US20120012748A1 - Architectures for imager arrays and array cameras - Google Patents

Architectures for imager arrays and array cameras Download PDF

Info

Publication number
US20120012748A1
US20120012748A1 US13/106,797 US201113106797A US2012012748A1 US 20120012748 A1 US20120012748 A1 US 20120012748A1 US 201113106797 A US201113106797 A US 201113106797A US 2012012748 A1 US2012012748 A1 US 2012012748A1
Authority
US
United States
Prior art keywords
array
pixels
imager array
focal planes
imager
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/106,797
Inventor
Bedabrato Pain
Andrew Kenneth John McMahon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pelican Imaging Corp
Fotonation Cayman Ltd
Drawbridge Special Opportunities Fund LP
Original Assignee
Pelican Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pelican Imaging Corp filed Critical Pelican Imaging Corp
Priority to US13/106,797 priority Critical patent/US20120012748A1/en
Assigned to PELICAN IMAGING CORPORATION reassignment PELICAN IMAGING CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCMAHON, ANDREW KENNETH JOHN, PAIN, BEDABRATO
Publication of US20120012748A1 publication Critical patent/US20120012748A1/en
Priority to US13/761,040 priority patent/US20130147979A1/en
Assigned to KIP PELI P1 LP reassignment KIP PELI P1 LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PELICAN IMAGING CORPORATION
Assigned to DBD CREDIT FUNDING LLC reassignment DBD CREDIT FUNDING LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PELICAN IMAGING CORPORATION
Assigned to KIP PELI P1 LP reassignment KIP PELI P1 LP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PELICAN IMAGING CORPORATION
Assigned to DBD CREDIT FUNDING LLC reassignment DBD CREDIT FUNDING LLC CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR AND ASSIGNEE PREVIOUSLY RECORDED AT REEL: 037565 FRAME: 0439. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST. Assignors: KIP PELI P1 LP
Priority to US15/159,076 priority patent/US20170048468A1/en
Assigned to DRAWBRIDGE OPPORTUNITIES FUND LP reassignment DRAWBRIDGE OPPORTUNITIES FUND LP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DBD CREDIT FUNDING LLC
Assigned to DRAWBRIDGE OPPORTUNITIES FUND LP reassignment DRAWBRIDGE OPPORTUNITIES FUND LP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DBD CREDIT FUNDING LLC
Assigned to DRAWBRIDGE SPECIAL OPPORTUNITIES FUND LP reassignment DRAWBRIDGE SPECIAL OPPORTUNITIES FUND LP CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DBD CREDIT FUNDING LLC
Assigned to DRAWBRIDGE SPECIAL OPPORTUNITIES FUND LP reassignment DRAWBRIDGE SPECIAL OPPORTUNITIES FUND LP CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DBD CREDIT FUNDING LLC
Assigned to FOTONATION CAYMAN LIMITED reassignment FOTONATION CAYMAN LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PELICAN IMAGING CORPORATION
Assigned to PELICAN IMAGING CORPORATION reassignment PELICAN IMAGING CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIP PELI P1 LP
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/44Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/951Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/41Extracting pixel data from a plurality of image sensors simultaneously picking up an image, e.g. for increasing the field of view by combining the outputs of a plurality of sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/672Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction between adjacent sensors or output registers for reading a single image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/767Horizontal readout lines, multiplexers or registers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Definitions

  • the present invention relates generally to imagers and more specifically to imager arrays used in array cameras.
  • a sensor used in a conventional single sensor camera typically includes a row controller and one or more column read-out circuits.
  • the term “row” is typically used to refer to a group of pixels that share a common control line(s) and the term “column” is a group of pixels that share a common read-out line(s).
  • a number of array camera designs have been proposed that use either an array of individual cameras/sensors or a lens array focused on a single focal plane sensor. When multiple separate cameras are used in the implementation of an array camera, each camera has a separate I/O path and the camera controllers are typically required to be synchronized in some way.
  • the senor When a lens array focused on a single focal plane sensor is used to implement an array camera, the sensor is typically a conventional sensor similar to that used in a conventional camera. As such, the sensor does not possess the ability to independently control the pixels within the image circle of each lens in the lens array.
  • an imager array is implemented as a monolithic integrated circuit in accordance with embodiments of the invention.
  • the imager array includes a plurality of imagers that are each independently controlled by control logic within the imager array and the image data captured by each imager is output from the imager array using a common I/O path.
  • the pixels of each imager are backside illuminated and the bulk silicon of the imager array is thinned to different depths in the regions corresponding to different imagers in accordance with the spectral wavelengths sensed by each imager.
  • One embodiment of the invention includes a plurality of focal planes, where each focal plane comprises a two dimensional arrangement of pixels having at least two pixels in each dimension and each focal plane is contained within a region of the imager array that does not contain pixels from another focal plane, control circuitry configured to control the capture of image information by the pixels within the focal planes, where the control circuitry is configured so that the capture of image information by the pixels in at least two of the focal planes is separately controllable, and sampling circuitry configured to convert pixel outputs into digital pixel data.
  • the plurality of focal planes is arranged as a two dimensional array of focal planes having at least three focal planes in one dimension.
  • the plurality of focal planes is arranged as a two dimensional array of focal planes having at least three focal planes in both dimensions.
  • the plurality of focal planes arranged as an N ⁇ M array of focal planes comprising at least two focal planes configured to capture blue light, at least two focal planes configured to capture green light, and at least two focal planes configured to capture red light.
  • each focal plane comprises rows and columns of pixels.
  • control circuitry is configured to control capture of image information by a pixel by controlling the resetting of the pixel.
  • control circuitry is configured to control capture of image information by a pixel by controlling the readout of the pixel.
  • control circuitry is configured to control capture of image information by controlling the integration time of each pixel.
  • control circuitry is configured to control the processing of image information by controlling the gain of the sampling circuitry.
  • control circuitry is configured to control the processing of image information by controlling the black level offset of each pixel.
  • control circuitry is configured to control the capture of image information by controlling readout direction.
  • the read-out direction is selected from the group including top to bottom, and bottom to top.
  • the read-out direction is selected from the group including left to right, and right to left.
  • control circuitry is configured to control the capture of image information by controlling the readout region of interest.
  • control circuitry is configured to control the capture of image information by controlling horizontal sub-sampling.
  • control circuitry is configured to control the capture of image information by controlling vertical sub-sampling.
  • control circuitry is configured to control the capture of image information by controlling pixel charge-binning.
  • the imager array is a monolithic integrated circuit imager array.
  • a two dimensional array of adjacent pixels in at least one focal plane have the same capture band.
  • the capture band is selected from the group including blue light, cyan light, extended color light comprising visible light and near-infra red light, green light, infra-red light, magenta light, near-infra red light, red light, yellow light, and white light.
  • a first array of adjacent pixels in a first focal plane have a first capture band
  • a second array of adjacent pixels in a second focal plane have a second capture band
  • the peripheral circuitry is configured so that the integration time of the first array of adjacent pixels is a first time period
  • the peripheral circuitry is configured so that the integration time of the second array of adjacent pixels is a second time period, where the second time period is longer than the first time period.
  • At least one of the focal planes includes an array of adjacent pixels, where the pixels in the array of adjacent pixels are configured to capture different colors of light.
  • the array of adjacent pixels employs a Bayer filter pattern.
  • the plurality of focal planes is arranged as a 2 ⁇ 2 array of focal planes
  • a first focal plane in the array of focal planes includes an array of adjacent pixels that employ a Bayer filter pattern
  • a second focal plane in the array of focal planes includes an array of adjacent pixels configured to capture green light
  • a third focal plane in the array of focal planes includes an array of adjacent pixels configured to capture red light
  • a fourth focal plane in the array of focal planes includes an array of adjacent pixels configured to capture blue light.
  • the plurality of focal planes is arranged as a two dimensional array of focal planes having at least three focal planes in one dimension.
  • the plurality of focal planes is arranged as a two dimensional array of focal planes having at least three focal planes in both dimensions.
  • control circuitry comprises a global counter.
  • control circuitry is configured to stagger the start points of image read-out such that each focal plane has a controlled temporal offset with respect to a global counter.
  • control circuitry is configured to separately control the integration times of the pixels in each focal plane based upon the capture band of the pixels in the focal plane using the global counter.
  • control circuitry is configured to separately control the frame rate of each focal plane based upon the global counter.
  • control circuitry further comprises a pair of pointers for each focal plane.
  • the offset between the pointers specifies an integration time.
  • the offset between the pointers is programmable.
  • control circuitry comprises a row controller dedicated to each focal plane.
  • the imager array includes an array of M ⁇ N focal planes
  • the control circuitry comprises a single row decoder circuit configured to address each row of pixels in each row of M focal planes.
  • control circuitry is configured to generate a first set of pixel level timing signals so that the row decoder and a column circuit sample a first row of pixels within a first focal plane, and the control circuitry is configured to generate a second set of pixel level timing signals so that the row decoder and a column circuit sample a second row of pixels within a second focal plane.
  • each focal plane has dedicated sampling circuitry.
  • At least a portion of the sampling circuitry is shared by a plurality of the focal planes.
  • the imager array includes an array of M ⁇ N focal planes
  • the sampling circuitry comprises M analog signal processors (ASPs) and each ASP is configured to sample pixels read-out from N focal planes.
  • each ASP is configured to receive pixel output signals from the N focal planes via N inputs, and each ASP is configured to sequentially process each pixel output signal on its N inputs.
  • control circuitry is configured so that a single common analog pixel signal readout line is shared by all pixels in a group of N focal planes, and the control circuitry is configured to control the capture of image data to time multiplex the pixel output signals received by each of the M ASPs.
  • the imager array includes an array of M ⁇ N focal planes
  • the sampling circuitry comprises a plurality of analog signal processors (ASPs) and each ASP is configured to sample pixels read-out from a plurality of focal planes
  • the control circuitry is configured so that a single common analog pixel signal readout line is shared by all pixels in the plurality of focal planes
  • the control circuitry is configured to control the capture of image data to time multiplex the pixel output signals received by each of the plurality of ASPs.
  • sampling circuitry comprises analog front end (APE) circuitry and analog-to-digital conversion (ADC) circuitry.
  • APE analog front end
  • ADC analog-to-digital conversion
  • the sampling circuitry is configured so that each focal plane has a dedicated AFE and at least one ADC is shared between at least two focal planes.
  • the sampling circuitry is configured so that at least one ADC is shared between a pair of focal planes.
  • sampling circuitry is configured so that at least one ADC is shared between four focal planes.
  • sampling circuitry is configured so that at least one AFE is shared between at least two focal planes.
  • the sampling circuitry is configured so that at least one AFE is shared between a pair of focal planes.
  • sampling circuitry is configured so that two pairs of focal planes that each share an AFE collectively share an ADC.
  • control circuitry is configured to separately control the power down state of each focal plane and associated AFE circuitry or processing timeslot therein.
  • control circuitry configures the pixels of at least one inactive focal plane to be in a constant reset state.
  • At least one focal plane includes reference pixels to calibrate pixel data captured using the focal plane.
  • control circuitry is configured to separately control the power down state of the focal plane's associated AFE circuitry or processing timeslot therein, and the control circuitry is configured to power down the focal plane's associated AFE circuitry or processing timeslot therein without powering down the associated AFE circuitry or processing timeslot therein for readout of the reference pixels of the focal plane.
  • the pixels in the array of adjacent pixels share read-out circuitry.
  • the read-out circuit includes a reset transistor, a floating diffusion capacitor, and a source follower amplifier transistor.
  • the array of adjacent pixels in the at least one focal plane is a first array of adjacent pixels
  • the imager array includes a second array of adjacent pixels within another of the plurality of focal planes and the pixels in the second array of adjacent pixels in the second array of adjacent pixels
  • the capture band of the pixels in the second array of adjacent pixels differs from the capture band of the pixels in the first array of adjacent pixels
  • the full well capacity of the pixels in the first array of adjacent pixels is different to the full well capacity of the pixels in the second array of adjacent pixels.
  • the full well capacity of the pixels in the first array of adjacent pixels is configured so that each pixel well is filled by the number of electrons generated when the pixel is exposed for a predetermined integration time to light within the first capture band having a predetermined maximum spectral radiance
  • the full well capacity of the pixels in the second array of adjacent pixels is configured so that each pixel well is filled by the number of electrons generated when the pixel is exposed for a predetermined integration time to light within the second capture band having a predetermined maximum spectral radiance.
  • the floating diffusion capacitance determines the conversion gain of each pixel in the array of adjacent pixels.
  • the array of adjacent pixels in the at least one focal plane is a first array of adjacent pixels
  • the imager array includes a second array of adjacent pixels within another of the plurality of focal planes and the pixels in the second array of adjacent pixels has a floating diffusion capacitance that determines the conversion gain of each pixel in the second array of adjacent pixels
  • the capture band of the pixels in the second array of adjacent pixels differs from the capture band of the pixels in the first array of adjacent pixels
  • the conversion gain of the pixels in the first array of adjacent pixels is different to the conversion gain of the pixels in the second array of adjacent pixels.
  • the floating diffusion capacitors of the first and second arrays of adjacent pixels are configured to minimize the input referred noise of the pixel outputs.
  • the array of adjacent pixels in the at least one focal plane is a first array of adjacent pixels
  • the imager array includes a second array of adjacent pixels within another of the plurality of focal planes and the pixels in the second array of adjacent pixels has a floating diffusion capacitance that determines the conversion gain of each pixel in the second array of adjacent pixels
  • the capture band of the pixels in the second array of adjacent pixels is the same as the capture band of the pixels in the first array of adjacent pixels
  • the conversion gain of the pixels in the first array of adjacent pixels is different to the conversion gain of the pixels in the second array of adjacent pixels.
  • the source follower gain of each pixel in the array determines the output voltage the pixels.
  • the array of adjacent pixels in the at least one focal plane is a first array of adjacent pixels
  • the imager array includes a second array of adjacent pixels within another of the plurality of focal planes and the pixels in the second array of adjacent pixels has a fixed source follower gain for each pixel in the second array of adjacent pixels
  • the capture band of the pixels in the second array of adjacent pixels differs from the capture band of the pixels in the first array of adjacent pixels
  • the source follower gain of the pixels in the first array of adjacent pixels is different to the source follower gain of the pixels in the second array of adjacent pixels.
  • the source follower gain of the first and second arrays of adjacent pixels are configured so that the maximum output signal swing of each pixel is the same.
  • a first array of adjacent pixels in a first focal plane have a first capture band
  • a second array of adjacent pixels in a second focal plane have a second capture band
  • the first and second capture bands differ
  • the imager array is backside illuminated
  • the thinning depth of the imager array in the region containing the first array of adjacent pixels is different to the thinning depth of the region of the imager array containing the second array of adjacent pixels.
  • the first and second capture bands do not overlap.
  • the thinning depth of the imager in the array in the region containing the first array is related to the first capture band
  • the thinning depth of the imager in the array in the region containing the second array is related to the second capture band
  • the first thinning depth is configured so as to position the peak carrier generation within the photodiode's depletion region given a nominal capture band wavelength of 450 nm.
  • the first thinning depth is configured so as to position the peak carrier generation within the photodiode's depletion region given a nominal capture band wavelength of 550 nm.
  • the first thinning depth is configured so as to position the peak carrier generation within the photodiode's depletion region given a nominal capture band wavelength of 640 nm.
  • a first array of adjacent pixels in a first focal plane have a first capture band
  • a second array of adjacent pixels in a second focal plane have a second capture band
  • the first and second capture bands differ
  • the pixels in the first array of adjacent pixels are a first pixel size
  • the pixels in the second array of adjacent pixels are a second pixel size
  • the first pixel size is larger than the second pixel size and the first capture band includes longer wavelengths of light than the second capture band.
  • a first portion of the control circuitry is located on one side of a focal plane and a second portion of the control circuitry is located on the opposite side of the focal plane.
  • the first portion of the control circuitry is configured to control the capture of information by a plurality of pixels in a first focal plane and in plurality of pixels in a second focal plane located adjacent the first focal plane.
  • the imager array is configured to receive a lens array positioned above the focal planes of the imager array, and each of the plurality of focal planes is located within a region in the imager array corresponding to an image circle of the lens array, when a lens array is mounted to the imager array.
  • Yet another embodiment again also includes a cover-glass mounted above the focal planes of the imager array.
  • adjacent focal planes are separated by a spacing distance.
  • control circuitry is located within the spacing distance between adjacent focal planes.
  • sampling circuitry is located within the spacing distance between adjacent focal planes.
  • FIG. 1 is a block diagram of an array camera in accordance with an embodiment of the invention.
  • FIG. 1A is a block diagram of a monolithic imager array in accordance with an embodiment of the invention.
  • FIGS. 2A-2B illustrate imager configurations of imager arrays in accordance with embodiments of the invention.
  • FIG. 3 illustrates an architecture of an imager array in accordance with an embodiment of the invention.
  • FIG. 4 illustrates another architecture of an imager array including shared analog to digital converters in accordance with an embodiment of the invention.
  • FIG. 4A illustrates a further architecture of an imager array including shared column circuits in accordance with an embodiment of the invention.
  • FIG. 4B illustrates still another architecture of an imager array including shared split column circuits in accordance with an embodiment of the invention.
  • FIG. 4C illustrates the phase shifting of column circuit outputs from two focal planes read-out in accordance with an embodiment of the invention.
  • FIG. 4D illustrates a pair of focal planes in an imager array having dedicated analog front end circuitry and sharing an analog to digital converter in accordance with an embodiment of the invention.
  • FIG. 4E illustrates a group of four focal planes in an imager array where pairs of focal planes share analog front end circuitry and the group of four focal planes share an analog to digital converter in accordance with an embodiment of the invention.
  • FIG. 4F illustrates a pair of focal planes within an imager array where the pair of focal planes share column control read-out circuitry in accordance with an embodiment of the invention.
  • FIG. 4G illustrates a pair of focal planes within an imager array where the column control and read-out circuitry is split and a single block of column control and read-out circuitry reads out odd columns from a first focal plane and even columns from a second focal plane in accordance with an embodiment of the invention.
  • FIG. 4H is a block diagram illustrating focal plane timing and control circuitry in accordance with an embodiment of the invention.
  • FIG. 5 illustrates a backside illuminated imager array with optimized thinning depths in accordance with an embodiment of the invention.
  • a centralized controller on an imager array enables fine control of the capture time of each focal plane in the array.
  • the term focal plane describes a two dimensional arrangement of pixels. Focal planes in an imager array are typically non-overlapping (i.e. each focal plane is located within a separate region on the imager array).
  • imager is used to describe the combination of a focal plane and the control circuitry that controls the capture of image information using the pixels within the focal plane.
  • the focal planes of the imager array can be separately triggered.
  • the focal planes of the imager array utilize different integration times tailored to the capture band of the pixels within each focal plane.
  • the capture band of a pixel typically refers to a contiguous sub-band of the electromagnetic system to which a pixel is sensitive.
  • the specialization of specific focal planes so that all or a majority of the pixels in the focal plane have the same capture band enables a number of pixel performance improvements and increases in the efficiency of utilization of peripheral circuitry within the imager array.
  • the pixels of the imager array are backside illuminated and the substrate of the regions containing each of the focal planes are thinned to different depths depending upon the spectral wavelengths sensed by the pixels in each focal plane.
  • the pixels themselves can be modified to improve the performance of the pixels with respect to specific capture bands.
  • the conversion gain, source follower gain and full well capacity of the pixels in each focal plane are determined to improve the performance of the pixels with respect to their specific capture bands.
  • each focal plane possesses dedicated peripheral circuitry to control the capture of image information.
  • the grouping of pixels intended to capture the same capture band into focal planes enables peripheral circuitry to be shared between the pixels.
  • the analog front end, analog to digital converter, and/or column read-out and control circuitry are shared between pixels within two or more focal planes.
  • the imagers in an imager array can be placed in a lower power state to conserve power, which can be useful in operating modes that do not require all imagers to be used to generate the output image (e.g. lower resolution modes).
  • the pixels of imagers in the low power state are held with the transfer gate on so as to maintain the photodiode's depletion region at its maximum potential and carrier collection ability, thus minimizing the probability of photo-generated carriers generated in an inactive imager from migrating to the pixels of active imagers.
  • Array cameras and imager arrays in accordance with embodiments of the invention are discussed further below.
  • the array camera 100 includes an imager array 110 , which is connected to an image processing pipeline module 120 and to a controller 130 .
  • the imager array 110 includes an M ⁇ N array of individual and independent focal planes, each of which receives light through a separate lens system.
  • the imager array can also include other circuitry to control the capture of image data using the focal planes and one or more sensors to sense physical parameters.
  • the control circuitry can control imaging and functional parameters such as exposure times, trigger times, gain, and black level offset.
  • the control circuitry can also control the capture of image information by controlling read-out direction (e.g. top-to-bottom or bottom-to-top, and left-to-right or right-to-left).
  • the control circuitry can also control read-out of a region of interest, horizontal sub-sampling, vertical sub-sampling, and/or charge-binning.
  • the circuitry for controlling imaging parameters may trigger each focal plane separately or in a synchronized manner.
  • the imager array can include a variety of other sensors, including but not limited to, dark pixels to estimate dark current at the operating temperature.
  • Imager arrays that can be utilized in array cameras in accordance with embodiments of the invention are disclosed in PCT Publication WO 2009/151903 to Venkataraman et al., the disclosure of which is incorporated herein by reference in its entirety.
  • the imager array may be implemented using a monolithic integrated circuit.
  • an imager array in accordance with embodiments of the invention is implemented in a single sell-contained SOC chip or die, the imager array can be referred to as an imager array.
  • the term imager array can be used to describe a semiconductor chip on which the imager array and associated control, support, and read-out electronics are integrated.
  • the image processing pipeline module 120 is hardware, firmware, software, or a combination thereof for processing the images received from the imager array 110 .
  • the image processing pipeline module 120 typically processes the multiple low resolution (LR) images captured by the camera array and produces a synthesized higher resolution image in accordance with an embodiment of the invention.
  • the image processing pipeline module 120 provides the synthesized image data via an output 122 .
  • LR low resolution
  • FIG. 12/967,807 entitled “System and Methods for Synthesizing High Resolution Images Using Super-Resolution Processes” filed Dec. 14, 2010, the disclosure of which is incorporated by reference herein in its entirety.
  • the controller 130 is hardware, software, firmware, or a combination thereof for controlling various operation parameters of the imager array 110 .
  • the controller 130 receives inputs 132 from a user or other external components and sends operation signals to control the imager array 110 .
  • the controller 130 can also send information to the image processing pipeline module 120 to assist processing of the LR images captured by the imager array 110 .
  • FIG. 1 Although a specific array camera architecture is illustrated in FIG. 1 , alternative architectures for capturing a plurality of images of a scene using an imager array can also be utilized in accordance with embodiments of the invention. Operation of array cameras, imager array configurations, and processing multiple captured images of a scene in accordance with embodiments of the invention are discussed further below.
  • the imager array includes a focal plane array core 152 that includes an array of focal planes 153 and all analog signal processing, pixel level control logic, signaling, and analog-to-digital conversion circuitry.
  • the imager array also includes focal plane timing and control circuitry 154 that is responsible for controlling the capture of image information using the pixels.
  • the focal plane timing and control circuitry utilizes reset and read-out signals to control the integration time of the pixels.
  • any of a variety of techniques can be utilized to control integration time of pixels and/or to capture image information using pixels.
  • the focal plane timing and control circuitry 154 provides flexibility of image information capture control, which enables features including (but not limited to) high dynamic range imaging, high speed video, and electronic image stabilization.
  • the imager array includes power management and bias generation circuitry 156 .
  • the power management and bias generation circuitry 156 provides current and voltage references to analog circuitry such as the reference voltages against which an ADC would measure the signal to be converted against.
  • the power management and bias circuitry also includes logic that turns off the current/voltage references to certain circuits when they are not in use for power saving reasons.
  • the imager array includes dark current and fixed pattern (FPN) correction circuitry 158 that increases the consistency of the black level of the image data captured by the imager array and can reduce the appearance of row temporal noise and column fixed pattern noise.
  • FPN dark current and fixed pattern
  • each focal plane includes reference pixels for the purpose of calibrating the dark current and FPN of the focal plane and the control circuitry can keep the reference pixels active when the rest of the pixels of the focal plane are powered down in order to increase the speed with which the imager array can be powered up by reducing the need for calibration of dark current and FPN.
  • the SOC imager includes focal plane framing circuitry 160 that packages the data captured from the focal planes into a container file and can prepare the captured image data for transmission.
  • the focal plane framing circuitry includes information identifying the focal plane and/or group of pixels from which the captured image data originated.
  • the imager array also includes an interface for transmission of captured image data to external devices.
  • the interface is a MIPI CSI 2 output interface supporting four lanes that can support read-out of video at 30 fps from the imager array and incorporating data output interface circuitry 162 , interface control circuitry 164 and interface input circuitry 166 .
  • the bandwidth of each lane is optimized for the total number of pixels in the imager array and the desired frame rate.
  • Focal plan array cores in accordance with embodiments of the invention include an array of imagers and dedicated peripheral circuitry for capturing image data using the pixels in each focal plane.
  • Imager arrays in accordance with embodiments of the invention can include focal plan array cores that are configured in any of a variety of different configurations appropriate to a specific application. For example, customizations can be made to a specific imager array designs including (but not limited to) with respect to the focal plane, the pixels, and the dedicated peripheral circuitry.
  • Various focal plane, pixel designs, and peripheral circuitry that can be incorporated into focal plane array cores in accordance with embodiments of the invention are discussed below.
  • An imager array can be constructed in which the focal planes are formed from an array of pixel elements, where each focal plane is a sub-array of pixels.
  • each sub-array or focal plane can be used to generate a separate image of the scene.
  • Each sub-array of pixels provides the same function as the pixels of a conventional imager (i.e. the imager in a camera that includes a single focal plane).
  • an imager array in accordance with embodiments of the invention can include a single controller that can separately sequence and control each focal plane.
  • Having a common controller and I/O circuitry can provide important system advantages including lowering the cost of the system due to the use of less silicon area, decreasing power consumption due to resource sharing and reduced system interconnects, simpler system integration due to the host system only communicating with a single controller rather than M ⁇ N controllers and read-out I/O paths, simpler array synchronization due to the use of a common controller, and improved system reliability due to the reduction in the number of interconnects.
  • an imager array can include any N ⁇ M array of focal planes such as the imager array ( 200 ) illustrated in FIG. 2A .
  • Each of the focal planes typically has an associated filter and/or optical elements and can image different wavelengths of light.
  • the imager array includes focal planes that sense red light (R), focal planes that sense green light (G), and focal planes that sense blue light (B).
  • R red light
  • G focal planes that sense green light
  • B focal planes that sense blue light
  • one or more of the focal planes include pixels that are configured to capture different colors of light.
  • the pixels employ a Bayer filter pattern (or similar) pattern that enables different pixels within a focal plane to capture different colors of light.
  • a 2 ⁇ 2 imager array can include a focal plane where the pixels employ a Bayer filter pattern (or similar), a focal plane where the pixels are configured to capture blue light, a focal plane where the image is configured to capture green light, and a focal plane where the imager is configured to capture red light.
  • Array cameras incorporating such sensor arrays can utilize the color information captured by the blue, green, and red focal planes to enhance the colors of the image captured using the focal plane that employs the Bayer filter.
  • the focal plane that employs the Bayer pattern is incorporated into an imager array that includes a two dimensional arrangement of focal planes where there are at least three focal planes in one of the dimensions. In a number of embodiments, there are at least three focal planes in both dimensions.
  • an increase in the resolution of an image synthesized from the low resolution image data captured by an imager array can be achieved using an array that includes more focal planes that sense green light than focal planes that sense red or blue light.
  • a 5 ⁇ 5 imager array ( 210 ) including 17 focal planes that sense green light (G), four focal planes that sense red light (R), and four focal planes that sense blue light (B) is illustrated in FIG. 2B .
  • the imager array also includes focal planes that sense near-IR wavelengths or extended-color wavelengths (i.e. spanning both color and near-IR wavelengths), which can be used to improve the performance of the array camera in low light conditions.
  • the 5 ⁇ 5 imager array includes at least 13 focal planes, at least 15 focal planes or at least 17 focal planes.
  • the 5 ⁇ 5 imager array can include at least four focal planes that sense red light, and/or at least four focal planes that sense blue light.
  • the number of focal planes that sense red light and the number of focal planes that sense blue light can be the same, but need not be the same. Indeed, several imager arrays in accordance with embodiments of the invention include different numbers of focal planes that sense red light and that sense blue light.
  • the imager array includes a two dimensional array of focal planes having at least three focal planes in one of the dimensions. In several embodiments, there are at least three focal plane in both dimensions of the array. In several embodiments, the array includes at least two focal planes having pixels configured to capture blue light, at least two focal planes having pixels configured to capture green light, and at least two focal planes having pixels configured to capture red light.
  • any of a variety of regular or irregular layouts of imagers including imagers that sense visible light, portions of the visible light spectrum, near-IR light, other portions of the spectrum and/or combinations of different portions of the spectrum can be utilized to capture images that provide one or more channels of information for use in SR processes in accordance with embodiments of the invention.
  • the construction of the pixels of an imager in an imager array in accordance with an embodiment of the invention can depend upon the specific portions of the spectrum imaged by the imager. Different types of pixels that can be used in the focal planes of an imager array in accordance with embodiments of the invention are discussed below.
  • each individual focal plane can be designated to capture a sub-band of the visible spectrum.
  • Each focal plane can be optimized in various ways in accordance with embodiments of the invention based on the spectral band it is designated to capture. These optimizations are difficult to perform in a legacy Bayer pattern based image sensor since the pixels capturing their respective sub-band of the visible spectrum are all interleaved within the same pixel array.
  • backside illumination is used where the imager array is thinned to different depths depending upon the capture band of a specific focal plane.
  • the sizes of the pixels in the imager array are determined based upon the capture band of the specific imager.
  • the conversion gains, source follower gains, and full well capacities of groups of pixels within a focal plane are determined based upon the capture band of the pixels.
  • the various ways in which pixels can vary between focal planes in an imager array depending upon the capture band of the pixel are discussed further below.
  • a traditional image sensor is illuminated from the front side where photons must first travel through a dielectric stack before finally arriving at the photodiode, which lies at the bottom of the dielectric stack in the silicon substrate.
  • the dielectric stack exists to support metal interconnects within the device.
  • Front side illumination suffers from intrinsically poor Quantum Efficiency (QE) performance (the ratio of generated carriers to incident photons), due to problems such as the light being blocked by metal structures within the pixel. Improvement is typically achieved through the deposition of micro-lens elements on top of the dielectric stack for each pixel so as to focus the incoming light in a cone that attempts to avoid the metal structures within the pixel.
  • QE Quantum Efficiency
  • Backside illumination is a technique employed in image sensor fabrication so as to improve the QE performance of imagers.
  • BI backside illumination
  • the silicon substrate bulk is thinned (usually with a chemical etch process) to allow photons to reach the depletion region of the photodiode through the backside of the silicon substrate.
  • the absorption depth of light in silicon is proportional to the wavelength such that the red photons penetrate much deeper than blue photons. If the thinning process does not remove sufficient silicon, the depletion region will be too deep to collect photo electrons generated from blue photons.
  • the depletion region can be too shallow and red photons may travel straight though without interacting and generating carriers. Red photons could also be reflected from the front surface back and interact with incoming photons to create constructive and destructive interference due to minor differences in the thickness of the device. The effects caused by variations in the thickness of the device can be evident as fringing patterns and/or as spiky spectral. QE response.
  • a mosaic of color filters (typically a Bayer filter) is often used to provide RGB color capture.
  • the thinning depth is typically the same for all pixels since the processes used do not thin individual pixels to different depths.
  • the common thinning depth of the pixels results in a necessary balancing of QE performance between blue wavelengths and red/near-IR wavelengths.
  • An imager array in accordance with embodiments of the invention includes an array of imagers, where each pixel in a focal plane senses the same spectral wavelengths.
  • Different focal planes can sense different sub-bands of the visible spectrum or indeed any sub-band of the electromagnetic spectrum for which the band-gap energy of silicon has a quantum yield gain greater than 0. Therefore, performance of an imager array can be improved by using BSI where the thinning depth for the pixels of a focal plane is chosen to match optimally the absorption depth corresponding to the wavelengths of light each pixel is designed to capture.
  • the silicon bulk material of the imager array is thinned to different thicknesses to match the absorption depth of each camera's capture band within the depletion region of the photodiode so as to maximize the QE.
  • the imager array 500 includes a silicon substrate 502 on the front side of which a dielectric stack and metal interconnects 504 are formed.
  • the silicon substrate includes regions 506 , 508 , 510 in which the photodiodes of pixels forming a focal plane for sensing blue light, the photodiodes of pixels forming a focal plane for sensing green light, and the photodiodes of pixels forming a focal plane for sensing red light respectively are located.
  • the backside of the silicon substrate is thinned to different depths in each region.
  • the substrate is thinned to correspond to the absorption depth of 450 nm wavelength light (i.e. approximately 0.4 ⁇ m) in the region 506 in which the photodiodes of pixels forming an imager for sensing blue light are located
  • the substrate is thinned to correspond to the absorption depth of 550 nm wavelength light (i.e. approximately 1.5 ⁇ m) in the region 508 in which the photodiodes of pixels forming an imager for sensing green light are located
  • the substrate is thinned to correspond to the absorption depth of 640 nm wavelength light (i.e.
  • the designation of color channels to each imager within the array is achieved via a first filtration of the incoming photons through a band-pass filler within the optical path of the photons to the photodiodes.
  • the thinning depth itself is used to create the designation of capture wavelengths since the depletion region depth defines the spectral. QE of each imager.
  • SNR benefits can be achieved by changing the pixel sizes used in the imagers designated to capture each sub-band of the spectrum. As pixel sizes shrink, the effective QE of the pixel decreases since the ratio of photodiode depletion region area to pixel area decreases. Microlenses are typically used to attempt to compensate for this and they become more important as the pixel size shrinks. Another detriment to pixel performance by pixel size reduction comes from increased noise. To attempt to maintain the balance of photo-active to read-out circuit area, in many embodiments, the pixel transfer gate, source follower amplifier transistor and reset transistors are also made smaller. As these transistors reduce in size, numerous performance parameters are degraded typically resulting in noise increase.
  • Imagers designated to capture longer wavelengths can therefore be optimized to improve system SNR by increasing the pixel size and thus increasing the QE of the pixel. Since MTF drops as a function of increased wavelength, the benefit of smaller pixels for resolution purposes is diminished with increased wavelength. Overall system resolution can thus be maintained while increasing the pixel size for longer wavelengths so as to improve QE and thus improve the overall system SNR.
  • imager arrays in accordance with embodiments of the invention utilize as small pixels as can be manufactured. Accordingly, increasing pixel size in the manner outlined above is simply one technique that can be utilized to improve camera performance and the specific pixel size chosen typically depends upon the specific application.
  • a group of four photodiodes may share the same reset transistor, floating diffusion node and source follower amplifier transistors.
  • the group of four pixels covers the full visible spectrum of capture.
  • these shared pixel structures can be adapted to tailor the performance of pixels in a focal plane to a given capture band. The fact that these structures are shared by pixels that have different capture bands in a traditional color filter array based image sensor means that the same techniques for achieving performance improvements are typically not feasible.
  • Conversion gain in a typical 4T CMOS pixel can be controlled by changing the size of the capacitance of the “sense node”, typically a floating diffusion capacitor (FD).
  • Q is the charge
  • C is the capacitance
  • V is the voltage.
  • the apparent full well capacity of the pixel (number of photo-electrons the pixel can record) will decrease if the capacitance of the FD becomes too small. This is because the electrons from the photodiode transfer into the FD due to a potential difference acting on them. Charge transfer will stop when the potential difference is zero (or a potential barrier exists between the PF and the FD). Thus if the capacitance of the FD is too small, the potential equilibrium may be reached before all electrons have been transferred out of the photodiode.
  • the amplifier in a traditional 4T CMOS pixel is constructed from a Source follower transistor.
  • the Source follower transistor amplifies the voltage across the FD so as to drive the pixel signal down the column line to the column circuit where the signal is subsequently sampled.
  • the output voltage swing as a function of the input voltage swing (i.e. the Source follower amplifier's gain) can be controlled during fabrication by changing the implant doping levels.
  • the photodiode is a pinned structure such that the range of charge that may be accumulated is between 0 electrons and the full well capacity. Therefore, with a given full well capacity of the photodiode and a given capacitance of the FD and a desired output signal swing of the source follower, the optimal gain or a near optimal gain for the source follower transistor can be selected.
  • the full well capacity of the photodiode is the maximum number of electrons the photodiode can store in its maximally depleted state.
  • the full well of the pixels can be controlled through the x-y size of the photodiode, the doping levels of the implants that form the diode structure and the voltage used to reset the pixel.
  • each focal plane can be tailored to the spectral band it is configured to capture. While the design of the pixel can be optimized, in many embodiments the performance of the pixels is simply improved with respect to a specific capture band (even though the improvement may not be optimal).
  • An example optimization is as follows and similar processes can be used to simply improve the performance of a pixel with respect to a specific capture band:
  • the next step is to optimize the conversion gain of the pixels. Given the number of electrons defined in the full well optimization step, an optimal capacitance for the floating diffusion can be chosen.
  • the optimal capacitance is one, which maintains a potential difference to support charge transfer from the FD such that the full well capacity can be transferred in a reasonable duration of time.
  • the goal of this optimization is to choose the smallest capacitance possible such that the charge to voltage conversion gain is as high as possible such that input referred noise is minimized and hence the maximum SNR for each color channel is realized.
  • the source follower amplifier gain can be chosen.
  • the difference between the reset voltage of the FD (Vrst) and the voltage of the FD containing a full well charge load (Vrst-Q/C) enables the definition of an optimal gain for the source follower amplifier.
  • the source follower gain defines the output signal swing between Vrst and Vrst-Q/C.
  • the optimal signal swing is defined by such parameters as the operating voltage of the analog signal processing and the A/D converter that sample and covert the pixel output signal.
  • the source follower gain is chosen for each color channel such that their respective signal swings are all matched to each other and match the maximum signal swing supported by the analog signal processing and A/D converter circuits.
  • the system Having performed these pixel level optimizations on a per capture band basis, the system will have the maximum SNR and dynamic range for each capture band given linear operation.
  • the process described above is designed to provide an optimal solution with regard to maximum SNR and dynamic range, other design criteria can be used in the selection of the three parameters described above to provide improved pixel performance with respect to a specific capture band or application specific desired behavior.
  • imager arrays can be achieved by using pixels of different conversion gains within the same spectral band.
  • the “green” imagers could be constructed from pixels that have two or more different conversion gains. Therefore, each “green” imager includes pixels that have a homogeneous conversion gain, which is different to the conversion gain of pixels in another of the “green” imagers in the array.
  • each imager could be constructed from a mosaic of pixels having different conversion gains.
  • half of all “green” focal planes could be constructed using a conversion gain that optimizes both input referred noise and full well capacity (a “normal green”).
  • the other half of all “green” focal planes could be constructed from pixels that have a higher conversion gain, hence lower input referred noise and lower effective full well capacity (“fast green”). Areas of a scene having a lower light level could be recovered from the “fast green” pixels (that are not saturated) and areas of brighter light level could be recovered from the “normal green” pixels. The result is an overall increase in dynamic range of the system.
  • focal planes dedicated to “fast” imaging are entirely dependent upon the requirements of a specific application.
  • separate focal planes dedicated to “fast” and “normal.” imaging can be utilized to increase the dynamic range of other spectral bands and is not simply limited to increasing the dynamic range with which an imager array captures green light.
  • pixels are typically accessed in a row-wise fashion using horizontal control lines that run across each row of pixels.
  • Output signal lines that run vertically through each pixel are used to connect the pixel output to a sampling circuit at the column periphery.
  • the horizontal control lines and the output signal lines are typically implemented as metal traces on silicon.
  • the outputs from all pixels in a row are simultaneously sampled at the column periphery, and scanned out sequentially using column controllers.
  • common row-wise access along the full row of K pixels in an imager array does not enable the imagers to be read out independently.
  • the ability to separately control the capture of information means that the capture of image information by the pixels in a focal plane can be customized to the spectral band the focal plane is configured to capture.
  • the ability to provide separate trigger times can be useful in synchronizing the capture of images using focal planes that have different integration times and in capturing sequences of images that can be registered to provide slow motion video sequences.
  • independent read-out control can be provided for each focal plane.
  • the imager array has independent read-out control due to the fact that each focal plane has an associated row (column) controller, column (row) read-out circuits and a dedicated pixel signal analog processor and digitizer.
  • each focal plane has an associated row (column) controller, column (row) read-out circuits and a dedicated pixel signal analog processor and digitizer.
  • separate control of the capture of image information by pixels in different focal planes is achieved using peripheral circuitry that is shared between focal planes.
  • Imager arrays implemented using dedicated peripheral circuitry and shared peripheral circuitry in accordance with embodiments of the invention are discussed below.
  • FIG. 3 An imager array including multiple focal planes having independent read-out control and pixel digitization, where each focal plane has dedicated peripheral circuitry, in accordance with embodiments of the invention is illustrated in FIG. 3 .
  • the imager array 300 includes a plurality of sub-arrays of pixels or focal planes 302 .
  • Each focal plane has dedicated row control logic circuitry 304 at its periphery, which is controlled by a common row timing control logic circuitry 306 .
  • the column circuits and row decoder are shown as a single block on one side of the focal plane, the depiction as a single block is purely conceptual and each logic block can be split between the left/right and/or top/bottom of the focal plane so as to enable layout at double the pixel pitch. Laying out the control and read-out circuitry in this manner can result in a configuration where even columns are sampled in one bank of column (row) circuits and odd columns would be sampled in the other.
  • the read-out control logic includes M sets of column control outputs per row of focal planes (N).
  • Each column sampling/read-out circuit 308 can also have dedicated sampling circuitry for converting the captured image information into digital pixel data.
  • the sampling circuitry includes Analog Signal. Processor (ASP), which includes an Analog Front End (AFE) amplifier circuit and an Analog to Digital. Converter (ADC) 310 .
  • ASP Analog Signal. Processor
  • AFE Analog Front End
  • ADC Analog to Digital. Converter
  • any of a variety of analog circuitry can be utilized to convert captured image information into digitized pixel information.
  • An ASP can be implemented in a number of ways, including but not limited to, as a single ASP operating at X pixel conversion per row period, where X is the number of pixels in a row of the focal plane served by the column sampling circuit (e.g. with a pipe-lined or SAR ADC), as X ASPs operating in parallel at 1 pixel conversion per row period or P ASPs operating in parallel at X/P conversions per row (see discussion below).
  • a common read-out control circuit 312 controls the read-out of the columns in each imager.
  • the master control logic circuitry 314 controls the independent read-out of each imager.
  • the master control logic circuitry 314 includes high level timing control logic circuitry to control the image capture and read-out process of the individual focal plane.
  • the master control portion of this block can implement features including but not limited to: staggering the start points of image read-out such that each focal plane has a controlled temporal offset with respect to a global reference; controlling integration times of the pixels within specific focal planes to provide integration times specific to the spectral bandwidths being imaged; the horizontal and vertical read-out direction of each imager; the horizontal and vertical sub-sampling/binning/windowing of the pixels within each focal plane; the frame/row/pixel rate of each focal plane; and the power-down state control of each focal plane.
  • the master control logic circuitry 314 handles collection of pixel data from each of the imagers.
  • the master control logic circuitry packs the image data into a structured output format. Given that fewer than M ⁇ N output ports are used to output the image data (e.g. there are 2 output ports), the imager data is time multiplexed onto these output ports.
  • a small amount of memory is used to buffer the data from the pixels of the imagers until the next available time-slot on the output port 316 and the master control logic circuitry 314 or other circuitry in the imager array periodically inserts codes into the data stream providing information including, but not limited to, information identifying a focal plane, information identifying a row and/or column within a focal plane, and/or information identifying the relative time at which the capture or read-out process began/ended for one or more of the focal planes.
  • FIFO small amount of memory
  • Relative time information can be derived from an on-chip timer or counter, whose instantaneous value can be captured at the start/end of read-out of the pixels from each imager either at a frame rate or a line rate. Additional codes can also be added to the data output so as to indicate operating parameters such as (but not limited to) the integration time of each focal plane, and channel gain. As is discussed further below, the host controller can fully re-assemble the data stream back into the individual images captured by each focal plane.
  • the imager array includes sufficient storage to buffer at least a complete row of image data from all focal planes so as to support reordering and or retiming of the image data from all focal planes such that the data is always packaged with the same timing/ordering arrangement regardless of operating parameters such as (but not limited to) integration time and relative read-out positions.
  • the imager array includes sufficient storage to buffer at least a complete line of image data from all focal planes so as to support reordering and or retiming of the image data from all focal planes such that the data is packaged in a convenient manner to ease the host's reconstruction of the image data, for example retiming/reordering the image data to align the data from all focal planes to a uniform row start position for all focal planes irrespective of relative read-out position.
  • the imager array illustrated in FIG. 3 includes a separate ASP associated with each focal plane.
  • An imager array can be constructed in accordance with embodiments of the invention in which ASPs or portions of the ASPs such as (but not limited to) the AFE or the ADC are shared between focal planes.
  • An imager array that shares ASPs between multiple focal planes in accordance with embodiments of the invention is illustrated in FIG. 4 .
  • the imager array 300 ′ utilizes an ASP 310 ′ for sampling of all the pixels in one column of the M ⁇ N array of focal planes.
  • Each of the M ASPs sequentially processes each pixel signal on its N inputs.
  • the ASP performs at least N processes per pixel signal period of the N inputs given that each focal plane at its input is in an active state. If one or more of an ASP's focal plane inputs is in an inactive or power down state, the processing rate could be reduced (so as to achieve a further saving in power consumption) or maintained (so as to achieve an increase in frame rate).
  • a common single analog pixel signal read-out line can be shared by all column circuits in a column of focal planes (N) such that the time multiplexing function of the ASP processing can be implemented through sequencing controlled by the column read-out control block 312 ′.
  • imager arrays in accordance with many embodiments of the invention can include dedicates AFEs and share ADCs.
  • the sharing ratios of the AFE and ADC do not follow the same number of focal planes.
  • each focal plane may have a dedicated AFE but two or more AFE outputs are input to a common ADC.
  • two adjacent focal planes share the same AFE and one or more of these focal plane couples would then be input into an ADC. Accordingly, AFEs and ADCs can be shared between different focal planes in a SOC imager any of a variety of different ways appropriate to specific applications in accordance with embodiments of the invention.
  • Sharing of ADCs between pairs of focal planes in an imager array in accordance with embodiments of the invention is illustrated in FIG. 4 d .
  • the sharing of ADCs between pairs of focal planes can be replicated amongst multiple pairs of focal planes within an imager array.
  • Sharing of AFEs between pairs of focal planes and sharing of ADCs between groups of four focal planes in an imager array in accordance with embodiments of the invention is illustrated in FIG. 4 e .
  • the sharing of AFEs and ADCs illustrated in FIG. 4 e can be replicated amongst multiple groups of four focal planes within an imager array. In many embodiments, sharing occurs in pairs of focal planes and/or groups of three or more focal planes.
  • the pixels within each focal plane are consistently processed through the same circuit elements at all times such that they have consistent offset and gain characteristics.
  • the control and read-out circuits and AFE are controlled by a common clocking circuit such that the phases and time slot assignment of each focal plane are consistent.
  • FIG. 4 c An example of the phase shift between the column read-out of the different focal planes in accordance with embodiments of the invention is illustrated in FIG. 4 c . As can be seen, the read-out of the columns in each focal plane is staggered to enable processing by a shared ASP in accordance with embodiments of the invention.
  • the ASP, clocking, and bias/current schemes utilized within the imager array can support multiple sample rate configurations such that the sampling rate is always P times the pixel rate of a single focal plane, where P is the number of active focal planes being processed/sampled.
  • a rotated variation of the resource sharing architecture illustrated in FIG. 4 can also be implemented whereby a single ASP is shared among all pixels in a row of M ⁇ N (rather than in a column of M ⁇ N). Such an arrangement would, therefore, involve use of N ASPs each having M inputs or a single input that is common to the M focal planes, and time-multiplexed by the column read-out control block using sequencing control.
  • fewer than M*N column circuits are used for sampling the pixel values of the focal planes in an imager array.
  • An imager array 301 configured so that individual focal planes within a column of the imager array share a common column circuit block 308 ′ such that the device utilizes only M sets of column circuits in accordance with an embodiment of the invention is illustrated in FIG. 4 a .
  • the M column circuits are accompanied by M ASPs 310 ′.
  • the column circuits are time shared such that they enable read-out of pixels from focal planes above and below the column circuit. Sharing of a column circuit between pairs of focal planes within an imager array in accordance with embodiments of the invention is illustrated in FIG. 4 f .
  • the pixels are correlated double sampled and read-out either in their analog form or analog to digital converted within the column circuit.
  • the column circuit can be reset to remove residual charge from the previous pixel array.
  • a second time slot can then be used for the same operation to occur for the second focal plane.
  • the sharing of ADCs between pairs of focal planes can be replicated amongst multiple pairs of focal planes within an imager array.
  • variations on the imager array 301 illustrated in FIG. 4 a can utilize more or fewer ASPs.
  • the column circuits 308 ′ can be divided or combined to form more or fewer than M analog outputs for digitization.
  • an imager array can be designed such that there is a single ASP used for digitization of the M column circuits.
  • the M outputs of the column circuits are time multiplexed at the input to the ASP.
  • each of the M column circuits are further divided such that each column circuit has more than one analog output for digitization.
  • a structural modification to the embodiment illustrated in FIG. 4 a is to split the M column circuits between the top and bottom of the imager array such that there are M*2 column circuit blocks.
  • each of the M*2 column circuits is responsible for sampling only half of the pixels of each focal plane in the column of focal planes (e.g. all even pixels within each focal plane could connect to the column circuit at the bottom of the array and all odd pixels could connect to the column circuit at the top).
  • An imager array including split column circuits in accordance with an embodiment of the invention is illustrated in FIG. 4 b .
  • the imager array 301 ′ uses M*2 column circuit blocks ( 308 a ′, 308 b ′) and M*2 ASPs ( 310 a ′, 310 b ′). As discussed above, there can also be fewer or more ASPs than the M*2 column circuits.
  • FIG. 4 g Another variation involving splitting column circuits in accordance with embodiments of the invention is illustrated in FIG. 4 g in which the column circuit is split into top/bottom for sampling of odd/even columns and interstitial column circuits are time shared between the focal planes above and below the column circuits.
  • the splitting of column circuits and sharing of column circuits between pairs of focal planes is replicated amongst multiple pairs of focal planes within an imager array in accordance with embodiments of the invention.
  • each of the column circuits can be shared between an upper and lower focal plane (with the exception of the column circuits at the periphery of the imager array).
  • the column sampling circuitry of imager arrays there are a number of different arrangements for the column sampling circuitry of imager arrays in accordance with embodiments of the invention.
  • the arrangement of the ASP circuitry follows a logical implementation of the column sampling circuits such that a single ASP is used per column circuit covering X pixels thus performing X conversions per row period.
  • X ASPs can be utilized per column circuit performing one conversion per row period.
  • embodiments of the invention can use P ASPs per column circuit of X pixels such that there are X/P conversions per row period. This approach is a means by which the conversion of the samples in any column circuit can be parallelized such that the overall ADC conversion process occurs at a slower rate.
  • Imager arrays in accordance with embodiments of the invention possess the ability to access different rows within each focal plane at a given instant so as to enable separate operating parameters with respect to the capture of image information by the pixels of each focal plane.
  • the row decoder is typically formed from a first combinational decode of a physical address (represented as an E bit binary number) to as many as 2 E “enable” signals (often referred to as a “one-hot” representation). For example, an 8 bit physical address is decoded into 256 “enable” signals so as to support addressing into a pixel array having 256 rows of pixels. Each of these “enable” signals are in turn logically ANDED with pixel timing signals, the results of which are then applied to the pixel array so as to enable row based pixel operations such as pixel reset and pixel charge transfer.
  • the row decoders can be optimized to reduce silicon area through sharing of the binary to one-hot decode logic. Rather than each sub-array having a fully functional row decoder, including binary to one-hot decoding, many embodiments of the invention have a single binary to one-hot decoder for a given row of focal planes within the imager array. The “enable” outputs of this decoder are routed across all focal planes to each of the (now less functional) row decoders of each focal plane. Separate sets of pixel level timing signals would be dedicated to each focal plane (generated by the row timing and control logic circuitry) and the logical AND function would remain in each focal plane's row decoder.
  • Readout with such a scheme would be performed in time slots dedicated to each focal plane such that there are M timeslots per row of focal planes in the camera array.
  • a first row within the first focal plane would be selected and the dedicated set of pixel level timing signals would be applied to its row decoder and the column circuit would sample these pixels.
  • the physical address would change to point to the desired row in the next focal plane and another set of dedicated pixel level timing signals would be applied to its row decoder.
  • the column circuits would sample these pixels.
  • the process would repeat until all focal planes within a row of focal planes in the camera array have been sampled. When the column circuits are available to sample another row from the imager array, the process can begin again.
  • An additional benefit of the separate control of the capture of image information by each focal plane in an imager array is the ability to support slow motion video capture without increasing the frame rate of the individual focal planes.
  • each focal plane is read out at a slightly offset point in time.
  • the time delta between frames i.e. the capture frame rate
  • the delta between frames can be less than the read-out of an individual frame.
  • one focal plane can begin its frame read-out when another focal plane is halfway through the read-out of its frame. Therefore an apparent doubling of the capture rate is achieved without requiring the focal planes to operate at double speed.
  • this overlapping frame read-out from all focal planes means that there is continuous imagery to output.
  • Camera systems typically employ a period of time between read-out or display of image data known as the blanking period. Many systems require this blanking period in order to perform additional operations. For example, in a CRT the blanking interval is used to reposition the electron beam from the end of a line or frame to the beginning of the next line or frame. In an imager there are typically blanking intervals between lines to allow the next line of pixels to be addressed and the charge therein sampled by a sampling circuit. There can also be blanking intervals between frames to allow a longer integration time than the frame read-out time.
  • the frame read-out is offset in time in all the focal planes such that all focal planes will enter their blanking intervals at different points in time. Therefore, there typically will not be a point in time where there is no image data to transmit.
  • Array cameras in accordance with embodiments of the invention can include a retiming FIFO memory in the read-out path of the image data such that an artificial blanking period can be introduced during transmission.
  • the retiming FIFO temporarily stores the image data to be transmitted from all the focal planes during the points in time where a blanking interval is introduced.
  • Imager arrays in accordance with embodiments of the invention can include floor plans that are optimized to minimize silicon area within the bounds of certain design constraints.
  • design constraints include those imposed by the optical system.
  • the sub-arrays of pixels forming each focal plane can be placed within the image circle of each individual lens stack of the lens array positioned above the imager array. Therefore, the manufacturing process of the lens elements typically imposes a minimum spacing distance on the imagers (i.e. a minimum pitch between the focal planes). Another consideration in the focal spacing coming from optical constraints is the magnitude of stray light that can be tolerated.
  • many camera arrays in accordance with embodiments of the invention optically isolate the individual focal planes from each other.
  • An opaque barrier can be created between the optical paths of adjacent focal planes within the lens stack.
  • the opaque barrier extends down to the sensor cover-glass and can serve the additional purpose of providing a sensor to optics bonding surface and back focus spacer.
  • the incursion of the opaque shield into the imaging circle of the lens can result in some level of reflection back into the focal plane.
  • the complex interplay between the optics and the imager array results in the use of an iterative process to converge to an appropriate solution balancing the design constraints of a specific application.
  • the space between the focal planes can be used to implement control circuitry as well as sampling circuitry including (but not limited to) ASP circuits or other circuitry utilized during the operation of the imager array.
  • the logic circuits within the imager array can also be broken up and implemented within the spacing distance between adjacent focal planes using automatic place and routing techniques.
  • requirements such as pixel size/performance, the optical system of the array camera, the silicon real-estate cost, and the manufacturing process used to fabricate the imager array can all drive subtle variations in the imager array overall architecture and floor plan.
  • the floor plan also accommodates focal planes that are designed to accommodate an arrangement that yields a preferred sampling diversity of the scene (i.e. the pixels within one focal plane are collecting light from a slightly shifted field of view with respect to other focal planes within the imager array).
  • sampling diversity is achieved by constructing the imager array so that the focal planes are relatively offset from the centers of their respective optical paths by different subpixel amounts through a relative subpixel shift in alignment between the focal planes and their respective lenses.
  • the optical field of view are “aimed” slightly differently by an angle that corresponds to a subpixel shift in the image (an amount less than the solid angle corresponding to a single pixel).
  • slight nnicrolens shifts between the focal planes is utilized to alter the particular solid angle of light captured by the nnicrolens (which redirects the light to the pixel) thus achieving a slight subpixel shift.
  • the focal planes are constructed with pixels having subtle differences in pixel pitch between focal planes such that sampling diversity is provided irrespective of optical alignment tolerances.
  • a 4 ⁇ 4 imager array can be constructed with focal planes having pixels with length and width dimensions of size 2.0 um, 2.05 um, 2.1 um, 2.15 um and 2.2 um.
  • any of a variety of pixel dimensions and/or techniques for improving sampling diversity amongst the focal planes within the imager array can be utilized as appropriate to a specific application.
  • imager arrays in accordance with embodiments of the invention can include focal plane timing and control circuitry 154 that controls the reset and read-out (hence integration) of the pixels in each of the focal planes within the imager array.
  • focal plane timing and control circuitry 154 controls the reset and read-out (hence integration) of the pixels in each of the focal planes within the imager array.
  • Traditional image sensors nominally employ two rolling address pointers into the pixel array, whose role is to indicate rows to receive pixel level charge transfer signals as well as “row select” signals for connecting a given row to the column lines enabling sampling of the sense node of the pixels.
  • these two rolling address pointers are expanded to 2 ⁇ M ⁇ N rolling address pointers.
  • the pointer pairs for each focal plane can either address the same rows within each focal plane or can be offset from one another with respect to a global reference.
  • the focal plane timing and control circuitry 400 includes a global row counter 402 and read pointer address logic circuitry 404 and reset pointer address logic circuitry 406 associated with each focal plane.
  • the global row counter 402 is a global reference for sampling of rows of pixels. In a number of embodiments, the global row counter 402 counts from 0 to the total number of rows within a focal plane. In other embodiments, alternative global row counters are utilized as appropriate to the requirements of a specific application.
  • the read pointer address logic circuitry 404 and the reset pointer address logic circuitry 406 translates the global row counter value to a physical address within the array as a function of settings such as read-out direction and windowing.
  • Row based timing shifts of each focal plane read-out and reset positions (FP_offset[x,y]) are provided to the read pointer address logic and reset pointer address logic circuits. These timing shifts can be stored in configuration registers within the imager array.
  • the value of the timing shifts can be added to the global row counter value (modulo the total number of rows) before translation to physical addresses by the read pointer address logic and the reset pointer address logic circuits.
  • each focal plane can be provided with a programmable timing offset.
  • the timing offsets are configured based upon different operational modes of the array camera.
  • the system power management bias generation circuitry is configured to provide current and or voltage references to analog circuitry such as (but not limited to) the reference voltages against which an ADC would measure the signal to be converted against.
  • system power management and bias generation circuitry in accordance with many embodiments of the invention can turn off the current/voltage references to certain circuits when they are not in use for power saving reasons. Additional power management techniques that can be implemented using power management circuitry in accordance with embodiments of the invention are discussed below.
  • the master control block of an imager array in accordance with embodiments of the invention can manage the power consumption of the imager array.
  • the master control block reduces power consumption by “turning off” certain focal planes during modes of operation where the desired output resolution is less than the full performance of the device.
  • amplifiers, bias generators, ADCs and other clocked circuits associated with the focal planes that are not used are placed in a lower power state to minimize or eliminate static and dynamic power draw.
  • the photodiodes in the pixels of an inactive focal planes are connected to the power supply via transistor switches within each pixel such that the pixel well is held open to its maximum electrical potential. Holding the well open enables the photodiode to constantly collect carriers generated by the incident light and thus reduce the problem of carrier migration from an inactive imager.
  • the transistors in each pixel are part of the normal pixel architecture i.e. the transfer gate, and it is the master control logic along with the row controllers that signal the transistors to hold the wells open.
  • reference pixels are used in the calibration of dark current and FPN.
  • the power management circuitry is configured to enable the powering down of the pixels in a focal plane in such a way that the reference pixels remain active. In several embodiments, this is achieved by powering the ASP during the readout of reference pixels but otherwise maintaining the ASP in a low power mode. In this way, the focal plane can be more rapidly activated by reducing the need to calibrate dark current and FPN when the focal plane is woken up. In many instances, calibration is performed with respect to dark current and FPN when the reference pixels are powered down during the low power state of the focal plane. In other embodiments, any of a variety of partial powering of circuitry can be utilized to reduce the current drawn by a focal plane and its associated peripheral circuitry in accordance with embodiments of the invention.
  • imager arrays in accordance with several embodiments of the invention include focal plane data collation and framing logic circuitry that is responsible for capturing the data from the focal planes and packaging the data into a container in accordance with a predetermined container format.
  • the circuitry also prepares the data for transmission by performing data transformations including but not limited to any bit reduction to the data (e.g. 10 bit to 8 bit conversion).
  • imager arrays based upon requirements, including but not limited to, pixel size/performance, the optical system of the array camera, the silicon real-estate cost, and the manufacturing process used to fabricate the imager array in accordance with embodiments of the invention.
  • imager arrays in accordance with embodiments of the invention can be implemented using any of a variety of shapes of pixels including but not limited to square pixels, rectangular pixels, hexagonal pixels, and a variety of pixel shapes. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.

Abstract

Architectures for imager arrays configured for use in array cameras in accordance with embodiments of the invention are described. One embodiment of the invention includes a plurality of focal planes, where each focal plane comprises a two dimensional arrangement of pixels having at least two pixels in each dimension and each focal plane is contained within a region of the imager array that does not contain pixels from another focal plane, control circuitry configured to control the capture of image information by the pixels within the focal planes, where the control circuitry is configured so that the capture of image information by the pixels in at least two of the focal planes is separately controllable, and sampling circuitry configured to convert pixel outputs into digital pixel data.

Description

    RELATED APPLICATION
  • This application claims priority to U.S. patent application Ser. No. 61/334,011 filed on May 12, 2010, which is incorporated by reference herein in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates generally to imagers and more specifically to imager arrays used in array cameras.
  • BACKGROUND OF THE INVENTION
  • A sensor used in a conventional single sensor camera, typically includes a row controller and one or more column read-out circuits. In the context of the array of pixels in an imager, the term “row” is typically used to refer to a group of pixels that share a common control line(s) and the term “column” is a group of pixels that share a common read-out line(s). A number of array camera designs have been proposed that use either an array of individual cameras/sensors or a lens array focused on a single focal plane sensor. When multiple separate cameras are used in the implementation of an array camera, each camera has a separate I/O path and the camera controllers are typically required to be synchronized in some way. When a lens array focused on a single focal plane sensor is used to implement an array camera, the sensor is typically a conventional sensor similar to that used in a conventional camera. As such, the sensor does not possess the ability to independently control the pixels within the image circle of each lens in the lens array.
  • SUMMARY OF THE INVENTION
  • Systems and methods are disclosed in which an imager array is implemented as a monolithic integrated circuit in accordance with embodiments of the invention. In many embodiments, the imager array includes a plurality of imagers that are each independently controlled by control logic within the imager array and the image data captured by each imager is output from the imager array using a common I/O path. In a number of embodiments, the pixels of each imager are backside illuminated and the bulk silicon of the imager array is thinned to different depths in the regions corresponding to different imagers in accordance with the spectral wavelengths sensed by each imager.
  • One embodiment of the invention includes a plurality of focal planes, where each focal plane comprises a two dimensional arrangement of pixels having at least two pixels in each dimension and each focal plane is contained within a region of the imager array that does not contain pixels from another focal plane, control circuitry configured to control the capture of image information by the pixels within the focal planes, where the control circuitry is configured so that the capture of image information by the pixels in at least two of the focal planes is separately controllable, and sampling circuitry configured to convert pixel outputs into digital pixel data.
  • In a further embodiment, the plurality of focal planes is arranged as a two dimensional array of focal planes having at least three focal planes in one dimension.
  • In another embodiment, the plurality of focal planes is arranged as a two dimensional array of focal planes having at least three focal planes in both dimensions.
  • In a still further embodiment, the plurality of focal planes arranged as an N×M array of focal planes comprising at least two focal planes configured to capture blue light, at least two focal planes configured to capture green light, and at least two focal planes configured to capture red light.
  • In still another embodiment, each focal plane comprises rows and columns of pixels.
  • In a yet further embodiment, the control circuitry is configured to control capture of image information by a pixel by controlling the resetting of the pixel.
  • In yet another embodiment, the control circuitry is configured to control capture of image information by a pixel by controlling the readout of the pixel.
  • In a further embodiment again, the control circuitry is configured to control capture of image information by controlling the integration time of each pixel.
  • In another embodiment again, the control circuitry is configured to control the processing of image information by controlling the gain of the sampling circuitry.
  • In a further additional embodiment, the control circuitry is configured to control the processing of image information by controlling the black level offset of each pixel.
  • In another additional embodiment, the control circuitry is configured to control the capture of image information by controlling readout direction.
  • In a still yet further embodiment, the read-out direction is selected from the group including top to bottom, and bottom to top.
  • In still yet another embodiment, the read-out direction is selected from the group including left to right, and right to left.
  • In a still further embodiment again, the control circuitry is configured to control the capture of image information by controlling the readout region of interest.
  • In still another embodiment again, the control circuitry is configured to control the capture of image information by controlling horizontal sub-sampling.
  • In a still further additional embodiment, the control circuitry is configured to control the capture of image information by controlling vertical sub-sampling.
  • In still another additional embodiment, the control circuitry is configured to control the capture of image information by controlling pixel charge-binning.
  • In a yet further embodiment again, the imager array is a monolithic integrated circuit imager array.
  • In yet another embodiment again, a two dimensional array of adjacent pixels in at least one focal plane have the same capture band.
  • In a yet further additional embodiment, the capture band is selected from the group including blue light, cyan light, extended color light comprising visible light and near-infra red light, green light, infra-red light, magenta light, near-infra red light, red light, yellow light, and white light.
  • In a further additional embodiment again, a first array of adjacent pixels in a first focal plane have a first capture band, a second array of adjacent pixels in a second focal plane have a second capture band, where the first and second capture bands are the same, the peripheral circuitry is configured so that the integration time of the first array of adjacent pixels is a first time period, and the peripheral circuitry is configured so that the integration time of the second array of adjacent pixels is a second time period, where the second time period is longer than the first time period.
  • In another further embodiment, at least one of the focal planes includes an array of adjacent pixels, where the pixels in the array of adjacent pixels are configured to capture different colors of light.
  • In yet another further embodiment, the array of adjacent pixels employs a Bayer filter pattern.
  • In still another further embodiment, the plurality of focal planes is arranged as a 2×2 array of focal planes, a first focal plane in the array of focal planes includes an array of adjacent pixels that employ a Bayer filter pattern, a second focal plane in the array of focal planes includes an array of adjacent pixels configured to capture green light, a third focal plane in the array of focal planes includes an array of adjacent pixels configured to capture red light, and a fourth focal plane in the array of focal planes includes an array of adjacent pixels configured to capture blue light.
  • In another further embodiment again, the plurality of focal planes is arranged as a two dimensional array of focal planes having at least three focal planes in one dimension.
  • In another further additional embodiment, the plurality of focal planes is arranged as a two dimensional array of focal planes having at least three focal planes in both dimensions.
  • In still yet another further embodiment, the control circuitry comprises a global counter.
  • In still another further embodiment again, the control circuitry is configured to stagger the start points of image read-out such that each focal plane has a controlled temporal offset with respect to a global counter.
  • In still another further additional embodiment again, the control circuitry is configured to separately control the integration times of the pixels in each focal plane based upon the capture band of the pixels in the focal plane using the global counter.
  • In yet another further embodiment again, the control circuitry is configured to separately control the frame rate of each focal plane based upon the global counter.
  • In yet another further additional embodiment, the control circuitry further comprises a pair of pointers for each focal plane.
  • In a still further embodiment, the offset between the pointers specifies an integration time.
  • In still another embodiment, the offset between the pointers is programmable.
  • In a yet further embodiment, the control circuitry comprises a row controller dedicated to each focal plane.
  • In yet another embodiment, the imager array includes an array of M×N focal planes, and the control circuitry comprises a single row decoder circuit configured to address each row of pixels in each row of M focal planes.
  • In a further embodiment again, the control circuitry is configured to generate a first set of pixel level timing signals so that the row decoder and a column circuit sample a first row of pixels within a first focal plane, and the control circuitry is configured to generate a second set of pixel level timing signals so that the row decoder and a column circuit sample a second row of pixels within a second focal plane.
  • In another embodiment again, each focal plane has dedicated sampling circuitry.
  • In a further additional embodiment, at least a portion of the sampling circuitry is shared by a plurality of the focal planes.
  • In another additional embodiment, the imager array includes an array of M×N focal planes, and the sampling circuitry comprises M analog signal processors (ASPs) and each ASP is configured to sample pixels read-out from N focal planes.
  • In a still yet further embodiment, each ASP is configured to receive pixel output signals from the N focal planes via N inputs, and each ASP is configured to sequentially process each pixel output signal on its N inputs.
  • In still yet another embodiment, the control circuitry is configured so that a single common analog pixel signal readout line is shared by all pixels in a group of N focal planes, and the control circuitry is configured to control the capture of image data to time multiplex the pixel output signals received by each of the M ASPs.
  • In still another embodiment again, the imager array includes an array of M×N focal planes, the sampling circuitry comprises a plurality of analog signal processors (ASPs) and each ASP is configured to sample pixels read-out from a plurality of focal planes, the control circuitry is configured so that a single common analog pixel signal readout line is shared by all pixels in the plurality of focal planes, and the control circuitry is configured to control the capture of image data to time multiplex the pixel output signals received by each of the plurality of ASPs.
  • In a yet further embodiment again, the sampling circuitry comprises analog front end (APE) circuitry and analog-to-digital conversion (ADC) circuitry.
  • In yet another embodiment again, the sampling circuitry is configured so that each focal plane has a dedicated AFE and at least one ADC is shared between at least two focal planes.
  • In a yet further additional embodiment, the sampling circuitry is configured so that at least one ADC is shared between a pair of focal planes.
  • In yet another additional embodiment, the sampling circuitry is configured so that at least one ADC is shared between four focal planes.
  • In a further additional embodiment again, the sampling circuitry is configured so that at least one AFE is shared between at least two focal planes.
  • In another additional embodiment again, the sampling circuitry is configured so that at least one AFE is shared between a pair of focal planes.
  • In another further embodiment, the sampling circuitry is configured so that two pairs of focal planes that each share an AFE collectively share an ADC.
  • In still another further embodiment, the control circuitry is configured to separately control the power down state of each focal plane and associated AFE circuitry or processing timeslot therein.
  • In yet another further embodiment, the control circuitry configures the pixels of at least one inactive focal plane to be in a constant reset state.
  • In another further embodiment again, at least one focal plane includes reference pixels to calibrate pixel data captured using the focal plane.
  • In another further additional embodiment, the control circuitry is configured to separately control the power down state of the focal plane's associated AFE circuitry or processing timeslot therein, and the control circuitry is configured to power down the focal plane's associated AFE circuitry or processing timeslot therein without powering down the associated AFE circuitry or processing timeslot therein for readout of the reference pixels of the focal plane.
  • In still yet another further additional embodiment, the pixels in the array of adjacent pixels share read-out circuitry.
  • In still another further embodiment again, the read-out circuit includes a reset transistor, a floating diffusion capacitor, and a source follower amplifier transistor.
  • In still another further additional embodiment, the array of adjacent pixels in the at least one focal plane is a first array of adjacent pixels, the imager array includes a second array of adjacent pixels within another of the plurality of focal planes and the pixels in the second array of adjacent pixels in the second array of adjacent pixels, the capture band of the pixels in the second array of adjacent pixels differs from the capture band of the pixels in the first array of adjacent pixels, and the full well capacity of the pixels in the first array of adjacent pixels is different to the full well capacity of the pixels in the second array of adjacent pixels.
  • In yet another further embodiment again, the full well capacity of the pixels in the first array of adjacent pixels is configured so that each pixel well is filled by the number of electrons generated when the pixel is exposed for a predetermined integration time to light within the first capture band having a predetermined maximum spectral radiance, and the full well capacity of the pixels in the second array of adjacent pixels is configured so that each pixel well is filled by the number of electrons generated when the pixel is exposed for a predetermined integration time to light within the second capture band having a predetermined maximum spectral radiance.
  • In yet another further additional embodiment, the floating diffusion capacitance determines the conversion gain of each pixel in the array of adjacent pixels.
  • In a further embodiment, the array of adjacent pixels in the at least one focal plane is a first array of adjacent pixels, the imager array includes a second array of adjacent pixels within another of the plurality of focal planes and the pixels in the second array of adjacent pixels has a floating diffusion capacitance that determines the conversion gain of each pixel in the second array of adjacent pixels, the capture band of the pixels in the second array of adjacent pixels differs from the capture band of the pixels in the first array of adjacent pixels, and the conversion gain of the pixels in the first array of adjacent pixels is different to the conversion gain of the pixels in the second array of adjacent pixels.
  • In another embodiment, the floating diffusion capacitors of the first and second arrays of adjacent pixels are configured to minimize the input referred noise of the pixel outputs.
  • In a still further embodiment, the array of adjacent pixels in the at least one focal plane is a first array of adjacent pixels, the imager array includes a second array of adjacent pixels within another of the plurality of focal planes and the pixels in the second array of adjacent pixels has a floating diffusion capacitance that determines the conversion gain of each pixel in the second array of adjacent pixels, the capture band of the pixels in the second array of adjacent pixels is the same as the capture band of the pixels in the first array of adjacent pixels, and the conversion gain of the pixels in the first array of adjacent pixels is different to the conversion gain of the pixels in the second array of adjacent pixels.
  • In still another embodiment, the source follower gain of each pixel in the array determines the output voltage the pixels.
  • In a yet further embodiment, the array of adjacent pixels in the at least one focal plane is a first array of adjacent pixels, the imager array includes a second array of adjacent pixels within another of the plurality of focal planes and the pixels in the second array of adjacent pixels has a fixed source follower gain for each pixel in the second array of adjacent pixels, the capture band of the pixels in the second array of adjacent pixels differs from the capture band of the pixels in the first array of adjacent pixels, and the source follower gain of the pixels in the first array of adjacent pixels is different to the source follower gain of the pixels in the second array of adjacent pixels.
  • In yet another embodiment, the source follower gain of the first and second arrays of adjacent pixels are configured so that the maximum output signal swing of each pixel is the same.
  • In a further embodiment again, a first array of adjacent pixels in a first focal plane have a first capture band, a second array of adjacent pixels in a second focal plane have a second capture band, where the first and second capture bands differ, the imager array is backside illuminated, and the thinning depth of the imager array in the region containing the first array of adjacent pixels is different to the thinning depth of the region of the imager array containing the second array of adjacent pixels.
  • In another embodiment again, the first and second capture bands do not overlap.
  • In a further additional embodiment, the thinning depth of the imager in the array in the region containing the first array is related to the first capture band, and the thinning depth of the imager in the array in the region containing the second array is related to the second capture band.
  • In another additional embodiment, the first thinning depth is configured so as to position the peak carrier generation within the photodiode's depletion region given a nominal capture band wavelength of 450 nm.
  • In a still yet further embodiment, the first thinning depth is configured so as to position the peak carrier generation within the photodiode's depletion region given a nominal capture band wavelength of 550 nm.
  • In still yet another embodiment, the first thinning depth is configured so as to position the peak carrier generation within the photodiode's depletion region given a nominal capture band wavelength of 640 nm.
  • In a still further embodiment again, a first array of adjacent pixels in a first focal plane have a first capture band, a second array of adjacent pixels in a second focal plane have a second capture band, where the first and second capture bands differ, the pixels in the first array of adjacent pixels are a first pixel size, the pixels in the second array of adjacent pixels are a second pixel size, and the first pixel size is larger than the second pixel size and the first capture band includes longer wavelengths of light than the second capture band.
  • In a still further additional embodiment, a first portion of the control circuitry is located on one side of a focal plane and a second portion of the control circuitry is located on the opposite side of the focal plane.
  • In still another additional embodiment, the first portion of the control circuitry is configured to control the capture of information by a plurality of pixels in a first focal plane and in plurality of pixels in a second focal plane located adjacent the first focal plane.
  • In a yet further embodiment again, the imager array is configured to receive a lens array positioned above the focal planes of the imager array, and each of the plurality of focal planes is located within a region in the imager array corresponding to an image circle of the lens array, when a lens array is mounted to the imager array.
  • Yet another embodiment again, also includes a cover-glass mounted above the focal planes of the imager array.
  • In a further additional embodiment again, adjacent focal planes are separated by a spacing distance.
  • In another additional embodiment again, control circuitry is located within the spacing distance between adjacent focal planes.
  • In another further embodiment, sampling circuitry is located within the spacing distance between adjacent focal planes.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of an array camera in accordance with an embodiment of the invention.
  • FIG. 1A is a block diagram of a monolithic imager array in accordance with an embodiment of the invention.
  • FIGS. 2A-2B illustrate imager configurations of imager arrays in accordance with embodiments of the invention.
  • FIG. 3 illustrates an architecture of an imager array in accordance with an embodiment of the invention.
  • FIG. 4 illustrates another architecture of an imager array including shared analog to digital converters in accordance with an embodiment of the invention.
  • FIG. 4A illustrates a further architecture of an imager array including shared column circuits in accordance with an embodiment of the invention.
  • FIG. 4B illustrates still another architecture of an imager array including shared split column circuits in accordance with an embodiment of the invention.
  • FIG. 4C illustrates the phase shifting of column circuit outputs from two focal planes read-out in accordance with an embodiment of the invention.
  • FIG. 4D illustrates a pair of focal planes in an imager array having dedicated analog front end circuitry and sharing an analog to digital converter in accordance with an embodiment of the invention.
  • FIG. 4E illustrates a group of four focal planes in an imager array where pairs of focal planes share analog front end circuitry and the group of four focal planes share an analog to digital converter in accordance with an embodiment of the invention.
  • FIG. 4F illustrates a pair of focal planes within an imager array where the pair of focal planes share column control read-out circuitry in accordance with an embodiment of the invention.
  • FIG. 4G illustrates a pair of focal planes within an imager array where the column control and read-out circuitry is split and a single block of column control and read-out circuitry reads out odd columns from a first focal plane and even columns from a second focal plane in accordance with an embodiment of the invention.
  • FIG. 4H is a block diagram illustrating focal plane timing and control circuitry in accordance with an embodiment of the invention.
  • FIG. 5 illustrates a backside illuminated imager array with optimized thinning depths in accordance with an embodiment of the invention.
  • DETAILED DISCLOSURE OF THE INVENTION
  • Turning now to the drawings, architectures for imager arrays configured for use in array cameras in accordance with embodiments of the invention are illustrated. In many embodiments, a centralized controller on an imager array enables fine control of the capture time of each focal plane in the array. The term focal plane describes a two dimensional arrangement of pixels. Focal planes in an imager array are typically non-overlapping (i.e. each focal plane is located within a separate region on the imager array). The term imager is used to describe the combination of a focal plane and the control circuitry that controls the capture of image information using the pixels within the focal plane. In a number of embodiments, the focal planes of the imager array can be separately triggered. In several embodiments, the focal planes of the imager array utilize different integration times tailored to the capture band of the pixels within each focal plane. The capture band of a pixel typically refers to a contiguous sub-band of the electromagnetic system to which a pixel is sensitive. In addition, the specialization of specific focal planes so that all or a majority of the pixels in the focal plane have the same capture band enables a number of pixel performance improvements and increases in the efficiency of utilization of peripheral circuitry within the imager array.
  • In a number of embodiments, the pixels of the imager array are backside illuminated and the substrate of the regions containing each of the focal planes are thinned to different depths depending upon the spectral wavelengths sensed by the pixels in each focal plane. In addition, the pixels themselves can be modified to improve the performance of the pixels with respect to specific capture bands. In many embodiments, the conversion gain, source follower gain and full well capacity of the pixels in each focal plane are determined to improve the performance of the pixels with respect to their specific capture bands.
  • In several embodiments, each focal plane possesses dedicated peripheral circuitry to control the capture of image information. In certain embodiments, the grouping of pixels intended to capture the same capture band into focal planes enables peripheral circuitry to be shared between the pixels. In many embodiments, the analog front end, analog to digital converter, and/or column read-out and control circuitry are shared between pixels within two or more focal planes.
  • In many embodiments, the imagers in an imager array can be placed in a lower power state to conserve power, which can be useful in operating modes that do not require all imagers to be used to generate the output image (e.g. lower resolution modes). In several embodiments, the pixels of imagers in the low power state are held with the transfer gate on so as to maintain the photodiode's depletion region at its maximum potential and carrier collection ability, thus minimizing the probability of photo-generated carriers generated in an inactive imager from migrating to the pixels of active imagers. Array cameras and imager arrays in accordance with embodiments of the invention are discussed further below.
  • 1. Array Camera Architecture
  • An array camera architecture that can be used in a variety of array camera configurations in accordance with embodiments of the invention is illustrated in FIG. 1. The array camera 100 includes an imager array 110, which is connected to an image processing pipeline module 120 and to a controller 130.
  • The imager array 110 includes an M×N array of individual and independent focal planes, each of which receives light through a separate lens system. The imager array can also include other circuitry to control the capture of image data using the focal planes and one or more sensors to sense physical parameters. The control circuitry can control imaging and functional parameters such as exposure times, trigger times, gain, and black level offset. The control circuitry can also control the capture of image information by controlling read-out direction (e.g. top-to-bottom or bottom-to-top, and left-to-right or right-to-left). The control circuitry can also control read-out of a region of interest, horizontal sub-sampling, vertical sub-sampling, and/or charge-binning. In many embodiments, the circuitry for controlling imaging parameters may trigger each focal plane separately or in a synchronized manner. The imager array can include a variety of other sensors, including but not limited to, dark pixels to estimate dark current at the operating temperature. Imager arrays that can be utilized in array cameras in accordance with embodiments of the invention are disclosed in PCT Publication WO 2009/151903 to Venkataraman et al., the disclosure of which is incorporated herein by reference in its entirety. In a monolithic implementation, the imager array may be implemented using a monolithic integrated circuit. When an imager array in accordance with embodiments of the invention is implemented in a single sell-contained SOC chip or die, the imager array can be referred to as an imager array. The term imager array can be used to describe a semiconductor chip on which the imager array and associated control, support, and read-out electronics are integrated.
  • The image processing pipeline module 120 is hardware, firmware, software, or a combination thereof for processing the images received from the imager array 110. The image processing pipeline module 120 typically processes the multiple low resolution (LR) images captured by the camera array and produces a synthesized higher resolution image in accordance with an embodiment of the invention. In a number of embodiments, the image processing pipeline module 120 provides the synthesized image data via an output 122. Various image processing pipeline modules that can be utilized in a camera array in accordance with embodiments of the invention are disclosed in U.S. patent application Ser. No. 12/967,807 entitled “System and Methods for Synthesizing High Resolution Images Using Super-Resolution Processes” filed Dec. 14, 2010, the disclosure of which is incorporated by reference herein in its entirety.
  • The controller 130 is hardware, software, firmware, or a combination thereof for controlling various operation parameters of the imager array 110. In many embodiments, the controller 130 receives inputs 132 from a user or other external components and sends operation signals to control the imager array 110. The controller 130 can also send information to the image processing pipeline module 120 to assist processing of the LR images captured by the imager array 110.
  • Although a specific array camera architecture is illustrated in FIG. 1, alternative architectures for capturing a plurality of images of a scene using an imager array can also be utilized in accordance with embodiments of the invention. Operation of array cameras, imager array configurations, and processing multiple captured images of a scene in accordance with embodiments of the invention are discussed further below.
  • 2. Imager Array Architectures
  • An imager array in accordance with an embodiment of the invention is illustrated in FIG. 1A. The imager array includes a focal plane array core 152 that includes an array of focal planes 153 and all analog signal processing, pixel level control logic, signaling, and analog-to-digital conversion circuitry. The imager array also includes focal plane timing and control circuitry 154 that is responsible for controlling the capture of image information using the pixels. In a number of embodiments, the focal plane timing and control circuitry utilizes reset and read-out signals to control the integration time of the pixels. In other embodiments, any of a variety of techniques can be utilized to control integration time of pixels and/or to capture image information using pixels. In many embodiments, the focal plane timing and control circuitry 154 provides flexibility of image information capture control, which enables features including (but not limited to) high dynamic range imaging, high speed video, and electronic image stabilization. In various embodiments, the imager array includes power management and bias generation circuitry 156. The power management and bias generation circuitry 156 provides current and voltage references to analog circuitry such as the reference voltages against which an ADC would measure the signal to be converted against. In many embodiments, the power management and bias circuitry also includes logic that turns off the current/voltage references to certain circuits when they are not in use for power saving reasons. In several embodiments, the imager array includes dark current and fixed pattern (FPN) correction circuitry 158 that increases the consistency of the black level of the image data captured by the imager array and can reduce the appearance of row temporal noise and column fixed pattern noise. In several embodiments, each focal plane includes reference pixels for the purpose of calibrating the dark current and FPN of the focal plane and the control circuitry can keep the reference pixels active when the rest of the pixels of the focal plane are powered down in order to increase the speed with which the imager array can be powered up by reducing the need for calibration of dark current and FPN. In many embodiments, the SOC imager includes focal plane framing circuitry 160 that packages the data captured from the focal planes into a container file and can prepare the captured image data for transmission. In several embodiments, the focal plane framing circuitry includes information identifying the focal plane and/or group of pixels from which the captured image data originated. In a number of embodiments, the imager array also includes an interface for transmission of captured image data to external devices. In the illustrated embodiment, the interface is a MIPI CSI 2 output interface supporting four lanes that can support read-out of video at 30 fps from the imager array and incorporating data output interface circuitry 162, interface control circuitry 164 and interface input circuitry 166. Typically, the bandwidth of each lane is optimized for the total number of pixels in the imager array and the desired frame rate. The use of various interfaces including the MIPI CSI 2 interface to transmit image data captured by an array of imagers within an imager array to an external device in accordance with embodiments of the invention is described in U.S. Provisional. Patent Application No. 61/484,920, entitled “Systems and Methods for Transmitting Array Camera Data”, filed May 11, 2011, the disclosure of which is incorporated by reference herein in its entirety. Although specific components of an imager array architecture are discussed above with respect to FIG. 1A. As is discussed further below, any of a variety of imager arrays can be constructed in accordance with embodiments of the invention that enable the capture of images of a scene at a plurality of focal planes in accordance with embodiments of the invention. Accordingly, focal plane array cores and various components that can be included in imager arrays in accordance with embodiments of the invention are discussed further below.
  • 3. Focal Plane Array Cores
  • Focal plan array cores in accordance with embodiments of the invention include an array of imagers and dedicated peripheral circuitry for capturing image data using the pixels in each focal plane. Imager arrays in accordance with embodiments of the invention can include focal plan array cores that are configured in any of a variety of different configurations appropriate to a specific application. For example, customizations can be made to a specific imager array designs including (but not limited to) with respect to the focal plane, the pixels, and the dedicated peripheral circuitry. Various focal plane, pixel designs, and peripheral circuitry that can be incorporated into focal plane array cores in accordance with embodiments of the invention are discussed below.
  • 3.1. Formation of Focal Planes on an Imager Array
  • An imager array can be constructed in which the focal planes are formed from an array of pixel elements, where each focal plane is a sub-array of pixels. In embodiments where each sub-array has the same number of pixels, the imager array includes a total of K×L pixel elements, which are segmented in M×N sub-arrays of X×Y pixels, such that K=M×X, and L=N×Y. In the context of an imager array, each sub-array or focal plane can be used to generate a separate image of the scene. Each sub-array of pixels provides the same function as the pixels of a conventional imager (i.e. the imager in a camera that includes a single focal plane).
  • As is discussed further below, an imager array in accordance with embodiments of the invention can include a single controller that can separately sequence and control each focal plane. Having a common controller and I/O circuitry can provide important system advantages including lowering the cost of the system due to the use of less silicon area, decreasing power consumption due to resource sharing and reduced system interconnects, simpler system integration due to the host system only communicating with a single controller rather than M×N controllers and read-out I/O paths, simpler array synchronization due to the use of a common controller, and improved system reliability due to the reduction in the number of interconnects.
  • 3.2. Layout of Imagers
  • As is disclosed in P.C.T. Publication WO 2009/151903 (incorporated by reference above), an imager array can include any N×M array of focal planes such as the imager array (200) illustrated in FIG. 2A. Each of the focal planes typically has an associated filter and/or optical elements and can image different wavelengths of light. In a number of embodiments, the imager array includes focal planes that sense red light (R), focal planes that sense green light (G), and focal planes that sense blue light (B). Although in several embodiments, one or more of the focal planes include pixels that are configured to capture different colors of light. In a number of embodiments, the pixels employ a Bayer filter pattern (or similar) pattern that enables different pixels within a focal plane to capture different colors of light. In several embodiments, a 2×2 imager array can include a focal plane where the pixels employ a Bayer filter pattern (or similar), a focal plane where the pixels are configured to capture blue light, a focal plane where the image is configured to capture green light, and a focal plane where the imager is configured to capture red light. Array cameras incorporating such sensor arrays can utilize the color information captured by the blue, green, and red focal planes to enhance the colors of the image captured using the focal plane that employs the Bayer filter. In other embodiments, the focal plane that employs the Bayer pattern is incorporated into an imager array that includes a two dimensional arrangement of focal planes where there are at least three focal planes in one of the dimensions. In a number of embodiments, there are at least three focal planes in both dimensions.
  • The human eye is more sensitive to green light than to red and blue light, therefore, an increase in the resolution of an image synthesized from the low resolution image data captured by an imager array can be achieved using an array that includes more focal planes that sense green light than focal planes that sense red or blue light. A 5×5 imager array (210) including 17 focal planes that sense green light (G), four focal planes that sense red light (R), and four focal planes that sense blue light (B) is illustrated in FIG. 2B. In several embodiments, the imager array also includes focal planes that sense near-IR wavelengths or extended-color wavelengths (i.e. spanning both color and near-IR wavelengths), which can be used to improve the performance of the array camera in low light conditions. In other embodiments, the 5×5 imager array includes at least 13 focal planes, at least 15 focal planes or at least 17 focal planes. In addition, the 5×5 imager array can include at least four focal planes that sense red light, and/or at least four focal planes that sense blue light. In addition, the number of focal planes that sense red light and the number of focal planes that sense blue light can be the same, but need not be the same. Indeed, several imager arrays in accordance with embodiments of the invention include different numbers of focal planes that sense red light and that sense blue light. In many embodiments, other arrays are utilized including (but not limited to) 3×2 arrays, 3×3 arrays, 3×4 arrays, 4×4 arrays, 4×5 arrays, 4×6 arrays, 5×5 arrays, 5×6 arrays, 6×6 arrays, and 3×7 arrays. In a number of embodiments, the imager array includes a two dimensional array of focal planes having at least three focal planes in one of the dimensions. In several embodiments, there are at least three focal plane in both dimensions of the array. In several embodiments, the array includes at least two focal planes having pixels configured to capture blue light, at least two focal planes having pixels configured to capture green light, and at least two focal planes having pixels configured to capture red light.
  • Additional imager array configurations are disclosed in U.S. patent application Ser. No. 12/952,106 entitled “Capturing and Process of Images Using Monolithic Camera Array with Heterogenous Imagers” to Venkataraman et al., the disclosure of which is incorporated by reference herein in its entirety.
  • Although specific imager array configurations are disclosed above, any of a variety of regular or irregular layouts of imagers including imagers that sense visible light, portions of the visible light spectrum, near-IR light, other portions of the spectrum and/or combinations of different portions of the spectrum can be utilized to capture images that provide one or more channels of information for use in SR processes in accordance with embodiments of the invention. The construction of the pixels of an imager in an imager array in accordance with an embodiment of the invention can depend upon the specific portions of the spectrum imaged by the imager. Different types of pixels that can be used in the focal planes of an imager array in accordance with embodiments of the invention are discussed below.
  • 3.3. Pixel Design
  • Within an imager array that is designed for color or multi-spectral capture, each individual focal plane can be designated to capture a sub-band of the visible spectrum. Each focal plane can be optimized in various ways in accordance with embodiments of the invention based on the spectral band it is designated to capture. These optimizations are difficult to perform in a legacy Bayer pattern based image sensor since the pixels capturing their respective sub-band of the visible spectrum are all interleaved within the same pixel array. In many embodiments of the invention, backside illumination is used where the imager array is thinned to different depths depending upon the capture band of a specific focal plane. In a number of embodiments, the sizes of the pixels in the imager array are determined based upon the capture band of the specific imager. In several embodiments, the conversion gains, source follower gains, and full well capacities of groups of pixels within a focal plane are determined based upon the capture band of the pixels. The various ways in which pixels can vary between focal planes in an imager array depending upon the capture band of the pixel are discussed further below.
  • 3.3.1. Backside Illuminated Imager Array with Optimized Thinning Depths
  • A traditional image sensor is illuminated from the front side where photons must first travel through a dielectric stack before finally arriving at the photodiode, which lies at the bottom of the dielectric stack in the silicon substrate. The dielectric stack exists to support metal interconnects within the device. Front side illumination suffers from intrinsically poor Quantum Efficiency (QE) performance (the ratio of generated carriers to incident photons), due to problems such as the light being blocked by metal structures within the pixel. Improvement is typically achieved through the deposition of micro-lens elements on top of the dielectric stack for each pixel so as to focus the incoming light in a cone that attempts to avoid the metal structures within the pixel.
  • Backside illumination is a technique employed in image sensor fabrication so as to improve the QE performance of imagers. In backside illumination (BSI), the silicon substrate bulk is thinned (usually with a chemical etch process) to allow photons to reach the depletion region of the photodiode through the backside of the silicon substrate. When light is incident on the backside of the substrate, the problem of aperturing by metal structures inherent in frontside illumination is avoided. However, the absorption depth of light in silicon is proportional to the wavelength such that the red photons penetrate much deeper than blue photons. If the thinning process does not remove sufficient silicon, the depletion region will be too deep to collect photo electrons generated from blue photons. If the thinning process removes too much silicon, the depletion region can be too shallow and red photons may travel straight though without interacting and generating carriers. Red photons could also be reflected from the front surface back and interact with incoming photons to create constructive and destructive interference due to minor differences in the thickness of the device. The effects caused by variations in the thickness of the device can be evident as fringing patterns and/or as spiky spectral. QE response.
  • In a conventional imager, a mosaic of color filters (typically a Bayer filter) is often used to provide RGB color capture. When a mosaic based color imager is thinned for BSI, the thinning depth is typically the same for all pixels since the processes used do not thin individual pixels to different depths. The common thinning depth of the pixels results in a necessary balancing of QE performance between blue wavelengths and red/near-IR wavelengths. An imager array in accordance with embodiments of the invention includes an array of imagers, where each pixel in a focal plane senses the same spectral wavelengths. Different focal planes can sense different sub-bands of the visible spectrum or indeed any sub-band of the electromagnetic spectrum for which the band-gap energy of silicon has a quantum yield gain greater than 0. Therefore, performance of an imager array can be improved by using BSI where the thinning depth for the pixels of a focal plane is chosen to match optimally the absorption depth corresponding to the wavelengths of light each pixel is designed to capture. In a number of embodiments, the silicon bulk material of the imager array is thinned to different thicknesses to match the absorption depth of each camera's capture band within the depletion region of the photodiode so as to maximize the QE.
  • An imager array in which the silicon substrate is thinned to different depths in regions corresponding to focal planes (i.e. sub-arrays) that sense different spectral bandwidths in accordance with an embodiment of the invention is conceptually illustrated in FIG. 5. The imager array 500 includes a silicon substrate 502 on the front side of which a dielectric stack and metal interconnects 504 are formed. In the illustrated embodiment, the silicon substrate includes regions 506, 508, 510 in which the photodiodes of pixels forming a focal plane for sensing blue light, the photodiodes of pixels forming a focal plane for sensing green light, and the photodiodes of pixels forming a focal plane for sensing red light respectively are located. The backside of the silicon substrate is thinned to different depths in each region. In the illustrated embodiment, the substrate is thinned to correspond to the absorption depth of 450 nm wavelength light (i.e. approximately 0.4 μm) in the region 506 in which the photodiodes of pixels forming an imager for sensing blue light are located, the substrate is thinned to correspond to the absorption depth of 550 nm wavelength light (i.e. approximately 1.5 μm) in the region 508 in which the photodiodes of pixels forming an imager for sensing green light are located, and the substrate is thinned to correspond to the absorption depth of 640 nm wavelength light (i.e. approximately 3.0 μm) in the region 510 in which the photodiodes of pixels forming an imager for sensing red light are located. Although specific depths are shown in FIG. 5, other depths appropriate to the spectral wavelengths sensed by a specific imager and the requirements of the application can be utilized in accordance with embodiments of the invention. In addition, different thinning depths can also be used in array cameras that are not implemented using imager arrays in accordance with embodiments of the invention.
  • In many embodiments, the designation of color channels to each imager within the array is achieved via a first filtration of the incoming photons through a band-pass filler within the optical path of the photons to the photodiodes. In several embodiments, the thinning depth itself is used to create the designation of capture wavelengths since the depletion region depth defines the spectral. QE of each imager.
  • 3.3.2. Optimization of pixel size
  • Additional. SNR benefits can be achieved by changing the pixel sizes used in the imagers designated to capture each sub-band of the spectrum. As pixel sizes shrink, the effective QE of the pixel decreases since the ratio of photodiode depletion region area to pixel area decreases. Microlenses are typically used to attempt to compensate for this and they become more important as the pixel size shrinks. Another detriment to pixel performance by pixel size reduction comes from increased noise. To attempt to maintain the balance of photo-active to read-out circuit area, in many embodiments, the pixel transfer gate, source follower amplifier transistor and reset transistors are also made smaller. As these transistors reduce in size, numerous performance parameters are degraded typically resulting in noise increase.
  • Electrical “cross-talk” also increases as a function of reduced pixel-to-pixel spacing. Long wavelength photons penetrate deeper into the substrate before interacting with the silicon to create a charge carrier. These charge carriers wander in a somewhat random fashion before resurfacing and collection in a photodiode depletion region. This “circle” of probable resurface and collection increases as a function of generation depth. Thus the smaller the pixels become, the greater the number of pixels the circle of probable resurface covers. This effect results in a degradation of the Modulation Transfer Function (MTF) with increase in photon wavelength.
  • Imagers designated to capture longer wavelengths can therefore be optimized to improve system SNR by increasing the pixel size and thus increasing the QE of the pixel. Since MTF drops as a function of increased wavelength, the benefit of smaller pixels for resolution purposes is diminished with increased wavelength. Overall system resolution can thus be maintained while increasing the pixel size for longer wavelengths so as to improve QE and thus improve the overall system SNR.
  • Although in many embodiments, imager arrays in accordance with embodiments of the invention utilize as small pixels as can be manufactured. Accordingly, increasing pixel size in the manner outlined above is simply one technique that can be utilized to improve camera performance and the specific pixel size chosen typically depends upon the specific application.
  • 3.3.3. Imager Optimization
  • The push for smaller and smaller pixels has encouraged pixel designers to re-architect the pixels such that they share read-out circuits within a neighborhood. For example, a group of four photodiodes may share the same reset transistor, floating diffusion node and source follower amplifier transistors. When the four pixels are arranged in a Bayer pattern arrangement, the group of four pixels covers the full visible spectrum of capture. In imager arrays in accordance with embodiments of the invention, these shared pixel structures can be adapted to tailor the performance of pixels in a focal plane to a given capture band. The fact that these structures are shared by pixels that have different capture bands in a traditional color filter array based image sensor means that the same techniques for achieving performance improvements are typically not feasible. The improvement of the performance of pixels in a focal plane by selection of conversion gain, source follower gain, and full well capacity based upon the capture band of the pixels is discussed below. Although the discussion that follows is with reference to 4T CMOS pixels, similar improvements to pixel performance can be achieved in any imager array in which pixels share circuitry in accordance with embodiments of the invention.
  • 3.3.3.1. Optimization of Conversion Gain
  • The performance of imagers within an imager array that are intended to capture specific sub-bands of the spectrum can be improved by utilizing pixels with different conversion gains tailored for each of the different capture bands. Conversion gain in a typical 4T CMOS pixel can be controlled by changing the size of the capacitance of the “sense node”, typically a floating diffusion capacitor (FD). The charge to voltage conversion follows the equation V=Q/C where Q is the charge, C is the capacitance and V is the voltage. Thus the smaller the capacitance, the higher the voltage resulting from a given charge hence the higher the charge-to-voltage conversion gain of the pixel. The conversion gain cannot obviously be increased infinitely however. The apparent full well capacity of the pixel (number of photo-electrons the pixel can record) will decrease if the capacitance of the FD becomes too small. This is because the electrons from the photodiode transfer into the FD due to a potential difference acting on them. Charge transfer will stop when the potential difference is zero (or a potential barrier exists between the PF and the FD). Thus if the capacitance of the FD is too small, the potential equilibrium may be reached before all electrons have been transferred out of the photodiode.
  • 3.3.3.2. Optimization of Source Follower Gain
  • Additional performance gains can be achieved by changing the characteristics of the amplifiers in each pixel within a focal plane. The amplifier in a traditional 4T CMOS pixel is constructed from a Source Follower transistor. The Source Follower transistor amplifies the voltage across the FD so as to drive the pixel signal down the column line to the column circuit where the signal is subsequently sampled.
  • The output voltage swing as a function of the input voltage swing (i.e. the Source Follower amplifier's gain) can be controlled during fabrication by changing the implant doping levels. Given the pixel photodiode's full well capacity (in electrons) and the capacitance of the FD, a range of voltages are established at the input of the Source Follower transistor by the relationship Vin=Vrst−Q/C where Vrst is the reset voltage of the FD, Q is the charge of the electrons transferred to the FD from the photodiode and C is the capacitance of the FD.
  • The photodiode is a pinned structure such that the range of charge that may be accumulated is between 0 electrons and the full well capacity. Therefore, with a given full well capacity of the photodiode and a given capacitance of the FD and a desired output signal swing of the source follower, the optimal gain or a near optimal gain for the source follower transistor can be selected.
  • 3.3.3.3. Optimization of Full Well Capacity
  • Another optimization that can be performed is through changing the full well capacity of the photodiodes. The full well capacity of the photodiode is the maximum number of electrons the photodiode can store in its maximally depleted state. The full well of the pixels can be controlled through the x-y size of the photodiode, the doping levels of the implants that form the diode structure and the voltage used to reset the pixel.
  • 3.3.3.4. Three Parameter Optimization
  • As can be seen in the previous sections, there are three main characteristics that can be tuned in order to configure pixels within a focal plane that have the same capture band for improved imaging performance. The optimal solution for all three parameters is dependent on the targeted behavior of a particular focal plane. Each focal plane can be tailored to the spectral band it is configured to capture. While the design of the pixel can be optimized, in many embodiments the performance of the pixels is simply improved with respect to a specific capture band (even though the improvement may not be optimal). An example optimization is as follows and similar processes can be used to simply improve the performance of a pixel with respect to a specific capture band:
  • a. Optimization of the Photodiode Full Well Capacity.
  • Given the speed of the optics and the transmittance of the color fillers, it is possible to estimate the number of electrons that will be generated given a minimum integration time (e.g. 50 psi for a given maximum spectral radiance. Each sub-band of the spectrum (color) will likely have a different number of electrons generated. The full well capacities of the photodiodes for each sub-band (color) can be chosen such that the maximum radiance within that band under minimum integration times will fill the well. The means by which this target full well capacity is achieved could be through changing the x-y dimensions, changing the doping levels during diode fabrication, changing the reset voltage of the pixels or a combination of two or more of these parameters.
  • b. Optimization of Conversion Gain
  • The next step is to optimize the conversion gain of the pixels. Given the number of electrons defined in the full well optimization step, an optimal capacitance for the floating diffusion can be chosen. The optimal capacitance is one, which maintains a potential difference to support charge transfer from the FD such that the full well capacity can be transferred in a reasonable duration of time. The goal of this optimization is to choose the smallest capacitance possible such that the charge to voltage conversion gain is as high as possible such that input referred noise is minimized and hence the maximum SNR for each color channel is realized.
  • c. Optimization of Source Follower Gain
  • Once the optimal full-well capacity and charge to voltage conversion gain is determined, the source follower amplifier gain can be chosen. The difference between the reset voltage of the FD (Vrst) and the voltage of the FD containing a full well charge load (Vrst-Q/C) enables the definition of an optimal gain for the source follower amplifier. The source follower gain defines the output signal swing between Vrst and Vrst-Q/C. The optimal signal swing is defined by such parameters as the operating voltage of the analog signal processing and the A/D converter that sample and covert the pixel output signal. The source follower gain is chosen for each color channel such that their respective signal swings are all matched to each other and match the maximum signal swing supported by the analog signal processing and A/D converter circuits.
  • Having performed these pixel level optimizations on a per capture band basis, the system will have the maximum SNR and dynamic range for each capture band given linear operation. Although the process described above is designed to provide an optimal solution with regard to maximum SNR and dynamic range, other design criteria can be used in the selection of the three parameters described above to provide improved pixel performance with respect to a specific capture band or application specific desired behavior.
  • 3.3.4. Dynamic Range Tailoring
  • Further optimizations of imager arrays can be achieved by using pixels of different conversion gains within the same spectral band. For example, the “green” imagers could be constructed from pixels that have two or more different conversion gains. Therefore, each “green” imager includes pixels that have a homogeneous conversion gain, which is different to the conversion gain of pixels in another of the “green” imagers in the array. Alternatively, each imager could be constructed from a mosaic of pixels having different conversion gains.
  • As mentioned previously, as the conversion gain increases beyond a certain threshold, the input referred noise continues to decrease but at the expense of effective full well capacity. This effect can be exploited to yield a system having a higher dynamic range. For example, half of all “green” focal planes could be constructed using a conversion gain that optimizes both input referred noise and full well capacity (a “normal green”). The other half of all “green” focal planes could be constructed from pixels that have a higher conversion gain, hence lower input referred noise and lower effective full well capacity (“fast green”). Areas of a scene having a lower light level could be recovered from the “fast green” pixels (that are not saturated) and areas of brighter light level could be recovered from the “normal green” pixels. The result is an overall increase in dynamic range of the system. Although, a specific 50/50 allocation of focal planes between “fast green” and “normal green” is discussed above the number of focal planes dedicated to “fast” imaging and the number of focal planes dedicated to “normal.” imaging is entirely dependent upon the requirements of a specific application. In addition, separate focal planes dedicated to “fast” and “normal.” imaging can be utilized to increase the dynamic range of other spectral bands and is not simply limited to increasing the dynamic range with which an imager array captures green light.
  • A similar effect could be achieved by controlling the integration time of the “fast” and “normal.” green sub-arrays such that the “fast” pixels integrate for longer. However in a non-stationary scene, this could result in motion artifacts since the “fast” pixels would integrate the scene motion for longer than the “normal.” pixels creating an apparent spatial disparity between the two green channels, which may be undesirable.
  • Although the present invention has been described in certain specific embodiments, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that the present invention may be practiced otherwise than specifically described, including various changes in the size, shape and materials, without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive.
  • 3.4. Peripheral Circuitry
  • In a conventional imager, pixels are typically accessed in a row-wise fashion using horizontal control lines that run across each row of pixels. Output signal lines that run vertically through each pixel are used to connect the pixel output to a sampling circuit at the column periphery. The horizontal control lines and the output signal lines are typically implemented as metal traces on silicon. The outputs from all pixels in a row are simultaneously sampled at the column periphery, and scanned out sequentially using column controllers. However, common row-wise access along the full row of K pixels in an imager array does not enable the imagers to be read out independently. As noted above, many of the benefits of utilizing an imager array derive from the independence of the focal planes and the ability for the imager array to separately control the capture of image information by the pixels in each focal plane. The ability to separately control the capture of information means that the capture of image information by the pixels in a focal plane can be customized to the spectral band the focal plane is configured to capture. In a number of embodiments, the ability to provide separate trigger times can be useful in synchronizing the capture of images using focal planes that have different integration times and in capturing sequences of images that can be registered to provide slow motion video sequences. In order to control the capture of image information by different focal planes within an imager array, independent read-out control can be provided for each focal plane. In several embodiments, the imager array has independent read-out control due to the fact that each focal plane has an associated row (column) controller, column (row) read-out circuits and a dedicated pixel signal analog processor and digitizer. In many embodiments, separate control of the capture of image information by pixels in different focal planes is achieved using peripheral circuitry that is shared between focal planes. Imager arrays implemented using dedicated peripheral circuitry and shared peripheral circuitry in accordance with embodiments of the invention are discussed below.
  • 3.4.1. Dedicated Peripheral Circuitry
  • An imager array including multiple focal planes having independent read-out control and pixel digitization, where each focal plane has dedicated peripheral circuitry, in accordance with embodiments of the invention is illustrated in FIG. 3. The imager array 300 includes a plurality of sub-arrays of pixels or focal planes 302. Each focal plane has dedicated row control logic circuitry 304 at its periphery, which is controlled by a common row timing control logic circuitry 306. Although the column circuits and row decoder are shown as a single block on one side of the focal plane, the depiction as a single block is purely conceptual and each logic block can be split between the left/right and/or top/bottom of the focal plane so as to enable layout at double the pixel pitch. Laying out the control and read-out circuitry in this manner can result in a configuration where even columns are sampled in one bank of column (row) circuits and odd columns would be sampled in the other.
  • In a device including M×N focal planes, the read-out control logic includes M sets of column control outputs per row of focal planes (N). Each column sampling/read-out circuit 308 can also have dedicated sampling circuitry for converting the captured image information into digital pixel data. In many embodiments, the sampling circuitry includes Analog Signal. Processor (ASP), which includes an Analog Front End (AFE) amplifier circuit and an Analog to Digital. Converter (ADC) 310. In other embodiments, any of a variety of analog circuitry can be utilized to convert captured image information into digitized pixel information. An ASP can be implemented in a number of ways, including but not limited to, as a single ASP operating at X pixel conversion per row period, where X is the number of pixels in a row of the focal plane served by the column sampling circuit (e.g. with a pipe-lined or SAR ADC), as X ASPs operating in parallel at 1 pixel conversion per row period or P ASPs operating in parallel at X/P conversions per row (see discussion below). A common read-out control circuit 312 controls the read-out of the columns in each imager.
  • In the illustrated embodiment, the master control logic circuitry 314 controls the independent read-out of each imager. The master control logic circuitry 314 includes high level timing control logic circuitry to control the image capture and read-out process of the individual focal plane. In a number of embodiments, the master control portion of this block can implement features including but not limited to: staggering the start points of image read-out such that each focal plane has a controlled temporal offset with respect to a global reference; controlling integration times of the pixels within specific focal planes to provide integration times specific to the spectral bandwidths being imaged; the horizontal and vertical read-out direction of each imager; the horizontal and vertical sub-sampling/binning/windowing of the pixels within each focal plane; the frame/row/pixel rate of each focal plane; and the power-down state control of each focal plane.
  • The master control logic circuitry 314 handles collection of pixel data from each of the imagers. In a number of embodiments, the master control logic circuitry packs the image data into a structured output format. Given that fewer than M×N output ports are used to output the image data (e.g. there are 2 output ports), the imager data is time multiplexed onto these output ports. In a number of embodiments, a small amount of memory (FIFO) is used to buffer the data from the pixels of the imagers until the next available time-slot on the output port 316 and the master control logic circuitry 314 or other circuitry in the imager array periodically inserts codes into the data stream providing information including, but not limited to, information identifying a focal plane, information identifying a row and/or column within a focal plane, and/or information identifying the relative time at which the capture or read-out process began/ended for one or more of the focal planes. Relative time information can be derived from an on-chip timer or counter, whose instantaneous value can be captured at the start/end of read-out of the pixels from each imager either at a frame rate or a line rate. Additional codes can also be added to the data output so as to indicate operating parameters such as (but not limited to) the integration time of each focal plane, and channel gain. As is discussed further below, the host controller can fully re-assemble the data stream back into the individual images captured by each focal plane. In several embodiments, the imager array includes sufficient storage to buffer at least a complete row of image data from all focal planes so as to support reordering and or retiming of the image data from all focal planes such that the data is always packaged with the same timing/ordering arrangement regardless of operating parameters such as (but not limited to) integration time and relative read-out positions. In a number of embodiments, the imager array includes sufficient storage to buffer at least a complete line of image data from all focal planes so as to support reordering and or retiming of the image data from all focal planes such that the data is packaged in a convenient manner to ease the host's reconstruction of the image data, for example retiming/reordering the image data to align the data from all focal planes to a uniform row start position for all focal planes irrespective of relative read-out position.
  • 3.4.2. ASP Sharing
  • The imager array illustrated in FIG. 3 includes a separate ASP associated with each focal plane. An imager array can be constructed in accordance with embodiments of the invention in which ASPs or portions of the ASPs such as (but not limited to) the AFE or the ADC are shared between focal planes. An imager array that shares ASPs between multiple focal planes in accordance with embodiments of the invention is illustrated in FIG. 4. The imager array 300′ utilizes an ASP 310′ for sampling of all the pixels in one column of the M×N array of focal planes. In the illustrated embodiment, there are M groups of analog pixel signal read-out lines connected to M ASPs. Each of the M groups of analog pixel signal read-out lines has N individual lines. Each of the M ASPs sequentially processes each pixel signal on its N inputs. In such a configuration the ASP performs at least N processes per pixel signal period of the N inputs given that each focal plane at its input is in an active state. If one or more of an ASP's focal plane inputs is in an inactive or power down state, the processing rate could be reduced (so as to achieve a further saving in power consumption) or maintained (so as to achieve an increase in frame rate). Alternatively, a common single analog pixel signal read-out line can be shared by all column circuits in a column of focal planes (N) such that the time multiplexing function of the ASP processing can be implemented through sequencing controlled by the column read-out control block 312′.
  • Although the imager array illustrated in FIG. 4 includes shared ASPs, imager arrays in accordance with many embodiments of the invention can include dedicates AFEs and share ADCs. In other embodiments, the sharing ratios of the AFE and ADC do not follow the same number of focal planes. In several embodiments, each focal plane may have a dedicated AFE but two or more AFE outputs are input to a common ADC. In many embodiments, two adjacent focal planes share the same AFE and one or more of these focal plane couples would then be input into an ADC. Accordingly, AFEs and ADCs can be shared between different focal planes in a SOC imager any of a variety of different ways appropriate to specific applications in accordance with embodiments of the invention.
  • Sharing of ADCs between pairs of focal planes in an imager array in accordance with embodiments of the invention is illustrated in FIG. 4 d. In the illustrated embodiment, the sharing of ADCs between pairs of focal planes can be replicated amongst multiple pairs of focal planes within an imager array. Sharing of AFEs between pairs of focal planes and sharing of ADCs between groups of four focal planes in an imager array in accordance with embodiments of the invention is illustrated in FIG. 4 e. The sharing of AFEs and ADCs illustrated in FIG. 4 e can be replicated amongst multiple groups of four focal planes within an imager array. In many embodiments, sharing occurs in pairs of focal planes and/or groups of three or more focal planes.
  • In many embodiments, the pixels within each focal plane are consistently processed through the same circuit elements at all times such that they have consistent offset and gain characteristics. In many embodiments, the control and read-out circuits and AFE are controlled by a common clocking circuit such that the phases and time slot assignment of each focal plane are consistent. An example of the phase shift between the column read-out of the different focal planes in accordance with embodiments of the invention is illustrated in FIG. 4 c. As can be seen, the read-out of the columns in each focal plane is staggered to enable processing by a shared ASP in accordance with embodiments of the invention.
  • In order to support a reduction of power when certain focal planes are not imaging, the ASP, clocking, and bias/current schemes utilized within the imager array can support multiple sample rate configurations such that the sampling rate is always P times the pixel rate of a single focal plane, where P is the number of active focal planes being processed/sampled.
  • A rotated variation of the resource sharing architecture illustrated in FIG. 4 can also be implemented whereby a single ASP is shared among all pixels in a row of M×N (rather than in a column of M×N). Such an arrangement would, therefore, involve use of N ASPs each having M inputs or a single input that is common to the M focal planes, and time-multiplexed by the column read-out control block using sequencing control.
  • 3.4.3. Column Circuit Sharing
  • In another embodiment of the invention, fewer than M*N column circuits are used for sampling the pixel values of the focal planes in an imager array. An imager array 301 configured so that individual focal planes within a column of the imager array share a common column circuit block 308′ such that the device utilizes only M sets of column circuits in accordance with an embodiment of the invention is illustrated in FIG. 4 a. The M column circuits are accompanied by M ASPs 310′.
  • In several embodiments, the column circuits are time shared such that they enable read-out of pixels from focal planes above and below the column circuit. Sharing of a column circuit between pairs of focal planes within an imager array in accordance with embodiments of the invention is illustrated in FIG. 4 f. The sharing shown in FIG. 4 f is the special case in FIG. 4 a, where M=2. Due to the sharing of the column circuit between the pair of focal planes, the column circuit operates at twice the rate than the desired frame rate from a single focal plane. In many embodiments, the pixels are correlated double sampled and read-out either in their analog form or analog to digital converted within the column circuit. Once the last pixel has been shifted out (or the analog to digital conversion of all the columns has been performed), the column circuit can be reset to remove residual charge from the previous pixel array. A second time slot can then be used for the same operation to occur for the second focal plane. In the illustrated embodiment, the sharing of ADCs between pairs of focal planes can be replicated amongst multiple pairs of focal planes within an imager array.
  • In other embodiments, variations on the imager array 301 illustrated in FIG. 4 a can utilize more or fewer ASPs. In addition, the column circuits 308′ can be divided or combined to form more or fewer than M analog outputs for digitization. For example, an imager array can be designed such that there is a single ASP used for digitization of the M column circuits. The M outputs of the column circuits are time multiplexed at the input to the ASP. In the case that more than M ASPs are used, each of the M column circuits are further divided such that each column circuit has more than one analog output for digitization. These approaches offer trade-offs between silicon area and power consumption since the greater the number of ASPs, the slower each ASP can be so as to meet a target read-out rate (frame rate).
  • A structural modification to the embodiment illustrated in FIG. 4 a is to split the M column circuits between the top and bottom of the imager array such that there are M*2 column circuit blocks. In such a modification each of the M*2 column circuits is responsible for sampling only half of the pixels of each focal plane in the column of focal planes (e.g. all even pixels within each focal plane could connect to the column circuit at the bottom of the array and all odd pixels could connect to the column circuit at the top). There are still M*X column sampling, circuits, however they are physically divided such that there are M*2 sets of X/2 column sampling circuits. An imager array including split column circuits in accordance with an embodiment of the invention is illustrated in FIG. 4 b. The imager array 301′ uses M*2 column circuit blocks (308 a′, 308 b′) and M*2 ASPs (310 a′, 310 b′). As discussed above, there can also be fewer or more ASPs than the M*2 column circuits. Another variation involving splitting column circuits in accordance with embodiments of the invention is illustrated in FIG. 4 g in which the column circuit is split into top/bottom for sampling of odd/even columns and interstitial column circuits are time shared between the focal planes above and below the column circuits. In the illustrated embodiment, the splitting of column circuits and sharing of column circuits between pairs of focal planes is replicated amongst multiple pairs of focal planes within an imager array in accordance with embodiments of the invention. In addition, each of the column circuits can be shared between an upper and lower focal plane (with the exception of the column circuits at the periphery of the imager array).
  • 3.4.4. Number and Rate of ASPs
  • There are a number of different arrangements for the column sampling circuitry of imager arrays in accordance with embodiments of the invention. Often, the arrangement of the ASP circuitry follows a logical implementation of the column sampling circuits such that a single ASP is used per column circuit covering X pixels thus performing X conversions per row period. Alternatively, X ASPs can be utilized per column circuit performing one conversion per row period. In a general sense, embodiments of the invention can use P ASPs per column circuit of X pixels such that there are X/P conversions per row period. This approach is a means by which the conversion of the samples in any column circuit can be parallelized such that the overall ADC conversion process occurs at a slower rate. For example, in any of the configurations described herein it would be possible to take a column circuit arrangement that samples a number of pixels (T) and performs the analog-to-digital conversion using P ASPs, such that there are T/P conversions per row period. Given a fixed row period (as is the case with a fixed frame rate) the individual conversion rate of each ASP is reduced by the factor P. For example, if there are two ASPs, each runs at ½ the rate. If there are four, each ASP has to run at ¼ the rate. In this general sense, any number of ASPs running at a rate appropriate to a specific application irrespective of the configuration of the column circuitry can be utilized in accordance with embodiments of the invention.
  • 3.4.5. Row Decoder Optimization
  • Imager arrays in accordance with embodiments of the invention possess the ability to access different rows within each focal plane at a given instant so as to enable separate operating parameters with respect to the capture of image information by the pixels of each focal plane. The row decoder is typically formed from a first combinational decode of a physical address (represented as an E bit binary number) to as many as 2E “enable” signals (often referred to as a “one-hot” representation). For example, an 8 bit physical address is decoded into 256 “enable” signals so as to support addressing into a pixel array having 256 rows of pixels. Each of these “enable” signals are in turn logically ANDED with pixel timing signals, the results of which are then applied to the pixel array so as to enable row based pixel operations such as pixel reset and pixel charge transfer.
  • The row decoders can be optimized to reduce silicon area through sharing of the binary to one-hot decode logic. Rather than each sub-array having a fully functional row decoder, including binary to one-hot decoding, many embodiments of the invention have a single binary to one-hot decoder for a given row of focal planes within the imager array. The “enable” outputs of this decoder are routed across all focal planes to each of the (now less functional) row decoders of each focal plane. Separate sets of pixel level timing signals would be dedicated to each focal plane (generated by the row timing and control logic circuitry) and the logical AND function would remain in each focal plane's row decoder.
  • Readout with such a scheme would be performed in time slots dedicated to each focal plane such that there are M timeslots per row of focal planes in the camera array. A first row within the first focal plane would be selected and the dedicated set of pixel level timing signals would be applied to its row decoder and the column circuit would sample these pixels. In the next time slot the physical address would change to point to the desired row in the next focal plane and another set of dedicated pixel level timing signals would be applied to its row decoder. Again, the column circuits would sample these pixels. The process would repeat until all focal planes within a row of focal planes in the camera array have been sampled. When the column circuits are available to sample another row from the imager array, the process can begin again.
  • 3.5. Providing a Memory Structure to Store Image Data
  • An additional benefit of the separate control of the capture of image information by each focal plane in an imager array is the ability to support slow motion video capture without increasing the frame rate of the individual focal planes. In slow motion video each focal plane is read out at a slightly offset point in time. In a traditional camera, the time delta between frames (i.e. the capture frame rate) is dictated by the read-out time of a single frame. In an imager array offering support of independent read-out time of the individual focal planes, the delta between frames can be less than the read-out of an individual frame. For example, one focal plane can begin its frame read-out when another focal plane is halfway through the read-out of its frame. Therefore an apparent doubling of the capture rate is achieved without requiring the focal planes to operate at double speed. However, when outputting the stream of images from the camera, this overlapping frame read-out from all focal planes means that there is continuous imagery to output.
  • Camera systems typically employ a period of time between read-out or display of image data known as the blanking period. Many systems require this blanking period in order to perform additional operations. For example, in a CRT the blanking interval is used to reposition the electron beam from the end of a line or frame to the beginning of the next line or frame. In an imager there are typically blanking intervals between lines to allow the next line of pixels to be addressed and the charge therein sampled by a sampling circuit. There can also be blanking intervals between frames to allow a longer integration time than the frame read-out time.
  • For an array camera operating in slow motion capture mode in accordance with an embodiment of the invention, the frame read-out is offset in time in all the focal planes such that all focal planes will enter their blanking intervals at different points in time. Therefore, there typically will not be a point in time where there is no image data to transmit. Array cameras in accordance with embodiments of the invention can include a retiming FIFO memory in the read-out path of the image data such that an artificial blanking period can be introduced during transmission. The retiming FIFO temporarily stores the image data to be transmitted from all the focal planes during the points in time where a blanking interval is introduced.
  • 3.6. Imager Array Floor Plan
  • Imager arrays in accordance with embodiments of the invention can include floor plans that are optimized to minimize silicon area within the bounds of certain design constraints. Such design constraints include those imposed by the optical system. The sub-arrays of pixels forming each focal plane can be placed within the image circle of each individual lens stack of the lens array positioned above the imager array. Therefore, the manufacturing process of the lens elements typically imposes a minimum spacing distance on the imagers (i.e. a minimum pitch between the focal planes). Another consideration in the focal spacing coming from optical constraints is the magnitude of stray light that can be tolerated. In order to limit optical cross-talk between focal planes, many camera arrays in accordance with embodiments of the invention optically isolate the individual focal planes from each other. An opaque barrier can be created between the optical paths of adjacent focal planes within the lens stack. The opaque barrier extends down to the sensor cover-glass and can serve the additional purpose of providing a sensor to optics bonding surface and back focus spacer. The incursion of the opaque shield into the imaging circle of the lens can result in some level of reflection back into the focal plane. In many embodiments, the complex interplay between the optics and the imager array results in the use of an iterative process to converge to an appropriate solution balancing the design constraints of a specific application.
  • The space between the focal planes (i.e. the spacing distance) can be used to implement control circuitry as well as sampling circuitry including (but not limited to) ASP circuits or other circuitry utilized during the operation of the imager array. The logic circuits within the imager array can also be broken up and implemented within the spacing distance between adjacent focal planes using automatic place and routing techniques.
  • Although specific constraints upon the floor plans of imager arrays are described above, additional constraints can be placed upon floor plans that enable the implementation of the various logic circuits of the imager array in different areas of the device in accordance with embodiments of the invention. In many embodiments, requirements such as pixel size/performance, the optical system of the array camera, the silicon real-estate cost, and the manufacturing process used to fabricate the imager array can all drive subtle variations in the imager array overall architecture and floor plan.
  • 3.6.1. Sampling Diversity
  • In many embodiments, the floor plan also accommodates focal planes that are designed to accommodate an arrangement that yields a preferred sampling diversity of the scene (i.e. the pixels within one focal plane are collecting light from a slightly shifted field of view with respect to other focal planes within the imager array). This can be achieved through a variety of techniques. In several embodiments, sampling diversity is achieved by constructing the imager array so that the focal planes are relatively offset from the centers of their respective optical paths by different subpixel amounts through a relative subpixel shift in alignment between the focal planes and their respective lenses. In many embodiments, the optical field of view are “aimed” slightly differently by an angle that corresponds to a subpixel shift in the image (an amount less than the solid angle corresponding to a single pixel). In a number of embodiments, slight nnicrolens shifts between the focal planes is utilized to alter the particular solid angle of light captured by the nnicrolens (which redirects the light to the pixel) thus achieving a slight subpixel shift. In certain embodiments, the focal planes are constructed with pixels having subtle differences in pixel pitch between focal planes such that sampling diversity is provided irrespective of optical alignment tolerances. For example, a 4×4 imager array can be constructed with focal planes having pixels with length and width dimensions of size 2.0 um, 2.05 um, 2.1 um, 2.15 um and 2.2 um. In other embodiments, any of a variety of pixel dimensions and/or techniques for improving sampling diversity amongst the focal planes within the imager array can be utilized as appropriate to a specific application.
  • 4. Focal Plane Timing and Control Circuitry
  • Referring back to FIG. 1 a, imager arrays in accordance with embodiments of the invention can include focal plane timing and control circuitry 154 that controls the reset and read-out (hence integration) of the pixels in each of the focal planes within the imager array. The ability of an imager array in accordance with embodiments of the invention to provide flexibility in read-out and integration time control can enable features including (but not limited to) high dynamic range imaging, high speed video and electronic image stabilization.
  • Traditional image sensors nominally employ two rolling address pointers into the pixel array, whose role is to indicate rows to receive pixel level charge transfer signals as well as “row select” signals for connecting a given row to the column lines enabling sampling of the sense node of the pixels. In many SOC image arrays in accordance with embodiments of the invention these two rolling address pointers are expanded to 2×M×N rolling address pointers. The pointer pairs for each focal plane can either address the same rows within each focal plane or can be offset from one another with respect to a global reference.
  • Focal plane timing and control address pointer circuitry in accordance with an embodiment of the invention is illustrated in FIG. 4 h. The focal plane timing and control circuitry 400 includes a global row counter 402 and read pointer address logic circuitry 404 and reset pointer address logic circuitry 406 associated with each focal plane. The global row counter 402 is a global reference for sampling of rows of pixels. In a number of embodiments, the global row counter 402 counts from 0 to the total number of rows within a focal plane. In other embodiments, alternative global row counters are utilized as appropriate to the requirements of a specific application. The read pointer address logic circuitry 404 and the reset pointer address logic circuitry 406 translates the global row counter value to a physical address within the array as a function of settings such as read-out direction and windowing. In the illustrated embodiment, there are M×N read pointer and reset pointer address logic circuits. Row based timing shifts of each focal plane read-out and reset positions (FP_offset[x,y]) are provided to the read pointer address logic and reset pointer address logic circuits. These timing shifts can be stored in configuration registers within the imager array. The value of the timing shifts can be added to the global row counter value (modulo the total number of rows) before translation to physical addresses by the read pointer address logic and the reset pointer address logic circuits. In this way, each focal plane can be provided with a programmable timing offset. In several embodiments, the timing offsets are configured based upon different operational modes of the array camera.
  • 5. System Power Management and Bias Generation
  • The system power management bias generation circuitry is configured to provide current and or voltage references to analog circuitry such as (but not limited to) the reference voltages against which an ADC would measure the signal to be converted against. In addition, system power management and bias generation circuitry in accordance with many embodiments of the invention can turn off the current/voltage references to certain circuits when they are not in use for power saving reasons. Additional power management techniques that can be implemented using power management circuitry in accordance with embodiments of the invention are discussed below.
  • 5.1. Power Optimization
  • The master control block of an imager array in accordance with embodiments of the invention can manage the power consumption of the imager array. In many embodiments, the master control block reduces power consumption by “turning off” certain focal planes during modes of operation where the desired output resolution is less than the full performance of the device. In such modes, amplifiers, bias generators, ADCs and other clocked circuits associated with the focal planes that are not used are placed in a lower power state to minimize or eliminate static and dynamic power draw.
  • 5.1.1. Preventing Carrier Migration During Imager Power Down
  • Despite a focal plane being in a powered down state, light is incident upon the pixels in its sub-array. Incident photons will continue to create charge carriers in the silicon substrate. If the pixels in a powered-down focal plane are left floating, the charge carriers will fill the pixel well and deplete the potential barrier making it unable to trap any further carriers. Excess carriers, created by the persistent photon flux will then be left to wander the substrate. If these excess carriers wander from an inactive focal plane into an active focal plane, and collect in the well of a pixel in an active focal plane, they would be erroneously measured to be photo-electrons that were generated within that pixel The result can be the appearance of blooming around the periphery of the active imager caused by the tide of free carriers migrating into the active focal plane from the inactive neighbors.
  • To mitigate the migration of excess carriers from inactive focal planes, the photodiodes in the pixels of an inactive focal planes are connected to the power supply via transistor switches within each pixel such that the pixel well is held open to its maximum electrical potential. Holding the well open enables the photodiode to constantly collect carriers generated by the incident light and thus reduce the problem of carrier migration from an inactive imager. The transistors in each pixel are part of the normal pixel architecture i.e. the transfer gate, and it is the master control logic along with the row controllers that signal the transistors to hold the wells open.
  • 5.1.2. Standby Mode
  • In many embodiments, reference pixels are used in the calibration of dark current and FPN. In several embodiments, the power management circuitry is configured to enable the powering down of the pixels in a focal plane in such a way that the reference pixels remain active. In several embodiments, this is achieved by powering the ASP during the readout of reference pixels but otherwise maintaining the ASP in a low power mode. In this way, the focal plane can be more rapidly activated by reducing the need to calibrate dark current and FPN when the focal plane is woken up. In many instances, calibration is performed with respect to dark current and FPN when the reference pixels are powered down during the low power state of the focal plane. In other embodiments, any of a variety of partial powering of circuitry can be utilized to reduce the current drawn by a focal plane and its associated peripheral circuitry in accordance with embodiments of the invention.
  • 6. Focal Plane Data Collation and Framing Logic
  • Referring again to FIG. 1 a, imager arrays in accordance with several embodiments of the invention include focal plane data collation and framing logic circuitry that is responsible for capturing the data from the focal planes and packaging the data into a container in accordance with a predetermined container format. In a number of embodiments, the circuitry also prepares the data for transmission by performing data transformations including but not limited to any bit reduction to the data (e.g. 10 bit to 8 bit conversion).
  • Although specific imager array architectures are described above, alternative imager array architectures can be used to implement. Imager arrays based upon requirements, including but not limited to, pixel size/performance, the optical system of the array camera, the silicon real-estate cost, and the manufacturing process used to fabricate the imager array in accordance with embodiments of the invention. In addition, imager arrays in accordance with embodiments of the invention can be implemented using any of a variety of shapes of pixels including but not limited to square pixels, rectangular pixels, hexagonal pixels, and a variety of pixel shapes. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.

Claims (53)

1. An imager array, comprising:
a plurality of focal planes, where each focal plane comprises a two dimensional arrangement of pixels having at least two pixels in each dimension and each focal plane is contained within a region of the imager array that does not contain pixels from another focal plane;
control circuitry configured to control the capture of image information by the pixels within the focal planes, where the control circuitry is configured so that the capture of image information by the pixels in at least two of the focal planes is separately controllable; and
sampling circuitry configured to convert pixel outputs into digital pixel data.
2. The imager array of claim 1, wherein the plurality of focal planes is arranged as a two dimensional array of focal planes having at least three focal planes in one dimension.
3. The imager array of claim 1, wherein the plurality of focal planes is arranged as a two dimensional array of focal planes having at least three focal planes in both dimensions.
4. The imager array of claim 1, wherein the plurality of focal planes arranged as an N×M array of focal planes comprising at least two focal planes configured to capture blue light, at least two focal planes configured to capture green light, and at least two focal planes configured to capture red light.
5. The imager array of claim 1, wherein each focal plane comprises rows and columns of pixels.
6. The imager array of claim 1, wherein the control circuitry is configured to control capture of image information by a pixel by controlling the resetting of the pixel.
7. The imager array of claim 1, wherein the control circuitry is configured to control capture of image information by a pixel by controlling the readout of the pixel.
8. The imager array of claim 1, wherein the control circuitry is configured to control capture of image information by controlling the integration time of each pixel.
9. The imager array of claim 1, wherein the control circuitry is configured to control the processing of image information by controlling the gain of the sampling circuitry.
10. The imager array of claim 1, wherein the control circuitry is configured to control the processing of image information by controlling the black level offset of each pixel.
11. The imager array of claim 1, wherein the control circuitry is configured to control the capture of image information by controlling readout direction.
12. The imager array of claim 11, wherein the read-out direction is selected from the group consisting of:
top to bottom; and
bottom to top.
13. The imager array of claim 11, wherein the read-out direction is selected from the group consisting of:
left to right; and
right to left.
14. The imager array of claim 1, wherein the control circuitry is configured to control the capture of image information by controlling the readout region of interest.
15. The imager array of claim 1, wherein the control circuitry is configured to control the capture of image information by controlling horizontal sub-sampling.
16. The imager array of claim 1, wherein the control circuitry is configured to control the capture of image information by controlling vertical sub-sampling.
17. The imager array of claim 1, wherein the control circuitry is configured to control the capture of image information by controlling pixel charge-binning.
18. The imager array of claim 1, wherein the imager array is a monolithic integrated circuit imager array.
19. The imager array of claim 1, wherein a two dimensional array of adjacent pixels in at least one focal plane have the same capture band.
20. The imager array of claim 19, wherein the capture band is selected from the group consisting of:
blue light;
cyan light;
extended color light comprising visible light and near-infra red light;
green light;
infra-red light;
magenta light;
near-infra red light;
red light;
yellow light; and
white light.
21. The imager array of claim 1, wherein:
a first array of adjacent pixels in a first focal plane have a first capture band;
a second array of adjacent pixels in a second focal plane have a second capture band, where the first and second capture bands are the same;
the peripheral circuitry is configured so that the integration time of the first array of adjacent pixels is a first time period; and
the peripheral circuitry is configured so that the integration time of the second array of adjacent pixels is a second time period, where the second time period is longer than the first time period.
21. The imager array of claim 1, wherein at least one of the focal planes includes an array of adjacent pixels, where the pixels in the array of adjacent pixels are configured to capture different colors of light.
22. The imager array of claim 21, wherein the array of adjacent pixels employs a Bayer filler pattern.
23. The imager array of claim 22, wherein:
the plurality of focal planes is arranged as a 2×2 array of focal planes;
a first focal plane in the array of focal planes includes an array of adjacent pixels that employ a Bayer filter pattern;
a second focal plane in the array of focal planes includes an array of adjacent pixels configured to capture green light;
a third focal plane in the array of focal planes includes an array of adjacent pixels configured to capture red light; and
a fourth focal plane in the array of focal planes includes an array of adjacent pixels configured to capture blue light.
24. The imager array of claim 22, wherein the plurality of focal planes is arranged as a two dimensional array of focal planes having at least three focal planes in one dimension.
25. The imager array of claim 22, wherein the plurality of focal planes is arranged as a two dimensional array of focal planes having at least three focal planes in both dimensions.
26. The imager array of claim 1, wherein the control circuitry comprises a global counter.
27. The imager array of claim 26, wherein the control circuitry is configured to stagger the start points of image read-out such that each focal plane has a controlled temporal offset with respect to a global counter.
28. The imager array of claim 26, wherein the control circuitry is configured to separately control the integration times of the pixels in each focal plane based upon the capture band of the pixels in the focal plane using the global counter.
29. The imager array of claim 26, wherein the control circuitry is configured to separately control the frame rate of each focal plane based upon the global counter.
30. The imager array of claim 26, wherein the control circuitry further comprises a pair of pointers for each focal plane.
31. The imager array of claim 30, wherein the offset between the pointers specifies an integration time.
32. The imager array of claim 30, wherein the offset between the pointers is programmable.
33. The imager array of claim 1, wherein the control circuitry comprises a row controller dedicated to each focal plane.
34. The imager array of claim 1, wherein:
the imager array includes an array of M×N focal planes;
the control circuitry comprises a single row decoder circuit configured to address each row of pixels in each row of M focal planes.
35. The imager array of claim 34, wherein:
the control circuitry is configured to generate a first set of pixel level timing signals so that the row decoder and a column circuit sample a first row of pixels within a first focal plane; and
the control circuitry is configured to generate a second set of pixel level timing signals so that the row decoder and a column circuit sample a second row of pixels within a second focal plane.
36. The imager array of claim 1, wherein each focal plane has dedicated sampling circuitry.
37. The imager array of claim 1, wherein at least a portion of the sampling circuitry is shared by a plurality of the focal planes.
38. The imager array of claim 37, wherein:
the imager array includes an array of M×N focal planes;
the sampling circuitry comprises M analog signal processors (ASPs) and each ASP is configured to sample pixels read-out from N focal planes.
39. The imager array of claim 38, wherein:
each ASP is configured to receive pixel output signals from the N focal planes via N inputs; and
each ASP is configured to sequentially process each pixel output signal on its N inputs.
40. The imager array of claim 38, wherein:
the control circuitry is configured so that a single common analog pixel signal readout line is shared by all pixels in a group of N focal planes; and
the control circuitry is configured to control the capture of image data to time multiplex the pixel output signals received by each of the M ASPs.
41. The imager array of claim 37, wherein:
the imager array includes an array of M×N focal planes;
the sampling circuitry comprises a plurality of analog signal processors (ASPs) and each ASP is configured to sample pixels read-out from a plurality of focal planes;
the control circuitry is configured so that a single common analog pixel signal readout line is shared by all pixels in the plurality of focal planes; and
the control circuitry is configured to control the capture of image data to time multiplex the pixel output signals received by each of the plurality of ASPs.
42. The imager array of claim 1, wherein the sampling circuitry comprises analog front end (AFE) circuitry and analog-to-digital conversion (ADC) circuitry.
43. The imager array of claim 42, wherein the sampling circuitry is configured so that each focal plane has a dedicated AFE and at least one ADC is shared between at least two focal planes.
44. The imager array of claim 43, wherein the sampling circuitry is configured so that at least one ADC is shared between a pair of focal planes.
45. The imager array of claim 43, wherein the sampling circuitry is configured so that at least one ADC is shared between four focal planes.
46. The imager array of claim 45, wherein the sampling circuitry is configured so that at least one AFE is shared between at least two focal planes.
47. The imager array of claim 46, wherein the sampling circuitry is configured so that at least one AFE is shared between a pair of focal planes.
48. The imager array of claim 47, wherein the sampling circuitry is configured so that two pairs of focal planes that each share an AFE collectively share an ADC.
49. The imager array of claim 1, wherein the control circuitry is configured to separately control the power down state of each focal plane and associated AFE circuitry or processing timeslot therein.
50. The imager array of claim 49, wherein the control circuitry configures the pixels of at least one inactive focal plane to be in a constant reset state.
51. The imager array of claim 1, wherein at least one focal plane includes reference pixels to calibrate pixel data captured using the focal plane.
52. The imager array of 51, wherein:
the control circuitry is configured to separately control the power down state of the focal plane's associated AFE circuitry or processing timeslot therein; and
the control circuitry is configured to power down the focal plane's associated AFE circuitry or processing timeslot therein without powering down the associated AFE circuitry or processing timeslot therein for readout of the reference pixels of the focal plane.
US13/106,797 2010-05-12 2011-05-12 Architectures for imager arrays and array cameras Abandoned US20120012748A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/106,797 US20120012748A1 (en) 2010-05-12 2011-05-12 Architectures for imager arrays and array cameras
US13/761,040 US20130147979A1 (en) 2010-05-12 2013-02-06 Systems and methods for extending dynamic range of imager arrays by controlling pixel analog gain
US15/159,076 US20170048468A1 (en) 2010-05-12 2016-05-19 Imager Arrays Including an M x N Array of Focal Planes in which Different Types of Focal Planes are Distributed Around a Reference Focal Plane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33401110P 2010-05-12 2010-05-12
US13/106,797 US20120012748A1 (en) 2010-05-12 2011-05-12 Architectures for imager arrays and array cameras

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/761,040 Continuation-In-Part US20130147979A1 (en) 2010-05-12 2013-02-06 Systems and methods for extending dynamic range of imager arrays by controlling pixel analog gain
US15/159,076 Continuation US20170048468A1 (en) 2010-05-12 2016-05-19 Imager Arrays Including an M x N Array of Focal Planes in which Different Types of Focal Planes are Distributed Around a Reference Focal Plane

Publications (1)

Publication Number Publication Date
US20120012748A1 true US20120012748A1 (en) 2012-01-19

Family

ID=44911485

Family Applications (6)

Application Number Title Priority Date Filing Date
US13/106,797 Abandoned US20120012748A1 (en) 2010-05-12 2011-05-12 Architectures for imager arrays and array cameras
US13/106,804 Active 2033-03-04 US8928793B2 (en) 2010-05-12 2011-05-12 Imager array interfaces
US14/589,263 Abandoned US20150156414A1 (en) 2010-05-12 2015-01-05 Imager array interfaces
US14/880,907 Active US9936148B2 (en) 2010-05-12 2015-10-12 Imager array interfaces
US15/159,076 Abandoned US20170048468A1 (en) 2010-05-12 2016-05-19 Imager Arrays Including an M x N Array of Focal Planes in which Different Types of Focal Planes are Distributed Around a Reference Focal Plane
US15/943,512 Active US10455168B2 (en) 2010-05-12 2018-04-02 Imager array interfaces

Family Applications After (5)

Application Number Title Priority Date Filing Date
US13/106,804 Active 2033-03-04 US8928793B2 (en) 2010-05-12 2011-05-12 Imager array interfaces
US14/589,263 Abandoned US20150156414A1 (en) 2010-05-12 2015-01-05 Imager array interfaces
US14/880,907 Active US9936148B2 (en) 2010-05-12 2015-10-12 Imager array interfaces
US15/159,076 Abandoned US20170048468A1 (en) 2010-05-12 2016-05-19 Imager Arrays Including an M x N Array of Focal Planes in which Different Types of Focal Planes are Distributed Around a Reference Focal Plane
US15/943,512 Active US10455168B2 (en) 2010-05-12 2018-04-02 Imager array interfaces

Country Status (7)

Country Link
US (6) US20120012748A1 (en)
EP (1) EP2569935B1 (en)
JP (1) JP5848754B2 (en)
KR (1) KR101824672B1 (en)
CN (1) CN103004180A (en)
SG (2) SG185500A1 (en)
WO (1) WO2011143501A1 (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110069189A1 (en) * 2008-05-20 2011-03-24 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US20110080487A1 (en) * 2008-05-20 2011-04-07 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8305456B1 (en) * 2011-05-11 2012-11-06 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US20130027575A1 (en) * 2011-07-27 2013-01-31 Kwangbo Cho Method and apparatus for array camera pixel readout
WO2013119706A1 (en) * 2012-02-06 2013-08-15 Pelican Imaging Corporation Systems and methods for extending dynamic range of imager arrays by controlling pixel analog gain
WO2013166215A1 (en) * 2012-05-01 2013-11-07 Pelican Imaging Corporation CAMERA MODULES PATTERNED WITH pi FILTER GROUPS
US8619082B1 (en) 2012-08-21 2013-12-31 Pelican Imaging Corporation Systems and methods for parallax detection and correction in images captured using array cameras that contain occlusions using subsets of images to perform depth estimation
DE102012218835A1 (en) * 2012-10-12 2014-04-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. IMAGE SENSOR AND METHOD
US20140132810A1 (en) * 2012-11-13 2014-05-15 Pelican Imaging Corporation Systems and methods for array camera focal plane control
US8791573B1 (en) * 2012-08-31 2014-07-29 Altera Corporation Skewed partial column input/output floorplan
US8831367B2 (en) 2011-09-28 2014-09-09 Pelican Imaging Corporation Systems and methods for decoding light field image files
US20140267762A1 (en) * 2013-03-15 2014-09-18 Pelican Imaging Corporation Extended color processing on pelican array cameras
WO2014159721A1 (en) * 2013-03-13 2014-10-02 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
WO2014164909A1 (en) * 2013-03-13 2014-10-09 Pelican Imaging Corporation Array camera architecture implementing quantum film sensors
US8861089B2 (en) 2009-11-20 2014-10-14 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
US8928793B2 (en) 2010-05-12 2015-01-06 Pelican Imaging Corporation Imager array interfaces
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9128228B2 (en) 2011-06-28 2015-09-08 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9497380B1 (en) 2013-02-15 2016-11-15 Red.Com, Inc. Dense field imaging
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US20160357009A1 (en) * 2014-02-13 2016-12-08 Hamamatsu Photonics K.K. Fabry-perot interference filter
US9519972B2 (en) 2013-03-13 2016-12-13 Kip Peli P1 Lp Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US9965471B2 (en) 2012-02-23 2018-05-08 Charles D. Huston System and method for capturing and sharing a location based experience
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US10600235B2 (en) 2012-02-23 2020-03-24 Charles D. Huston System and method for capturing and sharing a location based experience
US10937239B2 (en) 2012-02-23 2021-03-02 Charles D. Huston System and method for creating an environment and for sharing an event
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8118754B1 (en) 2007-11-15 2012-02-21 Flynn Edward R Magnetic needle biopsy
US8447379B2 (en) 2006-11-16 2013-05-21 Senior Scientific, LLC Detection, measurement, and imaging of cells such as cancer and other biologic substances using targeted nanoparticles and magnetic properties thereof
US9095270B2 (en) 2009-11-06 2015-08-04 Senior Scientific Llc Detection, measurement, and imaging of cells such as cancer and other biologic substances using targeted nanoparticles and magnetic properties thereof
EP2677734A3 (en) * 2012-06-18 2016-01-13 Sony Mobile Communications AB Array camera imaging system and method
US9143673B2 (en) 2012-09-19 2015-09-22 Google Inc. Imaging device with a plurality of pixel arrays
US9398272B2 (en) * 2012-11-07 2016-07-19 Google Inc. Low-profile lens array camera
US8975594B2 (en) * 2012-11-09 2015-03-10 Ge Aviation Systems Llc Mixed-material multispectral staring array sensor
US8978984B2 (en) 2013-02-28 2015-03-17 Hand Held Products, Inc. Indicia reading terminals and methods for decoding decodable indicia employing light field imaging
JP6186573B2 (en) * 2013-08-06 2017-08-30 株式会社モルフォ Image processing apparatus and image processing method
US9742973B2 (en) 2013-08-08 2017-08-22 Sony Corporation Array camera design with dedicated Bayer camera
KR102075093B1 (en) * 2013-08-14 2020-03-03 삼성전자주식회사 Image sensor and analog to digital converter and analog to digital converting method tererof
JP6180882B2 (en) * 2013-10-31 2017-08-16 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device, signal processing device, and electronic device
IL229983A (en) * 2013-12-17 2017-01-31 Brightway Vision Ltd System for controlling pixel array sensor with independently controlled sub pixels
EP3171587A4 (en) * 2014-07-16 2018-03-14 Sony Corporation Compound-eye imaging device
KR101613849B1 (en) * 2014-12-04 2016-04-29 현대모비스 주식회사 Driving Assist System for the Vehicles
US9940527B2 (en) 2014-07-28 2018-04-10 Hyundai Mobis Co., Ltd. Driving assist system for vehicle and method thereof
US20170132466A1 (en) 2014-09-30 2017-05-11 Qualcomm Incorporated Low-power iris scan initialization
US9986179B2 (en) 2014-09-30 2018-05-29 Qualcomm Incorporated Sensor architecture using frame-based and event-based hybrid scheme
US9554100B2 (en) 2014-09-30 2017-01-24 Qualcomm Incorporated Low-power always-on face detection, tracking, recognition and/or analysis using events-based vision sensor
US9940533B2 (en) 2014-09-30 2018-04-10 Qualcomm Incorporated Scanning window for isolating pixel values in hardware for computer vision operations
US9838635B2 (en) 2014-09-30 2017-12-05 Qualcomm Incorporated Feature computation in a sensor element array
US10728450B2 (en) 2014-09-30 2020-07-28 Qualcomm Incorporated Event based computer vision computation
US9762834B2 (en) 2014-09-30 2017-09-12 Qualcomm Incorporated Configurable hardware for computing computer vision features
US10515284B2 (en) 2014-09-30 2019-12-24 Qualcomm Incorporated Single-processor computer vision hardware control and application execution
US9923004B2 (en) 2014-09-30 2018-03-20 Qualcomm Incorporated Hardware acceleration of computer vision feature detection
CN104811661B (en) * 2015-03-23 2018-01-12 北京环境特性研究所 Image control apparatus, digital scene generator and display control method
US9704056B2 (en) 2015-04-02 2017-07-11 Qualcomm Incorporated Computing hierarchical computations for computer vision calculations
JP6700673B2 (en) * 2015-05-15 2020-05-27 キヤノン株式会社 Imaging device, imaging system
CN105181130A (en) * 2015-07-03 2015-12-23 中国电子科技集团公司信息科学研究院 Detector and manufacturing method thereof
US9921298B2 (en) 2015-07-20 2018-03-20 Google Llc Method and apparatus for increasing the resolution of a time of flight pixel array
US9521351B1 (en) 2015-09-21 2016-12-13 Rambus Inc. Fractional-readout oversampled image sensor
KR102412020B1 (en) 2015-09-25 2022-06-22 삼성전자주식회사 Method for controlling parameter of image sensor
EP4187218A1 (en) 2016-01-11 2023-05-31 Carrier Corporation Infrared presence detector system
US10600213B2 (en) 2016-02-27 2020-03-24 Focal Sharp, Inc. Method and apparatus for color-preserving spectrum reshape
EP3439287B1 (en) * 2016-03-30 2022-01-26 Nikon Corporation Image pickup element and image pickup device
US10984235B2 (en) 2016-12-16 2021-04-20 Qualcomm Incorporated Low power data generation for iris-related detection and authentication
US10614332B2 (en) 2016-12-16 2020-04-07 Qualcomm Incorportaed Light source modulation for iris size adjustment
EP3652726B1 (en) 2017-07-27 2023-02-22 Huawei Technologies Co., Ltd. Multifocal display device and method
CN109167940A (en) * 2018-08-23 2019-01-08 Oppo广东移动通信有限公司 A kind of sensitive chip, camera module and electronic equipment
EP3756342B1 (en) 2018-09-12 2022-06-29 Dolby Laboratories Licensing Corporation Cmos sensor architecture for temporal dithered sampling
US11121169B2 (en) * 2019-06-25 2021-09-14 Omnivision Technologies, Inc. Metal vertical transfer gate with high-k dielectric passivation lining
CN111083403B (en) * 2019-12-11 2021-07-06 中国电子科技集团公司第四十四研究所 On-chip multiplexing type pixel control circuit
US11470282B2 (en) 2020-12-09 2022-10-11 Waymo Llc Systems, apparatus, and methods for transmitting image data
CN114630034B (en) * 2022-03-16 2024-02-20 东南大学 Bridge underwater foundation appearance detecting system based on FPGA

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4467365A (en) * 1980-10-16 1984-08-21 Fuji Xerox Co., Ltd. Control system for reading device
US5070414A (en) * 1988-09-20 1991-12-03 Kabushiki Kaisha Toshiba Method and apparatus for reading image information formed on material
US5144448A (en) * 1990-07-31 1992-09-01 Vidar Systems Corporation Scanning apparatus using multiple CCD arrays and related method
US6137535A (en) * 1996-11-04 2000-10-24 Eastman Kodak Company Compact digital camera with segmented fields of view
US20020101528A1 (en) * 1998-01-22 2002-08-01 Paul P. Lee Integrated cmos active pixel digital camera
US20020113888A1 (en) * 2000-12-18 2002-08-22 Kazuhiro Sonoda Image pickup apparatus
US6611289B1 (en) * 1999-01-15 2003-08-26 Yanbin Yu Digital cameras using multiple sensors with multiple lenses
US20040105021A1 (en) * 2002-12-02 2004-06-03 Bolymedia Holdings Co., Ltd. Color filter patterns for image sensors
US6765617B1 (en) * 1997-11-14 2004-07-20 Tangen Reidar E Optoelectronic camera and method for image formatting in the same
US20060033005A1 (en) * 2004-08-11 2006-02-16 Dmitri Jerdev Correction of non-uniform sensitivity in an image array
US20060274174A1 (en) * 2005-06-02 2006-12-07 Tewinkle Scott L System for controlling integration times of photosensors in an imaging device
US7199348B2 (en) * 2004-08-25 2007-04-03 Newport Imaging Corporation Apparatus for multiple camera devices and method of operating same
US20070228256A1 (en) * 2006-03-31 2007-10-04 Mentzer Ray A Analog vertical sub-sampling in an active pixel sensor (APS) image sensor
US20090237520A1 (en) * 2003-07-18 2009-09-24 Katsumi Kaneko Image pick-up appararus and synchronization-signal-generating apparatus
US20110001037A1 (en) * 2009-07-02 2011-01-06 Xerox Corporation Image sensor with integration time compensation

Family Cites Families (792)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124798A (en) 1965-12-09 1978-11-07 Thompson Kenneth B Optical viewing apparatus
US4198646A (en) 1978-10-13 1980-04-15 Hughes Aircraft Company Monolithic imager for near-IR
US4323925A (en) 1980-07-07 1982-04-06 Avco Everett Research Laboratory, Inc. Method and apparatus for arraying image sensor modules
JPS5925483A (en) * 1982-08-04 1984-02-09 Hitachi Denshi Ltd Solid state image pickup device
US4652909A (en) 1982-09-14 1987-03-24 New York Institute Of Technology Television camera and recording system for high definition television having imagers of different frame rate
US4460449A (en) 1983-01-03 1984-07-17 Amerace Corporation Apparatus for making a tool
JPS6140709A (en) 1984-08-02 1986-02-27 みのる産業株式会社 Rotary mesh seeder
EP0289885A1 (en) 1987-05-08 1988-11-09 Siemens Aktiengesellschaft Aperture system for production of several partical probes with changeable cross-section
JPS6437177A (en) * 1987-08-03 1989-02-07 Canon Kk Image pickup device
EP0342419B1 (en) 1988-05-19 1992-10-28 Siemens Aktiengesellschaft Method for the observation of a scene and apparatus therefor
JPH02285772A (en) * 1989-04-26 1990-11-26 Toshiba Corp Picture reader
US5157499A (en) 1990-06-29 1992-10-20 Kabushiki Kaisha N A C High-speed video camera using solid-state image sensor
US5325449A (en) 1992-05-15 1994-06-28 David Sarnoff Research Center, Inc. Method for fusing images and apparatus therefor
JP3032382B2 (en) 1992-07-13 2000-04-17 シャープ株式会社 Digital signal sampling frequency converter
US5659424A (en) 1993-05-25 1997-08-19 Hitachi, Ltd. Projecting lens and image display device
JPH0715457A (en) 1993-06-18 1995-01-17 Hitachi Ltd Digital communication switchover system
EP0677821A3 (en) 1994-04-14 1996-03-06 Hewlett Packard Co Magnify a digital image using feedback.
US20020195548A1 (en) 2001-06-06 2002-12-26 Dowski Edward Raymond Wavefront coding interference contrast imaging systems
US5629524A (en) * 1995-02-21 1997-05-13 Advanced Scientific Concepts, Inc. High speed crystallography detector
US5933190A (en) 1995-04-18 1999-08-03 Imec Vzw Pixel structure, image sensor using such pixel structure and corresponding peripheral circuitry
US6005607A (en) 1995-06-29 1999-12-21 Matsushita Electric Industrial Co., Ltd. Stereoscopic computer graphics image generating apparatus and stereoscopic TV apparatus
GB2302978A (en) 1995-07-04 1997-02-05 Sharp Kk LIquid crystal device
AU1074797A (en) 1995-11-07 1997-06-05 California Institute Of Technology Capacitively coupled successive approximation ultra low power analog-to-digital converter
JPH09181913A (en) 1995-12-26 1997-07-11 Olympus Optical Co Ltd Camera system
US5793900A (en) 1995-12-29 1998-08-11 Stanford University Generating categorical depth maps using passive defocus sensing
US6124974A (en) 1996-01-26 2000-09-26 Proxemics Lenslet array systems and methods
US5973844A (en) 1996-01-26 1999-10-26 Proxemics Lenslet array systems and methods
US6493465B2 (en) 1996-02-21 2002-12-10 Canon Kabushiki Kaisha Matching point extracting method and apparatus therefor
US5832312A (en) 1996-02-22 1998-11-03 Eastman Kodak Company Watertight body for accommodating a photographic camera
MY118360A (en) 1996-04-30 2004-10-30 Nippon Telegraph & Telephone Scheme for detecting shot boundaries in compressed video data using inter-frame/inter field prediction coding and intra-frame/intra-field coding
US6002743A (en) 1996-07-17 1999-12-14 Telymonde; Timothy D. Method and apparatus for image acquisition from a plurality of cameras
GB9616262D0 (en) 1996-08-02 1996-09-11 Philips Electronics Nv Post-processing generation of focus/defocus effects for computer graphics images
US6141048A (en) 1996-08-19 2000-10-31 Eastman Kodak Company Compact image capture device
US5808350A (en) 1997-01-03 1998-09-15 Raytheon Company Integrated IR, visible and NIR sensor and methods of fabricating same
JPH10232626A (en) 1997-02-20 1998-09-02 Canon Inc Stereoscopic image display device
US5801919A (en) 1997-04-04 1998-09-01 Gateway 2000, Inc. Adjustably mounted camera assembly for portable computers
US6097394A (en) 1997-04-28 2000-08-01 Board Of Trustees, Leland Stanford, Jr. University Method and system for light field rendering
NO304715B1 (en) 1997-05-06 1999-02-01 Dimensions As Imaging Procedure
US6515701B2 (en) 1997-07-24 2003-02-04 Polaroid Corporation Focal plane exposure control system for CMOS area image sensors
US6563537B1 (en) 1997-07-31 2003-05-13 Fuji Photo Film Co., Ltd. Image signal interpolation
JP3430935B2 (en) 1997-10-20 2003-07-28 富士ゼロックス株式会社 Image reading device and lens
JP4243779B2 (en) 1997-11-14 2009-03-25 株式会社ニコン Diffusion plate manufacturing method, diffusion plate, microlens array manufacturing method, and microlens array
US6069365A (en) 1997-11-25 2000-05-30 Alan Y. Chow Optical processor based imaging system
JPH11242189A (en) 1997-12-25 1999-09-07 Olympus Optical Co Ltd Method and device for forming image
JPH11223708A (en) 1998-02-09 1999-08-17 Nikon Corp Indentator and production of micro-optical element array
US6054703A (en) 1998-03-20 2000-04-25 Syscan, Inc. Sensing module for accelerating signal readout from image sensors
US6160909A (en) 1998-04-01 2000-12-12 Canon Kabushiki Kaisha Depth control for stereoscopic images
KR100307883B1 (en) 1998-04-13 2001-10-19 박호군 Method for measuring similarity by using a matching pixel count and apparatus for implementing the same
JP3931936B2 (en) 1998-05-11 2007-06-20 セイコーエプソン株式会社 Microlens array substrate, method for manufacturing the same, and display device
US6205241B1 (en) 1998-06-01 2001-03-20 Canon Kabushiki Kaisha Compression of stereoscopic images
US6137100A (en) 1998-06-08 2000-10-24 Photobit Corporation CMOS image sensor with different pixel sizes for different colors
US6069351A (en) * 1998-07-16 2000-05-30 Intel Corporation Focal plane processor for scaling information from image sensors
US6903770B1 (en) 1998-07-27 2005-06-07 Sanyo Electric Co., Ltd. Digital camera which produces a single image based on two exposures
US6340994B1 (en) 1998-08-12 2002-01-22 Pixonics, Llc System and method for using temporal gamma and reverse super-resolution to process images for use in digital display systems
DE19838362C1 (en) 1998-08-18 2000-02-10 Deutsch Zentr Luft & Raumfahrt Focal plane plate for high resolution CCD camera e.g. aircraft flight camera
US6269175B1 (en) 1998-08-28 2001-07-31 Sarnoff Corporation Method and apparatus for enhancing regions of aligned images using flow estimation
US6879735B1 (en) 1998-09-14 2005-04-12 University Of Utah Reasearch Foundation Method of digital image enhancement and sharpening
US6310650B1 (en) 1998-09-23 2001-10-30 Honeywell International Inc. Method and apparatus for calibrating a tiled display
GB2343320B (en) 1998-10-31 2003-03-26 Ibm Camera system for three dimentional images and video
JP3596314B2 (en) 1998-11-02 2004-12-02 日産自動車株式会社 Object edge position measuring device and moving object traffic judging device
JP3875423B2 (en) * 1999-01-19 2007-01-31 日本放送協会 Solid-state imaging device and video signal output device therefor
US6603513B1 (en) 1999-02-16 2003-08-05 Micron Technology, Inc. Using a single control line to provide select and reset signals to image sensors in two rows of a digital imaging device
US6563540B2 (en) 1999-02-26 2003-05-13 Intel Corporation Light sensor with increased dynamic range
US20020063807A1 (en) 1999-04-19 2002-05-30 Neal Margulis Method for Performing Image Transforms in a Digital Display System
US6819358B1 (en) 1999-04-26 2004-11-16 Microsoft Corporation Error calibration for digital image sensors and apparatus using the same
US6292713B1 (en) 1999-05-20 2001-09-18 Compaq Computer Corporation Robotic telepresence system
JP2001008235A (en) 1999-06-25 2001-01-12 Minolta Co Ltd Image input method for reconfiguring three-dimensional data and multiple-lens data input device
JP2001042042A (en) * 1999-07-27 2001-02-16 Canon Inc Image pickup device
US6801653B1 (en) 1999-08-05 2004-10-05 Sony Corporation Information processing apparatus and method as well as medium
US7015954B1 (en) 1999-08-09 2006-03-21 Fuji Xerox Co., Ltd. Automatic video system using multiple cameras
US6647142B1 (en) 1999-08-19 2003-11-11 Mitsubishi Electric Research Laboratories, Inc. Badge identification system
US6771833B1 (en) 1999-08-20 2004-08-03 Eastman Kodak Company Method and system for enhancing digital images
US6628330B1 (en) 1999-09-01 2003-09-30 Neomagic Corp. Color interpolator and horizontal/vertical edge enhancer using two line buffer and alternating even/odd filters for digital camera
US6358862B1 (en) 1999-09-02 2002-03-19 Micron Technology, Inc Passivation integrity improvements
US6639596B1 (en) 1999-09-20 2003-10-28 Microsoft Corporation Stereo reconstruction from multiperspective panoramas
US6774941B1 (en) 1999-10-26 2004-08-10 National Semiconductor Corporation CCD output processing stage that amplifies signals from colored pixels based on the conversion efficiency of the colored pixels
US6671399B1 (en) 1999-10-27 2003-12-30 Canon Kabushiki Kaisha Fast epipolar line adjustment of stereo pairs
US6674892B1 (en) 1999-11-01 2004-01-06 Canon Kabushiki Kaisha Correcting an epipolar axis for skew and offset
JP2001195050A (en) 1999-11-05 2001-07-19 Mitsubishi Electric Corp Graphic accelerator
DE60014420T2 (en) 1999-11-26 2005-10-13 Sanyo Electric Co., Ltd., Moriguchi METHOD FOR 2D / 3D VIDEO CONVERSION
JP3950926B2 (en) 1999-11-30 2007-08-01 エーユー オプトロニクス コーポレイション Image display method, host device, image display device, and display interface
JP3728160B2 (en) 1999-12-06 2005-12-21 キヤノン株式会社 Depth image measuring apparatus and method, and mixed reality presentation system
US7068851B1 (en) 1999-12-10 2006-06-27 Ricoh Co., Ltd. Multiscale sharpening and smoothing with wavelets
FI107680B (en) 1999-12-22 2001-09-14 Nokia Oyj Procedure for transmitting video images, data transmission systems, transmitting video terminal and receiving video terminal
US6502097B1 (en) 1999-12-23 2002-12-31 Microsoft Corporation Data structure for efficient access to variable-size data objects
US6476805B1 (en) 1999-12-23 2002-11-05 Microsoft Corporation Techniques for spatial displacement estimation and multi-resolution operations on light fields
JP2001194114A (en) 2000-01-14 2001-07-19 Sony Corp Image processing apparatus and method and program providing medium
US6523046B2 (en) 2000-02-25 2003-02-18 Microsoft Corporation Infrastructure and method for supporting generic multimedia metadata
JP2001264033A (en) 2000-03-17 2001-09-26 Sony Corp Three-dimensional shape-measuring apparatus and its method, three-dimensional modeling device and its method, and program providing medium
US6571466B1 (en) 2000-03-27 2003-06-03 Amkor Technology, Inc. Flip chip image sensor package fabrication method
JP2001277260A (en) 2000-03-30 2001-10-09 Seiko Epson Corp Micro-lens array, its production method, and original board and display for producing it
KR20020084288A (en) 2000-04-04 2002-11-04 주식회사 아도반테스토 Multibeam exposure apparatus comprising multiaxis electron lens and method for manufacturing semiconductor device
WO2001082593A1 (en) 2000-04-24 2001-11-01 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Apparatus and method for color image fusion
JP2001337263A (en) 2000-05-25 2001-12-07 Olympus Optical Co Ltd Range-finding device
WO2002009424A2 (en) 2000-07-21 2002-01-31 The Trustees Of Columbia University In The City Of New York Method and apparatus for image mosaicing
US7154546B1 (en) 2000-08-07 2006-12-26 Micron Technology, Inc. Pixel optimization for color
ATE313218T1 (en) 2000-08-25 2005-12-15 Fuji Photo Film Co Ltd DEVICE FOR PARALLAX IMAGE RECORDING AND PARALLAX IMAGE PROCESSING
US7085409B2 (en) 2000-10-18 2006-08-01 Sarnoff Corporation Method and apparatus for synthesizing new video and/or still imagery from a collection of real video and/or still imagery
US6734905B2 (en) 2000-10-20 2004-05-11 Micron Technology, Inc. Dynamic range extension for CMOS image sensors
US7262799B2 (en) 2000-10-25 2007-08-28 Canon Kabushiki Kaisha Image sensing apparatus and its control method, control program, and storage medium
US6476971B1 (en) 2000-10-31 2002-11-05 Eastman Kodak Company Method of manufacturing a microlens array mold and a microlens array
JP3918499B2 (en) 2000-11-01 2007-05-23 セイコーエプソン株式会社 Gap measuring method, gap measuring device, shape measuring method, shape measuring device, and liquid crystal device manufacturing method
US6788338B1 (en) 2000-11-20 2004-09-07 Petko Dimitrov Dinev High resolution video camera apparatus having two image sensors and signal processing
US7490774B2 (en) 2003-11-13 2009-02-17 Metrologic Instruments, Inc. Hand-supportable imaging based bar code symbol reader employing automatic light exposure measurement and illumination control subsystem integrated therein
JP2002171537A (en) 2000-11-30 2002-06-14 Canon Inc Compound image pickup system, image pickup device and electronic device
US7260274B2 (en) 2000-12-01 2007-08-21 Imax Corporation Techniques and systems for developing high-resolution imagery
IL156250A0 (en) 2000-12-05 2004-01-04 Yeda Res & Dev Apparatus and method for alignment of spatial or temporal non-overlapping image sequences
JP2002195910A (en) 2000-12-26 2002-07-10 Omron Corp System for testing optical part
JP2002209226A (en) 2000-12-28 2002-07-26 Canon Inc Image pickup device
US7805680B2 (en) 2001-01-03 2010-09-28 Nokia Corporation Statistical metering and filtering of content via pixel-based metadata
JP3957460B2 (en) 2001-01-15 2007-08-15 沖電気工業株式会社 Transmission header compression apparatus, moving picture encoding apparatus, and moving picture transmission system
US6635941B2 (en) 2001-03-21 2003-10-21 Canon Kabushiki Kaisha Structure of semiconductor device with improved reliability
JP2002324743A (en) 2001-04-24 2002-11-08 Canon Inc Exposing method and equipment thereof
US6443579B1 (en) 2001-05-02 2002-09-03 Kenneth Myers Field-of-view controlling arrangements
US20020167537A1 (en) 2001-05-11 2002-11-14 Miroslav Trajkovic Motion-based tracking with pan-tilt-zoom camera
US7235785B2 (en) 2001-05-11 2007-06-26 Irvine Sensors Corp. Imaging device with multiple fields of view incorporating memory-based temperature compensation of an uncooled focal plane array
WO2002096096A1 (en) 2001-05-16 2002-11-28 Zaxel Systems, Inc. 3d instant replay system and method
US7738013B2 (en) 2001-05-29 2010-06-15 Samsung Electronics Co., Ltd. Systems and methods for power conservation in a CMOS imager
WO2002098112A2 (en) 2001-05-29 2002-12-05 Transchip, Inc. Patent application cmos imager for cellular applications and methods of using such
US6482669B1 (en) 2001-05-30 2002-11-19 Taiwan Semiconductor Manufacturing Company Colors only process to reduce package yield loss
US6525302B2 (en) 2001-06-06 2003-02-25 The Regents Of The University Of Colorado Wavefront coding phase contrast imaging systems
US20030025227A1 (en) 2001-08-02 2003-02-06 Zograph, Llc Reproduction of relief patterns
US8675119B2 (en) 2001-08-09 2014-03-18 Trustees Of Columbia University In The City Of New York Adaptive imaging using digital light processing
EP1289309B1 (en) 2001-08-31 2010-04-21 STMicroelectronics Srl Noise filter for Bayer pattern image data
JP3978706B2 (en) 2001-09-20 2007-09-19 セイコーエプソン株式会社 Manufacturing method of fine structure
JP2003139910A (en) 2001-10-30 2003-05-14 Sony Corp Optical element, method and device for manufacturing the same, and liquid crystal display device and image projection type display device using the same
DE10153237A1 (en) 2001-10-31 2003-05-15 Lfk Gmbh Method and device for the automated determination of the modulation transfer function (MTF) of focal plane array (FPA) cameras
JP3705766B2 (en) * 2001-11-28 2005-10-12 独立行政法人科学技術振興機構 Image input device
EP1468314A4 (en) 2001-12-18 2006-12-13 Univ Rochester Imaging using a multifocal aspheric lens to obtain extended depth of field
US7302118B2 (en) 2002-02-07 2007-11-27 Microsoft Corporation Transformation of images
US20030179418A1 (en) 2002-03-19 2003-09-25 Eastman Kodak Company Producing a defective pixel map from defective cluster pixels in an area array image sensor
US8369607B2 (en) 2002-03-27 2013-02-05 Sanyo Electric Co., Ltd. Method and apparatus for processing three-dimensional images
JP2003298920A (en) 2002-03-29 2003-10-17 Fuji Photo Film Co Ltd Digital camera
US20030188659A1 (en) 2002-04-05 2003-10-09 Canadian Bank Note Company Limited Method and apparatus for reproducing a color image based on monochrome images derived therefrom
US6856314B2 (en) 2002-04-18 2005-02-15 Stmicroelectronics, Inc. Method and system for 3D reconstruction of multiple views with altering search path and occlusion modeling
JP3567327B2 (en) 2002-05-08 2004-09-22 富士写真光機株式会社 Imaging lens
US6783900B2 (en) 2002-05-13 2004-08-31 Micron Technology, Inc. Color filter imaging array and method of formation
JP2004048644A (en) 2002-05-21 2004-02-12 Sony Corp Information processor, information processing system and interlocutor display method
JP2003347192A (en) 2002-05-24 2003-12-05 Toshiba Corp Energy beam exposure method and exposure device
US7013318B2 (en) 2002-05-29 2006-03-14 Raytheon Company Method and system for encapsulating cells
US7129981B2 (en) 2002-06-27 2006-10-31 International Business Machines Corporation Rendering system and method for images having differing foveal area and peripheral view area resolutions
JP2004088713A (en) 2002-06-27 2004-03-18 Olympus Corp Image pickup lens unit and image pickup device
JP4147059B2 (en) 2002-07-03 2008-09-10 株式会社トプコン Calibration data measuring device, measuring method and measuring program, computer-readable recording medium, and image data processing device
JP2004037924A (en) 2002-07-04 2004-02-05 Minolta Co Ltd Imaging apparatus
EP1537550A2 (en) 2002-07-15 2005-06-08 Magna B.S.P. Ltd. Method and apparatus for implementing multipurpose monitoring system
US20040012689A1 (en) 2002-07-16 2004-01-22 Fairchild Imaging Charge coupled devices in tiled arrays
JP2004078296A (en) 2002-08-09 2004-03-11 Victor Co Of Japan Ltd Picture generation device
US7447380B2 (en) 2002-09-12 2008-11-04 Inoe Technologies, Llc Efficient method for creating a viewpoint from plurality of images
US20040050104A1 (en) 2002-09-18 2004-03-18 Eastman Kodak Company Forming information transfer lens array
US20040207836A1 (en) 2002-09-27 2004-10-21 Rajeshwar Chhibber High dynamic range optical inspection system and method
US7084904B2 (en) 2002-09-30 2006-08-01 Microsoft Corporation Foveated wide-angle imaging system and method for capturing and viewing wide-angle images in real time
US7477781B1 (en) 2002-10-10 2009-01-13 Dalsa Corporation Method and apparatus for adaptive pixel correction of multi-color matrix
US20040075654A1 (en) 2002-10-16 2004-04-22 Silicon Integrated Systems Corp. 3-D digital image processor and method for visibility processing for use in the same
JP4171786B2 (en) 2002-10-25 2008-10-29 コニカミノルタホールディングス株式会社 Image input device
US7742088B2 (en) 2002-11-19 2010-06-22 Fujifilm Corporation Image sensor and digital camera
JP5036132B2 (en) 2002-11-21 2012-09-26 ビジョン サード イメージング,インコーポレイテッド Critical alignment of parallax images for autostereoscopic display
US20040114807A1 (en) 2002-12-13 2004-06-17 Dan Lelescu Statistical representation and coding of light field data
US6878918B2 (en) * 2003-01-09 2005-04-12 Dialdg Semiconductor Gmbh APS pixel with reset noise suppression and programmable binning capability
US7340099B2 (en) 2003-01-17 2008-03-04 University Of New Brunswick System and method for image fusion
DE10301941B4 (en) 2003-01-20 2005-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Camera and method for optical recording of a screen
US7379592B2 (en) 2003-01-21 2008-05-27 United States Of America As Represented By The Secretary Of The Navy System and method for significant dust detection and enhancement of dust images over land and ocean
US7005637B2 (en) 2003-01-31 2006-02-28 Intevac, Inc. Backside thinning of image array devices
AU2003272936A1 (en) 2003-01-31 2004-08-23 The Circle For The Promotion Of Science And Engineering Method for creating high resolution color image, system for creating high resolution color image and program for creating high resolution color image
US7308157B2 (en) 2003-02-03 2007-12-11 Photon Dynamics, Inc. Method and apparatus for optical inspection of a display
US7595817B1 (en) 2003-02-12 2009-09-29 The Research Foundation Of State University Of New York Linear system based, qualitative independent motion detection from compressed MPEG surveillance video
US20040165090A1 (en) 2003-02-13 2004-08-26 Alex Ning Auto-focus (AF) lens and process
JP2004266369A (en) 2003-02-21 2004-09-24 Sony Corp Solid-state image pickup unit and its driving method
US7106914B2 (en) 2003-02-27 2006-09-12 Microsoft Corporation Bayesian image super resolution
US7148861B2 (en) 2003-03-01 2006-12-12 The Boeing Company Systems and methods for providing enhanced vision imaging with decreased latency
US8218052B2 (en) 2003-03-07 2012-07-10 Iconix Video, Inc. High frame rate high definition imaging system and method
US7218320B2 (en) 2003-03-13 2007-05-15 Sony Corporation System and method for capturing facial and body motion
US6801719B1 (en) 2003-03-14 2004-10-05 Eastman Kodak Company Camera using beam splitter with micro-lens image amplification
US7206449B2 (en) 2003-03-19 2007-04-17 Mitsubishi Electric Research Laboratories, Inc. Detecting silhouette edges in images
US7425984B2 (en) 2003-04-04 2008-09-16 Stmicroelectronics, Inc. Compound camera and methods for implementing auto-focus, depth-of-field and high-resolution functions
US7373005B2 (en) 2003-04-10 2008-05-13 Micron Technology, Inc. Compression system for integrated sensor devices
US7097311B2 (en) 2003-04-19 2006-08-29 University Of Kentucky Research Foundation Super-resolution overlay in multi-projector displays
US6958862B1 (en) 2003-04-21 2005-10-25 Foveon, Inc. Use of a lenslet array with a vertically stacked pixel array
US7428330B2 (en) 2003-05-02 2008-09-23 Microsoft Corporation Cyclopean virtual imaging via generalized probabilistic smoothing
SE525665C2 (en) 2003-05-08 2005-03-29 Forskarpatent I Syd Ab Matrix of pixels and electronic imaging device comprising said matrix of pixels
JP2007515842A (en) 2003-05-13 2007-06-14 エクシード イメージング リミテッド Optical method and system for improving resolution
JP2004348674A (en) 2003-05-26 2004-12-09 Noritsu Koki Co Ltd Region detection method and its device
CN1574894A (en) 2003-06-02 2005-02-02 宾得株式会社 Multiple-focal imaging device, and a mobile device having the multiple-focal-length imaging device
JP2004363478A (en) 2003-06-06 2004-12-24 Sanyo Electric Co Ltd Manufacturing method of semiconductor device
KR100539234B1 (en) 2003-06-11 2005-12-27 삼성전자주식회사 A CMOS type image sensor module having transparent polymeric encapsulation material
US7362918B2 (en) 2003-06-24 2008-04-22 Microsoft Corporation System and method for de-noising multiple copies of a signal
US6818934B1 (en) 2003-06-24 2004-11-16 Omnivision International Holding Ltd Image sensor having micro-lens array separated with trench structures and method of making
US7388609B2 (en) 2003-07-07 2008-06-17 Zoran Corporation Dynamic identification and correction of defective pixels
US7090135B2 (en) 2003-07-07 2006-08-15 Symbol Technologies, Inc. Imaging arrangement and barcode imager for imaging an optical code or target at a plurality of focal planes
US20050007461A1 (en) 2003-07-11 2005-01-13 Novatek Microelectronic Co. Correction system and method of analog front end
US7233737B2 (en) 2003-08-12 2007-06-19 Micron Technology, Inc. Fixed-focus camera module and associated method of assembly
US7643703B2 (en) 2003-09-03 2010-01-05 Battelle Energy Alliance, Llc Image change detection systems, methods, and articles of manufacture
EP1671258A4 (en) 2003-09-04 2008-03-19 Sarnoff Corp Method and apparatus for performing iris recognition from an image
US7161606B2 (en) 2003-09-08 2007-01-09 Honda Motor Co., Ltd. Systems and methods for directly generating a view using a layered approach
JP4020850B2 (en) 2003-10-06 2007-12-12 株式会社東芝 Magnetic recording medium manufacturing method, manufacturing apparatus, imprint stamper and manufacturing method thereof
US7079251B2 (en) 2003-10-16 2006-07-18 4D Technology Corporation Calibration and error correction in multi-channel imaging
US7924327B2 (en) 2003-10-22 2011-04-12 Panasonic Corporation Imaging apparatus and method for producing the same, portable equipment, and imaging sensor and method for producing the same
US7840067B2 (en) 2003-10-24 2010-11-23 Arcsoft, Inc. Color matching and color correction for images forming a panoramic image
WO2005046248A1 (en) 2003-11-11 2005-05-19 Olympus Corporation Multi-spectrum image pick up device
JP4235539B2 (en) 2003-12-01 2009-03-11 独立行政法人科学技術振興機構 Image composition apparatus and image composition method
US20050128509A1 (en) 2003-12-11 2005-06-16 Timo Tokkonen Image creating method and imaging device
US7328288B2 (en) 2003-12-11 2008-02-05 Canon Kabushiki Kaisha Relay apparatus for relaying communication from CPU to peripheral device
US7453510B2 (en) 2003-12-11 2008-11-18 Nokia Corporation Imaging device
JP3859158B2 (en) 2003-12-16 2006-12-20 セイコーエプソン株式会社 Microlens concave substrate, microlens substrate, transmissive screen, and rear projector
US7511749B2 (en) 2003-12-18 2009-03-31 Aptina Imaging Corporation Color image sensor having imaging element array forming images on respective regions of sensor elements
US7123298B2 (en) 2003-12-18 2006-10-17 Avago Technologies Sensor Ip Pte. Ltd. Color image sensor with imaging elements imaging on respective regions of sensor elements
US7376250B2 (en) 2004-01-05 2008-05-20 Honda Motor Co., Ltd. Apparatus, method and program for moving object detection
US7496293B2 (en) 2004-01-14 2009-02-24 Elbit Systems Ltd. Versatile camera for various visibility conditions
US7773143B2 (en) 2004-04-08 2010-08-10 Tessera North America, Inc. Thin color camera having sub-pixel resolution
US8134637B2 (en) 2004-01-28 2012-03-13 Microsoft Corporation Method and system to increase X-Y resolution in a depth (Z) camera using red, blue, green (RGB) sensing
US7453688B2 (en) 2004-01-29 2008-11-18 Inventec Corporation Multimedia device for portable computers
US20050185711A1 (en) 2004-02-20 2005-08-25 Hanspeter Pfister 3D television system and method
SE527889C2 (en) 2004-03-17 2006-07-04 Thomas Jeff Adamo Apparatus for imaging an object
JP2006047944A (en) 2004-03-24 2006-02-16 Fuji Photo Film Co Ltd Photographing lens
JP4468442B2 (en) 2004-03-31 2010-05-26 キヤノン株式会社 Imaging system performance measurement
US7633511B2 (en) 2004-04-01 2009-12-15 Microsoft Corporation Pop-up light field
JP4665422B2 (en) * 2004-04-02 2011-04-06 ソニー株式会社 Imaging device
US8634014B2 (en) 2004-04-05 2014-01-21 Hewlett-Packard Development Company, L.P. Imaging device analysis systems and imaging device analysis methods
US7091531B2 (en) 2004-04-07 2006-08-15 Micron Technology, Inc. High dynamic range pixel amplifier
US8049806B2 (en) 2004-09-27 2011-11-01 Digitaloptics Corporation East Thin camera and associated methods
US7620265B1 (en) 2004-04-12 2009-11-17 Equinox Corporation Color invariant image fusion of visible and thermal infrared video
JP2005303694A (en) 2004-04-13 2005-10-27 Konica Minolta Holdings Inc Compound eye imaging device
US7292735B2 (en) 2004-04-16 2007-11-06 Microsoft Corporation Virtual image artifact detection
US7773404B2 (en) 2005-01-07 2010-08-10 Invisage Technologies, Inc. Quantum dot optical devices with enhanced gain and sensitivity and methods of making same
US8218625B2 (en) 2004-04-23 2012-07-10 Dolby Laboratories Licensing Corporation Encoding, decoding and representing high dynamic range images
US20060034531A1 (en) 2004-05-10 2006-02-16 Seiko Epson Corporation Block noise level evaluation method for compressed images and control method of imaging device utilizing the evaluation method
WO2005110230A1 (en) 2004-05-14 2005-11-24 Philips Intellectual Property & Standards Gmbh System and method for diagnosing breast cancer
US7355793B2 (en) 2004-05-19 2008-04-08 The Regents Of The University Of California Optical system applicable to improving the dynamic range of Shack-Hartmann sensors
WO2006083277A2 (en) 2004-05-25 2006-08-10 Sarnoff Corporation Low latency pyramid processor for image processing systems
JP2005354124A (en) 2004-06-08 2005-12-22 Seiko Epson Corp Production of high pixel density image from a plurality of low pixel density images
US7330593B2 (en) 2004-06-25 2008-02-12 Stmicroelectronics, Inc. Segment based image matching method and system
JP4479373B2 (en) 2004-06-28 2010-06-09 ソニー株式会社 Image sensor
JP4408755B2 (en) 2004-06-28 2010-02-03 Necエレクトロニクス株式会社 Deinterleaving device, mobile communication terminal, and deinterleaving method
US7447382B2 (en) 2004-06-30 2008-11-04 Intel Corporation Computing a higher resolution image from multiple lower resolution images using model-based, robust Bayesian estimation
JP2006033228A (en) 2004-07-14 2006-02-02 Victor Co Of Japan Ltd Picture imaging apparatus
JP2006033493A (en) 2004-07-16 2006-02-02 Matsushita Electric Ind Co Ltd Imaging apparatus
US7189954B2 (en) 2004-07-19 2007-03-13 Micron Technology, Inc. Microelectronic imagers with optical devices and methods of manufacturing such microelectronic imagers
JP2006033570A (en) 2004-07-20 2006-02-02 Olympus Corp Image generating device
US8027531B2 (en) 2004-07-21 2011-09-27 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and method for capturing a scene using staggered triggering of dense camera arrays
GB0416496D0 (en) * 2004-07-23 2004-08-25 Council Of The Central Lab Of Imaging device
US20060023197A1 (en) 2004-07-27 2006-02-02 Joel Andrew H Method and system for automated production of autostereoscopic and animated prints and transparencies from digital and non-digital media
US7068432B2 (en) 2004-07-27 2006-06-27 Micron Technology, Inc. Controlling lens shape in a microlens array
DE102004036469A1 (en) 2004-07-28 2006-02-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Camera module, array based thereon and method for its production
US7333652B2 (en) 2004-08-03 2008-02-19 Sony Corporation System and method for efficiently performing a depth map recovery procedure
US20060028476A1 (en) 2004-08-03 2006-02-09 Irwin Sobel Method and system for providing extensive coverage of an object using virtual cameras
JP2006050263A (en) 2004-08-04 2006-02-16 Olympus Corp Image generation method and device
US7430339B2 (en) 2004-08-09 2008-09-30 Microsoft Corporation Border matting by dynamic programming
US7061693B2 (en) 2004-08-16 2006-06-13 Xceed Imaging Ltd. Optical method and system for extended depth of focus
US7645635B2 (en) 2004-08-16 2010-01-12 Micron Technology, Inc. Frame structure and semiconductor attach process for use therewith for fabrication of image sensor packages and the like, and resulting packages
WO2006036398A2 (en) 2004-08-23 2006-04-06 Sarnoff Corporation Method and apparatus for producing a fused image
US8124929B2 (en) 2004-08-25 2012-02-28 Protarius Filo Ag, L.L.C. Imager module optical focus and assembly method
US7564019B2 (en) 2005-08-25 2009-07-21 Richard Ian Olsen Large dynamic range cameras
US7916180B2 (en) 2004-08-25 2011-03-29 Protarius Filo Ag, L.L.C. Simultaneous multiple field of view digital cameras
US7795577B2 (en) 2004-08-25 2010-09-14 Richard Ian Olsen Lens frame and optical focus assembly for imager module
CN100489599C (en) 2004-08-26 2009-05-20 财团法人秋田企业活性化中心 Liquid crystal lens
JP4057597B2 (en) 2004-08-26 2008-03-05 独立行政法人科学技術振興機構 Optical element
US20060046204A1 (en) 2004-08-31 2006-03-02 Sharp Laboratories Of America, Inc. Directly patternable microlens
US20060055811A1 (en) 2004-09-14 2006-03-16 Frtiz Bernard S Imaging system having modules with adaptive optical elements
US7145124B2 (en) 2004-09-15 2006-12-05 Raytheon Company Multispectral imaging chip using photonic crystals
JP3977368B2 (en) 2004-09-30 2007-09-19 クラリオン株式会社 Parking assistance system
DE102004049676A1 (en) 2004-10-12 2006-04-20 Infineon Technologies Ag Method for computer-aided motion estimation in a plurality of temporally successive digital images, arrangement for computer-aided motion estimation, computer program element and computer-readable storage medium
JP2006119368A (en) 2004-10-21 2006-05-11 Konica Minolta Opto Inc Wide-angle optical system, imaging lens device, monitor camera and digital equipment
JP4534715B2 (en) 2004-10-22 2010-09-01 株式会社ニコン Imaging apparatus and image processing program
DE102004052994C5 (en) 2004-11-03 2010-08-26 Vistec Electron Beam Gmbh Multi-beam modulator for a particle beam and use of the multi-beam modulator for maskless substrate structuring
US7598996B2 (en) 2004-11-16 2009-10-06 Aptina Imaging Corporation System and method for focusing a digital camera
CN101111748B (en) 2004-12-03 2014-12-17 弗卢克公司 Visible light and ir combined image camera with a laser pointer
US7483065B2 (en) 2004-12-15 2009-01-27 Aptina Imaging Corporation Multi-lens imaging systems and methods using optical filters having mosaic patterns
US8854486B2 (en) 2004-12-17 2014-10-07 Mitsubishi Electric Research Laboratories, Inc. Method and system for processing multiview videos for view synthesis using skip and direct modes
US7728878B2 (en) 2004-12-17 2010-06-01 Mitsubishi Electric Research Labortories, Inc. Method and system for processing multiview videos for view synthesis using side information
CN101198964A (en) 2005-01-07 2008-06-11 格斯图尔泰克股份有限公司 Creating 3D images of objects by illuminating with infrared patterns
US7073908B1 (en) 2005-01-11 2006-07-11 Anthony Italo Provitola Enhancement of depth perception
US7671321B2 (en) 2005-01-18 2010-03-02 Rearden, Llc Apparatus and method for capturing still images and video using coded lens imaging techniques
US7767949B2 (en) 2005-01-18 2010-08-03 Rearden, Llc Apparatus and method for capturing still images and video using coded aperture techniques
US7602997B2 (en) 2005-01-19 2009-10-13 The United States Of America As Represented By The Secretary Of The Army Method of super-resolving images
US7408627B2 (en) 2005-02-08 2008-08-05 Canesta, Inc. Methods and system to quantify depth data accuracy in three-dimensional sensors using single frame capture
US7965314B1 (en) 2005-02-09 2011-06-21 Flir Systems, Inc. Foveal camera systems and methods
US7561191B2 (en) 2005-02-18 2009-07-14 Eastman Kodak Company Camera phone using multiple lenses and image sensors to provide an extended zoom range
ATE518113T1 (en) 2005-03-11 2011-08-15 Creaform Inc SELF-REFERENCED THREE-DIMENSIONAL SCANNING SYSTEM AND APPARATUS
JP2006258930A (en) 2005-03-15 2006-09-28 Nikon Corp Method for manufacturing microlens and method for manufacturing die for microlens
US7692147B2 (en) 2005-03-21 2010-04-06 Massachusetts Institute Of Technology Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array
JPWO2006100903A1 (en) 2005-03-23 2008-08-28 松下電器産業株式会社 In-vehicle imaging device
US7297917B2 (en) 2005-03-24 2007-11-20 Micron Technology, Inc. Readout technique for increasing or maintaining dynamic range in image sensors
CN101147392B (en) 2005-03-24 2012-05-09 松下电器产业株式会社 Imaging device and lens array used therein
US7683950B2 (en) 2005-04-26 2010-03-23 Eastman Kodak Company Method and apparatus for correcting a channel dependent color aberration in a digital image
US7656428B2 (en) 2005-05-05 2010-02-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Imaging device employing optical motion sensor as gyroscope
US7876874B2 (en) 2005-05-18 2011-01-25 Hitachi Medical Corporation Radiographing apparatus and image processing program
US7968888B2 (en) 2005-06-08 2011-06-28 Panasonic Corporation Solid-state image sensor and manufacturing method thereof
JP2006345233A (en) 2005-06-09 2006-12-21 Fujifilm Holdings Corp Imaging device and digital camera
KR100813961B1 (en) 2005-06-14 2008-03-14 삼성전자주식회사 Method and apparatus for transmitting and receiving of video, and transport stream structure thereof
US7364306B2 (en) 2005-06-20 2008-04-29 Digital Display Innovations, Llc Field sequential light source modulation for a digital display system
JP4826152B2 (en) 2005-06-23 2011-11-30 株式会社ニコン Image composition method and imaging apparatus
US20070102622A1 (en) 2005-07-01 2007-05-10 Olsen Richard I Apparatus for multiple camera devices and method of operating same
JP4577126B2 (en) 2005-07-08 2010-11-10 オムロン株式会社 Projection pattern generation apparatus and generation method for stereo correspondence
WO2007014293A1 (en) * 2005-07-25 2007-02-01 The Regents Of The University Of California Digital imaging system and method to produce mosaic images
US7718940B2 (en) 2005-07-26 2010-05-18 Panasonic Corporation Compound-eye imaging apparatus
US8384763B2 (en) 2005-07-26 2013-02-26 Her Majesty the Queen in right of Canada as represented by the Minster of Industry, Through the Communications Research Centre Canada Generating a depth map from a two-dimensional source image for stereoscopic and multiview imaging
US7969488B2 (en) 2005-08-03 2011-06-28 Micron Technologies, Inc. Correction of cluster defects in imagers
US7929801B2 (en) 2005-08-15 2011-04-19 Sony Corporation Depth information for auto focus using two pictures and two-dimensional Gaussian scale space theory
US20070041391A1 (en) 2005-08-18 2007-02-22 Micron Technology, Inc. Method and apparatus for controlling imager output data rate
US20070040922A1 (en) 2005-08-22 2007-02-22 Micron Technology, Inc. HDR/AB on multi-way shared pixels
US7964835B2 (en) 2005-08-25 2011-06-21 Protarius Filo Ag, L.L.C. Digital cameras with direct luminance and chrominance detection
US20070258006A1 (en) 2005-08-25 2007-11-08 Olsen Richard I Solid state camera optics frame and assembly
US20070083114A1 (en) 2005-08-26 2007-04-12 The University Of Connecticut Systems and methods for image resolution enhancement
JP4804856B2 (en) 2005-09-29 2011-11-02 富士フイルム株式会社 Single focus lens
WO2007036055A1 (en) 2005-09-30 2007-04-05 Simon Fraser University Methods and apparatus for detecting defects in imaging arrays by image analysis
US7723662B2 (en) 2005-10-07 2010-05-25 The Board Of Trustees Of The Leland Stanford Junior University Microscopy arrangements and approaches
JP4773179B2 (en) 2005-10-14 2011-09-14 富士フイルム株式会社 Imaging device
US8300085B2 (en) 2005-10-14 2012-10-30 Microsoft Corporation Occlusion handling in stereo imaging
US7806604B2 (en) 2005-10-20 2010-10-05 Honeywell International Inc. Face detection and tracking in a wide field of view
KR100730406B1 (en) 2005-11-16 2007-06-19 광운대학교 산학협력단 Three-dimensional display apparatus using intermediate elemental images
JP4389865B2 (en) 2005-11-17 2009-12-24 ソニー株式会社 SIGNAL PROCESSING DEVICE FOR SOLID-STATE IMAGING ELEMENT, SIGNAL PROCESSING METHOD, AND IMAGING DEVICE
US7599547B2 (en) 2005-11-30 2009-10-06 Microsoft Corporation Symmetric stereo model for handling occlusion
JP4887374B2 (en) 2005-11-30 2012-02-29 テレコム・イタリア・エッセ・ピー・アー A method for obtaining scattered parallax field in stereo vision
JP4516516B2 (en) 2005-12-07 2010-08-04 本田技研工業株式会社 Person detection device, person detection method, and person detection program
TWI296480B (en) 2005-12-19 2008-05-01 Quanta Comp Inc Image camera of an electronic device
JP4501855B2 (en) 2005-12-22 2010-07-14 ソニー株式会社 Image signal processing apparatus, imaging apparatus, image signal processing method, and computer program
JP2007180730A (en) 2005-12-27 2007-07-12 Eastman Kodak Co Digital camera and data management method
EP1966648A4 (en) 2005-12-30 2011-06-15 Nokia Corp Method and device for controlling auto focusing of a video camera by tracking a region-of-interest
US7855786B2 (en) 2006-01-09 2010-12-21 Bae Systems Spectral Solutions Llc Single camera multi-spectral imager
US7675080B2 (en) 2006-01-10 2010-03-09 Aptina Imaging Corp. Uniform color filter arrays in a moat
US8194169B2 (en) 2006-01-20 2012-06-05 Panasonic Corporation Compound eye camera module and method of producing the same
DE102006004802B4 (en) 2006-01-23 2008-09-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Image acquisition system and method for producing at least one image capture system
JP4834412B2 (en) 2006-02-03 2011-12-14 富士フイルム株式会社 Solid-state imaging device and electronic endoscope using the same
US20070201859A1 (en) 2006-02-24 2007-08-30 Logitech Europe S.A. Method and system for use of 3D sensors in an image capture device
US7391572B2 (en) 2006-03-01 2008-06-24 International Business Machines Corporation Hybrid optical/electronic structures fabricated by a common molding process
US7924483B2 (en) 2006-03-06 2011-04-12 Smith Scott T Fused multi-array color image sensor
US7616254B2 (en) 2006-03-16 2009-11-10 Sony Corporation Simple method for calculating camera defocus from an image scene
US8360574B2 (en) 2006-03-20 2013-01-29 High Performance Optics, Inc. High performance selective light wavelength filtering providing improved contrast sensitivity
US7606484B1 (en) 2006-03-23 2009-10-20 Flir Systems, Inc. Infrared and near-infrared camera hyperframing
JP4615468B2 (en) 2006-03-23 2011-01-19 富士フイルム株式会社 Imaging device
US8044994B2 (en) 2006-04-04 2011-10-25 Mitsubishi Electric Research Laboratories, Inc. Method and system for decoding and displaying 3D light fields
US7916934B2 (en) 2006-04-04 2011-03-29 Mitsubishi Electric Research Laboratories, Inc. Method and system for acquiring, encoding, decoding and displaying 3D light fields
TW200740212A (en) 2006-04-10 2007-10-16 Sony Taiwan Ltd A stitching accuracy improvement method with lens distortion correction
CN101064780B (en) 2006-04-30 2012-07-04 台湾新力国际股份有限公司 Method and apparatus for improving image joint accuracy using lens distortion correction
US20070263114A1 (en) 2006-05-01 2007-11-15 Microalign Technologies, Inc. Ultra-thin digital imaging device of high resolution for mobile electronic devices and method of imaging
US7580620B2 (en) 2006-05-08 2009-08-25 Mitsubishi Electric Research Laboratories, Inc. Method for deblurring images using optimized temporal coding patterns
US9736346B2 (en) 2006-05-09 2017-08-15 Stereo Display, Inc Imaging system improving image resolution of the system with low resolution image sensor
US7889264B2 (en) 2006-05-12 2011-02-15 Ricoh Co., Ltd. End-to-end design of superresolution electro-optic imaging systems
US7916362B2 (en) 2006-05-22 2011-03-29 Eastman Kodak Company Image sensor with improved light sensitivity
US8139142B2 (en) 2006-06-01 2012-03-20 Microsoft Corporation Video manipulation of red, green, blue, distance (RGB-Z) data including segmentation, up-sampling, and background substitution techniques
IES20070229A2 (en) 2006-06-05 2007-10-03 Fotonation Vision Ltd Image acquisition method and apparatus
US20070177004A1 (en) 2006-06-08 2007-08-02 Timo Kolehmainen Image creating method and imaging device
JP4631811B2 (en) 2006-06-12 2011-02-16 株式会社日立製作所 Imaging device
JP5106870B2 (en) 2006-06-14 2012-12-26 株式会社東芝 Solid-state image sensor
FR2902530A1 (en) 2006-06-19 2007-12-21 St Microelectronics Rousset Polymer lens fabricating method for e.g. complementary MOS imager, involves realizing opaque zones on convex lens by degrading molecular structure of polymer material, where zones form diaphragm and diffraction network that forms filter
TWI362550B (en) 2007-06-21 2012-04-21 Ether Precision Inc The method for manufacturing the image captures unit
US7925117B2 (en) 2006-06-27 2011-04-12 Honeywell International Inc. Fusion of sensor data and synthetic data to form an integrated image
KR100793369B1 (en) 2006-07-06 2008-01-11 삼성전자주식회사 Image sensor for improving the resolution and method of sensing the image for improving it
US20080024683A1 (en) 2006-07-31 2008-01-31 Niranjan Damera-Venkata Overlapped multi-projector system with dithering
US20080030592A1 (en) 2006-08-01 2008-02-07 Eastman Kodak Company Producing digital image with different resolution portions
JP2008039852A (en) 2006-08-01 2008-02-21 Agc Techno Glass Co Ltd Glass optical element and its manufacturing method
US8406562B2 (en) 2006-08-11 2013-03-26 Geo Semiconductor Inc. System and method for automated calibration and correction of display geometry and color
ATE479980T1 (en) 2006-08-24 2010-09-15 Valeo Vision METHOD FOR DETERMINING THE PASSAGE OF A VEHICLE THROUGH A Narrow Passage
US8687087B2 (en) 2006-08-29 2014-04-01 Csr Technology Inc. Digital camera with selectively increased dynamic range by control of parameters during image acquisition
US8306063B2 (en) 2006-08-29 2012-11-06 EXFO Services Assurance, Inc. Real-time transport protocol stream detection system and method
KR100746360B1 (en) 2006-08-31 2007-08-06 삼성전기주식회사 Manufacturing method of stamper
NO326372B1 (en) 2006-09-21 2008-11-17 Polight As Polymer Lens
WO2008039802A2 (en) 2006-09-25 2008-04-03 Ophthonix, Incorporated Method for correction of chromatic aberration and achromatic lens
JP4403162B2 (en) 2006-09-29 2010-01-20 株式会社東芝 Stereoscopic image display device and method for producing stereoscopic image
US20080080028A1 (en) 2006-10-02 2008-04-03 Micron Technology, Inc. Imaging method, apparatus and system having extended depth of field
US8031258B2 (en) 2006-10-04 2011-10-04 Omnivision Technologies, Inc. Providing multiple video signals from single sensor
KR101360455B1 (en) 2006-10-11 2014-02-07 포라이트 에이에스 Design of compact adjustable lens
EP2074445B1 (en) 2006-10-11 2017-04-12 poLight AS Method for manufacturing adjustable lens
US8073196B2 (en) 2006-10-16 2011-12-06 University Of Southern California Detection and tracking of moving objects from a moving platform in presence of strong parallax
US7702229B2 (en) 2006-10-18 2010-04-20 Eastman Kodak Company Lens array assisted focus detection
JP4349456B2 (en) 2006-10-23 2009-10-21 ソニー株式会社 Solid-state image sensor
WO2008050904A1 (en) 2006-10-25 2008-05-02 Tokyo Institute Of Technology High-resolution vertual focusing-plane image generating method
US7888159B2 (en) 2006-10-26 2011-02-15 Omnivision Technologies, Inc. Image sensor having curved micro-mirrors over the sensing photodiode and method for fabricating
JP4452951B2 (en) 2006-11-02 2010-04-21 富士フイルム株式会社 Distance image generation method and apparatus
KR20080043106A (en) 2006-11-13 2008-05-16 삼성전자주식회사 Optical lens and manufacturing method thereof
US8059162B2 (en) 2006-11-15 2011-11-15 Sony Corporation Imaging apparatus and method, and method for designing imaging apparatus
US20080118241A1 (en) 2006-11-16 2008-05-22 Tekolste Robert Control of stray light in camera systems employing an optics stack and associated methods
EP2084491A2 (en) 2006-11-21 2009-08-05 Mantisvision Ltd. 3d geometric modeling and 3d video content creation
KR20080047002A (en) 2006-11-24 2008-05-28 엘지이노텍 주식회사 Lens assembly and method manufacturing the same for camera module
JP4406937B2 (en) * 2006-12-01 2010-02-03 富士フイルム株式会社 Imaging device
US20100265385A1 (en) 2009-04-18 2010-10-21 Knight Timothy J Light Field Camera Image, File and Configuration Data, and Methods of Using, Storing and Communicating Same
US8559705B2 (en) 2006-12-01 2013-10-15 Lytro, Inc. Interactive refocusing of electronic images
JP5040493B2 (en) 2006-12-04 2012-10-03 ソニー株式会社 Imaging apparatus and imaging method
US8242426B2 (en) 2006-12-12 2012-08-14 Dolby Laboratories Licensing Corporation Electronic camera having multiple sensors for capturing high dynamic range images and related methods
US7646549B2 (en) 2006-12-18 2010-01-12 Xceed Imaging Ltd Imaging system and method for providing extended depth of focus, range extraction and super resolved imaging
US8213500B2 (en) 2006-12-21 2012-07-03 Sharp Laboratories Of America, Inc. Methods and systems for processing film grain noise
TWI324015B (en) 2006-12-22 2010-04-21 Ind Tech Res Inst Autofocus searching method
US8103111B2 (en) 2006-12-26 2012-01-24 Olympus Imaging Corp. Coding method, electronic camera, recording medium storing coded program, and decoding method
US20080158259A1 (en) 2006-12-28 2008-07-03 Texas Instruments Incorporated Image warping and lateral color correction
US20080158698A1 (en) 2006-12-29 2008-07-03 Chao-Chi Chang Lens barrel array and lens array and the method of making the same
US7973823B2 (en) 2006-12-29 2011-07-05 Nokia Corporation Method and system for image pre-processing
US20080165257A1 (en) 2007-01-05 2008-07-10 Micron Technology, Inc. Configurable pixel array system and method
US8655052B2 (en) 2007-01-26 2014-02-18 Intellectual Discovery Co., Ltd. Methodology for 3D scene reconstruction from 2D image sequences
JP5024992B2 (en) 2007-02-02 2012-09-12 株式会社ジャパンディスプレイセントラル Display device
US7792423B2 (en) 2007-02-06 2010-09-07 Mitsubishi Electric Research Laboratories, Inc. 4D light field cameras
CN100585453C (en) 2007-02-09 2010-01-27 奥林巴斯映像株式会社 Decoding method and decoding apparatus
JP4386083B2 (en) 2007-02-27 2009-12-16 トヨタ自動車株式会社 Parking assistance device
JP4153013B1 (en) 2007-03-06 2008-09-17 シャープ株式会社 Imaging lens, imaging unit, and portable information terminal including the same
US7755679B2 (en) * 2007-03-07 2010-07-13 Altasens, Inc. Apparatus and method for reducing edge effect in an image sensor
US7859588B2 (en) 2007-03-09 2010-12-28 Eastman Kodak Company Method and apparatus for operating a dual lens camera to augment an image
US7676146B2 (en) 2007-03-09 2010-03-09 Eastman Kodak Company Camera using multiple lenses and image sensors to provide improved focusing capability
US7683962B2 (en) 2007-03-09 2010-03-23 Eastman Kodak Company Camera using multiple lenses and image sensors in a rangefinder configuration to provide a range map
US7729602B2 (en) 2007-03-09 2010-06-01 Eastman Kodak Company Camera using multiple lenses and image sensors operable in a default imaging mode
JP2008242658A (en) 2007-03-26 2008-10-09 Funai Electric Co Ltd Three-dimensional object imaging apparatus
JP4915859B2 (en) 2007-03-26 2012-04-11 船井電機株式会社 Object distance deriving device
US7738017B2 (en) 2007-03-27 2010-06-15 Aptina Imaging Corporation Method and apparatus for automatic linear shift parallax correction for multi-array image systems
US8165418B2 (en) 2007-03-30 2012-04-24 Brother Kogyo Kabushiki Kaisha Image processor
TWI433052B (en) 2007-04-02 2014-04-01 Primesense Ltd Depth mapping using projected patterns
US8213711B2 (en) 2007-04-03 2012-07-03 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry, Through The Communications Research Centre Canada Method and graphical user interface for modifying depth maps
US8098941B2 (en) 2007-04-03 2012-01-17 Aptina Imaging Corporation Method and apparatus for parallelization of image compression encoders
JP2008258885A (en) * 2007-04-04 2008-10-23 Texas Instr Japan Ltd Imaging apparatus and driving method of imaging apparatus
CN101281282A (en) 2007-04-04 2008-10-08 鸿富锦精密工业(深圳)有限公司 Lens module
CN103839955B (en) 2007-04-18 2016-05-25 因维萨热技术公司 For material, the system and method for electrooptical device
US8467628B2 (en) 2007-04-24 2013-06-18 21 Ct, Inc. Method and system for fast dense stereoscopic ranging
KR100869219B1 (en) 2007-05-03 2008-11-18 동부일렉트로닉스 주식회사 Image Sensor and Method for Manufacturing thereof
US8462220B2 (en) 2007-05-09 2013-06-11 Aptina Imaging Corporation Method and apparatus for improving low-light performance for small pixel image sensors
US7812869B2 (en) 2007-05-11 2010-10-12 Aptina Imaging Corporation Configurable pixel array system and method
JP4341695B2 (en) 2007-05-17 2009-10-07 ソニー株式会社 Image input processing device, imaging signal processing circuit, and imaging signal noise reduction method
JP4337911B2 (en) 2007-05-24 2009-09-30 ソニー株式会社 Imaging device, imaging circuit, and imaging method
US20080298674A1 (en) 2007-05-29 2008-12-04 Image Masters Inc. Stereoscopic Panoramic imaging system
US7733575B2 (en) 2007-05-31 2010-06-08 Artificial Muscle, Inc. Optical systems employing compliant electroactive materials
US8290358B1 (en) 2007-06-25 2012-10-16 Adobe Systems Incorporated Methods and apparatus for light-field imaging
US8345751B2 (en) 2007-06-26 2013-01-01 Koninklijke Philips Electronics N.V. Method and system for encoding a 3D video signal, enclosed 3D video signal, method and system for decoder for a 3D video signal
CA2693666A1 (en) 2007-07-12 2009-01-15 Izzat H. Izzat System and method for three-dimensional object reconstruction from two-dimensional images
US8125619B2 (en) 2007-07-25 2012-02-28 Eminent Electronic Technology Corp. Integrated ambient light sensor and distance sensor
JP5006727B2 (en) 2007-07-26 2012-08-22 株式会社リコー Image processing apparatus and digital camera
US8019215B2 (en) 2007-08-06 2011-09-13 Adobe Systems Incorporated Method and apparatus for radiance capture by multiplexing in the frequency domain
EP2034338A1 (en) 2007-08-11 2009-03-11 ETH Zurich Liquid Lens System
EP2026563A1 (en) 2007-08-14 2009-02-18 Deutsche Thomson OHG System and method for detecting defective pixels
US7782364B2 (en) 2007-08-21 2010-08-24 Aptina Imaging Corporation Multi-array sensor with integrated sub-array for parallax detection and photometer functionality
US7973834B2 (en) 2007-09-24 2011-07-05 Jianwen Yang Electro-optical foveated imaging and tracking system
US20090086074A1 (en) 2007-09-27 2009-04-02 Omnivision Technologies, Inc. Dual mode camera solution apparatus, system, and method
US7940311B2 (en) 2007-10-03 2011-05-10 Nokia Corporation Multi-exposure pattern for enhancing dynamic range of images
JP5172267B2 (en) * 2007-10-09 2013-03-27 富士フイルム株式会社 Imaging device
US8049289B2 (en) 2007-10-11 2011-11-01 Dongbu Hitek Co., Ltd. Image sensor and method for manufacturing the same
US7956924B2 (en) 2007-10-18 2011-06-07 Adobe Systems Incorporated Fast computational camera based on two arrays of lenses
US7920193B2 (en) 2007-10-23 2011-04-05 Aptina Imaging Corporation Methods, systems and apparatuses using barrier self-calibration for high dynamic range imagers
US7777804B2 (en) 2007-10-26 2010-08-17 Omnivision Technologies, Inc. High dynamic range sensor with reduced line memory for color interpolation
US20100223237A1 (en) 2007-11-05 2010-09-02 University Of Florida Research Foundation, Inc. Lossless data compression and real-time decompression
US20090128644A1 (en) 2007-11-15 2009-05-21 Camp Jr William O System and method for generating a photograph
US7852461B2 (en) 2007-11-15 2010-12-14 Microsoft International Holdings B.V. Dual mode depth imaging
US8351685B2 (en) 2007-11-16 2013-01-08 Gwangju Institute Of Science And Technology Device and method for estimating depth map, and method for generating intermediate image and method for encoding multi-view video using the same
US8126279B2 (en) 2007-11-19 2012-02-28 The University Of Arizona Lifting-based view compensated compression and remote visualization of volume rendered images
JP5010445B2 (en) 2007-11-29 2012-08-29 パナソニック株式会社 Manufacturing method of mold for microlens array
KR20090055803A (en) 2007-11-29 2009-06-03 광주과학기술원 Method and apparatus for generating multi-viewpoint depth map, method for generating disparity of multi-viewpoint image
GB2455316B (en) 2007-12-04 2012-08-15 Sony Corp Image processing apparatus and method
US8384803B2 (en) 2007-12-13 2013-02-26 Keigo Iizuka Camera system and method for amalgamating images to create an omni-focused image
TWI353778B (en) 2007-12-21 2011-12-01 Ind Tech Res Inst Moving object detection apparatus and method
US7880807B2 (en) 2007-12-26 2011-02-01 Sony Ericsson Mobile Communications Ab Camera system with mirror arrangement for generating self-portrait panoramic pictures
TWI362628B (en) 2007-12-28 2012-04-21 Ind Tech Res Inst Methof for producing an image with depth by using 2d image
US20110031381A1 (en) 2007-12-28 2011-02-10 Hiok-Nam Tay Light guide array for an image sensor
JP4413261B2 (en) 2008-01-10 2010-02-10 シャープ株式会社 Imaging apparatus and optical axis control method
JP5198295B2 (en) 2008-01-15 2013-05-15 富士フイルム株式会社 Image sensor position adjustment method, camera module manufacturing method and apparatus, and camera module
US7962033B2 (en) 2008-01-23 2011-06-14 Adobe Systems Incorporated Methods and apparatus for full-resolution light-field capture and rendering
US8189065B2 (en) 2008-01-23 2012-05-29 Adobe Systems Incorporated Methods and apparatus for full-resolution light-field capture and rendering
JP4956452B2 (en) 2008-01-25 2012-06-20 富士重工業株式会社 Vehicle environment recognition device
WO2009097552A1 (en) 2008-02-01 2009-08-06 Omnivision Cdm Optics, Inc. Image data fusion systems and methods
GB0802290D0 (en) 2008-02-08 2008-03-12 Univ Kent Canterbury Camera adapter based optical imaging apparatus
US8319301B2 (en) 2008-02-11 2012-11-27 Omnivision Technologies, Inc. Self-aligned filter for an image sensor
JP2009206922A (en) 2008-02-28 2009-09-10 Funai Electric Co Ltd Compound-eye imaging apparatus
US9094675B2 (en) 2008-02-29 2015-07-28 Disney Enterprises Inc. Processing image data from multiple cameras for motion pictures
CN101520532A (en) 2008-02-29 2009-09-02 鸿富锦精密工业(深圳)有限公司 Composite lens
DE112009000485T5 (en) 2008-03-03 2011-03-17 VideoIQ, Inc., Bedford Object comparison for tracking, indexing and searching
US8098955B2 (en) 2008-03-25 2012-01-17 Point Grey Research Inc. Efficient selection and application of regions of interest in digital imaging
US20110018973A1 (en) 2008-03-26 2011-01-27 Konica Minolta Holdings, Inc. Three-dimensional imaging device and method for calibrating three-dimensional imaging device
US8497905B2 (en) 2008-04-11 2013-07-30 nearmap australia pty ltd. Systems and methods of capturing large area images in detail including cascaded cameras and/or calibration features
US8259208B2 (en) 2008-04-15 2012-09-04 Sony Corporation Method and apparatus for performing touch-based adjustments within imaging devices
US7843554B2 (en) 2008-04-25 2010-11-30 Rockwell Collins, Inc. High dynamic range sensor system and method
US8280194B2 (en) 2008-04-29 2012-10-02 Sony Corporation Reduced hardware implementation for a two-picture depth map algorithm
US8155456B2 (en) 2008-04-29 2012-04-10 Adobe Systems Incorporated Method and apparatus for block-based compression of light-field images
US8724921B2 (en) 2008-05-05 2014-05-13 Aptina Imaging Corporation Method of capturing high dynamic range images with objects in the scene
WO2009136989A1 (en) 2008-05-09 2009-11-12 Ecole Polytechnique Federale De Lausanne Image sensor having nonlinear response
JP2009273035A (en) 2008-05-09 2009-11-19 Toshiba Corp Image compression apparatus, image decompression apparatus, and image processor
US8208543B2 (en) 2008-05-19 2012-06-26 Microsoft Corporation Quantization and differential coding of alpha image data
US8902321B2 (en) 2008-05-20 2014-12-02 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8442355B2 (en) 2008-05-23 2013-05-14 Samsung Electronics Co., Ltd. System and method for generating a multi-dimensional image
US8125559B2 (en) 2008-05-25 2012-02-28 Avistar Communications Corporation Image formation for large photosensor array surfaces
US8131097B2 (en) 2008-05-28 2012-03-06 Aptina Imaging Corporation Method and apparatus for extended depth-of-field image restoration
US8244058B1 (en) 2008-05-30 2012-08-14 Adobe Systems Incorporated Method and apparatus for managing artifacts in frequency domain processing of light-field images
JP2009300268A (en) 2008-06-13 2009-12-24 Nippon Hoso Kyokai <Nhk> Three-dimensional information detection device
KR101539935B1 (en) 2008-06-24 2015-07-28 삼성전자주식회사 Method and apparatus for processing 3D video image
US7710667B2 (en) 2008-06-25 2010-05-04 Aptina Imaging Corp. Imaging module with symmetrical lens system and method of manufacture
CN102016654A (en) 2008-06-25 2011-04-13 柯尼卡美能达精密光学株式会社 Imaging optical system, and imaging lens manufacturing method
KR101000531B1 (en) * 2008-06-26 2010-12-14 에스디씨마이크로 주식회사 CCTV Management System Supporting Extended Data Transmission Coverage with Wireless LAN
US7916396B2 (en) 2008-06-27 2011-03-29 Micron Technology, Inc. Lens master devices, lens structures, imaging devices, and methods and apparatuses of making the same
US8326069B2 (en) 2008-06-30 2012-12-04 Intel Corporation Computing higher resolution images from multiple lower resolution images
US7773317B2 (en) 2008-07-01 2010-08-10 Aptina Imaging Corp. Lens system with symmetrical optics
US7920339B2 (en) 2008-07-02 2011-04-05 Aptina Imaging Corporation Method and apparatus providing singlet wafer lens system with field flattener
US8456517B2 (en) 2008-07-09 2013-06-04 Primesense Ltd. Integrated processor for 3D mapping
KR101445185B1 (en) 2008-07-10 2014-09-30 삼성전자주식회사 Flexible Image Photographing Apparatus with a plurality of image forming units and Method for manufacturing the same
CA2731680C (en) 2008-08-06 2016-12-13 Creaform Inc. System for adaptive three-dimensional scanning of surface characteristics
US9179153B2 (en) 2008-08-20 2015-11-03 Thomson Licensing Refined depth map
CN101656259A (en) 2008-08-20 2010-02-24 鸿富锦精密工业(深圳)有限公司 Image sensor packaging structure, packaging method and camera module
US7924312B2 (en) 2008-08-22 2011-04-12 Fluke Corporation Infrared and visible-light image registration
JP5105482B2 (en) * 2008-09-01 2012-12-26 船井電機株式会社 Optical condition design method and compound eye imaging apparatus
WO2010022503A1 (en) 2008-09-01 2010-03-04 Lensvector Inc. Wafer-level fabrication of liquid crystal optoelectronic devices
US8098297B2 (en) 2008-09-03 2012-01-17 Sony Corporation Pre- and post-shutter signal image capture and sort for digital camera
KR20100028344A (en) 2008-09-04 2010-03-12 삼성전자주식회사 Method and apparatus for editing image of portable terminal
JP5238429B2 (en) 2008-09-25 2013-07-17 株式会社東芝 Stereoscopic image capturing apparatus and stereoscopic image capturing system
US8553093B2 (en) 2008-09-30 2013-10-08 Sony Corporation Method and apparatus for super-resolution imaging using digital imaging devices
US9064476B2 (en) 2008-10-04 2015-06-23 Microsoft Technology Licensing, Llc Image super-resolution using gradient profile prior
US8310525B2 (en) 2008-10-07 2012-11-13 Seiko Epson Corporation One-touch projector alignment for 3D stereo display
GB2476397B (en) 2008-10-15 2014-04-30 Spinella Ip Holdings Inc Digital processing method and system for determination of optical flow
JP2010096723A (en) 2008-10-20 2010-04-30 Funai Electric Co Ltd Device for deriving distance of object
US8436909B2 (en) 2008-10-21 2013-05-07 Stmicroelectronics S.R.L. Compound camera sensor and related method of processing digital images
EP2348733A4 (en) 2008-10-27 2012-09-12 Lg Electronics Inc Virtual view image synthesis method and apparatus
US8063975B2 (en) 2008-10-29 2011-11-22 Jabil Circuit, Inc. Positioning wafer lenses on electronic imagers
KR101502597B1 (en) 2008-11-13 2015-03-13 삼성전자주식회사 Wide depth of field 3d display apparatus and method
WO2010057081A1 (en) 2008-11-14 2010-05-20 The Scripps Research Institute Image analysis platform for identifying artifacts in samples and laboratory consumables
AU2008246243B2 (en) 2008-11-19 2011-12-22 Canon Kabushiki Kaisha DVC as generic file format for plenoptic camera
WO2010065344A1 (en) 2008-11-25 2010-06-10 Refocus Imaging, Inc. System of and method for video refocusing
WO2010077625A1 (en) 2008-12-08 2010-07-08 Refocus Imaging, Inc. Light field data acquisition devices, and methods of using and manufacturing same
US8013904B2 (en) 2008-12-09 2011-09-06 Seiko Epson Corporation View projection matrix based high performance low latency display pipeline
KR101200490B1 (en) 2008-12-10 2012-11-12 한국전자통신연구원 Apparatus and Method for Matching Image
US8149323B2 (en) 2008-12-18 2012-04-03 Qualcomm Incorporated System and method to autofocus assisted by autoexposure control
JP4631966B2 (en) 2008-12-22 2011-02-16 ソニー株式会社 Image processing apparatus, image processing method, and program
CN101770060B (en) 2008-12-27 2014-03-26 鸿富锦精密工业(深圳)有限公司 Camera module and assembly method thereof
US8405742B2 (en) 2008-12-30 2013-03-26 Massachusetts Institute Of Technology Processing images having different focus
US8259212B2 (en) 2009-01-05 2012-09-04 Applied Quantum Technologies, Inc. Multiscale optical system
WO2010079685A1 (en) 2009-01-09 2010-07-15 コニカミノルタホールディングス株式会社 Motion vector generation apparatus and motion vector generation method
WO2010081010A2 (en) 2009-01-09 2010-07-15 New York University Methods, computer-accessible medium and systems for facilitating dark flash photography
US20100177411A1 (en) 2009-01-09 2010-07-15 Shashikant Hegde Wafer level lens replication on micro-electrical-mechanical systems
US8189089B1 (en) 2009-01-20 2012-05-29 Adobe Systems Incorporated Methods and apparatus for reducing plenoptic camera artifacts
US8315476B1 (en) 2009-01-20 2012-11-20 Adobe Systems Incorporated Super-resolution with the focused plenoptic camera
US8300108B2 (en) 2009-02-02 2012-10-30 L-3 Communications Cincinnati Electronics Corporation Multi-channel imaging devices comprising unit cells
US20100194860A1 (en) 2009-02-03 2010-08-05 Bit Cauldron Corporation Method of stereoscopic 3d image capture using a mobile device, cradle or dongle
US8761491B2 (en) 2009-02-06 2014-06-24 Himax Technologies Limited Stereo-matching processor using belief propagation
US8290301B2 (en) 2009-02-06 2012-10-16 Raytheon Company Optimized imaging system for collection of high resolution imagery
KR101776955B1 (en) 2009-02-10 2017-09-08 소니 주식회사 Solid-state imaging device, method of manufacturing the same, and electronic apparatus
WO2010095440A1 (en) 2009-02-20 2010-08-26 パナソニック株式会社 Recording medium, reproduction device, and integrated circuit
US8520970B2 (en) 2010-04-23 2013-08-27 Flir Systems Ab Infrared resolution and contrast enhancement with fusion
KR20100099896A (en) 2009-03-04 2010-09-15 삼성전자주식회사 Metadata generating method and apparatus, and image processing method and apparatus using the metadata
US8207759B2 (en) 2009-03-12 2012-06-26 Fairchild Semiconductor Corporation MIPI analog switch for automatic selection of multiple inputs based on clock voltages
CN105681633B (en) 2009-03-19 2019-01-18 数字光学公司 Dual sensor camera and its method
US8450821B2 (en) 2009-03-26 2013-05-28 Micron Technology, Inc. Method and apparatus providing combined spacer and optical lens element
US8106949B2 (en) 2009-03-26 2012-01-31 Seiko Epson Corporation Small memory footprint light transport matrix capture
US7901095B2 (en) 2009-03-27 2011-03-08 Seiko Epson Corporation Resolution scalable view projection
JP4529010B1 (en) 2009-03-30 2010-08-25 シャープ株式会社 Imaging device
JP5222205B2 (en) 2009-04-03 2013-06-26 Kddi株式会社 Image processing apparatus, method, and program
WO2010116366A1 (en) 2009-04-07 2010-10-14 Nextvision Stabilized Systems Ltd Video motion compensation and stabilization gimbaled imaging system
US20100259610A1 (en) 2009-04-08 2010-10-14 Celsia, Llc Two-Dimensional Display Synced with Real World Object Movement
US8294099B2 (en) * 2009-04-10 2012-10-23 Bae Systems Information And Electronic Systems Integration Inc. On-wafer butted microbolometer imaging array
US8717417B2 (en) 2009-04-16 2014-05-06 Primesense Ltd. Three-dimensional mapping and imaging
JP5463718B2 (en) 2009-04-16 2014-04-09 ソニー株式会社 Imaging device
US8908058B2 (en) 2009-04-18 2014-12-09 Lytro, Inc. Storage and transmission of pictures including multiple frames
US20120249550A1 (en) 2009-04-18 2012-10-04 Lytro, Inc. Selective Transmission of Image Data Based on Device Attributes
EP2244484B1 (en) 2009-04-22 2012-03-28 Raytrix GmbH Digital imaging method for synthesizing an image using data recorded with a plenoptic camera
CN101527046B (en) 2009-04-28 2012-09-05 青岛海信数字多媒体技术国家重点实验室有限公司 Motion detection method, device and system
KR101671021B1 (en) * 2009-04-30 2016-11-10 삼성전자주식회사 Apparatus and method for transmitting stereoscopic image effectively
US8271544B2 (en) 2009-05-01 2012-09-18 Creative Technology Ltd Data file having more than one mode of operation
DE102009003110A1 (en) 2009-05-14 2010-11-18 Robert Bosch Gmbh Image processing method for determining depth information from at least two input images recorded by means of a stereo camera system
US8203633B2 (en) 2009-05-27 2012-06-19 Omnivision Technologies, Inc. Four-channel color filter array pattern
KR20100130423A (en) 2009-06-03 2010-12-13 삼성전자주식회사 Wafer-level lens module and image module including the same
CN101931742B (en) 2009-06-18 2013-04-24 鸿富锦精密工业(深圳)有限公司 Image sensing module and image capture module
US20100321640A1 (en) 2009-06-22 2010-12-23 Industrial Technology Research Institute Projection display chip
JP5254893B2 (en) 2009-06-26 2013-08-07 キヤノン株式会社 Image conversion method and apparatus, and pattern identification method and apparatus
WO2011008443A2 (en) 2009-06-29 2011-01-20 Lensvector Inc. Wafer level camera module with active optical element
JP2011030184A (en) 2009-07-01 2011-02-10 Sony Corp Image processing apparatus, and image processing method
JP2011017764A (en) 2009-07-07 2011-01-27 Konica Minolta Opto Inc Imaging lens, imaging apparatus and portable terminal
US8345144B1 (en) 2009-07-15 2013-01-01 Adobe Systems Incorporated Methods and apparatus for rich image capture with focused plenoptic cameras
US20110019243A1 (en) 2009-07-21 2011-01-27 Constant Jr Henry J Stereoscopic form reader
CN101964866B (en) 2009-07-24 2013-03-20 鸿富锦精密工业(深圳)有限公司 Computation and image pickup type digital camera
GB0912970D0 (en) 2009-07-27 2009-09-02 St Microelectronics Res & Dev Improvements in or relating to a sensor and sensor system for a camera
US8436893B2 (en) 2009-07-31 2013-05-07 3Dmedia Corporation Methods, systems, and computer-readable storage media for selecting image capture positions to generate three-dimensional (3D) images
US8577183B2 (en) 2009-08-05 2013-11-05 Raytheon Company Resolution on demand
WO2011018678A1 (en) 2009-08-11 2011-02-17 Ether Precision, Inc. Method and device for aligning a lens with an optical system
WO2011017806A1 (en) 2009-08-14 2011-02-17 Genesis Group Inc. Real-time image and video matting
JP2011044801A (en) 2009-08-19 2011-03-03 Toshiba Corp Image processor
US8154632B2 (en) 2009-08-24 2012-04-10 Lifesize Communications, Inc. Detection of defective pixels in an image sensor
KR101680300B1 (en) 2009-08-31 2016-11-28 삼성전자주식회사 Liquid lens and method for manufacturing the same
US9274699B2 (en) 2009-09-03 2016-03-01 Obscura Digital User interface for a large scale multi-user, multi-touch system
US8411146B2 (en) 2009-09-04 2013-04-02 Lockheed Martin Corporation Single camera color and infrared polarimetric imaging
FR2950153B1 (en) 2009-09-15 2011-12-23 Commissariat Energie Atomique OPTICAL DEVICE WITH DEFORMABLE MEMBRANE WITH PIEZOELECTRIC ACTUATION
US20140076336A1 (en) 2009-09-17 2014-03-20 Ascentia Health, Inc. Ear insert for relief of tmj discomfort and headaches
US9497386B1 (en) 2009-09-22 2016-11-15 Altia Systems Inc. Multi-imager video camera with automatic exposure control
CN102549507B (en) 2009-10-02 2014-08-20 皇家飞利浦电子股份有限公司 Selecting viewpoints for generating additional views in 3D video
DE102009049387B4 (en) 2009-10-14 2016-05-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus, image processing apparatus and method for optical imaging
BR112012008988B1 (en) 2009-10-14 2022-07-12 Dolby International Ab METHOD, NON-TRANSITORY LEGIBLE MEDIUM AND DEPTH MAP PROCESSING APPARATUS
US8199165B2 (en) 2009-10-14 2012-06-12 Hewlett-Packard Development Company, L.P. Methods and systems for object segmentation in digital images
US8502909B2 (en) 2009-10-19 2013-08-06 Pixar Super light-field lens
US20110207074A1 (en) 2009-10-26 2011-08-25 Olaf Andrew Hall-Holt Dental imaging system and method
US8546737B2 (en) 2009-10-30 2013-10-01 Invisage Technologies, Inc. Systems and methods for color binning
EP2494402B1 (en) 2009-10-30 2018-04-18 Hewlett-Packard Development Company, L.P. Stereo display systems
WO2011055655A1 (en) 2009-11-05 2011-05-12 コニカミノルタオプト株式会社 Image pickup device, optical unit, wafer lens laminated body, and method for manufacturing wafer lens laminated body
JP5214811B2 (en) 2009-11-13 2013-06-19 富士フイルム株式会社 Ranging device, ranging method, ranging program, ranging system and imaging device
JP5399215B2 (en) 2009-11-18 2014-01-29 シャープ株式会社 Multi-lens camera device and electronic information device
US8643701B2 (en) 2009-11-18 2014-02-04 University Of Illinois At Urbana-Champaign System for executing 3D propagation for depth image-based rendering
EP2502115A4 (en) 2009-11-20 2013-11-06 Pelican Imaging Corp Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8497934B2 (en) 2009-11-25 2013-07-30 Massachusetts Institute Of Technology Actively addressable aperture light field camera
KR101608970B1 (en) 2009-11-27 2016-04-05 삼성전자주식회사 Apparatus and method for processing image using light field data
US8400555B1 (en) 2009-12-01 2013-03-19 Adobe Systems Incorporated Focused plenoptic camera employing microlenses with different focal lengths
US8730338B2 (en) 2009-12-01 2014-05-20 Nokia Corporation Set of camera modules hinged on a body and functionally connected to a single actuator
JP5446797B2 (en) 2009-12-04 2014-03-19 株式会社リコー Imaging device
US8446492B2 (en) 2009-12-10 2013-05-21 Honda Motor Co., Ltd. Image capturing device, method of searching for occlusion region, and program
JP5387377B2 (en) 2009-12-14 2014-01-15 ソニー株式会社 Image processing apparatus, image processing method, and program
WO2011081646A1 (en) 2009-12-15 2011-07-07 Thomson Licensing Stereo-image quality and disparity/depth indications
US20110153248A1 (en) 2009-12-23 2011-06-23 Yeming Gu Ophthalmic quality metric system
EP2518995B1 (en) 2009-12-24 2018-08-22 Sharp Kabushiki Kaisha Multocular image pickup apparatus and multocular image pickup method
JP4983905B2 (en) 2009-12-25 2012-07-25 カシオ計算機株式会社 Imaging apparatus, 3D modeling data generation method, and program
KR101643607B1 (en) 2009-12-30 2016-08-10 삼성전자주식회사 Method and apparatus for generating of image data
CN102118551A (en) 2009-12-31 2011-07-06 鸿富锦精密工业(深圳)有限公司 Imaging device
CN102117576A (en) 2009-12-31 2011-07-06 鸿富锦精密工业(深圳)有限公司 Digital photo frame
CN102131044B (en) 2010-01-20 2014-03-26 鸿富锦精密工业(深圳)有限公司 Camera module
US8649008B2 (en) 2010-02-04 2014-02-11 University Of Southern California Combined spectral and polarimetry imaging and diagnostics
US8593512B2 (en) 2010-02-05 2013-11-26 Creative Technology Ltd Device and method for scanning an object on a working surface
US8326142B2 (en) 2010-02-12 2012-12-04 Sri International Optical image systems
JP5387856B2 (en) 2010-02-16 2014-01-15 ソニー株式会社 Image processing apparatus, image processing method, image processing program, and imaging apparatus
US8648918B2 (en) 2010-02-18 2014-02-11 Sony Corporation Method and system for obtaining a point spread function using motion information
WO2011101035A1 (en) 2010-02-19 2011-08-25 Iplink Limited Processing multi-aperture image data
KR101802238B1 (en) 2010-02-23 2017-11-29 삼성전자주식회사 Apparatus and method for generating a three-dimension image data in portable terminal
WO2011105814A2 (en) 2010-02-23 2011-09-01 삼성전자 주식회사 Method and apparatus for providing a multi-view still image service, and method and apparatus for receiving a multi-view still image service
EP2539759A1 (en) 2010-02-28 2013-01-02 Osterhout Group, Inc. Local advertising content on an interactive head-mounted eyepiece
US8817015B2 (en) 2010-03-03 2014-08-26 Adobe Systems Incorporated Methods, apparatus, and computer-readable storage media for depth-based rendering of focused plenoptic camera data
WO2011112633A1 (en) 2010-03-09 2011-09-15 Flir Systems, Inc. Imager with multiple sensor arrays
US20110222757A1 (en) 2010-03-10 2011-09-15 Gbo 3D Technology Pte. Ltd. Systems and methods for 2D image and spatial data capture for 3D stereo imaging
US20110221950A1 (en) 2010-03-12 2011-09-15 Doeke Jolt Oostra Camera device, wafer scale package
KR20130004505A (en) 2010-03-17 2013-01-10 펠리칸 이매징 코포레이션 Fabrication process for mastering imaging lens arrays
US8890934B2 (en) 2010-03-19 2014-11-18 Panasonic Corporation Stereoscopic image aligning apparatus, stereoscopic image aligning method, and program of the same
WO2011116345A1 (en) 2010-03-19 2011-09-22 Invisage Technologies, Inc. Dark current reduction in image sensors via dynamic electrical biasing
CN102282857B (en) 2010-03-19 2014-03-12 富士胶片株式会社 Imaging device and method
US8285033B2 (en) 2010-04-01 2012-10-09 Seiko Epson Corporation Bi-affinity filter: a bilateral type filter for color images
US8896668B2 (en) 2010-04-05 2014-11-25 Qualcomm Incorporated Combining data from multiple image sensors
US20110242355A1 (en) 2010-04-05 2011-10-06 Qualcomm Incorporated Combining data from multiple image sensors
US8600186B2 (en) 2010-04-26 2013-12-03 City University Of Hong Kong Well focused catadioptric image acquisition
US20110267264A1 (en) 2010-04-29 2011-11-03 Mccarthy John Display system with multiple optical sensors
US9053573B2 (en) 2010-04-29 2015-06-09 Personify, Inc. Systems and methods for generating a virtual camera viewpoint for an image
US20130250150A1 (en) 2010-05-03 2013-09-26 Michael R. Malone Devices and methods for high-resolution image and video capture
US9256974B1 (en) 2010-05-04 2016-02-09 Stephen P Hines 3-D motion-parallax portable display software application
US8885890B2 (en) 2010-05-07 2014-11-11 Microsoft Corporation Depth map confidence filtering
KR20110124473A (en) 2010-05-11 2011-11-17 삼성전자주식회사 3-dimensional image generation apparatus and method for multi-view image
KR101756910B1 (en) 2010-05-11 2017-07-26 삼성전자주식회사 Apparatus and method for processing light field data using mask with attenuation pattern
KR101824672B1 (en) 2010-05-12 2018-02-05 포토네이션 케이맨 리미티드 Architectures for imager arrays and array cameras
JP5545016B2 (en) 2010-05-12 2014-07-09 ソニー株式会社 Imaging device
US20130147979A1 (en) 2010-05-12 2013-06-13 Pelican Imaging Corporation Systems and methods for extending dynamic range of imager arrays by controlling pixel analog gain
WO2011142774A1 (en) 2010-05-14 2011-11-17 Omnivision Technologies, Inc. Alternative color image array and associated methods
US8576293B2 (en) 2010-05-18 2013-11-05 Aptina Imaging Corporation Multi-channel imager
US8602887B2 (en) 2010-06-03 2013-12-10 Microsoft Corporation Synthesis of information from multiple audiovisual sources
US20120062697A1 (en) 2010-06-09 2012-03-15 Chemimage Corporation Hyperspectral imaging sensor for tracking moving targets
US20110310980A1 (en) 2010-06-22 2011-12-22 Qualcomm Mems Technologies, Inc. Apparatus and methods for processing frames of video data across a display interface using a block-based encoding scheme and a tag id
KR20120000485A (en) 2010-06-25 2012-01-02 삼성전자주식회사 Apparatus and method for depth coding using prediction mode
CN101883291B (en) 2010-06-29 2012-12-19 上海大学 Method for drawing viewpoints by reinforcing interested region
US8493432B2 (en) 2010-06-29 2013-07-23 Mitsubishi Electric Research Laboratories, Inc. Digital refocusing for wide-angle images using axial-cone cameras
EP2403234A1 (en) 2010-06-29 2012-01-04 Koninklijke Philips Electronics N.V. Method and system for constructing a compound image from data obtained by an array of image capturing devices
GB2482022A (en) 2010-07-16 2012-01-18 St Microelectronics Res & Dev Method for measuring resolution and aberration of lens and sensor
US9406132B2 (en) 2010-07-16 2016-08-02 Qualcomm Incorporated Vision-based quality metric for three dimensional video
US8386964B2 (en) 2010-07-21 2013-02-26 Microsoft Corporation Interactive image matting
US20120019700A1 (en) 2010-07-26 2012-01-26 American Technologies Network Corporation Optical system with automatic mixing of daylight and thermal vision digital video signals
US20120026342A1 (en) 2010-07-27 2012-02-02 Xiaoguang Yu Electronic system communicating with image sensor
US20120026451A1 (en) 2010-07-29 2012-02-02 Lensvector Inc. Tunable liquid crystal lens with single sided contacts
CN102375199B (en) 2010-08-11 2015-06-03 鸿富锦精密工业(深圳)有限公司 Camera module
US8428342B2 (en) 2010-08-12 2013-04-23 At&T Intellectual Property I, L.P. Apparatus and method for providing three dimensional media content
US8836793B1 (en) 2010-08-13 2014-09-16 Opto-Knowledge Systems, Inc. True color night vision (TCNV) fusion
US8493482B2 (en) 2010-08-18 2013-07-23 Apple Inc. Dual image sensor image processing system and method
US8749694B2 (en) 2010-08-27 2014-06-10 Adobe Systems Incorporated Methods and apparatus for rendering focused plenoptic camera data using super-resolved demosaicing
US8724000B2 (en) 2010-08-27 2014-05-13 Adobe Systems Incorporated Methods and apparatus for super-resolution in integral photography
US8665341B2 (en) 2010-08-27 2014-03-04 Adobe Systems Incorporated Methods and apparatus for rendering output images with simulated artistic effects from focused plenoptic camera data
GB2483434A (en) 2010-08-31 2012-03-14 Sony Corp Detecting stereoscopic disparity by comparison with subset of pixel change points
US20120056982A1 (en) 2010-09-08 2012-03-08 Microsoft Corporation Depth camera based on structured light and stereo vision
US9013550B2 (en) 2010-09-09 2015-04-21 Qualcomm Incorporated Online reference generation and tracking for multi-user augmented reality
US9013634B2 (en) 2010-09-14 2015-04-21 Adobe Systems Incorporated Methods and apparatus for video completion
WO2012036903A1 (en) 2010-09-14 2012-03-22 Thomson Licensing Compression methods and apparatus for occlusion data
US8780251B2 (en) 2010-09-20 2014-07-15 Canon Kabushiki Kaisha Image capture with focus adjustment
JP5392415B2 (en) 2010-09-22 2014-01-22 富士通株式会社 Stereo image generation apparatus, stereo image generation method, and computer program for stereo image generation
US20120086803A1 (en) 2010-10-11 2012-04-12 Malzbender Thomas G Method and system for distance estimation using projected symbol sequences
US20140192238A1 (en) 2010-10-24 2014-07-10 Linx Computational Imaging Ltd. System and Method for Imaging and Image Processing
JP5657343B2 (en) 2010-10-28 2015-01-21 株式会社ザクティ Electronics
WO2012056437A1 (en) 2010-10-29 2012-05-03 École Polytechnique Fédérale De Lausanne (Epfl) Omnidirectional sensor array system
US9137503B2 (en) 2010-11-03 2015-09-15 Sony Corporation Lens and color filter arrangement, super-resolution camera system and method
US9065991B2 (en) 2010-11-04 2015-06-23 Lensvector Inc. Methods of adjustment free manufacture of focus free camera modules
US20120113232A1 (en) 2010-11-10 2012-05-10 Sony Pictures Technologies Inc. Multiple camera system and method for selectable interaxial separation
MY150361A (en) 2010-12-03 2013-12-31 Mimos Berhad Method of image segmentation using intensity and depth information
WO2012078126A1 (en) 2010-12-08 2012-06-14 Thomson Licensing System and method for trinocular depth acquisition with triangular sensor
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
JP5963422B2 (en) 2010-12-17 2016-08-03 キヤノン株式会社 Imaging apparatus, display apparatus, computer program, and stereoscopic image display system
US9177381B2 (en) 2010-12-22 2015-11-03 Nani Holdings IP, LLC Depth estimate determination, systems and methods
US8682107B2 (en) 2010-12-22 2014-03-25 Electronics And Telecommunications Research Institute Apparatus and method for creating 3D content for oriental painting
US8565709B2 (en) 2010-12-30 2013-10-22 Apple Inc. Digital signal filter
JP5699609B2 (en) 2011-01-06 2015-04-15 ソニー株式会社 Image processing apparatus and image processing method
US9007683B2 (en) 2011-01-20 2015-04-14 Fivefocal Llc Dual element passively athemalized infrared imaging systems
US8581995B2 (en) 2011-01-25 2013-11-12 Aptina Imaging Corporation Method and apparatus for parallax correction in fused array imaging systems
US8717467B2 (en) 2011-01-25 2014-05-06 Aptina Imaging Corporation Imaging systems with array cameras for depth sensing
JP5594477B2 (en) 2011-01-26 2014-09-24 Nltテクノロジー株式会社 Image display device, image display method, and program
EP2668617A1 (en) 2011-01-27 2013-12-04 Metaio GmbH Method for determining correspondences between a first and a second image, and method for determining the pose of a camera
CA2767023C (en) 2011-02-09 2014-09-09 Research In Motion Limited Increased low light sensitivity for image sensors by combining quantum dot sensitivity to visible and infrared light
US20120200726A1 (en) 2011-02-09 2012-08-09 Research In Motion Limited Method of Controlling the Depth of Field for a Small Sensor Camera Using an Extension for EDOF
US8698885B2 (en) 2011-02-14 2014-04-15 Intuitive Surgical Operations, Inc. Methods and apparatus for demosaicing images with highly correlated color channels
US20140176592A1 (en) 2011-02-15 2014-06-26 Lytro, Inc. Configuring two-dimensional image processing based on light-field parameters
US8406548B2 (en) 2011-02-28 2013-03-26 Sony Corporation Method and apparatus for performing a blur rendering process on an image
CN103974044B (en) 2011-02-28 2016-06-08 富士胶片株式会社 mosaic image processing method
US8537245B2 (en) 2011-03-04 2013-09-17 Hand Held Products, Inc. Imaging and decoding device with quantum dot imager
CA2769358C (en) 2011-03-08 2016-06-07 Research In Motion Limited Quantum dot image sensor with dummy pixels used for intensity calculations
US9565449B2 (en) 2011-03-10 2017-02-07 Qualcomm Incorporated Coding multiview video plus depth content
KR101792501B1 (en) 2011-03-16 2017-11-21 한국전자통신연구원 Method and apparatus for feature-based stereo matching
US8824821B2 (en) 2011-03-28 2014-09-02 Sony Corporation Method and apparatus for performing user inspired visual effects rendering on an image
US20120249853A1 (en) 2011-03-28 2012-10-04 Marc Krolczyk Digital camera for reviewing related images
US9030528B2 (en) 2011-04-04 2015-05-12 Apple Inc. Multi-zone imaging sensor and lens array
FR2974449A1 (en) 2011-04-22 2012-10-26 Commissariat Energie Atomique IMAGEUR INTEGRATED CIRCUIT AND STEREOSCOPIC IMAGE CAPTURE DEVICE
US20120274626A1 (en) 2011-04-29 2012-11-01 Himax Media Solutions, Inc. Stereoscopic Image Generating Apparatus and Method
JP2014519741A (en) 2011-05-11 2014-08-14 ペリカン イメージング コーポレイション System and method for transmitting and receiving array camera image data
US8843346B2 (en) 2011-05-13 2014-09-23 Amazon Technologies, Inc. Using spatial information with device interaction
US8629901B2 (en) 2011-05-19 2014-01-14 National Taiwan University System and method of revising depth of a 3D image pair
US20120293489A1 (en) 2011-05-20 2012-11-22 Himax Technologies Limited Nonlinear depth remapping system and method thereof
JP5797016B2 (en) 2011-05-30 2015-10-21 キヤノン株式会社 Image processing apparatus, image processing method, and program
JP5762142B2 (en) 2011-05-31 2015-08-12 キヤノン株式会社 Imaging apparatus, image processing apparatus and method thereof
CN103609102B (en) 2011-06-15 2016-09-28 微软技术许可有限责任公司 High resolution multispectral image capture
JP2013005259A (en) 2011-06-17 2013-01-07 Sony Corp Image processing apparatus, image processing method, and program
EP2726930A4 (en) 2011-06-28 2015-03-04 Pelican Imaging Corp Optical arrangements for use with an array camera
US20130265459A1 (en) 2011-06-28 2013-10-10 Pelican Imaging Corporation Optical arrangements for use with an array camera
US8773513B2 (en) 2011-07-01 2014-07-08 Seiko Epson Corporation Context and epsilon stereo constrained correspondence matching
US9300946B2 (en) 2011-07-08 2016-03-29 Personify, Inc. System and method for generating a depth map and fusing images from a camera array
JP5780865B2 (en) 2011-07-14 2015-09-16 キヤノン株式会社 Image processing apparatus, imaging system, and image processing system
JP2013024886A (en) 2011-07-14 2013-02-04 Sanyo Electric Co Ltd Imaging apparatus
US9363535B2 (en) 2011-07-22 2016-06-07 Qualcomm Incorporated Coding motion depth maps with depth range variation
US9264689B2 (en) 2011-08-04 2016-02-16 Semiconductor Components Industries, Llc Systems and methods for color compensation in multi-view video
EP2744201A4 (en) 2011-08-09 2016-03-23 Samsung Electronics Co Ltd Method and device for encoding a depth map of multi viewpoint video data, and method and device for decoding the encoded depth map
US8432435B2 (en) 2011-08-10 2013-04-30 Seiko Epson Corporation Ray image modeling for fast catadioptric light field rendering
US8866951B2 (en) 2011-08-24 2014-10-21 Aptina Imaging Corporation Super-resolution imaging systems
US8704895B2 (en) 2011-08-29 2014-04-22 Qualcomm Incorporated Fast calibration of displays using spectral-based colorimetrically calibrated multicolor camera
WO2013043761A1 (en) 2011-09-19 2013-03-28 Pelican Imaging Corporation Determining depth from multiple views of a scene that include aliasing using hypothesized fusion
US9100639B2 (en) 2011-09-20 2015-08-04 Panasonic Intellectual Property Management Co., Ltd. Light field imaging device and image processing device
EP2760209B1 (en) 2011-09-21 2017-07-12 FUJIFILM Corporation Image processing device, method, program and recording medium, stereoscopic image capture device, portable electronic apparatus, printer, and stereoscopic image player device
US8724893B2 (en) 2011-09-27 2014-05-13 Thomson Licensing Method and system for color look up table generation
US8908083B2 (en) 2011-09-28 2014-12-09 Apple Inc. Dynamic autofocus operations
EP2761534B1 (en) 2011-09-28 2020-11-18 FotoNation Limited Systems for encoding light field image files
JP5831105B2 (en) 2011-09-30 2015-12-09 ソニー株式会社 Imaging apparatus and imaging method
JP2014530581A (en) 2011-10-11 2014-11-17 ペリカン イメージング コーポレイション Lens stack array including adaptive optics
EP2592823A3 (en) 2011-10-12 2013-06-19 Canon Kabushiki Kaisha Image-capturing device
US20130107072A1 (en) 2011-10-31 2013-05-02 Ankit Kumar Multi-resolution ip camera
US9692991B2 (en) 2011-11-04 2017-06-27 Qualcomm Incorporated Multispectral imaging system
JP5149435B1 (en) 2011-11-04 2013-02-20 株式会社東芝 Video processing apparatus and video processing method
EP2590138B1 (en) 2011-11-07 2019-09-11 Flir Systems AB Gas visualization arrangements, devices, and methods
WO2013072875A2 (en) 2011-11-15 2013-05-23 Technion Research & Development Foundation Ltd. Method and system for transmitting light
US20130121559A1 (en) 2011-11-16 2013-05-16 Sharp Laboratories Of America, Inc. Mobile device with three dimensional augmented reality
US9661310B2 (en) 2011-11-28 2017-05-23 ArcSoft Hanzhou Co., Ltd. Image depth recovering method and stereo image fetching device thereof
EP2600316A1 (en) 2011-11-29 2013-06-05 Inria Institut National de Recherche en Informatique et en Automatique Method, system and software program for shooting and editing a film comprising at least one image of a 3D computer-generated animation
WO2013119706A1 (en) 2012-02-06 2013-08-15 Pelican Imaging Corporation Systems and methods for extending dynamic range of imager arrays by controlling pixel analog gain
US9172889B2 (en) 2012-02-09 2015-10-27 Semiconductor Components Industries, Llc Imaging systems and methods for generating auto-exposed high-dynamic-range images
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
JP5860304B2 (en) 2012-02-23 2016-02-16 キヤノン株式会社 Imaging apparatus, control method therefor, program, and storage medium
JP6112824B2 (en) 2012-02-28 2017-04-12 キヤノン株式会社 Image processing method and apparatus, and program.
EP2637139A1 (en) 2012-03-05 2013-09-11 Thomson Licensing Method and apparatus for bi-layer segmentation
WO2013155403A1 (en) 2012-04-13 2013-10-17 Automation Engineering, Inc. Active alignment using continuous motion sweeps and temporal interpolation
CN104582622B (en) 2012-04-16 2017-10-13 儿童国家医疗中心 For the tracking in surgery and intervention medical procedure and the bimodulus stereo imaging system of control
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
CN104303493A (en) 2012-05-09 2015-01-21 莱特洛公司 Optimization of optical systems for improved light field capture and manipulation
WO2014005123A1 (en) 2012-06-28 2014-01-03 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays, optic arrays, and sensors
JP5929553B2 (en) 2012-06-28 2016-06-08 ソニー株式会社 Image processing apparatus, imaging apparatus, image processing method, and program
US20140002674A1 (en) 2012-06-30 2014-01-02 Pelican Imaging Corporation Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors
US8896594B2 (en) 2012-06-30 2014-11-25 Microsoft Corporation Depth sensing with depth-adaptive illumination
US9147251B2 (en) 2012-08-03 2015-09-29 Flyby Media, Inc. Systems and methods for efficient 3D tracking of weakly textured planar surfaces for augmented reality applications
US8988566B2 (en) 2012-08-09 2015-03-24 Omnivision Technologies, Inc. Lens array for partitioned image sensor having color filters
CN107346061B (en) 2012-08-21 2020-04-24 快图有限公司 System and method for parallax detection and correction in images captured using an array camera
WO2014032020A2 (en) 2012-08-23 2014-02-27 Pelican Imaging Corporation Feature based high resolution motion estimation from low resolution images captured using an array source
CN104584545B (en) 2012-08-31 2017-05-31 索尼公司 Image processing apparatus, image processing method and information processor
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9143673B2 (en) 2012-09-19 2015-09-22 Google Inc. Imaging device with a plurality of pixel arrays
CN104685860A (en) 2012-09-28 2015-06-03 派力肯影像公司 Generating images from light fields utilizing virtual viewpoints
TW201415879A (en) 2012-10-12 2014-04-16 Wintek Corp Image capture device
EP2915325A4 (en) 2012-10-31 2016-06-01 Invisage Technologies Inc Expanded-field-of-view image and video capture
US9143711B2 (en) 2012-11-13 2015-09-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
CN113259565B (en) 2012-11-28 2023-05-19 核心光电有限公司 Multi-aperture imaging system
US9001226B1 (en) 2012-12-04 2015-04-07 Lytro, Inc. Capturing and relighting images using multiple devices
US9088369B2 (en) 2012-12-28 2015-07-21 Synergy Microwave Corporation Self injection locked phase locked looped optoelectronic oscillator
US20140183334A1 (en) 2013-01-03 2014-07-03 Visera Technologies Company Limited Image sensor for light field device and manufacturing method thereof
US9270876B2 (en) 2013-01-05 2016-02-23 The Lightco Inc. Methods and apparatus for using multiple optical chains in parallel with multiple different exposure times
KR20140094395A (en) 2013-01-22 2014-07-30 삼성전자주식회사 photographing device for taking a picture by a plurality of microlenses and method thereof
US9769365B1 (en) 2013-02-15 2017-09-19 Red.Com, Inc. Dense field imaging
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US20150002734A1 (en) 2013-07-01 2015-01-01 Motorola Mobility Llc Electronic Device with Modulated Light Flash Operation for Rolling Shutter Image Sensor
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
WO2014164550A2 (en) 2013-03-13 2014-10-09 Pelican Imaging Corporation System and methods for calibration of an array camera
WO2014165244A1 (en) 2013-03-13 2014-10-09 Pelican Imaging Corporation Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
WO2014160142A1 (en) 2013-03-13 2014-10-02 Pelican Imaging Corporation Systems and methods for using alignment to increase sampling diversity of cameras in an array camera module
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US20140267286A1 (en) 2013-03-15 2014-09-18 Pelican Imaging Corporation Systems and Methods for Providing an Array Projector
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
WO2014144157A1 (en) 2013-03-15 2014-09-18 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
WO2014145856A1 (en) 2013-03-15 2014-09-18 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
WO2015048694A2 (en) 2013-09-27 2015-04-02 Pelican Imaging Corporation Systems and methods for depth-assisted perspective distortion correction
US20150098079A1 (en) 2013-10-09 2015-04-09 Hilti Aktiengesellschaft System and method for camera based position and orientation measurement
US20150104101A1 (en) 2013-10-14 2015-04-16 Apple Inc. Method and ui for z depth image segmentation
WO2015070105A1 (en) 2013-11-07 2015-05-14 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
EP3075140B1 (en) 2013-11-26 2018-06-13 FotoNation Cayman Limited Array camera configurations incorporating multiple constituent array cameras
US9979878B2 (en) 2014-02-21 2018-05-22 Light Labs Inc. Intuitive camera user interface methods and apparatus
JP6211435B2 (en) 2014-02-26 2017-10-11 株式会社アドバンテスト Manufacturing method of semiconductor device
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4467365A (en) * 1980-10-16 1984-08-21 Fuji Xerox Co., Ltd. Control system for reading device
US5070414A (en) * 1988-09-20 1991-12-03 Kabushiki Kaisha Toshiba Method and apparatus for reading image information formed on material
US5144448A (en) * 1990-07-31 1992-09-01 Vidar Systems Corporation Scanning apparatus using multiple CCD arrays and related method
US6137535A (en) * 1996-11-04 2000-10-24 Eastman Kodak Company Compact digital camera with segmented fields of view
US6765617B1 (en) * 1997-11-14 2004-07-20 Tangen Reidar E Optoelectronic camera and method for image formatting in the same
US20020101528A1 (en) * 1998-01-22 2002-08-01 Paul P. Lee Integrated cmos active pixel digital camera
US6611289B1 (en) * 1999-01-15 2003-08-26 Yanbin Yu Digital cameras using multiple sensors with multiple lenses
US20020113888A1 (en) * 2000-12-18 2002-08-22 Kazuhiro Sonoda Image pickup apparatus
US20040105021A1 (en) * 2002-12-02 2004-06-03 Bolymedia Holdings Co., Ltd. Color filter patterns for image sensors
US20090237520A1 (en) * 2003-07-18 2009-09-24 Katsumi Kaneko Image pick-up appararus and synchronization-signal-generating apparatus
US20060033005A1 (en) * 2004-08-11 2006-02-16 Dmitri Jerdev Correction of non-uniform sensitivity in an image array
US7199348B2 (en) * 2004-08-25 2007-04-03 Newport Imaging Corporation Apparatus for multiple camera devices and method of operating same
US20060274174A1 (en) * 2005-06-02 2006-12-07 Tewinkle Scott L System for controlling integration times of photosensors in an imaging device
US20070228256A1 (en) * 2006-03-31 2007-10-04 Mentzer Ray A Analog vertical sub-sampling in an active pixel sensor (APS) image sensor
US20110001037A1 (en) * 2009-07-02 2011-01-06 Xerox Corporation Image sensor with integration time compensation

Cited By (215)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9055213B2 (en) 2008-05-20 2015-06-09 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by monolithic camera arrays including at least one bayer camera
US9055233B2 (en) 2008-05-20 2015-06-09 Pelican Imaging Corporation Systems and methods for synthesizing higher resolution images using a set of images containing a baseline image
US9188765B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9191580B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by camera arrays
US10694114B2 (en) 2008-05-20 2020-06-23 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US20110069189A1 (en) * 2008-05-20 2011-03-24 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US11412158B2 (en) 2008-05-20 2022-08-09 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9094661B2 (en) 2008-05-20 2015-07-28 Pelican Imaging Corporation Systems and methods for generating depth maps using a set of images containing a baseline image
US9077893B2 (en) 2008-05-20 2015-07-07 Pelican Imaging Corporation Capturing and processing of images captured by non-grid camera arrays
US9060121B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images captured by camera arrays including cameras dedicated to sampling luma and cameras dedicated to sampling chroma
US9060124B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images using non-monolithic camera arrays
US9060120B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Systems and methods for generating depth maps using images captured by camera arrays
US9060142B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images captured by camera arrays including heterogeneous optics
US20110080487A1 (en) * 2008-05-20 2011-04-07 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US9049390B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Capturing and processing of images captured by arrays including polychromatic cameras
US9712759B2 (en) 2008-05-20 2017-07-18 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9049391B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Capturing and processing of near-IR images including occlusions using camera arrays incorporating near-IR light sources
US8885059B1 (en) 2008-05-20 2014-11-11 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by camera arrays
US8896719B1 (en) 2008-05-20 2014-11-25 Pelican Imaging Corporation Systems and methods for parallax measurement using camera arrays incorporating 3 x 3 camera configurations
US8902321B2 (en) 2008-05-20 2014-12-02 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9049381B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Systems and methods for normalizing image data captured by camera arrays
US10142560B2 (en) 2008-05-20 2018-11-27 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9049367B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Systems and methods for synthesizing higher resolution images using images captured by camera arrays
US9576369B2 (en) 2008-05-20 2017-02-21 Fotonation Cayman Limited Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view
US9124815B2 (en) 2008-05-20 2015-09-01 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by arrays of luma and chroma cameras
US9049411B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Camera arrays incorporating 3×3 imager configurations
US9041823B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Systems and methods for performing post capture refocus using images captured by camera arrays
US9041829B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Capturing and processing of high dynamic range images using camera arrays
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US8861089B2 (en) 2009-11-20 2014-10-14 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9264610B2 (en) 2009-11-20 2016-02-16 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by heterogeneous camera arrays
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US10455168B2 (en) 2010-05-12 2019-10-22 Fotonation Limited Imager array interfaces
US8928793B2 (en) 2010-05-12 2015-01-06 Pelican Imaging Corporation Imager array interfaces
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
US9041824B2 (en) 2010-12-14 2015-05-26 Pelican Imaging Corporation Systems and methods for dynamic refocusing of high resolution images generated using images captured by a plurality of imagers
US11423513B2 (en) 2010-12-14 2022-08-23 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
US9047684B2 (en) 2010-12-14 2015-06-02 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using a set of geometrically registered images
US11875475B2 (en) 2010-12-14 2024-01-16 Adeia Imaging Llc Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US9361662B2 (en) 2010-12-14 2016-06-07 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US8692893B2 (en) * 2011-05-11 2014-04-08 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US10742861B2 (en) 2011-05-11 2020-08-11 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US8305456B1 (en) * 2011-05-11 2012-11-06 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US20130057710A1 (en) * 2011-05-11 2013-03-07 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US9197821B2 (en) 2011-05-11 2015-11-24 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US9128228B2 (en) 2011-06-28 2015-09-08 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9578237B2 (en) 2011-06-28 2017-02-21 Fotonation Cayman Limited Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US20130027575A1 (en) * 2011-07-27 2013-01-31 Kwangbo Cho Method and apparatus for array camera pixel readout
US9157988B2 (en) * 2011-07-27 2015-10-13 Semiconductor Components Industries, Llc Method and apparatus for array camera pixel readout
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US10375302B2 (en) 2011-09-19 2019-08-06 Fotonation Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US10430682B2 (en) 2011-09-28 2019-10-01 Fotonation Limited Systems and methods for decoding image files containing depth maps stored as metadata
US9025895B2 (en) 2011-09-28 2015-05-05 Pelican Imaging Corporation Systems and methods for decoding refocusable light field image files
US9031342B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding refocusable light field image files
US9031343B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding light field image files having a depth map
US20180197035A1 (en) 2011-09-28 2018-07-12 Fotonation Cayman Limited Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata
US10019816B2 (en) 2011-09-28 2018-07-10 Fotonation Cayman Limited Systems and methods for decoding image files containing depth maps stored as metadata
US9036931B2 (en) 2011-09-28 2015-05-19 Pelican Imaging Corporation Systems and methods for decoding structured light field image files
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US9025894B2 (en) 2011-09-28 2015-05-05 Pelican Imaging Corporation Systems and methods for decoding light field image files having depth and confidence maps
US10275676B2 (en) 2011-09-28 2019-04-30 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9031335B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding light field image files having depth and confidence maps
US9864921B2 (en) 2011-09-28 2018-01-09 Fotonation Cayman Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US10984276B2 (en) 2011-09-28 2021-04-20 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US11729365B2 (en) 2011-09-28 2023-08-15 Adela Imaging LLC Systems and methods for encoding image files containing depth maps stored as metadata
US9129183B2 (en) 2011-09-28 2015-09-08 Pelican Imaging Corporation Systems and methods for encoding light field image files
US8831367B2 (en) 2011-09-28 2014-09-09 Pelican Imaging Corporation Systems and methods for decoding light field image files
US9036928B2 (en) 2011-09-28 2015-05-19 Pelican Imaging Corporation Systems and methods for encoding structured light field image files
US9042667B2 (en) 2011-09-28 2015-05-26 Pelican Imaging Corporation Systems and methods for decoding light field image files using a depth map
WO2013119706A1 (en) * 2012-02-06 2013-08-15 Pelican Imaging Corporation Systems and methods for extending dynamic range of imager arrays by controlling pixel analog gain
US10311649B2 (en) 2012-02-21 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US10936537B2 (en) 2012-02-23 2021-03-02 Charles D. Huston Depth sensing camera glasses with gesture interface
US9965471B2 (en) 2012-02-23 2018-05-08 Charles D. Huston System and method for capturing and sharing a location based experience
US10937239B2 (en) 2012-02-23 2021-03-02 Charles D. Huston System and method for creating an environment and for sharing an event
US9977782B2 (en) 2012-02-23 2018-05-22 Charles D. Huston System, method, and device including a depth camera for creating a location based experience
US10600235B2 (en) 2012-02-23 2020-03-24 Charles D. Huston System and method for capturing and sharing a location based experience
US11449460B2 (en) 2012-02-23 2022-09-20 Charles D. Huston System and method for capturing and sharing a location based experience
US11783535B2 (en) 2012-02-23 2023-10-10 Charles D. Huston System and method for capturing and sharing a location based experience
CN104335246A (en) * 2012-05-01 2015-02-04 派力肯影像公司 Camera modules patterned with pi filter groups
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
WO2013166215A1 (en) * 2012-05-01 2013-11-07 Pelican Imaging Corporation CAMERA MODULES PATTERNED WITH pi FILTER GROUPS
US10334241B2 (en) 2012-06-28 2019-06-25 Fotonation Limited Systems and methods for detecting defective camera arrays and optic arrays
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US11022725B2 (en) 2012-06-30 2021-06-01 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
KR20150046113A (en) * 2012-08-21 2015-04-29 펠리칸 이매징 코포레이션 Systems and methods for parallax detection and correction in images captured using array cameras
US9240049B2 (en) 2012-08-21 2016-01-19 Pelican Imaging Corporation Systems and methods for measuring depth using an array of independently controllable cameras
US9123118B2 (en) 2012-08-21 2015-09-01 Pelican Imaging Corporation System and methods for measuring depth using an array camera employing a bayer filter
US9129377B2 (en) 2012-08-21 2015-09-08 Pelican Imaging Corporation Systems and methods for measuring depth based upon occlusion patterns in images
US8619082B1 (en) 2012-08-21 2013-12-31 Pelican Imaging Corporation Systems and methods for parallax detection and correction in images captured using array cameras that contain occlusions using subsets of images to perform depth estimation
US9123117B2 (en) 2012-08-21 2015-09-01 Pelican Imaging Corporation Systems and methods for generating depth maps and corresponding confidence maps indicating depth estimation reliability
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9147254B2 (en) 2012-08-21 2015-09-29 Pelican Imaging Corporation Systems and methods for measuring depth in the presence of occlusions using a subset of images
KR102111181B1 (en) 2012-08-21 2020-05-15 포토내이션 리미티드 Systems and methods for parallax detection and correction in images captured using array cameras
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US10380752B2 (en) 2012-08-21 2019-08-13 Fotonation Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US10462362B2 (en) 2012-08-23 2019-10-29 Fotonation Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US8791573B1 (en) * 2012-08-31 2014-07-29 Altera Corporation Skewed partial column input/output floorplan
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
DE102012218834B4 (en) * 2012-10-12 2016-07-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. IMAGE SENSOR AND OPTICAL IMAGE SYSTEM
DE102012218834A1 (en) * 2012-10-12 2014-04-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. IMAGE SENSOR AND OPTICAL IMAGE SYSTEM
DE102012218835B4 (en) * 2012-10-12 2016-09-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. IMAGE SENSOR AND METHOD
DE102012218835A1 (en) * 2012-10-12 2014-04-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. IMAGE SENSOR AND METHOD
US9749568B2 (en) * 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US9143711B2 (en) * 2012-11-13 2015-09-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
US20140132810A1 (en) * 2012-11-13 2014-05-15 Pelican Imaging Corporation Systems and methods for array camera focal plane control
US20160249001A1 (en) * 2012-11-13 2016-08-25 Pelican Imaging Corporation Systems and Methods for Array Camera Focal Plane Control
US9769365B1 (en) 2013-02-15 2017-09-19 Red.Com, Inc. Dense field imaging
US9497380B1 (en) 2013-02-15 2016-11-15 Red.Com, Inc. Dense field imaging
US10939088B2 (en) 2013-02-15 2021-03-02 Red.Com, Llc Computational imaging device
US10277885B1 (en) 2013-02-15 2019-04-30 Red.Com, Llc Dense field imaging
US10547828B2 (en) 2013-02-15 2020-01-28 Red.Com, Llc Dense field imaging
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US10225543B2 (en) 2013-03-10 2019-03-05 Fotonation Limited System and methods for calibration of an array camera
US11570423B2 (en) 2013-03-10 2023-01-31 Adeia Imaging Llc System and methods for calibration of an array camera
US9124864B2 (en) 2013-03-10 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US10958892B2 (en) 2013-03-10 2021-03-23 Fotonation Limited System and methods for calibration of an array camera
US11272161B2 (en) 2013-03-10 2022-03-08 Fotonation Limited System and methods for calibration of an array camera
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9888194B2 (en) * 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9519972B2 (en) 2013-03-13 2016-12-13 Kip Peli P1 Lp Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
WO2014159721A1 (en) * 2013-03-13 2014-10-02 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US20160037097A1 (en) * 2013-03-13 2016-02-04 Pelican Imaging Corporation Array Camera Architecture Implementing Quantum Film Image Sensors
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
WO2014164909A1 (en) * 2013-03-13 2014-10-09 Pelican Imaging Corporation Array camera architecture implementing quantum film sensors
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US10547772B2 (en) 2013-03-14 2020-01-28 Fotonation Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10091405B2 (en) * 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US20170163862A1 (en) * 2013-03-14 2017-06-08 Fotonation Cayman Limited Systems and Methods for Reducing Motion Blur in Images or Video in Ultra Low Light with Array Cameras
US9787911B2 (en) 2013-03-14 2017-10-10 Fotonation Cayman Limited Systems and methods for photometric normalization in array cameras
US10412314B2 (en) 2013-03-14 2019-09-10 Fotonation Limited Systems and methods for photometric normalization in array cameras
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US10455218B2 (en) 2013-03-15 2019-10-22 Fotonation Limited Systems and methods for estimating depth using stereo array cameras
US9602805B2 (en) 2013-03-15 2017-03-21 Fotonation Cayman Limited Systems and methods for estimating depth using ad hoc stereo array cameras
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US10674138B2 (en) 2013-03-15 2020-06-02 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10542208B2 (en) 2013-03-15 2020-01-21 Fotonation Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9497429B2 (en) * 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US10638099B2 (en) 2013-03-15 2020-04-28 Fotonation Limited Extended color processing on pelican array cameras
US20140267762A1 (en) * 2013-03-15 2014-09-18 Pelican Imaging Corporation Extended color processing on pelican array cameras
US10540806B2 (en) 2013-09-27 2020-01-21 Fotonation Limited Systems and methods for depth-assisted perspective distortion correction
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9426343B2 (en) 2013-11-07 2016-08-23 Pelican Imaging Corporation Array cameras incorporating independently aligned lens stacks
US9264592B2 (en) 2013-11-07 2016-02-16 Pelican Imaging Corporation Array camera modules incorporating independently aligned lens stacks
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US11486698B2 (en) 2013-11-18 2022-11-01 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10767981B2 (en) 2013-11-18 2020-09-08 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US9456134B2 (en) 2013-11-26 2016-09-27 Pelican Imaging Corporation Array camera configurations incorporating constituent array cameras and constituent cameras
US10708492B2 (en) 2013-11-26 2020-07-07 Fotonation Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US20160357009A1 (en) * 2014-02-13 2016-12-08 Hamamatsu Photonics K.K. Fabry-perot interference filter
US10574905B2 (en) 2014-03-07 2020-02-25 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US11546576B2 (en) 2014-09-29 2023-01-03 Adeia Imaging Llc Systems and methods for dynamic calibration of array cameras
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US10818026B2 (en) 2017-08-21 2020-10-27 Fotonation Limited Systems and methods for hybrid depth regularization
US11562498B2 (en) 2017-08-21 2023-01-24 Adela Imaging LLC Systems and methods for hybrid depth regularization
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11699273B2 (en) 2019-09-17 2023-07-11 Intrinsic Innovation Llc Systems and methods for surface modeling using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11842495B2 (en) 2019-11-30 2023-12-12 Intrinsic Innovation Llc Systems and methods for transparent object segmentation using polarization cues
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
US11683594B2 (en) 2021-04-15 2023-06-20 Intrinsic Innovation Llc Systems and methods for camera exposure control
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers

Also Published As

Publication number Publication date
EP2569935A4 (en) 2013-11-06
EP2569935A1 (en) 2013-03-20
CN103004180A (en) 2013-03-27
SG10201503516VA (en) 2015-06-29
US20170048468A1 (en) 2017-02-16
US20150156414A1 (en) 2015-06-04
KR20130136372A (en) 2013-12-12
US10455168B2 (en) 2019-10-22
KR101824672B1 (en) 2018-02-05
US20110279721A1 (en) 2011-11-17
EP2569935B1 (en) 2016-12-28
US9936148B2 (en) 2018-04-03
US20160269627A1 (en) 2016-09-15
US8928793B2 (en) 2015-01-06
WO2011143501A1 (en) 2011-11-17
US20180227511A1 (en) 2018-08-09
JP2013526801A (en) 2013-06-24
JP5848754B2 (en) 2016-01-27
SG185500A1 (en) 2012-12-28

Similar Documents

Publication Publication Date Title
US10455168B2 (en) Imager array interfaces
US20130147979A1 (en) Systems and methods for extending dynamic range of imager arrays by controlling pixel analog gain
WO2013119706A1 (en) Systems and methods for extending dynamic range of imager arrays by controlling pixel analog gain
EP3799421A1 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
EP2323409B1 (en) Image sensor with charge binning
EP2253017B1 (en) Circuit and photo sensor overlap for backside illumination image sensor
US7768569B2 (en) High sensitivity color filter array
US20140077069A1 (en) Solid-state imaging device which can expand dynamic range
US20150304582A1 (en) Image pickup device and camera system
KR101933994B1 (en) Image sensor having pixel architecture for capturing depth iamge and color image
WO2014164909A1 (en) Array camera architecture implementing quantum film sensors
WO2013172205A1 (en) Imaging device and imaging method, electronic apparatus, as well as program
CN101594491A (en) The driving method of solid state image pickup device, imaging device and solid state image pickup device
US9001240B2 (en) Common element pixel architecture (CEPA) for fast speed readout
US8582006B2 (en) Pixel arrangement for extended dynamic range imaging
US8525284B2 (en) System for reducing sensor area in a back side illuminated CMOS active pixel sensor
WO2021062661A1 (en) Image sensor, camera assembly, and mobile terminal
CN112802859A (en) Image sensor with a plurality of pixels
JP4375084B2 (en) Image sensor
KR20080022264A (en) Cmos image sensor comprising unit pixel with three-dimension structure and pixel-level analog to digital converting function

Legal Events

Date Code Title Description
AS Assignment

Owner name: PELICAN IMAGING CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PAIN, BEDABRATO;MCMAHON, ANDREW KENNETH JOHN;SIGNING DATES FROM 20110823 TO 20110916;REEL/FRAME:027002/0738

AS Assignment

Owner name: KIP PELI P1 LP, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PELICAN IMAGING CORPORATION;REEL/FRAME:037565/0385

Effective date: 20151221

Owner name: KIP PELI P1 LP, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:PELICAN IMAGING CORPORATION;REEL/FRAME:037565/0439

Effective date: 20151221

Owner name: DBD CREDIT FUNDING LLC, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:PELICAN IMAGING CORPORATION;REEL/FRAME:037565/0417

Effective date: 20151221

AS Assignment

Owner name: DBD CREDIT FUNDING LLC, NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR AND ASSIGNEE PREVIOUSLY RECORDED AT REEL: 037565 FRAME: 0439. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:KIP PELI P1 LP;REEL/FRAME:037591/0377

Effective date: 20151221

AS Assignment

Owner name: DRAWBRIDGE OPPORTUNITIES FUND LP, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:DBD CREDIT FUNDING LLC;REEL/FRAME:038982/0151

Effective date: 20160608

Owner name: DRAWBRIDGE OPPORTUNITIES FUND LP, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:DBD CREDIT FUNDING LLC;REEL/FRAME:039117/0345

Effective date: 20160608

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: DRAWBRIDGE SPECIAL OPPORTUNITIES FUND LP, NEW YORK

Free format text: CHANGE OF NAME;ASSIGNOR:DBD CREDIT FUNDING LLC;REEL/FRAME:040494/0930

Effective date: 20161019

Owner name: DRAWBRIDGE SPECIAL OPPORTUNITIES FUND LP, NEW YORK

Free format text: CHANGE OF NAME;ASSIGNOR:DBD CREDIT FUNDING LLC;REEL/FRAME:040423/0725

Effective date: 20161019

AS Assignment

Owner name: PELICAN IMAGING CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIP PELI P1 LP;REEL/FRAME:040674/0677

Effective date: 20161031

Owner name: FOTONATION CAYMAN LIMITED, UNITED STATES

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PELICAN IMAGING CORPORATION;REEL/FRAME:040675/0025

Effective date: 20161031