US20090284501A1 - Pixel driver circuit and pixel circuit having the pixel driver circuit - Google Patents

Pixel driver circuit and pixel circuit having the pixel driver circuit Download PDF

Info

Publication number
US20090284501A1
US20090284501A1 US12/504,510 US50451009A US2009284501A1 US 20090284501 A1 US20090284501 A1 US 20090284501A1 US 50451009 A US50451009 A US 50451009A US 2009284501 A1 US2009284501 A1 US 2009284501A1
Authority
US
United States
Prior art keywords
pixel
transistor
driver circuit
node
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/504,510
Inventor
Arokia Nathan
Peyman Servati
Kapil Sakariya
Anil Kumar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ignis Innovation Inc
Original Assignee
Ignis Innovation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/468,319 external-priority patent/US20040129933A1/en
Application filed by Ignis Innovation Inc filed Critical Ignis Innovation Inc
Priority to US12/504,510 priority Critical patent/US20090284501A1/en
Publication of US20090284501A1 publication Critical patent/US20090284501A1/en
Assigned to IGNIS INNOVATION INC. reassignment IGNIS INNOVATION INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NATHAN, AROKIA, SERVATI, PEYMAN, SAKARIYA, KAPIL, KUMAR, ANIL
Priority to US13/089,622 priority patent/US8664644B2/en
Priority to US14/038,651 priority patent/US8890220B2/en
Priority to US14/516,076 priority patent/US20150154907A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • G09G3/3241Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0804Sub-multiplexed active matrix panel, i.e. wherein one active driving circuit is used at pixel level for multiple image producing elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0204Compensation of DC component across the pixels in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/03Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays
    • G09G3/035Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays for flexible display surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/10Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising field-effect transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present invention relates to a display technology, and more particularly to a pixel driver circuit for driving a light-emitting element and a pixel circuit having the pixel driver circuit.
  • OLED displays have gained significant interest recently in display applications in view of their faster response times, larger viewing angles, higher contrast, lighter weight, lower power, amenability to flexible substrates, as compared to liquid crystal displays (LCDs).
  • LCDs liquid crystal displays
  • OLED's demonstrated superiority over the LCD there still remain several challenging issues related to encapsulation and lifetime, yield, color efficiency, and drive electronics, all of which are receiving considerable attention.
  • Active matrix addressing involves a layer of backplane electronics, based on thin film transistors (TFTs) fabricated using amorphous silicon (a-Si:H), polycrystalline silicon (poly-Si), or polymer technologies, to provide the bias voltage and drive current needed in each OLED based pixel.
  • TFTs thin film transistors
  • a-Si:H amorphous silicon
  • poly-Si polycrystalline silicon
  • the voltage on each pixel is lower and the current throughout the entire frame period is a low constant value, thus avoiding the excessive peak driving and leakage currents associated with passive matrix addressing. This in turn increases the lifetime of the OLED.
  • AMOLED active matrix OLED
  • AMOLED displays are based on light emission through an aperture on the glass substrate where the backplane electronics is integrated. Increasing the on-pixel density of TFT integration for stable drive current reduces the size of the aperture. The same happens when pixel sizes are scaled down.
  • One solution to having an aperture ratio that is invariant on scaling or on-pixel integration density is to vertically stack the OLED layer on the backplane electronics, along with a transparent top electrode as shown in FIG. 2 .
  • reference numerals S and D denote a source and a drain, respectively. This implies a continuous back electrode over the OLED pixel.
  • this continuous back electrode can give rise to parasitic capacitance, whose effects become significant when the electrode runs over the switching and other TFTs.
  • the presence of the back electrode can induce a parasitic channel in TFTs giving rise to high leakage current.
  • the leakage current is the current that flows between source and drain of the TFT when the gate of the TFT is in its OFF state.
  • the present invention relates to a pixel driver circuit for driving a light-emitting element (e.g. OLED), and a pixel circuit having the pixel driver circuit.
  • a light-emitting element e.g. OLED
  • a pixel driver circuit which includes: an address line; a data line; a switch thin film transistor, a first node of the switch transistor being connected to the data line and a gate of the switch transistor being connected to the address line; a feedback thin film transistor, a first node of the feedback transistor being connected to the data line and a gate of the feedback transistor being connected to the address line; a reference thin film transistor, a drain of the reference transistor being connected to a second node of the feedback transistor, a gate of the reference transistor being connected to a second node of the switch transistor and a source of the reference transistor being connected to a ground potential; and a drive thin film transistor, a gate of the drive transistor being connected to the gate of the reference transistor.
  • a pixel circuit which includes: the pixel driver circuit described above; and an organic light emitting diode, the source of the drive transistor being connected to the ground potential and the drain being connected to the organic light emitting diode.
  • a pixel driver circuit which includes: an address line; a data line; a switch thin film transistor, a first node of the switch transistor being connected to the data line and a gate of the switch transistor being connected to the address line; a feedback thin film transistor, a gate of the feedback transistor being connected to the address line and a second node of the feedback transistor being connected to a ground potential; a reference thin film transistor, a drain of the reference transistor being connected to a second node of the switch transistor, a gate of the reference transistor being connected to the second node of the switch transistor and a source of the reference transistor being connected to a first node of the feedback transistor; and a drive thin film transistor, a gate of the drive transistor being connected to the gate of the reference transistor.
  • a pixel circuit which includes: the pixel driver circuit described above; and an organic light emitting diode, the source of the drive transistor being connected to the ground potential and the drain being connected to the organic light emitting diode.
  • a pixel circuit which includes: the pixel driver circuit described above; and an organic light emitting diode, the source of the drive transistor being connected to the organic light emitting diode and the drain being connected to a voltage supply.
  • a pixel driver circuit which includes: an address line; a data line; a switch thin film transistor, a first node of the switch transistor being connected to the data line and a gate of the switch transistor being connected to the address line; a feedback thin film transistor, a first node of the feedback transistor being connected to the data line and a gate of the feedback transistor being connected to the address line; a reference thin film transistor, a drain of the reference transistor being connected to a second node of the feedback transistor, the gate of the reference transistor being connected to a second node of the switch transistor and a source of the reference transistor being connected to a ground potential; a diode-use thin film transistor, a drain and a gate of the diode-use transistor being connected to a potential, and a source of the diode-use transistor being connected to the second node of the feedback transistor; and a drive thin film transistor, a gate of the drive transistor being connected to the gate of the reference transistor.
  • a pixel circuit which includes: the pixel driver circuit described above; and an organic light emitting diode, the source of the drive transistor being connected to the ground potential and the drain being connected to the organic light emitting diode.
  • a pixel circuit which includes: the pixel driver circuit described above; and an organic light emitting diode, the source of the drive transistor being connected to the organic light emitting diode, and the drain being connected to a voltage supply.
  • a pixel driver circuit for driving a colour pixel of a colour display, which includes: a first address line; a data line; a first switch thin film transistor, a first node of the first switch transistor being connected to the data line and a gate of the switch transistor being connected to the first address line; a feedback thin film transistor, a first node and a gate of the feedback transistor being connected to a second node of the first switch transistor and a second node of the feedback transistor being connected to a ground potential; a second switch thin film transistor, a source of the second switch transistor being connected to a second node of the first switch transistor, a gate of the second switch transistor being connected to a second address line; a first drive thin film transistor, a gate of the first drive transistor being connected to a drain of the second switch transistor; a third switch thin film transistor, a source of the third switch transistor being connected to the second node of the first switch transistor, a gate of the third switch transistor being connected to
  • a pixel circuit which includes: the pixel driver circuit described above; a first organic light emitting diode, a source of the first drive transistor being connected to the ground potential and a drain of the first drive transistor being connected to the first organic light emitting diode; a second organic light emitting diode, a source of the second drive transistor being connected to the ground potential and a drain of the second drive transistor being connected to the second organic light emitting diode; and a third organic light emitting diode, a source of the third drive transistor being connected to the ground potential and a drain of the third drive transistor being connected to the third organic light emitting diode.
  • a pixel circuit which includes: a pixel driver circuit described above, a first organic light emitting diode associated with the first drive transistor; a second organic light emitting diode associated with the second drive transistor; and a third organic light emitting diode associated with the third drive transistor, the source of the first drive transistor being connected to the first organic light emitting diode, and a drain of the first drive transistor being connected to a voltage supply.
  • FIG. 1 shows variation of required pixel areas with mobility for 2-T and 5-T pixel drivers
  • FIG. 2 shows a conventional pixel architecture for surface emissive a-Si:H AMOLED displays
  • FIG. 3 shows a cross section view of a dual-gate TFT structure
  • FIG. 4 shows forward and reverse transfer characteristics of dual-gate TFT for various top gate biases
  • FIG. 5 shows a panel architecture of a AMOLED display
  • FIG. 6A shows a pixel circuit including a conventional 2-T pixel driver circuit
  • FIG. 6B shows input-output timing diagrams for the 2-T pixel circuit of FIG. 6A ;
  • FIG. 7A shows a pixel circuit including a 5-T pixel current driver circuit for an OLED display in accordance with an embodiment of the present invention
  • FIG. 7B shows input-output timing diagrams of the 5-T pixel circuit of FIG. 7A ;
  • FIG. 8 shows transient performance of the 5-T pixel current driver circuit of FIG. 7A for three consecutive write cycles
  • FIG. 9 shows input-output transfer characteristics for the 2-T pixel driver circuit of FIG. 6A for different supply voltages
  • FIG. 10 shows input-output transfer characteristics for the 5-T pixel current driver circuit of FIG. 7A for different supply voltages
  • FIG. 11 shows variation in OLED current as a function of the normalized shift in threshold voltage
  • FIG. 12 shows a pixel circuit including a conventional 2-T polysilicon based pixel driver circuit having p-channel drive TFTs
  • FIG. 13 shows a pixel circuit including a 4-T pixel current driver circuit for an OLED display in accordance with a further embodiment of the present invention
  • FIG. 14 shows a pixel circuit including a 4-T pixel current driver circuit for an OLED display in accordance with a further embodiment of the present invention
  • FIG. 15 shows a pixel circuit including a 4-T pixel current driver circuit for an OLED display in accordance with a further embodiment of the present invention
  • FIG. 16 shows a pixel circuit including a 4-T pixel current driver circuit for an OLED display in accordance with a further embodiment of the present invention
  • FIG. 17 shows a pixel circuit including a pixel current driver circuit for a full color, OLED display in accordance with a further embodiment of the present invention.
  • FIG. 18 shows a schematic diagram of the top gate and the bottom gate of a dual gate transistor where the top gate is electrically connected to the bottom gate;
  • FIG. 19 shows a pixel circuit including a 5-T pixel current driver circuit in accordance with a further embodiment of the present invention.
  • FIG. 20 shows a pixel circuit including a 4-T pixel current driver circuit in accordance with a further embodiment of the present invention.
  • FIG. 21 shows a pixel circuit including a 4-T pixel current driver circuit in accordance with a further embodiment of the present invention.
  • FIG. 22 shows a pixel circuit including a 4-T pixel current driver circuit in accordance with a further embodiment of the present invention.
  • FIG. 23 shows a pixel circuit including a 4-T pixel current driver circuit in accordance with a further embodiment of the present invention.
  • FIG. 24 shows a pixel circuit including a pixel current driver circuit for a full color display in accordance with a further embodiment of the present invention.
  • FIG. 25 shows a pixel circuit including a 5-T pixel current driver circuit in accordance with a further embodiment of the present invention.
  • FIG. 26 shows a pixel circuit including a 4-T pixel current driver circuit in accordance with a further embodiment of the present invention.
  • FIG. 27 shows a pixel circuit including a 4-T pixel current driver circuit in accordance with a further embodiment of the present invention.
  • FIG. 28 shows a pixel circuit including a 4-T pixel current driver circuit in accordance with a further embodiment of the present invention.
  • FIG. 29 shows a pixel circuit including a 4-T pixel current driver circuit in accordance with a further embodiment of the present invention.
  • FIG. 30 shows a pixel circuit including a pixel current driver circuit for a full color display in accordance with a further embodiment of the present invention.
  • a pixel driver circuit in accordance with the embodiments of the present invention includes a plurality of TFTs, which form a current mirror based pixel current driver for automatically compensating for the shift of threshold V th of a drive TFT.
  • the TFTs are formed in a current-programmed ⁇ V T -compensated manner.
  • the pixel driver circuit is suitable for an OLED display.
  • the OLED layer may be vertically stacked on the plurality of TFTs.
  • the pixel driver circuit may be provided for monochrome displays or for full colour displays.
  • the OLED may be a regular (P-I-N) stack OLED or an inverted (N ⁇ 1-P) stack OLED, and may be located at either the drain or source of the drive TFT(s)
  • the TFT may be an n-type TFT or a p-type TFT.
  • the TFT may be, but not limited to, an amorphous silicon (a-Si:H) based TFT, a polysilicon-based TFT, a crystalline silicon based TFT, or an organic semiconductor based TFT.
  • amorphous Si does not enjoy equivalent electronic properties compared to poly-Si, it adequately meets many of the drive requirements for small area displays such as those used in pagers, cell phones, and other mobile devices.
  • Poly-Si TFTs have one key advantage in that they are able to provide better pixel drive capability because of their higher mobility. Their higher mobility can be of the order of ⁇ FE ⁇ 100 cm 2 /Vs. “ ⁇ FE ” represents field effect mobility, which is typically used to evaluate how well a semiconductor can conduct. “Vs” is a unit where V stands for volt, and s stands for second. This makes poly-Si highly desirable for large area (e.g. laptop size) Video Graphics Array (VGA) and Super VGA (SVGA) displays.
  • VGA Video Graphics Array
  • SVGA Super VGA
  • the lower mobility associated with a-Si:H TFTs ( ⁇ FE ⁇ 1 cm 2 /Vs) is not a limiting factor since the drive transistor in the pixel can be scaled up in area to provide the needed drive current.
  • the OLED drive current density is typically 10 mA/cm 2 at 10V operation to provide a brightness of 100 cd/m 2 , which is the required luminance for most displays.
  • this drive current requirement translates into required pixel area of 300 ⁇ m 2 , which adequately meets the requirements of pixel resolution and speed for some 3-inch monochrome display applications.
  • FIG. 1 illustrates simulation results for the variation of the required pixel size with device mobility calculated for two types of drivers, which will be elaborated later, a conventional voltage-programmed 2-T pixel driver circuit ( FIG. 6A ) and a current-programmed, ⁇ V T -compensated 5-T pixel driver circuit in accordance with an embodiment of the present invention ( FIG. 7A )
  • the graph having a mark “ ⁇ ” represents the pixel size required by the 2T pixel driver circuit given a reference mobility of the TFT
  • the graph having a mark “ ⁇ ” represents the pixel size required by the 5T pixel driver circuit given a reference mobility of the TFT.
  • “ ⁇ 0 ” denotes a reference mobility whose value is in the range 0.1 to 1 cm 2 /Vs.
  • the area of the pixel for the 2-T pixel driver ( FIG. 6A ) has the area of the switching transistors, the area of the drive transistor, and the area occupied by interconnects, bias lines, etc.
  • the drive current and frame rate are kept constant at 10 ⁇ A and 50 Hz, respectively, for a 230 ⁇ 230 array. It is clear that there is no significant savings in area between the 2-T and 5-T pixel drivers but the savings are considerable with increasing mobility. This stems mainly from the reduction in the area of the drive transistor where there is a trade-off between TFT and TFT aspect ratio, W/L (Width/Length).
  • a-Si:H The fabrication processes associated with a-Si:H technology are standard and adapted from mainstream integrated circuit (IC) technology, but with capital equipment costs that are much lower.
  • One of the main advantages of the a-Si:H technology is that it has become a low cost and well-established technology, while poly-Si has yet to reach the stage of manufacturability.
  • the technology also holds great promise for futuristic applications since deposition of a-Si:H, a-SiN x :H, and TFT arrays can be achieved at low temperatures ( ⁇ 120° C.) thus making it amenable to plastic substrates, which is a critical requirement for mechanically flexible displays.
  • an alternate TFT structure based on a dual-gate structure is employed as shown in FIG. 7A .
  • a top gate electrode is added to the TFT structure to prevent the OLED electrodes from biasing the a-Si:H channel area ( FIG. 2 ).
  • the voltage on the top gate can be chosen such so as to minimize the charge induced in the (parasitic) top channel of the TFT.
  • the objective underlying the choice of the voltage on the top gate is to minimize parasitic capacitance in the driver circuits and leakage currents in the TFTs so as to enhance circuit performance. In what follows, the operation of the dual-gate TFT is described.
  • FIG. 3 illustrates the structure of a dual-gate TFT fabricated for this purpose, wherein reference numerals S and D denote a source and a drain, respectively.
  • the fabrication steps are the same as of that of a normal inverted staggered TFT structure except that it requires a sixth mask for patterning the top gate.
  • the length of the TFT may be around 30 ⁇ m to provide enough spacing between the source and drain for the top gate.
  • a delay time is inserted in the measurement of the current to ensure that the measurement has passed the transient period created by defects in the a-Si:H active layer, which give rise to a time-dependent capacitance.
  • FIG. 4 shows results of static current measurements for four cases: first when the top gate is tied to ⁇ 10V, second when the top gate is grounded, third when the top gate is floating, and lastly when the top gate is shorted to the bottom gate.
  • V tg represents the bias voltage applied to the top gate of the TFT
  • V bg represents the voltage applied to the bottom gate of the TFT.
  • the characteristics are almost similar to that of a normal single gate TFT.
  • the leakage current is relatively high particularly when the top gate is biased with a negative voltage.
  • the lowest values of leakage current are obtained when the top gate is pegged to either OV or to the voltage of the bottom gate.
  • This enhancement in sub-threshold performance can be explained by the forced shift of the effective conduction path away from the bottom interface to the bulk a-Si:H region due to the positive bias on the top gate. This in turn decreases the effect of the trap states at the bottom interface on the sub-threshold slope of the TFT.
  • top gate connection becomes important. For example, if the top gates in the pixel circuit are connected to the bottom gates of the associated TFTs, this gives rise to parasitic capacitances located between the gates and the cathode, which can lead to undesirable display operation (due to the charging up of the parasitic capacitance) when the gate driver drives the TFT switch as illustrated in FIG. 5 . On the other hand, if the top gates are grounded, this results in the parasitic capacitance being grounded to yield reliable and stable circuit operation.
  • the OLED driver circuits considered here are the voltage-programmed 2-T driver of FIG. 6A , and the current-programmed ⁇ V T -compensated 5-T version of FIG. 7A .
  • the 5-T driver circuit is a significant variation of the previous designs, leading to reduced pixel area, reduced leakage, lower supply voltage, higher linearity ( ⁇ 30 dB), and larger dynamic range (40 dB).
  • FIG. 6A shows a 2-T pixel circuit including the 2-T pixel driver circuit, an OLED and a capacitor C s .
  • the 2-T pixel driver includes two TFTs T 1 and T 2 .
  • FIG. 6B shows input-output timing chart of the 2-T pixel circuit of FIG. 6A .
  • I OLED represents the current passing through the OLED element and transistor T 2 .
  • the voltage on the data line (V data ) starts charging capacitor CS and the gate capacitance of the driver transistor T 2 .
  • the capacitor charges up to turn the driver transistor T 2 on, which then starts conducting to drive the OLED with the appropriate level of current.
  • T 1 is turned off.
  • the voltage at the gate of T 2 remains since the leakage current of T 1 is trivial in comparison.
  • the current through the OLED remains unchanged after the turn off process.
  • the OLED current changes only the next time around when a different voltage is written into the pixel.
  • FIG. 7A illustrates a 5-T pixel circuit having the 5-T pixel current driver circuit for an OLED display, an OLED, and a capacitor C s .
  • the 5-T pixel current driver circuit has five TFTs T 1 -T 5 .
  • the data that is written into the 5-T pixel in this case is a current (I data ).
  • FIG. 7B shows input-output timing diagrams of the 5-T pixel circuit of FIG. 7A .
  • the address line voltage V address and the data line current I data are activated or deactivated simultaneously.
  • V address When V address is activated, it forces T 1 and T 2 to turn on. T 1 immediately starts conducting but T 2 does not since T 3 and T 4 are off. Therefore, the voltages at the drain and source of T 2 become equal.
  • the current flow through T 1 starts charging the gate capacitor of transistors T 3 and T 5 , like the 2-T driver.
  • the current of these transistors starts increasing and consequently T 2 starts to conduct current. Therefore, T 1 's share of I data reduces and T 2 's share of I data increases.
  • T 5 drives a current through the OLED, which is ideally equal to I data *(W 5 /W 3 ).
  • W 5 /W 3 signifies a current gain where W 5 represents channel width of T 5 , and W 3 represents channel width of T 3 .
  • T 2 will turn off, but due to the presence of capacitances in T 3 and T 5 , the current of these two devices cannot be changed easily, since the capacitances keep the bias voltages constant. This forces T 4 to conduct the same current as that of T 3 , to enable the driver T 5 to drive the same current into the OLED even when the write period is over. Writing a new value into the pixel then changes the current driven into the OLED.
  • the result of transient simulation for the 5-T current driver circuit of FIG. 7A is shown in FIG. 8 .
  • the circuit has a write time of ⁇ 70 ⁇ s, which is acceptable for most applications.
  • FIGS. 9 and 10 The transfer characteristics for the 2-T and 5-T driver circuits of FIGS. 6A and 7A are illustrated in FIGS. 9 and 10 , respectively, generated using reliable physically-based TFT models for both forward and reverse regimes.
  • a much improved linearity ( ⁇ 30 dB) in the transfer characteristics (I data /I OLED ) is observed for the 5-T driver circuit due to the geometrically-defined internal pixel gain as compared to similar designs.
  • there are two components (OLED and T 5 ) in the high current path which in turn decreases the required supply voltage and hence improves the dynamic range.
  • a good dynamic range ⁇ 40 dB is observed for supply voltage of 20V and drive currents in the range I OLED ⁇ 10 ⁇ A, which is realistic for high brightness.
  • FIG. 11 illustrates variation in the OLED current with the shift in threshold voltage for the 2-T and 5-T driver circuits of FIGS. 6A and 7A .
  • the graph having a mark “ ⁇ ” represents the OLED current when using the 2-T pixel driver circuit
  • the graph having a mark “ ⁇ ” represents the OLED current when using the 5-T pixel driver circuit.
  • the 5-T current driver circuit compensates for the shift in threshold voltage particularly when the shift is smaller than 10% of the supply voltage. This is because the 5-T current driver circuit is current-programmed. In contrast, the OLED current in the 2-T driver circuit changes significantly with a shift in threshold voltage.
  • the 5-T current driver circuit described here operates at much lower supply voltages, has a much larger drive current, and occupies less area.
  • the pixel architectures are compatible to surface (top) emissive AMOLED displays that enable high on-pixel TFT integration density for uniformity in OLED drive current and high aperture ratio.
  • the 5-T driver circuit of FIG. 7A provides on-pixel gain, high linearity ( ⁇ 30 dB), and high dynamic range (40 dB) at low supply voltages (15-20V) compared to the similar designs (27V).
  • the results described here illustrate the feasibility of using a-Si:H for 3-inch mobile monochrome display applications on both glass and plastic substrates. With the latter, although the mobility of the TFT is lower, the size of the drive transistor can be scaled up yet meeting the requirements on pixel area as depicted in FIG. 1 .
  • the TFT may be, but not limited to, a polysilicon-based TFT.
  • Polysilicon has higher electron and hole mobilities than amorphous silicon. The hole mobilities are large enough to allow the fabrication of p-channel TFTs.
  • FIG. 12 illustrates a pixel circuit having a conventional 2-T polysilicon based pixel current driver circuit.
  • the 2-T polysilicon based pixel current driver circuit has a p-channel drive TFT.
  • T 1 and T 2 are p-channel TFTs.
  • the source of the p-type drive TFT is connected to V supply . Therefore, Vgs, gate-to-source voltage, and hence the drive current of the p-type TFT is independent of OLED characteristics. In other words, the driver shown in FIG. 12 performs as a good current source.
  • bottom emissive OLEDs are suitable for use with p-channel drive TFTs, and top emissive OLEDs are suitable for use with n-channel TFTs.
  • polysilicon TFTs require much higher temperatures than that of amorphous silicon. This high temperature-processing requirement greatly increases the cost, and is not amenable to plastic substrates.
  • polysilicon technology is not as mature and widely available as amorphous silicon.
  • amorphous silicon is a well-established technology currently used in liquid crystal displays (LCDs). It is due to these reasons that amorphous silicon combined with top emissive OLED based circuit designs is most promising for AMOLED displays.
  • amorphous silicon TFTs are n-type and thus are more suitable for top emission circuits as shown in FIG. 2 , and doesn't preclude their use in full colour bottom emission circuits either.
  • amorphous silicon TFTs have inherent stability problems due to the material structure.
  • the biggest hurdle is the increase in threshold voltage V th after prolonged gate bias. This shift is particularly evident in the drive TFT of an OLED display pixel.
  • This drive TFT is always in the ‘ON’ state, in which there is a positive voltage at its gate. As a result, its V th increases and the drive current decreases based on the current-voltage equation below:
  • Ids ( ⁇ C ox W/ 2 L )( V gs ⁇ V th ) 2 (in Saturation region)
  • Ids represents drain to source current
  • represents mobility
  • C ox represents gate capacitance
  • W represents channel width
  • L represents channel length
  • V gs represents gate to source voltage
  • V th represents threshold voltage
  • the current mirror based pixel current driver circuit illustrated in FIG. 7A automatically compensates for shifts in the V th of the drive TFT in a pixel.
  • FIGS. 13-17 illustrate pixel circuits having pixel current driver circuits in accordance with further embodiments of the present invention.
  • Each of the pixel circuits shown in FIGS. 13-16 includes a 4-T pixel current driver circuit, an OLED and a capacitor C s .
  • the pixel circuit shown in FIG. 17 includes a pixel current driver circuit, OLEDs, and capacitors C s . While the pixel current driver circuits of FIGS. 13-16 are presented for a monochrome OLED display, the pixel current driver circuits of FIGS. 13-16 are, however, applicable to a fill color display.
  • the pixel current driver circuit of FIG. 17 is provided for a full colour, OLED display.
  • the pixel driver circuits of FIGS. 13-17 are current mirror based pixel driver circuits. All these circuits illustrated in FIGS. 13-17 have mechanisms that automatically compensate for the V th shift of a drive TFT.
  • the pixel current driver circuit of FIG. 13 is a modification of the 5-T pixel driver circuit of FIG. 7A .
  • the 4-T pixel current driver circuit of FIG. 13 has four TFTs, T 1 -T 4 .
  • the 4-T pixel current driver circuit of FIG. 13 compensates for the shift of V th of T 4 .
  • the 4-T pixel current driver circuit of FIG. 13 occupies a smaller area than that of the 5-T pixel current driver circuit, and provides a higher dynamic range. The higher dynamic range allows for a larger signal swing at the input, which means that the OLED brightness can be adjusted over a larger range.
  • the 4-T pixel current driver circuit of FIG. 14 has four TFTs, T 1 -T 4 , and has a lower discharge time.
  • the 4-T pixel current driver circuit of FIG. 14 compensates for the shift of V th of T 4 .
  • the advantage of this circuit is that the discharge time of the capacitor C s is substantially reduced. This is because the discharge path has two TFTs (as compared to three TFTs in the circuit of FIG. 13 ). The charging time remains the same.
  • the other advantage is that there is an additional gain provided by this circuit because T 3 and T 4 do not have the same source voltages. However, this gain is non-linear and may not be desirable in some cases.
  • the 4-T pixel current driver circuit of FIG. 15 has four TFTs, T 1 -T 4 .
  • the 4-T pixel current driver circuit of FIG. 15 compensates for the shift of V th of T 4 .
  • This circuit does not have the non-linear gain present in the pixel driver circuit of FIG. 14 , since the source terminals of T 3 and T 4 are at the same voltage. It still maintains the lower capacitance discharge time, along with the other features of the circuit of FIG. 9 .
  • the 4-T pixel current driver circuit of FIG. 16 has four TFTs, T 1 -T 4 .
  • the 4-T pixel current driver circuit of FIG. 16 compensates for the shift of V th of T 4 .
  • This circuit forms the building block for the 3-colour RGB circuit shown in FIG. 17 . It also has a low capacitance discharge time and high dynamic range.
  • the full colour circuit shown in FIG. 17 minimizes the area required by an RGB pixel on a display, while maintaining the desirable features like threshold voltage shift compensation, in-pixel current gain, low capacitance discharge time, and high dynamic range.
  • V blue , V Green , V Red represent control signals for programming the blue, green, and red pixels, respectively.
  • the pixel current driver circuit of FIG. 17 compensates for the shift of V th of T 6 .
  • the circuits described above may be fabricated using normal inverted staggered TFT structures.
  • the length and width of the thin film transistors may change depending on the maximum drive current required by the circuit and the fabrication technology used.
  • the pixel current driver circuits of FIGS. 7 and 13 - 17 use n-type amorphous silicon TFTs. With the above structure on the a-Si:H current driver according to the embodiments of the present invention, the charge induced in the top channel of the TFT is minimized, and the leakage currents in the TFT is minimized so as to enhance circuit performance.
  • polysilicon technology may be applied to the pixel current driver circuits using p-type or n-type TFTs. These circuits, when made in polysilicon, can compensate for the spatial non-uniformity of the threshold voltage.
  • the p-type circuits are conjugates of the above-mentioned circuits and are suitable for the bottom emissive pixels.
  • the TFT having dual gates is shown, where the dual gate includes a top gate and a bottom gate.
  • the top gate may be grounded (for example, in FIGS. 6A , 7 A and 12 - 17 ), or electrically tied to a bottom gate ( FIG. 18 ).
  • the dual-gate TFTs are used in the above-mentioned circuits to enable vertical integration of the OLED layers with minimum parasitic effects.
  • the above-mentioned circuits compensate for the V th shift when the circuits comprise single-gate TFTs.
  • FIGS. 19-24 illustrate pixel current driver circuits having single-gate TFTs.
  • FIGS. 19-24 correspond to FIGS. 7 A and 13 - 17 , respectively.
  • the pixel current driver circuit of FIG. 19 contains single-gate TFTs having a switch TFT T 1 , a feedback TFT T 2 , a reference TFT T 3 , a diode-use TFT T 4 , and a drive TFT T 5 .
  • the pixel current driver circuit of FIG. 20 contains single-gate TFTs having a switch TFT T 1 , a feedback TFT T 2 , a reference TFT T 3 , and a drive TFT T 4 .
  • the pixel current driver circuit of FIG. 22 contains single-gate TFTs having a feedback TFT T 1 , a switch TFT T 2 , a reference TFT T 3 , and a drive TFT T 4 .
  • the pixel current driver circuit of FIG. 24 contains single-gate TFTs having switch TFTs T 1 , T 3 , T 4 , T 5 , a feedback TFT T 2 , and drive TFT T 6 , T 7 , T 8 .
  • the driving scheme and operation of the pixel driver circuits of FIGS. 19-24 are same as those of FIGS. 7 A and 13 - 17 .
  • the major difference between the pixel current driver circuit having dual-gate TFTs and the pixel current driver circuit having single-gate TFTs is that the pixel current driver circuit having the dual-gate TFTs utilize a better TFT design which minimizes the leakage currents in the TFTs, thus enhancing circuit performance.
  • the single-gate TFTs are the standard and preferred design in industry.
  • FIGS. 19-24 n-type TFTs are shown.
  • the pixel current driver circuits having single-gate TFTs may include p-type TFTs.
  • Pixel driver circuits with p-type TFTs are shown in FIG. 25-30 , where the circuits for FIGS. 25-30 are analogous to those of FIG. 19-24 , respectively.
  • the OLEDs can be either non-inverted or inverted.
  • the four possible cases are presented in Table 1.

Abstract

A pixel driver circuit for driving a light-emitting element and a pixel circuit having the pixel driver circuit are provided. The pixel driver circuit includes a data line, address lines, switch thin film transistors, feedback thin film transistors and drive thin film transistors. The pixel circuit may include an organic light emitting diode, which is driven by the pixel driver circuit.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This is a continuation-in-part application of U.S. patent application Ser. No. 10/468,319 filed on Jan. 23, 2004, which is the U.S. National Phase of PCT/CA02/00173 having an International Filing Date of Feb. 18, 2002, which claims the benefit of U.S. provisional patent application Ser. No. 60/268,900 filed on Feb. 16, 2001, the contents of all of the foregoing applications are incorporated herein by reference in their entirety.
  • FIELD OF INVENTION
  • The present invention relates to a display technology, and more particularly to a pixel driver circuit for driving a light-emitting element and a pixel circuit having the pixel driver circuit.
  • BACKGROUND OF THE INVENTION
  • Organic light emitting diode (OLED) displays have gained significant interest recently in display applications in view of their faster response times, larger viewing angles, higher contrast, lighter weight, lower power, amenability to flexible substrates, as compared to liquid crystal displays (LCDs). Despite the OLED's demonstrated superiority over the LCD, there still remain several challenging issues related to encapsulation and lifetime, yield, color efficiency, and drive electronics, all of which are receiving considerable attention.
  • Although passive matrix addressed OLED displays are already in the marketplace, they do not support the resolution needed in the next generation displays, since high information content (HIC) formats are only possible with the active matrix addressing scheme.
  • Active matrix addressing involves a layer of backplane electronics, based on thin film transistors (TFTs) fabricated using amorphous silicon (a-Si:H), polycrystalline silicon (poly-Si), or polymer technologies, to provide the bias voltage and drive current needed in each OLED based pixel. Here, the voltage on each pixel is lower and the current throughout the entire frame period is a low constant value, thus avoiding the excessive peak driving and leakage currents associated with passive matrix addressing. This in turn increases the lifetime of the OLED.
  • In active matrix OLED (AMOLED) displays, it is important to ensure that the aperture ratio or fill factor (defined as the ratio of light emitting display area to the total pixel area) should be high enough to ensure display quality.
  • Conventional AMOLED displays are based on light emission through an aperture on the glass substrate where the backplane electronics is integrated. Increasing the on-pixel density of TFT integration for stable drive current reduces the size of the aperture. The same happens when pixel sizes are scaled down. One solution to having an aperture ratio that is invariant on scaling or on-pixel integration density is to vertically stack the OLED layer on the backplane electronics, along with a transparent top electrode as shown in FIG. 2. In FIG. 2, reference numerals S and D denote a source and a drain, respectively. This implies a continuous back electrode over the OLED pixel.
  • However, this continuous back electrode can give rise to parasitic capacitance, whose effects become significant when the electrode runs over the switching and other TFTs. The presence of the back electrode can induce a parasitic channel in TFTs giving rise to high leakage current. The leakage current is the current that flows between source and drain of the TFT when the gate of the TFT is in its OFF state.
  • SUMMARY OF THE INVENTION
  • It is an object of the invention to provide a system that obviates or mitigates at least one of the disadvantages of existing systems.
  • The present invention relates to a pixel driver circuit for driving a light-emitting element (e.g. OLED), and a pixel circuit having the pixel driver circuit.
  • In accordance with an aspect of the present invention, there is provided a pixel driver circuit, which includes: an address line; a data line; a switch thin film transistor, a first node of the switch transistor being connected to the data line and a gate of the switch transistor being connected to the address line; a feedback thin film transistor, a first node of the feedback transistor being connected to the data line and a gate of the feedback transistor being connected to the address line; a reference thin film transistor, a drain of the reference transistor being connected to a second node of the feedback transistor, a gate of the reference transistor being connected to a second node of the switch transistor and a source of the reference transistor being connected to a ground potential; and a drive thin film transistor, a gate of the drive transistor being connected to the gate of the reference transistor.
  • In accordance with a further aspect of the present invention, there is provided a pixel circuit, which includes: the pixel driver circuit described above; and an organic light emitting diode, the source of the drive transistor being connected to the ground potential and the drain being connected to the organic light emitting diode.
  • In accordance with a further aspect of the present invention, there is provided a pixel driver circuit, which includes: an address line; a data line; a switch thin film transistor, a first node of the switch transistor being connected to the data line and a gate of the switch transistor being connected to the address line; a feedback thin film transistor, a gate of the feedback transistor being connected to the address line and a second node of the feedback transistor being connected to a ground potential; a reference thin film transistor, a drain of the reference transistor being connected to a second node of the switch transistor, a gate of the reference transistor being connected to the second node of the switch transistor and a source of the reference transistor being connected to a first node of the feedback transistor; and a drive thin film transistor, a gate of the drive transistor being connected to the gate of the reference transistor.
  • In accordance with a further aspect of the present invention, there is provided a pixel circuit, which includes: the pixel driver circuit described above; and an organic light emitting diode, the source of the drive transistor being connected to the ground potential and the drain being connected to the organic light emitting diode.
  • In accordance with a further aspect of the present invention, there is provided a pixel circuit, which includes: the pixel driver circuit described above; and an organic light emitting diode, the source of the drive transistor being connected to the organic light emitting diode and the drain being connected to a voltage supply.
  • In accordance with a further aspect of the present invention, there is provided a pixel driver circuit, which includes: an address line; a data line; a switch thin film transistor, a first node of the switch transistor being connected to the data line and a gate of the switch transistor being connected to the address line; a feedback thin film transistor, a first node of the feedback transistor being connected to the data line and a gate of the feedback transistor being connected to the address line; a reference thin film transistor, a drain of the reference transistor being connected to a second node of the feedback transistor, the gate of the reference transistor being connected to a second node of the switch transistor and a source of the reference transistor being connected to a ground potential; a diode-use thin film transistor, a drain and a gate of the diode-use transistor being connected to a potential, and a source of the diode-use transistor being connected to the second node of the feedback transistor; and a drive thin film transistor, a gate of the drive transistor being connected to the gate of the reference transistor.
  • In accordance with a further aspect of the present invention, there is provided a pixel circuit, which includes: the pixel driver circuit described above; and an organic light emitting diode, the source of the drive transistor being connected to the ground potential and the drain being connected to the organic light emitting diode.
  • In accordance with a further aspect of the present invention, there is provided a pixel circuit, which includes: the pixel driver circuit described above; and an organic light emitting diode, the source of the drive transistor being connected to the organic light emitting diode, and the drain being connected to a voltage supply.
  • In accordance with a further aspect of the present invention, there is provided a pixel driver circuit for driving a colour pixel of a colour display, which includes: a first address line; a data line; a first switch thin film transistor, a first node of the first switch transistor being connected to the data line and a gate of the switch transistor being connected to the first address line; a feedback thin film transistor, a first node and a gate of the feedback transistor being connected to a second node of the first switch transistor and a second node of the feedback transistor being connected to a ground potential; a second switch thin film transistor, a source of the second switch transistor being connected to a second node of the first switch transistor, a gate of the second switch transistor being connected to a second address line; a first drive thin film transistor, a gate of the first drive transistor being connected to a drain of the second switch transistor; a third switch thin film transistor, a source of the third switch transistor being connected to the second node of the first switch transistor, a gate of the third switch transistor being connected to a third address line; a second drive thin film transistor, a gate, of the second drive transistor being connected to the drain of the third switch transistor; a fourth switch thin film transistor, a source of the fourth switch transistor being connected to the second node of the first switch transistor, a gate of the fourth switch transistor being connected to a fourth address line; and a third drive thin film transistor, a gate of the third drive transistor being connected to the drain of the fourth switch transistor.
  • In accordance with a further aspect of the present invention, there is provided a pixel circuit, which includes: the pixel driver circuit described above; a first organic light emitting diode, a source of the first drive transistor being connected to the ground potential and a drain of the first drive transistor being connected to the first organic light emitting diode; a second organic light emitting diode, a source of the second drive transistor being connected to the ground potential and a drain of the second drive transistor being connected to the second organic light emitting diode; and a third organic light emitting diode, a source of the third drive transistor being connected to the ground potential and a drain of the third drive transistor being connected to the third organic light emitting diode.
  • In accordance with a further aspect of the present invention, there is provided a pixel circuit which includes: a pixel driver circuit described above, a first organic light emitting diode associated with the first drive transistor; a second organic light emitting diode associated with the second drive transistor; and a third organic light emitting diode associated with the third drive transistor, the source of the first drive transistor being connected to the first organic light emitting diode, and a drain of the first drive transistor being connected to a voltage supply.
  • This summary of the invention does not necessarily describe all features of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings wherein:
  • FIG. 1 shows variation of required pixel areas with mobility for 2-T and 5-T pixel drivers;
  • FIG. 2 shows a conventional pixel architecture for surface emissive a-Si:H AMOLED displays;
  • FIG. 3 shows a cross section view of a dual-gate TFT structure;
  • FIG. 4 shows forward and reverse transfer characteristics of dual-gate TFT for various top gate biases;
  • FIG. 5 shows a panel architecture of a AMOLED display;
  • FIG. 6A shows a pixel circuit including a conventional 2-T pixel driver circuit;
  • FIG. 6B shows input-output timing diagrams for the 2-T pixel circuit of FIG. 6A;
  • FIG. 7A shows a pixel circuit including a 5-T pixel current driver circuit for an OLED display in accordance with an embodiment of the present invention;
  • FIG. 7B shows input-output timing diagrams of the 5-T pixel circuit of FIG. 7A;
  • FIG. 8 shows transient performance of the 5-T pixel current driver circuit of FIG. 7A for three consecutive write cycles;
  • FIG. 9 shows input-output transfer characteristics for the 2-T pixel driver circuit of FIG. 6A for different supply voltages;
  • FIG. 10 shows input-output transfer characteristics for the 5-T pixel current driver circuit of FIG. 7A for different supply voltages;
  • FIG. 11 shows variation in OLED current as a function of the normalized shift in threshold voltage;
  • FIG. 12 shows a pixel circuit including a conventional 2-T polysilicon based pixel driver circuit having p-channel drive TFTs;
  • FIG. 13 shows a pixel circuit including a 4-T pixel current driver circuit for an OLED display in accordance with a further embodiment of the present invention;
  • FIG. 14 shows a pixel circuit including a 4-T pixel current driver circuit for an OLED display in accordance with a further embodiment of the present invention;
  • FIG. 15 shows a pixel circuit including a 4-T pixel current driver circuit for an OLED display in accordance with a further embodiment of the present invention;
  • FIG. 16 shows a pixel circuit including a 4-T pixel current driver circuit for an OLED display in accordance with a further embodiment of the present invention;
  • FIG. 17 shows a pixel circuit including a pixel current driver circuit for a full color, OLED display in accordance with a further embodiment of the present invention;
  • FIG. 18 shows a schematic diagram of the top gate and the bottom gate of a dual gate transistor where the top gate is electrically connected to the bottom gate;
  • FIG. 19 shows a pixel circuit including a 5-T pixel current driver circuit in accordance with a further embodiment of the present invention;
  • FIG. 20 shows a pixel circuit including a 4-T pixel current driver circuit in accordance with a further embodiment of the present invention;
  • FIG. 21 shows a pixel circuit including a 4-T pixel current driver circuit in accordance with a further embodiment of the present invention;
  • FIG. 22 shows a pixel circuit including a 4-T pixel current driver circuit in accordance with a further embodiment of the present invention;
  • FIG. 23 shows a pixel circuit including a 4-T pixel current driver circuit in accordance with a further embodiment of the present invention;
  • FIG. 24 shows a pixel circuit including a pixel current driver circuit for a full color display in accordance with a further embodiment of the present invention;
  • FIG. 25 shows a pixel circuit including a 5-T pixel current driver circuit in accordance with a further embodiment of the present invention;
  • FIG. 26 shows a pixel circuit including a 4-T pixel current driver circuit in accordance with a further embodiment of the present invention;
  • FIG. 27 shows a pixel circuit including a 4-T pixel current driver circuit in accordance with a further embodiment of the present invention;
  • FIG. 28 shows a pixel circuit including a 4-T pixel current driver circuit in accordance with a further embodiment of the present invention;
  • FIG. 29 shows a pixel circuit including a 4-T pixel current driver circuit in accordance with a further embodiment of the present invention; and
  • FIG. 30 shows a pixel circuit including a pixel current driver circuit for a full color display in accordance with a further embodiment of the present invention.
  • DETAILED DESCRIPTION
  • The following description is of a preferred embodiment.
  • The embodiments of the present invention are described using an OLED display. However, the embodiments of the present invention are applicable to any other displays, such as phosphorus displays, inorganic electroluminescent (EL), and LED displays. A pixel driver circuit in accordance with the embodiments of the present invention includes a plurality of TFTs, which form a current mirror based pixel current driver for automatically compensating for the shift of threshold Vth of a drive TFT. The TFTs are formed in a current-programmed Δ VT-compensated manner.
  • The pixel driver circuit is suitable for an OLED display. The OLED layer may be vertically stacked on the plurality of TFTs. The pixel driver circuit may be provided for monochrome displays or for full colour displays. The OLED may be a regular (P-I-N) stack OLED or an inverted (N−1-P) stack OLED, and may be located at either the drain or source of the drive TFT(s)
  • The TFT may be an n-type TFT or a p-type TFT. The TFT may be, but not limited to, an amorphous silicon (a-Si:H) based TFT, a polysilicon-based TFT, a crystalline silicon based TFT, or an organic semiconductor based TFT.
  • Although amorphous Si does not enjoy equivalent electronic properties compared to poly-Si, it adequately meets many of the drive requirements for small area displays such as those used in pagers, cell phones, and other mobile devices. Poly-Si TFTs have one key advantage in that they are able to provide better pixel drive capability because of their higher mobility. Their higher mobility can be of the order of μFE˜100 cm2/Vs. “μFE” represents field effect mobility, which is typically used to evaluate how well a semiconductor can conduct. “Vs” is a unit where V stands for volt, and s stands for second. This makes poly-Si highly desirable for large area (e.g. laptop size) Video Graphics Array (VGA) and Super VGA (SVGA) displays. The lower mobility associated with a-Si:H TFTs (μFE˜1 cm2/Vs) is not a limiting factor since the drive transistor in the pixel can be scaled up in area to provide the needed drive current. The OLED drive current density is typically 10 mA/cm2 at 10V operation to provide a brightness of 100 cd/m2, which is the required luminance for most displays. For example, with an a-Si:H TFT mobility of 0.5 cm2/Vs and channel length of 25 μm, this drive current requirement translates into required pixel area of 300 μm2, which adequately meets the requirements of pixel resolution and speed for some 3-inch monochrome display applications.
  • FIG. 1 illustrates simulation results for the variation of the required pixel size with device mobility calculated for two types of drivers, which will be elaborated later, a conventional voltage-programmed 2-T pixel driver circuit (FIG. 6A) and a current-programmed, ΔVT-compensated 5-T pixel driver circuit in accordance with an embodiment of the present invention (FIG. 7A)
  • In FIG. 1, the graph having a mark “▪” represents the pixel size required by the 2T pixel driver circuit given a reference mobility of the TFT, and the graph having a mark “♦” represents the pixel size required by the 5T pixel driver circuit given a reference mobility of the TFT. In FIG. 1, “μ0” denotes a reference mobility whose value is in the range 0.1 to 1 cm2/Vs.
  • For instance, the area of the pixel for the 2-T pixel driver (FIG. 6A) has the area of the switching transistors, the area of the drive transistor, and the area occupied by interconnects, bias lines, etc. In FIG. 1, the drive current and frame rate are kept constant at 10 μA and 50 Hz, respectively, for a 230×230 array. It is clear that there is no significant savings in area between the 2-T and 5-T pixel drivers but the savings are considerable with increasing mobility. This stems mainly from the reduction in the area of the drive transistor where there is a trade-off between TFT and TFT aspect ratio, W/L (Width/Length).
  • In terms of threshold voltage (VT) uniformity and stability, both poly-Si and a-Si:H share the same concerns, although in comparison, the latter provides far better spatial uniformity but not stability (ΔVT). Thus the inter-pixel variation in the drive current can be a concern in both cases, although clever circuit design techniques can be employed to compensate for Δ VT hence improving drive current uniformity. In terms of long-term reliability, it is not clear with poly-Si technology. Although there are already products based on a-Si:H technology for displays and imaging, the reliability issues associated with OLEDs may yet be different.
  • The fabrication processes associated with a-Si:H technology are standard and adapted from mainstream integrated circuit (IC) technology, but with capital equipment costs that are much lower. One of the main advantages of the a-Si:H technology is that it has become a low cost and well-established technology, while poly-Si has yet to reach the stage of manufacturability. The technology also holds great promise for futuristic applications since deposition of a-Si:H, a-SiNx:H, and TFT arrays can be achieved at low temperatures (<120° C.) thus making it amenable to plastic substrates, which is a critical requirement for mechanically flexible displays.
  • To minimize the conduction induced in all TFTs in the pixel by the back electrode, an alternate TFT structure based on a dual-gate structure is employed as shown in FIG. 7A. In the dual gate TFT (e.g. FIG. 3), a top gate electrode is added to the TFT structure to prevent the OLED electrodes from biasing the a-Si:H channel area (FIG. 2). The voltage on the top gate can be chosen such so as to minimize the charge induced in the (parasitic) top channel of the TFT. The objective underlying the choice of the voltage on the top gate is to minimize parasitic capacitance in the driver circuits and leakage currents in the TFTs so as to enhance circuit performance. In what follows, the operation of the dual-gate TFT is described.
  • FIG. 3 illustrates the structure of a dual-gate TFT fabricated for this purpose, wherein reference numerals S and D denote a source and a drain, respectively. The fabrication steps are the same as of that of a normal inverted staggered TFT structure except that it requires a sixth mask for patterning the top gate. The length of the TFT may be around 30 μm to provide enough spacing between the source and drain for the top gate. The width may be made large (e.g. 1600 μm) by interconnecting four TFTs with W=400 μm (with four of these TFTs) in parallel to create a sizeable leakage current for measurement. A delay time is inserted in the measurement of the current to ensure that the measurement has passed the transient period created by defects in the a-Si:H active layer, which give rise to a time-dependent capacitance.
  • FIG. 4 shows results of static current measurements for four cases: first when the top gate is tied to −10V, second when the top gate is grounded, third when the top gate is floating, and lastly when the top gate is shorted to the bottom gate. In FIG. 4, Vtg represents the bias voltage applied to the top gate of the TFT, and Vbg represents the voltage applied to the bottom gate of the TFT.
  • With a floating top gate, the characteristics are almost similar to that of a normal single gate TFT. The leakage current is relatively high particularly when the top gate is biased with a negative voltage. The lowest values of leakage current are obtained when the top gate is pegged to either OV or to the voltage of the bottom gate. In particular, with the latter the performance of the TFT in the (forward) sub-threshold regime of operation is significantly improved. This enhancement in sub-threshold performance can be explained by the forced shift of the effective conduction path away from the bottom interface to the bulk a-Si:H region due to the positive bias on the top gate. This in turn decreases the effect of the trap states at the bottom interface on the sub-threshold slope of the TFT.
  • It is noted that although the addition of another metal contact as the top gate reduces the leakage current of the TFT, it may potentially degrade pixel circuit performance by possible parasitic capacitances introduced by vertically stacking the OLED pixel. Thus the choice of top gate connection becomes important. For example, if the top gates in the pixel circuit are connected to the bottom gates of the associated TFTs, this gives rise to parasitic capacitances located between the gates and the cathode, which can lead to undesirable display operation (due to the charging up of the parasitic capacitance) when the gate driver drives the TFT switch as illustrated in FIG. 5. On the other hand, if the top gates are grounded, this results in the parasitic capacitance being grounded to yield reliable and stable circuit operation.
  • The OLED driver circuits considered here are the voltage-programmed 2-T driver of FIG. 6A, and the current-programmed ΔVT-compensated 5-T version of FIG. 7A. The 5-T driver circuit is a significant variation of the previous designs, leading to reduced pixel area, reduced leakage, lower supply voltage, higher linearity (˜30 dB), and larger dynamic range (40 dB).
  • Before discussing the operation of the 5-T pixel driver circuit, the operation of the conventional voltage-driven 2-T pixel driver circuit will be described. FIG. 6A shows a 2-T pixel circuit including the 2-T pixel driver circuit, an OLED and a capacitor Cs. The 2-T pixel driver includes two TFTs T1 and T2. FIG. 6B shows input-output timing chart of the 2-T pixel circuit of FIG. 6A. IOLED represents the current passing through the OLED element and transistor T2.
  • Referring to FIGS. 6A and 6B, when the address line is activated by Vaddress, the voltage on the data line (Vdata) starts charging capacitor CS and the gate capacitance of the driver transistor T2. Depending on the voltage on the data line, the capacitor charges up to turn the driver transistor T2 on, which then starts conducting to drive the OLED with the appropriate level of current. When the address line is turned off, T1 is turned off. However, the voltage at the gate of T2 remains since the leakage current of T1 is trivial in comparison. Hence, the current through the OLED remains unchanged after the turn off process. The OLED current changes only the next time around when a different voltage is written into the pixel.
  • FIG. 7A illustrates a 5-T pixel circuit having the 5-T pixel current driver circuit for an OLED display, an OLED, and a capacitor Cs. The 5-T pixel current driver circuit has five TFTs T1-T5. Unlike the 2-T pixel driver circuit of FIG. 6A, the data that is written into the 5-T pixel in this case is a current (Idata).
  • FIG. 7B shows input-output timing diagrams of the 5-T pixel circuit of FIG. 7A. Referring to FIGS. 7A and 7B, the address line voltage Vaddress, and the data line current Idata are activated or deactivated simultaneously. When Vaddress is activated, it forces T1 and T2 to turn on. T1 immediately starts conducting but T2 does not since T3 and T4 are off. Therefore, the voltages at the drain and source of T2 become equal. The current flow through T1 starts charging the gate capacitor of transistors T3 and T5, like the 2-T driver. The current of these transistors starts increasing and consequently T2 starts to conduct current. Therefore, T1's share of Idata reduces and T2's share of Idata increases. This process continues until the gate capacitors of T3 and T5 charge (via T1) to a voltage that forces the current of T3 to be Idata. At this time, the current of T5 is zero and the entire Idata goes through T2 and T3. At the same time, T5 drives a current through the OLED, which is ideally equal to Idata*(W5/W3). (W5/W3) signifies a current gain where W5 represents channel width of T5, and W3 represents channel width of T3. Now if Idata and Vaddress are deactivated, T2 will turn off, but due to the presence of capacitances in T3 and T5, the current of these two devices cannot be changed easily, since the capacitances keep the bias voltages constant. This forces T4 to conduct the same current as that of T3, to enable the driver T5 to drive the same current into the OLED even when the write period is over. Writing a new value into the pixel then changes the current driven into the OLED.
  • The result of transient simulation for the 5-T current driver circuit of FIG. 7A is shown in FIG. 8. As can be seen, the circuit has a write time of <70 μs, which is acceptable for most applications. The 5-T current driver circuit does not increase the required pixel size significantly (FIG. 1), since the sizes of T2, T3, and T4 are scaled down. This also provides an internal gain (W5/W3=8), which reduces the required input current to <2 μA for 10 μA OLED current.
  • The transfer characteristics for the 2-T and 5-T driver circuits of FIGS. 6A and 7A are illustrated in FIGS. 9 and 10, respectively, generated using reliable physically-based TFT models for both forward and reverse regimes. A much improved linearity (˜30 dB) in the transfer characteristics (Idata/IOLED) is observed for the 5-T driver circuit due to the geometrically-defined internal pixel gain as compared to similar designs. In addition, there are two components (OLED and T5) in the high current path, which in turn decreases the required supply voltage and hence improves the dynamic range. According to FIG. 10, a good dynamic range (˜40 dB) is observed for supply voltage of 20V and drive currents in the range IOLED≦10 μA, which is realistic for high brightness.
  • FIG. 11 illustrates variation in the OLED current with the shift in threshold voltage for the 2-T and 5-T driver circuits of FIGS. 6A and 7A.
  • In FIG. 11, the graph having a mark “▪” represents the OLED current when using the 2-T pixel driver circuit, and the graph having a mark “♦” represents the OLED current when using the 5-T pixel driver circuit.
  • The 5-T current driver circuit compensates for the shift in threshold voltage particularly when the shift is smaller than 10% of the supply voltage. This is because the 5-T current driver circuit is current-programmed. In contrast, the OLED current in the 2-T driver circuit changes significantly with a shift in threshold voltage. The 5-T current driver circuit described here operates at much lower supply voltages, has a much larger drive current, and occupies less area.
  • The pixel architectures are compatible to surface (top) emissive AMOLED displays that enable high on-pixel TFT integration density for uniformity in OLED drive current and high aperture ratio. The 5-T driver circuit of FIG. 7A provides on-pixel gain, high linearity (−30 dB), and high dynamic range (40 dB) at low supply voltages (15-20V) compared to the similar designs (27V). The results described here illustrate the feasibility of using a-Si:H for 3-inch mobile monochrome display applications on both glass and plastic substrates. With the latter, although the mobility of the TFT is lower, the size of the drive transistor can be scaled up yet meeting the requirements on pixel area as depicted in FIG. 1.
  • As described above, the TFT may be, but not limited to, a polysilicon-based TFT. Polysilicon has higher electron and hole mobilities than amorphous silicon. The hole mobilities are large enough to allow the fabrication of p-channel TFTs.
  • The advantage of having p-channel TFTs is that bottom emissive OLEDs can be used along with a p-channel drive TFT to make a good current source. One such circuit is shown in FIG. 12. FIG. 12 illustrates a pixel circuit having a conventional 2-T polysilicon based pixel current driver circuit. The 2-T polysilicon based pixel current driver circuit has a p-channel drive TFT. In FIG. 12, T1 and T2 are p-channel TFTs.
  • In FIG. 12, the source of the p-type drive TFT is connected to Vsupply. Therefore, Vgs, gate-to-source voltage, and hence the drive current of the p-type TFT is independent of OLED characteristics. In other words, the driver shown in FIG. 12 performs as a good current source. Hence, bottom emissive OLEDs are suitable for use with p-channel drive TFTs, and top emissive OLEDs are suitable for use with n-channel TFTs.
  • The trade-off with using polysilicon is that the process of making polysilicon TFTs requires much higher temperatures than that of amorphous silicon. This high temperature-processing requirement greatly increases the cost, and is not amenable to plastic substrates. Moreover, polysilicon technology is not as mature and widely available as amorphous silicon. In contrast, amorphous silicon is a well-established technology currently used in liquid crystal displays (LCDs). It is due to these reasons that amorphous silicon combined with top emissive OLED based circuit designs is most promising for AMOLED displays.
  • Compared to polysilicon TFTs, amorphous silicon TFTs are n-type and thus are more suitable for top emission circuits as shown in FIG. 2, and doesn't preclude their use in full colour bottom emission circuits either. However, amorphous silicon TFTs have inherent stability problems due to the material structure. In amorphous silicon circuit design, the biggest hurdle is the increase in threshold voltage Vth after prolonged gate bias. This shift is particularly evident in the drive TFT of an OLED display pixel. This drive TFT is always in the ‘ON’ state, in which there is a positive voltage at its gate. As a result, its Vth increases and the drive current decreases based on the current-voltage equation below:

  • Ids=(μC ox W/2L)(V gs −V th)2(in Saturation region)
  • where Ids represents drain to source current; μ represents mobility; Cox represents gate capacitance; W represents channel width; L represents channel length; Vgs represents gate to source voltage; and Vth represents threshold voltage.
  • In the display, this would mean that the brightness of the OLED would decrease over time, which is unacceptable. Hence, the 2-T driver circuits as described above are not practical for OLED displays, as they do not compensate for any increase in Vth.
  • By contrast, the current mirror based pixel current driver circuit illustrated in FIG. 7A automatically compensates for shifts in the Vth of the drive TFT in a pixel.
  • FIGS. 13-17 illustrate pixel circuits having pixel current driver circuits in accordance with further embodiments of the present invention. Each of the pixel circuits shown in FIGS. 13-16 includes a 4-T pixel current driver circuit, an OLED and a capacitor Cs. The pixel circuit shown in FIG. 17 includes a pixel current driver circuit, OLEDs, and capacitors Cs. While the pixel current driver circuits of FIGS. 13-16 are presented for a monochrome OLED display, the pixel current driver circuits of FIGS. 13-16 are, however, applicable to a fill color display. The pixel current driver circuit of FIG. 17 is provided for a full colour, OLED display.
  • The pixel driver circuits of FIGS. 13-17 are current mirror based pixel driver circuits. All these circuits illustrated in FIGS. 13-17 have mechanisms that automatically compensate for the Vth shift of a drive TFT.
  • The pixel current driver circuit of FIG. 13 is a modification of the 5-T pixel driver circuit of FIG. 7A. The 4-T pixel current driver circuit of FIG. 13 has four TFTs, T1-T4. The 4-T pixel current driver circuit of FIG. 13 compensates for the shift of Vth of T4. The 4-T pixel current driver circuit of FIG. 13 occupies a smaller area than that of the 5-T pixel current driver circuit, and provides a higher dynamic range. The higher dynamic range allows for a larger signal swing at the input, which means that the OLED brightness can be adjusted over a larger range.
  • The 4-T pixel current driver circuit of FIG. 14 has four TFTs, T1-T4, and has a lower discharge time. The 4-T pixel current driver circuit of FIG. 14 compensates for the shift of Vth of T4. The advantage of this circuit is that the discharge time of the capacitor Cs is substantially reduced. This is because the discharge path has two TFTs (as compared to three TFTs in the circuit of FIG. 13). The charging time remains the same. The other advantage is that there is an additional gain provided by this circuit because T3 and T4 do not have the same source voltages. However, this gain is non-linear and may not be desirable in some cases.
  • The 4-T pixel current driver circuit of FIG. 15 has four TFTs, T1-T4. The 4-T pixel current driver circuit of FIG. 15 compensates for the shift of Vth of T4. This circuit does not have the non-linear gain present in the pixel driver circuit of FIG. 14, since the source terminals of T3 and T4 are at the same voltage. It still maintains the lower capacitance discharge time, along with the other features of the circuit of FIG. 9.
  • The 4-T pixel current driver circuit of FIG. 16 has four TFTs, T1-T4. The 4-T pixel current driver circuit of FIG. 16 compensates for the shift of Vth of T4. This circuit forms the building block for the 3-colour RGB circuit shown in FIG. 17. It also has a low capacitance discharge time and high dynamic range.
  • The full colour circuit shown in FIG. 17 minimizes the area required by an RGB pixel on a display, while maintaining the desirable features like threshold voltage shift compensation, in-pixel current gain, low capacitance discharge time, and high dynamic range. In FIG. 17, Vblue, VGreen, VRed represent control signals for programming the blue, green, and red pixels, respectively. The pixel current driver circuit of FIG. 17 compensates for the shift of Vth of T6.
  • The circuits described above may be fabricated using normal inverted staggered TFT structures. The length and width of the thin film transistors may change depending on the maximum drive current required by the circuit and the fabrication technology used.
  • The pixel current driver circuits of FIGS. 7 and 13-17 use n-type amorphous silicon TFTs. With the above structure on the a-Si:H current driver according to the embodiments of the present invention, the charge induced in the top channel of the TFT is minimized, and the leakage currents in the TFT is minimized so as to enhance circuit performance.
  • However, polysilicon technology may be applied to the pixel current driver circuits using p-type or n-type TFTs. These circuits, when made in polysilicon, can compensate for the spatial non-uniformity of the threshold voltage. The p-type circuits are conjugates of the above-mentioned circuits and are suitable for the bottom emissive pixels.
  • In FIGS. 6A, 7A, and 12-17, the TFT having dual gates is shown, where the dual gate includes a top gate and a bottom gate. The top gate may be grounded (for example, in FIGS. 6A, 7A and 12-17), or electrically tied to a bottom gate (FIG. 18).
  • The dual-gate TFTs are used in the above-mentioned circuits to enable vertical integration of the OLED layers with minimum parasitic effects. However, the above-mentioned circuits compensate for the Vth shift when the circuits comprise single-gate TFTs.
  • FIGS. 19-24 illustrate pixel current driver circuits having single-gate TFTs. FIGS. 19-24 correspond to FIGS. 7A and 13-17, respectively.
  • For example, the pixel current driver circuit of FIG. 19 contains single-gate TFTs having a switch TFT T1, a feedback TFT T2, a reference TFT T3, a diode-use TFT T4, and a drive TFT T5. The pixel current driver circuit of FIG. 20 contains single-gate TFTs having a switch TFT T1, a feedback TFT T2, a reference TFT T3, and a drive TFT T4. The pixel current driver circuit of FIG. 22 contains single-gate TFTs having a feedback TFT T1, a switch TFT T2, a reference TFT T3, and a drive TFT T4. The pixel current driver circuit of FIG. 24 contains single-gate TFTs having switch TFTs T1, T3, T4, T5, a feedback TFT T2, and drive TFT T6, T7, T8.
  • The driving scheme and operation of the pixel driver circuits of FIGS. 19-24 are same as those of FIGS. 7A and 13-17. The major difference between the pixel current driver circuit having dual-gate TFTs and the pixel current driver circuit having single-gate TFTs is that the pixel current driver circuit having the dual-gate TFTs utilize a better TFT design which minimizes the leakage currents in the TFTs, thus enhancing circuit performance. However, the single-gate TFTs are the standard and preferred design in industry.
  • In FIGS. 19-24, n-type TFTs are shown. However, the pixel current driver circuits having single-gate TFTs may include p-type TFTs. Pixel driver circuits with p-type TFTs are shown in FIG. 25-30, where the circuits for FIGS. 25-30 are analogous to those of FIG. 19-24, respectively.
  • With regard to the current driver circuits of FIGS. 19-30 the OLEDs can be either non-inverted or inverted. The four possible cases are presented in Table 1.
  • TABLE 1
    Possible OLED connections.
    Bottom Emission Top Emission
    OLED Reduced aperture ratio Large aperture ratio
    connected at Regular OLED - Regular OLED -
    source of transparent anode transparent cathode.
    drive TFT OLED current depends on OLED current depends
    OLED voltage which on OLED voltage which
    changes with aging - changes with aging -
    undesirable location undesirable location
    Safeguards against Safeguards against small
    small variation in drive variation in drive
    current by source current by source
    degeneration degeneration
    OLED Reduced aperture ratio Large aperture ratio
    connected at Inverted OLED - Inverted OLED -
    drain of drive transparent cathode transparent anode
    TFT OLED current independent OLED current
    of OLED voltage independent of OLED
    voltage
  • The present invention has been described with regard to one or more embodiments. However, it will be apparent to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as defined in the claims.

Claims (20)

1-35. (canceled)
36. A pixel driver circuit comprising:
an address line;
a data line;
a switch thin film transistor, a first node of the switch transistor being connected to the data line and a gate of the switch transistor being connected to the address line;
a feedback thin film transistor, a gate of the feedback transistor being connected to the address line and a second node of the feedback transistor being connected to a potential;
a reference thin film transistor, a first node of the reference transistor being connected to a second node of the switch transistor, a gate of the reference transistor being connected to the second node of the switch transistor, and a second node of the reference transistor being connected to a first node of the feedback transistor; and
a drive thin film transistor, a gate of the drive transistor being connected to the gate of the reference transistor.
37. The pixel driver circuit according to claim 36, wherein at least one of the thin film transistors is an amorphous silicon based thin film transistor.
38. The pixel driver circuit according to claim 36, wherein at least one of the thin film transistor is a polycrystalline silicon based thin film transistor.
39. The pixel driver circuit according to claim 36, wherein at least one of the thin film transistors is a n-type thin film transistor.
40. The pixel driver circuit according to claim 36, wherein at least one of the thin film transistors is a p-type thin film transistor.
41. The pixel driver circuit according to claim 36, wherein the thin film transistors each comprise a second gate.
42. The pixel driver circuit according to claim 36, wherein the first node of the reference transistor is a drain node, and wherein the second node of the reference transistor is a source node.
43. The pixel driver circuit according to claim 36, wherein the second node of the feedback transistor is connected to a ground potential.
44. The pixel driver circuit according to claim 36, wherein the second node of the feedback transistor is connected to a voltage supply.
45. The pixel driver circuit according to claim 36, comprising a capacitor connected to the gate of the drive transistor and a ground potential.
46. The pixel driver circuit according to claim 36, comprising a capacitor connected to the gate of the drive transistor and a voltage supply.
47. A pixel circuit comprising:
a pixel driver circuit according to claim 36; and
an organic light emitting diode, the one of a first node and a second node of the drive transistor being connected to the organic light emitting diode.
48. The pixel circuit according to claim 47, wherein the one of the first node and the second node of the drive transistor is connected to the organic light emitting diode, and wherein the other node is connected to a ground potential.
49. The pixel circuit according to claim 47, wherein the one of the first node and the second node of the drive transistor is connected to the organic light emitting diode, and wherein the other node is connected to a voltage supply.
50. The pixel circuit according to claim 47, wherein the one of the first node and the second node of the drive transistor is a drain, and wherein the other is a source.
51. The pixel circuit according to claim 47, comprising a capacitor connected between the gate of the drive transistor and a ground potential.
52. The pixel circuit according to claim 47, comprising a capacitor connected between the gate of the drive transistor and a voltage supply.
53. The pixel circuit according to claim 47, wherein the pixel circuit is arranged for a monochrome display.
54. The pixel circuit according to claim 47, wherein the pixel circuit is arranged for a full color display.
US12/504,510 2001-02-16 2009-07-16 Pixel driver circuit and pixel circuit having the pixel driver circuit Abandoned US20090284501A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/504,510 US20090284501A1 (en) 2001-02-16 2009-07-16 Pixel driver circuit and pixel circuit having the pixel driver circuit
US13/089,622 US8664644B2 (en) 2001-02-16 2011-04-19 Pixel driver circuit and pixel circuit having the pixel driver circuit
US14/038,651 US8890220B2 (en) 2001-02-16 2013-09-26 Pixel driver circuit and pixel circuit having control circuit coupled to supply voltage
US14/516,076 US20150154907A1 (en) 2001-02-16 2014-10-16 Pixel driver circuit and pixel circuit having control circuit coupled to supply voltage

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US26890001P 2001-02-16 2001-02-16
US10/468,319 US20040129933A1 (en) 2001-02-16 2002-02-18 Pixel current driver for organic light emitting diode displays
PCT/CA2002/000173 WO2002067327A2 (en) 2001-02-16 2002-02-18 Pixel current driver for organic light emitting diode displays
US11/220,094 US7569849B2 (en) 2001-02-16 2005-09-06 Pixel driver circuit and pixel circuit having the pixel driver circuit
US12/504,510 US20090284501A1 (en) 2001-02-16 2009-07-16 Pixel driver circuit and pixel circuit having the pixel driver circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/220,094 Continuation US7569849B2 (en) 2001-02-16 2005-09-06 Pixel driver circuit and pixel circuit having the pixel driver circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/089,622 Continuation US8664644B2 (en) 2001-02-16 2011-04-19 Pixel driver circuit and pixel circuit having the pixel driver circuit

Publications (1)

Publication Number Publication Date
US20090284501A1 true US20090284501A1 (en) 2009-11-19

Family

ID=46322584

Family Applications (5)

Application Number Title Priority Date Filing Date
US11/220,094 Expired - Lifetime US7569849B2 (en) 2001-02-16 2005-09-06 Pixel driver circuit and pixel circuit having the pixel driver circuit
US12/504,510 Abandoned US20090284501A1 (en) 2001-02-16 2009-07-16 Pixel driver circuit and pixel circuit having the pixel driver circuit
US13/089,622 Expired - Lifetime US8664644B2 (en) 2001-02-16 2011-04-19 Pixel driver circuit and pixel circuit having the pixel driver circuit
US14/038,651 Expired - Lifetime US8890220B2 (en) 2001-02-16 2013-09-26 Pixel driver circuit and pixel circuit having control circuit coupled to supply voltage
US14/516,076 Abandoned US20150154907A1 (en) 2001-02-16 2014-10-16 Pixel driver circuit and pixel circuit having control circuit coupled to supply voltage

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/220,094 Expired - Lifetime US7569849B2 (en) 2001-02-16 2005-09-06 Pixel driver circuit and pixel circuit having the pixel driver circuit

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/089,622 Expired - Lifetime US8664644B2 (en) 2001-02-16 2011-04-19 Pixel driver circuit and pixel circuit having the pixel driver circuit
US14/038,651 Expired - Lifetime US8890220B2 (en) 2001-02-16 2013-09-26 Pixel driver circuit and pixel circuit having control circuit coupled to supply voltage
US14/516,076 Abandoned US20150154907A1 (en) 2001-02-16 2014-10-16 Pixel driver circuit and pixel circuit having control circuit coupled to supply voltage

Country Status (1)

Country Link
US (5) US7569849B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100328299A1 (en) * 2001-09-21 2010-12-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, driving method of light emitting device and electronic device
US20110084281A1 (en) * 2001-02-26 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic equipment
US8791474B1 (en) 2013-03-15 2014-07-29 LuxVue Technology Corporation Light emitting diode display with redundancy scheme
US9029880B2 (en) 2012-12-10 2015-05-12 LuxVue Technology Corporation Active matrix display panel with ground tie lines
US9111464B2 (en) 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
US9159700B2 (en) 2012-12-10 2015-10-13 LuxVue Technology Corporation Active matrix emissive micro LED display
US9178123B2 (en) 2012-12-10 2015-11-03 LuxVue Technology Corporation Light emitting device reflective bank structure
US20150356922A1 (en) * 2012-12-31 2015-12-10 Kunshan New Flat Panel Display Technology Center Co., Ltd. Pixel circuit, display device, and drive method therefor
US9252375B2 (en) 2013-03-15 2016-02-02 LuxVue Technology Corporation Method of fabricating a light emitting diode display with integrated defect detection test
US10381176B2 (en) 2013-06-12 2019-08-13 Rohinni, LLC Keyboard backlighting with deposited light-generating sources
US10629393B2 (en) 2016-01-15 2020-04-21 Rohinni, LLC Apparatus and method of backlighting through a cover on the apparatus
US11423837B2 (en) 2019-07-26 2022-08-23 Chengdu Boe Optoelectronics Technology Co., Ltd. Pixel driving circuit and method for controlling the same, and display apparatus
TWI792597B (en) * 2021-01-08 2023-02-11 中國商京東方科技集團股份有限公司 Array substrate, its driving method and display device

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569849B2 (en) 2001-02-16 2009-08-04 Ignis Innovation Inc. Pixel driver circuit and pixel circuit having the pixel driver circuit
US6753654B2 (en) 2001-02-21 2004-06-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance
JP2003308030A (en) * 2002-02-18 2003-10-31 Sanyo Electric Co Ltd Display device
CA2419704A1 (en) 2003-02-24 2004-08-24 Ignis Innovation Inc. Method of manufacturing a pixel with organic light-emitting diode
CA2443206A1 (en) 2003-09-23 2005-03-23 Ignis Innovation Inc. Amoled display backplanes - pixel driver circuits, array architecture, and external compensation
EP1544842B1 (en) * 2003-12-18 2018-08-22 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US7405713B2 (en) * 2003-12-25 2008-07-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic equipment using the same
CA2472671A1 (en) 2004-06-29 2005-12-29 Ignis Innovation Inc. Voltage-programming scheme for current-driven amoled displays
US7592975B2 (en) 2004-08-27 2009-09-22 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
CA2490858A1 (en) 2004-12-07 2006-06-07 Ignis Innovation Inc. Driving method for compensated voltage-programming of amoled displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
KR20070101275A (en) 2004-12-15 2007-10-16 이그니스 이노베이션 인크. Method and system for programming, calibrating and driving a light emitting device display
US20140111567A1 (en) 2005-04-12 2014-04-24 Ignis Innovation Inc. System and method for compensation of non-uniformities in light emitting device displays
US9280933B2 (en) 2004-12-15 2016-03-08 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9171500B2 (en) 2011-05-20 2015-10-27 Ignis Innovation Inc. System and methods for extraction of parasitic parameters in AMOLED displays
US9275579B2 (en) 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US8576217B2 (en) 2011-05-20 2013-11-05 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US8599191B2 (en) 2011-05-20 2013-12-03 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
CA2495726A1 (en) 2005-01-28 2006-07-28 Ignis Innovation Inc. Locally referenced voltage programmed pixel for amoled displays
CA2496642A1 (en) 2005-02-10 2006-08-10 Ignis Innovation Inc. Fast settling time driving method for organic light-emitting diode (oled) displays based on current programming
TW200707376A (en) 2005-06-08 2007-02-16 Ignis Innovation Inc Method and system for driving a light emitting device display
CA2518276A1 (en) 2005-09-13 2007-03-13 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
US9489891B2 (en) 2006-01-09 2016-11-08 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
EP2458579B1 (en) 2006-01-09 2017-09-20 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9269322B2 (en) 2006-01-09 2016-02-23 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
CN101501748B (en) 2006-04-19 2012-12-05 伊格尼斯创新有限公司 Stable driving scheme for active matrix displays
CA2556961A1 (en) 2006-08-15 2008-02-15 Ignis Innovation Inc. Oled compensation technique based on oled capacitance
US8390536B2 (en) * 2006-12-11 2013-03-05 Matias N Troccoli Active matrix display and method
US8845109B2 (en) * 2007-11-24 2014-09-30 Yong-Jing Wang Projection system based on self emitting display panel
JP5073544B2 (en) * 2008-03-26 2012-11-14 富士フイルム株式会社 Display device
CN102057418B (en) 2008-04-18 2014-11-12 伊格尼斯创新公司 System and driving method for light emitting device display
CA2637343A1 (en) 2008-07-29 2010-01-29 Ignis Innovation Inc. Improving the display source driver
CN102386236B (en) * 2008-10-24 2016-02-10 株式会社半导体能源研究所 Semiconductor device and the method for the manufacture of this semiconductor device
US9370075B2 (en) 2008-12-09 2016-06-14 Ignis Innovation Inc. System and method for fast compensation programming of pixels in a display
US8854294B2 (en) * 2009-03-06 2014-10-07 Apple Inc. Circuitry for independent gamma adjustment points
US8508542B2 (en) * 2009-03-06 2013-08-13 Apple Inc. Systems and methods for operating a display
CA2669367A1 (en) 2009-06-16 2010-12-16 Ignis Innovation Inc Compensation technique for color shift in displays
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
CA2688870A1 (en) 2009-11-30 2011-05-30 Ignis Innovation Inc. Methode and techniques for improving display uniformity
US8283967B2 (en) 2009-11-12 2012-10-09 Ignis Innovation Inc. Stable current source for system integration to display substrate
US10996258B2 (en) 2009-11-30 2021-05-04 Ignis Innovation Inc. Defect detection and correction of pixel circuits for AMOLED displays
US8803417B2 (en) 2009-12-01 2014-08-12 Ignis Innovation Inc. High resolution pixel architecture
CA2687631A1 (en) 2009-12-06 2011-06-06 Ignis Innovation Inc Low power driving scheme for display applications
FR2953994B1 (en) * 2009-12-15 2012-06-08 Commissariat Energie Atomique SOURCE OF PHOTONS RESULTING FROM A RECOMBINATION OF LOCALIZED EXCITONS
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
CA2692097A1 (en) 2010-02-04 2011-08-04 Ignis Innovation Inc. Extracting correlation curves for light emitting device
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US20140313111A1 (en) 2010-02-04 2014-10-23 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
KR101465196B1 (en) 2010-02-05 2014-11-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
CA2696778A1 (en) 2010-03-17 2011-09-17 Ignis Innovation Inc. Lifetime, uniformity, parameter extraction methods
US8907991B2 (en) 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
CN103688302B (en) 2011-05-17 2016-06-29 伊格尼斯创新公司 The system and method using dynamic power control for display system
US9351368B2 (en) 2013-03-08 2016-05-24 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US20140368491A1 (en) 2013-03-08 2014-12-18 Ignis Innovation Inc. Pixel circuits for amoled displays
US9886899B2 (en) 2011-05-17 2018-02-06 Ignis Innovation Inc. Pixel Circuits for AMOLED displays
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
CN106910464B (en) 2011-05-27 2020-04-24 伊格尼斯创新公司 System for compensating pixels in a display array and pixel circuit for driving light emitting devices
WO2012164474A2 (en) 2011-05-28 2012-12-06 Ignis Innovation Inc. System and method for fast compensation programming of pixels in a display
US8901579B2 (en) 2011-08-03 2014-12-02 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US9070775B2 (en) 2011-08-03 2015-06-30 Ignis Innovations Inc. Thin film transistor
JP5832399B2 (en) 2011-09-16 2015-12-16 株式会社半導体エネルギー研究所 Light emitting device
US8912020B2 (en) 2011-11-23 2014-12-16 International Business Machines Corporation Integrating active matrix inorganic light emitting diodes for display devices
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US8937632B2 (en) 2012-02-03 2015-01-20 Ignis Innovation Inc. Driving system for active-matrix displays
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9991463B2 (en) * 2012-06-14 2018-06-05 Universal Display Corporation Electronic devices with improved shelf lives
KR101994332B1 (en) * 2012-10-30 2019-07-01 삼성디스플레이 주식회사 Organic light emitting transistor and display device including thereof
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
KR101992405B1 (en) * 2012-12-13 2019-06-25 삼성디스플레이 주식회사 Pixel and Organic Light Emitting Display Device Using the same
DE112014000422T5 (en) 2013-01-14 2015-10-29 Ignis Innovation Inc. An emission display drive scheme providing compensation for drive transistor variations
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
CA2894717A1 (en) 2015-06-19 2016-12-19 Ignis Innovation Inc. Optoelectronic device characterization in array with shared sense line
US9721505B2 (en) 2013-03-08 2017-08-01 Ignis Innovation Inc. Pixel circuits for AMOLED displays
EP2779147B1 (en) 2013-03-14 2016-03-02 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
DE112014001402T5 (en) 2013-03-15 2016-01-28 Ignis Innovation Inc. Dynamic adjustment of touch resolutions of an Amoled display
WO2014174427A1 (en) 2013-04-22 2014-10-30 Ignis Innovation Inc. Inspection system for oled display panels
WO2015022626A1 (en) 2013-08-12 2015-02-19 Ignis Innovation Inc. Compensation accuracy
US9818765B2 (en) 2013-08-26 2017-11-14 Apple Inc. Displays with silicon and semiconducting oxide thin-film transistors
US9083320B2 (en) 2013-09-20 2015-07-14 Maofeng YANG Apparatus and method for electrical stability compensation
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
US10997901B2 (en) 2014-02-28 2021-05-04 Ignis Innovation Inc. Display system
US10176752B2 (en) 2014-03-24 2019-01-08 Ignis Innovation Inc. Integrated gate driver
US10192479B2 (en) 2014-04-08 2019-01-29 Ignis Innovation Inc. Display system using system level resources to calculate compensation parameters for a display module in a portable device
CA2872563A1 (en) 2014-11-28 2016-05-28 Ignis Innovation Inc. High pixel density array architecture
CA2873476A1 (en) 2014-12-08 2016-06-08 Ignis Innovation Inc. Smart-pixel display architecture
CA2879462A1 (en) 2015-01-23 2016-07-23 Ignis Innovation Inc. Compensation for color variation in emissive devices
CA2886862A1 (en) 2015-04-01 2016-10-01 Ignis Innovation Inc. Adjusting display brightness for avoiding overheating and/or accelerated aging
CA2889870A1 (en) 2015-05-04 2016-11-04 Ignis Innovation Inc. Optical feedback system
CA2892714A1 (en) 2015-05-27 2016-11-27 Ignis Innovation Inc Memory bandwidth reduction in compensation system
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
CA2898282A1 (en) 2015-07-24 2017-01-24 Ignis Innovation Inc. Hybrid calibration of current sources for current biased voltage progra mmed (cbvp) displays
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
CA2900170A1 (en) 2015-08-07 2017-02-07 Gholamreza Chaji Calibration of pixel based on improved reference values
CA2908285A1 (en) 2015-10-14 2017-04-14 Ignis Innovation Inc. Driver with multiple color pixel structure
CA2909813A1 (en) 2015-10-26 2017-04-26 Ignis Innovation Inc High ppi pattern orientation
US9818344B2 (en) 2015-12-04 2017-11-14 Apple Inc. Display with light-emitting diodes
JP2018036290A (en) * 2016-08-29 2018-03-08 株式会社ジャパンディスプレイ Display device
DE102017222059A1 (en) 2016-12-06 2018-06-07 Ignis Innovation Inc. Pixel circuits for reducing hysteresis
CN106531041B (en) * 2016-12-29 2019-01-22 深圳市华星光电技术有限公司 The K value method for detecting of OLED driving thin film transistor (TFT)
US10714018B2 (en) 2017-05-17 2020-07-14 Ignis Innovation Inc. System and method for loading image correction data for displays
US11025899B2 (en) 2017-08-11 2021-06-01 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
US10971078B2 (en) 2018-02-12 2021-04-06 Ignis Innovation Inc. Pixel measurement through data line
CN114730541B (en) * 2021-04-30 2023-06-09 京东方科技集团股份有限公司 Display substrate, manufacturing method thereof and display device
KR20230133557A (en) * 2022-03-11 2023-09-19 주식회사 사피엔반도체 Pixel circuit, display apparatus reducing static power consumption and driving method thereof
US11568813B1 (en) * 2022-05-10 2023-01-31 Meta Platforms Technologies, Llc Pixel level burn-in compensation for light-emitting diode based displays

Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996523A (en) * 1988-10-20 1991-02-26 Eastman Kodak Company Electroluminescent storage display with improved intensity driver circuits
US5266515A (en) * 1992-03-02 1993-11-30 Motorola, Inc. Fabricating dual gate thin film transistors
US5498880A (en) * 1995-01-12 1996-03-12 E. I. Du Pont De Nemours And Company Image capture panel using a solid state device
US5619033A (en) * 1995-06-07 1997-04-08 Xerox Corporation Layered solid state photodiode sensor array
US5648276A (en) * 1993-05-27 1997-07-15 Sony Corporation Method and apparatus for fabricating a thin film semiconductor device
US5714968A (en) * 1994-08-09 1998-02-03 Nec Corporation Current-dependent light-emitting element drive circuit for use in active matrix display device
US5748160A (en) * 1995-08-21 1998-05-05 Mororola, Inc. Active driven LED matrices
US5874803A (en) * 1997-09-09 1999-02-23 The Trustees Of Princeton University Light emitting device with stack of OLEDS and phosphor downconverter
US5880582A (en) * 1996-09-04 1999-03-09 Sumitomo Electric Industries, Ltd. Current mirror circuit and reference voltage generating and light emitting element driving circuits using the same
US5903248A (en) * 1997-04-11 1999-05-11 Spatialight, Inc. Active matrix display having pixel driving circuits with integrated charge pumps
US5917280A (en) * 1997-02-03 1999-06-29 The Trustees Of Princeton University Stacked organic light emitting devices
US5952789A (en) * 1997-04-14 1999-09-14 Sarnoff Corporation Active matrix organic light emitting diode (amoled) display pixel structure and data load/illuminate circuit therefor
US5990629A (en) * 1997-01-28 1999-11-23 Casio Computer Co., Ltd. Electroluminescent display device and a driving method thereof
US6023259A (en) * 1997-07-11 2000-02-08 Fed Corporation OLED active matrix using a single transistor current mode pixel design
US6069365A (en) * 1997-11-25 2000-05-30 Alan Y. Chow Optical processor based imaging system
US6091203A (en) * 1998-03-31 2000-07-18 Nec Corporation Image display device with element driving device for matrix drive of multiple active elements
US6097360A (en) * 1998-03-19 2000-08-01 Holloman; Charles J Analog driver for LED or similar display element
US6144222A (en) * 1998-07-09 2000-11-07 International Business Machines Corporation Programmable LED driver
US6229508B1 (en) * 1997-09-29 2001-05-08 Sarnoff Corporation Active matrix light emitting diode pixel structure and concomitant method
US20010002703A1 (en) * 1999-11-30 2001-06-07 Jun Koyama Electric device
US6246180B1 (en) * 1999-01-29 2001-06-12 Nec Corporation Organic el display device having an improved image quality
US6252248B1 (en) * 1998-06-08 2001-06-26 Sanyo Electric Co., Ltd. Thin film transistor and display
US20010026257A1 (en) * 2000-03-27 2001-10-04 Hajime Kimura Electro-optical device
US20010030323A1 (en) * 2000-03-29 2001-10-18 Sony Corporation Thin film semiconductor apparatus and method for driving the same
US6307322B1 (en) * 1999-12-28 2001-10-23 Sarnoff Corporation Thin-film transistor circuitry with reduced sensitivity to variance in transistor threshold voltage
US20010043173A1 (en) * 1997-09-04 2001-11-22 Ronald Roy Troutman Field sequential gray in active matrix led display using complementary transistor pixel circuits
US6323631B1 (en) * 2001-01-18 2001-11-27 Sunplus Technology Co., Ltd. Constant current driver with auto-clamped pre-charge function
US20010045929A1 (en) * 2000-01-21 2001-11-29 Prache Olivier F. Gray scale pixel driver for electronic display and method of operation therefor
US20020000576A1 (en) * 2000-06-22 2002-01-03 Kazutaka Inukai Display device
US20020011796A1 (en) * 2000-05-08 2002-01-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, and electric device using the same
US20020011799A1 (en) * 2000-04-06 2002-01-31 Semiconductor Energy Laboratory Co., Ltd. Electronic device and driving method
US6392617B1 (en) * 1999-10-27 2002-05-21 Agilent Technologies, Inc. Active matrix light emitting diode display
US6433488B1 (en) * 2001-01-02 2002-08-13 Chi Mei Optoelectronics Corp. OLED active driving system with current feedback
US20020195968A1 (en) * 2001-06-22 2002-12-26 International Business Machines Corporation Oled current drive pixel circuit
US6501466B1 (en) * 1999-11-18 2002-12-31 Sony Corporation Active matrix type display apparatus and drive circuit thereof
US20030062524A1 (en) * 2001-08-29 2003-04-03 Hajime Kimura Light emitting device, method of driving a light emitting device, element substrate, and electronic equipment
US20030090481A1 (en) * 2001-11-13 2003-05-15 Hajime Kimura Display device and method for driving the same
US20030107560A1 (en) * 2001-01-15 2003-06-12 Akira Yumoto Active-matrix display, active-matrix organic electroluminescent display, and methods of driving them
US6580408B1 (en) * 1999-06-03 2003-06-17 Lg. Philips Lcd Co., Ltd. Electro-luminescent display including a current mirror
US20030111966A1 (en) * 2001-12-19 2003-06-19 Yoshiro Mikami Image display apparatus
US20030230980A1 (en) * 2002-06-18 2003-12-18 Forrest Stephen R Very low voltage, high efficiency phosphorescent oled in a p-i-n structure
US6693610B2 (en) * 1999-09-11 2004-02-17 Koninklijke Philips Electronics N.V. Active matrix electroluminescent display device
US6697057B2 (en) * 2000-10-27 2004-02-24 Semiconductor Energy Laboratory Co., Ltd. Display device and method of driving the same
US20040145547A1 (en) * 2003-01-21 2004-07-29 Oh Choon-Yul Luminescent display, and driving method and pixel circuit thereof, and display device
US20040150595A1 (en) * 2002-12-12 2004-08-05 Seiko Epson Corporation Electro-optical device, method of driving electro-optical device, and electronic apparatus
US20040155841A1 (en) * 2002-11-27 2004-08-12 Seiko Epson Corporation Electro-optical device, method of driving electro-optical device, and electronic apparatus
US20040196275A1 (en) * 2002-07-09 2004-10-07 Casio Computer Co., Ltd. Driving device, display apparatus using the same, and driving method therefor
US20040252089A1 (en) * 2003-05-16 2004-12-16 Shinya Ono Image display apparatus controlling brightness of current-controlled light emitting element
US20050007357A1 (en) * 2003-05-19 2005-01-13 Sony Corporation Pixel circuit, display device, and driving method of pixel circuit
US6859193B1 (en) * 1999-07-14 2005-02-22 Sony Corporation Current drive circuit and display device using the same, pixel circuit, and drive method
US20050067971A1 (en) * 2003-09-29 2005-03-31 Michael Gillis Kane Pixel circuit for an active matrix organic light-emitting diode display
US6919871B2 (en) * 2003-04-01 2005-07-19 Samsung Sdi Co., Ltd. Light emitting display, display panel, and driving method thereof
US6940214B1 (en) * 1999-02-09 2005-09-06 Sanyo Electric Co., Ltd. Electroluminescence display device
US20050285825A1 (en) * 2004-06-29 2005-12-29 Ki-Myeong Eom Light emitting display and driving method thereof
US7129914B2 (en) * 2001-12-20 2006-10-31 Koninklijke Philips Electronics N. V. Active matrix electroluminescent display device
US20060261841A1 (en) * 2004-08-20 2006-11-23 Koninklijke Philips Electronics N.V. Data signal driver for light emitting display
US7248236B2 (en) * 2001-02-16 2007-07-24 Ignis Innovation Inc. Organic light emitting diode display having shield electrodes
US7310092B2 (en) * 2002-04-24 2007-12-18 Seiko Epson Corporation Electronic apparatus, electronic system, and driving method for electronic apparatus

Family Cites Families (278)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4354162A (en) 1981-02-09 1982-10-12 National Semiconductor Corporation Wide dynamic range control amplifier with offset correction
JPS61110198A (en) 1984-11-05 1986-05-28 株式会社東芝 Matrix type display unit
JPS61161093A (en) 1985-01-09 1986-07-21 Sony Corp Device for correcting dynamic uniformity
EP0269744B1 (en) 1986-05-13 1994-12-14 Sanyo Electric Co., Ltd Circuit for driving an image display device
JP2623087B2 (en) 1986-09-27 1997-06-25 潤一 西澤 Color display device
US6323832B1 (en) 1986-09-27 2001-11-27 Junichi Nishizawa Color display device
US4975691A (en) 1987-06-16 1990-12-04 Interstate Electronics Corporation Scan inversion symmetric drive
US4963860A (en) 1988-02-01 1990-10-16 General Electric Company Integrated matrix display circuitry
DE69012110T2 (en) * 1990-06-11 1995-03-30 Ibm Display device.
US5222082A (en) 1991-02-28 1993-06-22 Thomson Consumer Electronics, S.A. Shift register useful as a select line scanner for liquid crystal display
JP3163637B2 (en) 1991-03-19 2001-05-08 株式会社日立製作所 Driving method of liquid crystal display device
US5280280A (en) 1991-05-24 1994-01-18 Robert Hotto DC integrating display driver employing pixel status memories
US5589847A (en) 1991-09-23 1996-12-31 Xerox Corporation Switched capacitor analog circuits using polysilicon thin film technology
JPH08509818A (en) 1993-04-05 1996-10-15 シラス・ロジック・インク Method and apparatus for crosstalk compensation in liquid crystal display device
JPH06347753A (en) 1993-04-30 1994-12-22 Prime View Hk Ltd Method and equipment to recover threshold voltage of amorphous silicon thin-film transistor device
US5712653A (en) * 1993-12-27 1998-01-27 Sharp Kabushiki Kaisha Image display scanning circuit with outputs from sequentially switched pulse signals
JP3626521B2 (en) * 1994-02-28 2005-03-09 三菱電機株式会社 Reference potential generation circuit, potential detection circuit, and semiconductor integrated circuit device
US5747928A (en) * 1994-10-07 1998-05-05 Iowa State University Research Foundation, Inc. Flexible panel display having thin film transistors driving polymer light-emitting diodes
US5686935A (en) 1995-03-06 1997-11-11 Thomson Consumer Electronics, S.A. Data line drivers with column initialization transistor
JP3272209B2 (en) * 1995-09-07 2002-04-08 アルプス電気株式会社 LCD drive circuit
JPH0990405A (en) 1995-09-21 1997-04-04 Sharp Corp Thin-film transistor
US5790234A (en) 1995-12-27 1998-08-04 Canon Kabushiki Kaisha Eyeball detection apparatus
US5923794A (en) 1996-02-06 1999-07-13 Polaroid Corporation Current-mediated active-pixel image sensing device with current reset
JP3027126B2 (en) 1996-11-26 2000-03-27 松下電器産業株式会社 Liquid crystal display
US6046716A (en) 1996-12-19 2000-04-04 Colorado Microdisplay, Inc. Display system having electrode modulation to alter a state of an electro-optic layer
JPH10209854A (en) * 1997-01-23 1998-08-07 Mitsubishi Electric Corp Body voltage control type semiconductor integrated circuit
JPH10254410A (en) 1997-03-12 1998-09-25 Pioneer Electron Corp Organic electroluminescent display device, and driving method therefor
WO1998040871A1 (en) 1997-03-12 1998-09-17 Seiko Epson Corporation Pixel circuit, display device and electronic equipment having current-driven light-emitting device
US6229506B1 (en) * 1997-04-23 2001-05-08 Sarnoff Corporation Active matrix light emitting diode pixel structure and concomitant method
US5815303A (en) 1997-06-26 1998-09-29 Xerox Corporation Fault tolerant projective display having redundant light modulators
JPH1127116A (en) * 1997-07-02 1999-01-29 Tadahiro Omi Semiconductor integrated circuit, voltage controlled delay line, delay locked loop, self-synchronous pipeline digital system, voltage controlled oscillator and phase-locked loop
KR100242244B1 (en) 1997-08-09 2000-02-01 구본준 Scanning circuit
JP3580092B2 (en) 1997-08-21 2004-10-20 セイコーエプソン株式会社 Active matrix display
US6300944B1 (en) 1997-09-12 2001-10-09 Micron Technology, Inc. Alternative power for a portable computer via solar cells
US6738035B1 (en) 1997-09-22 2004-05-18 Nongqiang Fan Active matrix LCD based on diode switches and methods of improving display uniformity of same
US6909419B2 (en) 1997-10-31 2005-06-21 Kopin Corporation Portable microdisplay system
TW491954B (en) 1997-11-10 2002-06-21 Hitachi Device Eng Liquid crystal display device
JP3552500B2 (en) * 1997-11-12 2004-08-11 セイコーエプソン株式会社 Logic amplitude level conversion circuit, liquid crystal device and electronic equipment
JPH11231805A (en) 1998-02-10 1999-08-27 Sanyo Electric Co Ltd Display device
JPH11251059A (en) 1998-02-27 1999-09-17 Sanyo Electric Co Ltd Color display device
US6259424B1 (en) 1998-03-04 2001-07-10 Victor Company Of Japan, Ltd. Display matrix substrate, production method of the same and display matrix circuit
JP2953465B1 (en) 1998-08-14 1999-09-27 日本電気株式会社 Constant current drive circuit
US6316786B1 (en) 1998-08-29 2001-11-13 International Business Machines Corporation Organic opto-electronic devices
JP3644830B2 (en) 1998-09-01 2005-05-11 パイオニア株式会社 Organic electroluminescence panel and manufacturing method thereof
JP3648999B2 (en) 1998-09-11 2005-05-18 セイコーエプソン株式会社 Liquid crystal display device, electronic apparatus, and voltage detection method for liquid crystal layer
US6166489A (en) 1998-09-15 2000-12-26 The Trustees Of Princeton University Light emitting device using dual light emitting stacks to achieve full-color emission
US6274887B1 (en) 1998-11-02 2001-08-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
US6617644B1 (en) 1998-11-09 2003-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7141821B1 (en) 1998-11-10 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an impurity gradient in the impurity regions and method of manufacture
US7022556B1 (en) * 1998-11-11 2006-04-04 Semiconductor Energy Laboratory Co., Ltd. Exposure device, exposure method and method of manufacturing semiconductor device
US6512271B1 (en) * 1998-11-16 2003-01-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6518594B1 (en) * 1998-11-16 2003-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor devices
US6909114B1 (en) 1998-11-17 2005-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having LDD regions
US6420758B1 (en) 1998-11-17 2002-07-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an impurity region overlapping a gate electrode
US6489952B1 (en) 1998-11-17 2002-12-03 Semiconductor Energy Laboratory Co., Ltd. Active matrix type semiconductor display device
US6501098B2 (en) 1998-11-25 2002-12-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device
US6365917B1 (en) * 1998-11-25 2002-04-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2000174282A (en) 1998-12-03 2000-06-23 Semiconductor Energy Lab Co Ltd Semiconductor device
US6420988B1 (en) 1998-12-03 2002-07-16 Semiconductor Energy Laboratory Co., Ltd. Digital analog converter and electronic device using the same
EP2264771A3 (en) 1998-12-03 2015-04-29 Semiconductor Energy Laboratory Co., Ltd. MOS thin film transistor and method of fabricating same
KR20020006019A (en) 1998-12-14 2002-01-18 도날드 피. 게일 Portable microdisplay system
US6524895B2 (en) * 1998-12-25 2003-02-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6573195B1 (en) 1999-01-26 2003-06-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device by performing a heat-treatment in a hydrogen atmosphere
US7697052B1 (en) * 1999-02-17 2010-04-13 Semiconductor Energy Laboratory Co., Ltd. Electronic view finder utilizing an organic electroluminescence display
EP2284605A3 (en) 1999-02-23 2017-10-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and fabrication method thereof
US6157583A (en) * 1999-03-02 2000-12-05 Motorola, Inc. Integrated circuit memory having a fuse detect circuit and method therefor
US6306694B1 (en) 1999-03-12 2001-10-23 Semiconductor Energy Laboratory Co., Ltd. Process of fabricating a semiconductor device
US6468638B2 (en) 1999-03-16 2002-10-22 Alien Technology Corporation Web process interconnect in electronic assemblies
US6531713B1 (en) * 1999-03-19 2003-03-11 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and manufacturing method thereof
US6399988B1 (en) 1999-03-26 2002-06-04 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having lightly doped regions
US7402467B1 (en) 1999-03-26 2008-07-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6861670B1 (en) * 1999-04-01 2005-03-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having multi-layer wiring
US6878968B1 (en) * 1999-05-10 2005-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6690344B1 (en) * 1999-05-14 2004-02-10 Ngk Insulators, Ltd. Method and apparatus for driving device and display
JP3289276B2 (en) * 1999-05-27 2002-06-04 日本電気株式会社 Semiconductor device
JP4337171B2 (en) 1999-06-14 2009-09-30 ソニー株式会社 Display device
JP4092857B2 (en) 1999-06-17 2008-05-28 ソニー株式会社 Image display device
US7379039B2 (en) 1999-07-14 2008-05-27 Sony Corporation Current drive circuit and display device using same pixel circuit, and drive method
US6641933B1 (en) 1999-09-24 2003-11-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting EL display device
KR20010080746A (en) 1999-10-12 2001-08-22 요트.게.아. 롤페즈 Led display device
US6587086B1 (en) 1999-10-26 2003-07-01 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6384427B1 (en) 1999-10-29 2002-05-07 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US6573584B1 (en) 1999-10-29 2003-06-03 Kyocera Corporation Thin film electronic device and circuit board mounting the same
KR100685307B1 (en) * 1999-11-05 2007-02-22 엘지.필립스 엘시디 주식회사 Shift Register
JP4727029B2 (en) 1999-11-29 2011-07-20 株式会社半導体エネルギー研究所 EL display device, electric appliance, and semiconductor element substrate for EL display device
TW511298B (en) 1999-12-15 2002-11-21 Semiconductor Energy Lab EL display device
US20030147017A1 (en) 2000-02-15 2003-08-07 Jean-Daniel Bonny Display device with multiple row addressing
US6780687B2 (en) 2000-01-28 2004-08-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device having a heat absorbing layer
US6856307B2 (en) 2000-02-01 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and method of driving the same
US6559594B2 (en) 2000-02-03 2003-05-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP3523139B2 (en) * 2000-02-07 2004-04-26 日本電気株式会社 Variable gain circuit
JP2001230664A (en) * 2000-02-15 2001-08-24 Mitsubishi Electric Corp Semiconductor integrated circuit
US6414661B1 (en) 2000-02-22 2002-07-02 Sarnoff Corporation Method and apparatus for calibrating display devices and automatically compensating for loss in their efficiency over time
ATE336007T1 (en) * 2000-02-23 2006-09-15 Koninkl Philips Electronics Nv INTEGRATED CIRCUIT WITH TEST INTERFACE
JP2001318627A (en) 2000-02-29 2001-11-16 Semiconductor Energy Lab Co Ltd Light emitting device
JP3495311B2 (en) 2000-03-24 2004-02-09 Necエレクトロニクス株式会社 Clock control circuit
TW484238B (en) 2000-03-27 2002-04-21 Semiconductor Energy Lab Light emitting device and a method of manufacturing the same
US6706544B2 (en) * 2000-04-19 2004-03-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and fabricating method thereof
US6611108B2 (en) 2000-04-26 2003-08-26 Semiconductor Energy Laboratory Co., Ltd. Electronic device and driving method thereof
US6605993B2 (en) * 2000-05-16 2003-08-12 Fujitsu Limited Operational amplifier circuit
TW493153B (en) 2000-05-22 2002-07-01 Koninkl Philips Electronics Nv Display device
EP1158483A3 (en) * 2000-05-24 2003-02-05 Eastman Kodak Company Solid-state display with reference pixel
US20020030647A1 (en) * 2000-06-06 2002-03-14 Michael Hack Uniform active matrix oled displays
JP2001356741A (en) * 2000-06-14 2001-12-26 Sanyo Electric Co Ltd Level shifter and active matrix type display device using the same
JP3723747B2 (en) 2000-06-16 2005-12-07 松下電器産業株式会社 Display device and driving method thereof
JP3877049B2 (en) 2000-06-27 2007-02-07 株式会社日立製作所 Image display apparatus and driving method thereof
US6738034B2 (en) 2000-06-27 2004-05-18 Hitachi, Ltd. Picture image display device and method of driving the same
TW502854U (en) * 2000-07-20 2002-09-11 Koninkl Philips Electronics Nv Display device
JP4123711B2 (en) * 2000-07-24 2008-07-23 セイコーエプソン株式会社 Electro-optical panel driving method, electro-optical device, and electronic apparatus
US6760005B2 (en) * 2000-07-25 2004-07-06 Semiconductor Energy Laboratory Co., Ltd. Driver circuit of a display device
JP4014831B2 (en) 2000-09-04 2007-11-28 株式会社半導体エネルギー研究所 EL display device and driving method thereof
KR100467991B1 (en) * 2000-09-05 2005-01-24 가부시끼가이샤 도시바 Display device
JP3838063B2 (en) 2000-09-29 2006-10-25 セイコーエプソン株式会社 Driving method of organic electroluminescence device
JP2002162934A (en) 2000-09-29 2002-06-07 Eastman Kodak Co Flat-panel display with luminance feedback
US7315295B2 (en) * 2000-09-29 2008-01-01 Seiko Epson Corporation Driving method for electro-optical device, electro-optical device, and electronic apparatus
JP3695308B2 (en) 2000-10-27 2005-09-14 日本電気株式会社 Active matrix organic EL display device and manufacturing method thereof
JP3902938B2 (en) 2000-10-31 2007-04-11 キヤノン株式会社 Organic light emitting device manufacturing method, organic light emitting display manufacturing method, organic light emitting device, and organic light emitting display
US6320325B1 (en) 2000-11-06 2001-11-20 Eastman Kodak Company Emissive display with luminance feedback from a representative pixel
JP3620490B2 (en) 2000-11-22 2005-02-16 ソニー株式会社 Active matrix display device
JP2002268576A (en) 2000-12-05 2002-09-20 Matsushita Electric Ind Co Ltd Image display device, manufacturing method for the device and image display driver ic
TW518532B (en) 2000-12-26 2003-01-21 Hannstar Display Corp Driving circuit of gate control line and method
US6580657B2 (en) 2001-01-04 2003-06-17 International Business Machines Corporation Low-power organic light emitting diode pixel circuit
JP2002215063A (en) 2001-01-19 2002-07-31 Sony Corp Active matrix type display device
CA2436451A1 (en) 2001-02-05 2002-08-15 International Business Machines Corporation Liquid crystal display device
JP4383743B2 (en) * 2001-02-16 2009-12-16 イグニス・イノベイション・インコーポレーテッド Pixel current driver for organic light emitting diode display
US7569849B2 (en) 2001-02-16 2009-08-04 Ignis Innovation Inc. Pixel driver circuit and pixel circuit having the pixel driver circuit
CA2507276C (en) 2001-02-16 2006-08-22 Ignis Innovation Inc. Pixel current driver for organic light emitting diode displays
SG143942A1 (en) 2001-02-19 2008-07-29 Semiconductor Energy Lab Light emitting device and method of manufacturing the same
US6753654B2 (en) 2001-02-21 2004-06-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance
JP4212815B2 (en) 2001-02-21 2009-01-21 株式会社半導体エネルギー研究所 Light emitting device
US7352786B2 (en) 2001-03-05 2008-04-01 Fuji Xerox Co., Ltd. Apparatus for driving light emitting element and system for driving light emitting element
US6597203B2 (en) 2001-03-14 2003-07-22 Micron Technology, Inc. CMOS gate array with vertical transistors
JP2002278513A (en) 2001-03-19 2002-09-27 Sharp Corp Electro-optical device
US6661180B2 (en) 2001-03-22 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, driving method for the same and electronic apparatus
JP3788916B2 (en) 2001-03-30 2006-06-21 株式会社日立製作所 Light-emitting display device
US7136058B2 (en) 2001-04-27 2006-11-14 Kabushiki Kaisha Toshiba Display apparatus, digital-to-analog conversion circuit and digital-to-analog conversion method
US6594606B2 (en) 2001-05-09 2003-07-15 Clare Micronix Integrated Systems, Inc. Matrix element voltage sensing for precharge
JP2002351409A (en) * 2001-05-23 2002-12-06 Internatl Business Mach Corp <Ibm> Liquid crystal display device, liquid crystal display driving circuit, driving method for liquid crystal display, and program
US7012588B2 (en) 2001-06-05 2006-03-14 Eastman Kodak Company Method for saving power in an organic electroluminescent display using white light emitting elements
KR100437765B1 (en) 2001-06-15 2004-06-26 엘지전자 주식회사 production method of Thin Film Transistor using high-temperature substrate and, production method of display device using the Thin Film Transistor
KR100743103B1 (en) 2001-06-22 2007-07-27 엘지.필립스 엘시디 주식회사 Electro Luminescence Panel
US6956547B2 (en) 2001-06-30 2005-10-18 Lg.Philips Lcd Co., Ltd. Driving circuit and method of driving an organic electroluminescence device
JP2003022035A (en) 2001-07-10 2003-01-24 Sharp Corp Organic el panel and its manufacturing method
JP2003043994A (en) * 2001-07-27 2003-02-14 Canon Inc Active matrix type display
JP3800050B2 (en) * 2001-08-09 2006-07-19 日本電気株式会社 Display device drive circuit
DE10140991C2 (en) 2001-08-21 2003-08-21 Osram Opto Semiconductors Gmbh Organic light-emitting diode with energy supply, manufacturing process therefor and applications
JP2003076331A (en) 2001-08-31 2003-03-14 Seiko Epson Corp Display device and electronic equipment
US7027015B2 (en) * 2001-08-31 2006-04-11 Intel Corporation Compensating organic light emitting device displays for color variations
JP3810725B2 (en) * 2001-09-21 2006-08-16 株式会社半導体エネルギー研究所 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
WO2003027997A1 (en) 2001-09-21 2003-04-03 Semiconductor Energy Laboratory Co., Ltd. Display apparatus and its driving method
SG120889A1 (en) 2001-09-28 2006-04-26 Semiconductor Energy Lab A light emitting device and electronic apparatus using the same
AU2002340265A1 (en) 2001-10-19 2003-04-28 Clare Micronix Integrated Systems Inc. Matrix element precharge voltage adjusting apparatus and method
US20030169219A1 (en) 2001-10-19 2003-09-11 Lechevalier Robert System and method for exposure timing compensation for row resistance
US6861810B2 (en) * 2001-10-23 2005-03-01 Fpd Systems Organic electroluminescent display device driving method and apparatus
TW518543B (en) 2001-11-14 2003-01-21 Ind Tech Res Inst Integrated current driving framework of active matrix OLED
JP4251801B2 (en) 2001-11-15 2009-04-08 パナソニック株式会社 EL display device and driving method of EL display device
US7071932B2 (en) 2001-11-20 2006-07-04 Toppoly Optoelectronics Corporation Data voltage current drive amoled pixel circuit
JP4050503B2 (en) * 2001-11-29 2008-02-20 株式会社日立製作所 Display device
JP4009097B2 (en) * 2001-12-07 2007-11-14 日立電線株式会社 LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LEAD FRAME USED FOR MANUFACTURING LIGHT EMITTING DEVICE
JP2003177709A (en) 2001-12-13 2003-06-27 Seiko Epson Corp Pixel circuit for light emitting element
JP2003186437A (en) 2001-12-18 2003-07-04 Sanyo Electric Co Ltd Display device
CN1293421C (en) 2001-12-27 2007-01-03 Lg.菲利浦Lcd株式会社 Electroluminescence display panel and method for operating it
JP2003195810A (en) 2001-12-28 2003-07-09 Casio Comput Co Ltd Driving circuit, driving device and driving method for optical method
US7274363B2 (en) 2001-12-28 2007-09-25 Pioneer Corporation Panel display driving device and driving method
CN100511366C (en) 2002-01-17 2009-07-08 日本电气株式会社 Semiconductor device provided with matrix type current load driving circuits, and driving method thereof
TWI258317B (en) * 2002-01-25 2006-07-11 Semiconductor Energy Lab A display device and method for manufacturing thereof
US20030140958A1 (en) 2002-01-28 2003-07-31 Cheng-Chieh Yang Solar photoelectric module
JP2003295825A (en) 2002-02-04 2003-10-15 Sanyo Electric Co Ltd Display device
US6720942B2 (en) 2002-02-12 2004-04-13 Eastman Kodak Company Flat-panel light emitting pixel with luminance feedback
JP2003308046A (en) 2002-02-18 2003-10-31 Sanyo Electric Co Ltd Display device
WO2003075256A1 (en) * 2002-03-05 2003-09-12 Nec Corporation Image display and its control method
JP3613253B2 (en) 2002-03-14 2005-01-26 日本電気株式会社 Current control element drive circuit and image display device
WO2003077231A2 (en) 2002-03-13 2003-09-18 Koninklijke Philips Electronics N.V. Two sided display device
TW594617B (en) * 2002-03-13 2004-06-21 Sanyo Electric Co Organic EL display panel and method for making the same
GB2386462A (en) 2002-03-14 2003-09-17 Cambridge Display Tech Ltd Display driver circuits
US6806497B2 (en) 2002-03-29 2004-10-19 Seiko Epson Corporation Electronic device, method for driving the electronic device, electro-optical device, and electronic equipment
KR100488835B1 (en) 2002-04-04 2005-05-11 산요덴키가부시키가이샤 Semiconductor device and display device
US6911781B2 (en) 2002-04-23 2005-06-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and production system of the same
DE10221301B4 (en) 2002-05-14 2004-07-29 Junghans Uhren Gmbh Device with solar cell arrangement and liquid crystal display
US7474285B2 (en) * 2002-05-17 2009-01-06 Semiconductor Energy Laboratory Co., Ltd. Display apparatus and driving method thereof
JP3972359B2 (en) 2002-06-07 2007-09-05 カシオ計算機株式会社 Display device
JP2004070293A (en) 2002-06-12 2004-03-04 Seiko Epson Corp Electronic device, method of driving electronic device and electronic equipment
GB2389951A (en) * 2002-06-18 2003-12-24 Cambridge Display Tech Ltd Display driver circuits for active matrix OLED displays
CN100380685C (en) 2002-06-21 2008-04-09 中田仗祐 Light-emitting device and its prodn. method
JP3970110B2 (en) 2002-06-27 2007-09-05 カシオ計算機株式会社 CURRENT DRIVE DEVICE, ITS DRIVE METHOD, AND DISPLAY DEVICE USING CURRENT DRIVE DEVICE
JP4115763B2 (en) 2002-07-10 2008-07-09 パイオニア株式会社 Display device and display method
US20040150594A1 (en) 2002-07-25 2004-08-05 Semiconductor Energy Laboratory Co., Ltd. Display device and drive method therefor
TW569173B (en) 2002-08-05 2004-01-01 Etoms Electronics Corp Driver for controlling display cycle of OLED and its method
GB0219771D0 (en) * 2002-08-24 2002-10-02 Koninkl Philips Electronics Nv Manufacture of electronic devices comprising thin-film circuit elements
TW558699B (en) * 2002-08-28 2003-10-21 Au Optronics Corp Driving circuit and method for light emitting device
JP4194451B2 (en) * 2002-09-02 2008-12-10 キヤノン株式会社 Drive circuit, display device, and information display device
US7385572B2 (en) 2002-09-09 2008-06-10 E.I Du Pont De Nemours And Company Organic electronic device having improved homogeneity
TW588468B (en) * 2002-09-19 2004-05-21 Ind Tech Res Inst Pixel structure of active matrix organic light-emitting diode
JP4230746B2 (en) * 2002-09-30 2009-02-25 パイオニア株式会社 Display device and display panel driving method
GB0223304D0 (en) 2002-10-08 2002-11-13 Koninkl Philips Electronics Nv Electroluminescent display devices
JP3832415B2 (en) * 2002-10-11 2006-10-11 ソニー株式会社 Active matrix display device
KR100460210B1 (en) * 2002-10-29 2004-12-04 엘지.필립스 엘시디 주식회사 Dual Panel Type Organic Electroluminescent Device and Method for Fabricating the same
KR100476368B1 (en) 2002-11-05 2005-03-17 엘지.필립스 엘시디 주식회사 Data driving apparatus and method of organic electro-luminescence display panel
US6687266B1 (en) * 2002-11-08 2004-02-03 Universal Display Corporation Organic light emitting materials and devices
JP2004157467A (en) * 2002-11-08 2004-06-03 Tohoku Pioneer Corp Driving method and driving-gear of active type light emitting display panel
JP3873149B2 (en) * 2002-12-11 2007-01-24 株式会社日立製作所 Display device
TWI228941B (en) 2002-12-27 2005-03-01 Au Optronics Corp Active matrix organic light emitting diode display and fabricating method thereof
JP4865986B2 (en) 2003-01-10 2012-02-01 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー Organic EL display device
US7079091B2 (en) 2003-01-14 2006-07-18 Eastman Kodak Company Compensating for aging in OLED devices
JP2004246320A (en) 2003-01-20 2004-09-02 Sanyo Electric Co Ltd Active matrix drive type display device
JP4048969B2 (en) 2003-02-12 2008-02-20 セイコーエプソン株式会社 Electro-optical device driving method and electronic apparatus
JP4378087B2 (en) * 2003-02-19 2009-12-02 奇美電子股▲ふん▼有限公司 Image display device
CA2419704A1 (en) 2003-02-24 2004-08-24 Ignis Innovation Inc. Method of manufacturing a pixel with organic light-emitting diode
US7612749B2 (en) 2003-03-04 2009-11-03 Chi Mei Optoelectronics Corporation Driving circuits for displays
JP3925435B2 (en) 2003-03-05 2007-06-06 カシオ計算機株式会社 Light emission drive circuit, display device, and drive control method thereof
TWI224300B (en) 2003-03-07 2004-11-21 Au Optronics Corp Data driver and related method used in a display device for saving space
TWI228696B (en) * 2003-03-21 2005-03-01 Ind Tech Res Inst Pixel circuit for active matrix OLED and driving method
US7026597B2 (en) 2003-04-09 2006-04-11 Eastman Kodak Company OLED display with integrated elongated photosensor
JP3991003B2 (en) 2003-04-09 2007-10-17 松下電器産業株式会社 Display device and source drive circuit
JP4530622B2 (en) 2003-04-10 2010-08-25 Okiセミコンダクタ株式会社 Display panel drive device
EP1618549A4 (en) 2003-04-25 2006-06-21 Visioneered Image Systems Inc Led illumination source/display with individual led brightness monitoring capability and calibration method
US6771028B1 (en) 2003-04-30 2004-08-03 Eastman Kodak Company Drive circuitry for four-color organic light-emitting device
KR20070024733A (en) * 2003-05-07 2007-03-02 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 El display apparatus and method of driving el display apparatus
JP3772889B2 (en) 2003-05-19 2006-05-10 セイコーエプソン株式会社 Electro-optical device and driving device thereof
US20040257352A1 (en) * 2003-06-18 2004-12-23 Nuelight Corporation Method and apparatus for controlling
JP2005057217A (en) 2003-08-07 2005-03-03 Renesas Technology Corp Semiconductor integrated circuit device
JP4342870B2 (en) * 2003-08-11 2009-10-14 株式会社 日立ディスプレイズ Organic EL display device
JP2005099715A (en) 2003-08-29 2005-04-14 Seiko Epson Corp Driving method of electronic circuit, electronic circuit, electronic device, electrooptical device, electronic equipment and driving method of electronic device
GB0320503D0 (en) 2003-09-02 2003-10-01 Koninkl Philips Electronics Nv Active maxtrix display devices
US8537081B2 (en) * 2003-09-17 2013-09-17 Hitachi Displays, Ltd. Display apparatus and display control method
CA2443206A1 (en) 2003-09-23 2005-03-23 Ignis Innovation Inc. Amoled display backplanes - pixel driver circuits, array architecture, and external compensation
US7038392B2 (en) * 2003-09-26 2006-05-02 International Business Machines Corporation Active-matrix light emitting display and method for obtaining threshold voltage compensation for same
US7075316B2 (en) 2003-10-02 2006-07-11 Alps Electric Co., Ltd. Capacitance detector circuit, capacitance detection method, and fingerprint sensor using the same
TWI254898B (en) * 2003-10-02 2006-05-11 Pioneer Corp Display apparatus with active matrix display panel and method for driving same
JP4589614B2 (en) * 2003-10-28 2010-12-01 株式会社 日立ディスプレイズ Image display device
US6937215B2 (en) 2003-11-03 2005-08-30 Wintek Corporation Pixel driving circuit of an organic light emitting diode display panel
US7224332B2 (en) 2003-11-25 2007-05-29 Eastman Kodak Company Method of aging compensation in an OLED display
US6995519B2 (en) * 2003-11-25 2006-02-07 Eastman Kodak Company OLED display with aging compensation
US7339636B2 (en) * 2003-12-02 2008-03-04 Motorola, Inc. Color display and solar cell device
US20060264143A1 (en) 2003-12-08 2006-11-23 Ritdisplay Corporation Fabricating method of an organic electroluminescent device having solar cells
KR100580554B1 (en) 2003-12-30 2006-05-16 엘지.필립스 엘시디 주식회사 Electro-Luminescence Display Apparatus and Driving Method thereof
JP4263153B2 (en) * 2004-01-30 2009-05-13 Necエレクトロニクス株式会社 Display device, drive circuit for display device, and semiconductor device for drive circuit
US7502000B2 (en) * 2004-02-12 2009-03-10 Canon Kabushiki Kaisha Drive circuit and image forming apparatus using the same
KR20050115346A (en) * 2004-06-02 2005-12-07 삼성전자주식회사 Display device and driving method thereof
US7173590B2 (en) 2004-06-02 2007-02-06 Sony Corporation Pixel circuit, active matrix apparatus and display apparatus
JP2005345992A (en) 2004-06-07 2005-12-15 Chi Mei Electronics Corp Display device
US20060007249A1 (en) 2004-06-29 2006-01-12 Damoder Reddy Method for operating and individually controlling the luminance of each pixel in an emissive active-matrix display device
CA2567076C (en) 2004-06-29 2008-10-21 Ignis Innovation Inc. Voltage-programming scheme for current-driven amoled displays
CA2472671A1 (en) 2004-06-29 2005-12-29 Ignis Innovation Inc. Voltage-programming scheme for current-driven amoled displays
US7317433B2 (en) * 2004-07-16 2008-01-08 E.I. Du Pont De Nemours And Company Circuit for driving an electronic component and method of operating an electronic device having the circuit
US7589707B2 (en) * 2004-09-24 2009-09-15 Chen-Jean Chou Active matrix light emitting device display pixel circuit and drive method
JP4111185B2 (en) 2004-10-19 2008-07-02 セイコーエプソン株式会社 Electro-optical device, driving method thereof, and electronic apparatus
US7889159B2 (en) 2004-11-16 2011-02-15 Ignis Innovation Inc. System and driving method for active matrix light emitting device display
US7116058B2 (en) 2004-11-30 2006-10-03 Wintek Corporation Method of improving the stability of active matrix OLED displays driven by amorphous silicon thin-film transistors
CA2590366C (en) 2004-12-15 2008-09-09 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
CA2504571A1 (en) 2005-04-12 2006-10-12 Ignis Innovation Inc. A fast method for compensation of non-uniformities in oled displays
KR20070101275A (en) 2004-12-15 2007-10-16 이그니스 이노베이션 인크. Method and system for programming, calibrating and driving a light emitting device display
CA2495726A1 (en) 2005-01-28 2006-07-28 Ignis Innovation Inc. Locally referenced voltage programmed pixel for amoled displays
US7088051B1 (en) 2005-04-08 2006-08-08 Eastman Kodak Company OLED display with control
FR2884639A1 (en) 2005-04-14 2006-10-20 Thomson Licensing Sa ACTIVE MATRIX IMAGE DISPLAY PANEL, THE TRANSMITTERS OF WHICH ARE POWERED BY POWER-DRIVEN POWER CURRENT GENERATORS
JP2006302556A (en) 2005-04-18 2006-11-02 Seiko Epson Corp Manufacturing method of semiconductor device, semiconductor device, electronic device, and electronic apparatus
TWI302281B (en) 2005-05-23 2008-10-21 Au Optronics Corp Display unit, display array, display panel and display unit control method
JP4996065B2 (en) 2005-06-15 2012-08-08 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー Method for manufacturing organic EL display device and organic EL display device
KR101157979B1 (en) 2005-06-20 2012-06-25 엘지디스플레이 주식회사 Driving Circuit for Organic Light Emitting Diode and Organic Light Emitting Diode Display Using The Same
WO2006137337A1 (en) 2005-06-23 2006-12-28 Tpo Hong Kong Holding Limited Liquid crystal display having photoelectric converting function
US7649513B2 (en) * 2005-06-25 2010-01-19 Lg Display Co., Ltd Organic light emitting diode display
KR101169053B1 (en) * 2005-06-30 2012-07-26 엘지디스플레이 주식회사 Organic Light Emitting Diode Display
GB0513384D0 (en) 2005-06-30 2005-08-03 Dry Ice Ltd Cooling receptacle
WO2007032361A1 (en) 2005-09-15 2007-03-22 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
US20080055209A1 (en) * 2006-08-30 2008-03-06 Eastman Kodak Company Method and apparatus for uniformity and brightness correction in an amoled display
EP2458579B1 (en) 2006-01-09 2017-09-20 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
DE202006005427U1 (en) 2006-04-04 2006-06-08 Emde, Thomas lighting device
JP5037858B2 (en) 2006-05-16 2012-10-03 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー Display device
JP2007317384A (en) 2006-05-23 2007-12-06 Canon Inc Organic electroluminescence display device, its manufacturing method, repair method and repair unit
KR101245218B1 (en) 2006-06-22 2013-03-19 엘지디스플레이 주식회사 Organic light emitting diode display
JP2008046377A (en) * 2006-08-17 2008-02-28 Sony Corp Display device
JP4222426B2 (en) * 2006-09-26 2009-02-12 カシオ計算機株式会社 Display driving device and driving method thereof, and display device and driving method thereof
US7355574B1 (en) * 2007-01-24 2008-04-08 Eastman Kodak Company OLED display with aging and efficiency compensation
JP5115180B2 (en) * 2007-12-21 2013-01-09 ソニー株式会社 Self-luminous display device and driving method thereof
KR100939211B1 (en) 2008-02-22 2010-01-28 엘지디스플레이 주식회사 Organic Light Emitting Diode Display And Driving Method Thereof
EP2159783A1 (en) 2008-09-01 2010-03-03 Barco N.V. Method and system for compensating ageing effects in light emitting diode display devices
KR101320655B1 (en) 2009-08-05 2013-10-23 엘지디스플레이 주식회사 Organic Light Emitting Display Device
GB201012205D0 (en) 2010-07-21 2010-09-08 Qinetiq Ltd Valves

Patent Citations (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996523A (en) * 1988-10-20 1991-02-26 Eastman Kodak Company Electroluminescent storage display with improved intensity driver circuits
US5266515A (en) * 1992-03-02 1993-11-30 Motorola, Inc. Fabricating dual gate thin film transistors
US5648276A (en) * 1993-05-27 1997-07-15 Sony Corporation Method and apparatus for fabricating a thin film semiconductor device
US5714968A (en) * 1994-08-09 1998-02-03 Nec Corporation Current-dependent light-emitting element drive circuit for use in active matrix display device
US5498880A (en) * 1995-01-12 1996-03-12 E. I. Du Pont De Nemours And Company Image capture panel using a solid state device
US5619033A (en) * 1995-06-07 1997-04-08 Xerox Corporation Layered solid state photodiode sensor array
US5748160A (en) * 1995-08-21 1998-05-05 Mororola, Inc. Active driven LED matrices
US5880582A (en) * 1996-09-04 1999-03-09 Sumitomo Electric Industries, Ltd. Current mirror circuit and reference voltage generating and light emitting element driving circuits using the same
US5990629A (en) * 1997-01-28 1999-11-23 Casio Computer Co., Ltd. Electroluminescent display device and a driving method thereof
US5917280A (en) * 1997-02-03 1999-06-29 The Trustees Of Princeton University Stacked organic light emitting devices
US5903248A (en) * 1997-04-11 1999-05-11 Spatialight, Inc. Active matrix display having pixel driving circuits with integrated charge pumps
US5952789A (en) * 1997-04-14 1999-09-14 Sarnoff Corporation Active matrix organic light emitting diode (amoled) display pixel structure and data load/illuminate circuit therefor
US6023259A (en) * 1997-07-11 2000-02-08 Fed Corporation OLED active matrix using a single transistor current mode pixel design
US20010043173A1 (en) * 1997-09-04 2001-11-22 Ronald Roy Troutman Field sequential gray in active matrix led display using complementary transistor pixel circuits
US5874803A (en) * 1997-09-09 1999-02-23 The Trustees Of Princeton University Light emitting device with stack of OLEDS and phosphor downconverter
US6229508B1 (en) * 1997-09-29 2001-05-08 Sarnoff Corporation Active matrix light emitting diode pixel structure and concomitant method
US6069365A (en) * 1997-11-25 2000-05-30 Alan Y. Chow Optical processor based imaging system
US6097360A (en) * 1998-03-19 2000-08-01 Holloman; Charles J Analog driver for LED or similar display element
US6288696B1 (en) * 1998-03-19 2001-09-11 Charles J Holloman Analog driver for led or similar display element
US6091203A (en) * 1998-03-31 2000-07-18 Nec Corporation Image display device with element driving device for matrix drive of multiple active elements
US6252248B1 (en) * 1998-06-08 2001-06-26 Sanyo Electric Co., Ltd. Thin film transistor and display
US6144222A (en) * 1998-07-09 2000-11-07 International Business Machines Corporation Programmable LED driver
US6246180B1 (en) * 1999-01-29 2001-06-12 Nec Corporation Organic el display device having an improved image quality
US6940214B1 (en) * 1999-02-09 2005-09-06 Sanyo Electric Co., Ltd. Electroluminescence display device
US6580408B1 (en) * 1999-06-03 2003-06-17 Lg. Philips Lcd Co., Ltd. Electro-luminescent display including a current mirror
US6859193B1 (en) * 1999-07-14 2005-02-22 Sony Corporation Current drive circuit and display device using the same, pixel circuit, and drive method
US6693610B2 (en) * 1999-09-11 2004-02-17 Koninklijke Philips Electronics N.V. Active matrix electroluminescent display device
US6392617B1 (en) * 1999-10-27 2002-05-21 Agilent Technologies, Inc. Active matrix light emitting diode display
US6501466B1 (en) * 1999-11-18 2002-12-31 Sony Corporation Active matrix type display apparatus and drive circuit thereof
US20010002703A1 (en) * 1999-11-30 2001-06-07 Jun Koyama Electric device
US6307322B1 (en) * 1999-12-28 2001-10-23 Sarnoff Corporation Thin-film transistor circuitry with reduced sensitivity to variance in transistor threshold voltage
US20010045929A1 (en) * 2000-01-21 2001-11-29 Prache Olivier F. Gray scale pixel driver for electronic display and method of operation therefor
US20010026257A1 (en) * 2000-03-27 2001-10-04 Hajime Kimura Electro-optical device
US20010030323A1 (en) * 2000-03-29 2001-10-18 Sony Corporation Thin film semiconductor apparatus and method for driving the same
US20020011799A1 (en) * 2000-04-06 2002-01-31 Semiconductor Energy Laboratory Co., Ltd. Electronic device and driving method
US20020011796A1 (en) * 2000-05-08 2002-01-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, and electric device using the same
US20020000576A1 (en) * 2000-06-22 2002-01-03 Kazutaka Inukai Display device
US6697057B2 (en) * 2000-10-27 2004-02-24 Semiconductor Energy Laboratory Co., Ltd. Display device and method of driving the same
US6433488B1 (en) * 2001-01-02 2002-08-13 Chi Mei Optoelectronics Corp. OLED active driving system with current feedback
US20030107560A1 (en) * 2001-01-15 2003-06-12 Akira Yumoto Active-matrix display, active-matrix organic electroluminescent display, and methods of driving them
US6323631B1 (en) * 2001-01-18 2001-11-27 Sunplus Technology Co., Ltd. Constant current driver with auto-clamped pre-charge function
US7248236B2 (en) * 2001-02-16 2007-07-24 Ignis Innovation Inc. Organic light emitting diode display having shield electrodes
US6734636B2 (en) * 2001-06-22 2004-05-11 International Business Machines Corporation OLED current drive pixel circuit
US20020195968A1 (en) * 2001-06-22 2002-12-26 International Business Machines Corporation Oled current drive pixel circuit
US20030062524A1 (en) * 2001-08-29 2003-04-03 Hajime Kimura Light emitting device, method of driving a light emitting device, element substrate, and electronic equipment
US20030090481A1 (en) * 2001-11-13 2003-05-15 Hajime Kimura Display device and method for driving the same
US20030111966A1 (en) * 2001-12-19 2003-06-19 Yoshiro Mikami Image display apparatus
US7129914B2 (en) * 2001-12-20 2006-10-31 Koninklijke Philips Electronics N. V. Active matrix electroluminescent display device
US7310092B2 (en) * 2002-04-24 2007-12-18 Seiko Epson Corporation Electronic apparatus, electronic system, and driving method for electronic apparatus
US20030230980A1 (en) * 2002-06-18 2003-12-18 Forrest Stephen R Very low voltage, high efficiency phosphorescent oled in a p-i-n structure
US20040196275A1 (en) * 2002-07-09 2004-10-07 Casio Computer Co., Ltd. Driving device, display apparatus using the same, and driving method therefor
US20040155841A1 (en) * 2002-11-27 2004-08-12 Seiko Epson Corporation Electro-optical device, method of driving electro-optical device, and electronic apparatus
US20040150595A1 (en) * 2002-12-12 2004-08-05 Seiko Epson Corporation Electro-optical device, method of driving electro-optical device, and electronic apparatus
US20040145547A1 (en) * 2003-01-21 2004-07-29 Oh Choon-Yul Luminescent display, and driving method and pixel circuit thereof, and display device
US6919871B2 (en) * 2003-04-01 2005-07-19 Samsung Sdi Co., Ltd. Light emitting display, display panel, and driving method thereof
US20040252089A1 (en) * 2003-05-16 2004-12-16 Shinya Ono Image display apparatus controlling brightness of current-controlled light emitting element
US20050007357A1 (en) * 2003-05-19 2005-01-13 Sony Corporation Pixel circuit, display device, and driving method of pixel circuit
US20050067971A1 (en) * 2003-09-29 2005-03-31 Michael Gillis Kane Pixel circuit for an active matrix organic light-emitting diode display
US20050285825A1 (en) * 2004-06-29 2005-12-29 Ki-Myeong Eom Light emitting display and driving method thereof
US20060261841A1 (en) * 2004-08-20 2006-11-23 Koninklijke Philips Electronics N.V. Data signal driver for light emitting display

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314427B2 (en) 2001-02-26 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic equipment
US20110084281A1 (en) * 2001-02-26 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic equipment
US8071982B2 (en) 2001-02-26 2011-12-06 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic equipment
US8610117B2 (en) 2001-02-26 2013-12-17 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic equipment
US9165952B2 (en) 2001-09-21 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, driving method of light emitting device and electronic device
US8519392B2 (en) 2001-09-21 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, driving method of light emitting device and electronic device
US8227807B2 (en) 2001-09-21 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, driving method of light emitting device and electronic device
US9876063B2 (en) 2001-09-21 2018-01-23 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, driving method of light emitting device and electronic device
US8895983B2 (en) 2001-09-21 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, driving method of light emitting device and electronic device
US9876062B2 (en) 2001-09-21 2018-01-23 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, driving method of light emitting device and electronic device
US20100328299A1 (en) * 2001-09-21 2010-12-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, driving method of light emitting device and electronic device
US10068953B2 (en) 2001-09-21 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, driving method of light emitting device and electronic device
US9847381B2 (en) 2001-09-21 2017-12-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, driving method of light emitting device and electronic device
US9368527B2 (en) 2001-09-21 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, driving method of light emitting device and electronic device
US9214494B2 (en) 2012-12-10 2015-12-15 LuxVue Technology Corporation Active matrix display panel with ground tie lines
US10784236B2 (en) 2012-12-10 2020-09-22 Apple Inc. Light emitting device reflective bank structure
US9343448B2 (en) 2012-12-10 2016-05-17 LuxVue Technology Corporation Active matrix emissive micro LED display
US9178123B2 (en) 2012-12-10 2015-11-03 LuxVue Technology Corporation Light emitting device reflective bank structure
US9559142B2 (en) 2012-12-10 2017-01-31 Apple Inc. Active matrix display panel with ground tie lines
US11916048B2 (en) 2012-12-10 2024-02-27 Apple Inc. Light emitting device reflective bank structure
US9620487B2 (en) 2012-12-10 2017-04-11 Apple Inc. Light emitting device reflective bank structure
US10043784B2 (en) 2012-12-10 2018-08-07 Apple Inc. Light emitting device reflective bank structure
US9159700B2 (en) 2012-12-10 2015-10-13 LuxVue Technology Corporation Active matrix emissive micro LED display
US9029880B2 (en) 2012-12-10 2015-05-12 LuxVue Technology Corporation Active matrix display panel with ground tie lines
US11373986B2 (en) 2012-12-10 2022-06-28 Apple Inc. Light emitting device reflective bank structure
US20150356922A1 (en) * 2012-12-31 2015-12-10 Kunshan New Flat Panel Display Technology Center Co., Ltd. Pixel circuit, display device, and drive method therefor
US10339863B2 (en) * 2012-12-31 2019-07-02 Kunshan New Flat Panel Display Technology Center Co., Ltd. Pixel circuit, display device, and drive method therefor
US9252375B2 (en) 2013-03-15 2016-02-02 LuxVue Technology Corporation Method of fabricating a light emitting diode display with integrated defect detection test
US11778842B2 (en) 2013-03-15 2023-10-03 Apple Inc. Light emitting diode display with redundancy scheme
US9865832B2 (en) 2013-03-15 2018-01-09 Apple Inc. Light emitting diode display with redundancy scheme
US10411210B2 (en) 2013-03-15 2019-09-10 Apple Inc. Light emitting diode display with redundancy scheme
US11380862B2 (en) 2013-03-15 2022-07-05 Apple Inc. Light emitting diode display with redundancy scheme
US10964900B2 (en) 2013-03-15 2021-03-30 Apple Inc. Light emitting diode display with redundancy scheme
US8791474B1 (en) 2013-03-15 2014-07-29 LuxVue Technology Corporation Light emitting diode display with redundancy scheme
US10381176B2 (en) 2013-06-12 2019-08-13 Rohinni, LLC Keyboard backlighting with deposited light-generating sources
US9111464B2 (en) 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
US9865577B2 (en) 2013-06-18 2018-01-09 Apple Inc. LED display with wavelength conversion layer
US9599857B2 (en) 2013-06-18 2017-03-21 Apple Inc. LED display with wavelength conversion layer
US10818449B2 (en) 2016-01-15 2020-10-27 Rohinni, LLC Apparatus and method of backlighting through a cover on the apparatus
US10629393B2 (en) 2016-01-15 2020-04-21 Rohinni, LLC Apparatus and method of backlighting through a cover on the apparatus
US11423837B2 (en) 2019-07-26 2022-08-23 Chengdu Boe Optoelectronics Technology Co., Ltd. Pixel driving circuit and method for controlling the same, and display apparatus
US11763744B2 (en) 2019-07-26 2023-09-19 Chengdu Boe Optoelectronics Technology Co., Ltd. Pixel driving circuit and method for controlling the same, and display apparatus
TWI792597B (en) * 2021-01-08 2023-02-11 中國商京東方科技集團股份有限公司 Array substrate, its driving method and display device

Also Published As

Publication number Publication date
US20060054893A1 (en) 2006-03-16
US20150154907A1 (en) 2015-06-04
US20110193834A1 (en) 2011-08-11
US7569849B2 (en) 2009-08-04
US20140028217A1 (en) 2014-01-30
US8664644B2 (en) 2014-03-04
US8890220B2 (en) 2014-11-18

Similar Documents

Publication Publication Date Title
US7569849B2 (en) Pixel driver circuit and pixel circuit having the pixel driver circuit
US7414600B2 (en) Pixel current driver for organic light emitting diode displays
CA2438577C (en) Pixel current driver for organic light emitting diode displays
US10903244B2 (en) Semiconductor device, display device, and electronic appliance
TWI810234B (en) Sub-pixel circuit and display using the same
KR101080351B1 (en) Display device and driving method thereof
TWI453720B (en) Semiconductor device
US6693383B2 (en) Electro-luminescence panel
KR20060054603A (en) Display device and driving method thereof
JP2006323376A (en) Semiconductor device and display device
JP2007179040A (en) Semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: IGNIS INNOVATION INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NATHAN, AROKIA;SERVATI, PEYMAN;SAKARIYA, KAPIL;AND OTHERS;SIGNING DATES FROM 20090406 TO 20090508;REEL/FRAME:025661/0305

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE