating for enhanced decoding performance
EP3038010A1 (en) 2014-12-23 2016-06-29 Hand Held Products, Inc. Mini-barcode reading module with flash memory management
EP3037912A1 (en) 2014-12-23 2016-06-29 Hand Held Products, Inc. Tablet computer with interface channels
EP3040906A1 (en) 2014-12-30 2016-07-06 Hand Held Products, Inc. Visual feedback for code readers
EP3040908A1 (en) 2014-12-30 2016-07-06 Hand Held Products, Inc. Real-time adjustable window feature for barcode scanning and process of scanning barcode with adjustable window feature
EP3040954A1 (en) 2014-12-30 2016-07-06 Hand Held Products, Inc. Point of sale (pos) code sensing apparatus
EP3040903A1 (en) 2014-12-30 2016-07-06 Hand Held Products, Inc. System and method for detecting barcode printing errors
EP3040921A1 (en) 2014-12-29 2016-07-06 Hand Held Products, Inc. Confirming product location using a subset of a product identifier
EP3040907A2 (en) 2014-12-27 2016-07-06 Hand Held Products, Inc. Acceleration-based motion tolerance and predictive coding
US9390596B1 (en) 2015-02-23 2016-07-12 Hand Held Products, Inc. Device, system, and method for determining the status of checkout lanes
EP3043235A2 (en) 2014-12-31 2016-07-13 Hand Held Products, Inc. Reconfigurable sled for a mobile device
EP3043300A1 (en) 2015-01-09 2016-07-13 Honeywell International Inc. Restocking workflow prioritization
EP3043443A1 (en) 2015-01-08 2016-07-13 Hand Held Products, Inc. Charge limit selection for variable power supply configuration
EP3045953A1 (en) 2014-12-30 2016-07-20 Hand Held Products, Inc. Augmented reality vision barcode scanning system and method
EP3046032A2 (en) 2014-12-28 2016-07-20 Hand Held Products, Inc. Remote monitoring of vehicle diagnostic information
EP3057092A1 (en) 2015-02-11 2016-08-17 Hand Held Products, Inc. Methods for training a speech recognition system
US9424454B2 (en) 2012-10-24 2016-08-23 Honeywell International, Inc. Chip on board based highly integrated imager
USD766244S1 (en) * 2013-07-03 2016-09-13 Hand Held Products, Inc. Scanner
US9443123B2 (en) 2014-07-18 2016-09-13 Hand Held Products, Inc. System and method for indicia verification
US9443222B2 (en) 2014-10-14 2016-09-13 Hand Held Products, Inc. Identifying inventory items in a storage facility
EP3070587A1 (en) 2015-03-20 2016-09-21 Hand Held Products, Inc. Method and apparatus for scanning a barcode with a smart device while displaying an application on the smart device
EP3076330A1 (en) 2015-03-31 2016-10-05 Hand Held Products, Inc. Aimer for barcode scanning
US9464885B2 (en) 2013-08-30 2016-10-11 Hand Held Products, Inc. System and method for package dimensioning
US9478113B2 (en) 2014-06-27 2016-10-25 Hand Held Products, Inc. Cordless indicia reader with a multifunction coil for wireless charging and EAS deactivation
EP3086281A1 (en) 2015-04-21 2016-10-26 Hand Held Products, Inc. Systems and methods for imaging
EP3086259A1 (en) 2015-04-21 2016-10-26 Hand Held Products, Inc. Capturing a graphic information presentation
US9490540B1 (en) 2015-09-02 2016-11-08 Hand Held Products, Inc. Patch antenna
US9488986B1 (en) 2015-07-31 2016-11-08 Hand Held Products, Inc. System and method for tracking an item on a pallet in a warehouse
EP3096293A1 (en) 2015-05-19 2016-11-23 Hand Held Products, Inc. Methods for improving the accuracy of dimensioning-system measurements
US9507974B1 (en) 2015-06-10 2016-11-29 Hand Held Products, Inc. Indicia-reading systems having an interface with a user's nervous system
EP3118573A1 (en) 2015-07-16 2017-01-18 Hand Held Products, Inc. Dimensioning and imaging items
EP3118576A1 (en) 2015-07-15 2017-01-18 Hand Held Products, Inc. Mobile dimensioning device with dynamic accuracy compatible with nist standard
US9557166B2 (en) 2014-10-21 2017-01-31 Hand Held Products, Inc. Dimensioning system with multipath interference mitigation
EP3131196A1 (en) 2015-08-12 2017-02-15 Hand Held Products, Inc. Faceted actuator shaft with rotation prevention
US9572901B2 (en) 2013-09-06 2017-02-21 Hand Held Products, Inc. Device having light source to reduce surface pathogens
EP3136219A1 (en) 2015-08-27 2017-03-01 Hand Held Products, Inc. Interactive display
EP3147151A1 (en) 2015-09-25 2017-03-29 Hand Held Products, Inc. A system and process for displaying information from a mobile computer in a vehicle
EP3151553A1 (en) 2015-09-30 2017-04-05 Hand Held Products, Inc. A self-calibrating projection apparatus and process
EP3159770A1 (en) 2015-10-19 2017-04-26 Hand Held Products, Inc. Quick release dock system and method
US9646189B2 (en) 2014-10-31 2017-05-09 Honeywell International, Inc. Scanner with illumination system
US9646191B2 (en) 2015-09-23 2017-05-09 Intermec Technologies Corporation Evaluating images
EP3165939A1 (en) 2015-10-29 2017-05-10 Hand Held Products, Inc. Dynamically created and updated indoor positioning map
US9652648B2 (en) 2015-09-11 2017-05-16 Hand Held Products, Inc. Positioning an object with respect to a target location
US9656487B2 (en) 2015-10-13 2017-05-23 Intermec Technologies Corporation Magnetic media holder for printer
US9659198B2 (en) 2015-09-10 2017-05-23 Hand Held Products, Inc. System and method of determining if a surface is printed or a mobile device screen
US9662900B1 (en) 2016-07-14 2017-05-30 Datamax-O'neil Corporation Wireless thermal printhead system and method
EP3173980A1 (en) 2015-11-24 2017-05-31 Intermec Technologies Corporation Automatic print speed control for indicia printer
US9672398B2 (en) 2013-08-26 2017-06-06 Intermec Ip Corporation Aiming imagers
US9674430B1 (en) 2016-03-09 2017-06-06 Hand Held Products, Inc. Imaging device for producing high resolution images using subpixel shifts and method of using same
US9679178B2 (en) 2014-12-26 2017-06-13 Hand Held Products, Inc. Scanning improvements for saturated signals using automatic and fixed gain control methods
US9680282B2 (en) 2015-11-17 2017-06-13 Hand Held Products, Inc. Laser aiming for mobile devices
US9678536B2 (en) 2014-12-18 2017-06-13 Hand Held Products, Inc. Flip-open wearable computer
US9685049B2 (en) 2014-12-30 2017-06-20 Hand Held Products, Inc. Method and system for improving barcode scanner performance
US9684809B2 (en) 2015-10-29 2017-06-20 Hand Held Products, Inc. Scanner assembly with removable shock mount
US9682625B2 (en) 2013-05-24 2017-06-20 Hand Held Products, Inc. System and method for display of information using a vehicle-mount computer
US9697401B2 (en) 2015-11-24 2017-07-04 Hand Held Products, Inc. Add-on device with configurable optics for an image scanner for scanning barcodes
US9701140B1 (en) 2016-09-20 2017-07-11 Datamax-O'neil Corporation Method and system to calculate line feed error in labels on a printer
USD792407S1 (en) 2015-06-02 2017-07-18 Hand Held Products, Inc. Mobile computer housing
EP3193188A1 (en) 2016-01-12 2017-07-19 Hand Held Products, Inc. Programmable reference beacons
EP3193146A1 (en) 2016-01-14 2017-07-19 Hand Held Products, Inc. Multi-spectral imaging using longitudinal chromatic aberrations
US9721132B2 (en) 2014-12-31 2017-08-01 Hand Held Products, Inc. Reconfigurable sled for a mobile device
EP3200120A1 (en) 2016-01-26 2017-08-02 Hand Held Products, Inc. Enhanced matrix symbol error correction method
US9727841B1 (en) 2016-05-20 2017-08-08 Vocollect, Inc. Systems and methods for reducing picking operation errors
US9729744B2 (en) 2015-12-21 2017-08-08 Hand Held Products, Inc. System and method of border detection on a document and for producing an image of the document
US9727769B2 (en) 2014-12-22 2017-08-08 Hand Held Products, Inc. Conformable hand mount for a mobile scanner
US9727840B2 (en) 2016-01-04 2017-08-08 Hand Held Products, Inc. Package physical characteristic identification system and method in supply chain management
US9734639B2 (en) 2014-12-31 2017-08-15 Hand Held Products, Inc. System and method for monitoring an industrial vehicle
US9752864B2 (en) 2014-10-21 2017-09-05 Hand Held Products, Inc. Handheld dimensioning system with feedback
US9761096B2 (en) 2014-12-18 2017-09-12 Hand Held Products, Inc. Active emergency exit systems for buildings
US9767581B2 (en) 2014-12-12 2017-09-19 Hand Held Products, Inc. Auto-contrast viewfinder for an indicia reader
US9767337B2 (en) 2015-09-30 2017-09-19 Hand Held Products, Inc. Indicia reader safety
EP3220369A1 (en) 2016-09-29 2017-09-20 Hand Held Products, Inc. Monitoring user biometric parameters with nanotechnology in personal locator beacon
US9774940B2 (en) 2014-12-27 2017-09-26 Hand Held Products, Inc. Power configurable headband system and method
US9773142B2 (en) 2013-07-22 2017-09-26 Hand Held Products, Inc. System and method for selectively reading code symbols
US9781502B2 (en) 2015-09-09 2017-10-03 Hand Held Products, Inc. Process and system for sending headset control information from a mobile device to a wireless headset
US9779546B2 (en) 2012-05-04 2017-10-03 Intermec Ip Corp. Volume dimensioning systems and methods
US9781681B2 (en) 2015-08-26 2017-10-03 Hand Held Products, Inc. Fleet power management through information storage sharing
US9785814B1 (en) 2016-09-23 2017-10-10 Hand Held Products, Inc. Three dimensional aimer for barcode scanning
US9794392B2 (en) 2014-07-10 2017-10-17 Hand Held Products, Inc. Mobile-phone adapter for electronic transactions
EP3232367A1 (en) 2016-04-15 2017-10-18 Hand Held Products, Inc. Imaging barcode reader with color separated aimer and illuminator
US9805343B2 (en) 2016-01-05 2017-10-31 Intermec Technologies Corporation System and method for guided printer servicing
US9805237B2 (en) 2015-09-18 2017-10-31 Hand Held Products, Inc. Cancelling noise caused by the flicker of ambient lights
US9802427B1 (en) 2017-01-18 2017-10-31 Datamax-O'neil Corporation Printers and methods for detecting print media thickness therein
US9805257B1 (en) 2016-09-07 2017-10-31 Datamax-O'neil Corporation Printer method and apparatus
EP3239891A1 (en) 2016-04-14 2017-11-01 Hand Held Products, Inc. Customizable aimer system for indicia reading terminal
EP3239892A1 (en) 2016-04-26 2017-11-01 Hand Held Products, Inc. Indicia reading device and methods for decoding decodable indicia employing stereoscopic imaging
US9811650B2 (en) 2014-12-31 2017-11-07 Hand Held Products, Inc. User authentication system and method
US9823059B2 (en) 2014-08-06 2017-11-21 Hand Held Products, Inc. Dimensioning system with guided alignment
US9827796B1 (en) 2017-01-03 2017-11-28 Datamax-O'neil Corporation Automatic thermal printhead cleaning system
US9835486B2 (en) 2015-07-07 2017-12-05 Hand Held Products, Inc. Mobile dimensioner apparatus for use in commerce
EP3252703A1 (en) 2016-06-03 2017-12-06 Hand Held Products, Inc. Wearable metrological apparatus
US9844158B2 (en) 2015-12-18 2017-12-12 Honeywell International, Inc. Battery cover locking mechanism of a mobile terminal and method of manufacturing the same
US9843660B2 (en) 2014-12-29 2017-12-12 Hand Held Products, Inc. Tag mounted distributed headset with electronics module
US9841311B2 (en) 2012-10-16 2017-12-12 Hand Held Products, Inc. Dimensioning system
EP3255376A1 (en) 2016-06-10 2017-12-13 Hand Held Products, Inc. Scene change detection in a dimensioner
US9844956B2 (en) 2015-10-07 2017-12-19 Intermec Technologies Corporation Print position correction
EP3258210A1 (en) 2016-06-15 2017-12-20 Hand Held Products, Inc. Automatic mode switching in a volume dimensioner
US9852102B2 (en) 2015-04-15 2017-12-26 Hand Held Products, Inc. System for exchanging information between wireless peripherals and back-end systems via a peripheral hub
US9849691B1 (en) 2017-01-26 2017-12-26 Datamax-O'neil Corporation Detecting printing ribbon orientation
US9857167B2 (en) 2015-06-23 2018-01-02 Hand Held Products, Inc. Dual-projector three-dimensional scanner
US9864887B1 (en) 2016-07-07 2018-01-09 Hand Held Products, Inc. Energizing scanners
US9861182B2 (en) 2015-02-05 2018-01-09 Hand Held Products, Inc. Device for supporting an electronic tool on a user's hand
US9876923B2 (en) 2015-10-27 2018-01-23 Intermec Technologies Corporation Media width sensing
US9876957B2 (en) 2016-06-21 2018-01-23 Hand Held Products, Inc. Dual mode image sensor and method of using same
US9881194B1 (en) 2016-09-19 2018-01-30 Hand Held Products, Inc. Dot peen mark image acquisition
US9879823B2 (en) 2014-12-31 2018-01-30 Hand Held Products, Inc. Reclosable strap assembly
US9892876B2 (en) 2015-06-16 2018-02-13 Hand Held Products, Inc. Tactile switch for a mobile electronic device
US9892356B1 (en) 2016-10-27 2018-02-13 Hand Held Products, Inc. Backlit display detection and radio signature recognition
US9891612B2 (en) 2015-05-05 2018-02-13 Hand Held Products, Inc. Intermediate linear positioning
US9902175B1 (en) 2016-08-02 2018-02-27 Datamax-O'neil Corporation Thermal printer having real-time force feedback on printhead pressure and method of using same
US9908351B1 (en) 2017-02-27 2018-03-06 Datamax-O'neil Corporation Segmented enclosure
US9911023B2 (en) 2015-08-17 2018-03-06 Hand Held Products, Inc. Indicia reader having a filtered multifunction image sensor
US9924006B2 (en) 2014-10-31 2018-03-20 Hand Held Products, Inc. Adaptable interface for a mobile computing device
US9919547B2 (en) 2016-08-04 2018-03-20 Datamax-O'neil Corporation System and method for active printing consistency control and damage protection
US9930050B2 (en) 2015-04-01 2018-03-27 Hand Held Products, Inc. Device management proxy for secure devices
US9930142B2 (en) 2013-05-24 2018-03-27 Hand Held Products, Inc. System for providing a continuous communication link with a symbol reading device
US9931867B1 (en) 2016-09-23 2018-04-03 Datamax-O'neil Corporation Method and system of determining a width of a printer ribbon
US9935946B2 (en) 2015-12-16 2018-04-03 Hand Held Products, Inc. Method and system for tracking an electronic device at an electronic device docking station
US9936278B1 (en) 2016-10-03 2018-04-03 Vocollect, Inc. Communication headsets and systems for mobile application control and power savings
US9940497B2 (en) 2016-08-16 2018-04-10 Hand Held Products, Inc. Minimizing laser persistence on two-dimensional image sensors
US9937735B1 (en) 2017-04-20 2018-04-10 Datamax—O'Neil Corporation Self-strip media module
US9939259B2 (en) 2012-10-04 2018-04-10 Hand Held Products, Inc. Measuring object dimensions using mobile computer
US9949005B2 (en) 2015-06-18 2018-04-17 Hand Held Products, Inc. Customizable headset
US9946962B2 (en) 2016-09-13 2018-04-17 Datamax-O'neil Corporation Print precision improvement over long print jobs
US9955099B2 (en) 2016-06-21 2018-04-24 Hand Held Products, Inc. Minimum height CMOS image sensor
US9953296B2 (en) 2013-01-11 2018-04-24 Hand Held Products, Inc. System, method, and computer-readable medium for managing edge devices
US9954871B2 (en) 2015-05-06 2018-04-24 Hand Held Products, Inc. Method and system to protect software-based network-connected devices from advanced persistent threat
US9955522B2 (en) 2015-07-07 2018-04-24 Hand Held Products, Inc. WiFi enable based on cell signals
US9977941B2 (en) * 2016-07-29 2018-05-22 Ncr Corporation Barcode scanner illumination
US9978088B2 (en) 2015-05-08 2018-05-22 Hand Held Products, Inc. Application independent DEX/UCS interface
US9984366B1 (en) 2017-06-09 2018-05-29 Hand Held Products, Inc. Secure paper-free bills in workflow applications
US9990784B2 (en) 2016-02-05 2018-06-05 Hand Held Products, Inc. Dynamic identification badge
US9990524B2 (en) 2016-06-16 2018-06-05 Hand Held Products, Inc. Eye gaze detection controlled indicia scanning system and method
US9997935B2 (en) 2015-01-08 2018-06-12 Hand Held Products, Inc. System and method for charging a barcode scanner
US10007858B2 (en) 2012-05-15 2018-06-26 Honeywell International Inc. Terminals and methods for dimensioning objects
US10007112B2 (en) 2015-05-06 2018-06-26 Hand Held Products, Inc. Hands-free human machine interface responsive to a driver of a vehicle
US10025314B2 (en) 2016-01-27 2018-07-17 Hand Held Products, Inc. Vehicle positioning and object avoidance
US10026377B2 (en) 2015-11-12 2018-07-17 Hand Held Products, Inc. IRDA converter tag
US10022993B2 (en) 2016-12-02 2018-07-17 Datamax-O'neil Corporation Media guides for use in printers and methods for using the same
US10026187B2 (en) 2016-01-12 2018-07-17 Hand Held Products, Inc. Using image data to calculate an object's weight
US10038716B2 (en) 2015-05-01 2018-07-31 Hand Held Products, Inc. System and method for regulating barcode data injection into a running application on a smart device
US10035367B1 (en) 2017-06-21 2018-07-31 Datamax-O'neil Corporation Single motor dynamic ribbon feedback system for a printer
US10044880B2 (en) 2016-12-16 2018-08-07 Datamax-O'neil Corporation Comparing printer models
US10042593B2 (en) 2016-09-02 2018-08-07 Datamax-O'neil Corporation Printer smart folders using USB mass storage profile
US10049245B2 (en) 2012-06-20 2018-08-14 Metrologic Instruments, Inc. Laser scanning code symbol reading system providing control over length of laser scan line projected onto a scanned object using dynamic range-dependent scan angle control
US10051446B2 (en) 2015-03-06 2018-08-14 Hand Held Products, Inc. Power reports in wireless scanner systems
US10049290B2 (en) 2014-12-31 2018-08-14 Hand Held Products, Inc. Industrial vehicle positioning system and method
US10055625B2 (en) 2016-04-15 2018-08-21 Hand Held Products, Inc. Imaging barcode reader with color-separated aimer and illuminator
US10061565B2 (en) 2015-01-08 2018-08-28 Hand Held Products, Inc. Application development using mutliple primary user interfaces
US10060729B2 (en) 2014-10-21 2018-08-28 Hand Held Products, Inc. Handheld dimensioner with data-quality indication
US10064005B2 (en) 2015-12-09 2018-08-28 Hand Held Products, Inc. Mobile device with configurable communication technology modes and geofences
US10061118B2 (en) 2016-02-04 2018-08-28 Hand Held Products, Inc. Beam shaping system and scanner
US10066982B2 (en) 2015-06-16 2018-09-04 Hand Held Products, Inc. Calibrating a volume dimensioner
US10084556B1 (en) 2017-10-20 2018-09-25 Hand Held Products, Inc. Identifying and transmitting invisible fence signals with a mobile data terminal
US10085101B2 (en) 2016-07-13 2018-09-25 Hand Held Products, Inc. Systems and methods for determining microphone position
US10097681B2 (en) 2016-06-14 2018-10-09 Hand Held Products, Inc. Managing energy usage in mobile devices
US10099485B1 (en) 2017-07-31 2018-10-16 Datamax-O'neil Corporation Thermal print heads and printers including the same
US10105963B2 (en) 2017-03-03 2018-10-23 Datamax-O'neil Corporation Region-of-interest based print quality optimization
US10114997B2 (en) 2016-11-16 2018-10-30 Hand Held Products, Inc. Reader for optical indicia presented under two or more imaging conditions within a single frame time
US10120657B2 (en) 2015-01-08 2018-11-06 Hand Held Products, Inc. Facilitating workflow application development
US10127423B1 (en) 2017-07-06 2018-11-13 Hand Held Products, Inc. Methods for changing a configuration of a device for reading machine-readable code
US10129414B2 (en) 2015-11-04 2018-11-13 Intermec Technologies Corporation Systems and methods for detecting transparent media in printers
US10134120B2 (en) 2014-10-10 2018-11-20 Hand Held Products, Inc. Image-stitching for dimensioning
US10140724B2 (en) 2009-01-12 2018-11-27 Intermec Ip Corporation Semi-automatic dimensioning with imager on a portable device
US10139495B2 (en) 2014-01-24 2018-11-27 Hand Held Products, Inc. Shelving and package locating systems for delivery vehicles
US10146194B2 (en) 2015-10-14 2018-12-04 Hand Held Products, Inc. Building lighting and temperature control with an augmented reality system
US10158612B2 (en) 2017-02-07 2018-12-18 Hand Held Products, Inc. Imaging-based automatic data extraction with security scheme
US10158834B2 (en) 2016-08-30 2018-12-18 Hand Held Products, Inc. Corrected projection perspective distortion
US10163044B2 (en) 2016-12-15 2018-12-25 Datamax-O'neil Corporation Auto-adjusted print location on center-tracked printers
US10176521B2 (en) 2014-12-15 2019-01-08 Hand Held Products, Inc. Augmented reality virtual product for display
US10181896B1 (en) 2017-11-01 2019-01-15 Hand Held Products, Inc. Systems and methods for reducing power consumption in a satellite communication device
US10181321B2 (en) 2016-09-27 2019-01-15 Vocollect, Inc. Utilization of location and environment to improve recognition
US10183500B2 (en) 2016-06-01 2019-01-22 Datamax-O'neil Corporation Thermal printhead temperature control
US10192194B2 (en) 2015-11-18 2019-01-29 Hand Held Products, Inc. In-vehicle package location identification at load and delivery times
US10195880B2 (en) 2017-03-02 2019-02-05 Datamax-O'neil Corporation Automatic width detection
US10203402B2 (en) 2013-06-07 2019-02-12 Hand Held Products, Inc. Method of error correction for 3D imaging device
US10210364B1 (en) 2017-10-31 2019-02-19 Hand Held Products, Inc. Direct part marking scanners including dome diffusers with edge illumination assemblies
US10210366B2 (en) 2016-07-15 2019-02-19 Hand Held Products, Inc. Imaging scanner with positioning and display
US10216969B2 (en) 2017-07-10 2019-02-26 Hand Held Products, Inc. Illuminator for directly providing dark field and bright field illumination
US10225544B2 (en) 2015-11-19 2019-03-05 Hand Held Products, Inc. High resolution dot pattern
US10223626B2 (en) 2017-04-19 2019-03-05 Hand Held Products, Inc. High ambient light electronic screen communication method
US10232628B1 (en) 2017-12-08 2019-03-19 Datamax-O'neil Corporation Removably retaining a print head assembly on a printer
US10237421B2 (en) 2016-12-22 2019-03-19 Datamax-O'neil Corporation Printers and methods for identifying a source of a problem therein
US10247547B2 (en) 2015-06-23 2019-04-02 Hand Held Products, Inc. Optical pattern projector
US10249030B2 (en) 2015-10-30 2019-04-02 Hand Held Products, Inc. Image transformation for indicia reading
US10245861B1 (en) 2017-10-04 2019-04-02 Datamax-O'neil Corporation Printers, printer spindle assemblies, and methods for determining media width for controlling media tension
US10252874B2 (en) 2017-02-20 2019-04-09 Datamax-O'neil Corporation Clutch bearing to keep media tension for better sensing accuracy
US10255469B2 (en) 2017-07-28 2019-04-09 Hand Held Products, Inc. Illumination apparatus for a barcode reader
US10264165B2 (en) 2017-07-11 2019-04-16 Hand Held Products, Inc. Optical bar assemblies for optical systems and isolation damping systems including the same
US10262660B2 (en) 2015-01-08 2019-04-16 Hand Held Products, Inc. Voice mode asset retrieval
US10263443B2 (en) 2017-01-13 2019-04-16 Hand Held Products, Inc. Power capacity indicator
US10275088B2 (en) 2014-12-18 2019-04-30 Hand Held Products, Inc. Systems and methods for identifying faulty touch panel having intermittent field failures
US10276009B2 (en) 2017-01-26 2019-04-30 Hand Held Products, Inc. Method of reading a barcode and deactivating an electronic article surveillance tag
US10275624B2 (en) 2013-10-29 2019-04-30 Hand Held Products, Inc. Hybrid system and method for reading indicia
US10282526B2 (en) 2015-12-09 2019-05-07 Hand Held Products, Inc. Generation of randomized passwords for one-time usage
US10286694B2 (en) 2016-09-02 2019-05-14 Datamax-O'neil Corporation Ultra compact printer
US10293624B2 (en) 2017-10-23 2019-05-21 Datamax-O'neil Corporation Smart media hanger with media width detection
US10304174B2 (en) 2016-12-19 2019-05-28 Datamax-O'neil Corporation Printer-verifiers and systems and methods for verifying printed indicia
US10312483B2 (en) 2015-09-30 2019-06-04 Hand Held Products, Inc. Double locking mechanism on a battery latch
US10321127B2 (en) 2012-08-20 2019-06-11 Intermec Ip Corp. Volume dimensioning system calibration systems and methods
US10317474B2 (en) 2014-12-18 2019-06-11 Hand Held Products, Inc. Systems and methods for identifying faulty battery in an electronic device
US10325436B2 (en) 2015-12-31 2019-06-18 Hand Held Products, Inc. Devices, systems, and methods for optical validation
US10323929B1 (en) 2017-12-19 2019-06-18 Datamax-O'neil Corporation Width detecting media hanger
US10345383B2 (en) 2015-07-07 2019-07-09 Hand Held Products, Inc. Useful battery capacity / state of health gauge
US20190212955A1 (en) 2018-01-05 2019-07-11 Datamax-O'neil Corporation Methods, apparatuses, and systems for verifying printed image and improving print quality
US10350905B2 (en) 2017-01-26 2019-07-16 Datamax-O'neil Corporation Detecting printing ribbon orientation
US10354449B2 (en) 2015-06-12 2019-07-16 Hand Held Products, Inc. Augmented reality lighting effects
US10360728B2 (en) 2015-05-19 2019-07-23 Hand Held Products, Inc. Augmented reality device, system, and method for safety
US10360424B2 (en) 2016-12-28 2019-07-23 Hand Held Products, Inc. Illuminator for DPM scanner
US10372389B2 (en) 2017-09-22 2019-08-06 Datamax-O'neil Corporation Systems and methods for printer maintenance operations
US10369804B2 (en) 2017-11-10 2019-08-06 Datamax-O'neil Corporation Secure thermal print head
US10369823B2 (en) 2017-11-06 2019-08-06 Datamax-O'neil Corporation Print head pressure detection and adjustment
US10373143B2 (en) 2015-09-24 2019-08-06 Hand Held Products, Inc. Product identification using electroencephalography
US10375473B2 (en) 2016-09-20 2019-08-06 Vocollect, Inc. Distributed environmental microphones to minimize noise during speech recognition
US10373032B2 (en) 2017-08-01 2019-08-06 Datamax-O'neil Corporation Cryptographic printhead
US10372954B2 (en) 2016-08-16 2019-08-06 Hand Held Products, Inc. Method for reading indicia off a display of a mobile device
US10387699B2 (en) 2017-01-12 2019-08-20 Hand Held Products, Inc. Waking system in barcode scanner
US10384462B2 (en) 2016-08-17 2019-08-20 Datamax-O'neil Corporation Easy replacement of thermal print head and simple adjustment on print pressure
US10395081B2 (en) 2016-12-09 2019-08-27 Hand Held Products, Inc. Encoding document capture bounds with barcodes
US10397388B2 (en) 2015-11-02 2019-08-27 Hand Held Products, Inc. Extended features for network communication
US10394316B2 (en) 2016-04-07 2019-08-27 Hand Held Products, Inc. Multiple display modes on a mobile device
US10399359B2 (en) 2017-09-06 2019-09-03 Vocollect, Inc. Autocorrection for uneven print pressure on print media
US10399361B2 (en) 2017-11-21 2019-09-03 Datamax-O'neil Corporation Printer, system and method for programming RFID tags on media labels
US10402038B2 (en) 2015-01-08 2019-09-03 Hand Held Products, Inc. Stack handling using multiple primary user interfaces
US10399369B2 (en) 2017-10-23 2019-09-03 Datamax-O'neil Corporation Smart media hanger with media width detection
US10401436B2 (en) 2015-05-04 2019-09-03 Hand Held Products, Inc. Tracking battery conditions
US10410629B2 (en) 2015-08-19 2019-09-10 Hand Held Products, Inc. Auto-complete methods for spoken complete value entries
US10427424B2 (en) 2017-11-01 2019-10-01 Datamax-O'neil Corporation Estimating a remaining amount of a consumable resource based on a center of mass calculation
US10438409B2 (en) 2014-12-15 2019-10-08 Hand Held Products, Inc. Augmented reality asset locator
US10438098B2 (en) 2017-05-19 2019-10-08 Hand Held Products, Inc. High-speed OCR decode using depleted centerlines
US10434800B1 (en) 2018-05-17 2019-10-08 Datamax-O'neil Corporation Printer roll feed mechanism
US10468015B2 (en) 2017-01-12 2019-11-05 Vocollect, Inc. Automated TTS self correction system
US10463140B2 (en) 2017-04-28 2019-11-05 Hand Held Products, Inc. Attachment apparatus for electronic device
US10467513B2 (en) 2015-08-12 2019-11-05 Datamax-O'neil Corporation Verification of a printed image on media
EP3564880A1 (en) 2018-05-01 2019-11-06 Honeywell International Inc. System and method for validating physical-item security
US10484847B2 (en) 2016-09-13 2019-11-19 Hand Held Products, Inc. Methods for provisioning a wireless beacon
US10509619B2 (en) 2014-12-15 2019-12-17 Hand Held Products, Inc. Augmented reality quick-start and user guide
US10523038B2 (en) 2017-05-23 2019-12-31 Hand Held Products, Inc. System and method for wireless charging of a beacon and/or sensor device
US10546160B2 (en) 2018-01-05 2020-01-28 Datamax-O'neil Corporation Methods, apparatuses, and systems for providing print quality feedback and controlling print quality of machine-readable indicia
US10549561B2 (en) 2017-05-04 2020-02-04 Datamax-O'neil Corporation Apparatus for sealing an enclosure
US10592536B2 (en) 2017-05-30 2020-03-17 Hand Held Products, Inc. Systems and methods for determining a location of a user when using an imaging device in an indoor facility
US10621470B2 (en) 2017-09-29 2020-04-14 Datamax-O'neil Corporation Methods for optical character recognition (OCR)
US10635871B2 (en) 2017-08-04 2020-04-28 Hand Held Products, Inc. Indicia reader acoustic for multiple mounting positions
US10644944B2 (en) 2017-06-30 2020-05-05 Datamax-O'neil Corporation Managing a fleet of devices
US10640325B2 (en) 2016-08-05 2020-05-05 Datamax-O'neil Corporation Rigid yet flexible spindle for rolled material
US10652403B2 (en) 2017-01-10 2020-05-12 Datamax-O'neil Corporation Printer script autocorrect
US10650631B2 (en) 2017-07-28 2020-05-12 Hand Held Products, Inc. Systems and methods for processing a distorted image
US10654287B2 (en) 2017-10-19 2020-05-19 Datamax-O'neil Corporation Print quality setup using banks in parallel
US10654697B2 (en) 2017-12-01 2020-05-19 Hand Held Products, Inc. Gyroscopically stabilized vehicle system
US10679101B2 (en) 2017-10-25 2020-06-09 Hand Held Products, Inc. Optical character recognition systems and methods
US10685665B2 (en) 2016-08-17 2020-06-16 Vocollect, Inc. Method and apparatus to improve speech recognition in a high audio noise environment
US10698470B2 (en) 2016-12-09 2020-06-30 Hand Held Products, Inc. Smart battery balance system and method
US10703112B2 (en) 2017-12-13 2020-07-07 Datamax-O'neil Corporation Image to script converter
US10710386B2 (en) 2017-06-21 2020-07-14 Datamax-O'neil Corporation Removable printhead
US10714121B2 (en) 2016-07-27 2020-07-14 Vocollect, Inc. Distinguishing user speech from background speech in speech-dense environments
US10728445B2 (en) 2017-10-05 2020-07-28 Hand Held Products Inc. Methods for constructing a color composite image
US10732226B2 (en) 2017-05-26 2020-08-04 Hand Held Products, Inc. Methods for estimating a number of workflow cycles able to be completed from a remaining battery capacity
US10731963B2 (en) 2018-01-09 2020-08-04 Datamax-O'neil Corporation Apparatus and method of measuring media thickness
US10733401B2 (en) 2016-07-15 2020-08-04 Hand Held Products, Inc. Barcode reader with viewing frame
US10733748B2 (en) 2017-07-24 2020-08-04 Hand Held Products, Inc. Dual-pattern optical 3D dimensioning
US10740855B2 (en) 2016-12-14 2020-08-11 Hand Held Products, Inc. Supply chain tracking of farm produce and crops
US10737911B2 (en) 2017-03-02 2020-08-11 Hand Held Products, Inc. Electromagnetic pallet and method for adjusting pallet position
US10749300B2 (en) 2017-08-11 2020-08-18 Hand Held Products, Inc. POGO connector based soft power start solution
US10756900B2 (en) 2017-09-28 2020-08-25 Hand Held Products, Inc. Non-repudiation protocol using time-based one-time password (TOTP)
US10756563B2 (en) 2017-12-15 2020-08-25 Datamax-O'neil Corporation Powering devices using low-current power sources
US10778690B2 (en) 2017-06-30 2020-09-15 Datamax-O'neil Corporation Managing a fleet of workflow devices and standby devices in a device network
US10773537B2 (en) 2017-12-27 2020-09-15 Datamax-O'neil Corporation Method and apparatus for printing
US10780721B2 (en) 2017-03-30 2020-09-22 Datamax-O'neil Corporation Detecting label stops
US10798316B2 (en) 2017-04-04 2020-10-06 Hand Held Products, Inc. Multi-spectral imaging using longitudinal chromatic aberrations
US10796119B2 (en) 2017-07-28 2020-10-06 Hand Held Products, Inc. Decoding color barcodes
US10803264B2 (en) 2018-01-05 2020-10-13 Datamax-O'neil Corporation Method, apparatus, and system for characterizing an optical system
US10803267B2 (en) 2017-08-18 2020-10-13 Hand Held Products, Inc. Illuminator for a barcode scanner
US10809949B2 (en) 2018-01-26 2020-10-20 Datamax-O'neil Corporation Removably couplable printer and verifier assembly
US10810541B2 (en) 2017-05-03 2020-10-20 Hand Held Products, Inc. Methods for pick and put location verification
US10810530B2 (en) 2014-09-26 2020-10-20 Hand Held Products, Inc. System and method for workflow management
US10834283B2 (en) 2018-01-05 2020-11-10 Datamax-O'neil Corporation Methods, apparatuses, and systems for detecting printing defects and contaminated components of a printer
US10860706B2 (en) 2015-04-24 2020-12-08 Hand Held Products, Inc. Secure unattended network authentication
US10867145B2 (en) 2017-03-06 2020-12-15 Datamax-O'neil Corporation Systems and methods for barcode verification
US10867141B2 (en) 2017-07-12 2020-12-15 Hand Held Products, Inc. System and method for augmented reality configuration of indicia readers
US10884059B2 (en) 2017-10-18 2021-01-05 Hand Held Products, Inc. Determining the integrity of a computing device
US10896403B2 (en) 2016-07-18 2021-01-19 Vocollect, Inc. Systems and methods for managing dated products
US10897150B2 (en) 2018-01-12 2021-01-19 Hand Held Products, Inc. Indicating charge status
US10897940B2 (en) 2015-08-27 2021-01-26 Hand Held Products, Inc. Gloves having measuring, scanning, and displaying capabilities
US10904453B2 (en) 2016-12-28 2021-01-26 Hand Held Products, Inc. Method and system for synchronizing illumination timing in a multi-sensor imager
US10909708B2 (en) 2016-12-09 2021-02-02 Hand Held Products, Inc. Calibrating a dimensioner using ratios of measurable parameters of optic ally-perceptible geometric elements
US10909490B2 (en) 2014-10-15 2021-02-02 Vocollect, Inc. Systems and methods for worker resource management
US10956033B2 (en) 2017-07-13 2021-03-23 Hand Held Products, Inc. System and method for generating a virtual keyboard with a highlighted area of interest
US10967660B2 (en) 2017-05-12 2021-04-06 Datamax-O'neil Corporation Media replacement process for thermal printers
US10977594B2 (en) 2017-06-30 2021-04-13 Datamax-O'neil Corporation Managing a fleet of devices
US10984374B2 (en) 2017-02-10 2021-04-20 Vocollect, Inc. Method and system for inputting products into an inventory system
US11029762B2 (en) 2015-07-16 2021-06-08 Hand Held Products, Inc. Adjusting dimensioning results using augmented reality
US11042834B2 (en) 2017-01-12 2021-06-22 Vocollect, Inc. Voice-enabled substitutions with customer notification
US11047672B2 (en) 2017-03-28 2021-06-29 Hand Held Products, Inc. System for optically dimensioning
US11081087B2 (en) 2015-01-08 2021-08-03 Hand Held Products, Inc. Multiple primary user interfaces
US11120237B2 (en) * 2019-11-08 2021-09-14 Zebra Technologies Corporation Bioptic scanner optical arrangement with single sensor split four ways
US11125885B2 (en) 2016-03-15 2021-09-21 Hand Held Products, Inc. Monitoring user biometric parameters with nanotechnology in personal locator beacon
US11157869B2 (en) 2016-08-05 2021-10-26 Vocollect, Inc. Monitoring worker movement in a warehouse setting
US11210482B2 (en) * 2019-11-15 2021-12-28 Zebra Technologies Corporation Barcode reader having calibration of scanner image brightness with multiple FOVs from a single sensor
US11244264B2 (en) 2014-12-29 2022-02-08 Hand Held Products, Inc. Interleaving surprise activities in workflow
US11257143B2 (en) 2014-12-30 2022-02-22 Hand Held Products, Inc. Method and device for simulating a virtual out-of-box experience of a packaged product
US11282515B2 (en) 2015-08-31 2022-03-22 Hand Held Products, Inc. Multiple inspector voice inspection
US11328335B2 (en) 2014-12-29 2022-05-10 Hand Held Products, Inc. Visual graphic aided location identification
US11334734B1 (en) * 2021-07-29 2022-05-17 Zebra Technologies Corporation Methods and apparatuses to mitigate specular reflections and direct illumination interference in bioptic barcode readers
GB2602239A (en) * 2019-12-13 2022-06-22 Zebra Tech Corp Industrial digital barcode reader
US11423348B2 (en) 2016-01-11 2022-08-23 Hand Held Products, Inc. System and method for assessing worker performance
US11639846B2 (en) 2019-09-27 2023-05-02 Honeywell International Inc. Dual-pattern optical 3D dimensioning
US11810545B2 (en) 2011-05-20 2023-11-07 Vocollect, Inc. Systems and methods for dynamically improving user intelligibility of synthesized speech in a work environment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6543038B2 (en) * 2015-01-28 2019-07-10 キヤノン株式会社 Optical scanning apparatus, image forming apparatus and rotary polygon mirror
CN106203216B (en) * 2016-06-30 2018-11-09 杭州晟元数据安全技术股份有限公司 A kind of bar code decoding method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039184A (en) * 1988-06-24 1991-08-13 Fujitsu Limited Optical beam scanner for bar-code
US20020038820A1 (en) * 1994-08-17 2002-04-04 Metrologic Instruments, Inc. Compact bioptical laser scanning system
US20110248087A1 (en) * 2007-11-26 2011-10-13 Toshiba Tec Kabushiki Kaisha Barcode scanning device and method for producing high density scanning pattern by the same
US20110309147A1 (en) * 2010-06-16 2011-12-22 Symbol Technologies, Inc. Optical scanner with customer interface

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1392924A (en) 1971-03-23 1975-05-07 Rca Corp Optical scanning arrangement and article useful therewith
US3774014A (en) 1972-03-20 1973-11-20 Pitney Bowes Alpex Printed code scanning system
US3958104A (en) 1974-03-06 1976-05-18 Servo Corporation Of America Multiplexed optical scanner system
US3947816A (en) 1974-07-01 1976-03-30 International Business Machines Corporation Omnidirectional optical scanning apparatus
US3902048A (en) 1974-07-11 1975-08-26 Ibm Omnidirectional optomechanical scanning apparatus
US4007377A (en) 1975-09-08 1977-02-08 The Singer Company Optical scanning system for universal product code
US4093865A (en) 1977-04-29 1978-06-06 National Semiconductor Corporation Code symbol scanner using a double X bar pattern
US4360798A (en) 1978-05-31 1982-11-23 Symbol Technologies, Inc. Portable laser scanning arrangement for and method of evaluating and validating bar code symbols
US4333006A (en) 1980-12-12 1982-06-01 Ncr Corporation Multifocal holographic scanning system
US4894523A (en) 1981-12-28 1990-01-16 Norand Corporation Instant portable bar code reader
US4570057A (en) 1981-12-28 1986-02-11 Norand Corporation Instant portable bar code reader
US4766300A (en) 1984-08-06 1988-08-23 Norand Corporation Instant portable bar code reader
JPS59187315A (en) 1983-04-08 1984-10-24 Fujitsu Ltd Photoscanner
US4587407A (en) 1983-06-20 1986-05-06 Westinghouse Electric Corp. Scanning system for bar code labels affixed to rods
US4687282A (en) 1985-04-25 1987-08-18 Ncr Corporation Method and apparatus for making and utilizing a holographic bifocal lens element
US4652732A (en) 1985-09-17 1987-03-24 National Semiconductor Corporation Low-profile bar code scanner
US4960985A (en) 1985-11-21 1990-10-02 Metrologic Instruments, Inc. Compact omnidirectional laser scanner
US4794240A (en) 1986-09-12 1988-12-27 Spectra-Physics, Inc. Bar code scanner construction
US4799164A (en) 1986-09-12 1989-01-17 Spectra-Physics, Inc. Shallow bar code scanner
US4795224A (en) 1986-10-06 1989-01-03 Katsuchika Goto Optical scanning pattern generator
JPH0687099B2 (en) 1986-10-08 1994-11-02 富士通株式会社 Laser optical scanning device
US4794237A (en) 1986-11-10 1988-12-27 Ncr Corporation Multidirectional holographic scanner
US4816661A (en) 1986-12-22 1989-03-28 Symbol Technologies, Inc. Scan pattern generators for bar code symbol readers
US4861973A (en) 1987-06-18 1989-08-29 Spectra-Physics, Inc. Optical scan pattern generating arrangement for a laser scanner
US4879456A (en) 1987-06-18 1989-11-07 Spectra-Physics, Inc. Method of decoding a binary scan signal
US4839507A (en) 1987-11-06 1989-06-13 Lance May Method and arrangement for validating coupons
US4851667A (en) 1987-11-16 1989-07-25 Ncr Corporation Compact laser scanner optical system
US4805175A (en) 1987-12-03 1989-02-14 Metrologic Instrumetns, Inc. Ultra-compact, hand-held laser scanner
US4939355A (en) 1988-01-22 1990-07-03 Spectra-Physics, Inc. Automatic package label scanner
EP0332716B1 (en) 1988-03-12 1993-06-30 International Business Machines Corporation Bar code laser scanner arrangement for a cashier stand
DE3813725A1 (en) 1988-04-22 1989-11-09 Nixdorf Computer Ag METHOD FOR THE OPTICAL SCANING OF MARKINGS ON OBJECTS AND DEVICE FOR ITS IMPLEMENTATION
US5028772A (en) 1988-08-26 1991-07-02 Accu-Sort Systems, Inc. Scanner to combine partial fragments of a complete code
US5124538B1 (en) 1988-08-26 1995-01-31 Accu Sort Systems Inc Scanner
US5293033A (en) 1988-09-20 1994-03-08 Tokyo Electric Co., Ltd. Optical reading apparatus
JP2732497B2 (en) 1988-09-21 1998-03-30 株式会社テック Product data reader
DE3836859C2 (en) 1988-12-15 1998-04-09 Kuchler Fritz Slicer
US5019714A (en) 1989-02-06 1991-05-28 Metrologic Instruments, Inc. Scanning system with array of laser scanner modules to produce complex scan pattern
CA1329263C (en) 1989-03-01 1994-05-03 Mark Krichever Bar code scanner
JP2771593B2 (en) 1989-04-20 1998-07-02 富士通株式会社 Optical scanning device
US5128520A (en) 1989-08-11 1992-07-07 Spectra-Physics, Inc. Scanner with coupon validation
WO1991004550A1 (en) 1989-09-18 1991-04-04 Fujitsu Limited Laser scanner for bar code reader
US5019694A (en) 1989-09-29 1991-05-28 Ncr Corporation Overhead scanning terminal
US5268565A (en) 1989-10-16 1993-12-07 Fujitsu Limited Compact type bar code reader
US4968883A (en) 1989-10-20 1990-11-06 Ncr Corporation Apparatus and method for vertical mounting of an optical scanner
US5504316A (en) 1990-05-08 1996-04-02 Symbol Technologies, Inc. Laser scanning system and scanning method for reading 1-D and 2-D barcode symbols
US5495097A (en) 1993-09-14 1996-02-27 Symbol Technologies, Inc. Plurality of scan units with scan stitching
US6330973B1 (en) 1989-10-30 2001-12-18 Symbol Technologies, Inc. Integrated code reading systems including tunnel scanners
US5206491A (en) 1990-03-02 1993-04-27 Fujitsu Limited Plural beam, plural window multi-direction bar code reading device
US5073702A (en) 1990-03-26 1991-12-17 Ncr Corporation Multiple beam bar code scanner
US5132524A (en) 1990-05-21 1992-07-21 Lazerdata Corporation Multi directional laser scanner
US5286961A (en) 1990-05-23 1994-02-15 Tokyo Electric Co., Ltd. Bar code reader producing two groups of vertical scan lines and two groups of inclined scan lines on a plane normal to the read window
US20010017320A1 (en) 1990-09-10 2001-08-30 Knowles Carl H. Projection laser scanner for scanning bar codes within a confined scanning volume
US6098885A (en) 1990-09-10 2000-08-08 Metrologic Instruments Countertop projection laser scanning system for omnidirectional scanning volume projected above a countertop surface of code symbols within a narrowly-confined scanning
US5942743A (en) 1994-08-17 1999-08-24 Metrologic Instruments, Inc. Portable automatic hand-supportable omnidirectional laser projection scanner with power conserving control system
US5216232A (en) 1990-09-10 1993-06-01 Metrologic Instruments, Inc. Projection laser scanner producing a narrow scan volume
US5371347A (en) 1991-10-15 1994-12-06 Gap Technologies, Incorporated Electro-optical scanning system with gyrating scan head
US5081364A (en) 1990-11-26 1992-01-14 Ncr Corporation Multifocal scanning system
GB2252333B (en) 1991-01-29 1995-07-19 Spectra Physics Scanning Syst Improved scanner window
US5239169A (en) 1991-05-20 1993-08-24 Microscan Systems Incorporated Optical signal processor for barcode reader
US5256864A (en) 1991-09-24 1993-10-26 Spectra-Physics Scanning system for preferentially aligning a package in an optimal scanning plane for decoding a bar code label
US5491328A (en) 1991-09-24 1996-02-13 Spectra-Physics Scanning Systems, Inc. Checkout counter scanner having multiple scanning surfaces
US5229588A (en) 1991-09-30 1993-07-20 Ncr Corporation Dual aperture optical scanner
US5778133A (en) 1994-04-29 1998-07-07 Geo Labs, Inc. Nonimaging light collector
US5291008A (en) 1992-01-10 1994-03-01 Welch Allyn, Inc. Optical assembly and apparatus employing same using an aspherical lens and an aperture stop
US5777314A (en) 1992-02-27 1998-07-07 Symbol Optical scanner with fixed focus optics
JP2789282B2 (en) 1992-07-10 1998-08-20 富士通株式会社 Optical mark reader
US5475207A (en) 1992-07-14 1995-12-12 Spectra-Physics Scanning Systems, Inc. Multiple plane scanning system for data reading applications
US5252814A (en) 1992-08-17 1993-10-12 Ncr Corporation Multi-scanner checkout counter using digitizer panel to determine X-Y location of scanned items
US5410108A (en) 1992-08-31 1995-04-25 Spectra-Physics Scanning Systems, Inc. Combined scanner and scale
US5296691A (en) 1992-09-14 1994-03-22 Lazerdata Corporation Scanning device for reconstructing a complete code from scanned segments
US5361158A (en) 1992-09-14 1994-11-01 At&T Global Information Solutions (Fka Ncr Corporation) Multiple source optical scanner
US5493108A (en) 1992-10-14 1996-02-20 Spectra-Physics Scanning Systems, Inc. Method and apparatus for recognizing and assembling optical code information from partially scanned segments
US5331118A (en) 1992-11-27 1994-07-19 Soren Jensen Package dimensional volume and weight determination system for conveyors
US5393967A (en) 1993-07-21 1995-02-28 Sensis Corporation Method and apparatus for non-contact reading of a relief pattern
JP3407818B2 (en) 1994-03-04 2003-05-19 富士通株式会社 Barcode reading device and barcode reading system
US5541419A (en) 1994-03-21 1996-07-30 Intermec Corporation Symbology reader wth reduced specular reflection
US5525786A (en) 1994-03-30 1996-06-11 Dumont; Charles Multidirectional scan, platform purchase checkout system
NL9401302A (en) 1994-08-11 1996-03-01 Scantech Bv Barcode scanner.
US5572007A (en) 1994-08-19 1996-11-05 Intermec Corporation Symbology reader with interchangeable window
US5834708A (en) 1995-06-08 1998-11-10 Spectra-Physics Scanning Systems, Inc. Multiple plane weigh platter for multiple plane scanning systems
US5744815A (en) 1995-10-05 1998-04-28 Symbol Technologies, Inc. Beam splitting optics in bar code readers
US5684289A (en) 1995-10-30 1997-11-04 Ncr Corporation Optical scanner having enhanced item side coverage
JP3441580B2 (en) 1995-12-14 2003-09-02 富士通株式会社 Reader
US5717195A (en) 1996-03-05 1998-02-10 Metanetics Corporation Imaging based slot dataform reader
US6330974B1 (en) 1996-03-29 2001-12-18 Intermec Ip Corp. High resolution laser imager for low contrast symbology
US5978772A (en) 1996-10-11 1999-11-02 Mold; Jeffrey W. Merchandise checkout system
US5892214A (en) 1996-11-20 1999-04-06 Ncr Corporation Low profile planar scanner
US5886336A (en) 1996-12-12 1999-03-23 Ncr Corporation Multiside coverage optical scanner
DE19757666A1 (en) 1997-01-06 1998-07-09 Asahi Optical Co Ltd Scanner unit with optical cascade scanning system
US6223986B1 (en) 1997-04-17 2001-05-01 Psc Scanning, Inc. Aiming aid for optical data reading
US6117080A (en) 1997-06-04 2000-09-12 Atl Ultrasound Ultrasonic imaging apparatus and method for breast cancer diagnosis with the use of volume rendering
US6069700A (en) 1997-07-31 2000-05-30 The Boeing Company Portable laser digitizing system for large parts
US5984186A (en) 1997-10-29 1999-11-16 Psc Inc. CCD-base bar code scanner
US5975417A (en) 1997-12-19 1999-11-02 Ncr Corporation Convertible barcode scanner
US6064423A (en) 1998-02-12 2000-05-16 Geng; Zheng Jason Method and apparatus for high resolution three dimensional display
US6045046A (en) 1998-08-27 2000-04-04 Ncr Corporation Full coverage barcode scanner
US6325290B1 (en) 1998-12-04 2001-12-04 Ncr Corporation Method and apparatus for checking out large items with a self-service checkout terminal
US6112857A (en) 1998-12-14 2000-09-05 Ncr Corporation Hand-held scanner device having a smart card associated therewith and associated method
JP4352505B2 (en) 1999-04-26 2009-10-28 富士通株式会社 Optical scanning device
US6296187B1 (en) 1999-11-12 2001-10-02 Psc Inc. CCD-based bar code scanner
US7100832B2 (en) 2000-04-18 2006-09-05 Metrologic Instruments, Inc. Bioptical laser scanning system providing 360° of omnidirectional bar code symbol scanning coverage at point of sale station
US6918540B2 (en) 2000-04-18 2005-07-19 Metrologic Instruments, Inc. Bioptical point-of-sale (pos) scanning system employing dual polygon-based laser scanning platforms disposed beneath horizontal and vertical scanning windows for 360° omni-directional bar code scanning
US20030132291A1 (en) 2002-01-11 2003-07-17 Metrologic Instruments, Inc. Point of sale (POS) station having bar code reading system with integrated internet-enabled customer-kiosk terminal
US6285383B1 (en) 2000-09-14 2001-09-04 Lexmark International, Inc. Method of controlling laser scanner phase in a multicolor electrophotographic machine
US6502753B2 (en) 2001-02-26 2003-01-07 Ncr Corporation Compact dual aperture scanner
US6631845B2 (en) 2001-04-03 2003-10-14 Symbol Technologies, Inc. Two window optical scanner
US7296748B2 (en) 2002-01-11 2007-11-20 Metrologic Instruments, Inc. Bioptical laser scanning system providing 360° of omnidirectional bar code symbol scanning coverage at point of sale station
US7083102B2 (en) 2002-01-11 2006-08-01 Metrologic Instruments, Inc. Bioptical laser scanner for six-sided 360° Pos-based scanning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039184A (en) * 1988-06-24 1991-08-13 Fujitsu Limited Optical beam scanner for bar-code
US20020038820A1 (en) * 1994-08-17 2002-04-04 Metrologic Instruments, Inc. Compact bioptical laser scanning system
US20110248087A1 (en) * 2007-11-26 2011-10-13 Toshiba Tec Kabushiki Kaisha Barcode scanning device and method for producing high density scanning pattern by the same
US20110309147A1 (en) * 2010-06-16 2011-12-22 Symbol Technologies, Inc. Optical scanner with customer interface

Cited By (596)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10845184B2 (en) 2009-01-12 2020-11-24 Intermec Ip Corporation Semi-automatic dimensioning with imager on a portable device
US10140724B2 (en) 2009-01-12 2018-11-27 Intermec Ip Corporation Semi-automatic dimensioning with imager on a portable device
US11817078B2 (en) 2011-05-20 2023-11-14 Vocollect, Inc. Systems and methods for dynamically improving user intelligibility of synthesized speech in a work environment
US11810545B2 (en) 2011-05-20 2023-11-07 Vocollect, Inc. Systems and methods for dynamically improving user intelligibility of synthesized speech in a work environment
US8678285B2 (en) * 2011-09-20 2014-03-25 Metrologic Instruments, Inc. Method of and apparatus for multiplying raster scanning lines by modulating a multi-cavity laser diode
US20130068840A1 (en) * 2011-09-20 2013-03-21 Metrologic Instruments, Inc. Method of and apparatus for multiplying raster scanning lines by modulating a multi-cavity laser diode
US9779546B2 (en) 2012-05-04 2017-10-03 Intermec Ip Corp. Volume dimensioning systems and methods
US10467806B2 (en) 2012-05-04 2019-11-05 Intermec Ip Corp. Volume dimensioning systems and methods
US9007368B2 (en) 2012-05-07 2015-04-14 Intermec Ip Corp. Dimensioning system calibration systems and methods
US9292969B2 (en) 2012-05-07 2016-03-22 Intermec Ip Corp. Dimensioning system calibration systems and methods
US10007858B2 (en) 2012-05-15 2018-06-26 Honeywell International Inc. Terminals and methods for dimensioning objects
US10635922B2 (en) 2012-05-15 2020-04-28 Hand Held Products, Inc. Terminals and methods for dimensioning objects
US10049245B2 (en) 2012-06-20 2018-08-14 Metrologic Instruments, Inc. Laser scanning code symbol reading system providing control over length of laser scan line projected onto a scanned object using dynamic range-dependent scan angle control
US10321127B2 (en) 2012-08-20 2019-06-11 Intermec Ip Corp. Volume dimensioning system calibration systems and methods
US10805603B2 (en) 2012-08-20 2020-10-13 Intermec Ip Corp. Volume dimensioning system calibration systems and methods
US9939259B2 (en) 2012-10-04 2018-04-10 Hand Held Products, Inc. Measuring object dimensions using mobile computer
US9841311B2 (en) 2012-10-16 2017-12-12 Hand Held Products, Inc. Dimensioning system
US10908013B2 (en) 2012-10-16 2021-02-02 Hand Held Products, Inc. Dimensioning system
US9424454B2 (en) 2012-10-24 2016-08-23 Honeywell International, Inc. Chip on board based highly integrated imager
US10769393B2 (en) 2012-10-24 2020-09-08 Honeywell International Inc. Chip on board based highly integrated imager
US9953296B2 (en) 2013-01-11 2018-04-24 Hand Held Products, Inc. System, method, and computer-readable medium for managing edge devices
US9080856B2 (en) 2013-03-13 2015-07-14 Intermec Ip Corp. Systems and methods for enhancing dimensioning, for example volume dimensioning
US9784566B2 (en) 2013-03-13 2017-10-10 Intermec Ip Corp. Systems and methods for enhancing dimensioning
US9070032B2 (en) 2013-04-10 2015-06-30 Hand Held Products, Inc. Method of programming a symbol reading system
US9682625B2 (en) 2013-05-24 2017-06-20 Hand Held Products, Inc. System and method for display of information using a vehicle-mount computer
US9037344B2 (en) 2013-05-24 2015-05-19 Hand Held Products, Inc. System and method for display of information using a vehicle-mount computer
US10272784B2 (en) 2013-05-24 2019-04-30 Hand Held Products, Inc. System and method for display of information using a vehicle-mount computer
US10863002B2 (en) 2013-05-24 2020-12-08 Hand Held Products, Inc. System for providing a continuous communication link with a symbol reading device
US9616749B2 (en) 2013-05-24 2017-04-11 Hand Held Products, Inc. System and method for display of information using a vehicle-mount computer
US9930142B2 (en) 2013-05-24 2018-03-27 Hand Held Products, Inc. System for providing a continuous communication link with a symbol reading device
US10228452B2 (en) 2013-06-07 2019-03-12 Hand Held Products, Inc. Method of error correction for 3D imaging device
US10203402B2 (en) 2013-06-07 2019-02-12 Hand Held Products, Inc. Method of error correction for 3D imaging device
US9141839B2 (en) 2013-06-07 2015-09-22 Hand Held Products, Inc. System and method for reading code symbols at long range using source power control
US9104929B2 (en) 2013-06-26 2015-08-11 Hand Held Products, Inc. Code symbol reading system having adaptive autofocus
US10013591B2 (en) 2013-06-26 2018-07-03 Hand Held Products, Inc. Code symbol reading system having adaptive autofocus
US9582698B2 (en) 2013-06-26 2017-02-28 Hand Held Products, Inc. Code symbol reading system having adaptive autofocus
US9235737B2 (en) 2013-06-28 2016-01-12 Hand Held Products, Inc. System having an improved user interface for reading code symbols
US8985461B2 (en) 2013-06-28 2015-03-24 Hand Held Products, Inc. Mobile device having an improved user interface for reading code symbols
US9239950B2 (en) 2013-07-01 2016-01-19 Hand Held Products, Inc. Dimensioning system
US9250652B2 (en) 2013-07-02 2016-02-02 Hand Held Products, Inc. Electronic device case
USD766244S1 (en) * 2013-07-03 2016-09-13 Hand Held Products, Inc. Scanner
USD826233S1 (en) * 2013-07-03 2018-08-21 Hand Held Products, Inc. Scanner
US9773142B2 (en) 2013-07-22 2017-09-26 Hand Held Products, Inc. System and method for selectively reading code symbols
US9297900B2 (en) 2013-07-25 2016-03-29 Hand Held Products, Inc. Code symbol reading system having adjustable object detection
US9672398B2 (en) 2013-08-26 2017-06-06 Intermec Ip Corporation Aiming imagers
US9464885B2 (en) 2013-08-30 2016-10-11 Hand Held Products, Inc. System and method for package dimensioning
US9082023B2 (en) 2013-09-05 2015-07-14 Hand Held Products, Inc. Method for operating a laser scanner
US9572901B2 (en) 2013-09-06 2017-02-21 Hand Held Products, Inc. Device having light source to reduce surface pathogens
US10372952B2 (en) 2013-09-06 2019-08-06 Hand Held Products, Inc. Device having light source to reduce surface pathogens
US10002274B2 (en) 2013-09-11 2018-06-19 Hand Held Products, Inc. Handheld indicia reader having locking endcap
US9183426B2 (en) 2013-09-11 2015-11-10 Hand Held Products, Inc. Handheld indicia reader having locking endcap
US9251411B2 (en) 2013-09-24 2016-02-02 Hand Held Products, Inc. Augmented-reality signature capture
US9165174B2 (en) 2013-10-14 2015-10-20 Hand Held Products, Inc. Indicia reader
US10275624B2 (en) 2013-10-29 2019-04-30 Hand Held Products, Inc. Hybrid system and method for reading indicia
US11763112B2 (en) 2013-10-29 2023-09-19 Hand Held Products, Inc. Hybrid system and method for reading indicia
EP2871618A1 (en) 2013-11-08 2015-05-13 Hand Held Products, Inc. Self-checkout shopping system
EP2871781A2 (en) 2013-11-08 2015-05-13 Hand Held Products, Inc. System for configuring indicia readers using NFC technology
US9800293B2 (en) 2013-11-08 2017-10-24 Hand Held Products, Inc. System for configuring indicia readers using NFC technology
EP4102730A2 (en) 2013-11-08 2022-12-14 Hand Held Products, Inc. System for configuring indicia readers using nfc technology
US9530038B2 (en) 2013-11-25 2016-12-27 Hand Held Products, Inc. Indicia-reading system
EP2876774A1 (en) 2013-11-25 2015-05-27 Hand Held Products, Inc. Indicia-reading system
EP2884421A1 (en) 2013-12-10 2015-06-17 Hand Held Products, Inc. High dynamic-range indicia reading system
US9053378B1 (en) 2013-12-12 2015-06-09 Hand Held Products, Inc. Laser barcode scanner
US9984267B2 (en) 2014-01-08 2018-05-29 Hand Held Products, Inc. Indicia reader having unitary-construction
US9697403B2 (en) 2014-01-08 2017-07-04 Hand Held Products, Inc. Indicia-reader having unitary-construction
US9373018B2 (en) 2014-01-08 2016-06-21 Hand Held Products, Inc. Indicia-reader having unitary-construction
US10139495B2 (en) 2014-01-24 2018-11-27 Hand Held Products, Inc. Shelving and package locating systems for delivery vehicles
EP3836002A1 (en) 2014-03-07 2021-06-16 Hand Held Products, Inc. Indicia reader for size-limited applications
US11531825B2 (en) 2014-03-07 2022-12-20 Hand Held Products, Inc. Indicia reader for size-limited applications
EP4280099A2 (en) 2014-03-07 2023-11-22 Hand Held Products, Inc. Indicia reader for size-limited applications
US9665757B2 (en) 2014-03-07 2017-05-30 Hand Held Products, Inc. Indicia reader for size-limited applications
EP2916259A1 (en) 2014-03-07 2015-09-09 Hand Held Products, Inc. Indicia reader for size-limited applications
US10789435B2 (en) 2014-03-07 2020-09-29 Hand Held Products, Inc. Indicia reader for size-limited applications
US9224027B2 (en) 2014-04-01 2015-12-29 Hand Held Products, Inc. Hand-mounted indicia-reading device with finger motion triggering
EP2927839A1 (en) 2014-04-01 2015-10-07 Hand Held Products, Inc. Hand-mounted indicia-reading device with finger motion triggering
US10185945B2 (en) 2014-04-04 2019-01-22 Hand Held Products, Inc. Multifunction point of sale system
US9412242B2 (en) 2014-04-04 2016-08-09 Hand Held Products, Inc. Multifunction point of sale system
EP2927840A1 (en) 2014-04-04 2015-10-07 Hand Held Products, Inc. Multifunction point of sale system
US9672507B2 (en) 2014-04-04 2017-06-06 Hand Held Products, Inc. Multifunction point of sale system
US10366380B2 (en) 2014-04-04 2019-07-30 Hand Held Products, Inc. Multifunction point of sale system
US9258033B2 (en) 2014-04-21 2016-02-09 Hand Held Products, Inc. Docking system and method using near field communication
US9510140B2 (en) 2014-04-21 2016-11-29 Hand Held Products, Inc. Docking system and method using near field communication
US9581809B2 (en) 2014-04-29 2017-02-28 Hand Held Products, Inc. Autofocus lens system
US10222514B2 (en) 2014-04-29 2019-03-05 Hand Held Products, Inc. Autofocus lens system
US10073197B2 (en) 2014-04-29 2018-09-11 Hand Held Products, Inc. Autofocus lens system
EP2940505A1 (en) 2014-04-29 2015-11-04 Hand Held Products, Inc. Autofocus lens system for indicia readers
US9224022B2 (en) 2014-04-29 2015-12-29 Hand Held Products, Inc. Autofocus lens system for indicia readers
EP2945095A1 (en) 2014-05-13 2015-11-18 Hand Held Products, Inc. Indicia-reader housing with an integrated optical structure
US9280693B2 (en) 2014-05-13 2016-03-08 Hand Held Products, Inc. Indicia-reader housing with an integrated optical structure
US9277668B2 (en) 2014-05-13 2016-03-01 Hand Held Products, Inc. Indicia-reading module with an integrated flexible circuit
US9301427B2 (en) 2014-05-13 2016-03-29 Hand Held Products, Inc. Heat-dissipation structure for an indicia reading module
US20150373322A1 (en) * 2014-06-20 2015-12-24 Qualcomm Incorporated Automatic multiple depth cameras synchronization using time sharing
US10419703B2 (en) * 2014-06-20 2019-09-17 Qualcomm Incorporated Automatic multiple depth cameras synchronization using time sharing
USD757009S1 (en) * 2014-06-24 2016-05-24 Hand Held Products, Inc. In-counter barcode scanner
US9911295B2 (en) 2014-06-27 2018-03-06 Hand Held Products, Inc. Cordless indicia reader with a multifunction coil for wireless charging and EAS deactivation
US9478113B2 (en) 2014-06-27 2016-10-25 Hand Held Products, Inc. Cordless indicia reader with a multifunction coil for wireless charging and EAS deactivation
US9794392B2 (en) 2014-07-10 2017-10-17 Hand Held Products, Inc. Mobile-phone adapter for electronic transactions
US9443123B2 (en) 2014-07-18 2016-09-13 Hand Held Products, Inc. System and method for indicia verification
US9310609B2 (en) 2014-07-25 2016-04-12 Hand Held Products, Inc. Axially reinforced flexible scan element
US9976848B2 (en) 2014-08-06 2018-05-22 Hand Held Products, Inc. Dimensioning system with guided alignment
US10240914B2 (en) 2014-08-06 2019-03-26 Hand Held Products, Inc. Dimensioning system with guided alignment
US9823059B2 (en) 2014-08-06 2017-11-21 Hand Held Products, Inc. Dimensioning system with guided alignment
EP2988209A1 (en) 2014-08-19 2016-02-24 Hand Held Products, Inc. Mobile computing device with data cognition software
US11546428B2 (en) 2014-08-19 2023-01-03 Hand Held Products, Inc. Mobile computing device with data cognition software
EP4345680A2 (en) 2014-08-19 2024-04-03 Hand Held Products, Inc. Mobile computing device with data cognition software
EP2990911A1 (en) 2014-08-29 2016-03-02 Hand Held Products, Inc. Gesture-controlled computer system
US10810530B2 (en) 2014-09-26 2020-10-20 Hand Held Products, Inc. System and method for workflow management
US11449816B2 (en) 2014-09-26 2022-09-20 Hand Held Products, Inc. System and method for workflow management
EP3001368A1 (en) 2014-09-26 2016-03-30 Honeywell International Inc. System and method for workflow management
US10775165B2 (en) 2014-10-10 2020-09-15 Hand Held Products, Inc. Methods for improving the accuracy of dimensioning-system measurements
US10402956B2 (en) 2014-10-10 2019-09-03 Hand Held Products, Inc. Image-stitching for dimensioning
EP3006893A1 (en) 2014-10-10 2016-04-13 Hand Held Products, Inc. Methods for improving the accuracy of dimensioning-system measurements
US9779276B2 (en) 2014-10-10 2017-10-03 Hand Held Products, Inc. Depth sensor based auto-focus system for an indicia scanner
US10859375B2 (en) 2014-10-10 2020-12-08 Hand Held Products, Inc. Methods for improving the accuracy of dimensioning-system measurements
US10121039B2 (en) 2014-10-10 2018-11-06 Hand Held Products, Inc. Depth sensor based auto-focus system for an indicia scanner
US10134120B2 (en) 2014-10-10 2018-11-20 Hand Held Products, Inc. Image-stitching for dimensioning
EP3007096A1 (en) 2014-10-10 2016-04-13 Hand Held Products, Inc. Depth sensor based auto-focus system for an indicia scanner
US10810715B2 (en) 2014-10-10 2020-10-20 Hand Held Products, Inc System and method for picking validation
US9792582B2 (en) 2014-10-14 2017-10-17 Hand Held Products, Inc. Identifying inventory items in a storage facility
US9443222B2 (en) 2014-10-14 2016-09-13 Hand Held Products, Inc. Identifying inventory items in a storage facility
EP3009968A1 (en) 2014-10-15 2016-04-20 Vocollect, Inc. Systems and methods for worker resource management
US10909490B2 (en) 2014-10-15 2021-02-02 Vocollect, Inc. Systems and methods for worker resource management
US10393508B2 (en) 2014-10-21 2019-08-27 Hand Held Products, Inc. Handheld dimensioning system with measurement-conformance feedback
EP3012601A1 (en) 2014-10-21 2016-04-27 Hand Held Products, Inc. Handheld dimensioning system with measurement-conformance feedback
US10060729B2 (en) 2014-10-21 2018-08-28 Hand Held Products, Inc. Handheld dimensioner with data-quality indication
EP3012579A1 (en) 2014-10-21 2016-04-27 Hand Held Products, Inc. System and method for dimensioning
US9826220B2 (en) 2014-10-21 2017-11-21 Hand Held Products, Inc. Dimensioning system with feedback
US9752864B2 (en) 2014-10-21 2017-09-05 Hand Held Products, Inc. Handheld dimensioning system with feedback
US9897434B2 (en) 2014-10-21 2018-02-20 Hand Held Products, Inc. Handheld dimensioning system with measurement-conformance feedback
US9557166B2 (en) 2014-10-21 2017-01-31 Hand Held Products, Inc. Dimensioning system with multipath interference mitigation
EP3023979A1 (en) 2014-10-29 2016-05-25 Hand Held Products, Inc. Method and system for recognizing speech using wildcards in an expected response
US10269342B2 (en) 2014-10-29 2019-04-23 Hand Held Products, Inc. Method and system for recognizing speech using wildcards in an expected response
US9924006B2 (en) 2014-10-31 2018-03-20 Hand Held Products, Inc. Adaptable interface for a mobile computing device
US9646189B2 (en) 2014-10-31 2017-05-09 Honeywell International, Inc. Scanner with illumination system
EP3016023A1 (en) 2014-10-31 2016-05-04 Honeywell International Inc. Scanner with illumination system
US10810529B2 (en) 2014-11-03 2020-10-20 Hand Held Products, Inc. Directing an inspector through an inspection
EP3016046A1 (en) 2014-11-03 2016-05-04 Hand Held Products, Inc. Directing an inspector through an inspection
EP3018557A1 (en) 2014-11-05 2016-05-11 Hand Held Products, Inc. Barcode scanning system using wearable device with embedded camera
EP3023980A1 (en) 2014-11-07 2016-05-25 Hand Held Products, Inc. Concatenated expected responses for speech recognition
US9984685B2 (en) 2014-11-07 2018-05-29 Hand Held Products, Inc. Concatenated expected responses for speech recognition using expected response boundaries to determine corresponding hypothesis boundaries
US9767581B2 (en) 2014-12-12 2017-09-19 Hand Held Products, Inc. Auto-contrast viewfinder for an indicia reader
US10176521B2 (en) 2014-12-15 2019-01-08 Hand Held Products, Inc. Augmented reality virtual product for display
US10438409B2 (en) 2014-12-15 2019-10-08 Hand Held Products, Inc. Augmented reality asset locator
US10866780B2 (en) 2014-12-15 2020-12-15 Hand Held Products, Inc. Augmented reality quick-start and user guide
US10509619B2 (en) 2014-12-15 2019-12-17 Hand Held Products, Inc. Augmented reality quick-start and user guide
US11704085B2 (en) 2014-12-15 2023-07-18 Hand Held Products, Inc. Augmented reality quick-start and user guide
US11321044B2 (en) 2014-12-15 2022-05-03 Hand Held Products, Inc. Augmented reality quick-start and user guide
US10317474B2 (en) 2014-12-18 2019-06-11 Hand Held Products, Inc. Systems and methods for identifying faulty battery in an electronic device
US9743731B2 (en) 2014-12-18 2017-08-29 Hand Held Products, Inc. Wearable sled system for a mobile computer device
EP3035151A1 (en) 2014-12-18 2016-06-22 Hand Held Products, Inc. Wearable sled system for a mobile computer device
US10915204B2 (en) 2014-12-18 2021-02-09 Hand Held Products, Inc. Systems and methods for identifying faulty touch panel having intermittent field failures
US10136715B2 (en) 2014-12-18 2018-11-27 Hand Held Products, Inc. Wearable sled system for a mobile computer device
US9678536B2 (en) 2014-12-18 2017-06-13 Hand Held Products, Inc. Flip-open wearable computer
EP3035074A1 (en) 2014-12-18 2016-06-22 Hand Held Products, Inc. Collision-avoidance system and method
US9761096B2 (en) 2014-12-18 2017-09-12 Hand Held Products, Inc. Active emergency exit systems for buildings
US10134247B2 (en) 2014-12-18 2018-11-20 Hand Held Products, Inc. Active emergency exit systems for buildings
US10275088B2 (en) 2014-12-18 2019-04-30 Hand Held Products, Inc. Systems and methods for identifying faulty touch panel having intermittent field failures
EP3037924A1 (en) 2014-12-22 2016-06-29 Hand Held Products, Inc. Augmented display and glove with markers as us user input device
US9727769B2 (en) 2014-12-22 2017-08-08 Hand Held Products, Inc. Conformable hand mount for a mobile scanner
EP3038068A2 (en) 2014-12-22 2016-06-29 Hand Held Products, Inc. Barcode-based safety system and method
EP3037951A1 (en) 2014-12-22 2016-06-29 Hand Held Products, Inc. Delayed trim of managed nand flash memory in computing devices
US10296259B2 (en) 2014-12-22 2019-05-21 Hand Held Products, Inc. Delayed trim of managed NAND flash memory in computing devices
US9564035B2 (en) 2014-12-22 2017-02-07 Hand Held Products, Inc. Safety system and method
EP3037912A1 (en) 2014-12-23 2016-06-29 Hand Held Products, Inc. Tablet computer with interface channels
EP3038009A1 (en) 2014-12-23 2016-06-29 Hand Held Products, Inc. Method of barcode templating for enhanced decoding performance
EP3038010A1 (en) 2014-12-23 2016-06-29 Hand Held Products, Inc. Mini-barcode reading module with flash memory management
US10191514B2 (en) 2014-12-23 2019-01-29 Hand Held Products, Inc. Tablet computer with interface channels
US10635876B2 (en) 2014-12-23 2020-04-28 Hand Held Products, Inc. Method of barcode templating for enhanced decoding performance
US11409979B2 (en) 2014-12-23 2022-08-09 Hand Held Products, Inc. Method of barcode templating for enhanced decoding performance
US10049246B2 (en) 2014-12-23 2018-08-14 Hand Held Products, Inc. Mini-barcode reading module with flash memory management
US9679178B2 (en) 2014-12-26 2017-06-13 Hand Held Products, Inc. Scanning improvements for saturated signals using automatic and fixed gain control methods
EP3038029A1 (en) 2014-12-26 2016-06-29 Hand Held Products, Inc. Product and location management via voice recognition
US10552786B2 (en) 2014-12-26 2020-02-04 Hand Held Products, Inc. Product and location management via voice recognition
US9774940B2 (en) 2014-12-27 2017-09-26 Hand Held Products, Inc. Power configurable headband system and method
US9652653B2 (en) 2014-12-27 2017-05-16 Hand Held Products, Inc. Acceleration-based motion tolerance and predictive coding
EP3040907A2 (en) 2014-12-27 2016-07-06 Hand Held Products, Inc. Acceleration-based motion tolerance and predictive coding
EP3046032A2 (en) 2014-12-28 2016-07-20 Hand Held Products, Inc. Remote monitoring of vehicle diagnostic information
US10621538B2 (en) 2014-12-28 2020-04-14 Hand Held Products, Inc Dynamic check digit utilization via electronic tag
EP3038030A1 (en) 2014-12-28 2016-06-29 Hand Held Products, Inc. Dynamic check digit utilization via electronic tag
EP3040921A1 (en) 2014-12-29 2016-07-06 Hand Held Products, Inc. Confirming product location using a subset of a product identifier
US11244264B2 (en) 2014-12-29 2022-02-08 Hand Held Products, Inc. Interleaving surprise activities in workflow
US11328335B2 (en) 2014-12-29 2022-05-10 Hand Held Products, Inc. Visual graphic aided location identification
US9843660B2 (en) 2014-12-29 2017-12-12 Hand Held Products, Inc. Tag mounted distributed headset with electronics module
US11443363B2 (en) 2014-12-29 2022-09-13 Hand Held Products, Inc. Confirming product location using a subset of a product identifier
EP3040908A1 (en) 2014-12-30 2016-07-06 Hand Held Products, Inc. Real-time adjustable window feature for barcode scanning and process of scanning barcode with adjustable window feature
US11257143B2 (en) 2014-12-30 2022-02-22 Hand Held Products, Inc. Method and device for simulating a virtual out-of-box experience of a packaged product
EP4163816A1 (en) 2014-12-30 2023-04-12 Hand Held Products, Inc. Real-time adjustable window feature for barcode scanning and process of scanning barcode with adjustable window feature
EP3040903A1 (en) 2014-12-30 2016-07-06 Hand Held Products, Inc. System and method for detecting barcode printing errors
EP3040906A1 (en) 2014-12-30 2016-07-06 Hand Held Products, Inc. Visual feedback for code readers
DE202015010006U1 (en) 2014-12-30 2023-01-19 Hand Held Products, Inc. Real-time adjustable window feature for scanning barcodes
EP3045953A1 (en) 2014-12-30 2016-07-20 Hand Held Products, Inc. Augmented reality vision barcode scanning system and method
US10152622B2 (en) 2014-12-30 2018-12-11 Hand Held Products, Inc. Visual feedback for code readers
EP3629225A1 (en) 2014-12-30 2020-04-01 Hand Held Products, Inc. Real-time adjustable window feature for barcode scanning and process of scanning barcode with adjustable window feature
US9685049B2 (en) 2014-12-30 2017-06-20 Hand Held Products, Inc. Method and system for improving barcode scanner performance
US9830488B2 (en) 2014-12-30 2017-11-28 Hand Held Products, Inc. Real-time adjustable window feature for barcode scanning and process of scanning barcode with adjustable window feature
EP3040954A1 (en) 2014-12-30 2016-07-06 Hand Held Products, Inc. Point of sale (pos) code sensing apparatus
US9826106B2 (en) 2014-12-30 2017-11-21 Hand Held Products, Inc. System and method for detecting barcode printing errors
US9898635B2 (en) 2014-12-30 2018-02-20 Hand Held Products, Inc. Point-of-sale (POS) code sensing apparatus
US10108832B2 (en) 2014-12-30 2018-10-23 Hand Held Products, Inc. Augmented reality vision barcode scanning system and method
US9879823B2 (en) 2014-12-31 2018-01-30 Hand Held Products, Inc. Reclosable strap assembly
US10049290B2 (en) 2014-12-31 2018-08-14 Hand Held Products, Inc. Industrial vehicle positioning system and method
US9811650B2 (en) 2014-12-31 2017-11-07 Hand Held Products, Inc. User authentication system and method
US10140487B2 (en) 2014-12-31 2018-11-27 Hand Held Products, Inc. Reconfigurable sled for a mobile device
US11084698B2 (en) 2014-12-31 2021-08-10 Hand Held Products, Inc. System and method for monitoring an industrial vehicle
EP3043235A2 (en) 2014-12-31 2016-07-13 Hand Held Products, Inc. Reconfigurable sled for a mobile device
US9721132B2 (en) 2014-12-31 2017-08-01 Hand Held Products, Inc. Reconfigurable sled for a mobile device
US10259694B2 (en) 2014-12-31 2019-04-16 Hand Held Products, Inc. System and method for monitoring an industrial vehicle
US9734639B2 (en) 2014-12-31 2017-08-15 Hand Held Products, Inc. System and method for monitoring an industrial vehicle
US11081087B2 (en) 2015-01-08 2021-08-03 Hand Held Products, Inc. Multiple primary user interfaces
EP3043443A1 (en) 2015-01-08 2016-07-13 Hand Held Products, Inc. Charge limit selection for variable power supply configuration
US10120657B2 (en) 2015-01-08 2018-11-06 Hand Held Products, Inc. Facilitating workflow application development
US11489352B2 (en) 2015-01-08 2022-11-01 Hand Held Products, Inc. System and method for charging a barcode scanner
US9997935B2 (en) 2015-01-08 2018-06-12 Hand Held Products, Inc. System and method for charging a barcode scanner
US10262660B2 (en) 2015-01-08 2019-04-16 Hand Held Products, Inc. Voice mode asset retrieval
US11010139B2 (en) 2015-01-08 2021-05-18 Hand Held Products, Inc. Application development using multiple primary user interfaces
US10402038B2 (en) 2015-01-08 2019-09-03 Hand Held Products, Inc. Stack handling using multiple primary user interfaces
US10804718B2 (en) 2015-01-08 2020-10-13 Hand Held Products, Inc. System and method for charging a barcode scanner
US10061565B2 (en) 2015-01-08 2018-08-28 Hand Held Products, Inc. Application development using mutliple primary user interfaces
EP3043300A1 (en) 2015-01-09 2016-07-13 Honeywell International Inc. Restocking workflow prioritization
US9861182B2 (en) 2015-02-05 2018-01-09 Hand Held Products, Inc. Device for supporting an electronic tool on a user's hand
EP3057092A1 (en) 2015-02-11 2016-08-17 Hand Held Products, Inc. Methods for training a speech recognition system
US10121466B2 (en) 2015-02-11 2018-11-06 Hand Held Products, Inc. Methods for training a speech recognition system
US9390596B1 (en) 2015-02-23 2016-07-12 Hand Held Products, Inc. Device, system, and method for determining the status of checkout lanes
US10097949B2 (en) 2015-02-23 2018-10-09 Hand Held Products, Inc. Device, system, and method for determining the status of lanes
US10051446B2 (en) 2015-03-06 2018-08-14 Hand Held Products, Inc. Power reports in wireless scanner systems
EP4224296A2 (en) 2015-03-20 2023-08-09 Hand Held Products, Inc. Method and application for scanning a barcode with a smart device while continuously running and displaying an application on the same device display
DE202016009146U1 (en) 2015-03-20 2023-01-13 Hand Held Products, Inc. Device for scanning a bar code with an intelligent device in continuous operation
EP3070587A1 (en) 2015-03-20 2016-09-21 Hand Held Products, Inc. Method and apparatus for scanning a barcode with a smart device while displaying an application on the smart device
EP3637239A1 (en) 2015-03-20 2020-04-15 Hand Held Products, Inc. Method and apparatus for scanning a barcode with a smart device while continuously running and displaying an application on the smart device display
EP3076330A1 (en) 2015-03-31 2016-10-05 Hand Held Products, Inc. Aimer for barcode scanning
US10972480B2 (en) 2015-04-01 2021-04-06 Hand Held Products, Inc. Device management proxy for secure devices
US9930050B2 (en) 2015-04-01 2018-03-27 Hand Held Products, Inc. Device management proxy for secure devices
US10331609B2 (en) 2015-04-15 2019-06-25 Hand Held Products, Inc. System for exchanging information between wireless peripherals and back-end systems via a peripheral hub
US9852102B2 (en) 2015-04-15 2017-12-26 Hand Held Products, Inc. System for exchanging information between wireless peripherals and back-end systems via a peripheral hub
EP3086281A1 (en) 2015-04-21 2016-10-26 Hand Held Products, Inc. Systems and methods for imaging
EP3086259A1 (en) 2015-04-21 2016-10-26 Hand Held Products, Inc. Capturing a graphic information presentation
US9693038B2 (en) 2015-04-21 2017-06-27 Hand Held Products, Inc. Systems and methods for imaging
US9521331B2 (en) 2015-04-21 2016-12-13 Hand Held Products, Inc. Capturing a graphic information presentation
EP3629223A1 (en) 2015-04-21 2020-04-01 Hand Held Products, Inc. Capturing a graphic information presentation
EP4027263A1 (en) 2015-04-21 2022-07-13 Hand Held Products, Inc. Capturing a graphic information presentation
US10860706B2 (en) 2015-04-24 2020-12-08 Hand Held Products, Inc. Secure unattended network authentication
US10038716B2 (en) 2015-05-01 2018-07-31 Hand Held Products, Inc. System and method for regulating barcode data injection into a running application on a smart device
US10401436B2 (en) 2015-05-04 2019-09-03 Hand Held Products, Inc. Tracking battery conditions
US9891612B2 (en) 2015-05-05 2018-02-13 Hand Held Products, Inc. Intermediate linear positioning
US10007112B2 (en) 2015-05-06 2018-06-26 Hand Held Products, Inc. Hands-free human machine interface responsive to a driver of a vehicle
US9954871B2 (en) 2015-05-06 2018-04-24 Hand Held Products, Inc. Method and system to protect software-based network-connected devices from advanced persistent threat
US10333955B2 (en) 2015-05-06 2019-06-25 Hand Held Products, Inc. Method and system to protect software-based network-connected devices from advanced persistent threat
US9978088B2 (en) 2015-05-08 2018-05-22 Hand Held Products, Inc. Application independent DEX/UCS interface
US10621634B2 (en) 2015-05-08 2020-04-14 Hand Held Products, Inc. Application independent DEX/UCS interface
US11403887B2 (en) 2015-05-19 2022-08-02 Hand Held Products, Inc. Evaluating image values
US11906280B2 (en) 2015-05-19 2024-02-20 Hand Held Products, Inc. Evaluating image values
US10360728B2 (en) 2015-05-19 2019-07-23 Hand Held Products, Inc. Augmented reality device, system, and method for safety
EP3096293A1 (en) 2015-05-19 2016-11-23 Hand Held Products, Inc. Methods for improving the accuracy of dimensioning-system measurements
US10593130B2 (en) 2015-05-19 2020-03-17 Hand Held Products, Inc. Evaluating image values
US9786101B2 (en) 2015-05-19 2017-10-10 Hand Held Products, Inc. Evaluating image values
USD792407S1 (en) 2015-06-02 2017-07-18 Hand Held Products, Inc. Mobile computer housing
US10303258B2 (en) 2015-06-10 2019-05-28 Hand Held Products, Inc. Indicia-reading systems having an interface with a user's nervous system
US9507974B1 (en) 2015-06-10 2016-11-29 Hand Held Products, Inc. Indicia-reading systems having an interface with a user's nervous system
US11488366B2 (en) 2015-06-12 2022-11-01 Hand Held Products, Inc. Augmented reality lighting effects
US10867450B2 (en) 2015-06-12 2020-12-15 Hand Held Products, Inc. Augmented reality lighting effects
US10354449B2 (en) 2015-06-12 2019-07-16 Hand Held Products, Inc. Augmented reality lighting effects
US10066982B2 (en) 2015-06-16 2018-09-04 Hand Held Products, Inc. Calibrating a volume dimensioner
US10741347B2 (en) 2015-06-16 2020-08-11 Hand Held Products, Inc. Tactile switch for a mobile electronic device
US9892876B2 (en) 2015-06-16 2018-02-13 Hand Held Products, Inc. Tactile switch for a mobile electronic device
US9949005B2 (en) 2015-06-18 2018-04-17 Hand Held Products, Inc. Customizable headset
US10247547B2 (en) 2015-06-23 2019-04-02 Hand Held Products, Inc. Optical pattern projector
US9857167B2 (en) 2015-06-23 2018-01-02 Hand Held Products, Inc. Dual-projector three-dimensional scanner
US10345383B2 (en) 2015-07-07 2019-07-09 Hand Held Products, Inc. Useful battery capacity / state of health gauge
US9835486B2 (en) 2015-07-07 2017-12-05 Hand Held Products, Inc. Mobile dimensioner apparatus for use in commerce
US10612958B2 (en) 2015-07-07 2020-04-07 Hand Held Products, Inc. Mobile dimensioner apparatus to mitigate unfair charging practices in commerce
US9955522B2 (en) 2015-07-07 2018-04-24 Hand Held Products, Inc. WiFi enable based on cell signals
EP3118576A1 (en) 2015-07-15 2017-01-18 Hand Held Products, Inc. Mobile dimensioning device with dynamic accuracy compatible with nist standard
US10393506B2 (en) 2015-07-15 2019-08-27 Hand Held Products, Inc. Method for a mobile dimensioning device to use a dynamic accuracy compatible with NIST standard
US11353319B2 (en) 2015-07-15 2022-06-07 Hand Held Products, Inc. Method for a mobile dimensioning device to use a dynamic accuracy compatible with NIST standard
EP3118573A1 (en) 2015-07-16 2017-01-18 Hand Held Products, Inc. Dimensioning and imaging items
US11029762B2 (en) 2015-07-16 2021-06-08 Hand Held Products, Inc. Adjusting dimensioning results using augmented reality
US10094650B2 (en) 2015-07-16 2018-10-09 Hand Held Products, Inc. Dimensioning and imaging items
US9488986B1 (en) 2015-07-31 2016-11-08 Hand Held Products, Inc. System and method for tracking an item on a pallet in a warehouse
US10740663B2 (en) 2015-08-12 2020-08-11 Hand Held Products, Inc. Verification of a printed image on media
US10467513B2 (en) 2015-08-12 2019-11-05 Datamax-O'neil Corporation Verification of a printed image on media
EP3131196A1 (en) 2015-08-12 2017-02-15 Hand Held Products, Inc. Faceted actuator shaft with rotation prevention
US9853575B2 (en) 2015-08-12 2017-12-26 Hand Held Products, Inc. Angular motor shaft with rotational attenuation
US9911023B2 (en) 2015-08-17 2018-03-06 Hand Held Products, Inc. Indicia reader having a filtered multifunction image sensor
US10896304B2 (en) 2015-08-17 2021-01-19 Hand Held Products, Inc. Indicia reader having a filtered multifunction image sensor
EP4016383A1 (en) 2015-08-17 2022-06-22 Hand Held Products, Inc. Indicia reader having a filtered multifunction image sensor
US10529335B2 (en) 2015-08-19 2020-01-07 Hand Held Products, Inc. Auto-complete methods for spoken complete value entries
US10410629B2 (en) 2015-08-19 2019-09-10 Hand Held Products, Inc. Auto-complete methods for spoken complete value entries
US10506516B2 (en) 2015-08-26 2019-12-10 Hand Held Products, Inc. Fleet power management through information storage sharing
US9781681B2 (en) 2015-08-26 2017-10-03 Hand Held Products, Inc. Fleet power management through information storage sharing
US9798413B2 (en) 2015-08-27 2017-10-24 Hand Held Products, Inc. Interactive display
US10897940B2 (en) 2015-08-27 2021-01-26 Hand Held Products, Inc. Gloves having measuring, scanning, and displaying capabilities
EP3136219A1 (en) 2015-08-27 2017-03-01 Hand Held Products, Inc. Interactive display
US11282515B2 (en) 2015-08-31 2022-03-22 Hand Held Products, Inc. Multiple inspector voice inspection
US11646028B2 (en) 2015-08-31 2023-05-09 Hand Held Products, Inc. Multiple inspector voice inspection
US10424842B2 (en) 2015-09-02 2019-09-24 Hand Held Products, Inc. Patch antenna
US9490540B1 (en) 2015-09-02 2016-11-08 Hand Held Products, Inc. Patch antenna
US9781502B2 (en) 2015-09-09 2017-10-03 Hand Held Products, Inc. Process and system for sending headset control information from a mobile device to a wireless headset
US10753802B2 (en) 2015-09-10 2020-08-25 Hand Held Products, Inc. System and method of determining if a surface is printed or a device screen
US10197446B2 (en) 2015-09-10 2019-02-05 Hand Held Products, Inc. System and method of determining if a surface is printed or a device screen
US9659198B2 (en) 2015-09-10 2017-05-23 Hand Held Products, Inc. System and method of determining if a surface is printed or a mobile device screen
US9652648B2 (en) 2015-09-11 2017-05-16 Hand Held Products, Inc. Positioning an object with respect to a target location
US10083331B2 (en) 2015-09-11 2018-09-25 Hand Held Products, Inc. Positioning an object with respect to a target location
US9805237B2 (en) 2015-09-18 2017-10-31 Hand Held Products, Inc. Cancelling noise caused by the flicker of ambient lights
US9916488B2 (en) 2015-09-23 2018-03-13 Intermec Technologies Corporation Evaluating images
US10185860B2 (en) 2015-09-23 2019-01-22 Intermec Technologies Corporation Evaluating images
US9646191B2 (en) 2015-09-23 2017-05-09 Intermec Technologies Corporation Evaluating images
US10373143B2 (en) 2015-09-24 2019-08-06 Hand Held Products, Inc. Product identification using electroencephalography
US10134112B2 (en) 2015-09-25 2018-11-20 Hand Held Products, Inc. System and process for displaying information from a mobile computer in a vehicle
EP3147151A1 (en) 2015-09-25 2017-03-29 Hand Held Products, Inc. A system and process for displaying information from a mobile computer in a vehicle
EP3151553A1 (en) 2015-09-30 2017-04-05 Hand Held Products, Inc. A self-calibrating projection apparatus and process
US10312483B2 (en) 2015-09-30 2019-06-04 Hand Held Products, Inc. Double locking mechanism on a battery latch
US10049249B2 (en) 2015-09-30 2018-08-14 Hand Held Products, Inc. Indicia reader safety
US9767337B2 (en) 2015-09-30 2017-09-19 Hand Held Products, Inc. Indicia reader safety
US10894431B2 (en) 2015-10-07 2021-01-19 Intermec Technologies Corporation Print position correction
US9844956B2 (en) 2015-10-07 2017-12-19 Intermec Technologies Corporation Print position correction
US9975324B2 (en) 2015-10-13 2018-05-22 Intermec Technologies Corporation Magnetic media holder for printer
US10308009B2 (en) 2015-10-13 2019-06-04 Intermec Ip Corp. Magnetic media holder for printer
US9656487B2 (en) 2015-10-13 2017-05-23 Intermec Technologies Corporation Magnetic media holder for printer
US10146194B2 (en) 2015-10-14 2018-12-04 Hand Held Products, Inc. Building lighting and temperature control with an augmented reality system
EP3159770A1 (en) 2015-10-19 2017-04-26 Hand Held Products, Inc. Quick release dock system and method
US9727083B2 (en) 2015-10-19 2017-08-08 Hand Held Products, Inc. Quick release dock system and method
US9883063B2 (en) 2015-10-27 2018-01-30 Intermec Technologies Corporation Media width sensing
US10057442B2 (en) 2015-10-27 2018-08-21 Intermec Technologies Corporation Media width sensing
US9876923B2 (en) 2015-10-27 2018-01-23 Intermec Technologies Corporation Media width sensing
US10248822B2 (en) 2015-10-29 2019-04-02 Hand Held Products, Inc. Scanner assembly with removable shock mount
US9684809B2 (en) 2015-10-29 2017-06-20 Hand Held Products, Inc. Scanner assembly with removable shock mount
US10395116B2 (en) 2015-10-29 2019-08-27 Hand Held Products, Inc. Dynamically created and updated indoor positioning map
EP3165939A1 (en) 2015-10-29 2017-05-10 Hand Held Products, Inc. Dynamically created and updated indoor positioning map
US10249030B2 (en) 2015-10-30 2019-04-02 Hand Held Products, Inc. Image transformation for indicia reading
US10397388B2 (en) 2015-11-02 2019-08-27 Hand Held Products, Inc. Extended features for network communication
US10129414B2 (en) 2015-11-04 2018-11-13 Intermec Technologies Corporation Systems and methods for detecting transparent media in printers
US10026377B2 (en) 2015-11-12 2018-07-17 Hand Held Products, Inc. IRDA converter tag
US9680282B2 (en) 2015-11-17 2017-06-13 Hand Held Products, Inc. Laser aiming for mobile devices
US10192194B2 (en) 2015-11-18 2019-01-29 Hand Held Products, Inc. In-vehicle package location identification at load and delivery times
US10225544B2 (en) 2015-11-19 2019-03-05 Hand Held Products, Inc. High resolution dot pattern
US10303909B2 (en) 2015-11-24 2019-05-28 Hand Held Products, Inc. Add-on device with configurable optics for an image scanner for scanning barcodes
US9864891B2 (en) 2015-11-24 2018-01-09 Intermec Technologies Corporation Automatic print speed control for indicia printer
US9697401B2 (en) 2015-11-24 2017-07-04 Hand Held Products, Inc. Add-on device with configurable optics for an image scanner for scanning barcodes
EP3173980A1 (en) 2015-11-24 2017-05-31 Intermec Technologies Corporation Automatic print speed control for indicia printer
US10064005B2 (en) 2015-12-09 2018-08-28 Hand Held Products, Inc. Mobile device with configurable communication technology modes and geofences
US10282526B2 (en) 2015-12-09 2019-05-07 Hand Held Products, Inc. Generation of randomized passwords for one-time usage
US9935946B2 (en) 2015-12-16 2018-04-03 Hand Held Products, Inc. Method and system for tracking an electronic device at an electronic device docking station
US10313340B2 (en) 2015-12-16 2019-06-04 Hand Held Products, Inc. Method and system for tracking an electronic device at an electronic device docking station
US9844158B2 (en) 2015-12-18 2017-12-12 Honeywell International, Inc. Battery cover locking mechanism of a mobile terminal and method of manufacturing the same
US9729744B2 (en) 2015-12-21 2017-08-08 Hand Held Products, Inc. System and method of border detection on a document and for producing an image of the document
US11282323B2 (en) 2015-12-31 2022-03-22 Hand Held Products, Inc. Devices, systems, and methods for optical validation
US11854333B2 (en) 2015-12-31 2023-12-26 Hand Held Products, Inc. Devices, systems, and methods for optical validation
US10325436B2 (en) 2015-12-31 2019-06-18 Hand Held Products, Inc. Devices, systems, and methods for optical validation
US9727840B2 (en) 2016-01-04 2017-08-08 Hand Held Products, Inc. Package physical characteristic identification system and method in supply chain management
US10217089B2 (en) 2016-01-05 2019-02-26 Intermec Technologies Corporation System and method for guided printer servicing
US9805343B2 (en) 2016-01-05 2017-10-31 Intermec Technologies Corporation System and method for guided printer servicing
US11423348B2 (en) 2016-01-11 2022-08-23 Hand Held Products, Inc. System and method for assessing worker performance
EP3193188A1 (en) 2016-01-12 2017-07-19 Hand Held Products, Inc. Programmable reference beacons
US10859667B2 (en) 2016-01-12 2020-12-08 Hand Held Products, Inc. Programmable reference beacons
US10026187B2 (en) 2016-01-12 2018-07-17 Hand Held Products, Inc. Using image data to calculate an object's weight
US9945777B2 (en) 2016-01-14 2018-04-17 Hand Held Products, Inc. Multi-spectral imaging using longitudinal chromatic aberrations
EP3193146A1 (en) 2016-01-14 2017-07-19 Hand Held Products, Inc. Multi-spectral imaging using longitudinal chromatic aberrations
EP4325394A2 (en) 2016-01-26 2024-02-21 Hand Held Products, Inc. Enhanced matrix symbol error correction method
US10846498B2 (en) 2016-01-26 2020-11-24 Hand Held Products, Inc. Enhanced matrix symbol error correction method
EP3933662A1 (en) 2016-01-26 2022-01-05 Hand Held Products, Inc. Enhanced matrix symbol error correction method
US11727232B2 (en) 2016-01-26 2023-08-15 Hand Held Products, Inc. Enhanced matrix symbol error correction method
EP3200120A1 (en) 2016-01-26 2017-08-02 Hand Held Products, Inc. Enhanced matrix symbol error correction method
US10235547B2 (en) 2016-01-26 2019-03-19 Hand Held Products, Inc. Enhanced matrix symbol error correction method
US11449700B2 (en) 2016-01-26 2022-09-20 Hand Held Products, Inc. Enhanced matrix symbol error correction method
US10025314B2 (en) 2016-01-27 2018-07-17 Hand Held Products, Inc. Vehicle positioning and object avoidance
US10747227B2 (en) 2016-01-27 2020-08-18 Hand Held Products, Inc. Vehicle positioning and object avoidance
US10061118B2 (en) 2016-02-04 2018-08-28 Hand Held Products, Inc. Beam shaping system and scanner
US9990784B2 (en) 2016-02-05 2018-06-05 Hand Held Products, Inc. Dynamic identification badge
US9955072B2 (en) 2016-03-09 2018-04-24 Hand Held Products, Inc. Imaging device for producing high resolution images using subpixel shifts and method of using same
US9674430B1 (en) 2016-03-09 2017-06-06 Hand Held Products, Inc. Imaging device for producing high resolution images using subpixel shifts and method of using same
EP3217353A1 (en) 2016-03-09 2017-09-13 Hand Held Products, Inc. An imaging device for producing high resolution images using subpixel shifts and method of using same
US11125885B2 (en) 2016-03-15 2021-09-21 Hand Held Products, Inc. Monitoring user biometric parameters with nanotechnology in personal locator beacon
US10394316B2 (en) 2016-04-07 2019-08-27 Hand Held Products, Inc. Multiple display modes on a mobile device
EP3239891A1 (en) 2016-04-14 2017-11-01 Hand Held Products, Inc. Customizable aimer system for indicia reading terminal
EP3232367A1 (en) 2016-04-15 2017-10-18 Hand Held Products, Inc. Imaging barcode reader with color separated aimer and illuminator
EP4006769A1 (en) 2016-04-15 2022-06-01 Hand Held Products, Inc. Imaging barcode reader with color-separated aimer and illuminator
US10055625B2 (en) 2016-04-15 2018-08-21 Hand Held Products, Inc. Imaging barcode reader with color-separated aimer and illuminator
US10185906B2 (en) 2016-04-26 2019-01-22 Hand Held Products, Inc. Indicia reading device and methods for decoding decodable indicia employing stereoscopic imaging
US10755154B2 (en) 2016-04-26 2020-08-25 Hand Held Products, Inc. Indicia reading device and methods for decoding decodable indicia employing stereoscopic imaging
EP3660727A1 (en) 2016-04-26 2020-06-03 Hand Held Products, Inc. Indicia reading device and methods for decoding decodable indicia employing stereoscopic imaging
EP4036789A1 (en) 2016-04-26 2022-08-03 Hand Held Products, Inc. Indicia reading device and methods for decoding decodable indicia employing stereoscopic imaging
EP3239892A1 (en) 2016-04-26 2017-11-01 Hand Held Products, Inc. Indicia reading device and methods for decoding decodable indicia employing stereoscopic imaging
US9727841B1 (en) 2016-05-20 2017-08-08 Vocollect, Inc. Systems and methods for reducing picking operation errors
EP3246863A1 (en) 2016-05-20 2017-11-22 Vocollect, Inc. Systems and methods for reducing picking operation errors
US10183500B2 (en) 2016-06-01 2019-01-22 Datamax-O'neil Corporation Thermal printhead temperature control
EP3252703A1 (en) 2016-06-03 2017-12-06 Hand Held Products, Inc. Wearable metrological apparatus
US10339352B2 (en) 2016-06-03 2019-07-02 Hand Held Products, Inc. Wearable metrological apparatus
US10872214B2 (en) 2016-06-03 2020-12-22 Hand Held Products, Inc. Wearable metrological apparatus
US9940721B2 (en) 2016-06-10 2018-04-10 Hand Held Products, Inc. Scene change detection in a dimensioner
EP3255376A1 (en) 2016-06-10 2017-12-13 Hand Held Products, Inc. Scene change detection in a dimensioner
US10791213B2 (en) 2016-06-14 2020-09-29 Hand Held Products, Inc. Managing energy usage in mobile devices
US10306051B2 (en) 2016-06-14 2019-05-28 Hand Held Products, Inc. Managing energy usage in mobile devices
US10097681B2 (en) 2016-06-14 2018-10-09 Hand Held Products, Inc. Managing energy usage in mobile devices
US10163216B2 (en) 2016-06-15 2018-12-25 Hand Held Products, Inc. Automatic mode switching in a volume dimensioner
US10417769B2 (en) 2016-06-15 2019-09-17 Hand Held Products, Inc. Automatic mode switching in a volume dimensioner
EP3258210A1 (en) 2016-06-15 2017-12-20 Hand Held Products, Inc. Automatic mode switching in a volume dimensioner
US10268858B2 (en) 2016-06-16 2019-04-23 Hand Held Products, Inc. Eye gaze detection controlled indicia scanning system and method
US9990524B2 (en) 2016-06-16 2018-06-05 Hand Held Products, Inc. Eye gaze detection controlled indicia scanning system and method
US10733406B2 (en) 2016-06-16 2020-08-04 Hand Held Products, Inc. Eye gaze detection controlled indicia scanning system and method
US9876957B2 (en) 2016-06-21 2018-01-23 Hand Held Products, Inc. Dual mode image sensor and method of using same
US9955099B2 (en) 2016-06-21 2018-04-24 Hand Held Products, Inc. Minimum height CMOS image sensor
US9864887B1 (en) 2016-07-07 2018-01-09 Hand Held Products, Inc. Energizing scanners
US10313811B2 (en) 2016-07-13 2019-06-04 Hand Held Products, Inc. Systems and methods for determining microphone position
US10085101B2 (en) 2016-07-13 2018-09-25 Hand Held Products, Inc. Systems and methods for determining microphone position
US9662900B1 (en) 2016-07-14 2017-05-30 Datamax-O'neil Corporation Wireless thermal printhead system and method
US10286681B2 (en) 2016-07-14 2019-05-14 Intermec Technologies Corporation Wireless thermal printhead system and method
US10210366B2 (en) 2016-07-15 2019-02-19 Hand Held Products, Inc. Imaging scanner with positioning and display
US10733401B2 (en) 2016-07-15 2020-08-04 Hand Held Products, Inc. Barcode reader with viewing frame
US10896403B2 (en) 2016-07-18 2021-01-19 Vocollect, Inc. Systems and methods for managing dated products
US10714121B2 (en) 2016-07-27 2020-07-14 Vocollect, Inc. Distinguishing user speech from background speech in speech-dense environments
US11158336B2 (en) 2016-07-27 2021-10-26 Vocollect, Inc. Distinguishing user speech from background speech in speech-dense environments
US11837253B2 (en) 2016-07-27 2023-12-05 Vocollect, Inc. Distinguishing user speech from background speech in speech-dense environments
US9977941B2 (en) * 2016-07-29 2018-05-22 Ncr Corporation Barcode scanner illumination
US10183506B2 (en) 2016-08-02 2019-01-22 Datamas-O'neil Corporation Thermal printer having real-time force feedback on printhead pressure and method of using same
US9902175B1 (en) 2016-08-02 2018-02-27 Datamax-O'neil Corporation Thermal printer having real-time force feedback on printhead pressure and method of using same
US9919547B2 (en) 2016-08-04 2018-03-20 Datamax-O'neil Corporation System and method for active printing consistency control and damage protection
US10220643B2 (en) 2016-08-04 2019-03-05 Datamax-O'neil Corporation System and method for active printing consistency control and damage protection
US11157869B2 (en) 2016-08-05 2021-10-26 Vocollect, Inc. Monitoring worker movement in a warehouse setting
US10640325B2 (en) 2016-08-05 2020-05-05 Datamax-O'neil Corporation Rigid yet flexible spindle for rolled material
US10372954B2 (en) 2016-08-16 2019-08-06 Hand Held Products, Inc. Method for reading indicia off a display of a mobile device
US9940497B2 (en) 2016-08-16 2018-04-10 Hand Held Products, Inc. Minimizing laser persistence on two-dimensional image sensors
US10384462B2 (en) 2016-08-17 2019-08-20 Datamax-O'neil Corporation Easy replacement of thermal print head and simple adjustment on print pressure
US10685665B2 (en) 2016-08-17 2020-06-16 Vocollect, Inc. Method and apparatus to improve speech recognition in a high audio noise environment
US10158834B2 (en) 2016-08-30 2018-12-18 Hand Held Products, Inc. Corrected projection perspective distortion
US10286694B2 (en) 2016-09-02 2019-05-14 Datamax-O'neil Corporation Ultra compact printer
US10042593B2 (en) 2016-09-02 2018-08-07 Datamax-O'neil Corporation Printer smart folders using USB mass storage profile
US9805257B1 (en) 2016-09-07 2017-10-31 Datamax-O'neil Corporation Printer method and apparatus
US9946962B2 (en) 2016-09-13 2018-04-17 Datamax-O'neil Corporation Print precision improvement over long print jobs
US10484847B2 (en) 2016-09-13 2019-11-19 Hand Held Products, Inc. Methods for provisioning a wireless beacon
US10331930B2 (en) 2016-09-19 2019-06-25 Hand Held Products, Inc. Dot peen mark image acquisition
US9881194B1 (en) 2016-09-19 2018-01-30 Hand Held Products, Inc. Dot peen mark image acquisition
US10375473B2 (en) 2016-09-20 2019-08-06 Vocollect, Inc. Distributed environmental microphones to minimize noise during speech recognition
US10464349B2 (en) 2016-09-20 2019-11-05 Datamax-O'neil Corporation Method and system to calculate line feed error in labels on a printer
US9701140B1 (en) 2016-09-20 2017-07-11 Datamax-O'neil Corporation Method and system to calculate line feed error in labels on a printer
US9785814B1 (en) 2016-09-23 2017-10-10 Hand Held Products, Inc. Three dimensional aimer for barcode scanning
US9931867B1 (en) 2016-09-23 2018-04-03 Datamax-O'neil Corporation Method and system of determining a width of a printer ribbon
US10268859B2 (en) 2016-09-23 2019-04-23 Hand Held Products, Inc. Three dimensional aimer for barcode scanning
US10181321B2 (en) 2016-09-27 2019-01-15 Vocollect, Inc. Utilization of location and environment to improve recognition
EP3220369A1 (en) 2016-09-29 2017-09-20 Hand Held Products, Inc. Monitoring user biometric parameters with nanotechnology in personal locator beacon
US10694277B2 (en) 2016-10-03 2020-06-23 Vocollect, Inc. Communication headsets and systems for mobile application control and power savings
US9936278B1 (en) 2016-10-03 2018-04-03 Vocollect, Inc. Communication headsets and systems for mobile application control and power savings
US9892356B1 (en) 2016-10-27 2018-02-13 Hand Held Products, Inc. Backlit display detection and radio signature recognition
US10152664B2 (en) 2016-10-27 2018-12-11 Hand Held Products, Inc. Backlit display detection and radio signature recognition
US10114997B2 (en) 2016-11-16 2018-10-30 Hand Held Products, Inc. Reader for optical indicia presented under two or more imaging conditions within a single frame time
US10311274B2 (en) 2016-11-16 2019-06-04 Hand Held Products, Inc. Reader for optical indicia presented under two or more imaging conditions within a single frame time
US10022993B2 (en) 2016-12-02 2018-07-17 Datamax-O'neil Corporation Media guides for use in printers and methods for using the same
US10909708B2 (en) 2016-12-09 2021-02-02 Hand Held Products, Inc. Calibrating a dimensioner using ratios of measurable parameters of optic ally-perceptible geometric elements
US10698470B2 (en) 2016-12-09 2020-06-30 Hand Held Products, Inc. Smart battery balance system and method
US10976797B2 (en) 2016-12-09 2021-04-13 Hand Held Products, Inc. Smart battery balance system and method
US10395081B2 (en) 2016-12-09 2019-08-27 Hand Held Products, Inc. Encoding document capture bounds with barcodes
US10740855B2 (en) 2016-12-14 2020-08-11 Hand Held Products, Inc. Supply chain tracking of farm produce and crops
US10163044B2 (en) 2016-12-15 2018-12-25 Datamax-O'neil Corporation Auto-adjusted print location on center-tracked printers
US10044880B2 (en) 2016-12-16 2018-08-07 Datamax-O'neil Corporation Comparing printer models
US11430100B2 (en) 2016-12-19 2022-08-30 Datamax-O'neil Corporation Printer-verifiers and systems and methods for verifying printed indicia
US10304174B2 (en) 2016-12-19 2019-05-28 Datamax-O'neil Corporation Printer-verifiers and systems and methods for verifying printed indicia
US10559075B2 (en) 2016-12-19 2020-02-11 Datamax-O'neil Corporation Printer-verifiers and systems and methods for verifying printed indicia
US10237421B2 (en) 2016-12-22 2019-03-19 Datamax-O'neil Corporation Printers and methods for identifying a source of a problem therein
US10360424B2 (en) 2016-12-28 2019-07-23 Hand Held Products, Inc. Illuminator for DPM scanner
US10904453B2 (en) 2016-12-28 2021-01-26 Hand Held Products, Inc. Method and system for synchronizing illumination timing in a multi-sensor imager
US9827796B1 (en) 2017-01-03 2017-11-28 Datamax-O'neil Corporation Automatic thermal printhead cleaning system
US10911610B2 (en) 2017-01-10 2021-02-02 Datamax-O'neil Corporation Printer script autocorrect
US10652403B2 (en) 2017-01-10 2020-05-12 Datamax-O'neil Corporation Printer script autocorrect
US10468015B2 (en) 2017-01-12 2019-11-05 Vocollect, Inc. Automated TTS self correction system
US11042834B2 (en) 2017-01-12 2021-06-22 Vocollect, Inc. Voice-enabled substitutions with customer notification
US10387699B2 (en) 2017-01-12 2019-08-20 Hand Held Products, Inc. Waking system in barcode scanner
US10263443B2 (en) 2017-01-13 2019-04-16 Hand Held Products, Inc. Power capacity indicator
US11139665B2 (en) 2017-01-13 2021-10-05 Hand Held Products, Inc. Power capacity indicator
US10797498B2 (en) 2017-01-13 2020-10-06 Hand Held Products, Inc. Power capacity indicator
US9802427B1 (en) 2017-01-18 2017-10-31 Datamax-O'neil Corporation Printers and methods for detecting print media thickness therein
US10071575B2 (en) 2017-01-18 2018-09-11 Datamax-O'neil Corporation Printers and methods for detecting print media thickness therein
US9849691B1 (en) 2017-01-26 2017-12-26 Datamax-O'neil Corporation Detecting printing ribbon orientation
US10350905B2 (en) 2017-01-26 2019-07-16 Datamax-O'neil Corporation Detecting printing ribbon orientation
US10276009B2 (en) 2017-01-26 2019-04-30 Hand Held Products, Inc. Method of reading a barcode and deactivating an electronic article surveillance tag
US10158612B2 (en) 2017-02-07 2018-12-18 Hand Held Products, Inc. Imaging-based automatic data extraction with security scheme
US10984374B2 (en) 2017-02-10 2021-04-20 Vocollect, Inc. Method and system for inputting products into an inventory system
US10252874B2 (en) 2017-02-20 2019-04-09 Datamax-O'neil Corporation Clutch bearing to keep media tension for better sensing accuracy
US9908351B1 (en) 2017-02-27 2018-03-06 Datamax-O'neil Corporation Segmented enclosure
US10336112B2 (en) 2017-02-27 2019-07-02 Datamax-O'neil Corporation Segmented enclosure
US10195880B2 (en) 2017-03-02 2019-02-05 Datamax-O'neil Corporation Automatic width detection
US10737911B2 (en) 2017-03-02 2020-08-11 Hand Held Products, Inc. Electromagnetic pallet and method for adjusting pallet position
US10710375B2 (en) 2017-03-03 2020-07-14 Datamax-O'neil Corporation Region-of-interest based print quality optimization
US11014374B2 (en) 2017-03-03 2021-05-25 Datamax-O'neil Corporation Region-of-interest based print quality optimization
US10105963B2 (en) 2017-03-03 2018-10-23 Datamax-O'neil Corporation Region-of-interest based print quality optimization
US10867145B2 (en) 2017-03-06 2020-12-15 Datamax-O'neil Corporation Systems and methods for barcode verification
US11047672B2 (en) 2017-03-28 2021-06-29 Hand Held Products, Inc. System for optically dimensioning
US10953672B2 (en) 2017-03-30 2021-03-23 Datamax-O'neil Corporation Detecting label stops
US10780721B2 (en) 2017-03-30 2020-09-22 Datamax-O'neil Corporation Detecting label stops
US10798316B2 (en) 2017-04-04 2020-10-06 Hand Held Products, Inc. Multi-spectral imaging using longitudinal chromatic aberrations
US10896361B2 (en) 2017-04-19 2021-01-19 Hand Held Products, Inc. High ambient light electronic screen communication method
US10223626B2 (en) 2017-04-19 2019-03-05 Hand Held Products, Inc. High ambient light electronic screen communication method
US9937735B1 (en) 2017-04-20 2018-04-10 Datamax—O'Neil Corporation Self-strip media module
US10189285B2 (en) 2017-04-20 2019-01-29 Datamax-O'neil Corporation Self-strip media module
US10463140B2 (en) 2017-04-28 2019-11-05 Hand Held Products, Inc. Attachment apparatus for electronic device
US10810541B2 (en) 2017-05-03 2020-10-20 Hand Held Products, Inc. Methods for pick and put location verification
US10549561B2 (en) 2017-05-04 2020-02-04 Datamax-O'neil Corporation Apparatus for sealing an enclosure
US10967660B2 (en) 2017-05-12 2021-04-06 Datamax-O'neil Corporation Media replacement process for thermal printers
US10438098B2 (en) 2017-05-19 2019-10-08 Hand Held Products, Inc. High-speed OCR decode using depleted centerlines
US11295182B2 (en) 2017-05-19 2022-04-05 Hand Held Products, Inc. High-speed OCR decode using depleted centerlines
US10523038B2 (en) 2017-05-23 2019-12-31 Hand Held Products, Inc. System and method for wireless charging of a beacon and/or sensor device
US11428744B2 (en) 2017-05-26 2022-08-30 Hand Held Products, Inc. Methods for estimating a number of workflow cycles able to be completed from a remaining battery capacity
US10732226B2 (en) 2017-05-26 2020-08-04 Hand Held Products, Inc. Methods for estimating a number of workflow cycles able to be completed from a remaining battery capacity
US10592536B2 (en) 2017-05-30 2020-03-17 Hand Held Products, Inc. Systems and methods for determining a location of a user when using an imaging device in an indoor facility
US10332099B2 (en) 2017-06-09 2019-06-25 Hand Held Products, Inc. Secure paper-free bills in workflow applications
US9984366B1 (en) 2017-06-09 2018-05-29 Hand Held Products, Inc. Secure paper-free bills in workflow applications
US10035367B1 (en) 2017-06-21 2018-07-31 Datamax-O'neil Corporation Single motor dynamic ribbon feedback system for a printer
US10710386B2 (en) 2017-06-21 2020-07-14 Datamax-O'neil Corporation Removable printhead
US11178008B2 (en) 2017-06-30 2021-11-16 Datamax-O'neil Corporation Managing a fleet of devices
US11496484B2 (en) 2017-06-30 2022-11-08 Datamax-O'neil Corporation Managing a fleet of workflow devices and standby devices in a device network
US10644944B2 (en) 2017-06-30 2020-05-05 Datamax-O'neil Corporation Managing a fleet of devices
US10778690B2 (en) 2017-06-30 2020-09-15 Datamax-O'neil Corporation Managing a fleet of workflow devices and standby devices in a device network
US10977594B2 (en) 2017-06-30 2021-04-13 Datamax-O'neil Corporation Managing a fleet of devices
US10747975B2 (en) 2017-07-06 2020-08-18 Hand Held Products, Inc. Methods for changing a configuration of a device for reading machine-readable code
US10127423B1 (en) 2017-07-06 2018-11-13 Hand Held Products, Inc. Methods for changing a configuration of a device for reading machine-readable code
US10216969B2 (en) 2017-07-10 2019-02-26 Hand Held Products, Inc. Illuminator for directly providing dark field and bright field illumination
US10264165B2 (en) 2017-07-11 2019-04-16 Hand Held Products, Inc. Optical bar assemblies for optical systems and isolation damping systems including the same
US10867141B2 (en) 2017-07-12 2020-12-15 Hand Held Products, Inc. System and method for augmented reality configuration of indicia readers
US10956033B2 (en) 2017-07-13 2021-03-23 Hand Held Products, Inc. System and method for generating a virtual keyboard with a highlighted area of interest
US10733748B2 (en) 2017-07-24 2020-08-04 Hand Held Products, Inc. Dual-pattern optical 3D dimensioning
US11120238B2 (en) 2017-07-28 2021-09-14 Hand Held Products, Inc. Decoding color barcodes
US10796119B2 (en) 2017-07-28 2020-10-06 Hand Held Products, Inc. Decoding color barcodes
US10255469B2 (en) 2017-07-28 2019-04-09 Hand Held Products, Inc. Illumination apparatus for a barcode reader
US11587387B2 (en) 2017-07-28 2023-02-21 Hand Held Products, Inc. Systems and methods for processing a distorted image
US10650631B2 (en) 2017-07-28 2020-05-12 Hand Held Products, Inc. Systems and methods for processing a distorted image
US10099485B1 (en) 2017-07-31 2018-10-16 Datamax-O'neil Corporation Thermal print heads and printers including the same
US10373032B2 (en) 2017-08-01 2019-08-06 Datamax-O'neil Corporation Cryptographic printhead
US10956695B2 (en) 2017-08-04 2021-03-23 Hand Held Products, Inc. Indicia reader acoustic for multiple mounting positions
US11790196B2 (en) 2017-08-04 2023-10-17 Hand Held Products, Inc. Indicia reader acoustic for multiple mounting positions
US11373051B2 (en) 2017-08-04 2022-06-28 Hand Held Products, Inc. Indicia reader acoustic for multiple mounting positions
US10635871B2 (en) 2017-08-04 2020-04-28 Hand Held Products, Inc. Indicia reader acoustic for multiple mounting positions
US10749300B2 (en) 2017-08-11 2020-08-18 Hand Held Products, Inc. POGO connector based soft power start solution
US10803267B2 (en) 2017-08-18 2020-10-13 Hand Held Products, Inc. Illuminator for a barcode scanner
US10960681B2 (en) 2017-09-06 2021-03-30 Datamax-O'neil Corporation Autocorrection for uneven print pressure on print media
US10399359B2 (en) 2017-09-06 2019-09-03 Vocollect, Inc. Autocorrection for uneven print pressure on print media
US10372389B2 (en) 2017-09-22 2019-08-06 Datamax-O'neil Corporation Systems and methods for printer maintenance operations
US10756900B2 (en) 2017-09-28 2020-08-25 Hand Held Products, Inc. Non-repudiation protocol using time-based one-time password (TOTP)
US11475655B2 (en) 2017-09-29 2022-10-18 Datamax-O'neil Corporation Methods for optical character recognition (OCR)
US10621470B2 (en) 2017-09-29 2020-04-14 Datamax-O'neil Corporation Methods for optical character recognition (OCR)
US10245861B1 (en) 2017-10-04 2019-04-02 Datamax-O'neil Corporation Printers, printer spindle assemblies, and methods for determining media width for controlling media tension
US10868958B2 (en) 2017-10-05 2020-12-15 Hand Held Products, Inc. Methods for constructing a color composite image
US10728445B2 (en) 2017-10-05 2020-07-28 Hand Held Products Inc. Methods for constructing a color composite image
US10884059B2 (en) 2017-10-18 2021-01-05 Hand Held Products, Inc. Determining the integrity of a computing device
US10654287B2 (en) 2017-10-19 2020-05-19 Datamax-O'neil Corporation Print quality setup using banks in parallel
US10084556B1 (en) 2017-10-20 2018-09-25 Hand Held Products, Inc. Identifying and transmitting invisible fence signals with a mobile data terminal
US10293624B2 (en) 2017-10-23 2019-05-21 Datamax-O'neil Corporation Smart media hanger with media width detection
US10399369B2 (en) 2017-10-23 2019-09-03 Datamax-O'neil Corporation Smart media hanger with media width detection
US11593591B2 (en) 2017-10-25 2023-02-28 Hand Held Products, Inc. Optical character recognition systems and methods
US10679101B2 (en) 2017-10-25 2020-06-09 Hand Held Products, Inc. Optical character recognition systems and methods
US10210364B1 (en) 2017-10-31 2019-02-19 Hand Held Products, Inc. Direct part marking scanners including dome diffusers with edge illumination assemblies
US10427424B2 (en) 2017-11-01 2019-10-01 Datamax-O'neil Corporation Estimating a remaining amount of a consumable resource based on a center of mass calculation
US10181896B1 (en) 2017-11-01 2019-01-15 Hand Held Products, Inc. Systems and methods for reducing power consumption in a satellite communication device
US10369823B2 (en) 2017-11-06 2019-08-06 Datamax-O'neil Corporation Print head pressure detection and adjustment
US10369804B2 (en) 2017-11-10 2019-08-06 Datamax-O'neil Corporation Secure thermal print head
US10399361B2 (en) 2017-11-21 2019-09-03 Datamax-O'neil Corporation Printer, system and method for programming RFID tags on media labels
US10654697B2 (en) 2017-12-01 2020-05-19 Hand Held Products, Inc. Gyroscopically stabilized vehicle system
US10232628B1 (en) 2017-12-08 2019-03-19 Datamax-O'neil Corporation Removably retaining a print head assembly on a printer
US10703112B2 (en) 2017-12-13 2020-07-07 Datamax-O'neil Corporation Image to script converter
US11155102B2 (en) 2017-12-13 2021-10-26 Datamax-O'neil Corporation Image to script converter
US10756563B2 (en) 2017-12-15 2020-08-25 Datamax-O'neil Corporation Powering devices using low-current power sources
US11152812B2 (en) 2017-12-15 2021-10-19 Datamax-O'neil Corporation Powering devices using low-current power sources
US10323929B1 (en) 2017-12-19 2019-06-18 Datamax-O'neil Corporation Width detecting media hanger
US11117407B2 (en) 2017-12-27 2021-09-14 Datamax-O'neil Corporation Method and apparatus for printing
US10773537B2 (en) 2017-12-27 2020-09-15 Datamax-O'neil Corporation Method and apparatus for printing
US10999460B2 (en) 2018-01-05 2021-05-04 Datamax-O'neil Corporation Methods, apparatuses, and systems for detecting printing defects and contaminated components of a printer
US10795618B2 (en) 2018-01-05 2020-10-06 Datamax-O'neil Corporation Methods, apparatuses, and systems for verifying printed image and improving print quality
US20190212955A1 (en) 2018-01-05 2019-07-11 Datamax-O'neil Corporation Methods, apparatuses, and systems for verifying printed image and improving print quality
EP4030743A1 (en) 2018-01-05 2022-07-20 Datamax-O'Neil Corporation Methods, apparatuses, and systems for providing print quality feedback and controlling print quality of machine-readable indicia
US11943406B2 (en) 2018-01-05 2024-03-26 Hand Held Products, Inc. Methods, apparatuses, and systems for detecting printing defects and contaminated components of a printer
US11941307B2 (en) 2018-01-05 2024-03-26 Hand Held Products, Inc. Methods, apparatuses, and systems captures image of pre-printed print media information for generating validation image by comparing post-printed image with pre-printed image and improving print quality
US10803264B2 (en) 2018-01-05 2020-10-13 Datamax-O'neil Corporation Method, apparatus, and system for characterizing an optical system
US11900201B2 (en) 2018-01-05 2024-02-13 Hand Held Products, Inc. Methods, apparatuses, and systems for providing print quality feedback and controlling print quality of machine readable indicia
US10834283B2 (en) 2018-01-05 2020-11-10 Datamax-O'neil Corporation Methods, apparatuses, and systems for detecting printing defects and contaminated components of a printer
US11625203B2 (en) 2018-01-05 2023-04-11 Hand Held Products, Inc. Methods, apparatuses, and systems for scanning pre-printed print media to verify printed image and improving print quality
US10546160B2 (en) 2018-01-05 2020-01-28 Datamax-O'neil Corporation Methods, apparatuses, and systems for providing print quality feedback and controlling print quality of machine-readable indicia
EP4266254A2 (en) 2018-01-05 2023-10-25 Hand Held Products, Inc. Methods, apparatuses, and systems for detecting printing defects and contaminated components of a printer
US11157217B2 (en) 2018-01-05 2021-10-26 Datamax-O'neil Corporation Methods, apparatuses, and systems for verifying printed image and improving print quality
US11301646B2 (en) 2018-01-05 2022-04-12 Datamax-O'neil Corporation Methods, apparatuses, and systems for providing print quality feedback and controlling print quality of machine readable indicia
US11210483B2 (en) 2018-01-05 2021-12-28 Datamax-O'neil Corporation Method, apparatus, and system for characterizing an optical system
US10731963B2 (en) 2018-01-09 2020-08-04 Datamax-O'neil Corporation Apparatus and method of measuring media thickness
US10897150B2 (en) 2018-01-12 2021-01-19 Hand Held Products, Inc. Indicating charge status
US11894705B2 (en) 2018-01-12 2024-02-06 Hand Held Products, Inc. Indicating charge status
US11126384B2 (en) 2018-01-26 2021-09-21 Datamax-O'neil Corporation Removably couplable printer and verifier assembly
US10809949B2 (en) 2018-01-26 2020-10-20 Datamax-O'neil Corporation Removably couplable printer and verifier assembly
EP3564880A1 (en) 2018-05-01 2019-11-06 Honeywell International Inc. System and method for validating physical-item security
US10584962B2 (en) 2018-05-01 2020-03-10 Hand Held Products, Inc System and method for validating physical-item security
US10434800B1 (en) 2018-05-17 2019-10-08 Datamax-O'neil Corporation Printer roll feed mechanism
US11639846B2 (en) 2019-09-27 2023-05-02 Honeywell International Inc. Dual-pattern optical 3D dimensioning
US20210365647A1 (en) * 2019-11-08 2021-11-25 Zebra Technologies Corporation Bioptic Scanner Optical Arrangement with Single Sensor Split Four Ways
US11120237B2 (en) * 2019-11-08 2021-09-14 Zebra Technologies Corporation Bioptic scanner optical arrangement with single sensor split four ways
US11630967B2 (en) * 2019-11-08 2023-04-18 Zebra Technologies Corporation Bioptic scanner optical arrangement with single sensor split four ways
US11210482B2 (en) * 2019-11-15 2021-12-28 Zebra Technologies Corporation Barcode reader having calibration of scanner image brightness with multiple FOVs from a single sensor
GB2602239A (en) * 2019-12-13 2022-06-22 Zebra Tech Corp Industrial digital barcode reader
GB2602239B (en) * 2019-12-13 2022-11-02 Zebra Tech Corp Industrial digital barcode reader
WO2023009292A1 (en) * 2021-07-29 2023-02-02 Zebra Technologies Corporation Methods and apparatuses to mitigate specular reflections and direct illumination interference in bioptic barcode readers
US11769021B2 (en) 2021-07-29 2023-09-26 Zebra Technologies Corporation Methods and apparatuses to mitigate specular reflections and direct illumination interference in bioptic barcode readers
US11334734B1 (en) * 2021-07-29 2022-05-17 Zebra Technologies Corporation Methods and apparatuses to mitigate specular reflections and direct illumination interference in bioptic barcode readers
GB2623230A (en) * 2021-07-29 2024-04-10 Zebra Tech Corp Methods and apparatuses to mitigate specular reflections and direct illumination interference in bioptic barcode readers

Also Published As

Publication number Publication date
US8523076B2 (en) 2013-09-03

Similar Documents

Publication Publication Date Title
US8523076B2 (en) Omnidirectional laser scanning bar code symbol reader generating a laser scanning pattern with a highly non-uniform scan density with respect to line orientation
US20130175341A1 (en) Hybrid-type bioptical laser scanning and digital imaging system employing digital imager with field of view overlapping field of field of laser scanning subsystem
US8998091B2 (en) Hybrid-type bioptical laser scanning and digital imaging system supporting automatic object motion detection at the edges of a 3D scanning volume
US8561905B2 (en) Hybrid-type bioptical laser scanning and digital imaging system supporting automatic object motion detection at the edges of a 3D scanning volume
US8469272B2 (en) Hybrid-type bioptical laser scanning and imaging system supporting digital-imaging based bar code symbol reading at the surface of a laser scanning window
US8474712B2 (en) Method of and system for displaying product related information at POS-based retail checkout systems
US10133885B2 (en) Method of and system for reading visible and/or invisible code symbols in a user-transparent manner using visible/invisible illumination source switching during data capture and processing operations
EP0980537B1 (en) Optical scanner and image reader for reading images and decoding optical information including one and two dimensional symbologies at variable depth of field
US7533819B2 (en) Dual camera assembly for an imaging-based bar code reader
US8424767B2 (en) Auto-exposure for multi-imager barcode reader
US8678285B2 (en) Method of and apparatus for multiplying raster scanning lines by modulating a multi-cavity laser diode
EP1223535B1 (en) Bioptics bar code reader
US8662397B2 (en) Multiple camera imaging-based bar code reader
US20120193423A1 (en) Code symbol reading system supporting operator-dependent system configuration parameters
US8534556B2 (en) Arrangement for and method of reducing vertical parallax between an aiming pattern and an imaging field of view in a linear imaging reader
US20090020612A1 (en) Imaging dual window scanner with presentation scanning
US20080265035A1 (en) Dual imaging lens system for bar code reader
WO2010005787A1 (en) Multi-imaging scanner for reading multiple images
US9959442B2 (en) Extended depth of field in imaging machine-readable symbol reader using image side telecentric lens
US20100078483A1 (en) Arrangement for and method of generating uniform distributed line pattern for imaging reader
WO2013026180A1 (en) Optical code symbol reading system employing axicon-generated laser aiming beam
US20080296388A1 (en) Compact, ergonomic imaging reader and method
US8313033B1 (en) Minimizing specular reflection in electro-optical workstations having object sensors
EP2140398B1 (en) Image enhancement in imaging system
US8006906B2 (en) Arrangement for and method of generating uniform distributed line pattern for imaging reader

Legal Events

Date Code Title Description
AS Assignment

Owner name: METROLOGIC INSTRUMENTS, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GOOD, TIMOTHY;REEL/FRAME:028118/0227

Effective date: 20120403

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8