US20100212413A1 - Method for Determining Emission Values Of A Gas Turbine, And Apparatus For Carrying Out Said Method - Google Patents

Method for Determining Emission Values Of A Gas Turbine, And Apparatus For Carrying Out Said Method Download PDF

Info

Publication number
US20100212413A1
US20100212413A1 US12/670,884 US67088408A US2010212413A1 US 20100212413 A1 US20100212413 A1 US 20100212413A1 US 67088408 A US67088408 A US 67088408A US 2010212413 A1 US2010212413 A1 US 2010212413A1
Authority
US
United States
Prior art keywords
gas turbine
emission values
exhaust gas
operating parameters
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/670,884
Inventor
Dietmar Krüger
Thomas Schimanski
Dirk Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Turbo AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Turbo AG filed Critical MAN Turbo AG
Assigned to MAN TURBO AG reassignment MAN TURBO AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KRUEGER, DIETMAR, SCHIMANSKI, THOMAS, KOCH, DIRK
Assigned to MAN DIESEL & TURBO SE reassignment MAN DIESEL & TURBO SE CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MAN TURBO AG
Publication of US20100212413A1 publication Critical patent/US20100212413A1/en
Assigned to MAN ENERGY SOLUTIONS SE reassignment MAN ENERGY SOLUTIONS SE CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MAN DIESEL & TURBO SE
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • F05D2270/082Purpose of the control system to produce clean exhaust gases with as little NOx as possible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/20Gas turbines

Definitions

  • the present invention is directed to a method for determining emission values of a gas turbine and to a device for carrying out such a method.
  • Determining emission values in gas turbines during operation is gaining in importance as the monitoring of emissions by operators, inspection authorities and the like becomes increasingly important.
  • gas turbines should be operated with the lowest possible emissions, which requires determination of the emission values of the gas turbine continuously or discretely, e.g., periodically or by spot check.
  • adverse operating conditions of the gas turbine can be detected at an early stage on the basis of these emission values.
  • the object of the present invention is to make it possible to determine emission values of a gas turbine in a simple and precise manner.
  • Claim 9 claims protection for a corresponding device for carrying out a method of this type.
  • a test run of the gas turbine is generally carried out by the manufacturer or on site in order to check functionality, structural component parts, and the like.
  • operating parameters of the gas turbine and first emission values are determined during a test run of this kind which is carried out in any case before putting the gas turbine into operation. This determination can be carried out directly, for example, by measuring individual operating parameters or first emission values, or also indirectly, for example, by measuring operating parameters and converting these parameters into other operating parameters.
  • an approximation function for example, a polynomial function, an exponential function, a trigonometric series, partially defined cubic splines, or the like, and to store only this function, i.e., the coefficients of a polynomial, for example.
  • Operating parameters of the gas turbine are determined again during operation. These may conform partially or wholly to the operating parameters determined during the test run. As will be explained in the following, it is also possible to use additional or different operating parameters. Those operating parameters that are determined anyway for monitoring, controlling or regulating the gas turbine, i.e., directly measured or calculated indirectly from other operating parameters, are preferably determined during operation and/or during the test run for determining emission values. In an advantageous manner, this further reduces the resources required for determining emission values according to the invention.
  • second emission values of the gas turbine which characterize the emission behavior of the gas turbine at the current operating point are then determined based on the operating parameters determined during operation and on the stored correlation between operating parameters and first emission values.
  • the operating parameters determined during operation can be used in a function as the one correlation between operating parameters and first emission values is stored.
  • the correlation is stored, for example, in the form of an operating map, the first emission values associated with the operating parameters determined during operation can be read out from the operating map and interpolated.
  • the first emission values resulting in accordance with the correlation for the operating parameters determined during operation can be identical to the second emission values characterizing the emission behavior of the gas turbine during operation.
  • the first emission values, particularly operating parameters determined in a corresponding manner during operation, can also be converted into second emission values as will be explained in more detail in the following.
  • a gas turbine temperature for example, the temperature of a medium flowing through the gas turbine, at the input of a low-pressure stage or high-pressure stage is often used as a monitoring variable and controlled variable for limiting regulation or to show given load levels of the gas turbine.
  • a gas turbine temperature of this kind is acquired and compared with a given or variable reference value. Control quantities for a guide vane system, a fuel supply, the opening of a bypass valve, or the like, are then determined according to a given control principle from the difference between these two values.
  • a gas turbine temperature of the kind mentioned above can be corrected corresponding to the ambient temperature by placing it in a functional relationship T4*(T4, T0) with the ambient temperature.
  • this operating parameter is particularly suitable for determining emission values according to the invention.
  • the first emission values comprise specific emission values, i.e., values which are scaled to a defined exhaust gas volume flow or exhaust gas mass flow. This makes it possible to combine different operating states of the gas turbine in a lower-ranking operating map and to use simpler measuring instruments which only measure specific quantities. It has been shown that these specific emission values depend substantially on a corrected gas turbine temperature so that there is a particularly simple correlation between this one operating parameter and the specific first emission values, and this correlation can be acquired in a simple, precise manner during the test run and stored with little effort.
  • an emission value determined on the basis of the correlation between operating parameters and specific first emission values is multiplied by the mass flow or volume flow of the exhaust gas.
  • the mass flow or volume flow of the exhaust gas can be measured directly.
  • an operating map in which the associated exhaust gas mass flow is stored in discrete pairs of corrected gas generator speed and ambient temperature can be calculated for a determined type of gas turbine.
  • the total amount of nitrogen oxides NOx per time unit is determined as second emission value.
  • the pressure of the supplied air or of the occurring exhaust gas is also measured during the operation of gas turbines. Therefore, taking into account the specific volume or density of the exhaust gas at a certain pressure, the exhaust gas volume flow can also be determined in a simple manner from the exhaust gas mass flow by dividing by the density associated with the measured pressure.
  • First emission values are advantageously determined during the test run with respect to standard values, for example, an oxygen content of 15% in dry exhaust gas. This determination of first emission values permits a simple determination of the emission characteristic of the gas turbine in operation while taking into account the boundary conditions prescribed by testing protocols, or the like.
  • the emission values of a gas turbine change particularly corresponding to the actually occurring load level. Therefore, different load levels of the gas turbine are advantageously moved through during the test run to determine the first emission values. As a rule, this is required anyway during a test run of the gas turbine in order to check for trouble-free functionality in all operating ranges and therefore does not give rise to additional costs.
  • the stored correlation between operating parameters and first emission values is more precise the greater the discretization of the load levels, and the load level or the gas turbine temperature which is corrected in accordance with it is preferably used as an operating parameter.
  • the emission values can be determined in operation in a simple, reliable and precise manner without the results being hampered by simplifications imposed by modeling or inaccuracies in the parameters.
  • the operating behavior of a gas turbine can change between the test run, which is usually carried out already by the gas turbine manufacturer, and the operation of the gas turbine that has been installed in a system. It has been shown that in this regard the correlation between operating parameters and emission values remains substantially the same qualitatively and only shifts by a constant offset.
  • the stored correlation between the operating parameters and the first emission values of the gas turbine is calibrated one or more times at one or more operating points of the gas turbine.
  • an actual emission value is determined at the operating point, or operating points, and is compared with the emission value yielded by the stored correlation.
  • the correlation i.e., a stored function or the values of a stored operating map, for example, is then multiplied by the quotient of the measured emission value and the emission value yielded by the correlation.
  • a device according to the invention for implementing the method described above can be provided as a separate device for a gas turbine, and the first emission values and operating parameters are supplied to it.
  • a device of this kind is preferably integrated in a control unit of the gas turbine in which the operating parameters and the first emission values are preferably at least partially present in any case.
  • the correlation between operating parameters and first emission values can be recorded separately during the test run, evaluated and then stored in the device.
  • the emission values determined by the device during the operation of the gas turbine are advantageously displayed and/or stored corresponding to the respective procedure for inspection, testing or monitoring. This can be carried out, for example, continuously or at discrete times, for example, periodically or by spot check.
  • an exhaust gas mass flow operating map is first prepared for a determined gas turbine.
  • the exhaust gas mass flow dm/dt in kg per hour is given by a model of the gas turbine depending on the respective load level (for example, 10%, 20%, . . . , 100%) and ambient temperature T0.
  • a specific first emission value NOx is determined at a determined ambient temperature T0 for different load levels.
  • the various load levels are moved through prompted by determined reference values for a corrected gas turbine temperature T4 having a substantially linear relationship to the load levels.
  • Other relationships T4*(T4, T0) can also be used as a basis.
  • This specific emission value NOx is stored for the respective operating parameter in the form of the corrected gas turbine temperature T4* resulting finally in a correlation NOx(T4*) in the form of an operating map for the gas turbine. Since the gas turbine value T4* is corrected corresponding to the ambient temperature T0, this operating parameter need no longer be taken into account, resulting in a very simple correlation.
  • the above-mentioned correlation NOx(T4*) is calibrated once.
  • the specific first emission value NOx is measured at a single operating point of the gas turbine characterized by a determined corrected gas turbine temperature T4*.
  • all of the values in the operating map in which the correlation NOx(T4*) is stored are multiplied by the quotient of the specific first emission value NOx measured in operation and by the specific first emission value NOx which would result corresponding to the stored correlation. While doing this, and also during operation, a specific first emission value for a corrected gas turbine temperature T4* lying between two load levels initiated during the test run can be linearly interpolated.
  • a second emission value representing the amount of nitrogen oxides NOx per hour can be determined at selected times during the operation of the gas turbine.
  • a specific first emission value NOx [mg/m 3 Norm ] is determined from the stored and calibrated correlation NOx(T4*) for the corrected gas turbine temperature T4* which actually occurs in operation and which is determined in any event for purposes of regulation and supplied to the control arrangement.
  • an exhaust gas mass flow is determined from this load level and the ambient temperature T0 in [kg/h] with reference to 15% oxygen in dry exhaust gas.
  • the exhaust gas volume flow is multiplied by the first specific emission value NOx [mg/m 3 Norm ] and, finally, supplies the amount of nitrogen oxides per hour NOx — 15% O2 dry exhaust as second emission value.
  • This value can be determined periodically, for example, and stored in a monitoring log.

Abstract

A method for determining emission values of a gas turbine comprises the following steps: performing a test run of the gas turbine; determining operating parameters (T0, T4, T4*, NGG, output) of the gas turbine during the test run; determining first emission values (NOx) during the test run; storing a correlation (NOx(T4*)) between the operating parameters and the first emission values; and, during operation, determining operating parameters (T0, T4, T4*, NGG) of the gas turbine; and determining second emission values (NOx 15% O2 dry exhaust) corresponding to the stored correlation (NOx(T4*)) between the operating parameters and the first emission values.

Description

  • The present invention is directed to a method for determining emission values of a gas turbine and to a device for carrying out such a method.
  • Determining emission values in gas turbines during operation is gaining in importance as the monitoring of emissions by operators, inspection authorities and the like becomes increasingly important. On one hand, gas turbines should be operated with the lowest possible emissions, which requires determination of the emission values of the gas turbine continuously or discretely, e.g., periodically or by spot check. On the other hand, adverse operating conditions of the gas turbine can be detected at an early stage on the basis of these emission values.
  • To this end, it was known previously in in-house practice to determine the emission values by means of additional in-house measuring instruments. However, this increases production costs and maintenance costs for the gas turbines. Further, the necessity of arranging measuring instruments at suitable locations hampers flexibility in designing the gas turbine and the associated machinery. Further, because the measuring instruments are preferably arranged in the hot exhaust gas flow of the gas turbine, they are highly stressed by environmental conditions, which likewise necessitates expensive constructions and more frequent replacement of measuring instruments.
  • Therefore, it is already known alternatively to calculate the emission values using a mathematical substitution model of the gas turbine based on operating parameters such as speed or the like. However, this calculation based on a substitution model is necessarily imprecise because of the necessary simplifications arising from modeling, the uncertainties in the model parameters, and the like, and also requires relatively elaborate resources for modeling new types of gas turbine and calibrating the model parameters.
  • Therefore, the object of the present invention is to make it possible to determine emission values of a gas turbine in a simple and precise manner.
  • This object is met by a method according to claim 1. Claim 9 claims protection for a corresponding device for carrying out a method of this type.
  • Before starting up or restarting a gas turbine, a test run of the gas turbine is generally carried out by the manufacturer or on site in order to check functionality, structural component parts, and the like. According to the invention, operating parameters of the gas turbine and first emission values are determined during a test run of this kind which is carried out in any case before putting the gas turbine into operation. This determination can be carried out directly, for example, by measuring individual operating parameters or first emission values, or also indirectly, for example, by measuring operating parameters and converting these parameters into other operating parameters.
  • Thermodynamic relationships exist between the operating parameters determined during the test run and first emission values. For example, the amount of nitrogen oxides NOx increases or decreases at certain temperatures or combustion levels in the gas turbine. Therefore, according to the invention, an association or correlation between the operating parameters determined during the test run and first emission values is stored. This may be carried out, for example, in the form of an operating map by associating a first emission value with one or more operating parameters. For operating parameter values between the values stored in the operating maps, the first emission values can be linearly interpolated, for example. It is also possible to approximate the correlation between operating parameters and first emission values by means of an approximation function, for example, a polynomial function, an exponential function, a trigonometric series, partially defined cubic splines, or the like, and to store only this function, i.e., the coefficients of a polynomial, for example.
  • Operating parameters of the gas turbine are determined again during operation. These may conform partially or wholly to the operating parameters determined during the test run. As will be explained in the following, it is also possible to use additional or different operating parameters. Those operating parameters that are determined anyway for monitoring, controlling or regulating the gas turbine, i.e., directly measured or calculated indirectly from other operating parameters, are preferably determined during operation and/or during the test run for determining emission values. In an advantageous manner, this further reduces the resources required for determining emission values according to the invention.
  • According to the invention, second emission values of the gas turbine which characterize the emission behavior of the gas turbine at the current operating point are then determined based on the operating parameters determined during operation and on the stored correlation between operating parameters and first emission values. For this purpose, for example, the operating parameters determined during operation can be used in a function as the one correlation between operating parameters and first emission values is stored. When the correlation is stored, for example, in the form of an operating map, the first emission values associated with the operating parameters determined during operation can be read out from the operating map and interpolated.
  • The first emission values resulting in accordance with the correlation for the operating parameters determined during operation can be identical to the second emission values characterizing the emission behavior of the gas turbine during operation. The first emission values, particularly operating parameters determined in a corresponding manner during operation, can also be converted into second emission values as will be explained in more detail in the following.
  • In gas turbines, a gas turbine temperature, for example, the temperature of a medium flowing through the gas turbine, at the input of a low-pressure stage or high-pressure stage is often used as a monitoring variable and controlled variable for limiting regulation or to show given load levels of the gas turbine. For this purpose, a gas turbine temperature of this kind is acquired and compared with a given or variable reference value. Control quantities for a guide vane system, a fuel supply, the opening of a bypass valve, or the like, are then determined according to a given control principle from the difference between these two values.
  • According to in-house practice, a gas turbine temperature of the kind mentioned above can be corrected corresponding to the ambient temperature by placing it in a functional relationship T4*(T4, T0) with the ambient temperature.
  • Since this measured gas turbine temperature or this gas turbine temperature corrected in accordance with the ambient temperature is determined during operation anyway and is generally proportional to a load level that has just been reached by the gas turbine, this operating parameter is particularly suitable for determining emission values according to the invention.
  • In a preferred embodiment of the present invention, the first emission values comprise specific emission values, i.e., values which are scaled to a defined exhaust gas volume flow or exhaust gas mass flow. This makes it possible to combine different operating states of the gas turbine in a lower-ranking operating map and to use simpler measuring instruments which only measure specific quantities. It has been shown that these specific emission values depend substantially on a corrected gas turbine temperature so that there is a particularly simple correlation between this one operating parameter and the specific first emission values, and this correlation can be acquired in a simple, precise manner during the test run and stored with little effort.
  • Often, however, interest is centered on absolute values, i.e., the absolute mass or absolute volume of exhaust gases, rather than on specific emission values. Therefore, in a preferred embodiment of the present invention, an emission value determined on the basis of the correlation between operating parameters and specific first emission values is multiplied by the mass flow or volume flow of the exhaust gas.
  • For this purpose, the mass flow or volume flow of the exhaust gas can be measured directly. However, it is also possible in an advantageous manner to determine the exhaust gas mass flow indirectly from operating parameters, for example, the corrected gas generator speed, the ambient pressure, and the ambient temperature. To this end, an operating map in which the associated exhaust gas mass flow is stored in discrete pairs of corrected gas generator speed and ambient temperature can be calculated for a determined type of gas turbine.
  • In a preferred embodiment, the total amount of nitrogen oxides NOx per time unit is determined as second emission value.
  • Usually, the pressure of the supplied air or of the occurring exhaust gas is also measured during the operation of gas turbines. Therefore, taking into account the specific volume or density of the exhaust gas at a certain pressure, the exhaust gas volume flow can also be determined in a simple manner from the exhaust gas mass flow by dividing by the density associated with the measured pressure.
  • Inspection records, testing regulations of inspection authorities, or the like, often specify determined standardized emission values for operation. In Germany, for example, it is required to indicate emission values for 15% oxygen in dry exhaust gas.
  • First emission values are advantageously determined during the test run with respect to standard values, for example, an oxygen content of 15% in dry exhaust gas. This determination of first emission values permits a simple determination of the emission characteristic of the gas turbine in operation while taking into account the boundary conditions prescribed by testing protocols, or the like.
  • The emission values of a gas turbine change particularly corresponding to the actually occurring load level. Therefore, different load levels of the gas turbine are advantageously moved through during the test run to determine the first emission values. As a rule, this is required anyway during a test run of the gas turbine in order to check for trouble-free functionality in all operating ranges and therefore does not give rise to additional costs. The stored correlation between operating parameters and first emission values is more precise the greater the discretization of the load levels, and the load level or the gas turbine temperature which is corrected in accordance with it is preferably used as an operating parameter.
  • Since the actual first emission values determined during a test run of the gas turbine are taken as a basis for the determination of emission values according to the invention, the emission values can be determined in operation in a simple, reliable and precise manner without the results being hampered by simplifications imposed by modeling or inaccuracies in the parameters. Also, the operating behavior of a gas turbine can change between the test run, which is usually carried out already by the gas turbine manufacturer, and the operation of the gas turbine that has been installed in a system. It has been shown that in this regard the correlation between operating parameters and emission values remains substantially the same qualitatively and only shifts by a constant offset. Therefore, in a preferred embodiment of the present invention, the stored correlation between the operating parameters and the first emission values of the gas turbine is calibrated one or more times at one or more operating points of the gas turbine. For this purpose, an actual emission value is determined at the operating point, or operating points, and is compared with the emission value yielded by the stored correlation. The correlation, i.e., a stored function or the values of a stored operating map, for example, is then multiplied by the quotient of the measured emission value and the emission value yielded by the correlation.
  • A device according to the invention for implementing the method described above can be provided as a separate device for a gas turbine, and the first emission values and operating parameters are supplied to it. However, a device of this kind is preferably integrated in a control unit of the gas turbine in which the operating parameters and the first emission values are preferably at least partially present in any case. The correlation between operating parameters and first emission values can be recorded separately during the test run, evaluated and then stored in the device.
  • The emission values determined by the device during the operation of the gas turbine are advantageously displayed and/or stored corresponding to the respective procedure for inspection, testing or monitoring. This can be carried out, for example, continuously or at discrete times, for example, periodically or by spot check.
  • Further details, features and advantages of the present invention follow from the embodiment example described in the following.
  • In a method according to an embodiment of the present invention, an exhaust gas mass flow operating map is first prepared for a determined gas turbine. The exhaust gas mass flow dm/dt in kg per hour is given by a model of the gas turbine depending on the respective load level (for example, 10%, 20%, . . . , 100%) and ambient temperature T0.
  • For the inspection of the gas turbine, a specific first emission value NOx is determined at a determined ambient temperature T0 for different load levels. To this end, the various load levels are moved through prompted by determined reference values for a corrected gas turbine temperature T4 having a substantially linear relationship to the load levels. This corrected gas turbine temperature T4* is given by the temperature at the low-pressure inlet of the gas turbine T4 from which one half of the ambient temperature 0.5·T0 is subtracted (T4*=T4−0.5·T0). Other relationships (T4*(T4, T0) can also be used as a basis.
  • This specific emission value NOx is stored for the respective operating parameter in the form of the corrected gas turbine temperature T4* resulting finally in a correlation NOx(T4*) in the form of an operating map for the gas turbine. Since the gas turbine value T4* is corrected corresponding to the ambient temperature T0, this operating parameter need no longer be taken into account, resulting in a very simple correlation.
  • During operation, i.e., when the gas turbine is installed on site in the corresponding system, the above-mentioned correlation NOx(T4*) is calibrated once. For this purpose, the specific first emission value NOx is measured at a single operating point of the gas turbine characterized by a determined corrected gas turbine temperature T4*. Subsequently, all of the values in the operating map in which the correlation NOx(T4*) is stored are multiplied by the quotient of the specific first emission value NOx measured in operation and by the specific first emission value NOx which would result corresponding to the stored correlation. While doing this, and also during operation, a specific first emission value for a corrected gas turbine temperature T4* lying between two load levels initiated during the test run can be linearly interpolated.
  • After this calibration, a second emission value representing the amount of nitrogen oxides NOx per hour can be determined at selected times during the operation of the gas turbine. To this end, a specific first emission value NOx [mg/m3 Norm] is determined from the stored and calibrated correlation NOx(T4*) for the corrected gas turbine temperature T4* which actually occurs in operation and which is determined in any event for purposes of regulation and supplied to the control arrangement. Aside from this, as was explained above, an exhaust gas mass flow is determined from this load level and the ambient temperature T0 in [kg/h] with reference to 15% oxygen in dry exhaust gas. The exhaust gas volume flow is multiplied by the first specific emission value NOx [mg/m3 Norm] and, finally, supplies the amount of nitrogen oxides per hour NOx15% O2 dry exhaust as second emission value. This value can be determined periodically, for example, and stored in a monitoring log.

Claims (16)

1-10. (canceled)
11. A method for determining emission values of a gas turbine comprising the steps of:
(a) carrying out a test run of the gas turbine;
(b) determining operating parameters (T0, T4, T4*, NGG, output) of the gas turbine during the test run;
(c) determining first emission values (NOx) during the test run;
(d) storing a correlation (NOx(T4*)) between the operating parameters and the first emission values; and
(e) determining during operation of the gas turbine operating parameters (T0, T4, T4*, NGG) of the gas turbine; and
(f) determining second emission values (NOx15% O2 dry exhaust) corresponding to the stored correlation (NOx(T4*)) between the operating parameters and the first emission values.
12. The method according to claim 11, wherein the operating parameters include one or more of an ambient temperature (T0), a gas turbine temperature (T4, T4*) at the inlet or outlet of the gas turbine, a load level (LS) of the gas turbine, a speed (NGG) of the gas turbine, an exhaust gas mass flow (dm/dt), an exhaust gas volume flow (dV/dt), a density (p) and a pressure (p) of one of the air supplied to the gas turbine and of the exhaust gas of the gas turbine.
13. The method according to claim 12, wherein the gas turbine temperature (T4) which is corrected in accordance with the ambient temperature (T0), is used as an operating parameter (T4*).
14. The method according to claim 12, wherein one of an exhaust gas mass flow (dm/dt) and an exhaust gas volume flow (dV/dt) is determined during operation from operating parameters (T0, T4*, p), and is used as an operating parameter (dV/dt).
15. The method according to claim 11, wherein the first emission values (NOx) comprise specific emission values scaled to an exhaust gas volume flow or exhaust gas mass flow.
16. The method according to claim 11, wherein the first emission values (NOx) are determined during the test run by measurement under standardized conditions.
17. The method according to claim 11, additionally comprising introducing during the test run different load levels (T4, T4*, LS) of the gas turbine.
18. The method according to claim 11, additionally comprising the step of calibrating the stored correlation (NOx(T4*)) between the operating parameters and the first emission values at least once prior to operation.
19. A device for a gas turbine which is designed to carry out the method according to claim 11.
20. The device according to claim 19, comprising one of an output device for outputting the second emission values and a storage device for storing the second emission values.
21. The method of claim 12, wherein the operating parameter is the gas turbine temperature at the inlet or outlet of the low pressure of high pressure stage of the gas turbine.
22. The method of claim 13, wherein the gas turbine temperature is corrected by reducing the gas turbine temperature of one half of the ambient temperature.
23. The method of claim 14, wherein one of an exhaust gas mass flow and exhaust gas volume flow is determined from an operating map.
24. The method of claim 16, wherein the first emission values are determined by measurement under standardized conditions comprising one of a determined moisture content of the exhaust gas and a determined oxygen proportion in the exhaust gas.
25. The method of claim 24, wherein the oxygen content in the exhaust gas comprises an oxygen content of 15% in the dry state.
US12/670,884 2007-08-01 2008-07-29 Method for Determining Emission Values Of A Gas Turbine, And Apparatus For Carrying Out Said Method Abandoned US20100212413A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007036084.5 2007-08-01
DE102007036084A DE102007036084A1 (en) 2007-08-01 2007-08-01 Method for determining emission values of a gas turbine and apparatus for carrying out the method
PCT/EP2008/006247 WO2009015868A2 (en) 2007-08-01 2008-07-29 Method for determining emission values of a gas turbine, and apparatus for carrying out said method

Publications (1)

Publication Number Publication Date
US20100212413A1 true US20100212413A1 (en) 2010-08-26

Family

ID=40175771

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/670,884 Abandoned US20100212413A1 (en) 2007-08-01 2008-07-29 Method for Determining Emission Values Of A Gas Turbine, And Apparatus For Carrying Out Said Method
US13/552,922 Active US8573037B2 (en) 2007-08-01 2012-07-19 Method for determining emission values of a gas turbine, and apparatus for carrying out said method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/552,922 Active US8573037B2 (en) 2007-08-01 2012-07-19 Method for determining emission values of a gas turbine, and apparatus for carrying out said method

Country Status (4)

Country Link
US (2) US20100212413A1 (en)
EP (1) EP2171240B1 (en)
DE (1) DE102007036084A1 (en)
WO (1) WO2009015868A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103049625A (en) * 2011-10-11 2013-04-17 新鼎系统股份有限公司 Forecast management method for air compressor operation
WO2014114656A1 (en) * 2013-01-23 2014-07-31 Siemens Aktiengesellschaft Method of operating a gas turbine for reduced ammonia slip

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8535308B2 (en) 2007-10-08 2013-09-17 Biosense Webster (Israel), Ltd. High-sensitivity pressure-sensing probe
US9101734B2 (en) 2008-09-09 2015-08-11 Biosense Webster, Inc. Force-sensing catheter with bonded center strut
US8600472B2 (en) 2008-12-30 2013-12-03 Biosense Webster (Israel), Ltd. Dual-purpose lasso catheter with irrigation using circumferentially arranged ring bump electrodes
US8475450B2 (en) 2008-12-30 2013-07-02 Biosense Webster, Inc. Dual-purpose lasso catheter with irrigation
US10688278B2 (en) 2009-11-30 2020-06-23 Biosense Webster (Israel), Ltd. Catheter with pressure measuring tip
US8608735B2 (en) 2009-12-30 2013-12-17 Biosense Webster (Israel) Ltd. Catheter with arcuate end section
US9220433B2 (en) 2011-06-30 2015-12-29 Biosense Webster (Israel), Ltd. Catheter with variable arcuate distal section
US9662169B2 (en) 2011-07-30 2017-05-30 Biosense Webster (Israel) Ltd. Catheter with flow balancing valve
CN102501068B (en) * 2011-11-16 2014-03-26 中国南方航空工业(集团)有限公司 Method for adjusting complete machine performance during assembling of engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703777A (en) * 1994-10-20 1997-12-30 Anr Pipeline Company Parametric emissions monitoring system having operating condition deviation feedback
US6230103B1 (en) * 1998-11-18 2001-05-08 Power Tech Associates, Inc. Method of determining concentration of exhaust components in a gas turbine engine
US20030191575A1 (en) * 2002-04-08 2003-10-09 Wright John F. System for estimating NOx content of exhaust gas produced by an internal combustion engine
US20030216855A1 (en) * 2002-05-15 2003-11-20 Liang Cho Y. NOx emission-control system using a virtual sensor
US20080282770A1 (en) * 2007-05-18 2008-11-20 Siemens Power Generation, Inc. MEMS emissions sensor system for a turbine engine
US20090056413A1 (en) * 2007-09-05 2009-03-05 General Electric Company Method And System For Predicting Gas Turbine Emissions Utilizing Meteorological Data

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20022752A1 (en) * 2002-12-23 2004-06-24 Nuovo Pignone Spa CONCENTRATION ESTIMATE AND MANAGEMENT SYSTEM
DE102004062406B4 (en) 2004-12-23 2007-08-09 Siemens Ag Method and device for determining a phase of an internal combustion engine
EP1693558A1 (en) * 2005-02-16 2006-08-23 ABB Technology AG Method of forecasting of pollutant emissions of combustion processes
DE102007002752A1 (en) 2007-01-18 2007-11-22 Daimlerchrysler Ag Monitoring method e.g. for monitoring fuel supply system of vehicle, involves monitoring fuel supply system of vehicle in which valves in closed section of fuel line with signals obtained and processed
EP2177741A1 (en) 2008-10-15 2010-04-21 Magneti Marelli Powertrain S.p.A. Method for diagnosing a gaseous fuel feeding system for an internal combustion engine
WO2010074224A1 (en) 2008-12-26 2010-07-01 三菱重工業株式会社 Gas engine with bore cool holes having spark plug

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703777A (en) * 1994-10-20 1997-12-30 Anr Pipeline Company Parametric emissions monitoring system having operating condition deviation feedback
US6230103B1 (en) * 1998-11-18 2001-05-08 Power Tech Associates, Inc. Method of determining concentration of exhaust components in a gas turbine engine
US20030191575A1 (en) * 2002-04-08 2003-10-09 Wright John F. System for estimating NOx content of exhaust gas produced by an internal combustion engine
US20030216855A1 (en) * 2002-05-15 2003-11-20 Liang Cho Y. NOx emission-control system using a virtual sensor
US20080282770A1 (en) * 2007-05-18 2008-11-20 Siemens Power Generation, Inc. MEMS emissions sensor system for a turbine engine
US7578177B2 (en) * 2007-05-18 2009-08-25 Siemens Energy, Inc. MEMS emissions sensor system for a turbine engine
US20090056413A1 (en) * 2007-09-05 2009-03-05 General Electric Company Method And System For Predicting Gas Turbine Emissions Utilizing Meteorological Data

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103049625A (en) * 2011-10-11 2013-04-17 新鼎系统股份有限公司 Forecast management method for air compressor operation
WO2014114656A1 (en) * 2013-01-23 2014-07-31 Siemens Aktiengesellschaft Method of operating a gas turbine for reduced ammonia slip
US9273612B2 (en) 2013-01-23 2016-03-01 Siemens Aktiengesellschaft Method of operating a gas turbine for reduced ammonia slip
RU2607139C1 (en) * 2013-01-23 2017-01-10 Сименс Акциенгезелльшафт Turbine operation method for reduction of ammonia slip

Also Published As

Publication number Publication date
WO2009015868A2 (en) 2009-02-05
US20120279289A1 (en) 2012-11-08
DE102007036084A1 (en) 2009-02-05
EP2171240B1 (en) 2016-07-27
EP2171240A2 (en) 2010-04-07
WO2009015868A3 (en) 2009-05-28
US8573037B2 (en) 2013-11-05

Similar Documents

Publication Publication Date Title
US8573037B2 (en) Method for determining emission values of a gas turbine, and apparatus for carrying out said method
US6226976B1 (en) Variable fuel heating value adaptive control for gas turbine engines
KR101974654B1 (en) Method and device for determining a modeling value for a physical variable in an engine system having an internal combustion engine
KR101775861B1 (en) Combustion control device and combustion control method for gas turbine, and program
EP2562612A1 (en) Methods and systems for gas turbine modeling using adaptive kalman filter
EP1387062A2 (en) Method/system for mapping a combustor in a gas turbine engine
CN107690523B (en) Air charge determination, engine controller and internal combustion engine
CA2608042A1 (en) Method and device for regulating the operating line of a gas turbine combustion chamber
US9249738B2 (en) Method for automatic closed-loop control of one or more combustion temperatures in a gas turbine installation and method for determination of the water content in the working fluid of a gas turbine installation
RU2619390C2 (en) Method and device for control of fuel supply for gas turbine
CA2891736C (en) Gas turbine fuel supply method and arrangement
JP5535883B2 (en) Control device and state quantity acquisition device
CN106596114A (en) Start calibration system and method for hybrid vehicle
US20150000297A1 (en) Method for determining at least one firing temperature for controlling a gas turbine and gas turbine for performing the method
US10612477B2 (en) Method for calculating a residual gas mass in a cylinder of an internal combustion engine and controller
KR101986275B1 (en) An internal combustion engine with fuel gas property measurement system
JP5615052B2 (en) Gas turbine plant and control method of gas turbine plant
Fulton et al. Exhaust manifold temperature observer model
US8965537B2 (en) Method for ascertaining process values for a process control
KR20180123438A (en) Method and control device for operating a gas engine
JP5810597B2 (en) Gaseous fuel measuring device and gas turbine control system
WO2023218930A1 (en) Gas turbine control device, gas turbine control method, and program
CN110319463B (en) System and method for calculating heat load by using air
Pojawa Characteristics Determination of LM-2500 Naval Gas Turbine in Aspect of Energy Modeling and Simulations
JP2010043617A (en) System and method for controlling outlet temperature of oxidation catalyst

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAN TURBO AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRUEGER, DIETMAR;SCHIMANSKI, THOMAS;KOCH, DIRK;SIGNING DATES FROM 20091217 TO 20100108;REEL/FRAME:023855/0639

AS Assignment

Owner name: MAN DIESEL & TURBO SE, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:MAN TURBO AG;REEL/FRAME:024855/0220

Effective date: 20100331

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE

AS Assignment

Owner name: MAN ENERGY SOLUTIONS SE, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:MAN DIESEL & TURBO SE;REEL/FRAME:048324/0495

Effective date: 20100319