US20100133004A1 - System and Method for Verifying Perforating Gun Status Prior to Perforating a Wellbore - Google Patents

System and Method for Verifying Perforating Gun Status Prior to Perforating a Wellbore Download PDF

Info

Publication number
US20100133004A1
US20100133004A1 US12/327,019 US32701908A US2010133004A1 US 20100133004 A1 US20100133004 A1 US 20100133004A1 US 32701908 A US32701908 A US 32701908A US 2010133004 A1 US2010133004 A1 US 2010133004A1
Authority
US
United States
Prior art keywords
perforating gun
communication system
leak
sensor
perforating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/327,019
Inventor
John D. Burleson
John H. Hales
Kevin D. Fink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Priority to US12/327,019 priority Critical patent/US20100133004A1/en
Assigned to HALLIBURTON ENERGY SERVICES, INC. reassignment HALLIBURTON ENERGY SERVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FINK, KEVIN D., BURLESON, JOHN D., HALES, JOHN H.
Priority to AU2009236038A priority patent/AU2009236038A1/en
Priority to EP09176479A priority patent/EP2194227A2/en
Priority to MX2009012791A priority patent/MX2009012791A/en
Priority to CA2686290A priority patent/CA2686290A1/en
Priority to BRPI0905283-6A priority patent/BRPI0905283A2/en
Publication of US20100133004A1 publication Critical patent/US20100133004A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/119Details, e.g. for locating perforating place or direction
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/117Detecting leaks, e.g. from tubing, by pressure testing
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves

Definitions

  • This invention relates, in general, to opening communication paths through a casing disposed in a wellbore and, in particular, to systems and methods for verifying the status of perforating guns prior to perforating the wellbore.
  • casing string After drilling the various sections of a subterranean wellbore that traverses a formation, individual lengths of relatively large diameter metal tubulars are typically secured together to form a casing string that is positioned within the wellbore.
  • This casing string increases the integrity of the wellbore and provides a path for producing fluids from the producing intervals to the surface.
  • the casing string is cemented within the wellbore.
  • hydraulic openings or perforations must be made through the casing string, the cement and a distance into the formation.
  • these perforations are created by detonating a series of shaped charges that are disposed within the casing string and are positioned adjacent to the formation.
  • one or more charge carriers or perforating guns are loaded with shaped charges that are connected with a detonator via a detonating cord.
  • the charge carriers are then connected within a tool string that is lowered into the cased wellbore at the end of a tubing string or other conveyance. Once the charge carriers are properly positioned in the wellbore such that the shaped charges are adjacent to the formation to be perforated, the shaped charges may be fired.
  • a select fire perforating gun assembly may be used such that once the first zone is perforated, subsequent zones may be perforated by repositioning and firing the previously unfired perforating guns without tripping out of the well.
  • the charge carriers protect the shaped charges disposed therein against wellbore fluids. It has been found, however, that perforating guns sometimes develop a leak, for example during the run in process, and become partially or completely filled with wellbore fluid. Once such fluid infiltration has occurred, if such a perforating gun is fired, there is a high likelihood that the perforating gun may split. Not only does such an occurrence result in a failed perforation operation, the explosive event may damage other wellbore equipment and may result in the split perforating gun becoming lodged in the wellbore. As such, an expensive recovery effort to retrieve the damaged equipment may be required and the entire completion may have to be abandoned resulting in the need to drill a sidetrack well.
  • the present invention disclosed herein provides systems and methods for bidirectional communication between a surface system and a downhole system that enables a determination of whether a perforating gun has experienced a leak prior to firing the perforating gun.
  • the systems and methods of the present invention enable such a determination by telemetering encoded signals from the surface system to one or more downhole systems requesting leak status and other environmental information and by telemetering encoded signals from the downhole systems to the surface system including the leak status or other requested environmental information.
  • the present invention is directed to a method for verifying perforating gun status prior to perforating the wellbore.
  • the method includes running a perforating gun having a leak sensor disposed therein to a target location within the wellbore on a tubing string, integrating a communication system with the tubing string, the communication system operable to communicate with the leak sensor, sending a first telemetry signal via the communication system to interrogate the leak sensor regarding a leak status of the perforating gun, returning a second telemetry signal from the leak sensor via the communication system including the leak status of the perforating gun and determining whether to operate the perforating gun based upon the leak status information.
  • the leak sensor may be a moisture sensor. In this embodiment, the method may include determining whether to operate the perforating gun based upon moisture status information. In another embodiment, the leak sensor may be a pressure sensor. In this embodiment, the method may include determining whether to operate the perforating gun based upon pressure status information. In a further embodiment, the communication system may be an acoustic communication system that is integrated with the tubing string. In this embodiment, the method may include sending an acoustic signal encoded with the leak status request to the leak sensor and returning an acoustic signal encoded with the leak status information from the leak sensor.
  • the present invention is directed to a method for verifying perforating gun system status prior to perforating a wellbore.
  • This method includes running the perforating gun system to a target location within the wellbore on a tubing string, the perforating gun system including a plurality of perforating guns each having a leak sensor disposed therein, integrating a communication system with the tubing string, the communication system operable to communicate with the leak sensors, sending first telemetry signals via the communication system to interrogate the leak sensors regarding a leak status of each of the perforating guns, returning second telemetry signals from the leak sensors via the communication system including the leak status of each of the perforating guns and determining whether to operate the perforating gun system based upon the leak status information.
  • the present invention is directed to a system for verifying perforating gun status prior to perforating a wellbore.
  • the system includes a perforating gun having a leak sensor disposed therein.
  • the perforating gun may be deployed on a tubing string and positioned at a target location within the wellbore.
  • a communication system is integrated with the tubing string.
  • the communication system is operable to communicate with the leak sensor.
  • a surface controller is operable to send a first telemetry signal via the communication system to interrogate the leak sensor regarding a leak status of the perforating gun, receive a second telemetry signal from the leak sensor via the communication system including the leak status of the perforating gun and determine whether to operate the perforating gun based upon the leak status information.
  • the present invention is directed to a method for verifying an environmental condition relative to a perforating gun disposed in a wellbore.
  • the method includes running the perforating gun having at least one environmental sensor associated therewith to a target location within the wellbore on a tubing string, integrating a communication system with the tubing string, the communication system operable to communicate with the environmental sensor, sending a first telemetry signal via the communication system to interrogate the environmental sensor regarding an environmental condition relative to the perforating gun and returning a second telemetry signal from the environmental sensor via the communication system including the environmental condition relative to the perforating gun.
  • the environmental sensor may include one or more of a moisture sensor, a pressure sensor, a high speed pressure sensor, a temperature sensor, an accelerometer, a shock load sensor, a liner displacement sensor, a depth sensor and a fluid sensor. These environmental sensors may be disposed interior of the perforating gun, exterior of the perforating gun or in the vicinity of the perforating gun.
  • the communication system may be an acoustic communication system that enables sending of an acoustic signal encoded with the environmental condition request and returning an acoustic signal encoded with the environmental condition information.
  • the present invention is directed to a system for verifying an environmental condition relative to a perforating gun disposed in a wellbore.
  • At least one environmental sensor is associated with the perforating gun which is positioned at a target location within the wellbore on a tubing string.
  • a communication system is integrated with the tubing string. The communication system is operable to communicate with the environmental sensor.
  • a surface controller is operable to send a first telemetry signal via the communication system to interrogate the environmental sensor regarding an environmental condition relative to the perforating gun and receive a second telemetry signal from the environmental sensor via the communication system including the environmental condition relative to the perforating gun.
  • FIG. 1 is a schematic illustration of an offshore oil and gas platform operating a system for verifying the status of perforating guns prior to perforating a wellbore that embodies principles of the present invention
  • FIG. 2 is a partial cut away view of a perforating gun for use in a system for verifying the status of perforating guns prior to perforating a wellbore that embodies principles of the present invention
  • FIG. 3 is a flow chart illustrating a method for verifying the status of perforating guns prior to perforating a wellbore that embodies principles of the present invention.
  • a system for verifying the status of perforating guns prior to perforating a wellbore is operating from an offshore oil and gas platform that is schematically illustrated and generally designated 10 .
  • a semi-submersible platform 12 is centered over a submerged oil and gas formation 14 located below sea floor 16 .
  • a subsea conduit 18 extends from deck 20 of platform 12 to wellhead installation 22 including subsea blow-out preventers 24 .
  • Platform 12 has a hoisting apparatus 26 and a derrick 28 for raising and lowering pipe strings such as work sting 30 .
  • a wellbore 32 extends through the various earth strata including formation 14 .
  • a casing 34 is cemented within wellbore 32 by cement 36 .
  • Work string 30 includes various tools such as a plurality of perforating guns 38 disposed in a generally horizontal portion of wellbore 32 and a communication system including communication nodes 42 , 44 , 46 , 48 , 50 .
  • a surface communication node or controller 40 provides a user interface including, for example, input and output devices such as one or more video screens or monitors, including touch screens, one or more keyboards or keypads, one or more pointing or navigation devices, as well as any other user interface devices that are currently known to those skilled in the art or are developed.
  • the user interface may take the form of a computer including a notebook computer.
  • surface controller 40 may include a logic module having various controllers, processors, memory components, operating systems, instructions, communication protocols and the like for implementing the systems and methods for verifying the status of perforating guns of the present invention.
  • Surface controller 40 is coupled to a bidirectional communication link that provides for communication between surface controller 40 and a node 42 that is positioned in the well as part of or attached to work string 30 .
  • the bidirectional communication link includes at least one communication path from surface controller 40 to node 42 and at least one communication path from node 42 to surface controller 40 .
  • bidirectional communication may be achieved via a half duplex channel which allows only one communication path to be open in any time period.
  • bidirectional communication is achieved via a full duplex channel which allows simultaneous communication over multiple communication paths. This can be achieved, for example, by providing independent hardwire connections or over a shared physical media through frequency division duplexing, time division duplexing, echo cancellation or similar technique.
  • the communication link may include one or more electrical conductors, optical conductors or other physical conductors.
  • Each of communication nodes 42 , 44 , 46 , 48 , 50 includes a transmitter, a receiver and a logic module that includes, for example, various fixed logic circuits, controllers, processors, memory components, operating systems, instructions, communication protocols and the like for implementing the systems and methods for verifying the status of perforating guns of the present invention.
  • each communication node 42 , 44 , 46 , 48 , 50 also includes a power supply such as a battery pack which may include a plurality of batteries, such as nickel cadmium, lithium, alkaline or other suitable power source, which are configured to provide proper operating voltage and current.
  • communication nodes 42 , 44 , 46 , 48 , 50 are operable to transmit and receive acoustic signals that are propagated over work string 30 .
  • the transmitters and receivers of communication nodes 42 , 44 , 46 , 48 , 50 preferably include one or more transducers in the form of stacks of piezoelectric ceramic crystals. It should be noted that a single transducer may operated as both the transmitter and the receiver of a given communication node. Any number of communication nodes may be operated in the system of the present invention with the number determined by the length of work string 30 , the noise in the wellbore, the type of communication media used and the like.
  • communication nodes 44 , 46 , 48 serve as repeater that are positioned to receive the acoustic signals transmitted along work string 30 at a point where the acoustic signals are of a magnitude sufficient for adequate reception.
  • the signals Once the acoustic signals reach a given node, the signals are converted to an electrical current which represents the information being transmitted and is fed to the logic module for processing. The current is then sent to the transducer to generate acoustic signals that are transmitted to the next node. In this manner, communication from node 40 to node 50 as well as from node 50 to node 40 is achieved.
  • each perforating gun 38 may include one or more sensors such as moisture sensors, pressure sensors or other leak sensors.
  • each of these sensors is individually addressable and communicates with communication node 50 via a wired connection but a short range wireless connection such as an electromagnetic communication link could alternatively be used.
  • the commands are received by communication node 42 and retransmitted as encoded acoustic signals along work string 30 which are received by communication node 44 .
  • Communication node 44 acts as a repeater to receive, process and retransmit the commands via acoustic signals along work string 30 which are received by communication node 46 .
  • communication node 46 forwards the commands to communication node 48 via acoustic signals along work string 30 and communication node 48 forwards the commands to communication node 50 via acoustic signals along work string 30 .
  • Communication node 50 then sends the commands to interrogate each of the sensors in perforating guns 38 .
  • the sensors obtain the desired data regarding the leak status of each perforating gun 38 and provide this information to communication node 50 .
  • Communication node 50 converts this information to acoustic signals that are sent to communication node 48 along work string 30 .
  • Communication nodes 48 , 46 , 44 act as repeaters, each receiving, processing and retransmitting the information in the form of acoustic signals along work string 30 .
  • Communication node 42 receives the acoustic signals send from communication node 44 and processes the information such that it can be forwarded to surface controller 40 for analysis.
  • the communication system may be used in a similar manner to enable, arm and fire perforating guns 38 using, for example, one or more electronic or hydraulic firing heads. Thereafter, the shaped charges within perforating guns 38 are sequentially fired, either in an uphole to downhole or a downhole to uphole direction. Upon detonation, the liners of the shaped charges form jets that create a spaced series of perforations extending outwardly through casing 34 , cement 36 and into formation 14 , thereby allow fluid communication between formation 14 and wellbore 32 .
  • wellbore 32 has an initial, generally vertical portion and a lower, generally deviated portion which is illustrated as being horizontal. It should be noted, however, by those skilled in the art that the system for verifying the status of perforating guns of the present invention is equally well-suited for use in other well configurations including, but not limited to, inclined wells, wells with restrictions, non-deviated wells and the like. In addition, even though FIG. 1 has been described with reference to an offshore environment, it should be understood by one skilled in the art that the principles described herein are equally well-suited for an onshore environment.
  • logic module As should be understood by those skilled in the art, any of the functions described with reference to a logic module herein can be implemented using software, hardware, including fixed logic circuitry, manual processing or a combination of these implementations.
  • the term “logic module” as used herein generally represents software, hardware or a combination of software and hardware.
  • the term “logic module” represents program code and/or declarative content, e.g., markup language content, that performs specified tasks when executed on a processing device or devices such as one or more processors or CPUs.
  • the program code can be stored in one or more computer readable memory devices.
  • the functionality of the logic modules may be implemented as distinct units in separate physical grouping or can correspond to a conceptual allocation of different tasks performed by a single software program and/or hardware unit.
  • the logic modules can be located at a single site such as implemented by a single processing device, or can be distributed over plural locations such as a notebook computer or personal digital assistant in combination with other physical devices that communication with one another via wired or wireless connections.
  • Perforating gun 100 for use in the system for verifying the status of perforating guns of the present invention that is generally designated 100 .
  • Perforating gun 100 includes a carrier 102 having a plurality of recesses, such as recess 104 , defined therein. Radially aligned with each of the recesses is a respective one of the plurality of shaped charges, such as shaped charge 106 .
  • the shaped charges are retained within carrier 102 by a support member 108 which includes an outer charge holder sleeve 110 and an inner charge holder sleeve 112 .
  • outer tube 110 supports the discharge ends of the shaped charges
  • inner tube 112 supports the initiation ends of the shaped charges.
  • Disposed within inner tube 112 is a detonating cord 116 .
  • the initiation ends of the shaped charges extend across the central longitudinal axis of perforating gun 100 allowing detonating cord 116 to connect to the high explosive within the shaped charges through an aperture defined at the apex of the housings of the shaped charges.
  • carrier 102 is sealed to protect the shaped charges disposed therein against wellbore fluids.
  • Each of the shaped charges such as shaped charge 106
  • a recess such as recess 104
  • the shaped charges are arranged in a spiral pattern such that each shaped charge is disposed on its own level or height and is to be individually detonated so that only one shaped charge is fired at a time. It should be noted, however, by those skilled in the art that alternate arrangements of shaped charges may be used, including cluster type designs wherein more than one shaped charge is at the same level and is detonated at the same time, without departing from the principles of the present invention.
  • perforating guns for use in the system for verifying the status of perforating guns of the present invention include one or more sensors used to obtain and provide information relative to environmental factors that surround perforating gun 100 .
  • perforating gun 100 includes a plurality of sensors such as sensor 120 positioned on the exterior of support member 108 , sensor 122 positioned on the interior of support member 108 , sensor 124 positioned on the interior of carrier 102 and sensor 126 positioned on the exterior of carrier 102 .
  • sensors 120 , 122 , 124 , 126 are preferably coupled to communication node 50 via a wired connection but other communication means are also possible and considered within the scope of the present invention.
  • Sensors 120 , 122 , 124 , 126 may be of the same type or different types and may be moisture sensors, humidity sensors, pressure sensors including high speed pressure sensors or fast gauge sensors, temperature sensors, accelerometers, shock load sensors, liner displacement sensors, depth sensors, fluid sensors, CO 2 sensors, H 2 S sensors, CO sensors, thermal decomposition sensors, casing collar locators, gamma detectors or any other types of sensors that are operable to provide information relating to the perforating gun environment.
  • Sensors 120 , 122 , 124 , 126 and similar sensors associated with the perforating gun system may be used for monitoring a variety of environmental conditions relative to the gun string such as the depth and orientation of the guns in the wellbore; the condition of the guns prior to firing including leak status, pressure, thermal decomposition and moisture; whether the guns fired properly including gun pressures, accelerations and shock loads; the near wellbore reservoir parameters including temperatures, hydrostatic pressures, peak pressures and transient pressures as well as other environmental conditions that are known to those skilled in the art.
  • the system of the present invention is operable to perform a variety of gun condition verifications such as those described above and including perforating gun depth and orientation verification and perforating guns condition verification. This verification is accomplished using the surface controller in conjunction with the communication nodes positioned along the work string to interrogate the sensors associated with the perforating guns for the desired information.
  • an interrogation command requesting the leak status of one of the perforating guns is sent to one of the downhole sensors via the communication nodes and the work string and that downhole sensor responds with the requested information also via the communication nodes and the work string (step 204 ).
  • the surface controller determines whether all the sensors have been interrogated (decision 206 ). If all of the sensors have not been interrogated, an interrogation command requesting the leak status of another of the perforating guns is sent to another of the downhole sensors and that downhole sensor responds with the requested information (step 208 ). This process continues until all of the sensors have been interrogated (decision 206 ).
  • the surface controller determines whether all of the perforating guns are dry (decision 210 ). If all of the perforating guns are dry, the surface controller may proceed with the remainder of the firing sequence including sending the appropriate enable, arm and fire commands via the communication nodes to a suitable firing head (step 212 ). If all of the perforating guns are not dry, the surface controller determines whether remedial action can be taken to allow the perforating event to occur (decision 214 ). Such remedial action may include repeating the verification process to determine if the out of range condition persists, identifying which guns have an out of range condition and removing those guns from the firing sequence or the like.
  • the surface controller determines that the perforating event should occur, then the surface controller may proceed with the remainder of the firing sequence (step 212 ). If in performing such remedial action it is determined that the perforating event may not occur, then the process ends.
  • the sensors associated with the perforating guns may continue gather and transmit information.
  • sensors such as the above described accelerometers, pressure sensors, high speed pressure sensors, temperature sensors and the like are used to obtain a variety of perforating gun and near wellbore reservoir data.
  • the high speed pressure sensors are operably to obtain pressure data in the millisecond range such that the pressure surge and associated pressure cycles created by the perforating event can be measured.
  • the accelerometers are operable to record shock data associated with the perforating event. Use of this and other data provide for a determination of the intensity level of the detonation associated with the perforating guns. During, immediately after or at a later time, this information is communicated from the sensors to the surface controller over the communication system.
  • This information may be used to determine the quality of the perforating event such as whether the initiator was detonated, whether any of the shaped charges within the perforating gun were detonated, whether all of the shaped charges within the perforating gun were detonated or whether only some of the shaped charges within the perforating gun were detonated. This information will allow the operator in substantially real time to determine, for example, if a zone should be reperforated.
  • the sensors associated with the perforating guns may continue gather and transmit information.
  • sensors such as the above described pressure sensors, temperature sensors, fluid sensors and the like are used to obtain a variety of near wellbore reservoir data. This data may be useful in designing the next phase of the completion such as whether to perform an acid job or a facture stimulation.

Abstract

A system for verifying perforating gun status prior to perforating a wellbore. The system includes a perforating gun (38) having a leak sensor disposed therein that is positionable at a target location within the wellbore on a tubing string (30). A communication system (42, 44, 46, 48, 50) is integrated with the tubing string (30). The communication system (42, 44, 46, 48, 50) is operable to communicate with the leak sensor. A surface controller (40) is operable to send a first telemetry signal via the communication system (42, 44, 46, 48, 50) to interrogate the leak sensor regarding a leak status of the perforating gun (38), receive a second telemetry signal from the leak sensor via the communication system (42, 44, 46, 48, 50) including the leak status of the perforating gun (38) and determine whether to operate the perforating gun (38) based upon the leak status information.

Description

    TECHNICAL FIELD OF THE INVENTION
  • This invention relates, in general, to opening communication paths through a casing disposed in a wellbore and, in particular, to systems and methods for verifying the status of perforating guns prior to perforating the wellbore.
  • BACKGROUND OF THE INVENTION
  • Without limiting the scope of the present invention, its background will be described in relation to perforating a wellbore, as an example.
  • After drilling the various sections of a subterranean wellbore that traverses a formation, individual lengths of relatively large diameter metal tubulars are typically secured together to form a casing string that is positioned within the wellbore. This casing string increases the integrity of the wellbore and provides a path for producing fluids from the producing intervals to the surface. Conventionally, the casing string is cemented within the wellbore. To produce fluids into the casing string, hydraulic openings or perforations must be made through the casing string, the cement and a distance into the formation.
  • Typically, these perforations are created by detonating a series of shaped charges that are disposed within the casing string and are positioned adjacent to the formation. Specifically, one or more charge carriers or perforating guns are loaded with shaped charges that are connected with a detonator via a detonating cord. The charge carriers are then connected within a tool string that is lowered into the cased wellbore at the end of a tubing string or other conveyance. Once the charge carriers are properly positioned in the wellbore such that the shaped charges are adjacent to the formation to be perforated, the shaped charges may be fired. If more than one downhole zone is to be perforated, a select fire perforating gun assembly may be used such that once the first zone is perforated, subsequent zones may be perforated by repositioning and firing the previously unfired perforating guns without tripping out of the well.
  • Typically, once the perforating guns are assembled, the charge carriers protect the shaped charges disposed therein against wellbore fluids. It has been found, however, that perforating guns sometimes develop a leak, for example during the run in process, and become partially or completely filled with wellbore fluid. Once such fluid infiltration has occurred, if such a perforating gun is fired, there is a high likelihood that the perforating gun may split. Not only does such an occurrence result in a failed perforation operation, the explosive event may damage other wellbore equipment and may result in the split perforating gun becoming lodged in the wellbore. As such, an expensive recovery effort to retrieve the damaged equipment may be required and the entire completion may have to be abandoned resulting in the need to drill a sidetrack well.
  • A need has therefore arisen for an apparatus and method for perforating a cased wellbore that create effective perforation tunnels. A need has also arisen for such an apparatus and method that provide for determining whether a perforating gun has experienced a leak prior to firing the perforating gun.
  • SUMMARY OF THE INVENTION
  • The present invention disclosed herein provides systems and methods for bidirectional communication between a surface system and a downhole system that enables a determination of whether a perforating gun has experienced a leak prior to firing the perforating gun. The systems and methods of the present invention enable such a determination by telemetering encoded signals from the surface system to one or more downhole systems requesting leak status and other environmental information and by telemetering encoded signals from the downhole systems to the surface system including the leak status or other requested environmental information.
  • In one aspect, the present invention is directed to a method for verifying perforating gun status prior to perforating the wellbore. The method includes running a perforating gun having a leak sensor disposed therein to a target location within the wellbore on a tubing string, integrating a communication system with the tubing string, the communication system operable to communicate with the leak sensor, sending a first telemetry signal via the communication system to interrogate the leak sensor regarding a leak status of the perforating gun, returning a second telemetry signal from the leak sensor via the communication system including the leak status of the perforating gun and determining whether to operate the perforating gun based upon the leak status information.
  • In one embodiment, the leak sensor may be a moisture sensor. In this embodiment, the method may include determining whether to operate the perforating gun based upon moisture status information. In another embodiment, the leak sensor may be a pressure sensor. In this embodiment, the method may include determining whether to operate the perforating gun based upon pressure status information. In a further embodiment, the communication system may be an acoustic communication system that is integrated with the tubing string. In this embodiment, the method may include sending an acoustic signal encoded with the leak status request to the leak sensor and returning an acoustic signal encoded with the leak status information from the leak sensor.
  • In another aspect, the present invention is directed to a method for verifying perforating gun system status prior to perforating a wellbore. This method includes running the perforating gun system to a target location within the wellbore on a tubing string, the perforating gun system including a plurality of perforating guns each having a leak sensor disposed therein, integrating a communication system with the tubing string, the communication system operable to communicate with the leak sensors, sending first telemetry signals via the communication system to interrogate the leak sensors regarding a leak status of each of the perforating guns, returning second telemetry signals from the leak sensors via the communication system including the leak status of each of the perforating guns and determining whether to operate the perforating gun system based upon the leak status information.
  • In a further aspect, the present invention is directed to a system for verifying perforating gun status prior to perforating a wellbore. The system includes a perforating gun having a leak sensor disposed therein. The perforating gun may be deployed on a tubing string and positioned at a target location within the wellbore. A communication system is integrated with the tubing string. The communication system is operable to communicate with the leak sensor. A surface controller is operable to send a first telemetry signal via the communication system to interrogate the leak sensor regarding a leak status of the perforating gun, receive a second telemetry signal from the leak sensor via the communication system including the leak status of the perforating gun and determine whether to operate the perforating gun based upon the leak status information.
  • In yet another aspect, the present invention is directed to a method for verifying an environmental condition relative to a perforating gun disposed in a wellbore. The method includes running the perforating gun having at least one environmental sensor associated therewith to a target location within the wellbore on a tubing string, integrating a communication system with the tubing string, the communication system operable to communicate with the environmental sensor, sending a first telemetry signal via the communication system to interrogate the environmental sensor regarding an environmental condition relative to the perforating gun and returning a second telemetry signal from the environmental sensor via the communication system including the environmental condition relative to the perforating gun.
  • In one embodiment, the environmental sensor may include one or more of a moisture sensor, a pressure sensor, a high speed pressure sensor, a temperature sensor, an accelerometer, a shock load sensor, a liner displacement sensor, a depth sensor and a fluid sensor. These environmental sensors may be disposed interior of the perforating gun, exterior of the perforating gun or in the vicinity of the perforating gun. In another embodiment, the communication system may be an acoustic communication system that enables sending of an acoustic signal encoded with the environmental condition request and returning an acoustic signal encoded with the environmental condition information.
  • In an additional aspect, the present invention is directed to a system for verifying an environmental condition relative to a perforating gun disposed in a wellbore. At least one environmental sensor is associated with the perforating gun which is positioned at a target location within the wellbore on a tubing string. A communication system is integrated with the tubing string. The communication system is operable to communicate with the environmental sensor. A surface controller is operable to send a first telemetry signal via the communication system to interrogate the environmental sensor regarding an environmental condition relative to the perforating gun and receive a second telemetry signal from the environmental sensor via the communication system including the environmental condition relative to the perforating gun.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the present invention, including its features and advantages, reference is now made to the detailed description of the invention, taken in conjunction with the accompanying drawings in which like numerals identify like parts and in which:
  • FIG. 1 is a schematic illustration of an offshore oil and gas platform operating a system for verifying the status of perforating guns prior to perforating a wellbore that embodies principles of the present invention;
  • FIG. 2 is a partial cut away view of a perforating gun for use in a system for verifying the status of perforating guns prior to perforating a wellbore that embodies principles of the present invention; and
  • FIG. 3 is a flow chart illustrating a method for verifying the status of perforating guns prior to perforating a wellbore that embodies principles of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts which can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention, and do not delimit the scope of the invention.
  • Referring initially to FIG. 1, a system for verifying the status of perforating guns prior to perforating a wellbore is operating from an offshore oil and gas platform that is schematically illustrated and generally designated 10. A semi-submersible platform 12 is centered over a submerged oil and gas formation 14 located below sea floor 16. A subsea conduit 18 extends from deck 20 of platform 12 to wellhead installation 22 including subsea blow-out preventers 24. Platform 12 has a hoisting apparatus 26 and a derrick 28 for raising and lowering pipe strings such as work sting 30.
  • A wellbore 32 extends through the various earth strata including formation 14. A casing 34 is cemented within wellbore 32 by cement 36. Work string 30 includes various tools such as a plurality of perforating guns 38 disposed in a generally horizontal portion of wellbore 32 and a communication system including communication nodes 42, 44, 46, 48, 50. In the illustrated embodiment, a surface communication node or controller 40 provides a user interface including, for example, input and output devices such as one or more video screens or monitors, including touch screens, one or more keyboards or keypads, one or more pointing or navigation devices, as well as any other user interface devices that are currently known to those skilled in the art or are developed. The user interface may take the form of a computer including a notebook computer. In addition, surface controller 40 may include a logic module having various controllers, processors, memory components, operating systems, instructions, communication protocols and the like for implementing the systems and methods for verifying the status of perforating guns of the present invention. Surface controller 40 is coupled to a bidirectional communication link that provides for communication between surface controller 40 and a node 42 that is positioned in the well as part of or attached to work string 30.
  • The bidirectional communication link includes at least one communication path from surface controller 40 to node 42 and at least one communication path from node 42 to surface controller 40. In certain embodiments, bidirectional communication may be achieved via a half duplex channel which allows only one communication path to be open in any time period. Preferably, bidirectional communication is achieved via a full duplex channel which allows simultaneous communication over multiple communication paths. This can be achieved, for example, by providing independent hardwire connections or over a shared physical media through frequency division duplexing, time division duplexing, echo cancellation or similar technique. In either case, the communication link may include one or more electrical conductors, optical conductors or other physical conductors.
  • Each of communication nodes 42, 44, 46, 48, 50 includes a transmitter, a receiver and a logic module that includes, for example, various fixed logic circuits, controllers, processors, memory components, operating systems, instructions, communication protocols and the like for implementing the systems and methods for verifying the status of perforating guns of the present invention. In addition, each communication node 42, 44, 46, 48, 50 also includes a power supply such as a battery pack which may include a plurality of batteries, such as nickel cadmium, lithium, alkaline or other suitable power source, which are configured to provide proper operating voltage and current.
  • In one embodiment, communication nodes 42, 44, 46, 48, 50 are operable to transmit and receive acoustic signals that are propagated over work string 30. In this case, the transmitters and receivers of communication nodes 42, 44, 46, 48, 50 preferably include one or more transducers in the form of stacks of piezoelectric ceramic crystals. It should be noted that a single transducer may operated as both the transmitter and the receiver of a given communication node. Any number of communication nodes may be operated in the system of the present invention with the number determined by the length of work string 30, the noise in the wellbore, the type of communication media used and the like. As illustrated, communication nodes 44, 46, 48 serve as repeater that are positioned to receive the acoustic signals transmitted along work string 30 at a point where the acoustic signals are of a magnitude sufficient for adequate reception. Once the acoustic signals reach a given node, the signals are converted to an electrical current which represents the information being transmitted and is fed to the logic module for processing. The current is then sent to the transducer to generate acoustic signals that are transmitted to the next node. In this manner, communication from node 40 to node 50 as well as from node 50 to node 40 is achieved.
  • When it is desired to perforate casing 34, work string 30 is lowered through casing 34 until the perforating guns 38 are properly positioned relative to formation 14. To verify the condition of perforating guns 38 prior to the perforating operation, an interrogation command may be sent from surface controller 40 to sensors disposed in perforating guns 38. For example, as discussed in greater detail below, each perforating gun 38 may include one or more sensors such as moisture sensors, pressure sensors or other leak sensors. Preferably, each of these sensors is individually addressable and communicates with communication node 50 via a wired connection but a short range wireless connection such as an electromagnetic communication link could alternatively be used.
  • Accordingly, when surface controller 40 sends interrogation commands to determine the leak status of perforating guns 38 to one or more of the sensors, the commands are received by communication node 42 and retransmitted as encoded acoustic signals along work string 30 which are received by communication node 44. Communication node 44 acts as a repeater to receive, process and retransmit the commands via acoustic signals along work string 30 which are received by communication node 46. Likewise, communication node 46 forwards the commands to communication node 48 via acoustic signals along work string 30 and communication node 48 forwards the commands to communication node 50 via acoustic signals along work string 30. Communication node 50 then sends the commands to interrogate each of the sensors in perforating guns 38. The sensors obtain the desired data regarding the leak status of each perforating gun 38 and provide this information to communication node 50. Communication node 50 converts this information to acoustic signals that are sent to communication node 48 along work string 30. Communication nodes 48, 46, 44 act as repeaters, each receiving, processing and retransmitting the information in the form of acoustic signals along work string 30. Communication node 42 receives the acoustic signals send from communication node 44 and processes the information such that it can be forwarded to surface controller 40 for analysis.
  • If the sensors report that no leaks have been identified within perforating guns 38, then the communication system may be used in a similar manner to enable, arm and fire perforating guns 38 using, for example, one or more electronic or hydraulic firing heads. Thereafter, the shaped charges within perforating guns 38 are sequentially fired, either in an uphole to downhole or a downhole to uphole direction. Upon detonation, the liners of the shaped charges form jets that create a spaced series of perforations extending outwardly through casing 34, cement 36 and into formation 14, thereby allow fluid communication between formation 14 and wellbore 32.
  • In the illustrated embodiment, wellbore 32 has an initial, generally vertical portion and a lower, generally deviated portion which is illustrated as being horizontal. It should be noted, however, by those skilled in the art that the system for verifying the status of perforating guns of the present invention is equally well-suited for use in other well configurations including, but not limited to, inclined wells, wells with restrictions, non-deviated wells and the like. In addition, even though FIG. 1 has been described with reference to an offshore environment, it should be understood by one skilled in the art that the principles described herein are equally well-suited for an onshore environment.
  • As should be understood by those skilled in the art, any of the functions described with reference to a logic module herein can be implemented using software, hardware, including fixed logic circuitry, manual processing or a combination of these implementations. As such, the term “logic module” as used herein generally represents software, hardware or a combination of software and hardware. For example, in the case of a software implementation, the term “logic module” represents program code and/or declarative content, e.g., markup language content, that performs specified tasks when executed on a processing device or devices such as one or more processors or CPUs. The program code can be stored in one or more computer readable memory devices. More generally, the functionality of the logic modules may be implemented as distinct units in separate physical grouping or can correspond to a conceptual allocation of different tasks performed by a single software program and/or hardware unit. The logic modules can be located at a single site such as implemented by a single processing device, or can be distributed over plural locations such as a notebook computer or personal digital assistant in combination with other physical devices that communication with one another via wired or wireless connections.
  • Referring next to FIG. 2, therein is depicted a perforating gun for use in the system for verifying the status of perforating guns of the present invention that is generally designated 100. Perforating gun 100 includes a carrier 102 having a plurality of recesses, such as recess 104, defined therein. Radially aligned with each of the recesses is a respective one of the plurality of shaped charges, such as shaped charge 106.
  • The shaped charges are retained within carrier 102 by a support member 108 which includes an outer charge holder sleeve 110 and an inner charge holder sleeve 112. In this configuration, outer tube 110 supports the discharge ends of the shaped charges, while inner tube 112 supports the initiation ends of the shaped charges. Disposed within inner tube 112 is a detonating cord 116. In the illustrated embodiment, the initiation ends of the shaped charges extend across the central longitudinal axis of perforating gun 100 allowing detonating cord 116 to connect to the high explosive within the shaped charges through an aperture defined at the apex of the housings of the shaped charges. In this configuration, carrier 102 is sealed to protect the shaped charges disposed therein against wellbore fluids.
  • Each of the shaped charges, such as shaped charge 106, is longitudinally and radially aligned with a recess, such as recess 104, in carrier 102 when perforating apparatus 100 is fully assembled. In the illustrated embodiment, the shaped charges are arranged in a spiral pattern such that each shaped charge is disposed on its own level or height and is to be individually detonated so that only one shaped charge is fired at a time. It should be noted, however, by those skilled in the art that alternate arrangements of shaped charges may be used, including cluster type designs wherein more than one shaped charge is at the same level and is detonated at the same time, without departing from the principles of the present invention.
  • As discussed above, perforating guns for use in the system for verifying the status of perforating guns of the present invention, such as perforating gun 100, include one or more sensors used to obtain and provide information relative to environmental factors that surround perforating gun 100. In the illustrated embodiment, perforating gun 100 includes a plurality of sensors such as sensor 120 positioned on the exterior of support member 108, sensor 122 positioned on the interior of support member 108, sensor 124 positioned on the interior of carrier 102 and sensor 126 positioned on the exterior of carrier 102. As discussed above, sensors 120, 122, 124, 126 are preferably coupled to communication node 50 via a wired connection but other communication means are also possible and considered within the scope of the present invention.
  • Sensors 120, 122, 124, 126 may be of the same type or different types and may be moisture sensors, humidity sensors, pressure sensors including high speed pressure sensors or fast gauge sensors, temperature sensors, accelerometers, shock load sensors, liner displacement sensors, depth sensors, fluid sensors, CO2 sensors, H2S sensors, CO sensors, thermal decomposition sensors, casing collar locators, gamma detectors or any other types of sensors that are operable to provide information relating to the perforating gun environment. Sensors 120, 122, 124, 126 and similar sensors associated with the perforating gun system may be used for monitoring a variety of environmental conditions relative to the gun string such as the depth and orientation of the guns in the wellbore; the condition of the guns prior to firing including leak status, pressure, thermal decomposition and moisture; whether the guns fired properly including gun pressures, accelerations and shock loads; the near wellbore reservoir parameters including temperatures, hydrostatic pressures, peak pressures and transient pressures as well as other environmental conditions that are known to those skilled in the art.
  • The operation of one embodiment of the present invention will now be described as process 200 with reference to FIG. 3. Once the perforating guns 38 are positioned at the target location in the wellbore (step 202) and prior to detonating the shaped charges, the system of the present invention is operable to perform a variety of gun condition verifications such as those described above and including perforating gun depth and orientation verification and perforating guns condition verification. This verification is accomplished using the surface controller in conjunction with the communication nodes positioned along the work string to interrogate the sensors associated with the perforating guns for the desired information. As an example, an interrogation command requesting the leak status of one of the perforating guns is sent to one of the downhole sensors via the communication nodes and the work string and that downhole sensor responds with the requested information also via the communication nodes and the work string (step 204). Next, the surface controller determines whether all the sensors have been interrogated (decision 206). If all of the sensors have not been interrogated, an interrogation command requesting the leak status of another of the perforating guns is sent to another of the downhole sensors and that downhole sensor responds with the requested information (step 208). This process continues until all of the sensors have been interrogated (decision 206).
  • Once all of the sensors have been interrogated, the surface controller determines whether all of the perforating guns are dry (decision 210). If all of the perforating guns are dry, the surface controller may proceed with the remainder of the firing sequence including sending the appropriate enable, arm and fire commands via the communication nodes to a suitable firing head (step 212). If all of the perforating guns are not dry, the surface controller determines whether remedial action can be taken to allow the perforating event to occur (decision 214). Such remedial action may include repeating the verification process to determine if the out of range condition persists, identifying which guns have an out of range condition and removing those guns from the firing sequence or the like. If in performing such remedial action the surface controller determines that the perforating event should occur, then the surface controller may proceed with the remainder of the firing sequence (step 212). If in performing such remedial action it is determined that the perforating event may not occur, then the process ends.
  • During the perforating event, the sensors associated with the perforating guns may continue gather and transmit information. Specifically, sensors such as the above described accelerometers, pressure sensors, high speed pressure sensors, temperature sensors and the like are used to obtain a variety of perforating gun and near wellbore reservoir data. For example, the high speed pressure sensors are operably to obtain pressure data in the millisecond range such that the pressure surge and associated pressure cycles created by the perforating event can be measured. Likewise, the accelerometers are operable to record shock data associated with the perforating event. Use of this and other data provide for a determination of the intensity level of the detonation associated with the perforating guns. During, immediately after or at a later time, this information is communicated from the sensors to the surface controller over the communication system. This information may be used to determine the quality of the perforating event such as whether the initiator was detonated, whether any of the shaped charges within the perforating gun were detonated, whether all of the shaped charges within the perforating gun were detonated or whether only some of the shaped charges within the perforating gun were detonated. This information will allow the operator in substantially real time to determine, for example, if a zone should be reperforated.
  • Likewise, following the perforating event, the sensors associated with the perforating guns may continue gather and transmit information. Specifically, sensors such as the above described pressure sensors, temperature sensors, fluid sensors and the like are used to obtain a variety of near wellbore reservoir data. This data may be useful in designing the next phase of the completion such as whether to perform an acid job or a facture stimulation.
  • While this invention has been described with a reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is, therefore, intended that the appended claims encompass any such modifications or embodiments.

Claims (25)

1. A method for verifying perforating gun status prior to perforating a wellbore comprising:
running a perforating gun having a leak sensor disposed therein to a target location within the wellbore on a tubing string;
integrating a communication system with the tubing string, the communication system operable to communicate with the leak sensor;
sending a first telemetry signal via the communication system to interrogate the leak sensor regarding a leak status of the perforating gun;
returning a second telemetry signal from the leak sensor via the communication system including the leak status of the perforating gun; and
determining whether to operate the perforating gun based upon the leak status information.
2. The method as recited in claim 1 wherein running the perforating gun having a leak sensor disposed therein further comprises running the perforating gun having a moisture sensor disposed therein.
3. The method as recited in claim 1 wherein running the perforating gun having a leak sensor disposed therein further comprises running the perforating gun having a pressure sensor disposed therein.
4. The method as recited in claim 1 wherein integrating a communication system with the tubing string further comprises integrating an acoustic communication system with the tubing string.
5. The method as recited in claim 1 wherein sending a first telemetry signal via the communication system to interrogate the leak sensor regarding a leak status of the perforating gun further comprises sending an acoustic signal encoded with the leak status request.
6. The method as recited in claim 1 wherein returning a second telemetry signal from the leak sensor via the communication system including the leak status of the perforating gun further comprises returning an acoustic signal encoded with the leak status information.
7. The method as recited in claim 1 wherein determining whether to operate the perforating gun based upon the leak status information further comprises determining whether to operate the perforating gun based upon moisture status information.
8. The method as recited in claim 1 wherein determining whether to operate the perforating gun based upon the leak status information further comprises determining whether to operate the perforating gun based upon pressure status information.
9. A method for verifying perforating gun system status prior to perforating a wellbore comprising:
running the perforating gun system to a target location within the wellbore on a tubing string, the perforating gun system including a plurality of perforating guns each having a leak sensor disposed therein;
integrating a communication system with the tubing string, the communication system operable to communicate with the leak sensors;
sending first telemetry signals via the communication system to interrogate the leak sensors regarding a leak status of each of the perforating guns;
returning second telemetry signals from the leak sensors via the communication system including the leak status of each of the perforating guns; and
determining whether to operate the perforating gun system based upon the leak status information.
10. The method as recited in claim 9 further comprises selecting the leak sensors from moisture sensors and pressure sensors.
11. The method as recited in claim 9 wherein integrating a communication system with the tubing string further comprises integrating an acoustic communication system with the tubing string.
12. A system for verifying perforating gun status prior to perforating a wellbore comprising:
a perforating gun having a leak sensor disposed therein positioned at a target location within the wellbore on a tubing string;
a communication system integrated with the tubing string, the communication system operable to communicate with the leak sensor; and
a surface controller operable to send a first telemetry signal via the communication system to interrogate the leak sensor regarding a leak status of the perforating gun, receive a second telemetry signal from the leak sensor via the communication system including the leak status of the perforating gun and determine whether to operate the perforating gun based upon the leak status information.
13. The system as recited in claim 12 wherein the leak sensor further comprises a moisture sensor.
14. The system as recited in claim 12 wherein the leak sensor further comprises a pressure sensor.
15. The system as recited in claim 12 wherein the communication system further comprises an acoustic communication system.
16. A method for verifying an environmental condition relative to a perforating gun disposed in a wellbore comprising:
running the perforating gun having at least one environmental sensor associated therewith to a target location within the wellbore on a tubing string;
integrating a communication system with the tubing string, the communication system operable to communicate with the environmental sensor;
sending a first telemetry signal via the communication system to interrogate the environmental sensor regarding an environmental condition relative to the perforating gun; and
returning a second telemetry signal from the environmental sensor via the communication system including the environmental condition relative to the perforating gun.
17. The method as recited in claim 16 wherein running the perforating gun having at least one environmental sensor associated therewith to a target location within the wellbore on a tubing string further comprises selecting the at least one environmental sensor from at least one of a moisture sensor, a pressure sensor, a temperature sensor, an accelerometer, a shock load sensor, a liner displacement sensor, a depth sensor and a fluid sensor.
18. The method as recited in claim 16 wherein running the perforating gun having at least one environmental sensor associated therewith to a target location within the wellbore on a tubing string further comprises disposing the at least one environmental sensor interior of the perforating gun.
19. The method as recited in claim 16 wherein running the perforating gun having at least one environmental sensor associated therewith to a target location within the wellbore on a tubing string further comprises disposing the at least one environmental sensor exterior of the perforating gun.
20. The method as recited in claim 16 wherein integrating a communication system with the tubing string further comprises integrating an acoustic communication system with the tubing string.
21. The method as recited in claim 16 wherein sending a first telemetry signal via the communication system to interrogate the environmental sensor regarding an environmental condition relative to the perforating gun further comprises sending an acoustic signal encoded with the environmental condition request.
22. The method as recited in claim 16 wherein returning a second telemetry signal from the environmental sensor via the communication system including the environmental condition relative to the perforating gun further comprises returning an acoustic signal encoded with the environmental condition information.
23. The method as recited in claim 16 further comprising determining whether to operate the perforating gun based upon the environmental condition.
24. A system for verifying an environmental condition relative to a perforating gun disposed in a wellbore comprising:
at least one environmental sensor associated with the perforating gun positioned at a target location within the wellbore on a tubing string;
a communication system integrated with the tubing string, the communication system operable to communicate with the environmental sensor; and
a surface controller operable to send a first telemetry signal via the communication system to interrogate the environmental sensor regarding an environmental condition relative to the perforating gun and receive a second telemetry signal from the environmental sensor via the communication system including the environmental condition relative to the perforating gun.
25. The system as recited in claim 24 wherein the communication system further comprises an acoustic communication system.
US12/327,019 2008-12-03 2008-12-03 System and Method for Verifying Perforating Gun Status Prior to Perforating a Wellbore Abandoned US20100133004A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/327,019 US20100133004A1 (en) 2008-12-03 2008-12-03 System and Method for Verifying Perforating Gun Status Prior to Perforating a Wellbore
AU2009236038A AU2009236038A1 (en) 2008-12-03 2009-11-12 System and method for verifying perforating gun status prior to perforating a wellbore
EP09176479A EP2194227A2 (en) 2008-12-03 2009-11-19 System and method for verifying perforating gun status prior to perforating a wellbore
MX2009012791A MX2009012791A (en) 2008-12-03 2009-11-25 System and method for verifying perforating gun status prior to perforating a wellbore.
CA2686290A CA2686290A1 (en) 2008-12-03 2009-11-25 System and method for verifying perforating gun status prior to perforating a wellbore
BRPI0905283-6A BRPI0905283A2 (en) 2008-12-03 2009-12-03 method for checking the status of a drill gun, method for checking the status of a drill gun system, system for checking the status of a drill gun, method for checking the environmental condition of a drill gun, and system for check the environmental condition of a drill barrel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/327,019 US20100133004A1 (en) 2008-12-03 2008-12-03 System and Method for Verifying Perforating Gun Status Prior to Perforating a Wellbore

Publications (1)

Publication Number Publication Date
US20100133004A1 true US20100133004A1 (en) 2010-06-03

Family

ID=41718521

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/327,019 Abandoned US20100133004A1 (en) 2008-12-03 2008-12-03 System and Method for Verifying Perforating Gun Status Prior to Perforating a Wellbore

Country Status (6)

Country Link
US (1) US20100133004A1 (en)
EP (1) EP2194227A2 (en)
AU (1) AU2009236038A1 (en)
BR (1) BRPI0905283A2 (en)
CA (1) CA2686290A1 (en)
MX (1) MX2009012791A (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090272529A1 (en) * 2008-04-30 2009-11-05 Halliburton Energy Services, Inc. System and Method for Selective Activation of Downhole Devices in a Tool String
WO2012078166A1 (en) * 2010-12-10 2012-06-14 Services Petroliers Schlumberger System and method for acoustic recording in well bottomhole assembly while firing a perforating gun
US20120152519A1 (en) * 2010-12-17 2012-06-21 Halliburton Energy Services, Inc. Sensing shock during well perforating
WO2012106636A3 (en) * 2011-02-03 2012-11-01 Baker Hughes Incorporated Device for verifying detonator connection
US8393393B2 (en) 2010-12-17 2013-03-12 Halliburton Energy Services, Inc. Coupler compliance tuning for mitigating shock produced by well perforating
US8397800B2 (en) 2010-12-17 2013-03-19 Halliburton Energy Services, Inc. Perforating string with longitudinal shock de-coupler
US8397814B2 (en) 2010-12-17 2013-03-19 Halliburton Energy Serivces, Inc. Perforating string with bending shock de-coupler
US20130105146A1 (en) * 2011-11-01 2013-05-02 Baker Hughes Incorporated Perforating Gun Spacer
WO2014046670A1 (en) * 2012-09-21 2014-03-27 Halliburton Energy Services Wireless communication for downhole tool strings
US8714252B2 (en) 2011-04-29 2014-05-06 Halliburton Energy Services, Inc. Shock load mitigation in a downhole perforation tool assembly
US8875796B2 (en) 2011-03-22 2014-11-04 Halliburton Energy Services, Inc. Well tool assemblies with quick connectors and shock mitigating capabilities
US8899320B2 (en) 2010-12-17 2014-12-02 Halliburton Energy Services, Inc. Well perforating with determination of well characteristics
US8978817B2 (en) 2012-12-01 2015-03-17 Halliburton Energy Services, Inc. Protection of electronic devices used with perforating guns
US8978749B2 (en) 2012-09-19 2015-03-17 Halliburton Energy Services, Inc. Perforation gun string energy propagation management with tuned mass damper
US9091152B2 (en) 2011-08-31 2015-07-28 Halliburton Energy Services, Inc. Perforating gun with internal shock mitigation
US20150240607A1 (en) * 2012-03-02 2015-08-27 John H. Hales Perforating apparatus and method having internal load path
US9297228B2 (en) 2012-04-03 2016-03-29 Halliburton Energy Services, Inc. Shock attenuator for gun system
US9598940B2 (en) 2012-09-19 2017-03-21 Halliburton Energy Services, Inc. Perforation gun string energy propagation management system and methods
US20170335681A1 (en) * 2015-01-19 2017-11-23 Halliburton Energy Services, Inc. Downhole Acoustic Telemetry Module with Multiple Communication Modes
FR3065480A1 (en) * 2017-04-19 2018-10-26 Halliburton Energy Services, Inc. SYSTEM AND METHOD FOR REGULATING A WELLBORE PRESSURE DURING PERFORATION
US10344583B2 (en) 2016-08-30 2019-07-09 Exxonmobil Upstream Research Company Acoustic housing for tubulars
US10364669B2 (en) 2016-08-30 2019-07-30 Exxonmobil Upstream Research Company Methods of acoustically communicating and wells that utilize the methods
US10408047B2 (en) 2015-01-26 2019-09-10 Exxonmobil Upstream Research Company Real-time well surveillance using a wireless network and an in-wellbore tool
US10415376B2 (en) 2016-08-30 2019-09-17 Exxonmobil Upstream Research Company Dual transducer communications node for downhole acoustic wireless networks and method employing same
US10465505B2 (en) 2016-08-30 2019-11-05 Exxonmobil Upstream Research Company Reservoir formation characterization using a downhole wireless network
US10487647B2 (en) 2016-08-30 2019-11-26 Exxonmobil Upstream Research Company Hybrid downhole acoustic wireless network
US10526888B2 (en) 2016-08-30 2020-01-07 Exxonmobil Upstream Research Company Downhole multiphase flow sensing methods
US10539010B2 (en) 2012-10-17 2020-01-21 Transocean Innovation Labs Ltd. Subsea processor for underwater drilling operations
US10590759B2 (en) 2016-08-30 2020-03-17 Exxonmobil Upstream Research Company Zonal isolation devices including sensing and wireless telemetry and methods of utilizing the same
US10597979B1 (en) 2018-09-17 2020-03-24 DynaEnergetics Europe GmbH Inspection tool for a perforating gun segment
US10669821B2 (en) * 2018-04-25 2020-06-02 G&H Diversified Manufacturing Lp Charge tube assembly
US10690794B2 (en) 2017-11-17 2020-06-23 Exxonmobil Upstream Research Company Method and system for performing operations using communications for a hydrocarbon system
US10697288B2 (en) 2017-10-13 2020-06-30 Exxonmobil Upstream Research Company Dual transducer communications node including piezo pre-tensioning for acoustic wireless networks and method employing same
US10697287B2 (en) 2016-08-30 2020-06-30 Exxonmobil Upstream Research Company Plunger lift monitoring via a downhole wireless network field
US10711600B2 (en) 2018-02-08 2020-07-14 Exxonmobil Upstream Research Company Methods of network peer identification and self-organization using unique tonal signatures and wells that use the methods
US10724363B2 (en) 2017-10-13 2020-07-28 Exxonmobil Upstream Research Company Method and system for performing hydrocarbon operations with mixed communication networks
US10771326B2 (en) 2017-10-13 2020-09-08 Exxonmobil Upstream Research Company Method and system for performing operations using communications
US10837276B2 (en) 2017-10-13 2020-11-17 Exxonmobil Upstream Research Company Method and system for performing wireless ultrasonic communications along a drilling string
US10844708B2 (en) 2017-12-20 2020-11-24 Exxonmobil Upstream Research Company Energy efficient method of retrieving wireless networked sensor data
US10883363B2 (en) 2017-10-13 2021-01-05 Exxonmobil Upstream Research Company Method and system for performing communications using aliasing
WO2021050278A1 (en) * 2019-09-13 2021-03-18 Baker Hughes Oilfield Operations Llc Monitoring of downhole components during deployment
US11035226B2 (en) 2017-10-13 2021-06-15 Exxomobil Upstream Research Company Method and system for performing operations with communications
US11131168B2 (en) * 2019-06-10 2021-09-28 Halliburton Energy Services, Inc. Oriented detection perforating device
US11156081B2 (en) 2017-12-29 2021-10-26 Exxonmobil Upstream Research Company Methods and systems for operating and maintaining a downhole wireless network
US11180986B2 (en) 2014-09-12 2021-11-23 Exxonmobil Upstream Research Company Discrete wellbore devices, hydrocarbon wells including a downhole communication network and the discrete wellbore devices and systems and methods including the same
US11199075B2 (en) * 2016-12-30 2021-12-14 Metrol Technology Ltd. Downhole energy harvesting
US11203927B2 (en) 2017-11-17 2021-12-21 Exxonmobil Upstream Research Company Method and system for performing wireless ultrasonic communications along tubular members
US11268378B2 (en) 2018-02-09 2022-03-08 Exxonmobil Upstream Research Company Downhole wireless communication node and sensor/tools interface
US11293280B2 (en) 2018-12-19 2022-04-05 Exxonmobil Upstream Research Company Method and system for monitoring post-stimulation operations through acoustic wireless sensor network
US20220120161A1 (en) * 2016-12-30 2022-04-21 Metrol Technology Ltd Downhole energy harvesting
US11313215B2 (en) 2017-12-29 2022-04-26 Exxonmobil Upstream Research Company Methods and systems for monitoring and optimizing reservoir stimulation operations
US11952886B2 (en) 2019-12-04 2024-04-09 ExxonMobil Technology and Engineering Company Method and system for monitoring sand production through acoustic wireless sensor network

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140152459A1 (en) * 2012-12-04 2014-06-05 Schlumberger Technology Corporation Wellsite System and Method for Multiple Carrier Frequency, Half Duplex Cable Telemetry
EP2932025A1 (en) * 2012-12-13 2015-10-21 Wintershall Holding GmbH Device and method for stimulating and cleaning a fluid-charged bore hole
CA2925116A1 (en) * 2013-09-27 2015-04-02 Transocean Innovation Labs, Ltd. Blowout preventer control and/or power and/or data communication systems and related methods
CA2960410C (en) 2014-09-26 2019-09-24 Exxonmobil Upstream Research Company Systems and methods for monitoring a condition of a tubular configured to convey a hydrocarbon fluid
GB2546061B (en) * 2015-10-12 2021-10-13 Silixa Ltd Method and system for downhole object location and orientation determination
US10982512B1 (en) * 2019-10-18 2021-04-20 Halliburton Energy Services, Inc. Assessing a downhole state of perforating explosives

Citations (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2810546A (en) * 1952-03-25 1957-10-22 Physics Corp Drill tool telemetering systems
US3205477A (en) * 1961-12-29 1965-09-07 David C Kalbfell Electroacoustical logging while drilling wells
US3588804A (en) * 1969-06-16 1971-06-28 Globe Universal Sciences Telemetering system for use in boreholes
US3697940A (en) * 1968-08-23 1972-10-10 Bohdan Jiri Berka Signalling system for bore logging
US3889228A (en) * 1973-11-16 1975-06-10 Sun Oil Co Two-way acoustic telemetering system
US4066995A (en) * 1975-01-12 1978-01-03 Sperry Rand Corporation Acoustic isolation for a telemetry system on a drill string
US4156229A (en) * 1977-01-31 1979-05-22 Sperry-Sun, Inc. Bit identification system for borehole acoustical telemetry system
US4206810A (en) * 1978-06-20 1980-06-10 Halliburton Company Method and apparatus for indicating the downhole arrival of a well tool
US4254481A (en) * 1979-08-10 1981-03-03 Sperry-Sun, Inc. Borehole telemetry system automatic gain control
US4283780A (en) * 1980-01-21 1981-08-11 Sperry Corporation Resonant acoustic transducer system for a well drilling string
US4293937A (en) * 1979-08-10 1981-10-06 Sperry-Sun, Inc. Borehole acoustic telemetry system
US4293936A (en) * 1976-12-30 1981-10-06 Sperry-Sun, Inc. Telemetry system
US4298970A (en) * 1979-08-10 1981-11-03 Sperry-Sun, Inc. Borehole acoustic telemetry system synchronous detector
US4302826A (en) * 1980-01-21 1981-11-24 Sperry Corporation Resonant acoustic transducer system for a well drilling string
US4314365A (en) * 1980-01-21 1982-02-02 Exxon Production Research Company Acoustic transmitter and method to produce essentially longitudinal, acoustic waves
US4320473A (en) * 1979-08-10 1982-03-16 Sperry Sun, Inc. Borehole acoustic telemetry clock synchronization system
US4390975A (en) * 1978-03-20 1983-06-28 Nl Sperry-Sun, Inc. Data transmission in a drill string
US4562559A (en) * 1981-01-19 1985-12-31 Nl Sperry Sun, Inc. Borehole acoustic telemetry system with phase shifted signal
US4908804A (en) * 1983-03-21 1990-03-13 Develco, Inc. Combinatorial coded telemetry in MWD
US5050132A (en) * 1990-11-07 1991-09-17 Teleco Oilfield Services Inc. Acoustic data transmission method
US5124953A (en) * 1991-07-26 1992-06-23 Teleco Oilfield Services Inc. Acoustic data transmission method
US5128901A (en) * 1988-04-21 1992-07-07 Teleco Oilfield Services Inc. Acoustic data transmission through a drillstring
US5148408A (en) * 1990-11-05 1992-09-15 Teleco Oilfield Services Inc. Acoustic data transmission method
US5373481A (en) * 1992-01-21 1994-12-13 Orban; Jacques Sonic vibration telemetering system
US5477505A (en) * 1994-09-09 1995-12-19 Sandia Corporation Downhole pipe selection for acoustic telemetry
US5546359A (en) * 1994-03-16 1996-08-13 Aker Engineering As Method and transmitter/receiver for transferring signals through a medium in pipes and hoses
US5568448A (en) * 1991-04-25 1996-10-22 Mitsubishi Denki Kabushiki Kaisha System for transmitting a signal
US5586083A (en) * 1994-08-25 1996-12-17 Harriburton Company Turbo siren signal generator for measurement while drilling systems
US5675325A (en) * 1995-10-20 1997-10-07 Japan National Oil Corporation Information transmitting apparatus using tube body
US5924499A (en) * 1997-04-21 1999-07-20 Halliburton Energy Services, Inc. Acoustic data link and formation property sensor for downhole MWD system
US5941307A (en) * 1995-02-09 1999-08-24 Baker Hughes Incorporated Production well telemetry system and method
US6023658A (en) * 1996-04-09 2000-02-08 Schlumberger Technology Corporation Noise detection and suppression system and method for wellbore telemetry
US6137747A (en) * 1998-05-29 2000-10-24 Halliburton Energy Services, Inc. Single point contact acoustic transmitter
US6175316B1 (en) * 1999-04-07 2001-01-16 Legerity Bin-to-bin differential encoding apparatus and method for a discrete multi-tone transmission system
US6272916B1 (en) * 1998-10-14 2001-08-14 Japan National Oil Corporation Acoustic wave transmission system and method for transmitting an acoustic wave to a drilling metal tubular member
US6320820B1 (en) * 1999-09-20 2001-11-20 Halliburton Energy Services, Inc. High data rate acoustic telemetry system
US6348876B1 (en) * 2000-06-22 2002-02-19 Halliburton Energy Services, Inc. Burst QAM downhole telemetry system
US6370082B1 (en) * 1999-06-14 2002-04-09 Halliburton Energy Services, Inc. Acoustic telemetry system with drilling noise cancellation
US6386288B1 (en) * 1999-04-27 2002-05-14 Marathon Oil Company Casing conveyed perforating process and apparatus
US6434084B1 (en) * 1999-11-22 2002-08-13 Halliburton Energy Services, Inc. Adaptive acoustic channel equalizer & tuning method
US6442105B1 (en) * 1995-02-09 2002-08-27 Baker Hughes Incorporated Acoustic transmission system
US6450258B2 (en) * 1995-10-20 2002-09-17 Baker Hughes Incorporated Method and apparatus for improved communication in a wellbore utilizing acoustic signals
US6535458B2 (en) * 1997-08-09 2003-03-18 Schlumberger Technology Corporation Method and apparatus for suppressing drillstring vibrations
US6557636B2 (en) * 2001-06-29 2003-05-06 Shell Oil Company Method and apparatus for perforating a well
US6583729B1 (en) * 2000-02-21 2003-06-24 Halliburton Energy Services, Inc. High data rate acoustic telemetry system using multipulse block signaling with a minimum distance receiver
US6880634B2 (en) * 2002-12-03 2005-04-19 Halliburton Energy Services, Inc. Coiled tubing acoustic telemetry system and method
US6909667B2 (en) * 2002-02-13 2005-06-21 Halliburton Energy Services, Inc. Dual channel downhole telemetry
US6912177B2 (en) * 1990-09-29 2005-06-28 Metrol Technology Limited Transmission of data in boreholes
US6933856B2 (en) * 2001-08-02 2005-08-23 Halliburton Energy Services, Inc. Adaptive acoustic transmitter controller apparatus and method
US6940420B2 (en) * 2001-12-18 2005-09-06 Schlumberger Technology Corporation Drill string telemetry system
US20050205248A1 (en) * 2004-03-17 2005-09-22 Baker Hughes, Incorporated Use of electromagnetic acoustic transducers in downhole cement evaluation
US20060249045A1 (en) * 2005-05-06 2006-11-09 Schlumberger Technology Corporation Initiator Activated By a Stimulus
US7163065B2 (en) * 2002-12-06 2007-01-16 Shell Oil Company Combined telemetry system and method
US20070057811A1 (en) * 2005-09-12 2007-03-15 Mehta Shyam B Downhole data transmission apparatus and methods
US20070062708A1 (en) * 2005-09-16 2007-03-22 Mcgregor Ronald W Modular well tool system
US20070125530A1 (en) * 1998-10-27 2007-06-07 Schlumberger Technology Corporation Interactive and/or secure activation of a tool
US7234519B2 (en) * 2003-04-08 2007-06-26 Halliburton Energy Services, Inc. Flexible piezoelectric for downhole sensing, actuation and health monitoring
US20070168132A1 (en) * 2005-05-06 2007-07-19 Schlumberger Technology Corporation Wellbore communication system and method
US7249636B2 (en) * 2004-12-09 2007-07-31 Schlumberger Technology Corporation System and method for communicating along a wellbore
US20070189119A1 (en) * 2006-02-14 2007-08-16 Baker Hughes Incorporated System and Method for Measurement While Drilling Telemetry
US20070188344A1 (en) * 2005-09-16 2007-08-16 Schlumberger Technology Center Wellbore telemetry system and method
US7273102B2 (en) * 2004-05-28 2007-09-25 Schlumberger Technology Corporation Remotely actuating a casing conveyed tool
US20070257810A1 (en) * 2006-04-11 2007-11-08 Xact Downhole Telemetry Inc. Telemetry transmitter optimization via inferred measured depth
US20070258326A1 (en) * 2006-04-19 2007-11-08 Xact Downhole Telemetry Inc. Telemetry wave detection apparatus and method
US20070257809A1 (en) * 2006-04-11 2007-11-08 Xact Downhole Telemetry Inc. Acoustic telemetry system optimization
US20070263488A1 (en) * 2006-05-10 2007-11-15 Schlumberger Technology Corporation Wellbore telemetry and noise cancellation systems and method for the same
US20080030367A1 (en) * 2006-07-24 2008-02-07 Fink Kevin D Shear coupled acoustic telemetry system
US7339494B2 (en) * 2004-07-01 2008-03-04 Halliburton Energy Services, Inc. Acoustic telemetry transceiver
US7350448B2 (en) * 2003-01-09 2008-04-01 Shell Oil Company Perforating apparatus, firing assembly, and method
US20090084535A1 (en) * 2007-09-28 2009-04-02 Schlumberger Technology Corporation Apparatus string for use in a wellbore
US7557492B2 (en) * 2006-07-24 2009-07-07 Halliburton Energy Services, Inc. Thermal expansion matching for acoustic telemetry system
US7590029B2 (en) * 2005-02-24 2009-09-15 The Charles Stark Draper Laboratory, Inc. Methods and systems for communicating data through a pipe

Patent Citations (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2810546A (en) * 1952-03-25 1957-10-22 Physics Corp Drill tool telemetering systems
US3205477A (en) * 1961-12-29 1965-09-07 David C Kalbfell Electroacoustical logging while drilling wells
US3697940A (en) * 1968-08-23 1972-10-10 Bohdan Jiri Berka Signalling system for bore logging
US3588804A (en) * 1969-06-16 1971-06-28 Globe Universal Sciences Telemetering system for use in boreholes
US3889228A (en) * 1973-11-16 1975-06-10 Sun Oil Co Two-way acoustic telemetering system
US4066995A (en) * 1975-01-12 1978-01-03 Sperry Rand Corporation Acoustic isolation for a telemetry system on a drill string
US4293936A (en) * 1976-12-30 1981-10-06 Sperry-Sun, Inc. Telemetry system
US4156229A (en) * 1977-01-31 1979-05-22 Sperry-Sun, Inc. Bit identification system for borehole acoustical telemetry system
US4390975A (en) * 1978-03-20 1983-06-28 Nl Sperry-Sun, Inc. Data transmission in a drill string
US4206810A (en) * 1978-06-20 1980-06-10 Halliburton Company Method and apparatus for indicating the downhole arrival of a well tool
US4293937A (en) * 1979-08-10 1981-10-06 Sperry-Sun, Inc. Borehole acoustic telemetry system
US4298970A (en) * 1979-08-10 1981-11-03 Sperry-Sun, Inc. Borehole acoustic telemetry system synchronous detector
US4320473A (en) * 1979-08-10 1982-03-16 Sperry Sun, Inc. Borehole acoustic telemetry clock synchronization system
US4254481A (en) * 1979-08-10 1981-03-03 Sperry-Sun, Inc. Borehole telemetry system automatic gain control
US4302826A (en) * 1980-01-21 1981-11-24 Sperry Corporation Resonant acoustic transducer system for a well drilling string
US4314365A (en) * 1980-01-21 1982-02-02 Exxon Production Research Company Acoustic transmitter and method to produce essentially longitudinal, acoustic waves
US4283780A (en) * 1980-01-21 1981-08-11 Sperry Corporation Resonant acoustic transducer system for a well drilling string
US4562559A (en) * 1981-01-19 1985-12-31 Nl Sperry Sun, Inc. Borehole acoustic telemetry system with phase shifted signal
US4908804A (en) * 1983-03-21 1990-03-13 Develco, Inc. Combinatorial coded telemetry in MWD
US5128901A (en) * 1988-04-21 1992-07-07 Teleco Oilfield Services Inc. Acoustic data transmission through a drillstring
US6912177B2 (en) * 1990-09-29 2005-06-28 Metrol Technology Limited Transmission of data in boreholes
US5148408A (en) * 1990-11-05 1992-09-15 Teleco Oilfield Services Inc. Acoustic data transmission method
US5050132A (en) * 1990-11-07 1991-09-17 Teleco Oilfield Services Inc. Acoustic data transmission method
US5568448A (en) * 1991-04-25 1996-10-22 Mitsubishi Denki Kabushiki Kaisha System for transmitting a signal
US5124953A (en) * 1991-07-26 1992-06-23 Teleco Oilfield Services Inc. Acoustic data transmission method
US5373481A (en) * 1992-01-21 1994-12-13 Orban; Jacques Sonic vibration telemetering system
US5546359A (en) * 1994-03-16 1996-08-13 Aker Engineering As Method and transmitter/receiver for transferring signals through a medium in pipes and hoses
US5586083A (en) * 1994-08-25 1996-12-17 Harriburton Company Turbo siren signal generator for measurement while drilling systems
US5477505A (en) * 1994-09-09 1995-12-19 Sandia Corporation Downhole pipe selection for acoustic telemetry
US5941307A (en) * 1995-02-09 1999-08-24 Baker Hughes Incorporated Production well telemetry system and method
US6464011B2 (en) * 1995-02-09 2002-10-15 Baker Hughes Incorporated Production well telemetry system and method
US6192988B1 (en) * 1995-02-09 2001-02-27 Baker Hughes Incorporated Production well telemetry system and method
US6442105B1 (en) * 1995-02-09 2002-08-27 Baker Hughes Incorporated Acoustic transmission system
US6450258B2 (en) * 1995-10-20 2002-09-17 Baker Hughes Incorporated Method and apparatus for improved communication in a wellbore utilizing acoustic signals
US5675325A (en) * 1995-10-20 1997-10-07 Japan National Oil Corporation Information transmitting apparatus using tube body
US6023658A (en) * 1996-04-09 2000-02-08 Schlumberger Technology Corporation Noise detection and suppression system and method for wellbore telemetry
US5924499A (en) * 1997-04-21 1999-07-20 Halliburton Energy Services, Inc. Acoustic data link and formation property sensor for downhole MWD system
US6535458B2 (en) * 1997-08-09 2003-03-18 Schlumberger Technology Corporation Method and apparatus for suppressing drillstring vibrations
US6137747A (en) * 1998-05-29 2000-10-24 Halliburton Energy Services, Inc. Single point contact acoustic transmitter
US6272916B1 (en) * 1998-10-14 2001-08-14 Japan National Oil Corporation Acoustic wave transmission system and method for transmitting an acoustic wave to a drilling metal tubular member
US20070125530A1 (en) * 1998-10-27 2007-06-07 Schlumberger Technology Corporation Interactive and/or secure activation of a tool
US7520323B2 (en) * 1998-10-27 2009-04-21 Schlumberger Technology Corporation Interactive and/or secure activation of a tool
US6175316B1 (en) * 1999-04-07 2001-01-16 Legerity Bin-to-bin differential encoding apparatus and method for a discrete multi-tone transmission system
US6386288B1 (en) * 1999-04-27 2002-05-14 Marathon Oil Company Casing conveyed perforating process and apparatus
US6370082B1 (en) * 1999-06-14 2002-04-09 Halliburton Energy Services, Inc. Acoustic telemetry system with drilling noise cancellation
US6320820B1 (en) * 1999-09-20 2001-11-20 Halliburton Energy Services, Inc. High data rate acoustic telemetry system
US6434084B1 (en) * 1999-11-22 2002-08-13 Halliburton Energy Services, Inc. Adaptive acoustic channel equalizer & tuning method
US6583729B1 (en) * 2000-02-21 2003-06-24 Halliburton Energy Services, Inc. High data rate acoustic telemetry system using multipulse block signaling with a minimum distance receiver
US6348876B1 (en) * 2000-06-22 2002-02-19 Halliburton Energy Services, Inc. Burst QAM downhole telemetry system
US6557636B2 (en) * 2001-06-29 2003-05-06 Shell Oil Company Method and apparatus for perforating a well
US6933856B2 (en) * 2001-08-02 2005-08-23 Halliburton Energy Services, Inc. Adaptive acoustic transmitter controller apparatus and method
US6940420B2 (en) * 2001-12-18 2005-09-06 Schlumberger Technology Corporation Drill string telemetry system
US6909667B2 (en) * 2002-02-13 2005-06-21 Halliburton Energy Services, Inc. Dual channel downhole telemetry
US6880634B2 (en) * 2002-12-03 2005-04-19 Halliburton Energy Services, Inc. Coiled tubing acoustic telemetry system and method
US7163065B2 (en) * 2002-12-06 2007-01-16 Shell Oil Company Combined telemetry system and method
US7350448B2 (en) * 2003-01-09 2008-04-01 Shell Oil Company Perforating apparatus, firing assembly, and method
US7234519B2 (en) * 2003-04-08 2007-06-26 Halliburton Energy Services, Inc. Flexible piezoelectric for downhole sensing, actuation and health monitoring
US7325605B2 (en) * 2003-04-08 2008-02-05 Halliburton Energy Services, Inc. Flexible piezoelectric for downhole sensing, actuation and health monitoring
US20050205248A1 (en) * 2004-03-17 2005-09-22 Baker Hughes, Incorporated Use of electromagnetic acoustic transducers in downhole cement evaluation
US7273102B2 (en) * 2004-05-28 2007-09-25 Schlumberger Technology Corporation Remotely actuating a casing conveyed tool
US7339494B2 (en) * 2004-07-01 2008-03-04 Halliburton Energy Services, Inc. Acoustic telemetry transceiver
US7249636B2 (en) * 2004-12-09 2007-07-31 Schlumberger Technology Corporation System and method for communicating along a wellbore
US7590029B2 (en) * 2005-02-24 2009-09-15 The Charles Stark Draper Laboratory, Inc. Methods and systems for communicating data through a pipe
US20070168132A1 (en) * 2005-05-06 2007-07-19 Schlumberger Technology Corporation Wellbore communication system and method
US20060249045A1 (en) * 2005-05-06 2006-11-09 Schlumberger Technology Corporation Initiator Activated By a Stimulus
US20070057811A1 (en) * 2005-09-12 2007-03-15 Mehta Shyam B Downhole data transmission apparatus and methods
US20070188344A1 (en) * 2005-09-16 2007-08-16 Schlumberger Technology Center Wellbore telemetry system and method
US20070062708A1 (en) * 2005-09-16 2007-03-22 Mcgregor Ronald W Modular well tool system
US20070189119A1 (en) * 2006-02-14 2007-08-16 Baker Hughes Incorporated System and Method for Measurement While Drilling Telemetry
US20070257810A1 (en) * 2006-04-11 2007-11-08 Xact Downhole Telemetry Inc. Telemetry transmitter optimization via inferred measured depth
US20070257809A1 (en) * 2006-04-11 2007-11-08 Xact Downhole Telemetry Inc. Acoustic telemetry system optimization
US20070258326A1 (en) * 2006-04-19 2007-11-08 Xact Downhole Telemetry Inc. Telemetry wave detection apparatus and method
US20070263488A1 (en) * 2006-05-10 2007-11-15 Schlumberger Technology Corporation Wellbore telemetry and noise cancellation systems and method for the same
US20080030367A1 (en) * 2006-07-24 2008-02-07 Fink Kevin D Shear coupled acoustic telemetry system
US7557492B2 (en) * 2006-07-24 2009-07-07 Halliburton Energy Services, Inc. Thermal expansion matching for acoustic telemetry system
US20090084535A1 (en) * 2007-09-28 2009-04-02 Schlumberger Technology Corporation Apparatus string for use in a wellbore

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090272529A1 (en) * 2008-04-30 2009-11-05 Halliburton Energy Services, Inc. System and Method for Selective Activation of Downhole Devices in a Tool String
US7980309B2 (en) * 2008-04-30 2011-07-19 Halliburton Energy Services, Inc. Method for selective activation of downhole devices in a tool string
WO2012078166A1 (en) * 2010-12-10 2012-06-14 Services Petroliers Schlumberger System and method for acoustic recording in well bottomhole assembly while firing a perforating gun
US8490686B2 (en) 2010-12-17 2013-07-23 Halliburton Energy Services, Inc. Coupler compliance tuning for mitigating shock produced by well perforating
US8899320B2 (en) 2010-12-17 2014-12-02 Halliburton Energy Services, Inc. Well perforating with determination of well characteristics
US8393393B2 (en) 2010-12-17 2013-03-12 Halliburton Energy Services, Inc. Coupler compliance tuning for mitigating shock produced by well perforating
US8397800B2 (en) 2010-12-17 2013-03-19 Halliburton Energy Services, Inc. Perforating string with longitudinal shock de-coupler
US8397814B2 (en) 2010-12-17 2013-03-19 Halliburton Energy Serivces, Inc. Perforating string with bending shock de-coupler
US8408286B2 (en) 2010-12-17 2013-04-02 Halliburton Energy Services, Inc. Perforating string with longitudinal shock de-coupler
US20120152519A1 (en) * 2010-12-17 2012-06-21 Halliburton Energy Services, Inc. Sensing shock during well perforating
US8985200B2 (en) * 2010-12-17 2015-03-24 Halliburton Energy Services, Inc. Sensing shock during well perforating
EP2652264A4 (en) * 2010-12-17 2015-05-06 Halliburton Energy Services Inc Well perforating with determination of well characteristics
US8695506B2 (en) 2011-02-03 2014-04-15 Baker Hughes Incorporated Device for verifying detonator connection
WO2012106636A3 (en) * 2011-02-03 2012-11-01 Baker Hughes Incorporated Device for verifying detonator connection
US8875796B2 (en) 2011-03-22 2014-11-04 Halliburton Energy Services, Inc. Well tool assemblies with quick connectors and shock mitigating capabilities
US9206675B2 (en) 2011-03-22 2015-12-08 Halliburton Energy Services, Inc Well tool assemblies with quick connectors and shock mitigating capabilities
US8714252B2 (en) 2011-04-29 2014-05-06 Halliburton Energy Services, Inc. Shock load mitigation in a downhole perforation tool assembly
US8714251B2 (en) 2011-04-29 2014-05-06 Halliburton Energy Services, Inc. Shock load mitigation in a downhole perforation tool assembly
US8881816B2 (en) 2011-04-29 2014-11-11 Halliburton Energy Services, Inc. Shock load mitigation in a downhole perforation tool assembly
US9091152B2 (en) 2011-08-31 2015-07-28 Halliburton Energy Services, Inc. Perforating gun with internal shock mitigation
US20130105146A1 (en) * 2011-11-01 2013-05-02 Baker Hughes Incorporated Perforating Gun Spacer
US8844625B2 (en) * 2011-11-01 2014-09-30 Baker Hughes Incorporated Perforating gun spacer
US10337299B2 (en) * 2012-03-02 2019-07-02 Halliburton Energy Services, Inc. Perforating apparatus and method having internal load path
US20150240607A1 (en) * 2012-03-02 2015-08-27 John H. Hales Perforating apparatus and method having internal load path
US9297228B2 (en) 2012-04-03 2016-03-29 Halliburton Energy Services, Inc. Shock attenuator for gun system
US9598940B2 (en) 2012-09-19 2017-03-21 Halliburton Energy Services, Inc. Perforation gun string energy propagation management system and methods
US8978749B2 (en) 2012-09-19 2015-03-17 Halliburton Energy Services, Inc. Perforation gun string energy propagation management with tuned mass damper
WO2014046670A1 (en) * 2012-09-21 2014-03-27 Halliburton Energy Services Wireless communication for downhole tool strings
US9523271B2 (en) 2012-09-21 2016-12-20 Halliburton Energy Services, Inc. Wireless communication for downhole tool strings
US10539010B2 (en) 2012-10-17 2020-01-21 Transocean Innovation Labs Ltd. Subsea processor for underwater drilling operations
US9447678B2 (en) 2012-12-01 2016-09-20 Halliburton Energy Services, Inc. Protection of electronic devices used with perforating guns
US9909408B2 (en) 2012-12-01 2018-03-06 Halliburton Energy Service, Inc. Protection of electronic devices used with perforating guns
US9926777B2 (en) 2012-12-01 2018-03-27 Halliburton Energy Services, Inc. Protection of electronic devices used with perforating guns
US8978817B2 (en) 2012-12-01 2015-03-17 Halliburton Energy Services, Inc. Protection of electronic devices used with perforating guns
US11180986B2 (en) 2014-09-12 2021-11-23 Exxonmobil Upstream Research Company Discrete wellbore devices, hydrocarbon wells including a downhole communication network and the discrete wellbore devices and systems and methods including the same
US20170335681A1 (en) * 2015-01-19 2017-11-23 Halliburton Energy Services, Inc. Downhole Acoustic Telemetry Module with Multiple Communication Modes
US10408047B2 (en) 2015-01-26 2019-09-10 Exxonmobil Upstream Research Company Real-time well surveillance using a wireless network and an in-wellbore tool
US10344583B2 (en) 2016-08-30 2019-07-09 Exxonmobil Upstream Research Company Acoustic housing for tubulars
US10415376B2 (en) 2016-08-30 2019-09-17 Exxonmobil Upstream Research Company Dual transducer communications node for downhole acoustic wireless networks and method employing same
US10465505B2 (en) 2016-08-30 2019-11-05 Exxonmobil Upstream Research Company Reservoir formation characterization using a downhole wireless network
US10487647B2 (en) 2016-08-30 2019-11-26 Exxonmobil Upstream Research Company Hybrid downhole acoustic wireless network
US10526888B2 (en) 2016-08-30 2020-01-07 Exxonmobil Upstream Research Company Downhole multiphase flow sensing methods
US10364669B2 (en) 2016-08-30 2019-07-30 Exxonmobil Upstream Research Company Methods of acoustically communicating and wells that utilize the methods
US10590759B2 (en) 2016-08-30 2020-03-17 Exxonmobil Upstream Research Company Zonal isolation devices including sensing and wireless telemetry and methods of utilizing the same
US10697287B2 (en) 2016-08-30 2020-06-30 Exxonmobil Upstream Research Company Plunger lift monitoring via a downhole wireless network field
US20220120161A1 (en) * 2016-12-30 2022-04-21 Metrol Technology Ltd Downhole energy harvesting
US11795786B2 (en) * 2016-12-30 2023-10-24 Metrol Technology Ltd. Downhole energy harvesting
US11199075B2 (en) * 2016-12-30 2021-12-14 Metrol Technology Ltd. Downhole energy harvesting
FR3065480A1 (en) * 2017-04-19 2018-10-26 Halliburton Energy Services, Inc. SYSTEM AND METHOD FOR REGULATING A WELLBORE PRESSURE DURING PERFORATION
US11035226B2 (en) 2017-10-13 2021-06-15 Exxomobil Upstream Research Company Method and system for performing operations with communications
US10697288B2 (en) 2017-10-13 2020-06-30 Exxonmobil Upstream Research Company Dual transducer communications node including piezo pre-tensioning for acoustic wireless networks and method employing same
US10724363B2 (en) 2017-10-13 2020-07-28 Exxonmobil Upstream Research Company Method and system for performing hydrocarbon operations with mixed communication networks
US10771326B2 (en) 2017-10-13 2020-09-08 Exxonmobil Upstream Research Company Method and system for performing operations using communications
US10837276B2 (en) 2017-10-13 2020-11-17 Exxonmobil Upstream Research Company Method and system for performing wireless ultrasonic communications along a drilling string
US10883363B2 (en) 2017-10-13 2021-01-05 Exxonmobil Upstream Research Company Method and system for performing communications using aliasing
US10690794B2 (en) 2017-11-17 2020-06-23 Exxonmobil Upstream Research Company Method and system for performing operations using communications for a hydrocarbon system
US11203927B2 (en) 2017-11-17 2021-12-21 Exxonmobil Upstream Research Company Method and system for performing wireless ultrasonic communications along tubular members
US10844708B2 (en) 2017-12-20 2020-11-24 Exxonmobil Upstream Research Company Energy efficient method of retrieving wireless networked sensor data
US11313215B2 (en) 2017-12-29 2022-04-26 Exxonmobil Upstream Research Company Methods and systems for monitoring and optimizing reservoir stimulation operations
US11156081B2 (en) 2017-12-29 2021-10-26 Exxonmobil Upstream Research Company Methods and systems for operating and maintaining a downhole wireless network
US10711600B2 (en) 2018-02-08 2020-07-14 Exxonmobil Upstream Research Company Methods of network peer identification and self-organization using unique tonal signatures and wells that use the methods
US11268378B2 (en) 2018-02-09 2022-03-08 Exxonmobil Upstream Research Company Downhole wireless communication node and sensor/tools interface
US10669821B2 (en) * 2018-04-25 2020-06-02 G&H Diversified Manufacturing Lp Charge tube assembly
US11053778B2 (en) 2018-09-17 2021-07-06 DynaEnergetics Europe GmbH Inspection tool for a perforating gun segment
US10597979B1 (en) 2018-09-17 2020-03-24 DynaEnergetics Europe GmbH Inspection tool for a perforating gun segment
US11578566B2 (en) 2018-09-17 2023-02-14 DynaEnergetics Europe GmbH Inspection tool for a perforating gun segment
US11293280B2 (en) 2018-12-19 2022-04-05 Exxonmobil Upstream Research Company Method and system for monitoring post-stimulation operations through acoustic wireless sensor network
US11131168B2 (en) * 2019-06-10 2021-09-28 Halliburton Energy Services, Inc. Oriented detection perforating device
US11346214B2 (en) 2019-09-13 2022-05-31 Baker Hughes Oilfield Operations Llc Monitoring of downhole components during deployment
GB2603387A (en) * 2019-09-13 2022-08-03 Baker Hughes Oilfield Operations Llc Monitoring of downhole components during deployment
WO2021050278A1 (en) * 2019-09-13 2021-03-18 Baker Hughes Oilfield Operations Llc Monitoring of downhole components during deployment
GB2603387B (en) * 2019-09-13 2023-08-09 Baker Hughes Oilfield Operations Llc Monitoring of downhole components during deployment
US11952886B2 (en) 2019-12-04 2024-04-09 ExxonMobil Technology and Engineering Company Method and system for monitoring sand production through acoustic wireless sensor network

Also Published As

Publication number Publication date
EP2194227A2 (en) 2010-06-09
MX2009012791A (en) 2010-06-21
AU2009236038A1 (en) 2010-06-17
CA2686290A1 (en) 2010-06-03
BRPI0905283A2 (en) 2011-03-22

Similar Documents

Publication Publication Date Title
US20100133004A1 (en) System and Method for Verifying Perforating Gun Status Prior to Perforating a Wellbore
US8672031B2 (en) Perforating with wired drill pipe
US10490054B2 (en) In-line integrity checker
EP1853792B1 (en) Device and method for firing perforating guns
RU2493358C2 (en) Wireless initiation of gun perforator
US7228902B2 (en) High data rate borehole telemetry system
EP2157278A1 (en) Wireless telemetry systems for downhole tools
EP2157279A1 (en) Transmitter and receiver synchronisation for wireless telemetry systems technical field
CN111527283B (en) Methods and systems for operating and maintaining a downhole wireless network
US11286756B2 (en) Slickline selective perforation system
MX2013001565A (en) Automated controls for pump down operations.
US20180328120A1 (en) Mitigation of cable damage during perforation
US8022839B2 (en) Telemetry subsystem to communicate with plural downhole modules
CN106574497A (en) Rig telemetry system
NO325161B1 (en) Method and apparatus for determining well depth during well operations by means of radio frequency identification devices
NO342981B1 (en) Reservoir monitoring system, as well as method
US11513247B2 (en) Data acquisition systems
WO2022081017A1 (en) Retrofit b annulus monitoring device and method
US11377937B2 (en) System, method, and device for monitoring a parameter downhole
US20220364461A1 (en) Information Transfer System
GB2605061A (en) Retrofit B annulus monitoring device and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: HALLIBURTON ENERGY SERVICES, INC.,TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURLESON, JOHN D.;HALES, JOHN H.;FINK, KEVIN D.;SIGNING DATES FROM 20090122 TO 20090203;REEL/FRAME:022230/0570

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION