US20100303792A1 - Protein synthesis required for long-term memory is induced by pkc activation on days preceding associative learning - Google Patents

Protein synthesis required for long-term memory is induced by pkc activation on days preceding associative learning Download PDF

Info

Publication number
US20100303792A1
US20100303792A1 US12/851,222 US85122210A US2010303792A1 US 20100303792 A1 US20100303792 A1 US 20100303792A1 US 85122210 A US85122210 A US 85122210A US 2010303792 A1 US2010303792 A1 US 2010303792A1
Authority
US
United States
Prior art keywords
pkc
bryostatin
hours
contact
activator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/851,222
Inventor
Daniel L. Alkon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blanchette Rockefeller Neuroscience Institute
Original Assignee
Blanchette Rockefeller Neuroscience Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blanchette Rockefeller Neuroscience Institute filed Critical Blanchette Rockefeller Neuroscience Institute
Priority to US12/851,222 priority Critical patent/US20100303792A1/en
Publication of US20100303792A1 publication Critical patent/US20100303792A1/en
Priority to US13/561,770 priority patent/US8703812B2/en
Priority to US14/196,455 priority patent/US20140249176A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4015Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having oxo groups directly attached to the heterocyclic ring, e.g. piracetam, ethosuximide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/407Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with other heterocyclic ring systems, e.g. ketorolac, physostigmine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to methods of upregulating and downregulating protein kinase C that are useful for enhancing memory and the treatment of cell proliferative disorders.
  • ADHD Attention Deficit Hyperactivity Disorder
  • Other conditions include general dementias associated with other neurological diseases, aging, and treatment of conditions that can cause deleterious effects on mental capacity, such as cancer treatments, stroke/ischemia, and mental retardation.
  • PKC protein kinase C
  • these PKC isozymes when activated by a combination of calcium and co-factors, such as diacylglycerol, achieve a stable association with the inner aspect of the external neuronal membrane and membranes of internal organelle, such as the endoplasmic reticulum.
  • PKC activation has been shown to occur in single identified Type B cells of the mollusk Hermissenda (McPhie et al. (1993) J. Neurochem.
  • PKC isozymes play different, sometimes opposing, roles in biological processes, providing two directions for pharmacological exploitation.
  • One is the design of specific (preferably, isozyme specific) inhibitors of PKC. This approach is complicated by the fact that the catalytic domain is not the domain primarily responsible for the isotype specificity of PKC.
  • the other approach is to develop isozyme-selective, regulatory site-directed PKC activators. These may provide a way to override the effect of other signal transduction pathways with opposite biological effects. Alternatively, by inducing down-regulation of PKC after acute activation, PKC activators may cause long term antagonism.
  • bryostatin a macrolide lactone
  • PKC PKC activator
  • bryostatin a macrolide lactone
  • phorbol esters and the endogenous activator DAG bryostatin binds to the C1 domain within PKC and causes its translocation to membranes, which is then followed by downregulation.
  • the non-tumorigenic PKC activator, bryostatin has undergone extensive testing in humans for the treatment of cancer in doses (25 ⁇ g/m 2 -120 ⁇ g/m 2 ) known to cause initial PKC activation followed by prolonged downregulation (Prevostel et al. (2000) Journal of Cell Science 113: 2575-2584; Lu et al. (1998) Mol. Biol. Cell 18: 839-845; Leontieva et al. (2004) J. Biol. Chem. 279:5788-5801).
  • Bryostatin activation of PKC has also recently been shown to activate the alpha-secretase that cleaves the amyloid precursor protein (APP) to generate the non-toxic fragments soluble precursor protein (sAPP) from human fibroblasts (Etcheberrigaray et al. (2004) Proc. Natl. Acad. Sci. 101: 11141-11146). Bryostatin also enhances learning and memory retention of the rat spatial maze task (Sun et al. (2005) Eur. J. Pharmacol. 512: 45-51), learning of the rabbit nictitating membrane paradigm (Schreurs and Alkon, unpublished), and in a preliminary report, Hermissenda conditioning (Scioletti et al. (2004) Biol. Bull. 207: 159). Accordingly, optimal activation of PKC is important for many molecular mechanisms that effect cognition in normal and diseased states.
  • APP amyloid precursor protein
  • sAPP non-toxic fragments soluble precursor protein
  • the methods and compositions of the present invention fulfill these needs and will greatly improve the clinical treatment for Alzheimer's disease and other neurodegenerative diseases, as well as, provide for improved cognitive enhancement prophylactically.
  • the methods and compositions also provide treatment and/or enhancement of the cognitive state through the modulation of ⁇ -secretase.
  • This invention relates to a method of contacting a PKC activator with protein kinase C in a manner sufficient to stimulate the synthesis of proteins sufficient to consolidate long term memory.
  • the PKC activator is a macrocyclic lactone. In one embodiment, the PKC activator is a benzolactam. In one embodiment, the PKC activator is a pyrrolidinone. In a preferred embodiment, the macrocyclic lactone is bryostatin. In a more preferred embodiment, the bryostatin is bryostatin-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, or -18. In the most preferred embodiment, the bryostatin is bryostatin-1.
  • the macrocyclic lactone is neristatin.
  • the neristatin is neristatin-1.
  • the contact activates PKC. In one embodiment, the contact increases the amount of PKC. In one embodiment, the contact increases the synthesis of PKC. In one embodiment, the contact increases the amount of calexcitin. In one embodiment, the contact does not result in substantial subsequent deregulation of PKC.
  • the contact is repeated. In another embodiment, the contact is repeated at regular intervals. In another embodiment, the interval is between one week to one month, one day and one week, or less than one hour and 24 hours. In another embodiment, the interval is between one week and one month. In another embodiment, the interval is between one day and one week. In another embodiment, the interval is between less than one hour and 24 hours.
  • the contact is maintained for a fixed duration.
  • the fixed duration is less than 24 hours.
  • the fixed duration is less than 12 hours.
  • the fixed duration is less than 6 hours.
  • the fixed duration is less than 6 hours.
  • the fixed duration is less than 4 hours.
  • the fixed duration is less than 2 hours.
  • the fixed duration is between about 1 and 12 hours.
  • the fixed duration is between about 2 and 6 hours. In the most preferred embodiment, the fixed duration is about 4 hours.
  • the contact is repeated for a period greater than one day. In another embodiment, the contact is repeated for a period between one day and one month. In another embodiment, the contact is repeated for a period between one day and one week. In another embodiment, the contact is repeated for a period between one week and one month. In another embodiment, the contact is repeated for a period between one month and six months. In another embodiment, the contact is repeated for a period of one month. In another embodiment, the contact is repeated for a period greater than one month.
  • the invention relates to a method of contacting a PKC activator with protein kinase C in a manner sufficient to downregulate PKC.
  • the PKC activator is a macrocyclic lactone. In one embodiment, the PKC activator is a benzolactam. In one embodiment, the PKC activator is a pyrrolidinone. In a preferred embodiment, the macrocyclic lactone is bryostatin. In a more preferred embodiment, the bryostatin is bryostatin-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, or -18. In the most preferred embodiment, the bryostatin is bryostatin-1.
  • the macrocyclic lactone is neristatin.
  • the neristatin is neristatin-1.
  • the contact does not stimulate the synthesis of PKC. In another embodiment, the contact does not substantially stimulate the synthesis of PKC. In another embodiment, the contact decreases the amount of PKC. In another embodiment, the contact substantially decreases the amount of PKC. In another embodiment, the contact does not stimulate the synthesis of calexcitin.
  • the contact is for a sustained period.
  • the sustained period if between less than one hour and 24 hours.
  • the sustained period is between one day and one week.
  • the sustained period is between one week and one month.
  • the sustained period is between less than one hour and 12 hours.
  • the sustained period is between less than one hour and 8 hours.
  • the sustained period is between less than one hour and 4 hours. In a preferred embodiment, the sustained period is about 4 hours.
  • the contact produces sustained downregulation of PKC.
  • This invention relates to a method of contacting a PKC activator with protein kinase C in a manner sufficient to stimulate the synthesis of proteins sufficient to consolidate long term memory, further comprising the step of inhibiting degradation of PKC.
  • the degradation is through ubiquitination. In another embodiment, the degradation is inhibited by lactacysteine. In another embodiment, the PKC is human.
  • This invention relates to a method of contacting a PKC activator with protein kinase C in a manner sufficient to stimulate the synthesis of proteins sufficient to consolidate long term memory, wherein the PKC activator is provided in the form of a pharmaceutical composition comprising the PKC activator and a pharmaceutically acceptable carrier.
  • the pharmaceutical composition further comprises a PKC inhibitor.
  • the PKC inhibitor is a compound that inhibits PKC in peripheral tissues.
  • peripheral tissues means tissues other than brain.
  • the PKC inhibitor is a compound that preferentially inhibits PKC in peripheral tissues.
  • the PKC inhibit is a compound that reduces myalgia associated with the administration of a PKC activator to subjects in need thereof.
  • the PKC inhibitor is a compound that reduces myalgia produced in a subject treated with a PKC activator.
  • the PKC inhibitor is a compound that increases the tolerable dose of a PKC activator.
  • PKC inhibitors include, for example, but are not limited to vitamin E, vitamin E analogs, and salts thereof; calphostin C; thiazolidinediones; ruboxistaurin, and combinations thereof.
  • vitamin E means ⁇ -tocopherol (5, 7, 8-trimethyltocol); ⁇ -tocopherol (5, 8-dimethyltocol; ⁇ -tocopherol (8-methyltocal); and ⁇ -tocopherol (7,8-dimethyltocol), salts and analogs thereof.
  • FIG. 1 depicts the effects of bryostatin on long term memory acquisition, and shows that animals trained sub-optimally, but treated with bryostatin, all demonstrate acquisitioned long-term memory.
  • FIG. 2 depicts the effects of bryostatin on long-term memory acquisition, and shows that randomized presentations of light and rotation, either with or without bryostatin, produced no conditioned response.
  • Bryostatin (0.25 ng/ml in NSW) applied before 6-TE conditioning (during 10 min dark adaptation) and for 4 hours thereafter produced a positive CR (foot contraction; negative change in length), thus indicating LTM was established.
  • the antagonist, Ro-32 when applied pre-training (during dark adaptation), blocked the effects of 6 TE plus bryostatin, i.e. animals lengthened (positive length change) with normal photaxis (n 4-8 animals/condition/experiment; ANOVA differences, p ⁇ 0.01).
  • FIG. 3 depicts the effects of bryostatin on long-term memory acquisition, and shows that animals exposed to bryostatin for four hours on two successive days, followed by two training events (TE) on a third subsequent day, demonstrated acquisition of at least six days of long-term memory.
  • FIG. 4 depicts the effects of bryostatin on long term memory acquisition, and shows that animals exposed to bryostatin for four hours on three successive days, followed by two TE on a fourth subsequent day, demonstrated acquisition of at least ninety-six hours of long-term memory.
  • LTR long-term retention
  • Non-exposed animals did not demonstrate any behavioral modification (no CR to CS testing).
  • FIG. 6 depicts the effects of bryostatin on long term memory acquisition, and shows that exposure to more than 1.0 ng/ml of bryostatin inhibits acquisition of long-term memory.
  • FIG. 7 depicts the effects of bryostatin and anisomycin on long-term memory acquisition, and shows that a single 4-hour exposure to bryostatin together with 2 TE produced long-term memory lasting hours that was entirely eliminated when anisomycin was present during bryostatin exposure.
  • TEs 2-paired training events
  • Bryostatin (0.25 ng/ml) applied in NSW to animals during the 10-min pre-training dark adaptation period and 4 h thereafter demonstrated retention of the behavioral conditioning (foot contraction (CR) and shortening in body length).
  • FIG. 8 depicts the effects of bryostatin and lactacysteine, and shows that lactacysteine transformed the short-term memory produced by the single bryostatin exposure (followed by 2 TE) to long-term memory lasting many days.
  • Behavioral effects of bryostatin and lactacystin Animals were incubated simultaneously for 4 h with bryostatin (0.25 ng/ml) and lactacystin (10 ⁇ M), and then 24 hrs later were conditioned with 2-paired CS/US training events (TEs). Animals were subsequently tested with CS alone at 4 h post-training and then at 24-h intervals.
  • FIG. 9 depicts the effects of PKC activation on calexcitin.
  • FIGS. depict representative tissue sections from Hermissenda eyes that were immunolabeled with the calexcitin polyclonal antibody, 25U2. Positive claexcitin immunostaining occurred in B-cell photoreceptors (*B-Cell) of animals that experienced paired CS/USC associative conditioning with or without prior administration of bryostatin (B). Random presentations of the two stimuli (training events, TEs) did not produce behavioral modifications nor a rise in calexcitin above normal background levels (A); basement membrane and lens staining are artifact associated with using vertebrate polyclonal antibodies. Differences in staining intensities were measure using Image-J software and recorded as gray-scale intensities (0-256; B-cell cytoplasm minus tissue background).
  • FIG. (C) displays intensity measures for Hermissenda conditioned with 9-random TEs (left bar) and animals treated with two exposures on successive days to the PKC antagonist, bryostatin (0.25 ng/ml), and then associatively conditioned with 2-paired TEs.
  • FIG. 10 a depicts the effect of bryostatin and training events on calexcitin immunostaining.
  • the figure shows calexcitin increased within Type B cells with the number of training events.
  • Immuno-intensity measurements (as grey-scale intensity; 0-256) of calexicitin (CE) antibody labeling as a function of bryostatin and training regime.
  • Randon traiming (4-TEs) without bryostatin yielded slightly higher intensity measures than background.
  • Bryostatin administration increased the calexcitin levels fro both training paradigms. With random training, when there was occasional overlap (pairing) of the CS and US, as was the case here, it is not unexpected that some rise in CE might occur (increase of 2.0).
  • FIG. 10 b depicts the effect of bryostatin alone calexcitin, as shown by immunostaining.
  • Bryostatin alone (without associative conditioning) administered for 4-hr over each of 1, 2, and 3 days progressively increased the levels of calexcitin in the B-photoreceptors of Hermissenda when measured 24 hours after each of the periods of bryostatin exposures.
  • FIG. 11 a depicts the effect of 4-hour bryostatin exposure, on two consecutive days, followed 24 hours later by two training events, on the intensity of calexcitin.
  • FIG. 11 b depicts the effect of adding anisomycin after bryostatin exposure on calexcitin.
  • FIG. 12 depicts the effects of repeated 4-hour bryostatin exposure on PKC activity, as measured by histone phosphorylation in the cytosolic fraction.
  • the figure shows bryostatin exposure on two successive produces PKC activity significantly above control or baseline levels.
  • FIG. 13 depicts the effects of repeated 4-hour bryostatin exposure on PKC activity, as measured by histone phosphorylation in the membrane fraction.
  • the figure shows bryostatin exposure on two successive produces PKC activity significantly above control or baseline levels.
  • histone phosphorylation was measured in the membrane fraction.
  • FIG. 14 depicts the effects of anisomycin on PKC activity.
  • the figure shows that the presence of anisomycin during each of three successive days of bryostatin exposure reduced PKC activity in both cytosolic and membrane fractions.
  • Anisomycin reduces PKC activity in Hermissenda.
  • FIG. 12 , 13 but with anisomycin (1.0 ng/ml) added together with each bryostatin (0.25 ng/ml) exposure.
  • FIG. 15 depicts the effects of bryostatin on membrane-bound PKC in hippocampal neurons.
  • the figure shows that exposure of cultured hippocampal neurons to a single activating dose of bryostatin (0.28 nM) for 30 minutes produced a brief translocation of PKC from the cytosol to the particulate fraction (approx 60%) followed by a prolonged downregulation.
  • a second exposure of up to four hours after the first exposure significantly attenuates the down regulation found four hours after a single bryostatin exposure.
  • Effect of bryostatin on membrane-bound PKC activity in hippocampal cultured IGF/IR cells after 1) a single 30 min exposure; or 2) two 30 min exposures separated by intervals of 30 min to 8 hr.
  • FIG. 16 depicts the effects of repeated bryostatin exposure on PKC activity.
  • the figure shows that a second exposure after a 2- to 4-hour delay eliminated the significant downregulation that a single 30-minute bryostatin exposure produced, and that if the second exposure was delayed until 4 hours after the first, activity was increased above baseline, to a degree that was significantly greater compared with a second exposure delivered after 2 hours or less.
  • FIG. 17 depicts the effects of bryostatin on protein synthesis.
  • Rat IGF-IR cells were incubated for 30 minutes with 0.28 nM bryostatin for incubation times ranging from 1 to 79 hours.
  • [ 35 S]Methionine (9.1 ⁇ Ci) was then added to the medium followed by analysis of radiolabel.
  • a single 30-minute exposure to 0.28 nM bryostatin increased overall protein synthesis, as measured by the incorporation of [ 35 S]Methionine in the last half hour before collecting the neurons, by 20% within 24 hours, increasing to 60% by 79 hours after bryostatin exposure, but increasing significantly less in the presence of the PKC inhibitor Ro-32-0432.
  • upregulating means increasing the amount or activity of an agent, such as PKC protein or transcript, relative to a baseline state, through any mechanism including, but not limited to increased transcription, translation and/or increased stability of the transcript or protein product.
  • down regulating means decreasing the amount or activity of an agent, such as PKC protein or transcript, relative to a baseline state, through any mechanism including, but not limited to decreased transcription, translation and/or decreased stability of the transcript or protein product.
  • the term “pharmaceutically acceptable carrier” means a chemical composition, compound, or solvent with which an active ingredient may be combined and which, following the combination, can be used to administer the active ingredient to a subject.
  • “pharmaceutically acceptable carrier” includes, but is not limited to, one or more of the following: excipients; surface active agents; dispersing agents; inert diluents; granulating and disintegrating agents; binding agents; lubricating agents; preservatives; physiologically degradable compositions such as gelatin; aqueous vehicles and solvents; oily vehicles and solvents; suspending agents; dispersing or wetting agents; emulsifying agents, demulcents; buffers; salts; thickening agents; fillers; antioxidants; stabilizing agents; and pharmaceutically acceptable polymeric or hydrophobic materials and other ingredients known in the art and described, for example in Genaro, ed. (1985) Remington's Pharmaceutical Sciences Mack Publishing Co., Easton, Pa., which is
  • compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology.
  • preparatory methods include the step of bringing the active ingredient into association with a carrier or one or more other accessory ingredients, and then, if necessary or desirable, shaping or packaging the product into a desired single- or multi-dose unit.
  • compositions are principally directed to pharmaceutical compositions which are suitable for ethical administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals of all sorts. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the pharmaceutical compositions of the invention is contemplated include, but are not limited to, humans and other primates, and other mammals.
  • Alzheimer's disease is associated with extensive loss of specific neuronal subpopulations in the brain with memory loss being the most universal symptom. (Katzman (1986) New England Journal of Medicine 314: 964). Alzheimer's disease is well characterized with regard to neuropathological changes. However, abnormalities have been reported in peripheral tissue supporting the possibility that Alzheimer's disease is a systematic disorder with pathology of the central nervous system being the most prominent. (Connolly (1998) Review, TiPS Col. 19: 171-77). For a discussion of Alzheimer's disease links to a genetic origin and chromosomes 1, 14, and 21 see St. George-Hyslop et al. (1987) Science 235: 885; Tanzi et al. Review, Neurobiology of Disease 3:159-168; Hardy (1996) Acta Neuro! Scand: Supplement 165: 13-17.
  • Alzheimer's disease is characterized by progressive memory impairments, loss of language and visuospatial skills and behavior deficits (McKhann et al. (1986) Neurology 34: 939-944).
  • the cognitive impairment of individuals with Alzheimer's disease is the result of degeneration of neuronal cells located in the cerebral cortex, hippocampus, basal forebrain and other brain regions.
  • Histologic analyzes of Alzheimer's disease brains obtained at autopsy demonstrated the presence of neurofibrillary tangles (NFT) in perikarya and axons of degenerating neurons, extracellular neuritic (senile) plaques, and amyloid plaques inside and around some blood vessels of affected brain regions.
  • NFT neurofibrillary tangles
  • Neurofibrillary tangles are abnormal filamentous structures containing fibers (about 10 nm in diameter) that are paired in a helical fashion, therefore also called paired helical filaments. Neuritic plaques are located at degenerating nerve terminals (both axonal and dendritic), and contain a core compound of amyloid protein fibers. In summary, Alzheimer's disease is characterized by certain neuropathological features including intracellular neurofibrillary tangles, primarily composed of cytoskeletal proteins, and extracellular parenchymal and cerebrosvascular amyloid.
  • Alzheimer's patents normal aged people, and people suffering from other neurodegenerative diseases, such as Parkinson's, Huntington's chorea, Wernicke-Korsakoff or schizophrenia further described for instance in U.S. Pat. No. 5,580,748 and U.S. Pat. No. 6,080,582.
  • AD Alzheimer's disease
  • AD Alzheimer's disease
  • APP amyloid precursor protein
  • a central feature of the pathology of Alzheimer's disease is the deposition of amyloid protein within plaques.
  • APP processing pathways Three alternative APP processing pathways have been identified.
  • the previously termed “normal” processing involves the participation of an enzyme that cleaves APP within the A ⁇ sequence at residue Lys16 (or between Lys16 and Leu17; APP770 nomenclature), resulting in non-amyloidogenic fragments: a large N-terminus ectodomain and a small 9 kDa membrane bound fragment.
  • This enzyme yet to be fully identified, is known as ⁇ -secretase.
  • Two additional secretases participate in APP processing.
  • One alternative pathway involves the cleavage of APP outside the A ⁇ domain, between Met671 and Asp672 (by ⁇ -secretase) and the participation of the endosomal-lysomal system.
  • cultured cells transfected with this mutation or the APP 717 mutation secrete larger amounts of A ⁇ . More recently, carriers of other APP mutations and PS1 and PS2 mutations have been shown to secrete elevated amounts of a particular form, long (42-43 amino acids) A ⁇ .
  • the PKC isoenzymes provides a critical, specific and rate limiting molecular target through which a unique correlation of biochemical, biophysical, and behavioral efficacy can be demonstrated and applied to subjects to improve cognitive ability.
  • K + and Ca 2+ channels have been demonstrated to play key roles in memory storage and recall.
  • potassium channels have been found to change during memory storage.
  • PKC was identified as one of the largest gene families of non-receptor serine-threonine protein kinases. Since the discovery of PKC in the early eighties by Nishizuka and coworkers (Kikkawa et al. (1982) J. Biol. Chem. 257: 13341), and its identification as a major receptor of phorbol esters (Ashendel et al. (1983) Cancer Res., 43: 4333), a multitude of physiological signaling mechanisms have been ascribed to this enzyme. The intense interest in PKC stems from its unique ability to be activated in vitro by calcium and diacylglycerol (and its phorbol ester mimetics), an effector whose formation is coupled to phospholipid turnover by the action of growth and differentiation factors.
  • the PKC gene family consists presently of 11 genes which are divided into four subgrounds: 1) classical PKC ⁇ , ⁇ 1 , ⁇ 2 ( ⁇ 1 and ⁇ 2 are alternatively spliced forms of the same gene) and ⁇ , 2) novel PKC ⁇ , ⁇ , ⁇ and ⁇ , 3) atypical PKC ⁇ , ⁇ , ⁇ and ⁇ and 4) PKC ⁇ .
  • PKC ⁇ resembles the novel PKC isoforms but differs by having a putative transmembrane domain (reviewed by Blohe et al. (1994) Cancer Metast. Rev. 13: 411; Ilug et al. (1993) Biochem J. 291: 329; Kikkawa et al. (1989) Ann. Rev. Biochem.
  • the ⁇ , ⁇ 1 , ⁇ 2 , and ⁇ isoforms are Ca 2 , phospholipid and diacylglycerol-dependent and represent the classical isoforms of PKC, whereas the other isoforms are activated by phospholipid and diacylglycerol but are not dependent on CA 2+ . All isoforms encompass 5 variable (V1-V5) regions, and the ⁇ , ⁇ , ⁇ isoforms contain four (C1-C4) structural domains which are highly conserved.
  • All isoforms except PKC ⁇ , ⁇ and ⁇ lack the C2 domain, and the ⁇ , ⁇ and isoforms also lack nine of two cysteine-rich zinc finger domains in C1 to which diacylglycerol binds.
  • the C1 domain also contains the pseudo substrate sequence which is highly conserved among all isoforms, and which serves an auto regulatory function by blocking the substrate-binding site to produce an inactive conformation of the enzyme (House et al., (1987) Science 238: 1726).
  • PKC has proven to be an exciting target for the modulation of APP processing. It is well established that PKC plays a role in APP processing. Phorbol esters for instance have been shown to significantly increase the relative amount of non-amyloidogenic soluble APP (sAPP) secreted through PKC activation. Activation of PKC by phorbol ester does not appear to result in a direct phosphorylation of the APP molecule, however. Irrespective of the precise site of action, phorbol-induced PKC activation results in an enhanced or favored ⁇ -secretase, non-amyloidogenic pathway.
  • sAPP non-amyloidogenic soluble APP
  • PKC activation is an attractive approach for influencing the production of non-deleterious sAPP and even producing beneficial sAPP and at the same time reduce the relative amount of A ⁇ peptides.
  • Phorbol esters are not suitable compounds for eventual drug development because of their tumor promotion activity. (Ibarreta et al. (1999) NeuroReport Vol. 10, No. 5&6, pp 1034-40).
  • the present inventors have also observed that activation of protein kinase C favors the ⁇ -secretase processing of the Alzheimer's disease (AD) amyloid precursor protein (APP), resulting in the generation of non-amyloidogenic soluble APP (sAPP). Consequently, the relative secretion of amyloidogenic A 1-40 and A 1-42(3) is reduced. This is particularly relevant since fibroblasts and other cells expressing APP and presenilin AD mutations secrete increased amounts of total A ⁇ and/or increased ratios of A 1-42(3) /A 1-40 .
  • PKC defects have been found in AD brain ( ⁇ and ⁇ isoforms) and in fibroblasts ( ⁇ -isoform) from AD patients.
  • bryostatin class and neristatin class macrocyclic lactones
  • bryostatin-1 has been shown to activate PKC and proven to be devoid of tumor promotion activity.
  • Bryostatin-1 as a PKC activator, is also particularly useful since the dose response curve of bryostatin-1 is biphasic.
  • bryostatin-1 demonstrates differential regulation of PKC isozymes, including PKC ⁇ , PKC ⁇ , and PKC ⁇ .
  • Bryostatin-1 has undergone toxicity and safety studies in animals and humans and is actively being investigated as an anti-cancer agent.
  • Bryostatin-1's use in the studies has determined that the main adverse reaction in humans is myalgia, limiting the maximum dose to 40 mg/m 2 .
  • the present invention has utilized concentrations of 0.1 nM of bryostatin-1 to cause a dramatic increase of sAPP secretion.
  • Bryostatin-1 has been compared to a vehicle alone and to another PKC activator, benzolactam (BL), used at a concentration 10,000 times higher.
  • Bryostatin is currently in clinical trials as an anti-cancer agent.
  • the bryostatins are known to bind to the regulatory domain of PKC and to activate the enzyme.
  • Bryostatin is an example of isozyme-selective activators of PKC. Compounds in addition to bryostatins have been found to modulate PKC. (See, for example, WO 97/43268; incorporated herein by reference in its entirety).
  • Macrocyclic lactones, and particularly bryostatin-1 is described in U.S. Pat. No. 4,560,774 (incorporated herein by reference in its entirety). Macrocyclic lactones and their derivatives are described elsewhere in the art for instance in U.S. Pat. No. 6,187,568, U.S. Pat. No. 6,043,270, U.S. Pat. No. 5,393,897, U.S. Pat. No. 5,072,004, U.S. Pat. No. 5,196,447, U.S. Pat. No. 4,833,257, and U.S. Pat. No. 4,611,066 (each of which are incorporated herein by reference in their entireties).
  • Bryostatin 1 an activator of protein kinase C, inhibits tumor promotion by phorbol esters in SENCAR mouse skin, Carcinogenesis 8(9): 1343-46; Varterasian et al. (2000) Phase II Trial of Bryostatin 1 in Patients with Relapse Low-Grade Non-Hodgkin's Lymphoma and Chronic Lymphocytic Leukemia, Clinical Cancer Research 6: 825-28; and Mutter et al. (2000) Review Article: Chemistry and Clinical Biology of the Bryostatins, Bioorganic & Medicinal Chemistry 8: 1841-1860 (each of which is incorporated herein by reference in its entirety).
  • Myalgia is the primary side effect that limits the tolerable dose of a PKC activator.
  • myalgia was reported in 10 to 87% of all treated patients.
  • Doses of 20 ⁇ g/m 2 once per week for 3 weeks were well tolerated and were not associated with myalgia or other side effects.
  • 25 ⁇ g/m2 of bryostatin-1 administered once per week for 8 weeks was the maximum tolerated dose.
  • Grade 0 is no myalgia.
  • Grade 1 myalgia is characterized by mild, brief pain that does not require analgesic drugs. In Grade 1 myalgia, the patient is fully ambulatory.
  • Grade 2 myalgia is characterized by moderate pain, wherein the pain or required analgesics interfere with some functions, but do not interfere with the activities of daily living.
  • Grade 3 myalgia is associated with severe pain, wherein the pain or necessary analgesics severely interfere with the activities of daily living.
  • Grade 4 myalgia is disabling.
  • compositions of the present invention increase the tolerable dose of the PKC activator administered to a patient and/or ameliorate the side effects associated with PKC activation by attenuating the activation of PKC in peripheral tissues.
  • PKC inhibitors inhibit PKC in peripheral tissues or preferentially inhibit PKC in peripheral tissues.
  • Vitamin E for example, has been shown to normalize diacylglycerol-protein kinase C activation in the aorta of diabetic rats and cultured rat smooth muscle cells exposed to elevated glucose levels. (Kunisaki et al. (1994) Diabetes 43(11): 1372-1377).
  • Macrocyclic lactones including the bryostatin class were originally derived from Bigula neritina L. While multiple uses for macrocyclic lactones, particularly the bryostatin class are known, the relationship between macrocyclic lactones and cognition enhancement was previously unknown.
  • the examples of the compounds that may be used in the present invention include macrocyclic lactones (i.e. bryostatin class and neristatin class compounds). While specific embodiments of these compounds are described in the examples and detailed description, it should be understood that the compounds disclosed in the references and derivatives thereof could also be used for the present compositions and methods.
  • macrocyclic lactones i.e. bryostatin class and neristatin class compounds. While specific embodiments of these compounds are described in the examples and detailed description, it should be understood that the compounds disclosed in the references and derivatives thereof could also be used for the present compositions and methods.
  • macrocyclic lactone compounds and their derivatives are amenable to combinatorial synthetic techniques and thus libraries of the compounds can be generated to optimize pharmacological parameters, including, but not limited to efficacy and safety of the compositions. Additionally, these libraries can be assayed to determine those members that preferably modulate ⁇ -secretase and/or PKC.
  • bryostatin Synthetic analogs of bryostatin are also contemplated by the present invention. Specifically, these analogues retain the orientation of the C1-, C19-, C26-oxygen recognition domain as determined by NMR spectroscopic comparison with bryostatin and various degrees of PKC-binding affinity.
  • the bryostatin analogues disclosed and described in U.S. Pat. No. 6,624,189 (incorporated herein by reference in its entirety) may also be used in the methods of the present invention. Specifically, the bryostatin analogues described by the genus of Formula I of U.S. Pat. No.
  • 6,624,189 (column 3, lines 35-66) and the species of formulas II-VII and 1998a and 1998b (column 8, lines 28-60) of U.S. Pat. No. 6,624,189 are PKC activators suitable for use in the methods of the present invention.
  • the methods and compositions of the present invention fulfill these needs and will greatly improve the clinical treatment for Alzheimer's disease and other neurodegenerative diseases, as well as, provide for improved cognitive enhancement.
  • the methods and compositions also provide treatment and/or enhancement of the cognitive state through the modulation of ⁇ -secretase.
  • Bryostatin exposure Specific Materials of Hermissenda Crassicornis were maintained in artificial sea water (ASW) at 15° for three days in perforated 50-ml conical centrifuge tubes before starting experiments. Bryostatin, purified from the marine bryozoan Bugula neritina, was dissolved in EtOH and diluted to its final concentration in ASW. Animals were incubated with bryostatin in ASW for 4 hr, then rinsed with normal ASW. For selected experiments lactacysteine (10 ⁇ M) or anisomycin was added to the ASW.
  • Bryostatin effects on Hermissenda behavior and biochemistry were produced by adding the drug to the bathing medium within an 8 cm long, 1 cm diameter test tube housing each individual animal.
  • Cells were homogenized by sonication (5 sec, 25 W) in 100 ⁇ l of 10 mM Tris-HCl pH 7.4 buffer containing 1 mM EGTA, 1 mM PMSF, and 50 mM NaF. Homogenate was transferred to a polyallomer centrifuge tube and was centrifuged at 100,000 ⁇ g for 10 min at 4°. The supernatant was removed and immediately frozen on dry ice. The particulate fraction was resuspended by sonication in 100 ⁇ l of the same buffer and stored at ⁇ 80°.
  • Rat hippocampal H19-7/IGF-IR cells were plated onto poly-L-lysine coated plates and grown at 35° in DMEM/10% FCS for several days until approx. 50% coverage was obtained.
  • the cells were then induced to differentiate into a neuronal phenotype by replacing the medium with 5 ml N2 medium containing 10 ng/ml basic fibroblast growth factor and grown in T-25 flasks at 39° C. (26).
  • Various concentrations of bryostatin (0.01-1.0 nM) were then added in 10 ⁇ l aqueous solution. After a specified interval, the medium was removed and the cells were washed with PBS, removed by gentle scraping, and collected by centrifugation at 1000 rpm for 5 min.
  • Pavlovian conditioning of Hermissenda involves repeated pairings of a neutral stimulus, light, with an unconditioned stimulus, orbital shaking. (See, Lederhendler et al. (24) and Epstein et al. (6)).
  • a rotation/shaking stimulus excites the statocyst hair cells and thereby elicits an unconditioned response: a brisk contraction of the muscular undersurface called a foot, accompanied by adherence or “clinging” to the surface that supports the foot.
  • light elicits a weakly positive phototaxis accompanied by lengthening of the foot.
  • Pavlovian conditioning of Hermissenda has well-defined training parameters that produce progressively longer-lasting retention of the learned conditioned response.
  • Two training events (2 TE) of paired light and orbital shaking see “Methods”), for example, induce a learned conditioned response (light-elicited foot contraction or shortening) that persists without drug treatment for approximately 7 minutes.
  • Four to six training events (4-6 TE) induce a conditioned response that persists up to several hours, but disappears approximately by 1 day after training.
  • Nine TE produces long-term associative memory lasting many days and often up to two weeks.
  • Two TE plus bryostatin produced memory retention lasting hours (vs. minutes without bryostatin), 4 TEs plus bryostatin extended retention beyond 24 hours ( FIG. 1 ), and 6 TE plus bryostatin produced retention lasting 1 week or longer.
  • Bryostatin (NSW), random, and paired CS/US training events (TEs) did not generate LTM or elicit a CR when tested at 4 h.
  • Bryostatin (0.25 ng/ml in NSW) applied before 6-TE conditioning (during 10 min dark adaptation) and for 4 hours thereafter produced a positive CR (foot contraction; negative change in length), thus indicating LTM was established.
  • the antagonist, Ro-32 when applied pre-training (during dark adaptation), blocked the effects of 6 TE plus bryostatin, i.e. animals lengthened (positive length change) with normal phototaxis (n 4-8 animals/condition/experiment; ANOVA differences, p ⁇ 0.01).
  • a third day of exposure to the 4 hour interval of bryostatin caused a similar enhanced retention of the Pavlovian conditioned response ( FIG. 4 ).
  • the preceding results support the view that two successive intervals of exposure to bryostatin cause PKC activation and possibly synthesis of proteins critical for long-term memory, with a minimum of concurrent and subsequent PKC downregulation.
  • This view was given further support by the observation that a more prolonged interval of bryostatin exposure, i.e. for 8 to 20 hours, followed by 2 TE ( FIG. 5 ) was not sufficient itself to produce memory retention equivalent to that which accompanied the two 4 hour exposures on successive preceding days.
  • the effects of 20 hr bryostatin (0.25 ng/ml) exposure on training was observed.
  • anisomycin-induced blockade of protein synthesis did not prevent memory retention that lasted many days ( FIG. 4 ).
  • the same 4 hour anisomycin treatment eliminated all memory retention produced by 9 TE, a training regimen ordinarily followed by 1-2 weeks of memory retention (27).
  • 2 TE were given one day after three successive days of 4 hour exposures to bryostatin that was accompanied each time by anisomycin, long-term memory was eliminated.
  • PKC and other memory-related proteins Another means of enhancing and prolonging de novo synthesis of PKC and other memory-related proteins is provided by blocking pathways involved in protein degradation.
  • One of these, the ubiquitin-proteasome pathway (28-30), is known to be a major route for degradation of the ⁇ -isozyme of PKC. Degradation of PKC- ⁇ has been previously shown to be largely prevented by 20 ⁇ M-5 Q ⁇ M of the proteasome inhibitor, Lactacysteine.
  • Lactacysteine in this case, transformed the short-term memory produced by the single bryostatin exposure (followed by 2 TE) to long-term memory lasting many days ( FIG. 8 ).
  • calexcitin an immunostaining label of calexcitin increased within single identified Type B cells during acquisition and retention of Hermissenda conditioning (20).
  • Many previous findings have implicated a low molecular weight calcium and GTP-binding protein, calexcitin, as a substrate for PKC isozymes during Hermissenda conditioning (19).
  • Calexcitin now completely sequenced in some animal species, and shown to have significant homology with similar proteins in other species (31), undergoes changes of phosphorylation during and after Hermissenda Pavlovian conditioning. It is also a high affinity substrate for the alpha-isozyme of PKC and a low affinity substrate for ⁇ and gamma (19).
  • Micrographs depict representative tissue sections from Hermissenda eyes that were immunolabeled with the calexcitin polyclonal antibody, 25U2. Positive calexcitin immunostaining occurred in B-cell photoreceptors (*B-Cell) of animals that experienced paired CS/UCS associative conditioning with or without prior administration of bryostatin (B). Random presentations of the two stimuli (training events, TEs) did not produce behavioral modifications nor a rise in calexcitin above normal background levels (A); basement membrane and lens staining are artifact associated with using vertebrate polyclonal antibodies. Differences in staining intensities were measured and recorded as gray-scale intensities (0-256; B-cell cytoplasm minus tissue background).
  • Graph (C) displays intensity measures for Hermissenda conditioned with 9-random TEs (left bar) and animals treated with two exposures on successive days to the PKC agonist, bryostatin (0.25 ng/ml), and then associatively conditioned with 2-paired TEs.
  • This conditioning-induced calexcitin label increase represents an increase in the actual amount of the protein since the immunostaining antibody reacts with both the phosphorylated and unphosphorylated forms of the protein.
  • PKC previously shown to translocate within the same individual Type B cells, apparently caused the conditioning-induced increase in the calexcitin label since the specific PKC-blocker, Ro-32, prevented both learning and learning-specific calexcitin increases in the Type B cell (see above).
  • Na ⁇ ve and/or randomized control training protocols produced a small fraction of the training-induced calexcitin (CE) immunostaining ( FIG. 9 ).
  • Pavlovian conditioning with 6 TE produced memory lasting many days with bryostatin, but lasting only hours without bryostatin. This memory enhancement was blocked by anisomycin or the PKC inhibitor, Ro-32. It is important to note that CE immunostaining was greatly reduced 24 hours after 9 TE even though the memory persisted for more than 1 week thereafter. More persistent CE immunostaining resulted, however, from repeated bryostatin exposures on days preceding minimal training (2 TE).
  • Bryostatin alone (without associative conditioning) administered for 4-hr over each of 1, 2, and 3 days progressively increased the levels of calexcitin in the B-photoreceptors of Hermissenda when measured 24 hours after each of the periods of bryostatin exposures. Twenty-four hours after 1 bryostatin exposure for four hours, CE immunostaining was not elevated ( FIG. 10B ). Twenty-four hours after 2 bryostatin exposures, 1 on each of two successive days showed greater residual CE immunostaining.
  • Bryostatin is known to transiently activate PKC by increasing PKC association with the cellular membrane fraction.
  • a variety of associative memory paradigms have also been demonstrated to cause increased PKC association with neuronal membranes. We tested, therefore, the possibility that repeated exposures of Hermissenda to bryostatin (i.e., 4 hour exposures, exactly as with the training protocols) might also induce prolonged PKC activation.
  • rat hippocampal neurons were studied after they had been immortalized by retroviral transduction of temperature sensitive tsA5CSV40 large T antigen (25). These differentiate to have a neuronal phenotype when induced by basic fibroblast growth factor in N2 medium (26) and express a normal complement of neuronal proteins, including PKC.
  • PKC degrading pathways create a deficit of PKC that stimulates de novo synthesis of PKC, PKC synthesis cannot compensate for inactivation and down regulation, thereby causing depletion of available PKC of 95% or more.

Abstract

The present invention provides methods of contacting a protein kinase C (PKC) activator with a PKC activator in a manner sufficient to stimulate the synthesis of proteins sufficient to consolidate long-term memory. The present invention also provides methods of contacting a protein kinase C (PKC) activator with a PKC activator in a manner sufficient to downregulate PKC.

Description

    PRIORITY OF INVENTION
  • This application is a continuation of U.S. application Ser. No. 11,494,636, filed Jul. 28, 2006, which claims priority to U.S. Provisional Application No. 60/703,501 filed Jul. 29, 2005 and U.S. Provisional Application No. 60/728,753 filed on Oct. 21, 2005.
  • FIELD OF THE INVENTION
  • The present invention relates to methods of upregulating and downregulating protein kinase C that are useful for enhancing memory and the treatment of cell proliferative disorders.
  • BACKGROUND OF THE INVENTION
  • Various disorders and diseases exist which affect cognition. Cognition can be generally described as including at least three different components: attention, learning, and memory. Each of these components and their respective levels affect the overall level of a subject's cognitive ability. For instance, while Alzheimer's Disease patients suffer from a loss of overall cognition and thus deterioration of each of these characteristics, it is the loss of memory that is most often associated with the disease. In other diseases patients suffer from cognitive impairment that is more predominately associated with different characteristics of cognition. For instance, Attention Deficit Hyperactivity Disorder (ADHD), focuses on the individual's ability to maintain an attentive state. Other conditions include general dementias associated with other neurological diseases, aging, and treatment of conditions that can cause deleterious effects on mental capacity, such as cancer treatments, stroke/ischemia, and mental retardation.
  • The requirement of protein synthesis for long-term memory has been demonstrated over several decades for a variety of memory paradigms. Agranoff et al. (1967) Science 158: 1600-1601; Bergold et al. (1990) Proc. Natl. Acad. Sci. 87:3788-3791; Cavallaro et al. (2002) Proc. Natl. Acad. Sci. 99: 13279-16284; Crow et al. (1990) Proc. Natl. Acad. Sci. 87: 4490-4494; Crow et al. (1999) J. Neurophysiol. 82: 495-500; Epstein et al. (2003) Neurobiol. Learn. Mem. 79: 127-131; Ezzeddine et al. (2003) J. Neurosci. 23: 9585-9594; Farley et al. (1991) Proc. Natl. Acad. Sci. 88: 2016-2020; Flexner et al. (1996) Proc. Natl. Acad. Sci. 55: 369-374; Hyden et al. (1970) Proc. Natl. Acad. Sci. 65: 898-904; Nelson et al. (1990) Proc. Natl. Acad. Sci. 87: 269-273; Quattrone et al. (2001) Proc. Natl. Acad. Sci. 98: 11668-11673; Zhao et al. (1999) J. Biol. Chem. 274: 34893-34902; Zhao et al. (2000) FASEB J. 14: 290-300. Flexner originally showed that drug-induced inhibition of protein synthesis (e.g., with 5-propyluracil or anisomycin) blocked long-term memory when this inhibition occurred during a critical time interval following the training paradigm. Flexner et al. (1996) Proc. Natl. Acad. Sci. 55: 369-374. If protein synthesis was inhibited before this critical time window or at any time after this window, there was no effect on long-term memory. The identity of the proteins essential for memory consolidation, the mechanisms of their regulation, and their role in the consolidation of long-term memory has remained a mystery.
  • In many species the formation of long-term associative memory has also been shown to depend on translocation, and thus activation, of protein kinase C (PKC) isozymes to neuronal membranes. Initially, these PKC isozymes, when activated by a combination of calcium and co-factors, such as diacylglycerol, achieve a stable association with the inner aspect of the external neuronal membrane and membranes of internal organelle, such as the endoplasmic reticulum. PKC activation has been shown to occur in single identified Type B cells of the mollusk Hermissenda (McPhie et al. (1993) J. Neurochem. 60: 646-651), a variety of mammalian associative learning protocols, including rabbit nictitating membrane conditioning (Bank et al. (1988) Proc. Natl. Acad. Sci. 85: 1988-1992; Olds et al. (1989) Science 245: 866-869), rat spatial maze learning (Olds et al. (1990) J. Neurosci. 10: 3707-3713), and rat olfactory discrimination learning, upon Pavlovian conditioning. Furthermore, calexcitin (Nelson et al. (1990) Science 247: 1479-1483), a high-affinity substrate of the alpha isozyme of PKC increased in amount and phosphorylation (Kuzirian et al. (2001) J. Neurocytol. 30: 993-1008) within single identified Type B cells in a Pavlovian-conditioning-dependent manner.
  • There is increasing evidence that the individual PKC isozymes play different, sometimes opposing, roles in biological processes, providing two directions for pharmacological exploitation. One is the design of specific (preferably, isozyme specific) inhibitors of PKC. This approach is complicated by the fact that the catalytic domain is not the domain primarily responsible for the isotype specificity of PKC. The other approach is to develop isozyme-selective, regulatory site-directed PKC activators. These may provide a way to override the effect of other signal transduction pathways with opposite biological effects. Alternatively, by inducing down-regulation of PKC after acute activation, PKC activators may cause long term antagonism.
  • Following associative memory protocols, increased PKC association with the membrane fractions in specific brain regions can persist for many days (Olds et al. (1989) Science 245: 866-869). Consistent with these findings, administration of the potent PKC activator bryostatin, enhanced rats spatial maze learning (Sun et al. (2005) Eur. J. Pharmacol. 512: 45-51). Furthermore, clinical trials with the PKC activator, bryostatin, suggested (Marshall et al. (2002) Cancer Biology & Therapy 1: 409-416) that PKC activation effects might be enhanced by an intermittent schedule of drug delivery. One PKC activator, bryostatin, a macrolide lactone, activates PKC in sub-nanomolar concentrations (Talk et al. (1999) Neurobiol. Learn. Mem. 72: 95-117). Like phorbol esters and the endogenous activator DAG, bryostatin binds to the C1 domain within PKC and causes its translocation to membranes, which is then followed by downregulation.
  • The non-tumorigenic PKC activator, bryostatin, has undergone extensive testing in humans for the treatment of cancer in doses (25 μg/m2-120 μg/m2) known to cause initial PKC activation followed by prolonged downregulation (Prevostel et al. (2000) Journal of Cell Science 113: 2575-2584; Lu et al. (1998) Mol. Biol. Cell 18: 839-845; Leontieva et al. (2004) J. Biol. Chem. 279:5788-5801). Bryostatin activation of PKC has also recently been shown to activate the alpha-secretase that cleaves the amyloid precursor protein (APP) to generate the non-toxic fragments soluble precursor protein (sAPP) from human fibroblasts (Etcheberrigaray et al. (2004) Proc. Natl. Acad. Sci. 101: 11141-11146). Bryostatin also enhances learning and memory retention of the rat spatial maze task (Sun et al. (2005) Eur. J. Pharmacol. 512: 45-51), learning of the rabbit nictitating membrane paradigm (Schreurs and Alkon, unpublished), and in a preliminary report, Hermissenda conditioning (Scioletti et al. (2004) Biol. Bull. 207: 159). Accordingly, optimal activation of PKC is important for many molecular mechanisms that effect cognition in normal and diseased states.
  • Because the upregulation of PKC is difficult to achieve without downregulation, and vice versa, methods of upregulation of PKC while minimizing downregulation are needed to enhance the cognitive benefits observed associated with PKC activation. The methods and compositions of the present invention fulfill these needs and will greatly improve the clinical treatment for Alzheimer's disease and other neurodegenerative diseases, as well as, provide for improved cognitive enhancement prophylactically. The methods and compositions also provide treatment and/or enhancement of the cognitive state through the modulation of α-secretase.
  • SUMMARY OF THE INVENTION
  • This invention relates to a method of contacting a PKC activator with protein kinase C in a manner sufficient to stimulate the synthesis of proteins sufficient to consolidate long term memory.
  • In one embodiment, the PKC activator is a macrocyclic lactone. In one embodiment, the PKC activator is a benzolactam. In one embodiment, the PKC activator is a pyrrolidinone. In a preferred embodiment, the macrocyclic lactone is bryostatin. In a more preferred embodiment, the bryostatin is bryostatin-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, or -18. In the most preferred embodiment, the bryostatin is bryostatin-1.
  • In one embodiment, the macrocyclic lactone is neristatin. In a preferred embodiment, the neristatin is neristatin-1.
  • In one embodiment, the contact activates PKC. In one embodiment, the contact increases the amount of PKC. In one embodiment, the contact increases the synthesis of PKC. In one embodiment, the contact increases the amount of calexcitin. In one embodiment, the contact does not result in substantial subsequent deregulation of PKC.
  • In one embodiment, the contact is repeated. In another embodiment, the contact is repeated at regular intervals. In another embodiment, the interval is between one week to one month, one day and one week, or less than one hour and 24 hours. In another embodiment, the interval is between one week and one month. In another embodiment, the interval is between one day and one week. In another embodiment, the interval is between less than one hour and 24 hours.
  • In one embodiment, the contact is maintained for a fixed duration. In another embodiment, the fixed duration is less than 24 hours. In another embodiment, the fixed duration is less than 12 hours. In another embodiment, the fixed duration is less than 6 hours. In another embodiment, the fixed duration is less than 6 hours. In another embodiment, the fixed duration is less than 4 hours. In another embodiment, the fixed duration is less than 2 hours. In a preferred embodiment, the fixed duration is between about 1 and 12 hours. In a more preferred embodiment, the fixed duration is between about 2 and 6 hours. In the most preferred embodiment, the fixed duration is about 4 hours.
  • In one embodiment, the contact is repeated for a period greater than one day. In another embodiment, the contact is repeated for a period between one day and one month. In another embodiment, the contact is repeated for a period between one day and one week. In another embodiment, the contact is repeated for a period between one week and one month. In another embodiment, the contact is repeated for a period between one month and six months. In another embodiment, the contact is repeated for a period of one month. In another embodiment, the contact is repeated for a period greater than one month.
  • The invention relates to a method of contacting a PKC activator with protein kinase C in a manner sufficient to downregulate PKC.
  • In one embodiment, the PKC activator is a macrocyclic lactone. In one embodiment, the PKC activator is a benzolactam. In one embodiment, the PKC activator is a pyrrolidinone. In a preferred embodiment, the macrocyclic lactone is bryostatin. In a more preferred embodiment, the bryostatin is bryostatin-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, or -18. In the most preferred embodiment, the bryostatin is bryostatin-1.
  • In one embodiment, the macrocyclic lactone is neristatin. In a preferred embodiment, the neristatin is neristatin-1.
  • In one embodiment, the contact does not stimulate the synthesis of PKC. In another embodiment, the contact does not substantially stimulate the synthesis of PKC. In another embodiment, the contact decreases the amount of PKC. In another embodiment, the contact substantially decreases the amount of PKC. In another embodiment, the contact does not stimulate the synthesis of calexcitin.
  • In one embodiment, the contact is for a sustained period. In one embodiment, the sustained period if between less than one hour and 24 hours. In another embodiment, the sustained period is between one day and one week. In another embodiment, the sustained period is between one week and one month. In another embodiment, the sustained period is between less than one hour and 12 hours. In another embodiment, the sustained period is between less than one hour and 8 hours. In another embodiment, the sustained period is between less than one hour and 4 hours. In a preferred embodiment, the sustained period is about 4 hours.
  • In one embodiment, the contact produces sustained downregulation of PKC.
  • This invention relates to a method of contacting a PKC activator with protein kinase C in a manner sufficient to stimulate the synthesis of proteins sufficient to consolidate long term memory, further comprising the step of inhibiting degradation of PKC.
  • In one embodiment, the degradation is through ubiquitination. In another embodiment, the degradation is inhibited by lactacysteine. In another embodiment, the PKC is human.
  • This invention relates to a method of contacting a PKC activator with protein kinase C in a manner sufficient to stimulate the synthesis of proteins sufficient to consolidate long term memory, wherein the PKC activator is provided in the form of a pharmaceutical composition comprising the PKC activator and a pharmaceutically acceptable carrier.
  • In one embodiment, the pharmaceutical composition further comprises a PKC inhibitor. In another embodiment, the PKC inhibitor is a compound that inhibits PKC in peripheral tissues. As used herein, “peripheral tissues” means tissues other than brain. In another embodiment, the PKC inhibitor is a compound that preferentially inhibits PKC in peripheral tissues. In another embodiment, the PKC inhibit is a compound that reduces myalgia associated with the administration of a PKC activator to subjects in need thereof. In another embodiment, the PKC inhibitor is a compound that reduces myalgia produced in a subject treated with a PKC activator. In another embodiment, the PKC inhibitor is a compound that increases the tolerable dose of a PKC activator. Specifically, PKC inhibitors include, for example, but are not limited to vitamin E, vitamin E analogs, and salts thereof; calphostin C; thiazolidinediones; ruboxistaurin, and combinations thereof. As used herein, “vitamin E” means α-tocopherol (5, 7, 8-trimethyltocol); β-tocopherol (5, 8-dimethyltocol; δ-tocopherol (8-methyltocal); and γ-tocopherol (7,8-dimethyltocol), salts and analogs thereof.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The patent or application file contains at least one drawings executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
  • FIG. 1 depicts the effects of bryostatin on long term memory acquisition, and shows that animals trained sub-optimally, but treated with bryostatin, all demonstrate acquisitioned long-term memory. Animals were trained with sub-optimal regimes of 4- and 6-paired CS/US training events (TEs) with bryostatin (0.25 ng/ml) added during dark adaptation (10 min) prior to training and remaining for 4 hours, or without Bryo (NSW controls); 9-paired TEs and NSW served as the positive controls. Animals were tested with the CS alone at 4 h, then at 24-h intervals. Animals trained sub-optimally but treated with bryostatin all demonstrated long-term retention (n=8-16 animals/condition/experiment; ANOVA, p<0.01).
  • FIG. 2 depicts the effects of bryostatin on long-term memory acquisition, and shows that randomized presentations of light and rotation, either with or without bryostatin, produced no conditioned response. Long-term memory (LTM) retention effects of Bryostatin under control and antagonist experimental regimes. Without Bryostatin (NSW), random, and paired CS/US training events (TEs) did not generate LTM or elicit a CR when tested at 4 h. Bryostatin (0.25 ng/ml in NSW) applied before 6-TE conditioning (during 10 min dark adaptation) and for 4 hours thereafter produced a positive CR (foot contraction; negative change in length), thus indicating LTM was established. The antagonist, Ro-32 when applied pre-training (during dark adaptation), blocked the effects of 6 TE plus bryostatin, i.e. animals lengthened (positive length change) with normal photaxis (n=4-8 animals/condition/experiment; ANOVA differences, p<0.01).
  • FIG. 3 depicts the effects of bryostatin on long-term memory acquisition, and shows that animals exposed to bryostatin for four hours on two successive days, followed by two training events (TE) on a third subsequent day, demonstrated acquisition of at least six days of long-term memory. Two successive days of 4-h bryostatin exposure (0.25 ng/ml) of animals coupled with 2-paired CS/US training events produced at least 6 days of long-term retention demonstrated by the CR (body length contraction) when tested with the CS alone (n=16 animals/condition; ANOVA, p<0.01).
  • FIG. 4 depicts the effects of bryostatin on long term memory acquisition, and shows that animals exposed to bryostatin for four hours on three successive days, followed by two TE on a fourth subsequent day, demonstrated acquisition of at least ninety-six hours of long-term memory. Animals given three successive days of 4-h bryostatin exposure (0.25 ng/ml) followed one day later by 2-TEs, demonstrated long-term retention (LTR) measured over 96 h post-training. Non-exposed animals (same as in FIG. 3) did not demonstrate any behavioral modification (no CR to CS testing). Anisomycin (ANI) (1 μg/ml) administered immediately and remaining for four hours post-training to animals receive the three-day bryostatin treatments did not prevent long-term retention. Thus the requirement for protein synthesis necessary to generate LTR that is usually blocked by ANI when added post-training was obviated by the three-day bryostatin treatment (n=16 animals/condition; ANOVA, p<0.01).
  • FIG. 5 depicts the effects of bryostatin on long term memory acquisition, and shows that exposure to bryostatin for 8 to 20 hours followed by two TE was not sufficient to acquire memory equivalent to that achieved after a 4-hour exposure to bryostatin. Effects of 20 hr Bryostatin (0.25 ng/ml) exposure on training. With the sub-optimal 2-paired TE conditioning regime, retention was gone in 48 hours. Retention of 4-paired TE conditioning with 20 h pre-exposure to bryostatin persisted (n=8 animals/condition; ANOVA at 48-h, p<0.01).
  • FIG. 6 depicts the effects of bryostatin on long term memory acquisition, and shows that exposure to more than 1.0 ng/ml of bryostatin inhibits acquisition of long-term memory. Retention dose-response curves for 4- and 9-paired CS/US training events. Bryostatin concentrations <0.50 ng/ml augment acquisition and memory retention with sub-optimal (4 TE) training conditions. Those concentrations had no demonstrable effects on retention performance with 9-paired TEs. However, with all training conditions tested, concentration 1.0 ng/ml inhibited acquisition and behavioral retention (n=16 animals/condition), presumably via PKC down regulation.
  • FIG. 7 depicts the effects of bryostatin and anisomycin on long-term memory acquisition, and shows that a single 4-hour exposure to bryostatin together with 2 TE produced long-term memory lasting hours that was entirely eliminated when anisomycin was present during bryostatin exposure. Bryostatin and anisomycin effects on behavioral acquisition and retention. Animals received 2-paired training events (TEs) and then tested for retention after 4 h. Bryostatin (0.25 ng/ml) applied in NSW to animals during the 10-min pre-training dark adaptation period and 4 h thereafter demonstrated retention of the behavioral conditioning (foot contraction (CR) and shortening in body length). NSW control animals and those treated with bryostatin pre-training followed by anisomycin (1.0 μg/ml) immediately post-training showed no CR with the foot lengthening in normal positive phototaxis (n=12 animals/condition/experiment, two-way ANOVA statistics, p<0.01).
  • FIG. 8 depicts the effects of bryostatin and lactacysteine, and shows that lactacysteine transformed the short-term memory produced by the single bryostatin exposure (followed by 2 TE) to long-term memory lasting many days. Behavioral effects of bryostatin and lactacystin. Animals were incubated simultaneously for 4 h with bryostatin (0.25 ng/ml) and lactacystin (10 μM), and then 24 hrs later were conditioned with 2-paired CS/US training events (TEs). Animals were subsequently tested with CS alone at 4 h post-training and then at 24-h intervals. Retention of the conditioned behavior was persistent with the combined bryostatin/lactacystin treatment; behavioral retention was lost by bryostatin-only-treated animals after 24 h. Lactacystin-only treated animals showed no acquisition or retention of behavioral training (data not graphed). (n=28 animals, combined byrostatin/lactacystin; n=20, bryostatin alone, n=16, lactacystin alone).
  • FIG. 9 depicts the effects of PKC activation on calexcitin. FIGS. (A, B) depict representative tissue sections from Hermissenda eyes that were immunolabeled with the calexcitin polyclonal antibody, 25U2. Positive claexcitin immunostaining occurred in B-cell photoreceptors (*B-Cell) of animals that experienced paired CS/USC associative conditioning with or without prior administration of bryostatin (B). Random presentations of the two stimuli (training events, TEs) did not produce behavioral modifications nor a rise in calexcitin above normal background levels (A); basement membrane and lens staining are artifact associated with using vertebrate polyclonal antibodies. Differences in staining intensities were measure using Image-J software and recorded as gray-scale intensities (0-256; B-cell cytoplasm minus tissue background).
  • FIG. (C) displays intensity measures for Hermissenda conditioned with 9-random TEs (left bar) and animals treated with two exposures on successive days to the PKC antagonist, bryostatin (0.25 ng/ml), and then associatively conditioned with 2-paired TEs. Activation of PKC from two exposures of bryostatin coupled with 2 TEs significantly increased calexcitin to levels associated with 9-paired TEs and consolidated (long-term) memory (n=4-8 animals/condition/replicate; t-test comparison, p<0.01).
  • Calexcitin immunostaining is sufficiently sensitive to resolve boutons within synaptic of photic-vestibular neurites (D). Arrows indicate arborization field between an interneuron (a), axon from a contralateral neuron (b), and terminal boutons of neurites from a putative photoreceptor (c). Scale bars=10 μm; CPG, cerebropleural ganglion.
  • FIG. 10 a depicts the effect of bryostatin and training events on calexcitin immunostaining. The figure shows calexcitin increased within Type B cells with the number of training events. Immuno-intensity measurements (as grey-scale intensity; 0-256) of calexicitin (CE) antibody labeling as a function of bryostatin and training regime. Randon traiming (4-TEs) without bryostatin yielded slightly higher intensity measures than background. Bryostatin administration increased the calexcitin levels fro both training paradigms. With random training, when there was occasional overlap (pairing) of the CS and US, as was the case here, it is not unexpected that some rise in CE might occur (increase of 2.0). However, calexcitin levels increased greater than 4.3×with paired training (mean±SE, N=5 animals/treatment. 4 RTE=random control, 4 trials with random light and rotation; 6 PTE=paired trials, 6 trials with paired light and rotation. (6 PTE-0 Bry vs. 6 PTE-0.25 Bry; p<0.001; 4 RTE-0.25 Bry vs. 6 PTE-0.25 Bry; p<0.001 (t-test).
  • FIG. 10 b depicts the effect of bryostatin alone calexcitin, as shown by immunostaining. Bryostatin alone (without associative conditioning) administered for 4-hr over each of 1, 2, and 3 days progressively increased the levels of calexcitin in the B-photoreceptors of Hermissenda when measured 24 hours after each of the periods of bryostatin exposures. The calexcitin level after 3 bryostatin exposures followed by just 2-paired training events (paired light and orbital shaking) raised that level even higher with a significant concomitant length in the number of retention days for the associative conditioning-induced behavioral modification (n=16 animals/condition: ANOVA, p<0.01).
  • FIG. 11 a depicts the effect of 4-hour bryostatin exposure, on two consecutive days, followed 24 hours later by two training events, on the intensity of calexcitin. The figure shows that exposure to 4 hours of bryostatin on two consecutive days followed 24 hours later by 2 TEs are required to raise calexcitin levels to the amount associated with consolidated long-term memory. Exposure to 4-hr of bryostatin on two consecutive days followed 24 hours later by 2-training events (2 TE) are required to raise calexcitin levels to the amount associated with consolidated long-term memory, Typically, 2-TEs with two bryostatin exposures produces retention lasting more than one week (n=16 animals/condition; t-test, p<0.01).
  • FIG. 11 b depicts the effect of adding anisomycin after bryostatin exposure on calexcitin. The figure shows that anisomycin following 2 TE plus 3 days of 4 hour bryostatin exposures did not reduce the calexcitin immunostaining. Priming with 4-hr exposures to bryostatin over 3 consecutive days will induce calexcitin levels required for consolidated memory. Anisomycin added immediately after the 2-paired training events did not reduce this calexcitin level and consolidated memory persists for many days (N=8 animals/condition; t-test, p>0.05, ns).
  • FIG. 12 depicts the effects of repeated 4-hour bryostatin exposure on PKC activity, as measured by histone phosphorylation in the cytosolic fraction. The figure shows bryostatin exposure on two successive produces PKC activity significantly above control or baseline levels. PKC activity in Hermissenda nervous systems (cytosol) after bryostatin. Intact Hermissenda were exposed for 4 hour intervals to bryostatin (0.28 nM) on successive days under conditions described (“Behavioral Pharmacology”). Histone phosphorylation (See “Methods”) in isolated circumesophageal nervous systems was then measured in the cytosol fraction. PKC activity measured both 10 minutes and 24 hours after the second of two bryostatin exposures was significantly increased over baseline levels (N=6, for each measurement).
  • FIG. 13 depicts the effects of repeated 4-hour bryostatin exposure on PKC activity, as measured by histone phosphorylation in the membrane fraction. The figure shows bryostatin exposure on two successive produces PKC activity significantly above control or baseline levels. PKC activity in Hermissenda nervous systems (membrane) after bryostatin. As in FIG. 12, histone phosphorylation was measured in the membrane fraction. PKC activity measured 24 hours after the second of two bryostatin exposures was significantly increased over baseline (N=6) for each measurement.
  • FIG. 14 depicts the effects of anisomycin on PKC activity. The figure shows that the presence of anisomycin during each of three successive days of bryostatin exposure reduced PKC activity in both cytosolic and membrane fractions. Anisomycin reduces PKC activity in Hermissenda. As in FIG. 12, 13 but with anisomycin (1.0 ng/ml) added together with each bryostatin (0.25 ng/ml) exposure. Note that the anisomycin markedly reduced the PKC activity in both the cytosolic and membrane fractions from the Hermissenda circumesophagel nervous systems after exposure to bryostatin on three successive days (N=3, for each measurement, p<0.01).
  • FIG. 15 depicts the effects of bryostatin on membrane-bound PKC in hippocampal neurons. The figure shows that exposure of cultured hippocampal neurons to a single activating dose of bryostatin (0.28 nM) for 30 minutes produced a brief translocation of PKC from the cytosol to the particulate fraction (approx 60%) followed by a prolonged downregulation. A second exposure of up to four hours after the first exposure significantly attenuates the down regulation found four hours after a single bryostatin exposure. Effect of bryostatin on membrane-bound PKC activity in hippocampal cultured IGF/IR cells after 1) a single 30 min exposure; or 2) two 30 min exposures separated by intervals of 30 min to 8 hr. A second exposure up to 4 hr after the first exposure significantly attenuates the downregulation found 4 hr after a single bryostatin exposure (N=6 for each measurement, *p<0.05, **p<0.01).
  • FIG. 16 depicts the effects of repeated bryostatin exposure on PKC activity. The figure shows that a second exposure after a 2- to 4-hour delay eliminated the significant downregulation that a single 30-minute bryostatin exposure produced, and that if the second exposure was delayed until 4 hours after the first, activity was increased above baseline, to a degree that was significantly greater compared with a second exposure delivered after 2 hours or less. Effect of bryostatin on cytosolic PKC activity in hippocampal cultured IGF/IR cells after 1) a single 30 min exposure, or 2) two 30 min exposures separated by intervals of 30 min to 8 hr. PKC activity was not altered in the cytosol the first 4 hours after bryostatin exposure. By contrast, a second exposure to bryostatin within 2 hr of the first induced a significant reduction of PKC activity. However, if the second exposure was delayed until 4 hours after the first, activity was increased above baseline, and was significantly greater than activity measure in response to a second exposure delivered after 1 or 2 hours (N=6 for each measurement, *p<0.05, **p<0.01).
  • FIG. 17 depicts the effects of bryostatin on protein synthesis. Rat IGF-IR cells were incubated for 30 minutes with 0.28 nM bryostatin for incubation times ranging from 1 to 79 hours. [35S]Methionine (9.1 μCi) was then added to the medium followed by analysis of radiolabel. A single 30-minute exposure to 0.28 nM bryostatin increased overall protein synthesis, as measured by the incorporation of [35S]Methionine in the last half hour before collecting the neurons, by 20% within 24 hours, increasing to 60% by 79 hours after bryostatin exposure, but increasing significantly less in the presence of the PKC inhibitor Ro-32-0432.
  • DETAILED DESCRIPTION OF THE INVENTION
  • 1. Definitions
  • As used herein, “upregulating” or “upregulation” means increasing the amount or activity of an agent, such as PKC protein or transcript, relative to a baseline state, through any mechanism including, but not limited to increased transcription, translation and/or increased stability of the transcript or protein product.
  • As used herein, “down regulating” or “ down regulation” means decreasing the amount or activity of an agent, such as PKC protein or transcript, relative to a baseline state, through any mechanism including, but not limited to decreased transcription, translation and/or decreased stability of the transcript or protein product.
  • As used herein, the term “pharmaceutically acceptable carrier” means a chemical composition, compound, or solvent with which an active ingredient may be combined and which, following the combination, can be used to administer the active ingredient to a subject. As used herein, “pharmaceutically acceptable carrier” includes, but is not limited to, one or more of the following: excipients; surface active agents; dispersing agents; inert diluents; granulating and disintegrating agents; binding agents; lubricating agents; preservatives; physiologically degradable compositions such as gelatin; aqueous vehicles and solvents; oily vehicles and solvents; suspending agents; dispersing or wetting agents; emulsifying agents, demulcents; buffers; salts; thickening agents; fillers; antioxidants; stabilizing agents; and pharmaceutically acceptable polymeric or hydrophobic materials and other ingredients known in the art and described, for example in Genaro, ed. (1985) Remington's Pharmaceutical Sciences Mack Publishing Co., Easton, Pa., which is incorporated herein by reference.
  • The formulations of the pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient into association with a carrier or one or more other accessory ingredients, and then, if necessary or desirable, shaping or packaging the product into a desired single- or multi-dose unit.
  • Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for ethical administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals of all sorts. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the pharmaceutical compositions of the invention is contemplated include, but are not limited to, humans and other primates, and other mammals.
  • 2. Alzheimer's Disease
  • Alzheimer's disease is associated with extensive loss of specific neuronal subpopulations in the brain with memory loss being the most universal symptom. (Katzman (1986) New England Journal of Medicine 314: 964). Alzheimer's disease is well characterized with regard to neuropathological changes. However, abnormalities have been reported in peripheral tissue supporting the possibility that Alzheimer's disease is a systematic disorder with pathology of the central nervous system being the most prominent. (Connolly (1998) Review, TiPS Col. 19: 171-77). For a discussion of Alzheimer's disease links to a genetic origin and chromosomes 1, 14, and 21 see St. George-Hyslop et al. (1987) Science 235: 885; Tanzi et al. Review, Neurobiology of Disease 3:159-168; Hardy (1996) Acta Neuro! Scand: Supplement 165: 13-17.
  • Individuals with Alzheimer's disease are characterized by progressive memory impairments, loss of language and visuospatial skills and behavior deficits (McKhann et al. (1986) Neurology 34: 939-944). The cognitive impairment of individuals with Alzheimer's disease is the result of degeneration of neuronal cells located in the cerebral cortex, hippocampus, basal forebrain and other brain regions. Histologic analyzes of Alzheimer's disease brains obtained at autopsy demonstrated the presence of neurofibrillary tangles (NFT) in perikarya and axons of degenerating neurons, extracellular neuritic (senile) plaques, and amyloid plaques inside and around some blood vessels of affected brain regions. Neurofibrillary tangles are abnormal filamentous structures containing fibers (about 10 nm in diameter) that are paired in a helical fashion, therefore also called paired helical filaments. Neuritic plaques are located at degenerating nerve terminals (both axonal and dendritic), and contain a core compound of amyloid protein fibers. In summary, Alzheimer's disease is characterized by certain neuropathological features including intracellular neurofibrillary tangles, primarily composed of cytoskeletal proteins, and extracellular parenchymal and cerebrosvascular amyloid. Further, there are now methods in the art of distinguishing between Alzheimer's patents, normal aged people, and people suffering from other neurodegenerative diseases, such as Parkinson's, Huntington's chorea, Wernicke-Korsakoff or schizophrenia further described for instance in U.S. Pat. No. 5,580,748 and U.S. Pat. No. 6,080,582.
  • While cellular changes leading to neuronal loss and the underlying etiology of the disease remain under investigation the importance of APP metabolism is well established. The two proteins most consistently identified in the brains of patients with Alzheimer's disease to play a role in the physiology or pathophysiology of brain are β-amyloid and tau. (See Selkoe (2001) Physiological Reviews. 81:2). A discussion of the defects in β-amyloid protein metabolism and abnormal calcium homeostasis and/or calcium activated kinases. (Etcheberrigaray et al. Alzheimer's Reports Vol. Nos. 3, 5 & 6 pp 305-312; Webb et al. (2000) British Journal of Pharmacology 130: 1433-52).
  • Alzheimer's disease (AD) is a brain disorder characterized by altered protein catabolism. Altered protein phosphorylation has been implicated in the formation of the intracellular neurofibrillary tangles found in Alzheimer's disease. The processing of the amyloid precursor protein (APP) determines the production of fragments that later aggregate forming the amyloid deposits characteristic of Alzheimer's disease (AD), known as senile or AD plaques. A central feature of the pathology of Alzheimer's disease is the deposition of amyloid protein within plaques. Thus, APP processing is an early and key pathophysiological event in AD.
  • Three alternative APP processing pathways have been identified. The previously termed “normal” processing involves the participation of an enzyme that cleaves APP within the Aβ sequence at residue Lys16 (or between Lys16 and Leu17; APP770 nomenclature), resulting in non-amyloidogenic fragments: a large N-terminus ectodomain and a small 9 kDa membrane bound fragment. This enzyme, yet to be fully identified, is known as α-secretase. Two additional secretases participate in APP processing. One alternative pathway involves the cleavage of APP outside the Aβ domain, between Met671 and Asp672 (by β-secretase) and the participation of the endosomal-lysomal system. An additional cleavage site occurs at the carboxyl-terminal end of the Aβ portion, within the plasma membrane after amino acid 39 of the Aβ peptide. The secretase (γ) action produces an extracellular amino acid terminal that contains the entire Aβ sequence and a cell-associated fragment of ˜6 kDa. Thus, processing by β and γ secretases generate potential amyloidogenic fragments since they contain the complete Aβ sequence. Several lines of evidence have shown that all alternative pathways occur in a given system and that soluble Aβ may be a “normal product.” However, there is also evidence that the amount of circulating Aβ in CSF and plasma is elevated in patients carrying the “Swedish” mutation. Moreover, cultured cells transfected with this mutation or the APP717 mutation, secrete larger amounts of Aβ. More recently, carriers of other APP mutations and PS1 and PS2 mutations have been shown to secrete elevated amounts of a particular form, long (42-43 amino acids) Aβ.
  • Therefore, although all alternative pathways may occur normally, an imbalance favoring amyloidogenic processing occurs in familial and perhaps sporadic AD. These enhanced amyloidogenic pathways ultimately lead to fibril and plaque formation in the brains of AD patients. Thus, intervention to favor the non-amyloidogenic, α-secretase pathway effectively shifts the balance of APP processing towards a presumably non-pathogenic process that increases the relative amount of sAPP compared with the potentially toxic Aβ peptides.
  • The PKC isoenzymes provides a critical, specific and rate limiting molecular target through which a unique correlation of biochemical, biophysical, and behavioral efficacy can be demonstrated and applied to subjects to improve cognitive ability.
  • Further with regard to normal and abnormal memory both K+ and Ca2+ channels have been demonstrated to play key roles in memory storage and recall. For instance, potassium channels have been found to change during memory storage. (Etcheberrigaray et al. (1992) Proc. Natl. Acad. Sci. 89: 7184; Sanchez-Andres et al. (1991) Journal of Neurobiology 65: 796; Collin et al. (1988) Biophysics Journal 55: 955; Alkon et al. (1985) Behavioral and Neural Biology 44: 278; Alkon (1984) Science 226: 1037). This observation, coupled with the almost universal symptom of memory loss in Alzheimer's patents, led to the investigation of potassium channel function as a possible site of Alzheimer's disease pathology and the effect of PKC modulation on cognition.
  • 3. Protein Kinase C and Alzheimer's Disease
  • PKC was identified as one of the largest gene families of non-receptor serine-threonine protein kinases. Since the discovery of PKC in the early eighties by Nishizuka and coworkers (Kikkawa et al. (1982) J. Biol. Chem. 257: 13341), and its identification as a major receptor of phorbol esters (Ashendel et al. (1983) Cancer Res., 43: 4333), a multitude of physiological signaling mechanisms have been ascribed to this enzyme. The intense interest in PKC stems from its unique ability to be activated in vitro by calcium and diacylglycerol (and its phorbol ester mimetics), an effector whose formation is coupled to phospholipid turnover by the action of growth and differentiation factors.
  • The PKC gene family consists presently of 11 genes which are divided into four subgrounds: 1) classical PKCα, β1, β2 1 and β2 are alternatively spliced forms of the same gene) and γ, 2) novel PKCδ, ε, η and θ, 3) atypical PKCζ, λ, η and ι and 4) PKCμ. PKCμ resembles the novel PKC isoforms but differs by having a putative transmembrane domain (reviewed by Blohe et al. (1994) Cancer Metast. Rev. 13: 411; Ilug et al. (1993) Biochem J. 291: 329; Kikkawa et al. (1989) Ann. Rev. Biochem. 58: 31). The α, β1, β2, and γ isoforms are Ca2, phospholipid and diacylglycerol-dependent and represent the classical isoforms of PKC, whereas the other isoforms are activated by phospholipid and diacylglycerol but are not dependent on CA2+. All isoforms encompass 5 variable (V1-V5) regions, and the α, β, γ isoforms contain four (C1-C4) structural domains which are highly conserved. All isoforms except PKCα, β and γ lack the C2 domain, and the λ, η and isoforms also lack nine of two cysteine-rich zinc finger domains in C1 to which diacylglycerol binds. The C1 domain also contains the pseudo substrate sequence which is highly conserved among all isoforms, and which serves an auto regulatory function by blocking the substrate-binding site to produce an inactive conformation of the enzyme (House et al., (1987) Science 238: 1726).
  • Because of these structural features, diverse PKC isoforms are thought to have highly specialized roles in signal transduction in response to physiological stimuli (Nishizuka (1989) Cancer 10: 1892), as well as in neoplastic transformation and differentiation (Glazer (1994) Protein Kinase C. J. F. Kuo, ed., Oxford U. Press (1994) at pages 171-198). For a discussion of known PKC modulators see PCT/US97/08141, U.S. Pat. Nos. 5,652,232; 6,043,270; 6,080,784; 5,891,906; 5,962,498; 5,955,501; 5,891,870 and 5,962,504.
  • In view of the central role that PKC plays in signal transduction, PKC has proven to be an exciting target for the modulation of APP processing. It is well established that PKC plays a role in APP processing. Phorbol esters for instance have been shown to significantly increase the relative amount of non-amyloidogenic soluble APP (sAPP) secreted through PKC activation. Activation of PKC by phorbol ester does not appear to result in a direct phosphorylation of the APP molecule, however. Irrespective of the precise site of action, phorbol-induced PKC activation results in an enhanced or favored α-secretase, non-amyloidogenic pathway. Therefore PKC activation is an attractive approach for influencing the production of non-deleterious sAPP and even producing beneficial sAPP and at the same time reduce the relative amount of Aβ peptides. Phorbol esters, however, are not suitable compounds for eventual drug development because of their tumor promotion activity. (Ibarreta et al. (1999) NeuroReport Vol. 10, No. 5&6, pp 1034-40).
  • The present inventors have also observed that activation of protein kinase C favors the α-secretase processing of the Alzheimer's disease (AD) amyloid precursor protein (APP), resulting in the generation of non-amyloidogenic soluble APP (sAPP). Consequently, the relative secretion of amyloidogenic A1-40 and A1-42(3) is reduced. This is particularly relevant since fibroblasts and other cells expressing APP and presenilin AD mutations secrete increased amounts of total Aβ and/or increased ratios of A1-42(3)/A1-40. Interesting, PKC defects have been found in AD brain (α and β isoforms) and in fibroblasts (α-isoform) from AD patients.
  • Studies have shown that other PKC activators (i.e. benzolactam) with improved selectivity for the α, β and γ isoforms enhance sAPP secretion over basal levels. The sAPP secretion in benzolactam-treated AD cells was also slightly higher compared to control benzolactam-treated fibroblasts, which only showed significant increases of sAPP secretion after treatment with 10 μM BL. It was further reported that staurosporine (a PKC inhibitor) eliminated the effects of benzolactam in both control and AD fibroblasts while related compounds also cause a ˜3-fold sAPP secretion in PC12 cells. The present inventors have found that the use of bryostatin as a PKC activators to favor non-amyloidogenic APP processing is of particular therapeutic value since it is non-tumor promoting and already in stage II clinical trials.
  • Alterations in PKC, as well alterations in calcium regulation and potassium (K+) channels are included among alterations in fibroblasts in Alzheimer's disease (AD) patients. PKC activation has been shown to restore normal K+ channel function, as measured by TEA-induced [Ca2+] elevations. Further patch-clamp data substantiates the effect of PKC activators on restoration of 113 psK+ channel activity. Thus PKC activator-based restoration of K+ channels has been established as an approach to the investigation of AD pathophysiology, and provides a useful model for AD therapeutics. (See, pending U.S. application Ser. No. 09/652,656, which is incorporated herein by reference in its entirety.)
  • Of particular interest are macrocyclic lactones (i.e. bryostatin class and neristatin class) that act to stimulate PKC. Of the bryostatin class compounds, bryostatin-1 has been shown to activate PKC and proven to be devoid of tumor promotion activity. Bryostatin-1, as a PKC activator, is also particularly useful since the dose response curve of bryostatin-1 is biphasic. Additionally, bryostatin-1 demonstrates differential regulation of PKC isozymes, including PKCα, PKCδ, and PKCε. Bryostatin-1 has undergone toxicity and safety studies in animals and humans and is actively being investigated as an anti-cancer agent. Bryostatin-1's use in the studies has determined that the main adverse reaction in humans is myalgia, limiting the maximum dose to 40 mg/m2. The present invention has utilized concentrations of 0.1 nM of bryostatin-1 to cause a dramatic increase of sAPP secretion. Bryostatin-1 has been compared to a vehicle alone and to another PKC activator, benzolactam (BL), used at a concentration 10,000 times higher. Bryostatin is currently in clinical trials as an anti-cancer agent. The bryostatins are known to bind to the regulatory domain of PKC and to activate the enzyme. Bryostatin is an example of isozyme-selective activators of PKC. Compounds in addition to bryostatins have been found to modulate PKC. (See, for example, WO 97/43268; incorporated herein by reference in its entirety).
  • Macrocyclic lactones, and particularly bryostatin-1 is described in U.S. Pat. No. 4,560,774 (incorporated herein by reference in its entirety). Macrocyclic lactones and their derivatives are described elsewhere in the art for instance in U.S. Pat. No. 6,187,568, U.S. Pat. No. 6,043,270, U.S. Pat. No. 5,393,897, U.S. Pat. No. 5,072,004, U.S. Pat. No. 5,196,447, U.S. Pat. No. 4,833,257, and U.S. Pat. No. 4,611,066 (each of which are incorporated herein by reference in their entireties). The above patents describe various compounds and various uses for macrocyclic lactones including their use as an anti-inflammatory or anti-tumor agent. Other discussions regarding bryostatin class compounds can be found in: Szallasi et al. (1994) Differential Regulation of Protein Kinase C Isozymes by Bryostatin 1 and Phorbol 12-Myristate 13-Acetate in NIH 3T3 Fibroblasts, Journal of Biological Chemistry 269(3): 2118-24; Zhang et al. (1996) Preclinical Pharmacology of the Natural Product Anticancer Agent Bryostatin 1, an Activator of Protein Kinase C, Cancer Research 56: 802-808; Hennings et al. (1987) Bryostatin 1, an activator of protein kinase C, inhibits tumor promotion by phorbol esters in SENCAR mouse skin, Carcinogenesis 8(9): 1343-46; Varterasian et al. (2000) Phase II Trial of Bryostatin 1 in Patients with Relapse Low-Grade Non-Hodgkin's Lymphoma and Chronic Lymphocytic Leukemia, Clinical Cancer Research 6: 825-28; and Mutter et al. (2000) Review Article: Chemistry and Clinical Biology of the Bryostatins, Bioorganic & Medicinal Chemistry 8: 1841-1860 (each of which is incorporated herein by reference in its entirety).
  • Myalgia is the primary side effect that limits the tolerable dose of a PKC activator. For example, in phase II clinical trials using bryostatin-1, myalgia was reported in 10 to 87% of all treated patients. (Clamp et al. (2002) Anti-Cancer Drugs 13: 673-683). Doses of 20 μg/m2 once per week for 3 weeks were well tolerated and were not associated with myalgia or other side effects. (Weitman et al. (1999) Clinical Cancer Research 5: 2344-2348). In another clinical study, 25 μg/m2 of bryostatin-1 administered once per week for 8 weeks was the maximum tolerated dose. (Jayson et al. (1995) British J. of Cancer 72(2): 461-468). Another study reported that 50 μg/m2 (a 1 hour i.v. infusion administered once every 2 weeks for a period of 6 weeks) was the maximum-tolerated dose. (Prendville et al. (1993) British J. of Cancer 68(2): 418-424). The reported myalgia was cumulative with repeated treatments of bryostatin-1 and developed several days after initial infusion. Id. The deleterious effect of myalgia on a patient's quality of life was a contributory reason for the discontinuation of bryostatin-1 treatment. Id. The etiology of bryostatin-induced myalgia is uncertain. Id.
  • The National Cancer Institute has established common toxicity criteria for grading myalgia. Specifically, the criteria are divided into five categories or grades. Grade 0 is no myalgia. Grade 1 myalgia is characterized by mild, brief pain that does not require analgesic drugs. In Grade 1 myalgia, the patient is fully ambulatory. Grade 2 myalgia is characterized by moderate pain, wherein the pain or required analgesics interfere with some functions, but do not interfere with the activities of daily living. Grade 3 myalgia is associated with severe pain, wherein the pain or necessary analgesics severely interfere with the activities of daily living. Grade 4 myalgia is disabling.
  • The compositions of the present invention increase the tolerable dose of the PKC activator administered to a patient and/or ameliorate the side effects associated with PKC activation by attenuating the activation of PKC in peripheral tissues. Specifically, PKC inhibitors inhibit PKC in peripheral tissues or preferentially inhibit PKC in peripheral tissues. Vitamin E, for example, has been shown to normalize diacylglycerol-protein kinase C activation in the aorta of diabetic rats and cultured rat smooth muscle cells exposed to elevated glucose levels. (Kunisaki et al. (1994) Diabetes 43(11): 1372-1377). In a double-blind trial of vitamin E (2000 IU/day) treatment in patients suffering from moderately advanced Alzheimer's Disease, it was found that vitamin E treatment reduced mortality and morbidity, but did not enhance cognitive abilities. (Burke et al. (1999) Post Graduate Medicine 106(5): 85-96).
  • Macrocyclic lactones, including the bryostatin class were originally derived from Bigula neritina L. While multiple uses for macrocyclic lactones, particularly the bryostatin class are known, the relationship between macrocyclic lactones and cognition enhancement was previously unknown.
  • The examples of the compounds that may be used in the present invention include macrocyclic lactones (i.e. bryostatin class and neristatin class compounds). While specific embodiments of these compounds are described in the examples and detailed description, it should be understood that the compounds disclosed in the references and derivatives thereof could also be used for the present compositions and methods.
  • As will also be appreciated by one of ordinary skill in the art, macrocyclic lactone compounds and their derivatives, particularly the bryostatin class, are amenable to combinatorial synthetic techniques and thus libraries of the compounds can be generated to optimize pharmacological parameters, including, but not limited to efficacy and safety of the compositions. Additionally, these libraries can be assayed to determine those members that preferably modulate α-secretase and/or PKC.
  • Synthetic analogs of bryostatin are also contemplated by the present invention. Specifically, these analogues retain the orientation of the C1-, C19-, C26-oxygen recognition domain as determined by NMR spectroscopic comparison with bryostatin and various degrees of PKC-binding affinity. The bryostatin analogues disclosed and described in U.S. Pat. No. 6,624,189 (incorporated herein by reference in its entirety) may also be used in the methods of the present invention. Specifically, the bryostatin analogues described by the genus of Formula I of U.S. Pat. No. 6,624,189 (column 3, lines 35-66) and the species of formulas II-VII and 1998a and 1998b (column 8, lines 28-60) of U.S. Pat. No. 6,624,189 are PKC activators suitable for use in the methods of the present invention.
  • There still exists a need for the development of methods for the treatment for improved overall cognition, either through a specific characteristic of cognitive ability or general cognition. There also still exists a need for the development of methods for the improvement of cognitive enhancement whether or not it is related to specific disease state or cognitive disorder. The methods and compositions of the present invention fulfill these needs and will greatly improve the clinical treatment for Alzheimer's disease and other neurodegenerative diseases, as well as, provide for improved cognitive enhancement. The methods and compositions also provide treatment and/or enhancement of the cognitive state through the modulation of α-secretase.
  • EXAMPLES Example 1 Behavioral Pharmacology
  • Bryostatin exposure—Specimens of Hermissenda Crassicornis were maintained in artificial sea water (ASW) at 15° for three days in perforated 50-ml conical centrifuge tubes before starting experiments. Bryostatin, purified from the marine bryozoan Bugula neritina, was dissolved in EtOH and diluted to its final concentration in ASW. Animals were incubated with bryostatin in ASW for 4 hr, then rinsed with normal ASW. For selected experiments lactacysteine (10 μM) or anisomycin was added to the ASW.
  • Bryostatin effects on Hermissenda behavior and biochemistry were produced by adding the drug to the bathing medium within an 8 cm long, 1 cm diameter test tube housing each individual animal.
  • Example 2 Immunostaining Methods
  • Following experimental treatments and testing, animals were rapidly decapitated, the central nervous systems (CNS) removed and then fixed in 4% para-formaldehyde in 20 mM Tris-buffered (pH 8) natural seawater (NSW; 0.2 μm micropore-filtered). The CNSs were then embedded in polyester wax (20), sectioned (6 μm) and immunostained using a biotinylated secondary antibody coupled to avidin-bound microperoxidase (ABC method, Vector), Aminoethylcarbazole (AEC) was used as the chromogen. The primary polyclonal antibody (designated 25U2) was raised in rabbits from the full length calexcitin protein extracted from squid optic lobes. Gray-scale intensity measures were done from digital photomicrographs on circumscribed cytoplasmic areas of the B-photoreceptors minus the same background area (non-staining neuropile).
  • Example 3 Protein Kinase C Assay
  • Cells were homogenized by sonication (5 sec, 25 W) in 100 μl of 10 mM Tris-HCl pH 7.4 buffer containing 1 mM EGTA, 1 mM PMSF, and 50 mM NaF. Homogenate was transferred to a polyallomer centrifuge tube and was centrifuged at 100,000×g for 10 min at 4°. The supernatant was removed and immediately frozen on dry ice. The particulate fraction was resuspended by sonication in 100 μl of the same buffer and stored at −80°. To measure PKC, 10 μl of cytosol or particulate fraction was incubated for 15 min at 37° in the presence of 10 μM histones, 4.89 mM CaCI2, 1.2 μg/μl phosphatidyl-L-serine, 0.18 μg/μl 1.2-dioctanoyl-sn-glycerol, 10 mM MgCI2, 20 mM HEPES (pH 7.4), 0-8 mM EDTA, 4 mM EGTA, 4% glycerol, 8 μg/ml aprotinin, 8 μg/ml leupeptin, and 2 mM benzamidine. 0.5 μCi [γ32P]ATP was added and 32P-phosphoprotein formation was measured by adsorption onto phosphocellulose as described previously (25). This assay was used with slight adjustments for either Hermissenda nervous system homogenates or cultured mammalian neuron homogenates
  • Example 4 Cell Culture
  • Rat hippocampal H19-7/IGF-IR cells (ATCC) were plated onto poly-L-lysine coated plates and grown at 35° in DMEM/10% FCS for several days until approx. 50% coverage was obtained. The cells were then induced to differentiate into a neuronal phenotype by replacing the medium with 5 ml N2 medium containing 10 ng/ml basic fibroblast growth factor and grown in T-25 flasks at 39° C. (26). Various concentrations of bryostatin (0.01-1.0 nM) were then added in 10 μl aqueous solution. After a specified interval, the medium was removed and the cells were washed with PBS, removed by gentle scraping, and collected by centrifugation at 1000 rpm for 5 min.
  • Example 5 Behavioral Conditioning
  • Pavlovian conditioning of Hermissenda involves repeated pairings of a neutral stimulus, light, with an unconditioned stimulus, orbital shaking. (See, Lederhendler et al. (24) and Epstein et al. (6)). A rotation/shaking stimulus excites the statocyst hair cells and thereby elicits an unconditioned response: a brisk contraction of the muscular undersurface called a foot, accompanied by adherence or “clinging” to the surface that supports the foot. Before conditioning, light elicits a weakly positive phototaxis accompanied by lengthening of the foot. After sufficient light-rotation pairings, light no longer elicits phototaxis, but instead elicits a new response (24): the “clinging” and foot shortening previously elicited only by the unconditional stimulus (FIG. 1). Thus, the meaning of the unconditioned stimulus, rotation or orbital shaking, has been transferred to the conditioned stimulus and is manifested by a light-elicited foot contraction—a negative change of foot length. This conditioned response to light can last for weeks, is not produced by randomized light and rotation, is stimulus-specific, and shares the other defining characteristics of mammalian Pavlovian Conditioning.
  • Example 6 Bryostatin-Induced Prolongation of Associative Memory
  • Pavlovian conditioning of Hermissenda has well-defined training parameters that produce progressively longer-lasting retention of the learned conditioned response. Two training events (2 TE) of paired light and orbital shaking (see “Methods”), for example, induce a learned conditioned response (light-elicited foot contraction or shortening) that persists without drug treatment for approximately 7 minutes. Four to six training events (4-6 TE) induce a conditioned response that persists up to several hours, but disappears approximately by 1 day after training. Nine TE produces long-term associative memory lasting many days and often up to two weeks.
  • Animals were trained with sub-optimal regimes of 4- and 6-paired CS/US training events (TEs) with bryostatin (0.25 ng/ml) added during dark adaptation (10 min) prior to training and remaining for 4 hours, or without Bryo (NSW controls); 9-paired TEs and NSW served as the positive controls. All animals were tested with the CS alone at 4 h, then at 24-h intervals. Animals trained sub-optimally but treated with bryostatin all demonstrated long-term retention (n=8-16 animals/condition/experiment; ANOVA, p<0.01).
  • Two TE plus bryostatin produced memory retention lasting hours (vs. minutes without bryostatin), 4 TEs plus bryostatin extended retention beyond 24 hours (FIG. 1), and 6 TE plus bryostatin produced retention lasting 1 week or longer.
  • Without Bryostatin (NSW), random, and paired CS/US training events (TEs) did not generate LTM or elicit a CR when tested at 4 h. Bryostatin (0.25 ng/ml in NSW) applied before 6-TE conditioning (during 10 min dark adaptation) and for 4 hours thereafter produced a positive CR (foot contraction; negative change in length), thus indicating LTM was established. The antagonist, Ro-32 when applied pre-training (during dark adaptation), blocked the effects of 6 TE plus bryostatin, i.e. animals lengthened (positive length change) with normal phototaxis (n=4-8 animals/condition/experiment; ANOVA differences, p<0.01). Randomized presentations of light and rotation, with or without bryostatin, produced no conditioned response (FIG. 2), i.e., light-elicited foot-contraction. Thus, bryostatin during and immediately following training prolonged memory retention with sub-optimal training trials.
  • Example 7 Pre-Exposure to Bryostatin on Days Before Training Enhances Memory Acquisition
  • Previous measurements (15, 17) have indicated that learning-induced PKC association with neuronal membranes (i.e., translocation) can be sustained. Rabbit nictitating membrane conditioning, rat spatial maze learning, maze learning, and rat olfactory discrimination learning have all been found to be accompanied by PKC translocation that lasts for days following training. Hermissenda conditioning was followed for at least one day after training by PKC translocation that could be localized in single, identifiable Type B cells (15).
  • As already described, exposure to bryostatin for 4 hours during and after training enhances memory retention produced by 2 TE from 6-8 minutes to several hours. However, a 4 hour exposure to bryostatin on the day preceding training, as well as on the day of the 2 TE prolonged memory retention for more than one day after training. Two successive days of 4-h bryostatin exposure (0.25 ng/ml) of animals coupled with 2-paired CS/US training events produced at least 6 days of long-term retention demonstrated by the CR (body length contraction) when tested with the CS alone (n=16 animals/condition; ANOVA, p<0.01) (FIG. 3).
  • Animals given three successive days of 4-h bryostatin exposure (0.25 ng/ml) followed one day later by 2-TEs, demonstrated long-term retention (LTR) measured over 96 h post-training. Non-exposed animals (same as in FIG. 3) did not demonstrate any behavioral modification (no CR to CS testing). Anisomycin (ANI) (1 μg/ml) administered immediately and remaining for four hours post-training to animals receiving the three-day bryostatin treatments did not prevent long-term retention. Thus the requirement for protein synthesis necessary to generate LTR that is usually blocked by ANI when added post-training was obviated by the three-day bryostatin treatment (n=16 animals/condition; ANOVA, p<0.01). A third day of exposure to the 4 hour interval of bryostatin caused a similar enhanced retention of the Pavlovian conditioned response (FIG. 4). The preceding results support the view that two successive intervals of exposure to bryostatin cause PKC activation and possibly synthesis of proteins critical for long-term memory, with a minimum of concurrent and subsequent PKC downregulation. This view was given further support by the observation that a more prolonged interval of bryostatin exposure, i.e. for 8 to 20 hours, followed by 2 TE (FIG. 5) was not sufficient itself to produce memory retention equivalent to that which accompanied the two 4 hour exposures on successive preceding days. In these experiments, the effects of 20 hr bryostatin (0.25 ng/ml) exposure on training was observed. With the sub-optimal 2-paired TE conditioning regime, retention was gone in 48 hours. Retention of 4-paired TE conditioning with 20 h pre-exposure to bryostatin persisted (n=8 animals/condition; ANOVA at 48-h, p<0.01). Sufficiently prolonged bryostatin exposure (e.g., 8-12 hours) is known in other cell systems to cause prolonged PKC downregulation that may offset PKC activation and increase PKC synthesis.
  • Similarly, sufficiently increased concentrations of bryostatin ultimately blocked memory retention (FIG. 6) presumably also because of PKC downregulation. Bryostatin concentrations <0.50 ng/ml augment acquisition and memory retention with sub-optimal (4 TE) training conditions. Those concentrations had no demonstrable effects on retention performance with 9-paired TEs. However, with all training conditions tested, concentration ≧1.0 ng/ml inhibited acquisition and behavioral retention (n=16 animals/condition), presumably via PKC downregulation.
  • Example 8 Pre-Exposure to Bryostatin Obviates the Requirement for Protein Synthesis During Training
  • Animals received 2-paired training events (TEs) and then tested for retention after 4 h. Bryostatin (0.25 ng/ml) applied in NSW to animals during the 10-min pre-training dark adaptation period and 4 h thereafter demonstrated retention of the behavioral conditioning (foot contraction (CR) and shortening in body length). NSW control animals and those treated with bryostatin pre-training followed by anisomycin (1.0 μg/ml) immediately post-training showed no CR with the foot lengthening in normal positive phototaxis (n=12 animals/condition/experiment, two-way ANOVA statistics, p<0.01). A single 4 hour exposure to bryostatin together with 2 TE produced long-term memory retention lasting hours that was entirely eliminated when anisomycin was present along with the bryostatin (FIG. 7). Similar blocking effects of anisomycin were also observed with 6 TE plus bryostatin. Repeated brief exposures to bryostatin, however, increase the net synthesis of PKC, calexcitin, and other memory proteins and thus eliminate the requirement for new synthesis during and after Pavlovian conditioning—if PKC downregulation were sufficiently minimized. Protein synthesis was blocked for 4 hours with anisomycin immediately after 2 TE of animals that on each of 3 preceding days had been first exposed to 4 hours of bryostatin. In this case, anisomycin-induced blockade of protein synthesis did not prevent memory retention that lasted many days (FIG. 4). By contrast, the same 4 hour anisomycin treatment eliminated all memory retention produced by 9 TE, a training regimen ordinarily followed by 1-2 weeks of memory retention (27). Finally, if 2 TE were given one day after three successive days of 4 hour exposures to bryostatin that was accompanied each time by anisomycin, long-term memory was eliminated.
  • Example 9 Pre-Exposure to Proteasome Inhibition Enhances Bryostatin Effects on Memory
  • Another means of enhancing and prolonging de novo synthesis of PKC and other memory-related proteins is provided by blocking pathways involved in protein degradation. One of these, the ubiquitin-proteasome pathway (28-30), is known to be a major route for degradation of the α-isozyme of PKC. Degradation of PKC-α has been previously shown to be largely prevented by 20 μM-5 QμM of the proteasome inhibitor, Lactacysteine.
  • Animals were incubated simultaneously for 4 h with bryostatin (0.25 ng/ml) and lactacysteine (10 μ/M), and then 24 hrs later were conditioned with 2-paired CS/US training events (TEs). Animals were subsequently tested with the CS alone at 4 h post-training and then at 24-h intervals. Retention of the conditioned behavior was persistent with the combined bryostatin/lactacysteine treatment; behavioral retention was lost by bryostatin-only-treated animals after 24 h. Lactacysteine-only treated animals showed no acquisition or retention of behavioral training (data not graphed). (n=28 animals, combined bryostatin/lactacysteine; n=20, bryostatin alone; n=16, lactacysteine alone). Lactacysteine, in this case, transformed the short-term memory produced by the single bryostatin exposure (followed by 2 TE) to long-term memory lasting many days (FIG. 8).
  • Example 10 Calexcitin-Immunostaining Due to PKC Activation
  • Recently we showed that an immunostaining label of calexcitin increased within single identified Type B cells during acquisition and retention of Hermissenda conditioning (20). Many previous findings have implicated a low molecular weight calcium and GTP-binding protein, calexcitin, as a substrate for PKC isozymes during Hermissenda conditioning (19). Calexcitin, now completely sequenced in some animal species, and shown to have significant homology with similar proteins in other species (31), undergoes changes of phosphorylation during and after Hermissenda Pavlovian conditioning. It is also a high affinity substrate for the alpha-isozyme of PKC and a low affinity substrate for β and gamma (19).
  • Micrographs (A, B) depict representative tissue sections from Hermissenda eyes that were immunolabeled with the calexcitin polyclonal antibody, 25U2. Positive calexcitin immunostaining occurred in B-cell photoreceptors (*B-Cell) of animals that experienced paired CS/UCS associative conditioning with or without prior administration of bryostatin (B). Random presentations of the two stimuli (training events, TEs) did not produce behavioral modifications nor a rise in calexcitin above normal background levels (A); basement membrane and lens staining are artifact associated with using vertebrate polyclonal antibodies. Differences in staining intensities were measured and recorded as gray-scale intensities (0-256; B-cell cytoplasm minus tissue background). Graph (C) displays intensity measures for Hermissenda conditioned with 9-random TEs (left bar) and animals treated with two exposures on successive days to the PKC agonist, bryostatin (0.25 ng/ml), and then associatively conditioned with 2-paired TEs. Activation of PKC from two exposures of bryostatin coupled with 2 TEs significantly increased calexcitin to levels associated with 9-paired TEs and consolidated (long-term) memory (n=4-8 animals/condition/replicate; t-test comparison, p<0.01).
  • Calexcitin immunostaining is sufficiently sensitive to resolve boutons within synaptic fields of photic-vestibular neurites (D). Arrows indicate arborization field between an interneuron (a), axon from a contralateral neuron (b), and terminal boutons of neurites from a putative photoreceptor (c). Scale bars=10 μm; CPG, cerebropleural ganglion (FIG. 9, 10).
  • This conditioning-induced calexcitin label increase represents an increase in the actual amount of the protein since the immunostaining antibody reacts with both the phosphorylated and unphosphorylated forms of the protein. PKC, previously shown to translocate within the same individual Type B cells, apparently caused the conditioning-induced increase in the calexcitin label since the specific PKC-blocker, Ro-32, prevented both learning and learning-specific calexcitin increases in the Type B cell (see above). Naïve and/or randomized control training protocols produced a small fraction of the training-induced calexcitin (CE) immunostaining (FIG. 9).
  • Random training (4-TEs) without bryostatin yielded slightly higher intensity measures than background. Bryostatin administration increased the calexcitin levels for both training paradigms. With random training, when there was occasional overlap (pairing) of the CS and US, as was the case here, it is not unexpected that some rise in CE might occur (increase of 2.0). However, calexcitin levels increased greater than 4.3×with paired training (mean±SE, N=5 animals/treatment. 4 RTE=random control, 4 trials with random light and rotation; 6 PTE=paired trials, 6 trials with paired light and rotation. 6 PTE-0 Bry vs. 6 PTE-0.25 Bry: p<0.001; 4 RTE-0.25 Bry vs. 6 PTE-0.25 Bry; p<0.001 (t-test). When sub-optimal training events (4-6 TE) were used, the CE immunostaining (FIG. 10A) reached an intermediate level of elevation. These sub-optimal regimes were insufficient to produce memory retention lasting longer than 24 hours. As described earlier, bryostatin administered during training with 6 TE induced long-term memory retention (>1 week). Furthermore, bryostatin plus 6 TE induced CE immunostaining comparable to that observed after 9 TE.
  • Bryostatin in low doses (0.1-0.25 ng/ml) markedly enhanced memory after 2, 4, or 6 training trials. Pavlovian conditioning with 6 TE produced memory lasting many days with bryostatin, but lasting only hours without bryostatin. This memory enhancement was blocked by anisomycin or the PKC inhibitor, Ro-32. It is important to note that CE immunostaining was greatly reduced 24 hours after 9 TE even though the memory persisted for more than 1 week thereafter. More persistent CE immunostaining resulted, however, from repeated bryostatin exposures on days preceding minimal training (2 TE).
  • Bryostatin alone (without associative conditioning) administered for 4-hr over each of 1, 2, and 3 days progressively increased the levels of calexcitin in the B-photoreceptors of Hermissenda when measured 24 hours after each of the periods of bryostatin exposures. Twenty-four hours after 1 bryostatin exposure for four hours, CE immunostaining was not elevated (FIG. 10B). Twenty-four hours after 2 bryostatin exposures, 1 on each of two successive days showed greater residual CE immunostaining. The calexcitin level after 3 bryostatin exposures followed by just 2-paired training events (paired light and orbital shaking) raised that level even higher with a significant concomitant length in the number of retention days for the associative conditioning-induced behavioral modification (n=16 animals/condition: ANOVA, p<0.01). With 2 TE on the subsequent day after these three exposures, CE immunostaining 24 hours later approached the levels previously observed immediately following 9 TE (FIG. 10B). Thus, CE immunostaining following these three days of 4 hour bryostatin exposure followed by minimal training (2 TE) showed a greater persistence than did the training trials alone. This persistence of newly synthesized calexcitin is consistent with the biochemical observations indicating enhanced protein synthesis induced by bryostatin.
  • Exposure to 4-hr of bryostatin on two consecutive days followed 24 hours later by 2-training events (2 TE) are required to raise calexcitin levels to the amount associated with consolidated long-term memory. Typically, 2-TEs with two bryostatin exposures produces retention lasting more than one week (n=16 animals/condition; t-test, p<0.01). Priming with 4-hr exposures to bryostatin over 3 consecutive days will induce calexcitin levels required for consolidated memory. Anisomycin added immediately after the 2-paired training events did not reduce this calexcitin level and consolidated memory persists for many days (N=8 animals/condition; t-test, p>0.05, ns). (FIGS. 11 A, B).
  • It is noteworthy that the Ro-32 inhibition of PKC immediately after bryostatin plus training did not prevent long-term memory induction, while this inhibition during the training plus bryostatin did prevent memory consolidation. In contrast, anisomycin during training with and without bryostatin did not prevent long-term memory, while anisomycin after training with and without bryostatin completely blocked memory formation. Therefore, PKC activation during training is followed by protein synthesis required for long-term memory. Thus, once PKC activation is induced to sufficient levels, the required protein synthesis is an inevitable consequence. Consistently, bryostatin-induced PKC activation on days prior to training is sufficient, with minimal training trials, to cause long-term memory. Furthermore, this latter long-term memory does not require protein synthesis following the training (and PKC activation on preceding days). Again, prior PKC activation was sufficient to produce that protein synthesis necessary for subsequent long-term memory formation. One of those proteins whose synthesis is induced by bryostatin-induced PKC activation as well as conditioning trials is calexcitin—as demonstrated by the immunostaining labeling. The other protein is PKC itself.
  • Example 11 Effect of Bryostatin on PKC Activity
  • Bryostatin is known to transiently activate PKC by increasing PKC association with the cellular membrane fraction. A variety of associative memory paradigms have also been demonstrated to cause increased PKC association with neuronal membranes. We tested, therefore, the possibility that repeated exposures of Hermissenda to bryostatin (i.e., 4 hour exposures, exactly as with the training protocols) might also induce prolonged PKC activation.
  • Intact Hermissenda were exposed for 4 hour intervals to bryostatin (0.28 nM) on successive days under conditions described (“Behavioral Pharmacology”). Histone phosphorylation (See “Methods”) in isolated circumesophageal nervous systems was then measured in the cytosol fraction. PKC activity measured both 10 minutes and 24 hours after the second of two bryostatin exposures was significantly increased over baseline levels (N=6, for each measurement). (FIG. 12, 13). Thus, the quantity of PKC in both fractions was apparently increased, but not the ratio of the PKC in the membrane to that in the cytosolic fraction. These results demonstrate that the bryostatin pre-exposure causes an effect on PKC somewhat different from learning itself. After an initial activation (via translocation), this bryostatin effect is most likely due to increased synthesis of PKC, consistent with the increased levels of calexcitin induced by bryostatin, but not directly correlated with repeated bryostatin exposure.
  • As in FIG. 12, 13 but with anisomycin (1.0 ng/ml) added together with each bryostatin (0.25 ng/ml) exposure. Note that the anisomycin markedly reduced the PKC activity in both the cytosolic and membrane fractions from the Hermissenda circumesophageal nervous systems after exposure to bryostatin on three successive days (N=3, for each measurement, p<0.01) (FIG. 14).
  • To further examine biochemical consequences of repeated exposures to bryostatin, rat hippocampal neurons were studied after they had been immortalized by retroviral transduction of temperature sensitive tsA5CSV40 large T antigen (25). These differentiate to have a neuronal phenotype when induced by basic fibroblast growth factor in N2 medium (26) and express a normal complement of neuronal proteins, including PKC.
  • Exposure of cultured hippocampal neurons to a single activating dose of bryostatin (0.28 nM) for 30 minutes produced a brief translocation of PKC from the cytosol to the particulate fraction (approx 60%) followed by a prolonged downregulation (FIG. 15). Both the initial PKC activation and subsequent downregulation have been previously described and were confirmed by measurement of PKC activity in membrane and cytosol. Exposing the cultured hippocampal neurons to one 30-minute period of bryostatin, followed by a second 30-minute exposure, at intervals ranging from 30 minutes to 8 hours, caused the membrane-bound PKC to rebound more quickly. Thus, a second exposure after a 2- to 4-hour delay eliminated the significant downregulation that a single bryostatin exposure produced (FIG. 16). In the cytoplasmic fraction, no significant alteration of PKC activity was detected within the first 4 hours after bryostatin exposure. In contrast, if cells were exposed to bryostatin twice within a 2-hour period, there was a significant reduction of PKC activity in response to the second exposure. However, if the second exposure was delayed until 4 hours after the first, activity was increased above baseline, to a degree that was significantly greater compared with a second exposure delivered after 2 hours or less (FIG. 16).
  • These results are consistent with the interpretation that the initial bryostatin activation of PKC followed by downregulation (28-30) leads to increased synthesis (via de novo protein synthesis) of PKC isozymes (as well as calexcitin, described earlier). In fact, we found here that a single 30-minute exposure to 0.28 nM bryostatin increased overall protein synthesis (FIG. 17), measured by incorporation of 35-S Methionine in the last ½ hour before collecting the neurons, by 20% within 24 h, increasing to 60% by 79 hours after the bryostatin exposure. This prolonged and profound increase of protein synthesis induced by bryostatin was partially blocked when the PKC inhibitor Ro-32 was also present (FIG. 17).
  • Abundant observations indicate that sufficient bryostatin-induced PKC activation leads, inevitably, to progressive PKC inactivation and subsequent downregulation. Sufficient doses of bryostatin (greater than 1.0 ng/ml) actually inhibited Pavlovian conditioning. This was most likely due to PKC downregulation that characterized the behavioral results with high bryostatin concentrations. PKC activation induced by bryostatin has been shown to be downregulated by two distinct pathways. One that is also induced by phorbol ester involves ubiquitination and subsequent proteolytic degradation through the proteasome pathway. The second mechanism of downregulation, not induced by phorbol ester, involves movement through caveolar compartments and degradation mediated by phosphatase PP1 and PP2A. With sufficient concentrations and/or durations of PKC activators, the PKC degrading pathways create a deficit of PKC that stimulates de novo synthesis of PKC, PKC synthesis cannot compensate for inactivation and down regulation, thereby causing depletion of available PKC of 95% or more.

Claims (73)

1. A method comprising the step of contacting a PKC activator with a protein kinase C (PKC) to stimulate the synthesis of proteins sufficient to consolidate long term memory.
2. The method of claim 1, wherein said PKC activator is a macrocyclic lactone.
3. The method of claim 1, wherein the PKC activator is a benzolactam.
4. The method of claim 1, wherein the PKC activator is a pyrrolidinone.
5. The method of claim 2, wherein the macrocyclic lactone is a bryostatin.
6. The method of claim 5, wherein the bryostatin is bryostatin-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, or -18.
7. The method of claim 5, wherein the bryostatin is bryostatin-1.
8. The method of claim 2, wherein the macrocyclic lactone is a neristatin.
9. The composition of claim 8, wherein the neristatin is neristatin-1.
10. The method of claim 1, wherein said contact activates PKC.
11. The method of claim 1, wherein said contact increases the amount of PKC.
12. The method of claim 1, wherein said contact increases the synthesis of PKC.
13. The method of claim 1, wherein said contact increases the amount of calexcitin.
14. The method of claim 1, wherein said contact does not result in substantial subsequent downregulation of PKC.
15. The method of claim 1, wherein the contacting of the PKC activator with the PKC is repeated.
16. The method of claim 15, wherein the contacting of the PKC activator with the PKC is repeated at regular intervals.
17. The method of claim 16, wherein the interval is between one week to one month, one day and one week, or less than one hour and 24 hours.
18. The method of claim 17, wherein the interval is between one week and one month.
19. The method of claim 17, wherein the interval is between one day and one week.
20. The method of claim 17, wherein the interval is between less than one hour and 24 hours.
21. The method of claim 1, wherein the contacting of the PKC activator with the PKC is maintained for a fixed duration.
22. The method of claim 21, wherein the fixed duration is less than 24 hours.
23. The method of claim 21, wherein the fixed duration is less than 12 hours.
24. The method of claim 21, wherein the fixed duration is less than 6 hours.
25. The method of claim 21, wherein the fixed duration is less than 4 hours.
26. The method of claim 21, wherein the fixed duration is less than 2 hours.
27. The method of claim 21, wherein the fixed duration is between about 2 and about 6 hours.
28. The method of claim 21, wherein the fixed duration is about 4 hours.
29. The method of claim 21, wherein said duration of said contact is between about 1 and about 12 hours.
30. The method of claim 15, wherein said contact is repeated for a period greater than one day.
31. The method of claim 15, wherein said contact is repeated for a period between one day and one month.
32. The method of claim 15, wherein said contact is repeated for a period between one day and one week.
33. The method of claim 15, wherein said contact is repeated for a period between one week and one month.
34. The method of claim 15, wherein said contact is repeated for a period between one month and six months.
35. The method of claim 15, wherein said contact is repeated for a period of one month.
36. The method of claim 15, wherein said contact is repeated for a period greater than one month.
37. A method comprising the step of contacting a PKC activator with a protein kinase C (PKC) to downregulate PKC.
38. The method of claim 37, wherein said PKC activator is a macrocyclic lactone.
39. The method of claim 37, wherein the PKC activator is a benzolactam.
40. The method of claim 37, wherein the PKC activator is a pyrrolidinone.
41. The method of claim 38, wherein the macrocyclic lactone is a bryostatin.
42. The method of claim 41, wherein the bryostatin is bryostatin-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, or -18.
43. The method of claim 42, wherein the bryostatin is bryostatin-1.
44. The method of claim 38, wherein the macrocyclic lactone is a neristatin.
45. The composition of claim 38, wherein the neristatin is neristatin-1.
46. The method of claim 37, wherein said contact produces downregulation of PKC.
47. The method of claim 46, wherein said contact produces substantial downregulation of PKC.
48. The method of claim 37, wherein said contact does not stimulate the synthesis of PKC.
49. The method of claim 48, wherein said contact does not substantially stimulate the synthesis of PKC.
50. The method of claim 37, wherein said contact decreases the amount of PKC.
51. The method of claim 50, wherein said contact substantially decreases the amount of PKC.
52. The method of claim 37, wherein said contact does not stimulate the synthesis of calexcitin.
53. The method of claim 50, wherein said contact does not stimulate the synthesis of calexitin.
54. The method of claim 37, wherein the contacting of the PKC activator with the PKC is for a sustained period.
55. The method of claim 54, wherein the sustained period is between less than one hour and 24 hours.
56. The method of claim 54, wherein the sustained period is between one day and one week.
57. The method of claim 54, wherein the sustained period is between one week and one month.
58. The method of claim 54, wherein the sustained period is between less than one hour and 12 hours.
59. The method of claim 54, wherein the sustained period is between less than one hour and 8 hours.
60. The method of claim 54, wherein the sustained period is between less than one hour and 4 hours.
61. The method of claim 54, wherein the sustained period is about 4 hours.
62. The method of claim 37, wherein said contact produces sustained downregulation of PKC.
63. The method of claim 1, further comprising the step of inhibiting degradation of protein kinase C (PKC).
64. The method of claim 63, wherein said degradation is through ubiquitination.
65. The method of claim 64, wherein said degradation is inhibited by lactacysteine.
66. The method of claim 1, wherein the PKC is human.
67. The method of claim 1, wherein the PKC activator is provided in the form of a pharmaceutical composition comprising the PKC activator and a pharmaceutically acceptable carrier.
68. The method of claim 67, wherein the pharmaceutical composition further comprises a PKC inhibitor.
69. The method of claim 68, wherein the PKC inhibitor inhibits PKC in peripheral tissues.
70. The method of claim 68, wherein the PKC inhibitor selectively inhibits PKC in peripheral tissues.
71. The method of claim 68, wherein the PKC inhibitor is a compound that reduces myalgia associated with the administration of a PKC to a subjects.
72. The method of claim 68, wherein the PKC inhibitor is a compound that increases the tolerable dose of a PKC activator.
73. The method of claim 68, wherein the PKC inhibitor is vitamin E, vitamin E analogs, vitamin E salts, calphostin C, thiazolidinediones, ruboxistaurin or combinations thereof.
US12/851,222 2005-07-29 2010-08-05 Protein synthesis required for long-term memory is induced by pkc activation on days preceding associative learning Abandoned US20100303792A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/851,222 US20100303792A1 (en) 2005-07-29 2010-08-05 Protein synthesis required for long-term memory is induced by pkc activation on days preceding associative learning
US13/561,770 US8703812B2 (en) 2005-07-29 2012-07-30 Protein synthesis required for long-term memory is induced by PKC activation on days preceding associative learning
US14/196,455 US20140249176A1 (en) 2005-07-29 2014-03-04 Protein synthesis required for long-term memory is induced by pkc activation on days preceding associative learning

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US70350105P 2005-07-29 2005-07-29
US72875305P 2005-10-21 2005-10-21
US11/494,636 US20070054890A1 (en) 2005-07-29 2006-07-28 Protein synthesis required for long-term memory is induced by PKC activation on days preceding associative learning
US12/851,222 US20100303792A1 (en) 2005-07-29 2010-08-05 Protein synthesis required for long-term memory is induced by pkc activation on days preceding associative learning

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/494,636 Continuation US20070054890A1 (en) 2005-07-29 2006-07-28 Protein synthesis required for long-term memory is induced by PKC activation on days preceding associative learning

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/561,770 Continuation US8703812B2 (en) 2005-07-29 2012-07-30 Protein synthesis required for long-term memory is induced by PKC activation on days preceding associative learning

Publications (1)

Publication Number Publication Date
US20100303792A1 true US20100303792A1 (en) 2010-12-02

Family

ID=37478854

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/494,636 Abandoned US20070054890A1 (en) 2005-07-29 2006-07-28 Protein synthesis required for long-term memory is induced by PKC activation on days preceding associative learning
US12/851,222 Abandoned US20100303792A1 (en) 2005-07-29 2010-08-05 Protein synthesis required for long-term memory is induced by pkc activation on days preceding associative learning
US13/561,770 Active US8703812B2 (en) 2005-07-29 2012-07-30 Protein synthesis required for long-term memory is induced by PKC activation on days preceding associative learning
US14/196,455 Abandoned US20140249176A1 (en) 2005-07-29 2014-03-04 Protein synthesis required for long-term memory is induced by pkc activation on days preceding associative learning

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/494,636 Abandoned US20070054890A1 (en) 2005-07-29 2006-07-28 Protein synthesis required for long-term memory is induced by PKC activation on days preceding associative learning

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/561,770 Active US8703812B2 (en) 2005-07-29 2012-07-30 Protein synthesis required for long-term memory is induced by PKC activation on days preceding associative learning
US14/196,455 Abandoned US20140249176A1 (en) 2005-07-29 2014-03-04 Protein synthesis required for long-term memory is induced by pkc activation on days preceding associative learning

Country Status (6)

Country Link
US (4) US20070054890A1 (en)
EP (1) EP1915145A1 (en)
JP (2) JP5323481B2 (en)
KR (2) KR20130122630A (en)
CA (1) CA2617003A1 (en)
WO (1) WO2007016202A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065205A1 (en) 2002-03-07 2005-03-24 Daniel Alkon Methods for Alzheimer's disease treatment and cognitive enhance
US6825229B2 (en) 2002-03-07 2004-11-30 Blanchette Rockefeller Neurosciences Institute Methods for Alzheimer's Disease treatment and cognitive enhancement
TW201206425A (en) 2004-05-18 2012-02-16 Brni Neurosciences Inst Treatment of depressive disorders
JP2009544753A (en) * 2006-07-28 2009-12-17 ブランシェット・ロックフェラー・ニューロサイエンスィズ・インスティテュート Methods to stimulate cell growth, synaptic remodeling and long-term memory consolidation
CA2674773A1 (en) 2007-02-09 2008-08-21 Blanchette Rockefeller Neurosciences Institute Therapeutic effects of bryostatins, bryologs, and other related substances on head trauma-induced memory impairment and brain injury
JP6013184B2 (en) * 2009-10-02 2016-10-25 ブランシェット・ロックフェラー・ニューロサイエンスィズ・インスティテュート Abnormal changes in PKC isozyme processing in Alzheimer's disease peripheral cells
WO2012006525A2 (en) 2010-07-08 2012-01-12 Alkon Daniel L Pkc activators and anticoagulant in regimen for treating stroke
JP2016516201A (en) 2013-03-15 2016-06-02 ブランシェット・ロックフェラー・ニューロサイエンスィズ・インスティテュート Method for identifying neuroprotective PKC activators
US20180311209A1 (en) * 2015-10-08 2018-11-01 Cognitive Research Enterprises, Inc. Dosing regimens of pkc activators
CA3100792A1 (en) * 2018-05-18 2019-11-21 Neurotrope Bioscience, Inc. Methods and compositions for treatment of alzheimer's disease
WO2022132856A1 (en) * 2020-12-16 2022-06-23 Synaptogenix, Inc. Treatment of amyotrophic lateral sclerosis using pkc activators

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560774A (en) * 1982-11-17 1985-12-24 Arizona State University Macrocyclic lactones
US4611066A (en) * 1984-08-10 1986-09-09 Arizona State University Bryostatins 4 to 8
US4833139A (en) * 1988-01-25 1989-05-23 Hoechst-Roussel Pharmaceuticals, Inc. Enhancing cholinergic activity with 5-substituted 1-[4-(1-pyrrolidinyl)-2-butynyl]-2-pyrrolidinones and related compounds
US4833257A (en) * 1986-07-28 1989-05-23 Arizona Board Of Regents Compositions of matter and methods of using same
US5072004A (en) * 1990-12-31 1991-12-10 Arizona Board Of Regents Acting On Behalf Of Arizona State University Synthetic conversion of bryostatin 2 into bryostatin 1
US5196447A (en) * 1991-08-08 1993-03-23 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting On Behalf Of Arizona State University Neristatin 1
US5242932A (en) * 1991-12-17 1993-09-07 The Rockefeller University Treatment of amyloidosis associated with alzheimer disease
US5385915A (en) * 1990-05-16 1995-01-31 The Rockefeller University Treatment of amyloidosis associated with Alzheimer disease using modulators of protein phosphorylation
US5393897A (en) * 1993-07-02 1995-02-28 Arizona Board Of Regents Acting On Behalf Of Arizona State University Isolation and structure of spongistatins 5,7,8 and 9
US5430053A (en) * 1994-04-19 1995-07-04 Arizona Board Of Regents Acting On Behalf Of Arizona State University Isolation and structure of dictyostatin 1
US5580748A (en) * 1993-05-03 1996-12-03 The United States Of America As Represented By The Department Of Health And Human Services Diagnostic tests for alzheimers disease
US5625232A (en) * 1994-07-15 1997-04-29 Texas Instruments Incorporated Reliability of metal leads in high speed LSI semiconductors using dummy vias
US5891906A (en) * 1986-06-11 1999-04-06 Procyon Pharmaceuticals, Inc. Polyacetate-derived phorboids having anti-inflammatory and other uses
US5891870A (en) * 1986-06-11 1999-04-06 Procyon Pharmaceuticals, Inc. Protein kinase C modulators Q
US5955501A (en) * 1986-06-11 1999-09-21 Procyon Pharmaceuticals, Inc. Protein kinase C modulators O
US5962504A (en) * 1997-09-08 1999-10-05 Georgetown University Substituted 2-pyrrolidinone activators of PKC
US5962498A (en) * 1986-06-11 1999-10-05 Procyon Pharmaceuticals, Inc. Protein kinase C modulators. C. indolactam structural-types with anti-inflammatory activity
US6043270A (en) * 1986-06-11 2000-03-28 Procyon Pharmaceuticals, Inc. Protein kinase C modulators V
US6080784A (en) * 1986-06-11 2000-06-27 Procyon Pharmaceuticals, Inc. Protein kinase C modulators N
US6080582A (en) * 1993-05-03 2000-06-27 The United States Of America As Represented By The Department Of Health And Human Services Cell tests for Alzheimer's disease
US6187568B1 (en) * 1994-11-10 2001-02-13 Pfizer Inc Macrocyclic lactone compounds and their production process
US6242479B1 (en) * 1998-12-17 2001-06-05 Loma Linda University Medical Center Use of γ-tocopherol and its oxidative metabolite LLU-α in the treatment of disease
US6407058B1 (en) * 1996-09-30 2002-06-18 Eisai Co., Limited Modifying the permeability of physiological barriers
US20030050302A1 (en) * 2000-08-31 2003-03-13 Neurologic, Inc. Treatment of conditions associated with amyloid processing using PKC activators
US20030077335A1 (en) * 2000-11-03 2003-04-24 Chronorx Llc Formulations for the prevention and treatment of insulin resistance and type 2 diabetes mellitus
US20030171356A1 (en) * 2002-03-07 2003-09-11 Neurologic, Inc. Methods for alzheimer's disease treatment and cognitive enhancement
US20050065205A1 (en) * 2002-03-07 2005-03-24 Daniel Alkon Methods for Alzheimer's disease treatment and cognitive enhance
US20050075393A1 (en) * 2000-12-19 2005-04-07 Tomoyuki Nishizaki Carboxylic acid compound cyclopropane ring

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI840260A (en) 1983-01-27 1984-07-28 Ciba Geigy Ag PYRROLIDINONDERIVAT OCH FOERFARANDE FOER DERAS FRAMSTAELLNING.
ES2061963T3 (en) 1988-01-13 1994-12-16 Univ Arizona State IMMUNOMODULATING BRIOSTATINS.
DE3827974A1 (en) 1988-08-18 1990-02-22 Boehringer Mannheim Gmbh COMBINATION PREPARATIONS OF PROTEINKINASE-C INHIBITORS WITH LIPIDS, LIPID ANALOGS, CYTOSTATICA OR INHIBITORS OF PHOSPHOLIPASES
US4994472A (en) 1989-08-02 1991-02-19 Hoechst-Roussel Pharmaceuticals Incorporated 1-(pyridinylamino)-2-pyrrolidinones as pain relievers
AU6886791A (en) 1989-11-13 1991-06-13 Affymax Technologies N.V. Spatially-addressable immobilization of anti-ligands on surfaces
JP2578001B2 (en) 1989-12-11 1997-02-05 明治製菓株式会社 Anti-dementia drug
JPH06504997A (en) 1990-12-06 1994-06-09 アフィメトリックス, インコーポレイテッド Synthesis of immobilized polymers on a very large scale
US5981165A (en) 1991-07-08 1999-11-09 Neurospheres Holdings Ltd. In vitro induction of dopaminergic cells
US5677195A (en) 1991-11-22 1997-10-14 Affymax Technologies N.V. Combinatorial strategies for polymer synthesis
US5359115A (en) 1992-03-26 1994-10-25 Affymax Technologies, N.V. Methods for the synthesis of phosphonate esters
US5573905A (en) 1992-03-30 1996-11-12 The Scripps Research Institute Encoded combinatorial chemical libraries
US5288514A (en) 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
IL107166A (en) 1992-10-01 2000-10-31 Univ Columbia Complex combinatorial chemical libraries encoded with tags
JPH06279311A (en) 1993-03-26 1994-10-04 Sagami Chem Res Center Activation agent for protein kinase c isozyme
US5362899A (en) 1993-09-09 1994-11-08 Affymax Technologies, N.V. Chiral synthesis of alpha-aminophosponic acids
US5545636A (en) * 1993-12-23 1996-08-13 Eli Lilly And Company Protein kinase C inhibitors
GB9509572D0 (en) 1995-05-11 1995-07-05 Cancer Res Campaign Tech Cancer therapy
AU3066697A (en) 1996-05-10 1997-12-05 Georgetown University 8-hydrocarbyl substituted benzodizocine derivatives, their preparation and the ir use as protein kinase c (=pkc) modulators
US6458373B1 (en) 1997-01-07 2002-10-01 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
GB9701675D0 (en) 1997-01-28 1997-03-19 Bridgeman Keith Composition for the treatment of parkinson's disease
US5981168A (en) 1998-05-15 1999-11-09 The University Of British Columbia Method and composition for modulating amyloidosis
DE19943198A1 (en) 1999-09-09 2001-03-15 Meyer Lucas Gmbh & Co Phosphatidyl serine-based nutritional supplement and/or therapeutic composition, useful e.g. for treating depression or Alzheimer's disease, containing docosahexaenoic acid component to improve resorption
AU784589B2 (en) 1999-11-30 2006-05-04 Board Of Trustees Of The Leland Stanford Junior University Bryostatin analogues, synthetic methods and uses
JP2001240581A (en) 2000-02-29 2001-09-04 Senju Pharmaceut Co Ltd Aminobenzamide derivative and application
WO2001068137A2 (en) 2000-03-14 2001-09-20 Brown University Research Foundation Compositions for regulating memory consolidation
WO2001083449A2 (en) 2000-04-28 2001-11-08 Georgetown University Rigid pyrrolidone modulators of pkc
AUPQ801700A0 (en) 2000-06-07 2000-06-29 Peplin Research Pty Ltd Enzyme and viral activation
ATE327747T1 (en) 2000-10-09 2006-06-15 Matthias Dr Med Rath THERAPEUTIC COMBINATION OF ASCORBATE WITH LYSINE AND ARGININE FOR PREVENTION AND TREATMENT OF CANCER
WO2002083877A1 (en) 2001-04-11 2002-10-24 Stem Cell Therapeutics Inc. Production of tyrosine hydroxylase positive neurons
WO2002086106A1 (en) 2001-04-23 2002-10-31 Nsgene A/S Method and culture medium for producing neural cells expressing tyrosine hydroxylase
RU2187099C1 (en) 2001-05-30 2002-08-10 ООО "Лаборатория биохимических методов" Device for measurement of ion mobility spectrum
CA2401452A1 (en) 2001-09-04 2003-03-04 Uri Saragovi Combination of antioxidant substances for the treatment of alzheimer's disease
US6821979B2 (en) 2002-03-07 2004-11-23 Blanchette Rockefeller Neurosciences Institute Synergistic enhancement of cognitive ability
JP4890759B2 (en) * 2002-07-02 2012-03-07 ブランシェット・ロックフェラー・ニューロサイエンスィズ・インスティテュート PKC activation as a means to enhance sAPPα secretion and improve cognition using bryostatin-type compounds
CA2490494A1 (en) * 2002-07-02 2004-01-15 Blanchette Rockefeller Neurosciences Institute Pkc activation as a means for enhancing sapp.alpha. secretion and improving cognition using bryostatin type compounds
US20040229292A1 (en) 2002-11-26 2004-11-18 Sebastiano Cavallaro Use of FGF-18 in the diagnosis and treatment of memory disorders
US20050004179A1 (en) * 2003-05-22 2005-01-06 Pedersen Ward A. Methods and materials for treating, detecting, and reducing the risk of developing Alzheimer's Disease
EP1628532A2 (en) * 2003-05-30 2006-03-01 Microbia, Inc. Methods for the protection of memory and cognition
TW201206425A (en) 2004-05-18 2012-02-16 Brni Neurosciences Inst Treatment of depressive disorders
JP2009544753A (en) 2006-07-28 2009-12-17 ブランシェット・ロックフェラー・ニューロサイエンスィズ・インスティテュート Methods to stimulate cell growth, synaptic remodeling and long-term memory consolidation
CA2674773A1 (en) 2007-02-09 2008-08-21 Blanchette Rockefeller Neurosciences Institute Therapeutic effects of bryostatins, bryologs, and other related substances on head trauma-induced memory impairment and brain injury

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560774A (en) * 1982-11-17 1985-12-24 Arizona State University Macrocyclic lactones
US4611066A (en) * 1984-08-10 1986-09-09 Arizona State University Bryostatins 4 to 8
US5891906A (en) * 1986-06-11 1999-04-06 Procyon Pharmaceuticals, Inc. Polyacetate-derived phorboids having anti-inflammatory and other uses
US6080784A (en) * 1986-06-11 2000-06-27 Procyon Pharmaceuticals, Inc. Protein kinase C modulators N
US6043270A (en) * 1986-06-11 2000-03-28 Procyon Pharmaceuticals, Inc. Protein kinase C modulators V
US5962498A (en) * 1986-06-11 1999-10-05 Procyon Pharmaceuticals, Inc. Protein kinase C modulators. C. indolactam structural-types with anti-inflammatory activity
US5955501A (en) * 1986-06-11 1999-09-21 Procyon Pharmaceuticals, Inc. Protein kinase C modulators O
US5891870A (en) * 1986-06-11 1999-04-06 Procyon Pharmaceuticals, Inc. Protein kinase C modulators Q
US4833257A (en) * 1986-07-28 1989-05-23 Arizona Board Of Regents Compositions of matter and methods of using same
US4833139A (en) * 1988-01-25 1989-05-23 Hoechst-Roussel Pharmaceuticals, Inc. Enhancing cholinergic activity with 5-substituted 1-[4-(1-pyrrolidinyl)-2-butynyl]-2-pyrrolidinones and related compounds
US5385915A (en) * 1990-05-16 1995-01-31 The Rockefeller University Treatment of amyloidosis associated with Alzheimer disease using modulators of protein phosphorylation
US5072004A (en) * 1990-12-31 1991-12-10 Arizona Board Of Regents Acting On Behalf Of Arizona State University Synthetic conversion of bryostatin 2 into bryostatin 1
US5196447A (en) * 1991-08-08 1993-03-23 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting On Behalf Of Arizona State University Neristatin 1
US5242932A (en) * 1991-12-17 1993-09-07 The Rockefeller University Treatment of amyloidosis associated with alzheimer disease
US5580748A (en) * 1993-05-03 1996-12-03 The United States Of America As Represented By The Department Of Health And Human Services Diagnostic tests for alzheimers disease
US6080582A (en) * 1993-05-03 2000-06-27 The United States Of America As Represented By The Department Of Health And Human Services Cell tests for Alzheimer's disease
US5393897A (en) * 1993-07-02 1995-02-28 Arizona Board Of Regents Acting On Behalf Of Arizona State University Isolation and structure of spongistatins 5,7,8 and 9
US5430053A (en) * 1994-04-19 1995-07-04 Arizona Board Of Regents Acting On Behalf Of Arizona State University Isolation and structure of dictyostatin 1
US5625232A (en) * 1994-07-15 1997-04-29 Texas Instruments Incorporated Reliability of metal leads in high speed LSI semiconductors using dummy vias
US6187568B1 (en) * 1994-11-10 2001-02-13 Pfizer Inc Macrocyclic lactone compounds and their production process
US6407058B1 (en) * 1996-09-30 2002-06-18 Eisai Co., Limited Modifying the permeability of physiological barriers
US5962504A (en) * 1997-09-08 1999-10-05 Georgetown University Substituted 2-pyrrolidinone activators of PKC
US6242479B1 (en) * 1998-12-17 2001-06-05 Loma Linda University Medical Center Use of γ-tocopherol and its oxidative metabolite LLU-α in the treatment of disease
US20030050302A1 (en) * 2000-08-31 2003-03-13 Neurologic, Inc. Treatment of conditions associated with amyloid processing using PKC activators
US20030077335A1 (en) * 2000-11-03 2003-04-24 Chronorx Llc Formulations for the prevention and treatment of insulin resistance and type 2 diabetes mellitus
US20050075393A1 (en) * 2000-12-19 2005-04-07 Tomoyuki Nishizaki Carboxylic acid compound cyclopropane ring
US20030171356A1 (en) * 2002-03-07 2003-09-11 Neurologic, Inc. Methods for alzheimer's disease treatment and cognitive enhancement
US20050065205A1 (en) * 2002-03-07 2005-03-24 Daniel Alkon Methods for Alzheimer's disease treatment and cognitive enhance

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Lee et al. (J of Biol Chem, 1996, 271, 35, 20973-76). *
PKC LAB, p 1-4, 2010, (http://www.pkclab.org/PKC/ PKCbiology/PKCbiology_PKC_activators.htm) *
Protein Kinase C, p 1-6, 2010, (http://en.wikipedia.org/wiki/ Protein_kinase_C) *
Sano et al (The NEJM, 1997, 1216-1222). *
Scioletti et al.(Biol Bull 207, 159, 2004, p 159) *
Sun et al. (European J of Pharmacology, 512 (2005) pgs 43-51). *

Also Published As

Publication number Publication date
KR20130122630A (en) 2013-11-07
JP2013189439A (en) 2013-09-26
JP5323481B2 (en) 2013-10-23
KR101347100B1 (en) 2014-01-03
US20120289557A1 (en) 2012-11-15
US20070054890A1 (en) 2007-03-08
WO2007016202A1 (en) 2007-02-08
KR20080042108A (en) 2008-05-14
JP2009502944A (en) 2009-01-29
US20140249176A1 (en) 2014-09-04
EP1915145A1 (en) 2008-04-30
CA2617003A1 (en) 2007-02-08
US8703812B2 (en) 2014-04-22

Similar Documents

Publication Publication Date Title
US8703812B2 (en) Protein synthesis required for long-term memory is induced by PKC activation on days preceding associative learning
CA2659242C (en) Methods of stimulating cellular growth, synaptic remodeling and consolidation of long-term memory
JP5638735B2 (en) Methods for the treatment and improvement of cognition of Alzheimer&#39;s disease
US20080004332A1 (en) Methods for alzheimer&#39;s disease treatment and cognitive enhancement
US20130331427A1 (en) Methods of stimulating cellular growth, synaptic, remodeling and consolidation of long-term memory
US20190209521A1 (en) Methods of stimulating cellular growth, synaptic remodeling and consolidation of long term memory
CN101277691A (en) Use of a PKC activator, alone or combined with a pkc inhibitor to enhance long term memory

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION